4|lli

IBM ILOG Views
MapsV5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Chapter 1

Chapter 2

Table of Contents

About This Manual 10
Typographic CONVENLIONSt e e e 11
Naming CONVENTIONSottt e e e e e e e e e e e e 11
Introducing IBM ILOG VIiews MapsS oottt 14
What IS IBM ILOG VIeWS MapS? . . . oottt e et e e e e e e 15
Installation of IBM ILOG VIeWS MapsSo vt vttt 16
Getting Started with IBM ILOG Views Maps. 18
Data used in EXamples 18
Creating @ Map . . oottt 19
Running IBM ILOG Views Map Builder 20
Loading the File Containing the Coastal Borders Information 21
Using the IBM ILOG Views Map Builder Toolbar. i 25
Loading the Roads intothe Map i e 25
Loading the TOWNS. e e 26
Loading the Large Towns Intothe Map e 28
Editing the Layerso 29
Saving the File 31
Creating a Map with Load-on-Demand.t 32

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 4

Chapter 3

Chapter 4

Loading the Base Structure Map and CADRG Files 32

Creating a Map Using Oracle Spatial e 35
Creating the Layerinthe Database i i e e 36
Displaying an Oracle Spatial Layer with the Map Builder 38
Displaying an Oracle Spatial Layer in Load-On-Demand 40
Testing the Persistence of the Information. i 40
IBM ILOG Views Maps Reader Framework. 42
The Classes for Creating Maps: An OVEIVIEW.ttt 43
MapP FEAIUIES . . . ottt ettt e e e e e e 44
Map Feature GEOMELIYottt e e e 45
Map Feature AttribUtes. 45
Attaching Attributes to Graphic Objects. 46
RENAEIErS . .o a7
Overview Of RENAEIers e 47
Creating a Colored Line REeNAEIEr.ot e e e e e e 48
Making a Renderer Persistent 50
Extending an EXisting Renderer. 51
Feature [terators. 52
Overview of IIvMapFeaturelterator. e 53
Writing a New Reader e 54
Selecting a Target Projection. i 61
Loading Maps into IBM ILOG VieWsS.ttt e e e e e 62
Loading a Map of the IBM ILOG Views Format. it 62
The Map Loader. e 63
The Scale Filters. 70
Using Load-On-Demand. e 72
How Load-on-Demand WOrKsSt 73
Structure and Size of the Tiling Grid 77
Structure of the Tiling Grid e 78
Sizeof the Tiling Grid. 79

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Chapter 5

Displaying the State of Tiles 80

Controlling Load-on-Demand i e 81
Using Visibility Filters to Control Load-on-Demand, 82
Loading Tiles viathe APl 82
Managing Errors and Load-on-Demand Events 82
Caching TileSo e 84
Saving aTiled Layer 84
Writing a New Cache Algorithm e e 85
Implementing Load-on-Demand for aNew Data Source.c.coveine.... 87
Predefined Readers e e 90
The Shapefile Reader. e 90
Introducing the Shapefile Format. e 91
Classes for Reading the Shapefile Format i 91
Shapefile Load-On-Demandt e 93
The DTED File Readero e 98
Introducingthe DTED Format it e e e e e e 98
Classes for Reading the DTED Formatt i 99
Graphical Rendering of a Digital Terrain Model. 99
The CADRG File Reader e 100
Classes for Reading the CADRG Formatttt i 100
Thelmage File Reader. e e e e 101
The llvimageReader Class.t e e e e 101
The llivimageTileLoader Classot 102
EXamMPIES . . . o 103
The llvimageLayer Classt e e 103
The GeOTIFF ReaUerot e e e e 104
The GEOTIFF FOrmMaL.ttt e e e 104
The [IVGEOTIFFReEAdEr CIasSottt et e e e e 104
The IlvGeoTIFFTileLoader Class.o v it e 105
The IIVGeOTIFFLAYer Class.ot e e e 105
The IIVGEOTIFFTIler Class.ot e e 106

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 6

Chapter 6

The Oracle Spatial Featurest e e e 106

Relational Model ClIasses.ottt 107
Object Model Classesottt 110
The S57 Map Reader 117
Classes for reading S57 format 118
Configuring styles, colors and iCons. e 119
Map Projections 122
Introducing Map Projections. 123
Cylindrical Projectionsottt e e 123
CoNIC ProJeCtioNSt 124
Azimuthal Projections.o 125
Equal Area or Conformal Projections.t 125
Projecting Data: An Example 126
Running the Example Application e 127
Including the Projection Declarationt 127
The Main FUNCHIONo e e e e 128
Creating the Projected Data.ot 128
Projecting the Data.t 128
Printing the Result of the Projection s 129
Calculating the Inverse Projection ittt e e e e i 130
Printing Geographic Coordinates it 130
The Complete EXampleo e e e 130
Projection Methods and Parameters 131
Forward and Inverse FUNCLIONS oot e e 131
Projection Parametersot 132
Ut S oo 133
Bl PSOids . .. 133
Overview Of EIlipS0idso 134
Associating an Ellipsoid with a Projection i 134
Defining New Ellipsoids 135
Predefined EIlIPSOIdSot 135

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Chapter 7

UNit CONVEI IS ..ottt e e e e 137

Using Unit Converters DireCtly.o e e e 138
Using Converters With Projectionst e e e 138
Defining Unit CONVEIErSo e e s 139
Using Predefined Unit CONVEIErSo e e 139
Conversion Between Coordinates in Different Geodetic Datums. 140
Horizontal Datum Shift. 141
Adding Graphic Objects on Topofan Imported Map., 141
Running the Example Application e 142
Defining the Sample Class, the Main Function, and the Constructor. 143
Getting Map Information. e 145
Showing the Mouse POSItion 146
Creating a New Projection. e e e e 147
Step 1: Defining a New Projection i e 148
Defining the Projection. e 149
Writing the Forward Projection. 150
Writing the Inverse Projection 152
Step 2: Defining @a New Projection ot 153
Step 3: Defining a New Projection i 156
Map Data 158
.. 162

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 8

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

About This Manual

This User’s Manual explains how to use the C++ API that is detailed in the
IBM® ILOG® Views Maps Reference Manual.

What You Need to Know

This manual assumesthat you are familiar with the PC or UNIX® environment in which you
are going to use IBM ILOG Views, including its particular windowing system. Since

IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization

This manual provides conceptual and hands-on information for developing applications that
incorporate IBM® ILOG® Views Maps. It describes the fundamental s that underlie
IBM ILOG Views Maps and shows how to create and use map objects.

This manual contains the following chapters:

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 10

& Chapter 1, Introducing IBM ILOG Views Maps gives you an overall picture of
IBM ILOG Views Maps.

& Chapter 2, Getting Started with IBM ILOG Views Maps provides asimple tutorial on the
mapping functionalities of IBM ILOG Views Maps.

& Chapter 3, IBM ILOG MViews Maps Reader Framework describes the API to load
cartographic datainto IBM ILOG Views.

& Chapter 4, Using Load-On-Demand describes the | oad-on-demand mechanism.

& Chapter 5, Predefined Readers introduces the predefined readers supplied with
IBM ILOG Views Maps.

& Chapter 6, Map Projections explains how to use projections.

& Chapter 7, Map Data provides alist of suggested free sources for downloading map data.

Notation

Typographic Conventions

The following typographic conventions apply throughout this manual:
& Code extracts and file names are written in courier typeface.

& Entriesto be made by the user are writtenin courier italics.

& Somewordsin italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions
Throughout this manual, the following naming conventions apply to the API.

4 The names of types, classes, functions, and macros defined in the IBM ILOG Views
Foundation library begin with T1v.

& The names of classes as well as global functions are written as concatenated words with
each initial letter capitalized.

class I1vDrawingView;

¢ Thenames of virtua and regular methods begin with alowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassinfo() const;

static IlvClassInfo* ClassInfo* () const;

11 IBM ILOG VIEWS MAPS V5.3 — USER’'’S MANUAL

IBM

ILOG VIEwWsS MAPsS V5.3

USER’'S MANUAL

12

13

IBM

ILOG VIEwWS MAPS V5.3

USER'S MANUAL

Introducing IBM ILOG Views Maps

This chapter introduces you to the IBM® ILOG® Views Maps package.
IBM ILOG Views Maps consists of afull-featured C++ class library for building high-
performance applications that require the use of a cartographic background.

Itisbuilt upontheBM ILOG Views graphics framework, which provides base functionality
for all 2D graphics applications created with IBM ILOG Views.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 14

IBM ILOG Views
Charts
IBM ILOG Views
Maps
IBM ILOG Views
Data Access
IBM ILOG Views
Graph Layout

IBM ILOG Views

Controls 2D Graphics

Foundation

Figure1l.1 The Maps Package and the IBM ILOG Views Component Suite

What Is IBM ILOG Views Maps?

IBM® ILOG® Views Maps consists of the following components:
& A map builder
& A classlibrary

15 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

Installation of IBM ILOG Views Maps

The Map Builder

IBM ILOG Views Mapsis delivered with the Map Builder, an editor for creating maps that
can be loaded into a running application. The maps created with the Map Builder can benefit
from most of the features of IBM ILOG Views Maps, including the sophisticated |oad-on-
demand mechanism that lets you handle very large volumes of data.

The use of the Map Builder isillustrated in Chapter 2, Getting Started with IBM ILOG Views
Maps.

The Class Library

IBM ILOG Views Mapsisaclass library that allows you to save time when building
applications with carthographic needs. The API of thisclasslibrary is easily and fully
customizable and extensible to meet your application needs.

Thislibrary is composed of:

& Classesfor loading cartographic data and representing them as graphic objects within an
IBM ILOG Views manager. See Chapter 3, IBM ILOG Views Maps Reader Framework.

& Classesimplementing load-on-demand for managing large volumes of data. See Chapter
4, Using Load-On-Demand.

& Classes implementing predefined readers for various commonly-used cartographic
formats, such as CADRG, DTED, or Oracle Spatial. See Chapter 5, Predefined Readers.

& Classes for managing georeferencing and reprojection of geographic coordinates. See
Chapter 6, Map Projections.

Note: In this manual the term package is referred to as the class whose header fileisina
directory that has the same name of the package. For example, the package projectionisin
the projection directory.

Installation of IBM ILOG Views Maps

In order to use the product, you need the following software:
¢ IBM® ILOG® Views Maps

¢ |IBM ILOG Views, IBM ILOG Views 2D Graphics Standard or IBM ILOG Views 2D
Graphics Professional

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 16

17

If you want to use the Oracle Spatial reader of IBM ILOG Views Maps, you will also need to
install IBM ILOG DB Link. Thelicense of IBM ILOG Views Maps enables you to use
IBM ILOG DB Link.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Getting Started with IBM ILOG Views Maps

This chapter shows you the main features of IBM® ILOG® Views Maps, by creating maps
using the IBM ILOG Views Map Builder. By working with different examples, you will see
the efficiency of the predefined map readers, the ease of connection to an Oracle Spatial
database, and other features that are available with this builder.

The examples found in this chapter are:

& Creating a Map

& Creating a Map with Load-on-Demand
& Creating a Map Using Oracle Spatial

Data used in Examples

This chapter uses data for demonstration purposes as described in the following list. For a
list of suggested free sources for downloading map data see Map Data.

¢ Creating a Map: ESRI Shapefile of the Philippines.
¢ Creating a Map with Load-on-Demand: CADRG files and thewaco.ilv file.
¢ CreatingaMap with Oracle Spatial: ESRI Shapefile of the World.

In these exampl es, data has been downloaded in the following directories:

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 18

& <shapedir> for the ESRI Shapefiles Philippines and World
® <wacodir> forthewaco.ivl file

& <cadrgdir> for the CADRG files data

Creating a Map

Note: This section assumes that you have downloaded appropriate data to your
workstation. For alist of suggested free sources for downloading map data, see Map Data.
This example uses ESRI Shapefile data.

You may want to create a map of the Philippine Islands in the South Pacific and show its
coastal borders, towns, and roads. You need map datawhich may comein theform of files or
in the form of data requests from a cartographic server. In both cases the predefined readers
of IBM® ILOG® Views Map Builder allow you to easily load datafrom many different
sources. Once the datais loaded into the Map Builder, you start working within the
environment of IBM ILOG Views Maps.

In the first example you will use map datafiles.

Note: When |loading the files into the Map Builder, you set various parameters for the
information that will be loaded. These parameters, renderers, target projections and so on,
are discussed in detail along with the different file formats in the following chapters.

After loading the files, your map will appear as follows:

19 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map

[z Untitled 1

Roads as red pohdines

— Coastal borders
as black pohdines

Towns as hlack circles

Figure2.1 Map of the Philippines Islands
In this example, you will learn how to:

& Load fileswith IBM ILOG Views Map Builder (Shapefilesin this example)
Choose arenderer

Use the scalefilter

Display the attributes of an object

Edit your layer names

Save an IBM ILOG Viewsfile

* & 6 o o

Running IBM ILOG Views Map Builder

To launch IBM® ILOG® Views Map Builder:

4 On UNIX® systems: usethe mapbuilder executableinthe <installdir>/bin
directory

¢ On Microsoft® Windows® systems: use themapbuilder.exe file

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 20

After launching IBM ILOG Views Map Builder, the following main window appears:

iMap Builder [_ (O] x|
Menu bar —HFile Connection View

Toolbar —H—Er o %§| dnon LELDT
2=

Scale bar (i 100 m

=

Legend —7—
panel

Buffer
panel

=

Qoordlnate Mo geareferencing information
viewer

jl DELink package found. ;I
Message -
window 4 3

Figure2.2 IBM ILOG Views Map Builder Main Window

Loading the File Containing the Coastal Borders Information

The first Shapefile you load, for example, Poline. shp, contains the coastal borders
information of the Philippines. Each Shapefile contains one “theme,” such as roads, towns,
or coastal borders and all the objects of thefile are of the same type (line, point, or polygon,
and so on). The theme of thisfile isthe coastal borders.

In this section, you will see how to load afile and how to use the toolbar.
To load thefile:
1. Choose Load file from the File menu or click the corresponding icon in the toolbar.

2. Browseto <shapedir> and openthe poline. shp file.

21 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map

The Parameters window appears:

Source file parameters Mi=] B3

Rendering | Source projection | Drestination projection | Desgtination adapter | Scale contraol | Attributes |

Fill

coo: [I]

Like

coor [-]
Thickness: | — 1 vI
Dazh: | _— vI

Paint

Syumbol: |] - I

Ok | Cancel |

Figure2.3 The Parameters Window

3. Inthe Parameters window, |eave the default parameters for the Rendering page as they
are.

According to these default parameters, the coastal borderswill be rendered as solid black
lines.

4. On the Source projection page, you can specify the source projection of the file that you
are going to load (this page is displayed when a non georeferenced map file is |oaded).
The files of this scenario are in the Geographic projection.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 22

Source file parameters

Rendering Source projection

[O] -]

Destination projection | Destination adapter | Scale cantrol | Attributes |

uzingLonagitudeR eduction

| True

— Projection i Ellipzoid

I [Geographic j I zphere ;I
centraltendian ODE Semi-Major axis [&) E370997.000000
centralParallel oM Semi-Minar axis [B) E370997.000000
falzeE asting 0.000000)

i Preview

falzeMarthing 0.000000
aeacentric | Falze j

Ok |

Cancel |

Note: The coordinate system of Shapefilesis often the Geographic projection. This
means that the coordinates of the points are the latitude and longitude expressed in

degrees.

5. On the Destination projection page, you can specify the destination projection of your
file. IBM® ILOG® Views Mapsis ableto convert geometries between projections when
reading from Shapefile. In the case of this sample, you must choose the Geographic

projection.

Note: All thefilesyou load in a map must have the same projection. With
IBM ILOG Views Map Builder, the Target Projection tab of the parameter window is
used to set the projection of a map. When loading multiple files which are not of the

IBM ILOG VMiews format into a buffer, the Target Projection tab is displayed for the first
file only. Subsequent files are loaded using this projection as destination projection.

23 IBM ILOG VIEWS MAPS V5.3 —

USER’'S MANUAL

Creating a Map

6. On the Attributes page, you can specify whether you want to load the attributes of the
mayp features. For thisfile, which contains coastal borders, you can clear the option
because the attributes convey no information. Thiswill keep memory resources.

7. Onthe Destination adapter page, you can specify an adapter for the graphic coordinates,
that isthe precision of your map. You can |leave the default value of one meter.

8. Onthe Scale control page, you can specify avisibility filter for the layer that will contain
the loaded data. For thisfile, leave the settings at No Limit because you want the coastal
bordersto bevisible at all scales.

9. Onceyou have set al the parameters for loading the file, click OK.
The fileisloaded, displaying the coastal borders of the Philippine Islands.

Map Builder [[O] =]

” File Connection “iew

[R H Ny XX B

2l
Current scale 0 40 200 km
=
¥ noname
¥ noname
¥ noname

Loaded layers —do 1 haneanIL /\/ :

2l
Geographic ¥ = 12300221 '
coordinates of - 14D5T56N
the area pointed

to by the mouse 5'Ij\data\shape\mmm.frochwa'oﬁne.shp loaded
4

|

|

Figure2.4 IBM ILOG Views Map Builder with a Loaded Map File

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 24

Using the IBM ILOG Views Map Builder Toolbar

With the map loaded, try using the following commands on the Map Builder toolbar:

*
*
*

*
*

The Select icon & to select objects in the buffer.
The Zoom In GK and the Zoom Out G{| icon.

The Interactive zoomicon % which alowsyou to drag arectangle over an areathat you
want to zoom.

The Fit-to-content icon [to display the entire map.
The Pan icon ﬂ to move the map within the buffer panel.

When you are finished using these commands, click the Fit-to-content icon to display the
entire map.

Loading the Roads into the Map

In this section, you will see how to choose a renderer and how to use the scalefilters.

You are going to load, for example, therdline. shp file that contains the roadsinto the
same buffer as you used in the previous section.

1. Choose Insert Map File from the File menu.

Do not choose Load file because that creates a new buffer.

2. Browseto <shapedir> and open, for example, therdline. shp file.

3. Onthe Rendering page in the Parameters window, change the line color so that the roads
appear red in the map.

There are three rendering parameters that can be changed: the Fill color of objects, the
Line color, and the marker symbol. When loading a map, only the applicable parameters
can be changed. In this case, only the line rendering style can be changed.

4. Set the Source Projection to Geographic.

5. Leave the default map adapter.

6. Clear the Attach attributes check box.

7. Onthe Scale control page, set the Small scale limit to 1/5,000,000. This makes the roads
visible when the user chooses a scale greater than 1/5,000,000 (for example, 1/
2,500,000).

8. Click OK.

To test your work:

25 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

1.

2.

Creating a Map

Click the Fit-to-content icon K4 to display the entire map.
Zoom in the map to see that the roads appear when the scale is greater than 1/5,000,000.

Loading the Towns

In this section, you will see how to attach the attributes and display them.

You are now going to load the towns into the map. Thisinformationisin the Pppoint . shp
file.

1.
2.

IBM

Choose Insert a Map File from the File menu.

Browse to <shapedir> and open, for example, thefile Pppoint. shp.

The Parameters window is displayed.

Change the Point rendering style to the circle.

On the Source Projection page, set the Source Projection setting as Geographic.

On the Attributes page, check the Attach attributes check box to load the attributes into
the map.

The names of the towns are included in the attributes, and you want to have this
information displayed on our map.

On the Scale control page, set the Small scale limit to 1/2,500,000. You will have to
zoom to this scale to see the town symbols.

Click OK.

The towns appear in the map as small circles:

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 26

i Untitled 1 =] 3

Figure2.5 Towns Loaded into the Map
Displaying the Attached Attributes
You can now check whether you can see the attributes of the towns that you attached:
1. Open the Attributes window by choosing Attributes from the View menu.
2. Click the Selecticon & to activate the selection mode in the buffer.
3. Select some towns on the map.

The attributes are displayed for the towns for which this information was present in the
loaded file. If the name of the town has been included in the file information, it will be
displayed in the valuefield to the right of the PPPTNAME property field.

In Figure 2.6, the town of Alcantara has been selected, and its nameisindicated in the
PPPTNAME value field:

27 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map

" Map Builder [_ (O] x|
“ File Conmection Wiew
(G R &N QXX B

=l= iz Untitled 1 [_[O]x]

0 5000 25000 m (}9

A=

[noname o
o=
[noname &
[noname
¥ M:\databshapesMAMIL /\/
Attributes
¥ b:datahshapsthanIl /\/ ID : 53252
FPPTTYFE : 1
. FPPTHAME : Alcantara
[M:\datahshapettaMIL o] PPPTELAG - 1
| TILE_ID; 238
END_ID : 428
2=l
#*=122D08'59"E
¥ =1204301"N
| -
o b :hdatahshapeiAMILLA, FriomD CwPppoint. shp loaded ;I
JIE _>I_I
Selected Town Name of the

Figure2.6 Attributes Window

selected town

Loading the Large Towns Into the Map

In this section you will see how to set renderer properties, edit layers, and save your

IBM® ILOG® Views map.

The information for large towns isin the file named Pppoly. shp inthe <shapedir>

directory.

1. Choose Insert Map File from the File menu.

2. Browseto, for example, the pppoly. shp file and openit.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 28

3. On the Rendering page, set the Fill color value to dark grey. To do this, click the color
field once, and then choose the grey color.

4. Set alinecolor. For example Black.
Note: If you do not want the area boundary lines to be drawn, you can choose “ Non€e’
in the color combo box.

5. On the Attributes page, clear the Attach attributes check box.
6. Click OK.

Editing the Layers

Layer ordering and visibility filters can be changed, by right-clicking the layer name in the
legend window. The following menu is displayed:

Bring to front
Circulate up
Circulate down
Send to back

igibility filbers

Remove layer

Changing the Position of a Layer

The layer at the bottom of the Layers list box in the Layers window isthefirst visible layer
in the view. The second layer from the bottom is the next visible layer, and its content can be
hidden by the objects of the first layer. In the map in the buffer, the roads layer is underneath
the layer of large towns.

Todisplay it:
1. Set the scale of the map to 1/500,000.

At thisscale you can easily identify the large towns which have the perimetersfilled in as
dark grey.

2. Find alarge town by panning the map with the panicon .

You will see alarge town covers the drawing the red roads.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map

[Untitled 1

— Road
— Large town

Figure2.7 Layer of the Large Towns Hiding the Roads Layer
To move the roads layer on top of the layer of the large towns:

1. Right-click the layer containing the large town objectsin the Legend window.

2. Moveit to thetop of thelist by selecting the Send to back option from the layer pop-up
menu.

Theroads layer isnow on top of the layer of the large towns, and the roads are visible within
the perimeter of the large town.

[Untitled 1

— Road

—Large town

Figure2.8 Large Town Layer underneath the Roads Layer

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 30

Scale Control Parameters

When you create a map, you may want one layer displaying a certain type of information to
be visible only after a certain scale. For example, if you have aroadway infrastructure, you
may want the secondary roads to be visible only when the map is zoomed in to a certain
scale. You can specify this by selecting the Visibility filters option from the layer pop-up
menu:

__ Visibility Filter =] B3

Large scale limit 1/ | N0 -

Small zzale limit 1 4 | Ma lirmit vI

Ok | Cancel |

Figure2.9 The Scale Visihility Panel

A Visihility filter is characterized by 2 limits: the Large scale limit and the Small scale limit.
A layer isvisible when the display scale is within these limits. For example, if you set a
Large scale limit of 100,000 and a Small scale limit of 500,000, the layer isvisible only
when the display scaleis between 1/100,000 and 1/500,000.

Saving the File

At this point, you are going to save your file. IBM® ILOG® Views Map Builder savesfiles
exclusively in the . i1v format. Although this is automatic, add the . i 1v extension to the
name of the file so that it can be easily identified as afile of thisformat.

To save thefile:

1. Choose Save as... from the File menu.

2. Select the directory you want to save thefilein.
3. Namethefilephilippines.ilv.
4

. Click Save.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map with Load-on-Demand

Creating a Map with Load-on-Demand

Note: Make sure you have downloaded the files into the <wacodir> and <cadrgdir>
directories before starting this example.

In thisexample, you are going to create amap having the load-on-demand functionality. The
geographical areais the region of Waco, Texasin the United States. Severa fileswill be
loaded:

& Thefirst map file, waco . i1v, isvectorial. It contains the towns and roads of the region.
Thismap file will be visible at any scale and provides the base structure of the map.

& The second file demonstrates the |oad-on-demand functionality. You will use a CADRG
(Compressed ARC Digitized Raster Graphics) scanned map file of the Waco, Texas,
region. Itsformat is especially suited to the load-on-demand functionality and is one
supported by Views Maps. The information will be visible according to the scales you
Set.

& Thethirdfileis extremely large and will serve to demonstrate the excellent response
times when manipulating a map with load-on-demand.

For further information on the CADRG format, see the section The CADRG File Reader on
page 100.

This example shows:
& How to create amap using the load-on-demand functionality
¢ How to enhance an IBM® ILOG® Views file with |oad-on-demand

& The performance of load-on-demand

Loading the Base Structure Map and CADRG Files

To load the necessary files for this example, first close the buffers that are currently open.
Then load the waco . iv1 file:

1. Choose Load aViews File from the File menu.
2. Browseto thefollowing location: <wacodir> and openthewaco.iv1 file.

The region of Waco appears in the buffer:

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 32

Map Builder =]

“ File Connection “igw

& B R b T BE

The information contained RE i Untitled 4 [_ O]

in this prebuilt Waco map Q 50000
is indicated in its layers ———

W noname

W roads

W boundaries

¥ = 9701928
Y = 31D46'47'N

fll M:\datahcadrgrpfcjoghcjogz01W01 00401 3.ja1 loaded ;I

1 o

Figure2.10 Map of Waco, Texas Loaded into the Buffer
The next file you load is the CADRG scanned map file, which isin load-on-demand mode:

1. Choose Insert Map File from the File menu.

2. Browsetothefollowing location: <cadrgdir>/cadrg/rpf/cjog/cjogz01 and open,
for example, the 01004013 .41 file.

3. Inthe Parameters window, select Load-on-demand in the page L oad-on-Demand.

This setting specifies that the different parts of the CADRG directory that makes up an
entire map will be loaded according to what the user wants to see when using the Zoom,
Pan, or Fit-to-content commands. The L oad-on-demand parameter setting of

IBM ILOG Views Map Builder sets the load-on-demand functionality.

4. Onthe Scale control page, set the Large scalelimit at 1/100,000 and the Small scale limit
to 1/500,000.

5. Click OK.

The CADRG layer is not visible until the display is set to a scale within the limits of the
visibility filter. Display the whole map using the Fit to Content icon, then zoom until you see

33 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

Creating a Map with Load-on-Demand

the CADRG layer. When this layer becomes visible, it will be displayed on top of the layer
containing waco . i 1v. We need to reorder the layer so that the roads are on top of this
CADRG layer.

Repositioning the Layers

You are now going to reposition the layers so that the layers of the vectorial map are
displayed on top of the scanned map:

1. Inthelegend menu, right-click the CADRG layer to open the layer visibility menu.

2. Select Bring to Back. The CADRG layer is sent to the back and the roads are now
visible.

Superimposing Maps

The roads and the towns of the Waco, Texas region are perfectly superimposed. To verify

this, clear the roads layer check box on the | eft of the Map Builder main window to hide this

layer. You see the roads of the vectorial map (the base structure map) immediately
underneath:

_ Map Builder [_ O] x|
” File Connection “Wiew

BR[O » XX B

2l

iu_.. Unliled 4 _ _ i H=]

o 2000 10000 m
—

S
o
¥ ronarme ‘\
¥ roname
¥ roname
¥ roads /\/
[¥ boundaries /\/

21

K = 97D02"24"
Y = 31D31'08"N

ﬂ b hdatahcadrghrpfiejoghojogz01401 004013 g1 loaded
4

|

Figure2.11 Superimposing Maps

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 34

Observing Load-on-Demand at Different Scales

To observe the load-on-demand functionality, you are going to load afile that consists of
several mega bytes of data stored on adisk in a compressed format. Because of |oad-on-
demand, you will be able to manipulate your overall map without prohibitive response times.

1. Choose Insert aMap File in the File menu.

2. Browseto thefollowing location: <cadrgdir>/cadrg/rpf/cltm50/ct50z01 and
open, for example, the 0gen2013.t11 file.

Thiswill simply indicate the first zone displayed for the load-on-demand.
3. Inthe Parameters window, on the Load-On-Demand page, select Load-On-Demand.
4. Onthe Scae control page, set the Small scale limit to 100,000.
5. Click OK.

The loaded layer is put on top of the drawing stack. Send it to the background using the
instructions defined in Repositioning the Layers.

Now, you can observe the load-on-demand functionality by changing the scale of the map or
by moving the map in the view to display a different section of it. To do this, try the Fit-to-
content, Zoom, and the Pan commands on the toolbar. You will see |oad-on-demand
responding rapidly, displaying the information that you want to see with little or no delay.

Creating a Map Using Oracle Spatial

Note: Make sure you have downloaded the ESRI Shapefile data into the <shapedir>
directory before starting this example.

In this example, you are going to see how to use IBM® ILOG® Views Mapsto display data
contained in an Oracle Spatial Database. For this example, you will need:

& AnOracle 8.1.5 (or 8.1.6) server installed and accessible from your machine.
& AnOracle8.1.5 or an Oracle 8.1.6 client installed on your machine.

¢ |IBMILOG DB Link 4.1
L 4

The Oracle sample from IBM ILOG Views Maps, in <installdir>/samples/maps/
oracle.

This example shows how to:

& Create asimple Oracle Spatial layer in the database.

35 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a Map Using Oracle Spatial

& Display thislayer with the Map Builder.
& Display thislayer using Load-On-Demand with the Map Builder.

Creating the Layer in the Database

In this section, you are going to create a database for use with this example. You will usethe
Oracle Sample to create the database.

If your Oracle Sampleis not compiled, follow the instructionsin <installdir>/
samples/maps/oracle/index.html to compileit.

To create a sample database:
1. Run the Oracle Sample application.
2. Choose Load amap file from the File menu.

3. Typethe name of your datafile in the text field that appears. This example uses the
Shapefile data: <shapedir>/world.shp.

: Oracle SDO Sample H=]E3

File DatabBaze

ODhRBI/R|GdNBTO 0w [02 | |

Figure2.12 SDO Sample with Shapefile Loaded

4. To create alayer in the database, check that the database mode toggle displays “ Object”
in the toolbar of the sample. Then, select Create Layer in the Database menu. If you are
not connected to the database, a default connection panel appears to request the
connection parameters:

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 36

37

IBM

Default IlvSDOLayer connection Panel =]

DbLink driver: I oraclef j
User: I .

Password: I xxxxxxxx

SID: I database]

Connect | Cancel |

Figure2.13 Default Database Connection Panel

Because you want to use the Object relational model, you can use either the oracle81 or
the oracle8 driver in the DBLink Driver combo box.

The other possible choice (oracle73) is only valid for the Relational Model.
For your database account and SID, contact your database Administrator.

Once connected to the database, type the name of the layer you want to create. For this
sample, the layer name iSWORLD.

Click OK.

i Oracle SDO Sample [_ (O] x|

Enable SGL traces
------------- é‘sél [re] connect
@’ Load Laper from Data Base
Q&f % Load Layer on demand
e -@ Save Layer in Data Baze

u Create SO0 Layer

l Drop 500 Layer

Enter the SO0 Laper’s name:
[woRLE -

Figure2.14 Creating an SDO Layer

ILOG VIEwWsS MAPS V5.3 — USER’'S MANUAL

7.

Creating a Map Using Oracle Spatial

Savethedatain thislayer by choosing the Save Layer in Database option from the
DataBase menu. Choose the WORLD.GEOMETRY layer from the list and then confirm.

After dataiswritten, adialog box appears requesting the tiling level. Enter 8, whichis
sufficient for this sample. Thisvalueisan Oracle Spatial variable that controls the way
thetiling of datais performed. For more information, refer to the Oracle Spatial
documentation.

You can now use the datain the exercises in the reminder of this chapter.

Displaying an Oracle Spatial Layer with the Map Builder

In this section, you are going to perform a simple request to the Oracle Database. You will
see how to connect to the database, query the database and display awindow of data. You
will use the dataloaded in the database in the previous section, however, you can use any

other data set present in your Oracle Spatial Database.

1.

2.

IBM

Run the IBM® ILOG® Views MapBuilder.

To connect to a database, you must create an empty buffer. Click the New Map icon of
the toolbar or select New Map Buffer in the File menu.

Select the buffer you want to use for creating your map.

Select Oracle Object Model in the Connection menu. The default connection panel
appears.

Enter your database connection parameters.

A parameter window appears, similar to the one used when loading the data from thefile.
Thiswindow adds Oracle related parameters to the parameter window.

In the Rendering page, select the colors you want to use.

In the Destination projection page, choose the projection in which dataiis stored. For the
WORLD maps, the projection is Geographic.

In the Destination adapter page, leave the default parameters (1 meter).
The Load-On-Demand page allows to make a request in two modes:

o By specifying an area of interest (AOI): the datain this AOI isloaded in the current
map buffer.

e By using Load-on-demand.

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 38

In thissection, you will use the Preview mode. After clicking the Preview toggle, you are
allowed to select an array for requesting data. If you leave all fields set to O (zero), the
whole layer will be loaded.

Note: In this sample, you used a small data set. If you want to perform a request using an
AOI on larger data sets, be careful that the AOI you selected is small enough so that the
amount of data that will be |loaded is reasonable.

" Source file parameters E[=]

Rendering | Destination projection | Destination adapter Load On Demand | SDO Layer | Scale contral |§ 4| »

—Area OF Interest
Upper left:= [0 Y= [0

Lowerright 3= [0 Y= |0

" Load on demand

= Laad o dematid
Tile 'width

Tile Height

Create layer | Cloze |

Figure2.15 The Load-On-Demand Page of the Oracle Connection Panel

10. The SDO Layer page lists al the available layersin your database. The layer nameis
composed of the name of the table containing the layer, aperiod ‘.’ and the name of the
table column containing the geometry of data. In this example, you will see at least the
layer named WORLD.GEOMETRY. Select thislayer.

11. The Scale control page allows you to set scale visibility filters on the created layers. For
this sample, you do not need to set scale visibility filters.

12. The Attribute page allows you to load the attributes associated with objects. When thisis
selected, al columnsthat are not of type geometry are attached as attributes to created
graphic objects. Refer to the reference manual of the Oracle readers for more
information. For this sample, you do not need to load the object attributes.

13. After you have selected the options on the various pages, click Create Layer button.

39 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

Creating a Map Using Oracle Spatial

A layer containing the whole data has now been created.

Displaying an Oracle Spatial Layer in Load-On-Demand

In this section, you are going to load the same layer from the previous section, using the
load-on-demand functionality.

1. Repeat steps 1 to 7 in the previous section.
2. Inthe Load-On-Demand page, select L oad-on-demand and specify atile size.

In this example, the WORLD layer has a coverage of 1 degree by 1 degree. You can use,
for example, 500 km as atile size.

3. The SDO Layer page lists al the available layersin your database. The layer nameis
composed of the name of the table containing the layer, aperiod ‘.’ and the name of the
table column containing the geometry of data. In this example, you will see at least the
layer named WORLD.GEOMETRY. Select thislayer.

4. The Scale control page allows you to set scale visibility filters on the created layers. For
this sample, you do not need to set scale visibility filters.

5. The Attribute page allows you to |oad the attributes associated with objects. When thisis
selected, al columnsthat are not of type geometry are attached as attributes to graphic
objects already created. For more information, refer to the reference manual of the
Oracle readers. For this sample, you do not need to load the object attributes.

6. After you have checked the options of the various pages, click the Create Layer button.

A layer containing the whole data has now been created.

Testing the Persistence of the Information

To test the persistence of your map information:

7. To savethefile, choose Save as... from the File menu.
8. To close the buffer, choose Close from the File menu.

9. To open thefile, choose Load File from the File menu.

If you have some layers that need specia information to restore the layer (for example, for
an Oracle Spatial layer, the password to log in), you will be requested to supply the
information when the file is opened.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 40

41

IBM

ILOG VIEwWsS MAPsS V5.3

USER’'S MANUAL

IBM ILOG Views Maps Reader Framework

This chapter explains how to usethe IBM® ILOG® Views Maps reader framework to create
IBM ILOG Views applications displaying cartographic data.

IBM ILOG Views Maps allows you to import cartographic data, such as aerial photographs,
scanned maps, polygons, lines, and labels, and represent them using a set of 11vGraphic
objectsinside an I1vManager Or any subclass of T1vManager such asan I1vGrapher.
The IBM ILOG Views graphics framework includes a wealth of predefined graphic objects
which you can use to represent map features. This set of graphic objects can be enriched
either by coding or by using the IBM ILOG Views Studio with the Prototypes package.

Since cartographic data may come from alarge variety of data sourceswith various formats,
IBM ILOG Views Maps provides a high-level reader framework for easily generating
graphic objects to represent the data whatever its original format.

This chapter has two parts:

& Thefirst part describes how to represent cartographic datawith IBM ILOG Views. It
discusses the whole process from loading to graphical rendering. This part coversthe
following topics:

e TheClassesfor Creating Maps: An Overview introduces you to themain classesin the
reader framework.

e Map Features describes map features. Map feature are objects that represent
cartographic data as it was read from its source file.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 42

¢ Renderers describes renderers and explains how to extend them. Renderers are objects
used to transform map featuresinto IBM ILOG Views graphic objects.

o Feature Iterators describes feature iterators and shows how to write a simple reader.
Feature iterators are objects used to read cartographic data.

e Selecting a Target Projection explains how to associate a map projection with a
manager.

e Loading Mapsinto IBM ILOG Views explainshow toload an . i 1v fileand introduces
the map loader, a class that you can use to import cartographic data with predefined
formatsinto IBM ILOG Views very easily, and how to extend it.

& The second part covers the following topic:

e The Scale Filters explains how to use scale filtersto display or hide information
depending on the scale set for the map.

The Classes for Creating Maps: An Overview

IBM® ILOG® Views Maps provides a set of classes that you can use to read data from
various cartographic data sources (files, databases, map servers, and so on), create map
features, transform the featuresinto IBM ILOG Views graphic objects using renderers, and
position them correctly onto an existing map.

& TheIlvMapFeature classistheitem classfor map features. A map featureis an object
that represents a cartographic data as it was read from its sourcefile. It can be a segment
of road, an aerial image, the summit of ahill, or adigital terrain model. A map feature
holds three main information fields: geometry, the projection in which its geometry is
expressed, and its attributes. If the map feature is atown, for example, its attributes can
be its name and the number of inhabitants. A map feature is completely independent of
the way it will be graphically represented in the application. Thus, a point marking the
summit of a hill might very well be represented with graphic objects as diverse as a
cross, acircle, or an icon. For more information about this class, see the section Feature
Iterators on page 52.

& TheTlvFeatureRenderer abstract classisused to transform map featuresinto graphic
objects that can be added to an T1vManager. A feature renderer lets you select the
graphic representation to be associated with a given map feature and to reproject its
geometry in the projection system of the target application, if necessary.

& TheIlvMapFeaturelterator abstract classisthe common interface for readers. All
the classes implementing this abstract class can be used to read cartographic data,
whatever the original format. For more information about this interface, see the section

43 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Map Features

Feature Iterators on page 52. IBM ILOG Views Maps provides a number of predefined
readersthat al implement thisinterface. These readers are described in detail in Chapter
5, Predefined Readers.

& TheIlvProjection classinthe use package projection isthe base classfor alarge

number of predefined projection classes. Projections are introduced in Selecting a Target
Projection on page 61. For a detailed presentation of projections, see Chapter 6, Map
Projections.

The following figure illustrates the process for loading cartographic datainto
IBM ILOG Views:

Feature Iterator
or

Map Reader - ohjects - objects

llvMapFeature Renderer | . IIvGraphic_} Manager

Figure3.1 Loading External Cartographic Data into IBM ILOG Views

2

The 11vMapLoader classin the package format carries out this entire process
automatically for all the predefined readers supplied with IBM ILOG Views Maps. For
information about predefined readers, see Chapter 5, Predefined Readers.

Map Features

IBM

When you read amap in IBM® ILOG® Views, cartographic dataisloaded as
IlvMapFeature Objects. A map featureis an object that represents cartographic dataasit
was read from its source file. It can be a segment of road, an aerial image, the summit of a
hill, or adigital terrain model. A map feature carries the following information:

*
*
*

The geometry of the feature
Attributes
The projection in which the geometry is expressed

Projections are not covered in this section. For details, see Selecting a Target Projection
and Chapter 6, Map Projections.

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 44

45

Map Feature Geometry

Each map feature has a geometry. The geometry of amap feature isinformation relating to
its shape and position.

InIBM® ILOG® Views Maps, map feature geometries are defined by the
I1lvMapGeometry Class. The use of package geometry supplies anumber of predefined
geometries which are modeled on the “ Simple Map Features’ geometry specifications
defined by the OpenGI'S Consortium to insure interoperability between Geographic
Information Systems (GIS). Note, however, that the classesin this package are not strictly
equivalent to this model in terms of functionality. They provide simplified features and are
mainly drawing oriented. Nevertheless, using these classes greatly facilitates the conversion
of data coming from a map server, such as Oracle Spatial, for example.

This package al so contains additional geometries for handling images, rasters, and text more
easily and can be extended with new geometries.

Map Feature Attributes

Each map feature can also have attributes. If the map feature is atown, its attributes can be
its name, or the number of inhabitants. Attributes can be used, for example, for graphical
rendering. In the section Creating a Colored Line Renderer on page 48 the color of polylines
representing contour lines on amap is defined by the elevation attribute.

Attributes belong to the class T1vFeatureattribute. They are stored in the following
two classes:

& IlvFeatureAttributeInfo, which definesthe attribute properties, such as name,
type, mandatory, or optional characters.

& IlvFeatureAttributeProperty, wWhich containsthe values of these attributes.

The following code sample lists the attributes of an 11vMapFeature object and displays
them on the screen.

void
dumpAttributes (const IlvMapFeature* feature)
{
const IlvFeatureAttributeProperty* attributes =
feature->getAttributes () ;
if (ltattributes)
return;
const IlvFeatureAttributeInfo* info =
attributes->getInfo() ;

if (info) {
I1lvUInt count;

count = info->getAttributesCount () ;
for (IlvUInt 1 = 0; 1 < count; i++) {

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Map Features

const char* name = info->getAttributeName (i) ;

const IlvMapClassInfo* clsinfo = info->getAttributeClass(i);

const IlvFeatureAttribute* fa = attributes->getAttribute(i);

if (clsinfo->isSubtypeOf (IlvStringAttribute: :ClassInfo())) {
const char *str = ((IlvStringAttribute*)fa)->getvValue() ;

IlvPrint (“%s %s”, name ? name : ““, str ? str : ““);

} else if(clsinfo->isSubtypeOf (IlvIntegerAttribute: :ClassInfo())){
int in = ((IlvIntegerAttribute*)fa)->getValuel();
IlvPrint (“%s %d”, name ? name : ““, in);

} else if(clsinfo->isSubtypeOf (IlvDoubleAttribute: :ClassInfo())) {
double dbl = ((IlvDoubleAttribute*)fa)->getValue() ;
IlvPrint (“%s %g”, name ? name : ““, dbl);

} else if(clsinfo->isSubtypeOf (I1lvBooleanAttribute: :ClassInfo())) {
IlvBoolean bo = ((IlvBooleanAttribute*)fa)->getValue() ;
IlvPrint (“%s %s”, name ? name : ““,

bo ? “true” : “false”);

The attributes are of different types, according to whether they represent whole numbers,
floating-point values, character strings, and so on. The predefined attributes, all of the
IlvFeatureAttribute class, areinthe attribute package.

Attaching Attributes to Graphic Objects

InIBM® ILOG® Views, you can attach propertiesto 11vGraphic objects using the class
IlvNamedProperty, Saving the propertiesin an . i1v file together with the related object.

The IlvFeatureAttributeProperty class, which stores all the attributes of a map
feature inherits from the 11vNamedProperty class and can therefore be attached to any
graphic object.

The following code sample attaches an T1vFeatureAttributeProperty Object to an
object of the I11vGraphic class.

const IlvFeatureAttributeProperty* attributeProperty;
attributeProperty = feature->getAttributes();
graphic->setNamedProperty (attributeProperty->copy()) ;

Note that in this example, we have made a copy of the attribute property. The reason for this
isthat map features, along with their geometry and attributes, are volatile and get lost when
another map feature is read. For more information about map feature volatility, see the
section Overview of |lvMapFeaturel terator on page 53.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 46

To access the attributes that have been attached to a graphic object, you can use the
following code:

IlvNamedProperty* namedProperty;
const IlvSymbol* symbol = IlvFeatureAttributeProperty::GetName() ;
namedProperty = graphic->getNamedProperty (symbol) ;

To save information specific to an application that cannot be saved using the predefined
named properties supplied in themaps package, you can write specially named properties as
explained in the section Named Properties of the IBM ILOG Views Foundation User’s
Manual.

Renderers

47

This section introduces you to map renderers. It covers the following topics:

& Overview of Renderers presents the T1vFeatureRenderer abstract class and the
classesin the library that implement renderers.

& Creating a Colored Line Renderer explains how to write a new renderer.
& Making a Renderer Persistent explains how to make arenderer persistent.

& Extending an Existing Renderer explains how to extend an existing renderer.

Overview of Renderers

A renderer is an object that is used to transform a map feature into a graphic object of the
class I1vGraphic or one of its subclasses.

A renderer must implement the T1vFeatureRenderer abstract class. To transform a given
map feature into a graphic object, you use itSmakeGraphic method:

IlvGraphic* makeGraphic (const IlvMapFeature& feature,
const IlvMapInfo& targetMapInfo,
IlvMapsError& status) ;

The second argument, targetMapInfo, allowsyou to specify atarget projection and an
adapter. An adapter is a converter that provides facilities to convert geographic coordinates
(that are generally expressed with floating point valuesin a coordinate system where the
vertical axisis oriented upwards) into the points used by an T11vManager which are
expressed with integer values in a coordinate system where the vertical axisis oriented
downwards.

If the projection of the 11vMapInfo isset to O or isan instance of
I1vUnknownProjection, the target projection is considered to be the same as the source
projection of the T1vMapFeature. In this case, no projection conversion is performed.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Renderers

For information about proj ections and adapters, see Selecting a Target Projection on page 61
and Chapter 6, Map Projections.

IBM® ILOG® Views Maps includes a set of default renderers for each of the geometry
types available in the library. These renderers can be found in the package rendering. The
IlvDefaultPointRenderer, for example, transforms a map feature whose geometry isa
point into an object of the type r1vMarker. Thelibrary also provides a global default
renderer of thetype r1vbefaul tFeatureRenderer, Which you can useto translate any
map feature whose geometry is one of the predefined geometries. You can customize some
attributes of the renderers by providing arendering style. For example, the
IlvMapLineRenderingStyle is used to customize line width, color or line style.

The following code sample shows how to transform a map feature whose geometry is of the
type r11vMapCurve into agreen curve. These polylines could be, for example, the segments
of a country’s border.

IlvFeatureRenderer* renderer = new IlvDefaultCurveRenderer (_display) ;
IlvMapLineRenderingStyle *1lrs = new IlvMapLineRenderingStyle(_display) ;
lrs->setForeground ("green") ;

lrs->setLinewWidth(2) ;

renderer->setLineRenderingStyle (1lrs) ;

IlvGraphic* graphic = renderer->makeGraphic (feature, mapInfo, status);

if (graphic) {
_manager->addObject (graphic) ;

} else {
IlviWWarning ("This renderer can’t translate the map feature");
if (status != IlvMaps::NoError())

IlviWwarning (IlvMaps: :GetErrorMessage (status, _display));

Creating a Colored Line Renderer

This section shows how to write a new renderer that displays colored polylines from the
numeric value of an attribute whose name is known.

The complete source code example for this renderer can be found in the following file:

<installdir>/samples/maps/userman/src/colorLineRenderer.cpp

Let’s suppose that we want to display contour lines of different elevations with different
colors. A simple solution would consist of indexing a color using the elevation value by
means of aCcolorModel, a ColorModel being a class that allows mapping from integer
values to RGB colorsin adisplay independent way. More generally, it would be useful to
have arenderer class that applies a color to graphic objects, such as lines, polygons, or text,
by using any of the attributes associated with a map feature.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 48

ThemakeGraphic method in the colorLineRenderer class builds an
IlvMapGeneralPath graphic object.

I1lvGraphic*

ColorLineRenderer: :makeGraphic (const IlvMapFeature& feature,
const IlvMapInfo& targetMapInfo,
IlvMapsError& status) const {

const IlvMapGeometry* geometry = feature.getGeometry() ;
if (!geometry) {
status = IlvMaps::IllegalArgument () ;
return 0;
}
if (geometry->getClassInfo() != IlvMapLineString::ClassInfo()) {
status = IlvMaps::ClassError();
return 0;

}
const IlvMapLineString* lineStr = (const IlvMapLineString*) geometry;

int segCount = lineStr->getSegmentCount () ;
if (segCount == 0)
return 0;

IlvMapGeneralPath* genPath = new IlvMapGeneralPath (getDisplay());

const IlvMapSegment *segment;
IlvCoordinate c;
IlvPoint p;

segment = lineStr->getSegment (0) ;

c = segment -> getStartPoint () ;

status = targetMapInfo.toViews (c, feature.getProjection(), p);
genPath->moveTo (p) ;

for (int i = 0; i < segCount ; i++) {
c = segment -> getEndPoint () ;
status = targetMapInfo.toViews (c, feature.getProjection(), p);

genPath->1lineTo (p) ;

The map feature coordinates must be converted to the manager coordinate system. This
conversion implies a change of orientation of the y-axis since cartographic data coordinate
systems have the positive portion of their y-axis oriented upward, whereas the manager
coordinate system has it oriented downward. It might also imply a change of projection. In
our example, the method toviews both converts the coordinates of points according to
projections, if necessary, and corrects the orientation of the y-axis. Note that the source
(feature: :getProjection) andtarget projections can be set to 0, especialy if the source
datais not georeferenced (that is, its projection is not known), or do not need to be
reprojected. For further information about projections, see Selecting a Target Projection on
page 61 and Chapter 6, Map Projections.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Renderers

Oncethe graphic object is created, we retrieve the attribute val ue for coloring the lines using
acolor model, as shown below:

IlvInt colorIndex = 0;

const IlvFeatureAttributeProperty* attributeList =
feature.getAttributes() ;

const IlvFeatureAttribute* fa =
attributeList->getAttribute (_attributeName) ;

const IlvMapClassInfo* clsinfo =
fa->getClassInfo() ;

if (clsinfo->isSubtypeOf (IlvIintegerAttribute: :ClassInfo()))

colorIndex = ((IlvIntegerAttribute*)fa)->getValuel();
else if(clsinfo->isSubtypeOf (IlvDoubleAttribute: :ClassInfo()))
colorIndex = (IlvInt) ((IlvDoubleAttribute*)fa)->getValue() ;

IlvColor* color = getDisplay()->
getColor ((I1lvUShort)_colorModel->getRed (colorIndex),
(I1lvUShort)_colorModel->getGreen (colorIndex) ,
(I1lvUShort)_colorModel->getBlue(colorIndex)) ;

genPath->setForeground (color) ;

return genPath;

Making a Renderer Persistent

There are certain situations where you might want to save a renderer. When you work in
|oad-on-demand mode, for example, only the parameters necessary for loading the graphic
objects in the layer are saved, not the objects themselves. L oad-on-demand is described in
Chapter 4, Using Load-On-Demand.

If the graphic objects are created using a specific renderer, you must save that renderer to
render the objects in the same way the next time they are loaded. The class T11vsboLayer,
for example, lets you specify arenderer that will be saved with the layer. See
IlvSDOLayer: : setFeatureRenderer inthe Reference Manual.

The colorLineRenderer presented in the previous section derives from the
IlvFeatureRenderer abstract class. This class specifies three methods related to
persistence: the i spersistent method specifies whether the renderer is persistent, the
write method that writes the renderer in an I1voutputFile, and the save method that

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 50

saves the class and the renderer. To implement a persistent renderer, you then have to
overwrite the ispersistent method and the write method.

IlvBoolean
ColorLineRenderer: :isPersistent ()
{

return IlvTrue;

}

void
ColorLineRenderer: :write(IlvOutputFile& output) const
{

IlviWwriteString (output, _attributeName) ;

if (_colorModel->isPersistent ()) {
output.getStream() << 1 << IlvSpc();
_colorModel->write (output) ;

} else {
output.getStream() << 1 << IlvSpc();
IlviWlarning ("colormodel not saved");

You can, however, build the renderer using any other color model, which might not be
persistent. In this case, the color model is not saved and the wri te method generates a
warning.

If the color model is not saved with the renderer, a default color model is created when the
renderer is read.

ColorLineRenderer: :ColorLineRenderer (IlvInputFile& stream)
:I1lvFeatureRenderer (stream.getDisplay (), IlvTrue)
{
char* s = IlvReadString (stream) ;
if (s)
_attributeName = strcpy(new char[strlen(s)+1], s);

IlvInt hasColorModel;
stream.getStream() >> hasColorModel;
if (hasColorModel) {

_colorModel = (IlvMapColorModel*)
IlvMapClassInfo::ReadObject (I1lvMapColorModel: :ClassInfo(),
stream,
0);
} else {

_colorModel = IlvIntervalColorModel: :MakeElevationColorModel () ;
}

Extending an Existing Renderer

Most of the time, you do not have to write arenderer from scratch. You can use one of the
default renderers that are supplied in the package and tailor it to your needs.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Feature lterators

This section shows how to extend an IT1vDefaultPointRenderer to add text of the type
IlvLabel next to the point of the feature being rendered.

The complete source code for the example in this section can be found in the following file:

<installdir>/samples/maps/userman/src/markerTextRenderer.cpp

The text is stored in an attribute whose name is provided for the class
MarkerTextRenderer. When thistext exists, it is returned with the marker generated by
the superclass of the renderer; otherwise only the marker is returned.

IlvGraphic*

MarkerTextRenderer: :makeGraphic (const IlvMapFeature& feature,
const IlvMapInfo& targetMapInfo,
IlvMapsError& status) const

IlvMarker *marker =
(IlvMarker *)IlvDefaultPointRenderer::makeGraphic (feature,
targetMapInfo,
status) ;
if (!marker)
return 0;

IlvLabel* label = 0;

const IlvFeatureAttributeProperty* attributeList =
feature.getAttributes () ;

const IlvFeatureAttribute* attribute =
attributeList->getAttribute(_attributeName) ;

if (attribute)
label = new IlvLabel (getDisplay(),
marker->getPoint (),
ToString (attribute)) ;

if (!label)
return marker;

label->setForeground (marker->getForeground()) ;
IlvGraphicSet* set = new IlvGraphicSet();
set->addObject (marker) ;

set->addObject (label) ;

return set;

Feature Iterators
Feature iterators are objects used to read cartographic objects. The

IlvMapFeatureIterator abstract classalowsyou to read cartographic datain auniform
way whatever its origin (file, database, map server, and so on).

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 52

All the predefined readers supplied with IBM® ILOG® Views Maps implement this
interface. They can be found in the package format. For a detailed description of these
readers, see Chapter 5, Predefined Readers.

This section covers the following topics:
& Overview of IlvMapFeaturelterator presents the class and its main methods.

& Wkiting a New Reader shows how to write areader for cartographic files of a specific
format using an example. Through this example, you will see abasic implementation of a
feature iterator that uses most of the methods that the interface provides.

Overview of llvMapFeaturelterator
A map feature iterator has three main methods:

& TheIlvMapFeaturelterator::getNextFeature method allowsyoutoiterate a
stream of cartographic objects read from afile or queried from a database or amap
server. It returns anull pointer when the last map feature has been read. The
IBM ILOG Views predefined readers, which implement the 11vMapFeatureIterator
abstract class, always return the same instance of T11vMapFeature. This means that
each time the getNextFeature method is called, the newly read map feature
overwrites the previous one, which is permanently lost along with its geometry and
attributes. As a consequence, you must be sure to use this map feature before invoking
the getNextFeature method again, or make a copy of the map feature if you wish to
keep it. Thisiswhat we did in the example given in Attaching Attributes to Graphic
Objects on page 46.

The reason why map features have been made volatileis to avoid the situation where
memory is allocated each time anew feature is read, thus resulting in aloss of
performance. It is more efficient to allocate memory for storing a map feature when it is
read for the first time and then update it only when necessary.

& ThegetbDefaultFeatureRenderer method returns arenderer that is appropriate for
each of the map features read. See Renderers on page 47.

& ThegetProjection method returnsanon null 11vProjection if the datasourceis
georeferenced and a null projection otherwise. A data source is said to be georeferenced
if it describes the projection system used for its data. For information about projections,
see the section Selecting a Target Projection on page 61 and Chapter 6, Map Projections.
See al so the section Loading Nongeoreferenced Files on page 63.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Feature lterators

The following code example loads all the map features read by an iterator and puts them into
amanager.

IlvFeatureRenderer* renderer =
featureIterator->getDefaultFeatureRenderer (display) ;

for (const IlvMapFeature* feature = featurelterator->getNextFeature(status);

feature;
feature = featurelterator->getNextFeature(status)) {
if (status != IlvMaps::NoError()) {
IlvPrint (IlvMaps: :GetErrorMessage (status, display));
return;

}

IlvGraphic* graphic = renderer->makeGraphic (feature,

mapinfo,
status) ;
if (graphic)
manager->addObject (graphic, IlvFalse, layerIndex) ;
else if(status != IlvMaps: :NoError())

IlvPrint (IlvMaps: :GetErrorMessage (status, display));

Writing a New Reader
In this section, you will find an example of an T1vMapFeatureIterator that you can use
to read polylines that were saved in an ASCII file.

Note: The classes that implement the T1vMapFeatureIterator abstract classare not
necessarily file readers. They can also iterate, for example, the result of a query to a map
server.

The File to Be Read

The ASCII fileto be read has been created especially for this example. Itsformat is very
simple and its specifications are as follows:

¢ |t has a header specifying itsformat.

& Thereisone pair of coordinates (latitude and longitude) per line. These coordinates are
expressed in degrees.

& Lines can contain comments. These comments, when they exist, are merged to form an
attribute.

& Polylines are separated by a blank line.
& Thefilehasthe .po1 extension.
The ASCII fileis shown below:

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 54

55

#ascii polylines
-1.0 40.0 A 1x1 degree rectangle centered on the

1.0 40.0 (0,39) point
1.0 38.0
-1.0 38.0
-1.0 40.0
0.0 90.0 A meridian extending from the North pole to the South pole
0.0 -90.0
The Reader

This section shows how you can use the reader to read this polylinefile.

The complete source code for this example can be found in the following file:

<installdir>/samples/maps/userman/src/simplePolylineReader.cpp

l Note: Only the portions of code that require explanation are here.

As shown below, the simplePolylineReader implementsthe
IlvMapFeatureIterator abstract class:

#ifdef IL_STD
#include <fstream>
using namespace std;
#else

#include <fstream.h>
#endif

#include <ilviews/maps/mapfeature.h>
#include <ilviews/maps/format/mapinput.h>
#include <ilviews/maps/rendering/curverdr.h>
class ILVMAPSEXPORTED SimplePolylineReader
:public IlvMapFeaturelterator
{
public:
SimplePolylineReader (IlvDisplay* display,
const char* filename) ;
virtual ~SimplePolylineReader () ;
virtual IlvMapsError getInitStatus() const;
virtual const IlvMapFeature* getNextFeature(IlvMapsError& status);
virtual IlvBoolean getLowerRightCorner (IlvCoordinate& coordinate)
virtual IlvBoolean getUpperLeftCorner (IlvCoordinate&) const;
IlvFeatureRenderer* getDefaultFeatureRenderer (IlvDisplay *);

const IlvProjection* getProjection() const;

IlvBoolean emptyLine(const char* line);

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

const;

Feature lterators

IlvBoolean readHeader (const char* line);

int parseLine (const char* line,
IlvDouble* 1ng,
IlvDouble* lat,
char* comment) ;

IlvFeatureAttributeProperty* attributes (I1lString& buffer,
IlvMapsError& status);

IlvMapFeaturelteratorDeclareClassInfo() ;

private:
static IlvMapsError _formatError;
ifstream _stream;
IlvMapLineString* _geometry;
IlvMapFeature* _feature;
IlvProjection* _projection;

IlvDisplay* _display;

IlvMapsError _status;

static IlvMapsError FormatError() ;

static void Init();

const IlvMapFeature* readPolyline(IlvMapsError& status);
Y

The llvClassinfo Registration

The 11vClassInfo registration is needed to determine the class of an
IlvMapFeatureIterator (likethe onereturned by the

IlvMapLoader: :makeFeatureIterator method). To register anew reader class, usethe
predefined macro:

IlvMapFeaturelteratorDefineClassInfo (className, superClassName) ;
where className iSsthe name of the new reader class (SimplePolygonReader inthe

present example) and superClassName iSthe name of the superclass
(11vMapFeatureIterator the present example).

The I1vMapFeatureIterator classcan then be checked in thisway:
IlvMapFeaturelterator* reader;

IlvClassInfo* readerClass = reader->getClassInfol();
if (readerClass->isSubtypeOf (SimplePolygonReader: :ClassInfo())) {

}

The Georeferencing Methods

Since the latitude and the longitude in the polyline file are expressed in degrees, we know
that the projection is geographic. Thisiswhy the get Projection method returns

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 56

IlvGeographicProjection. The method getProjection would return null if the
projection of the file to be read was unknown.

SimplePolylineReader: :SimplePolylineReader (I1lvDisplay* display,
const char* filename)
:_display(display),
_status (IlvMaps: :NoError()),
_stream(filename),
_geometry(0),
_feature(0),
_projection(new IlvGeographicProjection())

char 1ine[10247;
_stream.getline(line, 1024);
if (readHeader (1line) == IlvFalse)
_status = _formatError;
}
const IlvProjection*
SimplePolylineReader: :getProjection() const {
return _projection;

}

Bounding Box Methods

Because of the data format, we cannot retrieve the bounding box of the polyline until the
whole data has been read. Here, the methods getUpperLeftCorner and
getLowerRightCorner return I1vrFalse to indicate that these points are not known.
Another option we could have taken is to read the whole data, place it in an array, and then
compute the bounding box.

IlvBoolean
SimplePolylineReader: :getLowerRightCorner (I1lvCoordinate& c) const {
return IlvFalse;

}

IlvBoolean

SimplePolylineReader: :getUpperLeftCorner (IlvCoordinate& c) const {
return IlvFalse;

}

Rendering Methods

The getbefaultFeatureRenderer method must return arenderer able to transform into
graphic objects all the map features read by this feature iterator. The
IlvDefaultCurveRenderer Can process map features whose geometry is of type
IlvMapLineString.

IlvFeatureRenderer*
SimplePolylineReader: :getDefaultFeatureRenderer (IlvDisplay *display) {
return new IlvDefaultCurveRenderer (display) ;

}

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Feature lterators

If the geometries of the returned map features are not predefined, but instead, are instances
of aderived class, or, if the map feature attributes store drawing parametersto be used in
rendering operations such as color or line width, it is necessary to provide renderers whose
rendering styles that can process these attributes or derived geometries. See the section
Creating a Colored Line Renderer on page 48.

The getNextFeature Method

The IlvMapFeatureIterator: :getNextFeature method reads the geometry of a map
feature and creates an 11vMapFeature oObject that will hold al the information required to
process the geometry. The geometry read in the code example that followsis an
IlvMapLineString, Which isthe class to define polyline geometries.

const IlvMapFeature*
SimplePolylineReader: :getNextFeature (IlvMapsError& status) ({
return readPolyline (status) ;

}

The polyline points are read by the private method readpolyline. Thismethod reads each
linein the file to extract the coordinates of the points and the related comments, if any.

It isbroken up asfollows:

1. A geometry of thetype 11vMapLineString iscreated or reset, which will be associated
with the map feature. Notice that, to improve performance, the reader always returns the
same instance of T1vMapFeature The geometry will also be allocated only once—
when these points are read for the first time, and emptied at each call of
getNextFeaure. The map feature returned by the getNextFeature methodis
volatile, meaning that its geometry and attributes must be used before the method is
called again. All the readers provided in the IBM ILOG Views Maps library that
implement the T1vMapFeatureIterator interface work thisway.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 58

const IlvMapFeature*
SimplePolylineReader: :readPolyline (IlvMapsError& status) {

if (_stream.eof ())
return 0;

if (!_geometry)

_geometry = new IlvMapLineString() ;
else

_geometry->removeAll () ;

if (!_feature) {
_feature = new IlvMapFeature();
_feature->setGeometry (_geometry) ;
const IlvProjection* proj = getProjection();
if (proj)
_feature->setProjection (proj->copy()) ;

2. Thelinethenisread. If end of fileisreached, or if an empty lineisreached, we return the
last feature read.

char 1line[1024];
int first = 1;
I1lString buffer;

IlvCoordinate c;

while (1) {
_stream.getline(line, 1024);

if(_stream.eof () || emptyLine(line)) {
status = IlvMaps: :NoError () ;
IlvFeatureAttributeProperty* prop =
attributes (buffer, status);
if (status != IlvMaps: :NoError())
IlvWarning (IlvMaps: :GetErrorMessage (status, _display));
_feature->setAttributes (prop) ;
buffer = 0;
return _feature;

3. Inthefollowing code, the longitude and latitude points are read with the parseLine
method. If acomment isfound, it is added to the comment buffer. This buffer is
processed by the attributes method described later.

59 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

IBM

Feature lterators

double x, vy;
char comment[1024];
int i = parseLine(line, &x, &y, comment) ;

1f(i < 2) {
status = _formatError;
return 0;

}

c.x(x);
c.y(y);

if(i == 3)
buffer += comment;

Each point read from the file is added to the line string geometry.

if(first) {
first = 0;
_geometry->setStartPoint (c) ;
} else {
_geometry->lineTo (c) ;

}

The comments are extracted to form attributes, which are associated with the map
feature. Thisisthe attributes method.

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 60

IlvFeatureAttributeProperty*
SimplePolylineReader: :attributes (I1String& buffer, IlvMapsError& status)
{
if (buffer.getLength() == 0)
return 0;

IlvUInt count = 1;

const char* name = "Comment";

const IlvMapClassInfo* attClass = IlvStringAttribute::ClassInfol();
const IlvBoolean nullable = IlvTrue;

IlvFeatureAttributeInfo* info =
new IlvFeatureAttributeInfo(count,
&name,
&attClass,
&nullable) ;

const char* val = buffer.getValue();
IlvStringAttribute* att =

new IlvStringAttribute() ;
att->setvalue(val) ;

IlvFeatureAttributeProperty* prop =
new IlvFeatureAttributeProperty (info,
(IlvFeatureAttribute**)&att,
status) ;

return prop;

Selecting a Target Projection

Maps are always represented within a specific projection system. If you want to merge data
coming from different sources into the same manager, you should be able to reproject it so
that its respective positions on the target map reflect its exact positions in the source
projection. Also if you include IBM® ILOG® Views Maps graphical user interface
component, such as the scale, the compass, or the coordinate viewer in your application,
these components need to know the reference projection to operate correctly. The

IBM ILOG Views components designed for cartography can be found in the GUI package.

Associating aprojection with an 11vManager isdoneusingaIlvMapInfo class. Thisclass
holdsan 11vProjection and an I11vMapAdapter, and thus define the projection and the
mapping between the geographic coordinates and the manager coordinates.

61 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Loading Maps into IBM ILOG Views

The following example associates a Mercator projection with the manager:

IlvMercatorProjection* proj = new IlvMercatorProjection() ;
IlvMapInfo* mapInfo = new IlvMapInfo(proj, 0, IlvFalse);
mapInfo->attach (_manager) ;

The map info is automatically saved when the manager issavedto an . i1v file (viaacall to
the T1vManager: : save method). When readingamap froman . i1v file, you can retrieve
the projection contained in the manager to find out what kind of projection was used to
create the map. For example:

IlvManager* manager = new IlvManager (display);
manager->read (fileName) ;
IlvMapInfo* mapInfo = IlvMapInfo::Get (manager) ;
if (!mapInfo) {
IlvPrint ("No IlvMapInfo was saved in this file");
} else {
const IlvProjection* projection = mapInfo->getProjection();
if (!projection)
IlvPrint ("No projection was saved in this file");
else
IlvPrint ("The %s projection was saved in this file",
projection->getClassInfo()->getProjectionName()) ;

The package projection provides a number of predefined projections which all inherit
from the I11vProjection base class. These projections are described in Chapter 6, Map
Projections. See also the section Loading Nongeoreferenced Files on page 63.

Loading Maps

into IBM ILOG Views

Loading cartographic datainto IBM® ILOG® Viewsis avery simple operation. This
section shows how to import mapsinto IBM ILOG Views. It covers the following topics:
& Loading a Map of the IBM ILOG Views Format

& The Map Loader

Loading a Map of the IBM ILOG Views Format

IBM ILOG Viewsfiles(.i1v) can contain various kinds of information. They can contain
information from other IBM ILOG Viewss packages (Graph Layout, Prototypes) or from
IBM ILOG Views applications designed by end users. They can aso hold cartographic data
such as that generated with the Map Builder for example, the projection system of the map,
the unit of measurement used, the manager layers containing graphic objects and their
attributes, thetiled layers, the layer visibility filters, and so on.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 62

A mapinthe .ilv format isloaded into a manager of the T11vManager class or one of its
subclasses, such as 11vGrapher. These classes are part of the IBM ILOG Views manager
package.

To load amap of the . 11v format, use the I1vManager: : read method as shown below:

manager->read (“filename.ilv”) ;

The Map Loader

The package format providesthe class 11vMapLoader that you can useto load in avery
simple way any file format for which IBM ILOG Views provides a predefined reader
(Shapefile, DTED, CADRG, and so on). These predefined readers are described in the
Chapter 5, Predefined Readers.

This section covers the following topics:
¢ Loading a Predefined Map Format
¢ Loading Nongeoreferenced Files

& Specifying a Renderer

¢ Extending the IlvMapLoader Class
¢ Extending the IlvMapLoader Class

Loading a Predefined Map Format
To load a predefined map format, use the following method:

load(const char* fileName, IlvMapsError& status)

This method first tries to determine the file format according to the naming rules set forth in
the specifications of the different formats, and initializes the appropriate reader. The method
then loads the map into the manager associated with the map loader.

The following example shows how to import amap fileinto an IBM ILOG Views manager
using the map loader. Thisfile can be either a Shapefile file, a CADRG file, or aDTED file:

IlvMapLoader* loader = new IlvMapLoader (&manager) ;
IlvMapsError status = IlvMaps: :NoError () ;
loader->load(filename, status);
if (status != IlvMaps: :NoError())

IlvWarning (IlvMaps: :GetErrorMessage (status, display));

Loading Nongeoreferenced Files

When you load amap into an IBM ILOG Views manager using the map loader, thismap is
automatically displayed in the projection system associated with the manager provided that
the format of the source data is georeferenced. The I1vMapFeatureIterator abstract

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Loading Maps into IBM ILOG Views

classhasagetProjection method that you can use to know whether afileis
georeferenced. If the getProjection method returns O or T1vUnknownProjection, the
fileis not georeferenced. Otherwise, the file is georeferenced. See the section Feature
Iterators for more information.

Most of the cartographic files are georeferenced. Thisis the case for files of the DTED and
CADRG formats. Some other cartographic formats, such as Shapefile, are not
georeferenced.

When loading datafrom afile that is not georeferenced, and in the absence of any other
indications, the map loader is unable to reproject the source data within the target projection
system (the one associated with the manager). See the section Selecting a Target Projection
on page 61.

Note: If you load several source files of the Shapefile format whose projection is unknown
in the same manager, objects can be positioned correctly if the data is expressed in the
same coordinate system. However, if you try to import data of another format in the
manager, the relative position of objects from different source formats will be inaccurate.

If you read a file whose format is not georeferenced, but you know the projection systemin
which the datais expressed, you can provide this information to the T1vMapLoader using
the I1vMapLoader: : setDefaultSourceProjection method.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 64

The following example shows how to import a Shapefile whose projection is known to be
geographic into a manager that isin a Mercator projection:

/I Initialize the manager for the mercator projection.
IlvProjection* projection = new IlvMercatorProjection();
llvMaplnfo* mapinfo = new llvMaplnfo(projection, O, lIvFalse);

mapinfo->attach(manager);

/I Create amap loader.
IlvM apL oader mapL oader = new |lvM aplL oader(manager);

/I Load other data.

/I Load a shape file that is in the geographic projection.
IlvProjection* geographic = new IlvGeographicProjection();
mapL oader->setDefaul tSourceProj ection(geographic);
mapL oader->load("* myShapeFile.shp™");

Specifying a Renderer

If you want an 11vMapLoader Object to use a specific renderer, specify it as the second
argument of itS 1oad (I1vMapFeaturelterator* featurelterator,

IlvFeatureRenderer* renderer, IlvMapsError& status) method, asshown
below:

IlvMapLoader* loader = new IlvMapLoader (&manager) ;
IlvMapsError status = IlvMaps: :NoError () ;
IlvMapFeaturelterator* iterator =

loader->makeFeatureIlterator (filename) ;
IlvDefaultCurveRenderer* renderer =

new IlvDefaultCurveRenderer (display) ;
IlvMapLineRenderingStyle* style =

new IlvMapLineRenderingStyle (display) ;
style->setForeground (display->getColor ("green")) ;
renderer->setLineRenderingStyle (style) ;
loader->load(iterator, renderer, status);
if (status != IlvMaps: :NoError())

IlvWarning (IlvMaps: :GetErrorMessage (status, display));

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Loading Maps into IBM ILOG Views

Extending the llvMapLoader Class

This section shows how to subtype the T1vMapLoader class so that it can recognize afile
format other than the IBM ILOG Views Maps predefined formats.

The method T1vMapLoader: :makeFeatureIterator method creates the reader that
recognizes the format of the file specified as its parameter. We are going to derive the
I1lvMapLoader classand override this method so that it can recognize the format of the

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 66

67

polyline file presented in the section Writing a New Reader on page 54and initialize the

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Loading Maps into IBM ILOG Views

appropriate reader. We assume that the file hasthe .po1 extension.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 68

69

#include <strings.h>

#include <ilviews/maps/format/mapl oader.h>

#include "polread.h"

class MyMapL oader
:public llvMapL oader
{
public:
MyMapL oader(llvDisplay* display,

IlvManager* manager);

/* *
* Overrides the makeFeaturel terator method from super class.
*/

virtual 1lvM apFeaturelterator* makeFeaturelterator(const char*
fileName);

private:
IlvDisplay* _display;
h

MyMapL oader::MyMapL oader(llvDisplay* display,

[lvManager* manager)

:llvMapL oader(manager),
_display(display)

{

}

[lvMapFeaturel terator*

MyM apL oader::makeFeaturelterator(const char* fileName)

ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

/I Does superclass know the format of provided file?

The Scale Filters

ThemakeFeatureIterator method first attemptsto get an T11vMapFeatureIterator
from its superclass. If thefile is not recognized, it tries to determine whether thefile
extension provided (in this example, . po1) corresponds to that of the file to beread. If the
result of thetest is successful, it creates the appropriate reader, which in this caseis the
reader created in the section Writing a New Reader on page 54.

If the file does not contain a header, the method returns the null pointer to indicate that it was
not able to identify the file format.

The Scale Filters

When you create a map, you may want one manager layer displaying a certain type of
information to be visible only at a given scale. For example, concerning a roadway
infrastructure, you may want the secondary roads to be visible only if the map is sufficiently
zoomed so that the map is not overloaded at a small scale.

The Layers window in the IBM® ILOG® Views Map Builder provides ascalefiltering
command. However, you can also perform scale filtering using the
TIlvScaleVisibilityFilter class. Thisclassisan extension of the general class
IlvLayerVisibilityFilter of IBM ILOG Views4.0 that has been customized for
cartography.

The following is an example of code specifying that alayer be visible only when the scale
factor is between 1/100,000 and 1/500,000:

IlvScaleVisibilityFilter* filter =
new IlvScaleVisibilityFilter(1./500000., 1./100000.);
layer->addvisibilityFilter (filter) ;

TheIlvscalevisibilityFilter constructor takestwo scales factors as argument. The
layer will be visible if the scale of the manager layer lies between these two values. You can
also passavalue of T1vsScalevisibilityFilter: :NoLimit () asascalevaueif you
want to discard the checking for thislimit. The scale of the manager layer is computed using
the T1vMapInfo attached to the manager, which indicates the unit of measurement in which
the manager coordinates are expressed (meters, centimeters, yards or other). Scales are
computed according to the unit of measurement set for the manager holding the layer.

The following code example specifiesthat alayer isonly visible for scales inferior to 1f/
500,000.

IlvScaleVisibilityFilter* scaleFilter =
new IlvScaleVisibilityFilter (IlvScaleVisibilityFilter: :NoLimit(),
1./500000.);
layer->addvisibilityFilter (scaleFilter) ;

Visibility filters attached to alayer are automatically savedto an . i1v file.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 70

71

IBM

ILOG VIEwWsS MAPsS V5.3

USER’'S MANUAL

Using Load-On-Demand

This chapter explains how to use the load-on-demand mechanism, which lets you load into
memory only the data that you want to display in a manager view and unload the data when
you no longer use it. This mechanism is extremely valuable, especially when very large
maps are concerned. Let us consider a database storing maps of the whole world with ascale
of 1/25,000. If these maps were scanned with aresolution of 300 DPI, the required storage
space would be as follows:

& 654 kilobytes for 1 square kilometer
& 64 megabytes for 100 square kilometers
& Approximately 310 terabytes for the whole world

Given the volume of the data, it is crucial to have aload-on-demand mechanism that will
load and display only the portion of a map of direct interest.

This chapter covers the following topics:

& How Load-on-Demand Works introduces the |oad-on-demand classes and how they are
related.

& Structure and Sze of the Tiling Grid describes the tiling parameters.

& Displaying the State of Tiles explains how to use the debug view to display the state of
tiles when implementing |oad-on-demand for a new format.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 72

& Thefollowing code associatesan T1vManagerMagViewInteractor t0the debug view.
It introduces the various means you can use to control |oad-on-demand.

& Managing Errors and Load-on-Demand Events describes how to manage errors and
events related to load-on-demand.

& Caching Tiles introduces the tile caching mechanism.
& Saving a Tiled Layer presentsissues related to saving tiled layers.

& Wkiting a New Cache Algorithmillustrates through an example how to write a
customized cache agorithm.

¢ Implementing Load-on-Demand for a New Data Source explains how to implement a
new tile loader.

L oad-on-demand implementations for predefined map readers are described in Chapter 5,
Predefined Readers.

How Load-on-Demand Works

With the | oad-on-demand mechanism, a manager layer is divided into a set of rectangles of
the same size, called tiles. The graphic objects that atile contains are loaded into the
application only when that tile becomes visible inside one of the manager views. When atile
isno longer visible in any manager view, it gets unloaded.

A tileismade visible or invisible according to the user’s actions such as moving a map,
zooming in or out, activating or deactivating a scale filter, and resizing a window.

To be divided into tiles, alayer must be of thetype 11vTiledLayer, asubtype of
IlvManagerLayer. Tilesare managed by atile controller (11vTileController) thatis
associated with atile loader (11vTileLoader) and atile cache (I11vTileCache).

Figure 4.1 illustrates the classes involved in load-on-demand and how they are related:

73 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

How Load-on-Demand Works

T1vTiledLayer I1vTileControllerf CONtrols TlvTileloadsr
EEmm— {abstract)
contains
uses
loads or
)) releases
I1+vTileCache I1+Tile

Figure4.1 The Load-on-Demand Classes

Each time that atile becomes visible in one of the manager views, the tile controller is
notified and the tile lock counter isincremented. If the tile has not been displayed yet, the
tileloader isinvoked and the datain thetile isloaded into memory. Each time that atile gets
hidden in one of the manager views, itstile lock counter is decremented. When the counter
goesto zero, thetile controller placesthetile in its associated cache. Each timethetile
controller needsto load new tiles, it notifies the cache of this operation and one or moretiles
in the cache are unloaded to free memory. A cache can handletiles that are distributed over
severa layers belonging to different managers.

To activate the |oad-on-demand mechanism, the tiled layer must be added to a manager and
its start method must be called.

The 11vTiledLayer class has been extended to support |oad-on-demand for cartographic
formats for which IBM® ILOG® Views Maps supplies predefined readers, namely
CADRG, DTED, and Oracle Spatial. The classes 11vCADRGLayer, I1vDTEDLayer, and
I1lvsDoLayer are described in Chapter 5, Predefined Readers.

Another useful class for load-on-demand is T1vMapTileLoader. This class alows you to
integrate a map reader (I1vMapFeatureIterator) in apredefined tile loader. The most
important method of this classisthe I11vMapTileLoader: : 1oad() method:

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 74

IlvMapsError
IlvMapTileLoader: :load(IlvTile* tile)

{
// Get the feature iterator.
IlvMapFeaturelterator* iterator = getFeaturelterator(tile);

// Check if the iterator implements IlvLookAheadFeaturelterator.
// Parameters for rendering.

IlvFeatureRenderer* renderer = getFeatureRenderer (tile->getDisplay());

// Case of look ahead feature iterator.

// Check if the next feature ID corresponds to an object
// already in the manager (skip the next feature in this
// case and continue) .

// Process the feature itself.
feature = iterator->getNextFeature() ;
// Ask the renderer to make the IlvGraphic.

// Attach the attributes to the graphic if necessary
// and add the graphic to the tile.
} while (feature);

}

In this code sample you can seethat the T1vMapFeatureIterator classhassome
optimizations regarding the T1vLookAheadFeatureIterator class. Featureiterators
subclassing this class can fetch the ID of the next feature that will be returned by the
getNextFeature method and skip the next feature. For example, thisis useful if afeature
has aunique |D and belongsto agroup of tiles (case of alarge geometry). Thefirst time one
of these tiles becomes visible, the feature is read, then rendered, and the corresponding
IlvGraphic isadded to the I11vTile thanksto the

IlvTile: :addObject (IlvGraphic*, IlvMapFeatureId*) method. Then, when
another tile of this group becomes visible, the 10ad method of the T1vMapTileLoader
checks through the T1vLookAheadFeatureIterator: : getNextFeatureId () method
if the returned ID corresponds to an existing T1vGraphic so that the feature belonging to
multiple tilesis loaded, rendered, and added to the tile just once.

In order to define your own tile loader, you can subclass T1vMapTileLoader and override
itST1lvMapTileLoader: :getFeaturelIterator () method so that it returns your map
reader tuned for the specified T1vTile.

The following code sample shows an implementation of I1vMapTileLoader. Theclass
MyTileLoader alowsyou toload amosaic of the sameimagein an 11vManager Whenit
isassociated with an I1vTiledLayer.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

How Load-on-Demand Works

class MyTileLoader:public IlvMapTileLoader

{
IlvDisplay* _display;
const char* _filename; // The filename that corresponds to the image
// its format should be known by IBM ILOG Views.
IlvProjection* _projection;
IlvMapInfo* _info;
IlvDim _imageWidth;
IlvDim _imageHeight;
public:

MyTileLoader (IlvDisplay* display, const char* filename)
_display(display),
_filename (I1lvMapDataPathManager: :ResolvePath(filename)),
_projection(new IlvGeographicProjection()),
_info(0),
_imagewidth (0),
_imageHeight (0)
{
//Creation of the IlvBitmap corresponding to the given filename.
IlvBitmap* bitmap =
display->readBitmap (I1lvMapDataPathManager: :ResolvePath(filename)) ;
if (bitmap) {
_imageWidth = bitmap->width() ;
_imageHeight = bitmap->height() ;

}
}
~MyTileLoader ()
{
if (_info)
delete _info;
}

I1lBoolean isPersistent () const {
return IlFalse;

}

IlvMapFeaturelterator* getFeaturelterator (IlvTile* tile)
{
IlvRect rect;
tile->boundingBox (rect) ;
IlvMapInfo* info = getMapInfo();
IlvCoordinate ul;
IlvCoordinate 1r;
IlvPoint pl(rect.x(), rect.y());
IlvPoint p2(rect.x() + rect.w(), rect.y() - rect.h());
ul = info->getAdapter()->fromviews (pl) ;
lr = info->getAdapter ()->fromViews (p2) ;
return new IlvImageReader (_display, _filename, ul, 1r);

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 76

IlvFeatureRenderer* getDefaultFeatureRenderer (IlvDisplay* display)
{
return new IlvDefaultFeatureRenderer (display) ;

}

IlvMapInfo* getMapInfo ()
{
if (!_info)
_info = new IlvMapInfo (_projection);
return _info;

}

IlvRect getTileOrigin()
{

return IlvRect (0, 0, _imageWidth, _imageHeight) ;
}

In this code sample, note the following line:
IlvMapDataPathManager: :ResolvePath (filename)

The data path management feature allows you to resolve a relative path name.

For example, an . i1v file may contain tile loaders that reference files (such as Shapefile,
GeoTIFF file, and so on). If these references are relative path names, they can be easily
resolved thanks to a default resolver. For example, if the files needed by the tile loaders are
located in “c:\data”, then all you haveto doiscall:

IlvDefaultDataPathResolver* resolver =
new IlvDefaultDataPathResolver (“c:\\data”);
IlvMapDataPathManager: :AddDataPathResolver (resolver) ;

Thisisastatic function that can be called whenever before the . i1v fileisread. Of course,
it only worksif the tile loader saved in the . i1v file uses

IlvMapDataPathManager: :ResolvePath (const char* filename) in order to
resolve path names (see the sample code above).

Structure and Size of the Tiling Grid
A tiled layer is a particular type of manager layer specifically designed to support load-on-

demand. A tiled layer is divided into a set of rectangular tiles of identical sizethat form a
tiling grid.

77 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Structure and Size of the Tiling Grid

LOD =1,-13 LoD (@-1) LoD (1-1)

LOD 1,09 LOD (0,00 LoD 1,0

Tile Origin

LoD 1,1} LoD @1} LoD (1,1

This section covers the following topics:
& Structure of the Tiling Grid
& Szeof theTiling Grid

Structure of the Tiling Grid

Thetiling grid is defined by its origin tile, which islocated at the intersection of the row and
column of index O.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 78

79

The other tilesin the grid are identified by their column and row number, starting from the
origintile. The following code sample displays the status of thetile that is at the intersection
of column col and row row:

void
SimpleLod: :displayTileStatus (int row, int col)
{
IlvTile* tile = _tiledLayer->getTileController()->getTile(col, row) ;
if (!'tile)
IlvPrint (“The tile %d %d is not yet loaded”,
col, row);
else {
IlvTileStatus status;
status = tile->getStatus();
switch(status) {
case IlvTileEmpty:
IlvPrint (“The tile %d %d is empty”, col, row);
break;
case IlvTileLocked:
IlvPrint (“The tile %d %d is locked”, col, row);
break;
case IlvTileCached:
IlvPrint (“The tile %d %d is cached”, col, row);
break;
case IlvTileDeleted:
IlvPrint (“The tile %d %d is deleted”, col, row);
break;

You can seein the above code sample that the T1vTileController: :getTile method
can sometimes return a null value. Because the potential number of tiles can be very great
(the number of tilesis even virtualy infinite) the 11vTile objects are allocated only if the
tileisloaded or isin the cache.

Size of the Tiling Grid
You can set the size of thetiling grid using the following method:
IlvTileController: :setSize(IlvRect)

The rectangle that limits the tiling grid is expressed in the manager coordinates. Only the
tiles that intersect with this rectangle can be loaded. You can see an example of atiling grid
whose size has been defined in the debug view illustrated in Figure 4.2 on page 96.

Note: Thetiling parameters introduced in this section (size of thetiles, origintile, and
size of thetiling grid) can be configured for each tiled layer in a manager. Thisallows you
to have in the same manager large-tile layers containing objects displayed at a small
scale and small-tile layers containing objects displayed at a large scale.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Displaying the State of Tiles

Displaying the State of Tiles

You can create a debug view to display the state of thetilesin atiled layer using the
following method:

IlvTiledLayer: :setDebugView (IlvView* view,
IlvColor* borderColor = 0,
IlvColor* lockedTilesColor
IlvColor* cachedTilesColor

0,
0)

Asits name suggests, this debug view is particularly useful for debugging operations when
implementing load-on-demand for a new cartographic format.

A tile can have four different states:

¢ empty: its objects are not loaded into memory;,

& locked: its objects are loaded into memory and visible,

& cached: its objects are loaded into memory but not visible,
& deleted: its objects have been deleted from the cache.

The debug view is of the T1vview type, and must be attached to atiled layer. The debug
view does not increment nor decrement the tile lock counters. Thisisthe role of thetile
controller. It just displays thetilesin color according to their state, asin Figure 4.2

1 kU v [=1E

et sonsaecte]
Efa CwtaBarn
[ExE @ ef(ham S

a r| o

Figure4.2 Load-on-Demand Debug View

IBM ILOG VIEWS MAPS V5.3 — USER’S MANUAL 80

Thetileswith lock counters greater than 1 appear in blue. They arevisiblein at |east one
view. The tiles whith counters equal to O appear in yellow. They are cached. The whitetiles
are not |oaded.

In the previous example, an I1vManagerMagViewInteractor Was associated with the
debug view. It isthisinteractor that displays alittle yellow squareinside the bluetile. The
square shows the zone displayed by the main view.

The following example creates a debug view for alayer.

void
SimpleLod: :debugView () {
_debug = new IlvView(_display,
“DebugView”,
“DebugView”,
IlvRect (450, 0, 100, 100),
IlvFalse, IlvFalse);
_manager->addView (_debug) ;
_tiledLayer->setDebugView (_debug) ;

The following code associates an 11vManagerMagViewInteractor With the debug view.

void
SimpleLod: :magView ()
{

_magvint = new IlvManagerMagViewInteractor (_manager, _debug, _view);
_magvint->setAutoZooming (IlvTrue) ;
_magvint->setAutoTranslating (I1lvTrue) ;

_magvint->setResizingAllowed (IlvTrue) ;

_manager->setInteractor (_magvint, _debug);

Controlling Load-on-Demand

This section shows the different ways to control load-on-demand. It covers the following
topics:

¢ Using Visibility Filtersto Control Load-on-Demand

& Loading Tiles via the API

81 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Managing Errors and Load-on-Demand Events

Using Visibility Filters to Control Load-on-Demand

You can use scale visihility filtersto control the display of tilesin amanager layer. For
details on visibility filters, see the section The Scale Filters on page 71.

When ascale visibility filter has been set for atiled layer, thislayer will be displayed if the
scale factor set for its manager view iswithin specified scale limits. Otherwise, it will be
hidden. When atiled layer is visible because the zoom factor of the manager view allowsiit,
visible tiles are automatically locked and thus |oaded into memory. In the same way, when a
tiled layer is hidden because the zoom level of its view exceeds a certain value, al the locks
set on visibletiles are released and the tiles are removed.

Scale visibility filters are generally used to activate load-on-demand for zoom factors
between a minimum and a maximum scale value. If you consider amap scanned with ascale
of 1/1,000,000, you can set visihility filters so that its layer is visible for scale factors
ranging from 1/2,500,000 to 1/500,00.

Loading Tiles via the API

The load-on-demand mechanism is event-driven in that cartographic datais loaded or
unloaded following user’s actions, such as zooming or panning. You can, however, use the
lockTile method, for example, to preload atile corresponding to amap zone that is visited
frequently or to prevent the tile from being unloaded.

The 1ockTile method shown below increments the tile lock counter:

IlvTileController::lockTile(IlvInt column,
IlvInt row,
IlvAny source)

If thetile lock counter isequal to zero, thetile isloaded into memory and will not be
unloaded as long as the lock is not rel eased with the following method:
IlvTileController: :unlockTile (IlvInt row,

IlvInt column,
I1lvAny source)

Managing Errors and Load-on-Demand Events

The load-on-demand mechanism might generate errors when the map cannot be entirely
loaded due to memory problems, absence of data, loss of connection to a server, and so on.
Applications must catch these errors to inform the user that the map being viewed is not
complete.

To be notified of these events, and any other events related to |oad-on-demand, you can set
an TlvTileListener toaninstance of the T1vTileController class. Thislisteneris
notified of changesto thetilesand its ti1lechanged method is called each time the status of

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 82

atile has changed. The events related to the cache mechanism are available by subtyping the
IlvTileCache class.

€ void IlvTileCache::tileAboutToLoad (IlvTile* tile)
Called when the specified tile isabout to be loaded.

€ void IlvTileCache::tileCached(IlvTile* tile)
Called when the specified ti1e isto be inserted in the cache.

€ void IlvTileCache::tileRetrieved(IlvTile* tile)

Called when the specified tile is to be removed from the cache.
The following example displays all the events related to |oad-on-demand:

static const char*
toString (IlvTileStatus status) {
switch(status) {
case IlvTileEmpty:
return “I1lvTileEmpty”;
case IlvTileLocked:
return “IlvTileLocked”;
case IlvTileCached:
return “IlvTileCached”;
case IlvTileDeleted:
return “IlvTileDeleted”;
}
}

void

Listener: :tileChanged (IlvTile* tile,
IlvTileStatus oldStatus,
IlvTileStatus newStatus)

IlvPrint (“tile %d %d status changed from %s to %s”,
tile->getRow(), tile->getColumn(),
toString (oldStatus),
toString (newStatus)) ;

}

void

SimpleLod: :listener ()
{

_listener = new Listener (_manager, _view);
_tiledLayer->getTileController ()->addTileListener (_listener) ;

The different types of events sent to the tile listeners are the following:
& I1vTileEmpty—Initia statusof thetile (the tile contains no objects).

& IlvTileLocked—Triggered when atile has been loaded into memory.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Saving a Tiled Layer

& TIlvTileCached—Triggered when atilethat isno longer being used is stored in the
cache.

& TIlvTileDeleted—Triggered when atileiscompletely freed.

When an event in aview causes an action to be performed on atile, the tile controller
notifies the tile listener of the action. If this event triggers a series of transitional events,
these are transmitted to the listener as agroup. Therefore, modifying a scale factor can cause
new tiles to be loaded and other tiles to be cached. Grouping events allows an action to be
performed only when all the transitional eventsit causes are completed. The start of the
event group is notified by the call of the following method

IlvTileListener: :beginGroupedNotification and the end of the event group
notified by the call of the following method

IlvTileListener: :endGroupedNotification.

Caching Tiles

The tile cache is the place where tiles whose lock counter has returned to O are stored. The
tilesin the cache are eligible for unloading if memory is needed for loading new tiles.

The cache can be shared among several layers, which meansthat loading atilein alayer can
cause atile to be unloaded in another layer.

The 11vbefaultTileCache classimplements a cache algorithm consisting of asimple
LRU (Least Recently Used) structure that unloads first the tiles that have been visited the
least recently.

You can, however, implement another algorithm that will be more efficient with respect to
the specific nature of your application. Here are afew criteria you might take into account
when implementing a new cache algorithm.

¢ Unload first the tiles that require alarger number of pan or zoom operations to be
reached from the current position.

¢ Unload first the tiles that have taken the longest to load.
¢ Unload first the tiles that contain the largest number of graphic objects.

An example of asimplified cache agorithm is given in the section Writing a New Cache
Algorithm on page 101.

Saving a Tiled Layer

A layer has a number of associated parameters. Some parameters such as named properties,
visibility filters, and names are common to al layers, whether they are tiled layers or just
normal layers. Other parameters are specific to tiled layers. These are the tiling parameters
and thetile loader introduced in the previous sections.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 84

Unlike normal layers, when you save atiled layer to an . iv1 file, only its attached
parameters are saved with the layer, not the objectsit holds.

Writing a New Cache Algorithm

This section explains how to write a customized cache a gorithm to meet specific application
requirements. The examplein this section isasimplified version of the class
I1lvDefaultTileCache providedinthe IBM® ILOG® ViewsMapslibrary. The complete
source code for this example can be found in the following file.

Theclass simpleTileCache extendstheclass I11vTileCache.

class TileCache
:public IlvTileCache
{
public:
TileCache (int size);
TileCache: :TileCache (IlvInputFile& file);
virtual void tileAboutToLoad (IlvTile *);
virtual void tileCached(IlvTile *);
virtual void tileRetrieved(class IlvTile *);
virtual void controllerDeleted(IlvTileController *);
virtual void write(IlvOutputFile& output) const;
private:
int _size;
IlList _tiles;
Yi

size defines the maximum number of tiles that can be stored in the cache.

TileCache: :TileCache (int size)
:IlvTileCache(),
_size(size)

The TileCache constructor creates an instance of the default cache with the specified size.

The following constructor reads the cache from the provided input stream. Caches created
using this constructor are persistent and can thus be saved with an 11vTiledLayer oObject.

TileCache: :TileCache (IlvInputFile& file)
:IlvTileCache ()

{
file.getStream() >> _size;

}

85 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Writing a New Cache Algorithm

Thewrite method writes the cache to an output stream.

void
TileCache: :write(IlvOutputFile& output) const
{

output.getStream() << _size;

}

The following method belongsto the 11vTilecache interface. It is called when atileis
cached. In thisimplementation, thetile is added at the end of the internad tilelist.

void
TileCache::tileCached (IlvTile *tile)
{
_tiles.append(tile);
}

The following method belongsto the 11vTilecache interface. It is called when atileis
removed from the cache and locked again. With this implementation, the tile is removed
from the internal tilelist.

void
TileCache::tileRetrieved(IlvTile* tile)
{

_tiles.remove (tile);

}

The following method belongsto the 11vTileCache abstract class. It is called when atile
is about to be loaded. With thisimplementation, if the number of tiles in the cache exceeds
the cache size, the least recently used tiles, at the top the internal tile list, will be unloaded to
make room for new tiles.

void
TileCache: :tileAboutToLoad (IlvTile *tile)
{

int toRemove = _tiles.length() - _size;
if (toRemove <= 0)
return;
for (int i = toRemove; i > 0; i--) {
IlvTile* current = (IlvTile*)_tiles[0];

_tiles.remove (current) ;
releaseTile(current) ;

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 86

The following method belongsto the 11vTileCache abstract class. It iscalled when atiled
layer is taken out of the manager to remove the tiles managed by its tile controller from the
cache.

void
TileCache: :controllerDeleted(IlvTileController* controller)
{
IlvLink* 1;
1 = _tiles.getFirst();
IlvTile* tile;
while (1) {
tile = (IlvTile*) l->getValue();
1 = l->getNext() ;
if (tile->getController() == controller)
_tiles.remove(tile);

Implementing

Load-on-Demand for a New Data Source

To implement |oad-on-demand for a new data source, all you have to do iswrite a specific
tile loader that implementsthe 11vTileLoader abstract class. Notice, however, that for the
predefined map formats supplied with IBM® ILOG® Views, such as CADRG, load-on-
demand has been implemented in asubclass of 11vTiledLayer that defines both thetile
loader (as a private class) and thetiling parameters appropriate for the concerned format. As
far as CADRG is concerned, |oad-on-demand has been implemented so that tiles are aligned
with frames. Predefined formats are described in Chapter 5, Predefined Readers.

For your tile loader to be fully efficient, the following requirements should be satisfied:

& You should be able to determine which objects are to be loaded on thetile. These objects
can be read from afile whose nameis known, or be the result of aquery to a cartographic
database.

& You should be able to have a direct random access to data

& Thesize of the datato be loaded should be in proportion to the size of the tilesto allow
fast loading. For example, raster images with a size of 100x100 are faster to load than
images with a size of 6000x6000.

The following example of atile loader simulates the loading of two graphic objects, a
rectangle, and alabel.

The 10ad method takes the tile to be loaded asits parameter. It generates the graphic objects
to be displayed within the tile and adds them to thetiled layer by caling the
IlvTile: :addObject method. When loading is complete, it callsthe

87 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Implementing Load-on-Demand for a New Data Source

IlvTile: :1loadComplete method to notify the listenersthat the datain thetile is ready
for use.

class TileLoader
:public IlvTileLoader
{
public:
TileLoader (IlvDisplay*) ;
virtual IlvMapsError load(IlvTile* tile);
virtual void release(IlvTile* tile);
virtual IlvBoolean isPersistent () const;
private:
IlvDisplay* _display;
}i

IlvMapsError
TileLoader::load(IlvTile* tile)
{
I1lvRect rbbox;
tile->boundingBox (rbbox) ;
IlvRectangle *rect = new IlvRectangle(_display, rbbox) ;
tile->addObject (rect) ;

IlString str;

str += “(“;

str += tile->getColumn () ;
str += “, %

str += tile->getRow();
str += “)”;

IlvMapLabel* label = new IlvMapLabel (_display,
IlvPoint (),
IlvPoint (),
IlvCenter,
10,
str.getvalue());
IlvRect lbbox;
label->boundingBox (1bbox) ;
IlvPos cx = rbbox.x() + rbbox.w()
IlvPos cy = rbbox.y() + rbbox.h()
label->move (cx - lbbox.w() / 2,
cy - lbbox.h() / 2);
tile->addObject (label) ;

/ 2
/ 2;

tile->loadComplete() ;
return IlvMaps: :NoError () ;

IBM ILOG VIEWS MAPS V5.3 — USER’S MANUAL 88

89

Its release method isinvoked when thetile cachereleases atile. Thetile.deleteall
method clears thetile.

void

TileLoader::release(IlvTile* tile) {
tile->deleteall();

}

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Predefined Readers

This chapter introduces you to the predefined readers supplied with IBM® ILOG® Views
Maps:

4

® & 6 6 o o

The Shapefile Reader

The DTED File Reader

The CADRG File Reader
The Image File Reader

The GeoTIFF Reader

The Oracle Spatial Features
The S57 Map Reader

The Shapefile Reader

This section describes the classes of the T11vMaps library that allow you to read files with
the Shapefile format.

It covers the following topics:

2

IBM

Introducing the Shapefile Format

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 90

& Classesfor Reading the Shapefile Format
& Shapefile Load-On-Demand

Introducing the Shapefile Format

The Shapefile format is the exchange format for vector maps of the Environmental Systems
Research Institute (ESRI). This format supports polygons, arcs, lines, and points. Each
Shapefile contains one single theme, meaning that all the objectsin the file are of the same
type (either line, point, polygon, or another type of object). In the Shapefile format, a theme
is described with four different files:

& A Shapefile (. shp) - Contains the geometry of the objects.
¢ A Dbasefile (.dpf) - Contains the attributes of the objects. Thisfileis optional.

¢ Anindexfile (.shx) - Containsthe indexes of the objectsin the . shp file to facilitate
access to data. Thisfileisoptiona and is used to perform random access of geometries
by the load-on-demand process.

& A gpatial index file (. idx) - Containstiling information. Thisfileis Maps module
specific and is used to perform | oad-on-demand on Shapefiles. Thisfileisoptional and is
used to store tiling information for the load-on-demand process.

This format does not contain information concerning the coordinate system used to
reference the position of the graphic objects. Objects in Shapefiles are often positioned
within a geographic projection (I1vGeographicProjection), but thisisfar from being
therule.

Classes for Reading the Shapefile Format
The following classes are used to read the Shapefile format:
€ IlvShapeFileReader

Thisclassisasubclass of T1vMapFeatureTIterator and alowsyoutoread . shp,
.dbf, and .shx files. Since Shapefiles provide no information on the projection system
used, this reader is not georeferenced. See the sections Feature Iterators on page 52 and
Loading Nongeoreferenced Files on page 63.

€ TIlvShapeSHPReader

Thisclassisasubclass of T1vMapFeatureTIterator. Thisreader only reads . shp
files.

€ TIlvShapeDBFReader
Thisclass only reads . dbf files.

€ IlvShapeFileIndex

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Shapefile Reader

This classreads . shx files. You can find more information in the section The
IlvShapeFilelndex Class on page 95.

€ IlvShapeSpatialIndex
This class reads spatial index files (. idx files). You can find more information in the
section The |IlvShapeSpatial Index Class on page 96.

IlvShapeFileReader

This reader reads the . shp file storing geometries and the . db £ file storing attributes
simultaneously, and merges the information into asingle I1vMapFeature object. The
reader can also read an optional .shx file to provide random access to geometries.

It can be instantiated in one of the following ways:
¢ By specifying the name of the . dbf, . shp, and the optional .shx files.

¢ By specifying an 11vShapeDBFReader, an I1vShapeSHPReader, and an optiona
IlvShapeFileIndex oObject directly.

Thisisuseful, for example, when using a derived T1vShapeSHPReader Object.

In both cases, when the reader is created with the ability to read the .shx file, it provides
random access to geometries through the 11vShapeFileReader: :getFeatureAt
method.

This reader uses three specialized readers. T11vShapeSHPReader, T1vShapeDBFReader,
and T1vShapeFileIndex. ItS getNextFeature method merges the information
generated by these specialized readers into a single map feature.

For an example, see the Shapefile sample at the following location:
<installdir>/samples/maps/shapefile

IlvShapeSHPReader

This reader only reads . shp files, but if it is created with both .shp and .shx files, this
reader allows random acces to geometries.

The geometries stored in Shapefiles are not necessarily 2D objects. Each point that makes up
a shape object can be associated with measurements, or with measurements and an
elevation.

Measurements are stored in an attribute of type 11vattributeArray.
The following are the shape types that are associated with measurements:
¢ POINTZ

¢ POLYLINEZ

€ POLYGONZ
L 2

MULTIPOINTZ

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 92

¢ POINTM

¢ POLYLINEM

¢ POLYGONM

¢ MULTIPOINTM

Elevations are stored in an attribute of type T1vattributeaArray.

The following are the shape types that are associated with measurements and elevations:
¢ POINTZ

¢ POLYLINEZ

¢ POLYGONZ

¢ MULTIPOINTZ

Since IBM ILOG Views Maps does not have a predefined geometry to represent shape
objects of type MmuLTIPATCH, Which are essentially used for 3D rendering, these areignored.
It is possible, however, to modify this behavior by subtyping the class
IlvShapeSHPReader. Since shape objects are read in protected methods, modifying the
reader to include new geometries requires minimal effort.

llvShapeDBFReader

Thisreader is used exclusively for reading afile of the . dbf format. It can be used to iterate
over afileasfollows:

IlvShapeDBFReader* reader = new IlvShapeDBFReader ("myFile.dbf");
IlvFeatureAttributeProperty* attributes = reader->getNextRecord() ;
while (attributes) {

// process attributes

attributes = reader->getNextRecord(...);

}

Asthe . apf file associates attributes with the objectsin the . shp in a sequential way, you
can access map feature attributes directly by specifying their record number:

reader->readRecord (index, error);

Shapefile Load-On-Demand

The Maps module provides classes to perform the load-on-demand on Shapefiles. Thisis
achieved by using specific spatial index files. Thesefiles, usualy having an.idx extension,
store relations between tile and object identifiers that belong to thesetiles. A classand atool
example are provided to generate these spatial index files.

The load-on-demand mechani sm involves two classes in addition to the shape reader and the
dbf reader: the I11vShapeFileIndex class and the I1vShapeSpatialIndex class. A
utility classis also provided to generate the spatial index for agiven Shapefile: the
IlvShapeFileTiler class.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Shapefile Reader

The following diagram illustrates the mechanism used to store and retrieve objects by tiles:

Shapefile (.shp}) Index File {.shx) Spatial Index File (.idx)

idz2
|- el |

~

g2 P

Columns

g5

g9 Rows

The Spatial Index file holds object identifiers for each tile. Object identifiers have their
ordinal placein the Index File. Geometries are retrieved in the Shapefile using the Index
File. In this diagram, for example, thetile[2, 1] (tile indices begin at 0) contains identifiers
2, 5, and 9 referring to the geometries g2, g5, and g9 respectively.

The following classes are used to perform load-on-demand on the Shapefiles:
¢ The llvShapeFilelndex Class

The IlvShapeSpatiallIndex Class

The IlvShapeFileTiler Class

The IlvShapeFileTileLoader Class

* 6 o o

The IlvShapeLayer Class

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 94

The llvShapeFilelndex Class

This class allows you to directly access geometries in a Shapefile. The spatial index and the
Shapefile must correspond to the same theme:

IlvMapsError status;
// Open the index file.
IlvShapeFileIndex* index =

new IlvShapeFileIndex (shxFileName) ;
status = index->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
// Open the corresponding Shapefile.
IlvShapeSHPReader* shape =

new IlvShapeSHPReader (shpFileName) ;
status = shape->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
// Construct a reader from the Shapefile reader and the Shapefile index.
IlvShapeFileReader* reader =

new IlvShapeFileReader (shape, 0, index);
status = reader->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;

// Retrieve the feature for each index.
IlInt count = index->getRecordCount () ;
for(IlInt i = 0; i < count; i++) {
const IlvMapFeature* feature = reader->getFeatureAt (i, status);
if (status != IlvMaps::NoError())
return status;

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Shapefile Reader

The llvShapeSpatiallindex Class

This class stores tile information: tile size and count, identifiers of the objects belonging to
each tile. To retrieve objects from atile specified by its row and column, use the
getIdarray () method:

// Create a reader with the Shapefile name and the index file name.
IlvShapeFileReader* reader =
new IlvShapeFileReader (shpFilename, 0, shxFilename) ;
// Open the spatial index.
IlvShapeSpatialIndex* spindex =
new IlvShapeSpatialIndex (idxFileName) ;
status = spindex->getInitStatus();
if (status != IlvMaps: :NoError ()
return status;
// Loop on all columns and rows.

for(int ¢ = 0; ¢ < spindex->getColumnCount(); c++) {
for(int r = 0; r < spindex->getRowCount (); r++) {
IlInt *ret;

I1UInt size;
// Retrieve the IDs of objects belonging to the tile
// at column 'c' and row 'w'.
status = spindex->getIdArray(c, r, ret, size);
if (status != IlvMaps::NoError())
return status;
// Loop on these IDs and retrieve the corresponding map feature.
for(int i = 0; 1 < size; i++) {
const IlvMapFeature* feature =
reader->getFeatureAt (ret[i], status);
if (status != IlvMaps::NoError())
return status;
}
// Free allocated array.
if (ret)
delete[] ret;

IBM ILOG VIEWS MAPS V5.3 — USER’S MANUAL 96

This class can a so be used to generate your own tiling information for a given Shapefile:

IlvShapeSpatialIndex* tilerIndex = new
IlvShapeSpatialIndex (getColumnCount (),

getRowCount (),
getOrigin(),
getTilewidth (),
getTileHeight());
status = tilerIndex->getInitStatus();
if (status != IlvMaps: :NoError())
return status;
IlvMapFeature* feature = (IlvMapFeature*)reader->getNextFeature (status);
if (status != IlvMaps: :NoError ()
return status;
int id = 0;

while(feature) {
// Determine to which tile(s) the object must belong.
int row = getRow(feature);
int col = getColumn (feature) ;
// Add it to the spatial index.
tilerIndex->add(row, col, id);

feature = (IlvMapFeature*)reader->getNextFeature (status) ;
if (status != IlvMaps::NoError())

return status;
id++;

}
// Write the spatial index.
tilerIndex->save ("spatialIndex.idx") ;

The llvShapeFileTiler Class

This classis used to generate tiling information from a given Shapefile. To usethis classyou
have to provide the Shapefile to tile, the Spatial Index File to write to, and the tile size.
IlvShapeFileTiler: :CreateShapeSpatialIndex("example.shp",

"example.idx",
(I1lDouble)5, (IlDouble)l0);

The above code extract will produce a Spatial Index File named example. idx with atile
size of width 5 and height 10. For example, if the upper left corner of the example. shp file
is(x =-5,y = 20), and if the lower right corner is (x = 35, y =-30), the resulting tiling array
will be 8 columns by 5 rows

IlvShapeFileTiler: :CreateShapeSpatialIndex("example.shp",

"example.idx",
(I1Int)20, (IlInt)30);

The above code extract will produce a Spatial Index File of 600 tiles, 20 columns, and 30
rows.

The llvShapeFileTileLoader Class

This class implements |oad-on-demand for tiled Shapefiles. When associated with an
I1vTiledLayer, this class automatically handlestile loading if the Shapefile name, the

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The DTED File Reader

Index File name, and the Spatial Index File name are provided. An optional Dbase file name
can also be provided to load object attributes.

IlvMapAdapter a(0.001);
IlvShapeFileTileLoader* tileLoader =
new IlvShapeFileTileLoader (shpFileName,
dbfFileName, // or null if attribute
// loading is not wanted.
shxFileName,
idxFileName,
&a) ;
IlvTiledLayer* tiledLayer = new IlvTiledLayer (getTileOrigin());
tiledLayer->setTileLoader (tileLoader) ;

The llvShapeLayer Class

The I1lvsShapeFileLayer classisan 11vTiledLayer that canbesavedinan .il1vfile. In
particular, it handles al the mechanismsto properly restart the load-on-demand layer when
thislayerisread froman .i1v file.

IlvMapAdapter a(0.001);
IlvShapeFileTileLoader* tileLoader =
new IlvShapeFileTileLoader (shpFileName,
dbfFileName, // or null if attribute
// loading is not wanted.
shxFileName,
idxFileName,
&a) ;
IlvShapeFilelayer* shapelayer = new IlvShapeFilelLayer (tileLoader) ;
IlvManager* manager = new IlvManager(0);
manager->addLayer (shapeLayer) ;
manager->save (ofstream("out.ilv")) ;

The DTED File

Reader

This section describes the classes of the T11vMaps library that alow you to read files with
the DTED format.

It covers the following topics:

¢ Introducing the DTED Format

& Classesfor Reading the DTED Format

& Graphical Rendering of a Digital Terrain Model

Introducing the DTED Format

The Digital Terrain Elevation Data (DTED) format is amap format for terrain elevations
published by the U.S. National Imagery and Mapping Agency (NIMA). The DTED files
contain digital terrain models as rasters. A raster is ageoreferenced grid containing a value

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 98

in each one of itscells. In the case of DTED (and digital terrain modelsin general) the value
indicates the average elevation in the cell. However, this value can indicate any other
attribute: surface temperature, surface pressure, nitrogen rating of the soil, and so on.

A DTED file contains adigital terrain model raster that covers a zone of one degree by one
degree. The cell size of the raster depends on the DTED level:

& DTEDO provides raw data (approximately 30 to 40 Kb for afile).
¢ DTEDL1 provides datathat is more detailed.

& DTED2isthe most precise level. It has surface cells that are nine times smaller than
those of DTED1. At this degree of precision, a DTED file is enormous (several
megabytes).

Classes for Reading the DTED Format

The classfor reading DTED formatsis 11vDTEDReader. Thisclassis a subclass of
I1lvMapFeatureIterator and returnsonly one T1vMapFeature object, which isthe
raster corresponding to the Digital Terrain Model (DTM) stored in the file. The geometry of
this map feature is of type 11vMapRaster. The map feature has no attribute. The projection
of the reader isthe source projection of the DTED data, that is, the geographic projection.

The 11vDTEDLayer class defines |oad-on-demand for the DTED format. L oad-on-demand
isimplemented on aDTED-level basisfrom the corresponding file name. In other words, the
sizeof atileinan IBM ILOG Views Mapstiled layer will correspond to the size of aDTED
tile. This specific implementation of |oad-on-demand works exclusively with maps drawn
with the geographic projection. For an example, see the DTED demonstration at the
following location:

<installdir>/samples/maps/dted

For more information, see Chapter 4, Using Load-On-Demand.

Graphical Rendering of a Digital Terrain Model

The default renderer of an I1vDTEDReader classisan I1vDefaultRasterRenderer that
displays the raster as an image, with each color corresponding to an elevation value. The
default parameters for this renderer use a color model specially designed for displaying
elevations (I1vIntervalColorModel: :MakeElevationColorModel()). Negative
elevations appear in adeep blue, while terrain elevations that are null are rendered with a
clear blue. Positive elevations up to one meter are represented in yellow. Higher elevations
are represented first in green, then in brown, and finally in white at the highest altitudes.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The CADRG File Reader

The CADRG File Reader

This section describes the classes of the 11vMaps library that allow you to read files with
the CADRG format.

The Compressed ARC Digitized Raster Graphics (CADRG) format is amap format for
scanned maps published by the U.S. National Imagery and Mapping Agency (NIMA). This
map format has been designed to meet the requirements of digital cartography. Its structure
is particularly suited to load-on-demand and allows you to select the coverage that is best
adapted to a given display scale.

A CADRG volumeis generally stored in an rpf directory. Thisdirectory is organized into
subdirectories, each corresponding to a coverage. A coverage directory contains a set of
files, each corresponding to aframe. A coverage correspondsto amap at agiven scaleand is
itself divided into rectangular frames that correspond to an area of the map at that scale. The
rpf directory also contains atable of contentsfile, named a . toc, that lists al the elements
in the volume. A CADRG volume includes other general information, such as overviews of
the area represented in the coverage, and one or more legend files.

Generaly, CADRG coverages are in the geographic projection, except for the poles for
which the azimuthal equidistant projection is more appropriate.

Classes for Reading the CADRG Format

¢ I1vCADRGTocReader: Thisclassreads thetable of contents of a CADRG volume.
¢ I1vCADRGFrameReader: This classreadsa CADRG frame.

€ I1vCADRGLayer: This classimplements|oad-on-demand for the CADRG format.

IlIvCADRTocReader and the CADRG Model

This class allows you to read atable of contentsfile (the a. toc file). It gives accessto the
elements of the CADRG volume according to the following object model:

& The CADRG coverages are represented by instances of the class 11vCADRGCoverage.
This class stores information about a CADRG coverage as described in a CADRG table
of contents.

& The CADRG frames are represented by instances of the class 11vCADRGFrame.
The following example displays the table of contents of a CADRG volume:

I1vCADRGTocReader* tocReader = new I1vCADRGTocReader (fileName) ;
I1lvUShort count;
const I1vCADRGFrame* const* frames = tocReader->getOverViewFrames (count) ;
for (int i = 0; 1 < count; 1i++) {
IlvMapFeaturelterator* iterator = frames[i]->makeReader () ;
mapLoader->load (iterator) ;

}

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 100

In this example, mapLoader is an instance of the I11vMapLoader class. For details about
the map loader, see the section The Map Loader on page 63.
IIvVCADRGFrameReader

The I1vCADRGFrameReader class alowsyou to read a CADRG frame directly. It
implementsthe T1vMapFeatureIterator interface.

You can create an I1vCADRGFrameReader object in one of the following ways:

& By caling themakeReader method with the name of the frameto be read. See the above
example.

& By providing the name of the frame to be read to the class constructor.

This class returns a map feature for each CADRG subframe (a complete CADRG frameis
made up of 36 subframes, 6 by 6). The geometry of these subframesisan 11vMapImage
object. The map features have no attributes. The default renderer isan
IlvDefaultImageRenderer Object.

l Note: Thisrenderer isnot able to reproject images.

IlvVCADRGLayer

This class implements load-on-demand for a CADRG coverage. It is created from an
instance of the T1vCADRGCoverage class. The size of atile corresponds to the size of a
CADRG frame. This implementation of atiled layer works exclusively with the geographic
projection for the non-polar zones of CADRG. See Chapter 4, Using Load-On-Demand.

The Image File Reader

This section describes a generic image file reader. The formats handled by this reader are
those supported by IBM ILOG Views. An image coded in one of these formats does not
contain any georeferencing information, so thisinformation has to be known before loading
thiskind of images. The T1vImageReader classalowsthe correct positioning of the image
on amap by specifying upper-left and lower-right coordinates.

In the following sections you will find a description of the T1vImageReader and
IlvImageTileLoader classes.

The llvimageReader Class

This classis asubclass of the T1vMapFeatureIterator abstract class and returns only
one I1vMapFeature object, which isthe image stored in the file. The geometry of this map

101 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Image File Reader

feature is of type T11vMapImage. The map feature has no attribute. To use this reader you
have to provide afile name and the coordinates of thisimage.

IlvMapsError status;
// The image is known to be at 77 degrees 30 seconds east
// and 10 degrees north for the upper-left corner.
// Lower-right corner is at 82 degrees 30 seconds east
// and 5 degrees north.
IlvCoordinate ul(77.5, 10);
IlvCoordinate 1r(82.5, 5);
IlvImageReader* reader = new IlvImageReader (display, fileName, ul, 1lr);
status = reader->getInitStatus();
if (status != IlvMaps: :NoError())
return status;
IlvMapFeature* feature = (IlvMapFeature*)reader->getNextFeature (status);
if (status != IlvMaps: :NoError ()
return status;
IlvFeatureRenderer* renderer = reader->getDefaultFeatureRenderer (display) ;
// Image is known to be in the geographic projection.
IlvGeographicProjection* projection = new IlvGeographicProjection() ;
IlvMapInfo* mapInfo = new IlvMapInfo(projection);
feature->setProjection (projection) ;
IlvGraphic* g = renderer->makeGraphic (*feature, *mapInfo, status);
if (status != IlvMaps: :NoError ()
return status;
IlvManager* manager = new IlvManager (display);
manager->addObject (g, IlFalse);
return IlvMaps: :NoError();

The llvimageTileLoader Class

This classis used to read a set of images that are parts of alarger image. Thistile loader
allows an application to load only the images that are visible at a given time, each image
corresponding to atile. Each file must be named so that it is possible to construct its file
name knowing the row index and column index of the corresponding tile. To use thistile
loader, you must provide the information needed to reconstruct the file name for agiventile:
a pattern that matches the file naming scheme and two formatting strings.

IlvIimageTileLoader loader =
new IlvMapImageTileLoader (IlvDisplay* display,
const char* pattern,
const char* rowFormatString,
const char* colFormatString,
IlvMapAdapter* adapter) ;

The pattern argument must contain one ‘%t and one ‘%c’ conversion specifier. The %c
conversion specifier is used to convert the row index of the tile, and the %c conversion
specifier isused to convert the column index of thetile. These conversion parameterswill be
replaced accordingly with the rowFormatString and the colFormatString parameters.
These formatting strings are interpreted as the regular C function print £ used as column
and row specifier. For file naming schemes that are not based on row/column numbers, you
can subclass I1vImageTileLoader and override the getFileName method.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 102

Examples

In the following code extract, the tile loader will search for afilenamed tiles/
tile_010_20.jpg When attempting to load the tile at column 10 and row 20.

IlvImageTileLoader loader =
new IlvImageTileLoader (display,
"tiles/tile_%c_%r.jpg",
"$03d",
"$02d",
adapter) ;

Once the naming scheme is determined, you can use the T1vImageTileLoader asany tile
loader by associating it with an T1vTiledLayer.
IlvImageTileLoader* loader =

new IlvImageTileLoader (display,
"tiles/tile_%c_%r.jpg",

"%03d",
"%02d",
adapter) ;
status = loader->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
IlvTiledLayer* tiledLayer = new IlvTiledLayer (getTileOrigin());
tiledLayer->setTileLoader (loader) ;

The llvimagelLayer Class

The I11vImageLayer classisan I1vTiledLayer that canbesaved inan .ilv file. In
particular, it handles al the mechanisms to properly restart the load-on-demand layer when
thislayer isread froman . i1v file:

IlvImageTileLoader* loader =
new IlvImageTileLoader (display,
"tiles/tile_%c_%r.jpg",

"%03d",

"%02d",

adapter) ;
IlvMapsError status = loader->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
IlvIimageLayer* layer = new IlvImageLayer (loader, getTileOrigin());
IlvManager* manager = new IlvManager (display) ;
manager->addLayer (layer) ;
manager->save (ofstream("out.ilv")) ;

103 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

The GeoTIFF Reader

The GeoTIFF Reader

This section describes the classes that allow you to read GeoTIFF files. This reader usesthe
I1vTIFFStreamer Of the IBM ILOG Views Foundation package.

The GeoTIFF Format

The GeoTIFF format is an extension of the TIFF (Tagged Image File Format) format. The
TIFF format is an image file format that allows tags to be added in the file, tags being
information about the image contained in the file such as the resolution, the number of
samples per pixel, and so on. The GeoTIFF extension adds specific cartographic tags that
give geographic information about the image contained in the file, such as the coordinate
system in which theimage is represented and the location of the image in this coordinate
system.

The official TIFF specification can be found at:
http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
More information about the GeoTIFF format can be found at:

http://www.remotesensing.org/geotiff/geotiff.html

The GeoTIFF reader implemented in IBM ILOG Views Maps allows you to retrieve the
following information from a GeoTIFF File:

¢ Pixel resolution

¢ Upper-left and lower-right corner of the image
¢ Imagesize

& Tilesize

It does not handle the coordinate system and projection tags.

The llvGeoTIFFReader Class

The I1vGeoTIFFReader Classimplementsthe T1vFeatureIterator abstract class. The
getNextFeature method returns an I1vMapFeature containing an I1vMapImage
geometry. The TIFF image can then be rendered by the T11vDefaultImageRenderer to
produce an 11vIcon. The TIFF reader takes one parameter as argument: the TIFF file name.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 104

The reader can be used as any reader that conforms to the Maps reader framework:

IlvMapsError status;
IlvGeoTIFFReader* reader =

new IlvGeoTIFFReader (filename) ;
status = reader->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
const IlvMapFeature* feature =

reader->getNextFeature (status) ;
if (status != IlvMaps: :NoError ()

return status;
IlvFeatureRenderer* renderer = reader->getDefaultFeatureRenderer (display) ;
// Image is known to be in the geographic projection.
IlvGeographicProjection* projection = new IlvGeographicProjection() ;
IlvMapInfo info(projection) ;
IlvGraphic* graphic = renderer->makeGraphic (*feature,

info,
status) ;

IlvManager* manager = new IlvManager (display) ;
manager->addObject (graphic, IlFalse);
return IlvMaps: :NoErroxr () ;

The llvGeoTIFFTileLoader Class

The I1vGeoTIFFTileLoader class providesthe servicestoload atiled TIFF file on
demand, that is, only the visible parts of the tiled TIFF file are loaded and displayed at a
given time. Thistile loader works as any tile loader, in conjunction with an
IlvTiledLayer. The TIFF reader provides required information about thetiles (such asthe
tile origin) and is ableto retrieve agiven tile asan I11vBitmapData.

IlvMapAdapter adapter (0.001);
I1vGeoTIFFTileLoader* loader =

new I1lvGeoTIFFTileLoader (fileName,

&adapter) ;

IlvMapsError status = loader->getInitStatus();
if (status != IlvMaps: :NoError ()

return status;
IlvTiledLayer* tiledLayer = new IlvTiledLayer (getTileOrigin());
tiledLayer->setTileLoader (loader) ;

The llvGeoTIFFLayer Class

The I11vGeoTIFFLayer classisan IlvTiledLayer that can besavedinan .ilv file. In
particular, it handles al the mechanisms to properly restart the load-on-demand layer when
thislayer isread froman . i1v file:

I1lvGeoTIFFLayer* layer = new I11lvGeoTIFFLayer (loader) ;
IlvManager* manager = new IlvManager (display) ;
manager->addLayer (layer) ;

manager->save (ofstream("out.ilv")) ;

105 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

The llvGeoTIFFTiler Class

The 11vGeoTIFFTiler classisused to re-encode an aready existing TIFF fileto atiled
GeoTIFF file. Here is an example of how to use thetiler:

I1lvGeoTIFFTiler* tiler =
new I1vGeoTIFFTiler (filename,

"out.tif",

getTilewidth (),

getTileHeight());
IlvMapsError status = tiler->getInitStatus();
if (status != IlvMaps: :NoError())

return status;
I1lvTIFFStreamer streamer;
status = tiler->performTiling (streamer) ;
return status;

The Oracle Spatial Features
This section describes the features of the i 1vdbmaps library that allow you to handle Oracle
SDO Relational and Object models.

Oracle SDO, or Oracle Spatial, isthe spatia extension of Oraclein version 7.3. This
extension has been renamed to Spatial Cartridge in version 8.0 and has been renamed again
to Oracle Spatial in version 8i.

Oracle Spatial allows you to store georeferenced objects in an Oracle database and to
perform spatial queries, such as getting the list of objects that intersect a specific polygon.

Oracle has written two implementations of Oracle Spatial:
¢ Animplementation based on relational tables, available since Oracle 7.3.

¢ Animplementation based on the Object model, available since Oracle 8.i, that also
contains the relational implementation of Oracle Spatial.

The i1vdbmaps library supports reading/writing data in the relational and the object model
of SDO through two different packages of classes.

To use these utilities in an application, you need the following:

& Accessto an Oracle Server with the Spatial package. Moreover, the database
environment should be correctly installed. For instance, do not forget to set the
ORACLE_HOME variable.

& Certain privilegesto retrieve data and write (if you plan to use the writer class) to your
Oracle database. For example, you may need a special account with read/write access to
the SDO packages.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 106

& Astheimplementation of thislibrary uses IBM ILOG DB Link for database access, you
should be familiar with it (in particular, you should know the T11dDbms, T1dRequest,
I1dNewDbms, and I1dErrorReporter Classes).

¢ |IBM ILOG DB Link product installed. The i1vdbmaps library uses the dynamic load
feature of IBM ILOG DB Link so that you have to install the shared versions of the
dbora8 (1) libraries. For more information about the dynamic load feature, refer to the
IBM ILOG DB Link User’s Manual. The IBM ILOG Views Maps license also enables
the IBM ILOG DB Link license.

& |f you want to make specific usage of SDO, you should be familiar with Oracle and
IBM ILOG DB Link, in particular with the SQL language.

Relational Model Classes

This section covers the following topics:

¢ Classesfor Reading Data from an Oracle Spatial Database

¢ Classfor Writing Data to an Oracle Spatial Database

Classes for Reading Data from an Oracle Spatial Database
The reader classes for the Oracle SDO relational model are:

€ TlvSDOFeatureIterator for converting Oracle Spatial layer datainto
I1lvMapFeature Objects.

4 IlvsboLayer for implementing load-on-demand for relational Oracle Spatial data

€ T1vsSDOTileLoader “abstract” classfor defining Oracle queriesfor the T1vspoLayer.
A subclass, 11vDefaultSDOTileLoader (Which isoptimized) isused by
I1lvSDOLayer.

IlvSDOFeaturelterator

This class reads data from the result of an SQL query to arelational Oracle Spatia layer and
convertsit into T1vMapFeature objects. IBM ILOG Views Maps applications can handle
Oracle Spatial data using this class in atransparent manner. The following example of C++

107 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

code performs a query (using IBM ILOG DB Link), loading data from an Oracle Spatial
layer named ROADS_SDOGEOM:

I1String query = I1String("SELECT * FROM ROADS_SDOGEOM
ORDERBY 1, 2, 4");

/lkeep always the ORDER BY statement

[ldDbms* myDbms = IldNewDbms("oracle8", "scott/
tiger@myDomain");

IldRequest* resultSet = myDbms->getFreeRequest();
resultSet->execute(query.getVaue());

The query orders the result using the following three criteria, which must be given in the
order indicated:

1. GID (Geometric ID)
2. ESEQ (Element Sequence)
3. SEQ (row seguence)

I Note: Thisordering is necessary for the 11vsSDOFeatureIterator to work correctly.

Theresultset of any query to an Oracle Spatial layer can be used to initialize an
I1vSDOFeatureIterator, but al the SDO columns must bein the resultset (columns
defining the GID, ESEQ, ETY PE, SEQ, and the coordinates).

The features returned by thisiterator have no attributes. However, the GID of the Oracle
Spatial geometry is used as the identifier of each feature and the identifier of each feature
can be used to retrieve additional attributes from the database. See the method
IlvMapFeature: :getId().

IlvSDOL ayer

This class implements |oad-on-demand for arelational Oracle Spatial data source. The
default implementation takes an Oracle Spatial layer for which a spatial indexation has been
performed and reads its content with atiling equivalent to the Oracle Spatial tiling.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 108

The following example creates an 11vsboLayer on an Oracle Spatial layer named
ROADS_ SDOGEOM:

[ldDbms* myDbms = IldNewDbms("oracle8", "scott/
tiger@myDomain");

llvMapAdapter* adapter = new [lvMapAdapter(0.5);
/I Create an adapter that fits your data.

lvSDOL ayer* layer = new IlvSDOL ayer(adapter, myDbms,
"ROADS_SDOGEOM");

manager->addL ayer(layer);

IlvSDOTileLoader

This class offers additional possibilities when retrieving data from an Oracle Spatial
database. These possibilities are meant as a supplement to the default behavior of
I1vSDOLayer. For example, you may want to have atiling definition that is different from
the Oracle tiling.

llvDefaultSDOTileLoader

This classisasubclass of 11vsDoTileLoader andisused by the 11vspoLayer. It has
some optimizations. For example, the method setTileGroupingCount () alowsyou to
set the number of tiles that will be grouped in one unique query to the database. In fact, each
tile corresponds to a Spatial query. If you have an average of n tilesto load each time you
want to load-on-demand, you should use setTileGroupingCount (n) Whereall then
queries will be grouped into one unique query that will be sent to the database.

Note: If you want to handle special operations on each 11vMapFeature retrieved in load-
on-demand with the T1vspoLayer layer, you have to subclass the
IlvDefaultSDOTileLoader inorder tooverridethe getFeatureIterator method. In
this method, you have to return an instance of a subclass of 11vsDOFeatureIterator
where you have overridden the getNextFeature method (inside which you can perform
your specific operations on each 11vMapFeature returned by thelayer). Finally, you have
to set your subclass of I1vDefaultSDOTileLoader asthetileloader of the layer.

Class for Writing Data to an Oracle Spatial Database

This section describes the T1vspowriter classthat allows you to write map featuresinto a
relational Oracle Spatial database.

109 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

IlvSDOWriter

The 11vsDowriter classcan write any I1vMapFeatureIterator Whose features have a
geometry supported by the relational model of Oracle Spatial (vectorial geometries) and
write them to the database as in the following example:

I1dDbms* myDbms = IldNewDbms ("oracle81", "scott/tiger@myDomain") ;
IlvSDOWriter* writer = new I1lvSDOWriter (myDbms, "MyLayer", 135);
// Create a source feature iterator.

IlvShapeFileReader* reader = new IlvShapeFileReader ("foo.shp", 0);
IlvInt geomCount;

// Dump its content to the Oracle layer.
writer->writeFeaturelterator (reader, geomCount) ;

Thewrite method of the T1vspowriter does not write the attributes of the features. If
you want to write the attributes of the features, you can subtype the wri teFeature method
of the T11vspowriter after caling thewriteFeature (feature) method of the mother
class.

Note: The geometries supported by the Oracle Spatial writer are: T1vMapPoint,
IlvMapLineString, IlvMapPolygon, I1vMapMultiPoint, and I1vMapMultiCurve
for multiline strings and T1vMapMultiarea for multipolygons.

Object Model Classes
This section covers the following topics:
¢ Classesfor Reading Data from an Oracle Spatial Database
¢ Classfor Writing Data to an Oracle Spatial Database
Classes for Reading Data from an Oracle Spatial Database
The reader classes for the Oracle SDO object model are:
® IlvObjectSDOFeaturelterator
To convert Oracle Spatial layer datainto T1vMapFeature Objects.
& IlvObjectSDOLayer
To implement load-on-demand for object Oracle Spatial data.
€ I1vSDOTileLoader

Abstract class to define Oracle queries for the 11vobjectsboLayer. A subclass,
IlvDefaultObjectSDOTileLoader, Which has some optimizations, is used by
I1lvObjectSDOLayer.

IlvObjectSDOFeaturelterator

This class reads datafrom the result of an SQL query to arelational Oracle Spatial layer and
convertsit into T1vMapFeature objects. IBM ILOG Views Maps applications can handle

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 110

111

Oracle Spatial data using this class in atransparent manner. The following example of C++
code performs a query (using IBM ILOG DB Link), loading data from an Oracle Spatial
layer named ROADS:

IlString query = I1String(“SELECT * FROM ROADS”) ;
I1dDbms* myDbms = IldNewDbms (“oracle81”, “scott/tiger@myDomain”) ;
IlvObjectSDOFeaturelterator* iterator =
new IlvObjectSDOFeaturelterator (myDbms,
“SELECT * FROM ROADS”,
// the name of the geometries column
“Geometry”,
// no Key ID
0,
// the name of the x ordinates column
wyr
// the name of the y ordinates column
wyn
)i

The result set of any query to an Oracle Spatial layer can be used to initialize an
IlvObjectSDOFeaturelterator, but the column containing the geometry must beinthe
result set.

The features returned by thisiterator have attributes and can be retrieved through the method
IlvMapFeature: :getAttributes(). Infact, any column of the layer that can be
interpreted as a String, a float number, or an integer number is translated into attributes and
set in the returned map feature. Moreover, if you instantiate the feature iterator with an ID
name, the value of this column is set to the identifier of each map feature and the identifiers
of these features can be used to retrieve additional attributes (if any) from the database. See
themethod 11vMapFeature: :getId(). ThisID isusedinthe library for optimization
reasons. If you give an ID name when ingtantiating the iterator, a“big” geometry that covers
more than one tile will be loaded just once. If you ignore the ID name, the 10ad method of
each covered tile will fully load the “big” geometry.

llvObjectSDOLayer

This class implements |oad-on-demand for an object Oracle Spatial data source. The default
implementation takes an Oracle Spatial layer for which a spatial indexation has been
performed and reads its content.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

The following example creates an T1voObjectSDOLayer On an Oracle Spatial layer named
ROADS:

[ldDbms* myDbms = I|dNewDbms("oracle81", "scott/
tiger@myDomain");

/I 'You should create an adapter that fits your data.
llvMapAdapter* adapter = new [lvMapAdapter(0.5);
IlvObjectSDOL ayer* layer =
new |lvObjectSDOL ayer(adapter,
myDbms,
/I The name of the SDO layer
"ROADS".
/I Assume that the layer has only one
/I geometry column.
0,
// Width of atilein the database
/I coordinate system.
1500,
/I height of atile in the database
/I coordinate system.
1500,
/I The name of the x-ordinates column
"X,
/I The name of the y-ordinates column
"Y".
);
manager->addL ayer(layer);

You can aso build alayer by ignoring the x and y column names. The default values are 0:

IlvObjectSDOLayer* layer =
new IlvObjectSDOLayer (adapter, myDbms, "ROADS", 0, 1500, 1500);

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 112

Thisway, the layer assumes that in the metadata table (spo_GEoM_METADATA in Oracle
8.1.5 or USER_SDO_GEOM_METADATA in Oracle 8.1.6), the entry corresponding to the
ROADS layer has the following shape:

‘ROADS’, ‘GEOMETRY’, SDO_DIM_ARRAY (SDO_DIM ELEMENT(’'X’, -180, 180,
0), SDO_DIM_ELEMENT(’'Y’, -90, 90, 0));

The X element is assumed to be thefirst spo_bIM ELEMENT, and the Y e ement is assumed
to be the second one.

llvDefaultObjectSDOTileLoader

Thisclassisasubclassof T11vspoTileLoader andisused by the T1vobjectSDoLayer. It
has some optimizations. For example, the method setTileGroupingCount () alowsyou
to set the number of tiles that will be grouped in one unique query to the database. In fact
each tile corresponds to a Spatial query, and if you have an average of n tilesto load each
time you want to load on demand, you should use setTileGroupingCount (n), where al
then queries will be grouped into one unique query that will be sent to the database once.

Note: If you want to handle some special operations on each T1vMapFeature retrievedin
load-on-demand with the T11vobjectspoLayer layer, you have to subclass the
IlvDefaultObjectSDOTileLoader inorder to overridethe getFeatureIterator
method. In this method, you have to return an instance of a subclass of
I1vObjectSDOFeatureIterator Whereyou have overridden the getNextFeature
method (inside which you can perform your specific operations on each 11vMapFeature
returned by the layer). Finally, you have to set your subclass of
I1lvDefaultObjectSDOTileLoader asthetileloader of the layer.

Another interesting method of this classisthe setRequestParameters () method.

This method allows you to set the spatial operator used to query the layer. The default
operator iS SDO_FILTER.

Figure 5.1 shows a Spatia layer using afixed tiling of level 2. The red rectangleisthe area
queried by thetile loader. If the spo_FILTER operator is used (default case), al the
geometries belonging to the Oracle Spatial tiles that intersect with the red rectangle will fit
the request. In the case of Figure 5.1, al the geometries belonging to tiles (2,2), (2,3), (3,2),
and (3,3), for example the ling, the point, the triangle, the circle, and the rectangle will be
retrieved.

You may not want to retrieve the geometries that do not explicitly intersect with the red
rectangle (for example, the circle and the rectangle geometries here). To do this, you can use
another spatial operator in Oraclewhichis spo_RELATE. Thisoperator isto be used with the
following parameters. "querytype=window mask=anyinteract".Inthisway, al the
retrieved geometries are the ones that intersect with the red rectangle, for example the point,
thetriangle, and the linein Figure 5.1.

Finally, note that the spo_RELATE Spatial operator is slower than the SDO_FILTER operator.

113 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

Figure5.1 Tiles

Class for Writing Data to an Oracle Spatial Database

This section presents the T11vobjectsbowriter class, which alows you to write map
features into an Object Oracle Spatial database.

IlvObjectSDOWriter

Theclass I1vObjectSDOWriter can Write any I1vMapFeatureIterator Whose
features have a geometry supported by Oracle Spatial 8i (vectorial geometries) and write
them to the database as in the following example:

IldDbms* myDbms = IldNewDbms (“oracle8”, “scott/tiger@myDomain”) ;
I1lvObjectSDOWriter* writer =
new IlvObjectSDOWriter (myDbms, “MyLayer”, “GEOMETRY”, “X”, “Y”, IlTrue);

// Create a source feature iterator.

IlvShapeFileReader* reader = new IlvShapeFileReader (“foo.shp”, 0);
// Dump its content to the Oracle layer.

IlvInt count;

writer->writeFeaturelterator (reader, count); // calls close()

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 114

115

Note: In the case of the Oracle Spatial Object model, some auxiliary tables, like the user
metadata table, need to be updated. It is very important to call the method
IlvObjectSDOWriter: :close () oncethe data has been written through thewrite ()
method, so that the database is kept up-to-date.

Thewrite method of the 11vobjectspowriter can alsowritethe attributes of the features.

The method T1vObjectSDOWriter: :writeFeature (I1lvMapFeature* feature,
IlvBoolean saveAttributes) hasasecond argument that can be set to T1True in order
to save the attributes of the first argument, the map feature. This requires that the map
feature has an T1vFeatureAttributeInfo correctly set, describing the attributes that
match the SDO layer column names. This aso requires that map feature has an
IlvFeatureAttributeProperty that fitSitsI1vFeatureAttributeInfo and has
correct values. For example, if you have an SDO layer caled rRoaDs that has the following
description in the database:

Name Null? Type
GEOMETRY MDSYS.SDO_GEOMETRY
TYPE_DESC VARCHAR2(512)

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The Oracle Spatial Features

you can write a map feature into the database this way:

I1dDbms* myDbms = IldNewDbms (“oracle81”, “scott/tiger@myDomain”) ;
I1lvObjectSDOWriter* myWriter =
new IlvObjectSDOWriter (myDbms, “ROADS”, “GEOMETRY”, “X”, “Y”, IlTrue);

IlvMapFeature* feature = new IlvMapFeature();
// Construction of the IlvFeatureAttributeInfo: it can be done just once.
IlvMapClassInfo** attributeClasses = new IlvMapClassInfo*[1];
IlvBoolean* nullable = new IlvBoolean[1l];
nullable[0] = IlTrueIlTrue;
attributeClasses[0] = IlvStringAttribute::ClassInfol();
char** names = new char*[1];
names[0] = new char[10];
//Exactly the same name as the layer column name.
strcpy (names[0], “TYPE_DESC”) ;
IlvFeatureAttributeInfo* info =
new IlvFeatureAttributeInfo(l, names, attributeClasses, nullable);

// The writing itself.
IlvFeatureAttribute** attributes = new IlvFeatureAttribute*[1];
attributes[0] = new IlvStringAttribute (“MY FOO TYPE”) ;
IlvMapsError error;
IlvFeatureAttributeProperty* prop =

new IlvFeatureAttributeProperty (info, attributes, error);
feature->setAttributeInfo (info) ;
feature->setAttributes (prop) ;
if (error == IlvMaps::NoError())

error = myWriter->writeFeature (feature, IlTrue);

The writer can update rowsin the SDO layer. Thisisbased on aKEY mechanism where the
row(s) having the value of the given key will be updated. The update is executed by means
of the following methods:

& updateFeatureAttributes (IlvFeatureAttributeProperty* attributes,
I1vUInt keyPos) - based on an attribute property where you have to give the position
of the key in the attributes list and you can update more than one column at the same
time.

€ updateFeatureAttribute (const char* keyColumnName,
IlvFeatureAttribute* keyAttribute, const char* attributeColumnName,
IlvFeatureAttribute* attributeToUpdate) - where you update just one column
(the new valueisthe at tributeToUpdate passed as argument) given aKEY attribute.

Note: All the subclasses of T1vMapGeometry except I1vMapText, I1vMapImage, and
IlvMapRaster are supported by the object writer.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 116

The S57 Map Reader

IBM ILOG Views Maps contains classes for reading S57 files. The S57 format isa
numerical map format for nautical maps, which is a standard published by the International
Hydrographic Organization (IHO). You can find more information at:

http://www.iho.shom. fr/

The S57 readers provided in this package are based on the IHO TRANSFER STANDARD
FOR DIGITAL HY DROGRAPHIC DATA Edition 3.1.

The S57 Reader module provides access to datain IHO S57 formatted file sets. The S57
Reader module produces S57 features in one or more related S57 datafiles. An S57 dataset
can be adirectory, in which case all S57 filesin the directory are selected, an S57 catalog
file, inwhich case dl filesreferred to from the catal og are selected, or an individual S57 data
file. An S57 catalog covers an area with nautical data. It is composed of a single directory
containing both a catalog file (.030 or .031) and cell files (.000). Usually cells contain data
for only a subzone of the global catalog zone.

S57 feature objects are trandlated into features. S57 geometry objects are automatically
collected and formed into geometries on the features.

S52 symbols are rendered using a predefined icon per object type, whatever the object
attributes are.

The default S57 Renderer, uses predefined styles to represent map features through
polylines, polygons and small icons. A configuration file allows you to configure these
styles. For example you can specify colors, line styles, icons and even visibility for each
feature, based on its S57 code. You can aso create your own implementation of the
Renderer to display the same S57 data through a different formalism.

117 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The S57 Map Reader

¥ §57 viewer

A AAE D

B & T oa

Done

Figure5.1 Example of S57 map rendering

Classes for reading S57 format

The classfor reading S57 formatsisthe 11vs57Loader. Thisclassisasubclass of the
IlvMapFeatureIterator and returns one IlvMapFeature Object for each S57 feature
(S57 FRID record).

The following code shows how to use 11vs57Loader classto read a S57 catalog file and
to usethe 11vs57rRenderer class to transform the map features to graphic objects.

IlvDisplay* display = ...;

IlvGraphic* graphic;

IlvManager* m = ...;

const IlvFeatureAttributeProperty* ap;
IlvMapInfo* mapInfo = ...;

Const char* filename = "catalog.030";
IlvMapsError status = IlvMaps::NoError();

IlvS57Loader reader (display) ;
reader.setFilename (filename) ;
IlvFeatureRenderer* renderer =

reader .getDefaultFeatureRenderer (display) ;

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 118

for (const IlvMapFeature* f = reader.getNextFeature (status);

status == IlvMaps: :NoError () && f ;
f = reader.getNextFeature(status)) {
graphic = renderer->makeGraphic (*f, *mapInfo, status);
if (graphic) {

ap = f->getAttributes();

m->addObject (graphic) ;

if (ap)

graphic->setNamedProperty (ap->copy ()) ;

Configuring styles, colors and icons

As mentioned above, a configuration file, called s57styles. txt, iSavailable to indicate
the style to represent each map feature, based on its S57 code. For example:

1,Administration Area (Named),T,BBD2C1,,T,T,0,
2,Alrport/airfield, T,aeal052,997035,T,T,0,airarel02.png
3,Anchor berth,T,,,T,T,0,achbrt07.png

4,Anchorage area,T,,,F,T,0,achare02.png

5,Beacon (cardinal),T,,,T,T,0,bcncar02.png

Each line of thisfile describes how to represent a particular S57 feature according to its
coding attribute. Each line contains comma-separated fields, and hasthe following structure:

Value of the S57 code

Name of the S57 feature type

Visibility attribute (T for visible, F for invisible)

Background color (hexadecimal RGB)

Foreground color (hexadecimal RGB)

Boolean to fill the areawith background color (T for True, F for False)
Boolean to draw the stroke (T for True, F for False)

Integer to specify the stroke style

® & 6 6 6 6 0 o o

Icon file name, for point features

Where the possible stroke styles are:

0 solid

1 dot

2 dash

3 dashdot

4 dashdoubledot

119 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

The S57 Map Reader

5 alternate
6 doubledot
7 longdash

Note: A picture of different styles can befoundin I1vLinestyle classdocumentationin
Reference manual.

You can modify thisfile (s57styles. txt) whichislocated in <$ILVHOME>/data/maps/
s57. You can also create your own version of s57styles. txt in another directory
specified by the environment variable 1L.vMAPSS57STYLES. However if you use this last
method, the new directory must contain all necessary bitmaps which are defined in the
S57Styles. txt. For the syntax, seethe origina file or above.

Asyou can see, this configuration file allows you to easily customize global rendering
settings with a simple and flexible syntax. Advanced configuration is also possible by
defining your own rendering strategy. In this case, you need to create your own Renderer,
that can be derived from the standard S57 Renderer (T11vs57Renderer class), and
implement your own logic for turning S57 information into appropriate graphics. For
example you could decide to group some S57 features together on particular map layers, or
you could implement advanced rendering based on other visual standards.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 120

121 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Map Projections

This chapter introduces you to map projections and explains how to use the
IBM® ILOG® Views Maps projection package with your mapping applications.

It covers the following topics:

*
*

IBM

Introducing Map Projections gives you an overall picture of map projections.

Projecting Data: An Example shows how to project geographic data onto a Cartesian
coordinate system through an example.

Projection Methods and Parameters describes the methods available in the map library
for projecting data and the related parameters.

Ellipsoids introduces you to ellipsoids with regard to projections, and explains how to
associate a predefined ellipsoid or a specific ellipsoid with a projection.

Unit Converters describes unit converters.
Conversion Between Coordinates in Different Geodetic Datums

Adding Graphic Objects on Top of an Imported Map shows how to import amap into an
IBM ILOG Views manager and how to add graphic objectsto it.

Creating a New Projection explains how to create a new projection.

ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 122

Introducing Map Projections

123

A map isaprojected representation of the Earth, or part of it, on aflat surface, which can be
apiece of paper or acomputer screen. Since the Earth has an ellipsoidal shape, it is best
represented asa“ globe”, and attempts to portray it by projecting its points onto aflat surface
awaysresult in someform of distortion inthe regionsthat are far from the projection center.
In other words, it isimpossible to faithfully represent al the properties of the Earth, such as
distances, shapes, and directions, on the same map. To minimize distortion, many different
types of projections have been developed over the years. While certain projections preserve
distances, others maintain shapes or angles. When creating a map, you have to choose the
projection system that is best suited to the areato be represented or to the particular interests
that your map application is designed for.

Projections can be classified into three main categories:
& Cylindrical Projections

& Conic Projections

& Azimuthal Projections

Projections can also be:

& Equal Area or Conformal Projections

Cylindrical Projections

A cylindrical projection is obtained by wrapping alarge, flat plane around the globe to form
acylinder. Inthe following figure, the cylinder istangent to the equator. The closer the zone
of tangency the less the distortion.

Figure6.1 A Cylindrical Projection (1)

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Introducing Map Projections

The position of the cylinder can be changed. For example, in atransverse cylindrical
projection, the cylinder is tangent to a meridian.

Figure6.2 A Cylindrical Projection (2)

Conic Projections

A conic projection transfers the image of the globe to a cone either secant or tangent to the
surface of the Earth asillustrated in Figure 6.3

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 124

Figure6.3 Examples of Conic Projections

Azimuthal Projections

With azimuthal projections, also called planar projections, the spherical globeis projected
onto aflat surface.

Figure6.4 An Azimuthal Projection

Equal Area or Conformal Projections

All map projections show some kind of distortion in the areasthat are far from the projection
center. Depending on the kind of projection used, the distortion may be of angle, area, shape,
size, distance, or scale. In this respect, projections fall into two main categories, Equal Area
and Conformal.

125 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Projecting Data: An Example

& Equal areaprojections maintain atrue ratio between the various areas represented on the
map.

& Conformal projections preserve angles and locally, also preserve shapes.

Other projections have properties which are worth noting, such as maintaining the distances

measured from the center of the projection (azimuthal equidistant projection). Others offer a
good compromi se between angular distortion and distortion to the area.

Projections should therefore be configured and selected according to the areas to be
represented (for example, it isimpossible to represent the polar regions with the Mercator
projection) and the domains they apply to (navigational or air-route applications, small-scale
or large-scale maps, and so on). Navigational applications, for example, generaly use
conformal projections.

The projections supplied in this package are derived from the proj program by
Gerald I. Evenden.

For more information on map projections, refer to these books:
& Map Projections - A Working Manual (Snyder, 1987) and
& An Album of Map Projections (Snyder and Voxland, 1989)

Projecting Data: An Example

This section provides a simple example application illustrating the basic operations that you
must perform when using a projection. It shows how to create a projection and compute the
image of a geographic point on aflat surface.

This example is composed of the following steps:

4 Running the Example Application
 Including the Projection Declaration
¢ The Main Function

¢ Initializing a Projection

& Creating the Projected Data

¢ Projecting the Data

¢ Printing the Result of the Projection
¢ Calculating the Inverse Projection

¢ Printing Geographic Coordinates

L 2

The Complete Example

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 126

Complete Code Example

The complete code of the example on which this section is based can be found in the
following file:

<installdir>/samples/maps/userman/src/useproj.cpp

Running the Example Application

The example is commented, part by part, then printed as awhole in the section The
Complete Example on page 130.

The code of this application is supplied in thefile <installdir>/samples/maps/
userman/src/useproj . cpp Which you can compile to run the application.

To compile the example:
4. Gotothedirectory <installdir>/samples/maps/userman/<platform>.
5. Set the 1L.vHOME variable to the IBM® ILOG® Views installation directory.

6. Compile using make (on UNIX® systems) or nmake (on Microsoft® Windows®
systems). Thiswill compile all the samples for this User's Manual.

7. Launchthe useproj application.
The program output is the following:

The projection of 45W 30N is
x = -5003769 m

y = 3499627 m

The inverse projection is
45DW 30DN

The following sections explain the code in useproj . cpp.

Including the Projection Declaration

To be able to use the IBM® ILOG® Views Maps projections library, you must include the
header file that declares the projection classes. In our example, we use only the Mercator
projection class which is declared in the header file <ilviews/maps/projection/
mercator.h>.

There isaso aheader file that includes all the projection classes defined in the library:

<ilviews/maps/projection/allprojs.h>

127 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Projecting Data: An Example

The Main Function

Themain function in our example program initializes a Mercator projection and callsa
function to perform forward and inverse projections.

Initializing a Projection
In our example, we create an instance of the class T1vMercatorProjection. Thistype of
projection is often used in navigational applications.

All the projectionsin the library inherit from the abstract class 11vpProjection and benefit
from the same API. For this reason, we can call the function showProjection (writtenin
the sample below) which takes any projection as an argument, provided that the projection
inheritsfrom the class 11vProjection. The showProjection function can be called for
al thelibrary functions.

IlvMercatorProjection projection;

showProjection (projection) ;

The signature of the showProjection functionis:

void showProjection (const IlvProjection& projection) ;

Creating the Projected Data

In the projection library, computations are performed in double-precision. Therefore, we
need to create an instance of the class 11vCoordinate that contains a vector of two
coordinates. The values of the class are the latitude 1ambda and the longitude phi. These
values are expressed in radians. To convert degrees to radians, we use the static conversion
function I1vMaps: : DegreeToRadian.

double lambda = IlvMaps: :DegreeToRadian(-45.);
double phi = IlvMaps::DegreeToRadian(30.) ;
IlvCoordinate 11 (lambda, phi);

Warning: The two characters (11) in thelast line of the code are the letters (I1), not the
numerals (11). This applies to the sections that follow as well.

Projecting the Data

When data is projected, the geographical coordinates (longitude and latitude) are
transformed to projected coordinates. This operation is necessary for one of the following
reasons:

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 128

129

& toalign graphical elementsto a pre-existing map or to an image which isitself aready
projected

& to benefit from the properties of a specially selected projection (conservation of angles,
surfaces, or distances from a central point)

To project the data, we call the forward member function of the projection. This function
will place the result in its second argument (xy in our example). As certain projections
cannot be used on al of the earth surface, thisfunction also returns an error code which must
be taken into account. For instance, the Mercator projection cannot project points close to
the north and south poles. If an error occurs, the value of xy must not be used because it has
no meaning.
IlvCoordinate xy;
IlvMapsError status = projection.forward(ll, xy);

if (status != IlvMaps: :NoError ())

IlvPrint ("Projection exception for this data : %s",
IlvMaps: :GetErrorMessageId(status)) ;

If an error occurs, the message can be interpreted by the error management functions of
IlvMaps.

Here, we use I1vMaps : : GetErrorMessageId which returnsan IBM ILOG Views
message.

In the above example, we use the IBM ILOG Views 11vPrint function to print the
messages. This function provides a portable way to display messages, either in apure
graphic environment (Microsoft® Windows® applications) or on a console-enabled
environment (UNIX® applications).

Printing the Result of the Projection

The result of the projection is stored in the xy variable. In the following example, the result
is expressed in meters, which is the default measurement unit. The coordinates represent the
distance from the center of the projection. This distance is very different from the real
distance between the center of the projection (OE ON) and the point 45W 30N since the
center of the projection is far away and the Mercator Projection does not maintain distances
from its center. The Azimuthal Equidistant Projection, on the other hand, does.

IlvPrint ("The projection of 45W 30N is \n"
" x = %d m\n"
"y = %d m",
(int) xy.x(),
(int) xy.vy());

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Projecting Data: An Example

Calculating the Inverse Projection

The inverse projection transforms projected data to longitude and latitude. This operation
allowsyou, for example, to determine the geographical coordinates that a user designates
with a mouse on a projected map.

In our example, we will perform the inverse projection on the coordinate that we have just
calculated. (Of course, we expect to find the initial longitude and latitude).

To calculate the inverse projection, we call the inverse member function of the projection,
having previously reset the coordinate 11 to 0 to be sure of a correct calculation.

Reminder: Thetwo characters(11) arethe letters (I1), not the numerals (11). Thisapplies
to the sections that follow as well.

11.move (0., 0.);

status = projection.inverse(xy, 11);

if (status != IlvMaps::NoError())
IlvPrint ("Projection exception for this data : %s",
IlvMaps: :GetErrorMessageId(status)) ;

Printing Geographic Coordinates

To print geographic coordinates in humanly readable form, we use the static function
RadianToDMS Of the class T1vMaps which converts an T1vCoordinate to astring
containing degrees, minutes, and seconds.

char bufferl[12];

char buffer2[12];

IlvPrint ("The inverse projection is \n"
" %s %s",
IlvMaps: :RadianToDMS (bufferl, 11.x(), IlFalse),
IlvMaps: :RadianToDMS (buffer2, 11.y(), IlTrue));

The Complete Example

#include <ilviews/maps/projection/mercator.h>
void
showProjection (const IlvProjection& projection)
{
double lambda = IlvMaps::DegreeToRadian (-45.);
double phi = IlvMaps::DegreeToRadian (30.);
IlvCoordinate 11 (lambda, phi);
IlvCoordinate xy;
// Forward projection (from long/lat to x/vy).
IlvMapsError status = projection.forward(ll, xvy);
if (status != IlvMaps: :NoError ())
IlvPrint ("Projection exception for this data : %s",
IlvMaps: :GetErrorMessageId(status)) ;
// Printing the result.
I1lvPrint ("The projection of 45W 30N is \n"
" x = %d m\n"

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 130

"y = % m",
(int) xy.x(),
(int) xy.y());
// Resetting 11.
11.move (0., 0.);
// Inverse projection (from x/y to long/lat).
status = projection.inverse(xy, 11);
if (status != IlvMaps: :NoError ())
IlvPrint ("Projection exception for this data : %s",
I1lvMaps: :GetErrorMessageId(status)) ;
// Printing the result.
char bufferl[12];
char buffer2[12];
IlvPrint ("The inverse projection is \n"

T [yt
S BS 7,

IlvMaps: :RadianToDMS (bufferl, 11.x(), IlFalse),
IlvMaps: :RadianToDMS (buffer2, 1l.y (), IlTrue));}
int
main(int , char**)

{
IlvMercatorProjection projection;
showProjection (projection) ;
return 0;

Projection Methods and Parameters

131

This section describes projection methods and parameters. It covers the following topics:
¢ Forward and Inverse Functions

& Projection Parameters

& Utilities

Forward and Inverse Functions

Projections are implemented using the forward and inverse functions:

& The forward function converts the longitude and the latitude to Cartesian coordinates.
& The inverse function converts Cartesian coordinates to latitude and longitude.

These functions return the T1vMaps : : NoError() codeif they succeed. Otherwise, they
return an appropriate error code specifying the reason for failure.

IlvProjection: :UnsupportedFeatureError() isreturned when anon-implemented
feature is called. It originates from the following actions:

& Youtry to perform aforward projection on a nonspherical ellipsoid when the projection
does not support nonspherical ellipsoids:
IlvEquidistantCylindricalProjection, for example.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Projection Methods and Parameters

& Youtry to inverse a projection that cannot be reversed.

To find out if these features are implemented in the projection you are using, call the
functions T1vProjection: :isEllipsoidEnabled and
IlvProjection: :isInverseEnabled.

Other error codes are returned when an error occurs during computation, for example, if the
function is used for a coordinate where the projection is not defined. Error codes can be
interpreted using an T1vMaps error management function, such as

IlvMaps: :GetErrorMessageId.

Projection Parameters
The following parameters can be set for a projection:

¢ Thedllipsoid that specifies the figure of the earth. Ellipsoids are discussed in the section
Ellipsoids on page 133.

4 Theunit converter that specifies the measurement unit in which Cartesian coordinates
should be expressed. Unit converters are discussed in the section Using Unit Converters
Directly on page 138.

& The central meridian and the central parallel of the projection. These parameters can be
set with the setLL.Center function. Projections produce less distortion near their center.

& The offset applied to the Cartesian coordinates, also called false easting and false
northing. These parameters can be set with the function setxyoffset.

You can also:

& Specify whether the coordinates are geodetic (the default value) or geocentric using the
setGeocentric function.

The geocentric latitude of a point is defined by the angle formed by alinejoining the
point to the center of the earth and the equatorial plane, whereas the geodetic (or
geographic) latitude of a point is defined by the angle formed by the vertical line passing
through this point and the equatorial plane. The two values differ since the earth is not
exactly a sphere but rather an ellipsoid. Both latitudes are related through the relation
tan phiG = (1 - e ~ 2) tan phi where e isthe eccentricity of the ellipsoid used
to model the shape of the earth.

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 132

Geographic latitude Geocentric latitude

lat lat

If an application handles geocentric data, this parameter must be set. Most of the
cartographic data available is expressed with geographic | atitudes.

& Specify whether the projection uses longitude reduction, that is, forces longitude to bein
therange [-PI; P11, Or accepts any longitude using the function
setUsingLongitudeReduction.

The above parameters are common to all the projections. They can be set with the API of the
class T1vProjection, which isthe base class of al the projectionsin the library. Some
projections have additional specific parameters. For example, secant latitudes can be
specified for aconic projection, or the latitude of the true scale can be specified for most
cylindrical projections. For more information, refer to the Reference Manual for each
projection.

Utilities
The class 11vMaps provides conversion utilitiesto convert radians to degrees, aswell as the
reverse.

Ellipsoids

133

This section explains ellipsoids and how they are related to map projections. You will also
find alist of the predefined ellipsoids that are supplied with the IBM® ILOG® Views Maps
projection package.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Ellipsoids

This section covers the following topics:

& Overview of Ellipsoids

& Associating an Ellipsoid with a Projection
& Defining New Ellipsoids

& Predefined Ellipsoids

Overview of Ellipsoids

Ellipsoids are used to represent the shape of the Earth. For many applications, and especially
in small-scale mapping, the Earth can be represented as a sphere. Most of the projections
supplied in this package assume by default that the Earth is a sphere with aradius of
approximately 6371 kilometers. However, because the Earth rotates on its axis, it is dightly
flattened at the poles, and is therefore better approximated by an ellipsoid rotating on the
polar axis. Ellipsoidal projections are used for accurate, large-scale maps and flat coordinate
systems. However, in very large scale maps, representing a continent or the whole planet, we
recommend that you use spherical projections. Indeed, the elliptical form of most of the
projections in the package is accurate only for afew degrees of |atitude or longitude around
the projection center.

Associating an Ellipsoid with a Projection

Each projection is associated with an ellipsoid. By default, most of the projections use the
elipsoid T1vE1lipsoid: : SPHERE. Only some specific projections, such as the Universal
Transverse Mercator or the Universal Polar Stereographic, use a nonspherical ellipsoid by
defaullt.

You will obtain more accurate projections using an appropriate ellipsoid, especially asfar as
large scale maps are concerned. Note, however, that computations will be more complex and
slower than when using a sphere.

To specify the ellipsoid you want to use for a projection, use the method
IlvProjection: :setEllipsoid.

IlvProjection* projection = new IlvMercatorProjection() ;
projection->setEllipsoid(*I1vEllipsoid: :WGS84 ()) ;

You can either use a static member of the class I11vE11ipsoid, which defines a number of
commonly used ellipsoids, use the static method

I1vEllipsoid: :GetRegisteredEllipsoid() to retrieve aregistered Ellipsoid, or
create your own ellipsoid as explained in the section Defining New Ellipsoids on page 135.
You can aso use one of the predefined ellipsoids listed in the section Predefined Ellipsoids
on page 135.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 134

Defining New Ellipsoids
Ellipsoids provided in the package are defined by two parameters:
& The equatorial radius or semi-major axis of the ellipsoid.
& The eccentricity squared of the ellipsoid.
If the eccentricity squared is null, the ellipsoid is a sphere.

Defining a Spherical Ellipsoid

If only one parameter is provided, the ellipsoid is assumed to be a sphere. The following
exampl e defines a sphere with aradius of 10 meters.

IlvEllipsoid ellipsoid = new I1lvEllipsoid(10.0);

Most of the mapping applications use the ellipsoid 11vE11lipsoid: : SPHERE() that defines
a sphere having the dimensions very close to those of the Earth. Generally, the selected
ellipsoid should be as close as possible to the actual shape of the Earth asfar astheregion to
be represented is concerned. The radius of the sphere is expressed in meters.

The following example defines an ellipsoid with an equatorial radius of 10 meters and an
eccentricity squared of 0.0067:

IlvEllipsoid* ellipsoid = new IlvEllipsoid (10, 0.0067);

If you prefer to provide some other parameter than the eccentricity squared, you can use the
conversion methods provided by the I11vE11ipsoid class.

The following example defines an ellipsoid with an equatorial radius of 10 metersand a
polar radius of 9 meters:

IlvEllipsoid* ellipsoid =
new I1vEllipsoid(10,I1vEllipsoid: :ESFromPolarRadius(10.0,9.0));

The polar radius provided is converted to an eccentricity squared value with the
ESFromPolarRadius method.

TheclassT11vEl1lipsoid provides the following conversion methods for polar radius and
flattening:

€ I1lvEllipsoid::ESFromPolarRadius

€ IlvEllipsoid::ESFromFlattening

Predefined Ellipsoids

The maps package contains alist of predefined ellipsoids. A predefined ellipsoid is
referenced by its name. To access a predefined ellipsoid, use the static method
GetRegisteredEllipsoid of theclassI1vEllipsoid.

135 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

For example:

const IlvEllipsoid* ellipsoid =
IlvEllipsoid: :GetRegisteredEllipsoid("clrk66") ;

IlvProjection* projection = new IlvMercatorProjection() ;

projection->setEllipsoid(*ellipsoid);

Ellipsoids

The following table provides alist of the predefined ellipsoids that are available.

Name Comment Semi-Major Axis |Eccentricity
sphere Sphere of 6370997 m 6370997.0 0.0
MERIT MERIT 1983 6378137.0 0.0818192
SGS85 Soviet Geodetic System 85 6378136.0 0.0818192
GRS80 GRS 1980(IUGG, 1980) 6378137.0 0.0818192
IAU76 IAU 1976 6378140.0 0.0818192
airy Airy 1830 6377563.396 0.0816734
APL4.9 Appl. Physics. 1965 6378137.0 0.0818202
NWL9D Naval Weapons Lab., 1965 6378145.0 0.0818202
mod_airy Modified Airy 6377340.189 0.0816734
andrae Andrae 1876 (Den., Icind.) 6377104.43 0.0815816
aust_SA Australian Natl & S. Amer. 1969 6378160.0 0.0818202
GRS67 GRS 67(IUGG 1967) 6378160.0 0.0818206
bessel Bessel 1841 6377397.155 0.0816968
bess_nam |Bessel 1841 (Namibia) 6377483.865 0.0816968
clrk66 Clarke 1866 6378206.4 0.0822719
cIrk80 Clarke 1880 mod. 6378249.145 0.0824832
CPM Commission des Poids et Mesures 6375738.7 0.0772909
(1799)
delmbr Delambre 1810 (Belgium) 6376428.0 0.080064
engelis Engelis 1985 6378136.05 0.0818193
evrst30 Everest 1830 6377276.345 0.081473
evrst48 Everest 1948 6377304.063 0.081473
IBM ILOG VIEwWS MAPS V5.3 — USER’S MANUAL 136

Name Comment Semi-Major Axis |Eccentricity
evrst56 Everest 1956 6377301.243 0.081473
evrst69 Everest 1969 6377295.664 0.081473
evrstSS Everest (Sabah & Sarawak) 6377298.556 0.081473
fschr60 Fischer (Mercury Datum) 1960 6378166.0 0.0818133
fschr60m | Modified Fischer 1960 6378155.0 0.0818133
fschr68 Fischer 1968 6378150.0 0.0818133
helmert Helmert 1906 6378200.0 0.0818133
hough Hough 6378270.0 0.0819919
intl International 1909 (Hayford) 6378388.0 0.0819919
krass Krassovsky, 1942 6378245.0 0.0818133
kaula Kaula 1961 6378163.0 0.0818215
lerch Lerch 1979 6378139.0 0.0818192
mprts Maupertius 1738 6397300.0 0.1021949
new_intl New International 1967 6378157.5 0.0818202
plessis Plessis 1817 (France) 6376523.0 0.0804333
SEasia Southeast Asia 6378155.0 0.0818133
walbeck Walbeck 6376896.0 0.0812068
WGS60 WGS 60 6378165.0 0.0818133
WGS66 WGS 66 6378145.0 0.0818202
WGS72 WGS 72 6378135.0 0.0818188
WGS84 WGS 84 6378137.0 0.0818192

Unit Converters

This section explains how to use unit converters with projections. It covers the following

topics:

& Using Unit Converters Directly

137 IBM ILOG VIEWS MAPS V5.3 —

USER’'S MANUAL

Unit Converters

& Defining Unit Converters
& Using Predefined Unit Converters

Using Unit Converters Directly
To convert metersto feet, you can use a static member of the class T11vUnitConverter.

The following code converts metersto feet.

IlvUnitConverter* converter = IlvUnitConverter::FT();
IlvDouble meters = 100;

IlvDouble feet= converter->fromMeters (meters) ;
IlvPrint ("100 m = $f ft", feet);

feet = 100;

meters = converter->toMeters (feet) ;

I1lvPrint ("100 ft = %$f m", meters);

The toMeters method of the class 11vUnitConverter converts the current measurement
unit to meters, while the fromMeters method converts meters to the current measurement
unit.

You can either use a static member of the class 11vunitConverter that defines commonly
used converters or create your own converter as explained in the section Defining Unit
Converters on page 139.You can aso use one of the predefined converterslisted in the
section Using Predefined Unit Converters on page 139.

Using Converters With Projections

Unit converters can be associated with a projection as shown in the following example,
which is amodification of the useproj program that uses feet, instead of meters.

#include <ilviews/maps/projection/mercator.h>

main()

{
IlvUnitConverter* converter = IlvUnitConverter::FT();
IlvMercatorProjection projection;
projection.setUnitConverter (*converter) ;
const double lambda = IlvMaps::DegreeToRadian(-45.0);
const double phi = IlvMaps::DegreeToRadian(30.0);
IlvCoordinate 11 (lambda, phi);
IlvCoordinate xy;
projection. forward(1ll, xvy);
IlvPrint ("The projection of 45W 30N is \n"

$f ft\n"

11.moveTo (0, O0);

projection.inverse (xy, 11);

char bufferl[12];

char buffer2[12];

IlvPrint ("The inverse projection is \n"
" %s %s",

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 138

IlvMaps: :RadianToDMS (bufferl, 11.x(), IlFalseIlFalse),
IlvMaps: :RadianToDMS (buffer2, 11.y(), IlTrue));
}

A call to setUnitConverter specifiesthat feet will be used as the measurement unit. The
output of the forward method will then be expressed in feet. Similarly, the input to the
inverse method must also be expressed in feet.

Defining Unit Converters

To define a unit converter, you must provide the name of the measurement unit and its
equivalent in meters.

The following code defines the kilometer as the measurement unit.

IlvUnitConverter converter (1000, "km") ;

Using Predefined Unit Converters

The library contains alist of predefined unit converters. A predefined unit converter is
referenced by its name. To access a predefined unit converter, use the static function
GetRegisteredConverter Of theclass I1vUnitConverter.

The following example instantiates a Mercator projection and converts its output to
international nautical miles.

IlvUnitConverter* converter =

IlvUnitConverter: :GetRegisteredConverter ("kmi") ;
IlvMercatorProjection projection;
projection.setUnitConverter (*converter) ;

List of Predefined Unit Converters

The table below contains alist of the predefined unit converters supplied with the
IBM ILOG Views Maps projection library.

Name Comment ToMeters
km Kilometer 1000.0

m Meter 1.0

dm Decimeter 0.1

cm Centimeter 0.01

mm Millimeter 0.001
kmi International Nautical Mile 1852.0

in International Inch 0.0254

139 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

Conversion Between Coordinates in Different Geodetic Datums

Name Comment ToMeters

ft International Foot 0.3048

yd International Yard 0.9144

mi International Statute Mile 1609.344

fath International Fathom 1.8288

ch International Chain 20.1168

link International Link 0.201168

us-in U.S. Surveyor’s Inch 0.025400050800101603
us-ft U.S. Surveyor’s Foot 0.304800609601219
us-yd U.S. Surveyor’s Yard 0.914401828803658
us-ch U.S. Surveyor’s Chain 20.11684023368047
us-mi U.S. Surveyor’s Statute Mile |1609.347218694437
ind-yd Indian Yard 0.91439523

ind-ft Indian Foot 0.30479841

ind-ch Indian Chain 20.11669506

Conversion Between Coordinates in Different Geodetic Datums

When merging maps created by different mapping agencies, you can observe that identical
points are sometimes positioned hundreds of meters away. The reason for this positioning
error can be that these agencies use different geodetic data as the basis of their coordinate
systems.

A geodetic datum, or horizontal geodetic datum, is a coordinate reference system that
describes the geographic coordinates of a point expressed by its latitude and its longitude.
Over the years, hundreds of different geodetic data have been used by cartographers around
the world. However, because the geoid surface isirregular, most of the time the same point
read using two different geodetic data showed different coordinates. Nowadays, with the use
of satellites and global positioning systems, geodetic surveys provide centimeter accuracy.

Because of the discrepancies from one datum to another, integrating maps coming from
different sources requires data conversion.

This section shows how you can perform a datum conversion with IBM® ILOG® Views
Maps and presents the conversion method used.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 140

The section covers the following topics:
& Horizontal Datum Shift

& Datum and Projections

Horizontal Datum Shift

The datum conversion method that IBM ILOG Views Maps implements by default is based
on the assumption that the datum used is one that describes latitudes and longitudes read
from an ellipsoid surface whose center is dlightly shifted from the center of the Earth so that
it istangent to the geoid surface in the area where the datum is used.

This datum isimplemented with the class T11vHorizontalshiftDatum, asubclass of
I1lvHorizontalDatum. The datum of reference for calculating shift parametersisthe
WGS84 datum. The National Imagery and Mapping Agency (NIMA) publishes the shift
parameters relative to this reference datum for alarge number of data.

We use the WGS84 datum to convert coordinates from datum D1 to datum D2. The latitude
and the longitude of a point on the D1 ellipsoid surface are converted to the X,Y, and Z
Cartesian coordinates. These coordinates are then reprojected on the datum WGS84
ellipsoid surface. Repeat the same operation to obtain the latitude and the longitude of the
point on the D2 ellipsoid surface. The Molodensky’s formulais based on this conversion
principle and isimplemented by the T1vMolodenskyConverter class. With thistechnique
of conversion, the precision of datais of ten meters or so.

Datum and Projections

You can specify the datum of a projection system with T1vProjection: : setDatum()
method and retrieve it with T1vProjection: : getDatum().

If the source and target projection for an imported map have different geodetic data, datum
conversion is carried out by the method 11vMapInfo: : toviews().

Adding Graphic Objects on Top of an Imported Map

This section shows how to import an . i 1v map file whose projection is now into an

IBM® ILOG® Views manager, and how to lay graphic objects over that map. It is based on
an example that loads a map of the USA projected with a Lambert Azimuthal Equal Area
projection into a manager, and adds cities on top of the map. The geographic coordinates
indicated by the mouse pointer as well as the name of the cities pointed to are displayed in
text fields at the bottom of the window.

141 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Adding Graphic Objects on Top of an Imported Map

Complete Code Example

The complete source code for this example can be found in the following file:
<installdir>/samples/maps/userman/src/useviews.cpp

The following sections provide comments on the code in this example:

4 Running the Example Application

¢ Defining the Sample Class, the Main Function, and the Constructor
¢ Getting Map Information

& Adding Cities
L 2

Showing Mouse Position

Running the Example Application

To compile and run the exampl e application:

¢ Gotothedirectory <installdir>/samples/maps/userman/<platform>.
¢ Set the TvHOME variable to the IBM® ILOG® Viewsinstallation directory.

¢ Compile usingmake (on UNIX® systems) or nmake (on Microsoft® Windows®
systems). Thiswill compile all the samples for this User's Manual.

¢ Launchthe useviews application.
The application shows a map of the USA with some cities:

Integrating projections and graphics [O] x]
[

4 o

[7905 EOOTEEN Miami

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 142

Defining the Sample Class, the Main Function, and the Constructor

The Class

The sampleisimplemented asaclass, simpleMapviewer, that will load the map and create
thecities.

It contains the following fields:

private:
IlvGadgetContainer* _container;
IlvSCManagerRectangle* _managerRectangle;
IlvMapInfo* _mapInfo;
IlvTextField* _statusBar;

Where _container isthe top window of this application. _managerRectangle
combines an I1vManager and an Ilvview. _mapinfo field isan I11vMapInfo instance
that stores the informations to convert coordinates from cartographic coordinate system to
the manager coordinate system. As map information is saved along with . i1v files, this
fieldisinitialized when our map file isloaded so that we can use it to place cities on the map
and display the geographic coordinates corresponding to the position of the mouse pointer
on the map. These geographic coordinates are stored in an T1vTextField that actsasa
status bar.

The Main Function

The main function initialize the 11vDisplay, creates an instance of our
SimpleMapViewer Class, then goesinto the main loop of IBM ILOG Views.
int main(int, char**)

{
IlvDisplay* display = new IlvDisplay("Map Viewer") ;

if (display->isBad()) {
IlvPrint ("Cannot create the display");
return 1;

}

SimpleMapViewer* viewer = new SimpleMapViewer (display,
"../data/usa.ilv");

IlvMainLoop () ;

return 0;

}

The Constructor

The constructor of simpleMapviewer performstwo actions: it creates the interface
components of our class, then loads the map data.

SimpleMapViewer: : SimpleMapViewer (IlvDisplay* display,
const char* fileName)
:_managerRectangle (0) ,
_statusBar(0),
_container(0),
_mapInfo(0)

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Adding Graphic Objects on Top of an Imported Map

createGUI (display) ;
loadMap (fileName) ;

}

The createGuz method creates an instance of T1vGadgetContainer that isthe top view
of our application, then call the methods to create the manager rectangle containing the map

and to create the tool bar:

void
Simp
{

}

The

leMapViewer: :createGUI (IlvDisplay* display)

_container = new IlvGadgetContainer (display,
“SimpleMapViewer",

"Integrating projections and graphics",

IlvRect (50, 50, 450, 450),
IlFalse) ;
_container->setDestroyCallback(_exit, this);
createManagerRectangle (_container) ;
createStatusBar (_container) ;

createManagerRectangle method creates the manager to store the map, and

initialize the view:

void
SimpleMapViewer: :createManagerRectangle (IlvGadgetContainer* container)

{

}

Then the createstatusBar method creates and attach the I11vTextField, used asa

stat

voi

_managerRectangle = new IlvSCManagerRectangle (container->getDisplay (),
IlvRect (0, 0, 450, 435));

container->addObject (_managerRectangle) ;
// Attachments.
container->getHolder () ->attach (_managerRectangle, IlvHorizontal) ;

container->getHolder () ->attach (_managerRectangle, IlvVertical);

IlvManager* manager = _managerRectangle->getManager () ;
IlvView* view = _managerRectangle->getView() ;

manager->setKeepingAspectRatio (view, I1lTrue);
manager->setDoubleBuffering (view, I1lTrue);

us bar:

d

SimpleMapViewer: :createStatusBar (I1lvGadgetContainer* container)

{

IBM

_statusBar = new IlvTextField(container->getDisplay(),

wn
’

IlvRect (0, 435, 450, 15));
container->addObject (_statusBar, IlTrue);

_statusBar->setEditable(IlFalse) ;

// Attachments.

ILOG VIEwWsS MAPS V5.3 — USER’'S MANUAL

144

container->getHolder () ->attach (_statusBar, IlvHorizontal);
container->getHolder () ->attach(_statusBar, IlvVertical, 1, 0, 0);

}

When the graphic interface is ready, we can load the map.

void
SimpleMapViewer: :loadMap (const char* fileName)
{
IlvManager* manager = _managerRectangle->getManager() ;
IlvView* view = _managerRectangle->getView() ;
manager->read (fileName) ;
_mapInfo = IlvMapInfo::Get (manager) ;
if (_mapInfo) {
view->setInputCallback (_showMousePosition, this);
addCities() ;
}
manager->fitTransformerToContents (view, I1lTrue) ;

}

After the map has been loaded, we store the map info that was stored inthe . i1v filein our
_mapinfo field, install an input callback to show mouse position, then add the cities.

Getting Map Information

In IBM® ILOG® Views Maps, map information can be attached to managers using the
TI1lvMapInfo class. This class encapsulatesthe T1vProjection and T1vMapAdapter to
convert coordinates between map coordinates and manager coordinates.

To get the T1vMapInfo that isattached to an 11vManager, you use the static function
IlvMapInfo: :Get, ainour sample:

_mapInfo = IlvMapInfo::Get (manager) ;

Adding Cities

The addcities method adds a number of cities on top of the imported map of the United
States:

void

SimpleMapViewer: :addCities ()

{
addCity ("Washington", "39D11’'N", "76D51W");
addCity ("New York", "40D59'N", "73D39'W");
addCity ("Miami", "25D58'N", "80D02'W");
addCity ("San Francisco", "37D44'N", "122D20'W");
addCity ("Seattle", "47D51’'N", "122D01’'W");
addCity ("Denvers", "39D50’'N", "104D53'W");

}

The addcity method first computes the latitude and the longitude of the cities to be
displayed:

void

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Adding Graphic Objects on Top of an Imported Map

SimpleMapViewer: :addCity (const char* cityName,
const char* latString,
const char* longString)

double latitude;
IlvMaps: :DMSToRadian (latString, latitude);

double longitude;
IlvMaps: :DMSToRadian (longString, longitude) ;

IlvCoordinate c(longitude, latitude);

After the geographic coordinates of the city is computed, this method uses the _mapInfo of
our map to convert these coordinates to manager coordinates. This conversion effectively
converts the geographic coordinates to the cartesian coordinates of the projection, then
convert these coordinates into manager units. Note that the conversion status is to be tested,
as coordinate conversion in projection coordinate system can lead to errors:

IlvMapsError status = IlvMaps::NoError () ;
IlvPoint p;
status = _mapInfo->forward(c, p);

Once the coordinates are converted and that no error occursin the conversion process, we
add the city as ared marker:

if (status == IlvMaps::NoError()) {

IlvMarker* marker = new IlvMarker (_container->getDisplay (),

o,

IlvMarkerFilledDiamond) ;
marker->setSize (4) ;
marker->setForeground (_container->getDisplay () ->getColor ("red")) ;
IlvManager* manager = _managerRectangle->getManager () ;
manager->addObject (marker, 1, IlFalse);
marker->setName (cityName) ;

Showing the Mouse Position

When datais |oaded in the map, we set in input callback to show mouse position:

if (_mapInfo) {
view->setInputCallback (_showMousePosition, this);

}

This callback class callsthe showMousePosition method each time an input event occurs
in the view:

void _showMousePosition (IlvView* view, IlvEvent& event, IlvAny arg)
{
SimpleMapViewer* mapViewer = (SimpleMapViewer*) arg;
mapViewer->showMousePosition(view, event) ;

}

This method first initializes some buffers to display information:

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 146

void
SimpleMapViewer: : showMousePosition (IlvView* view, IlvEvent& event)
{
char bufl[12];
char buf2[12];
char label[50];
}

Then, we get the last object that was under the mouse position, and if any, we get the name
of this object to display it as acity name:

IlvManager* manager = _mapInfo->getManager () ;

const char* name = "";
IlvPoint p(event.x(), event.y());
IlvGraphic* g = manager->lastContains(p, view);
if (g && g->getName())
name = g->getName () ;

Then we use again our T1vMapInfo instance to convert manager coordinates of the mouse
back to geographical coordinates:

IlvCoordinate 11;

if (_mapInfo->inverse(event, view, 11) == IlvMaps::NoError())
sprintf (label, "%s %s %s",
IlvMaps: :RadianToDMS (bufl, 11.x(), IlFalse),
IlvMaps: :RadianToDMS (buf2, 1l.y (), IlTrue),
name) ;
else

sprintf (label, "Unable to invert mouse position");

Then, finally, we set the label into the status bar:

_statusBar->setLabel (label) ;
_statusBar->reDraw() ;

Creating a New Projection

This section explains how to extend the IBM® ILOG® Views Maps projection library with
your own projections. The example used in this section is a simplified version of the
Mercator projection.

The example is subdivided into three steps, each step showing a different aspect of the

library.

& Step 1 explains the minimum requirement to subtype a projection. It focusses on how to
implement the forward and inverse functions of a projection.

& Step 2 explains how to add parameters to a projection and how to write the Input/Output
functions to support these additional parameters. It also shows how to create specific
error codes.

147 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a New Projection

& Step 3 explains how to add the accessor support for the specific parameters of a
projection.

The sample source files are located in the directory:
<installdir>/samples/maps/userman/src

for the source files, named proj_stepl.cpp, proj_step2.cpp and proj_step3.cpp
and

<installdir>/samples/maps/userman/include

for the corresponding include files.

Step 1: Defining a New Projection

The first step explains the minimum requirement to subtype a projection. It focuses on how
to implement the forward and inverse functions of a projection.

The complete code of this projectionisin thefilesproj_stepl.h and proj_stepl.cpp.

The Class Declaration
The Mercator projection isdeclared in the fileproj_stepl.h.

You must include the <ilviews/maps/projection/project.h> filethat declaresthe
projection base class 11vProjection.

Then, you must declare the projection features that you are going to implement:

& srorward implements the forward projection in the most simple case, that is to say,
when the earth is modeled as a sphere. Implementing this feature is mandatory since the
IlvProjection: : sForward function is abstract.

Declaring and implementing the following functionsis not mandatory. The new projection
will simply not support the features that are not implemented and returns an error code if
they are required by the application.

& sInverse implementstheinverse projection when the earth is modeled as a sphere.

& crorward implements the forward projection when the earth is modeled as a
nonspherical ellipsoid.

& cInverse implementstheinverse projection when the earth ismodeled asa
nonspherical ellipsoid.

In the projection declaration, you must also use the T1vMapsDeclareProjectionIO
macro. Thismacro declaresthe I11vProjectionClassInfo of the class and some
mandatory members to support input and output operations.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 148

You must also add the T1vMapsInitProjectionIo inthefile after the projection
declaration. This macro ensures that the 11vProjectionclassInfo will beinitiaized
during the static initialization phase.

#include <ilviews/maps/projection/project.h>
class Mercator : public IlvProjection
{
public:
Mercator () ;

protected:
virtual IlvMapsError sForward(IlvCoordinate &) const;
virtual IlvMapsError sInverse(IlvCoordinate &) const;
virtual IlvMapsError eForward(IlvCoordinate &) const;
virtual IlvMapsError elInverse(IlvCoordinate &) const;
IlvMapsDeclareProjectionIO (Mercator) ;

}i

// Enable IO initialization.

IlvMapsInitProjectionIO (Mercator) ;

Defining the Projection
The projection isdefined in the fileproj_stepl.cpp

To define the class, you usethe I1vMapsDefineBasicProjectionIO macro. Thismacro
defines the function and static members that are necessary to support input and output

operations. It also generates code toinitialize the 11vProjectionClassInfo.
#include "proj_stepl.h"
IlvMapsDefineBasicProjectionIO (Mercator,

IlvProjection,

"My Mercator Implementation",

new Mercator ()
IlvMapsEmptyStatement ()) ;

& Thefirst argument of the macro is the name of the projection class.
& The second argument is the name of the superclass of the projection.

& Thethird argument is the projection name. This nameis used, for example, by the
IlvProjectionDictionary class.

¢ Thefourth argument is the statement used to create a new instance of this class.

¢ Thelast argument is a statement that will be called during the initialization of the
projection class. Since nothing specific is done in this example, the
TI1vMapsEmptyStatement Macro isused. Thislast parameter will be used in steps 2
and 3.

Now the projection constructor must be defined. This constructor calls the constructor of its
superclass I1vProjection, wWhich takes three arguments.

149 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a New Projection

& Thefirst argument isan T1Boolean Value specifying whether the projection supports
nonspherical ellipsoids. In our example, this argument is set to T1True Since the
proj ection supports the equations for nonspherical ellipsoids.

& Thesecond argument is an T1vBoolean vaue indicating whether the projection
supports an inverse function. In our example, this argument is set to 11True since the
projection supports an inverse function.

& Thethird argument is an enum value that indicates the geometric properties of the
projection. In our example thisargument is
IlvConformalProjectionGeometricProperty Sincethe Mercator projectionis
conformal.

You must aso define a copy constructor that is declared by the
IlvMapsDeclareProjectionIO Macro.

Mercator: :Mercator ()
:I1vProjection (I1lTrue,
IlTrue,
IlvConformalProjectionGeometricProperty)
{
}
Mercator: :Mercator (const Mercator& source)
:I1vProjection (source)
{
}

Writing the Forward Projection

Before writing the forward functions for the Mercator projection, you must be familiar with
the I1vProjection: : forward function.

The llvProjection::forward Function

The 11vProjection: : forward public function is called by the user to project data. The
function prepares data for projection computation and scales it appropriately. It then
redirects the callsto either one of the eForward or sForward protected functionswhich are
defined in the projection subclass (the Mercator class in our example).

The 11vProjection: : forward function:
¢ adjuststhe latitudeif the coordinates are geocentric,
¢ adjusts the longitude to the central meridian of the projection,

¢ adjuststhe longitude to therange [-PT; P11, if longitude reduction is used (the default
value),

& callseither the function sForward or eForward depending on whether the earth is
represented as a sphere or as an ellipsoid, and

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 150

& adjusts the projected data to the dimensions of the ellipsoid as well asto the Cartesian
offsets, and converts them to the selected measurement unit.

Projecting Data from a Sphere
The sForward protected function implements the projection for a sphere.

Since the appropriate scaling is actually carried out by the function
IlvProjection: : forward, the sForward function always assumes that the radius of the
sphereis 1.

In our example, the Mercator function is the projection of a sphere on acylinder that is
tangent to the equator. The x coordinate is equal to the longitude (expressed in radians)
because we assume that the radius of the sphereis 1. In this case, we do not have to change
thex valueof 11.

Because the Mercator projection cannot show regions near the poles, an error code is
returned if the latitude is too closeto p1/2.

We apply the following equation to compute the y coordinate of the projected data.

IlvMapsError

Mercator: :sForward(IlvCoordinate& 11) const

{
// Return an error if the point is close to a pole.
if (fabs(fabs(ll.y()) - IlvMaps::Pi() / 2.) <= le-10)
return ToleranceConditionError() ;

1l.setY(log(tan(IlvMaps::Pi() / 4. + 0.5 * 11.v())));
return IlvMaps: :NoError() ;

Projecting Data from an Ellipsoid

The eForward protected function is called by the T1vProjection: : forward function if
datais projected from a nonspherical ellipsoid.

It is not necessary for you to implement the eForward function for your projection. If you
are projecting datafrom anonspherical ellipsoid and if the projection you are using does not
support thiskind of ellipsoid, the forward function will return the error code given by
IlvProjection: :UnsupportedFeatureError(). Inthiscase, you can use any spherical
ellipsoid or create an equivalent sphere using the appropriate conversion functions of the
classI1vEllipsoid.

The eForward function is slightly more complex than the sForward function although the
formulas obtain equivalent results if getEllipsoid () ->getE() returnso.

IlvMapsError

Mercator: :eForward (IlvCoordinate& 11) const

{
// Return an error if the point is close to a pole.
if (fabs(fabs(ll.y()) - IlvMaps::Pi() / 2.) <= le-10)
return ToleranceConditionError() ;

IlvDoublee = sqgrt(getEllipsoid()->getES());

151 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a New Projection

IlvDouble sinphi = e * sin(1l.y());

1l.setY(tan(.5 * (IlvMaps::Pi() / 2. -
11.vy(0))) /
pow((l. - sinphi) / (1. + sinphi),
0.5 * e));
1l.set¥(-log(ll.y()));

return IlvMaps: :NoError() ;

Writing the Inverse Projection

Before writing the inverse function for the Mercator projection, you should be familiar
withthe I1vProjection: : inverse function.
The llvProjection::inverse Function

The inverse function preparesthe datafor inversion and processes the data for appropriate
offset.

This function:

& suppresses the offset produced by the Cartesian coordinates and converts these
coordinates to meters.

& revertsthe coordinatesto their geographic values and applies them to astandard ellipsoid
with a semi-major axis of value 1.

& callsthefunction sTnverse or eInverse depending on whether the ellipsoid isa
sphere or not.

& addsthe value of the central meridian to the longitude and adjusts the longitude to the
range [-PT;P1] if longitude reduction is used (the default value).

& convertsthe latitude if the coordinates are geocentric.

Inverse Projection onto a Sphere
The inverse projection onto a sphere is performed via the sTnverse function.

Itis not necessary for you to implement the sTnverse function. If you cal the
IlvProjection: :inverse function for aprojection that does not support the inverse
function, the error code I1vProjection: : UnsupportedFeatureError () iSreturned.

Aswe saw earlier with the sForward function, the projection does not modify the x value.
Therefore, the inverse equation is applied only to they value.

IlvMapsError
MercatorProjection: :sInverse (IlvCoordinate& xy) const
{
xy.setY (IlvMaps::Pi()/2. - 2.*atan(exp(-xy.y())));
return IlvMaps: :NoError();

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 152

Inverse Projection onto an Ellipsoid

Theinverse projection onto an ellipsoid is performed viathe eInverse function. This
function assumes that the value of the semi-major axis of the ellipsoid is 1.

In the particular case of the Mercator projection, the implementation of this function is more
complex for an ellipsoid than for a sphere. It requires iterations and might fail sincethereis
no simple analytical inverse equation for the Mercator projection from a nonspherical
elipsoid.

IlvMapsError
Mercator: :eInverse (IlvCoordinate& xy) const
{
IlvDouble ts = exp(-xy.v());
IlvDouble e = sgrt(getEllipsoid()->getES());
IlvDouble eccnth = 0.5 * e;
IlvDouble Phi = IlvMaps::Pi() / 2. -2. * atan(ts);

int 1 = 15;
IlvDoubledphi ;
do {

IlvDouble con = e * sin(Phi);
dphi = IlvMaps::Pi()/2. -
2. * atan(ts * pow((l - con)/(1 + con), eccnth)) - Phi;
Phi += dphi;
} while(fabs(dphi) > 1.e-10 && --1i != 0);
if(i <= 0)
return ToleranceConditionError() ;

Xy .setY (Phi) ;

return IlvMaps: :NoError () ;

Step 2: Defining a New Projection

This step explains how to add parameters to a projection, and how to write the Input/Output
functions to support these additional parameters. It also shows how to create specific error
codes.

The complete code of thisprojectionisinthefilesproj_step2.h and proj_step2.cpp.

Defining a New Parameter

The Mercator projection does not maintain distances. With the Mercator projection, the
scale factor changes with the latitude: the further a point is from the equator, the larger the
scale factor. However, it is possible to specify the latitude of the true scale, that is, the
latitude around which the distances between the projected points are maintained.

In our example, we will introduce this new parameter and manage its persistence.

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a New Projection

Defining a New Error Code

Aswe saw in the previous step with the Mercator projection, the forward projection of a
point can cause an error if the point istoo close to a pole. Instead of returning the generic
IlvProjection::ToleranceConditionError (), wewill create a specific error code
that will be returned in this case.

Declaring the New Class

The second version of the Mercator classis declared in thefileproj_step2.h.
We have added:

¢ amethod to set the latitude of the true scale,

& amethod to get the latitude of the true scale,

& adtatic method PolarzoneError to get the specific error code of the Mercator
projection,

avirtua write method that overrides the default 11vProjection: :write method,

aprivate static method tnitClass that will be used to alocate the new error code,

* & o

aprivate field to store the latitude of the true scale, and
& aprivate static field to store the error code.

class Mercator : public IlvProjection
{
public:

Mercator () ;

void setLatitudeOfTrueScale(IlvDouble latitudeOfTrueScale)
{_latitudeOfTrueScale = latitudeOfTrueScale;}

IlvDouble getLatitudeOfTrueScale() const
{return _latitudeOfTrueScale;}

static IlvMapsError PolarZoneError() {return _polarZoneError;}
virtual void write(IlvOutputFile&) const;

protected:
virtual IlvMapsError sForward
virtual IlvMapsError sInverse
virtual IlvMapsError eForward
virtual IlvMapsError elInverse

IlvCoordinate &) const;
IlvCoordinate &) const;
IlvCoordinate &) const;
IlvCoordinate &) const;

private:
static void InitClass();

private:

IlvDouble _latitudeOfTrueScale;
static IlvMapsError _polarZoneError;

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 154

IlvMapsDeclareProjectionIO (Mercator) ;
}i

Defining The Projection
The projection isdefined in the fileproj_step2 . cpp.

To define the class, use the 11vMapsDefineProjectionIo macro. This macro must be
used instead of the T1vMapsDefineBasicProjectionI0O macro for projectionsthat have
to save additional parameters.

In this step, the initialization statement of the macro is set to the static private function
Mercator: :InitClass (), whichwill initialize the error code. It is possibleto call astatic
private function of the Mercator class at this place because the
IlvMapsDefineProjectionIO Macro generates theinitialization statement in a scope
that has been declared as friend of the Mercator class by the
IlvMapsDeclareProjectionIO Macro.

IlvMapsDefineProjectionIO (Mercator,
IlvProjection,
"My Mercator Implementation",
new Mercator(),
Mercator::InitClass());

Initializing the Error Code

The new error codeis allocated by the Tnitclass method, which is automatically called
during the static initialization phase.

void
Mercator::InitClass ()
{
_polarZoneError =
IlvMaps: :CreateError ("&MercatorPolarZoneError") ;

Using the New Parameter and the New Error Code

The latitude of the true scale and the new error code are used in the forward and inverse
functions. The following is an example of the way they are used in the projection functions.

IlvMapsError
Mercator: :sForward(IlvCoordinate& 11) const
{
if (fabs(fabs(ll.y()) - IlvMaps::Pi() / 2.) <= le-10)
// Returning the specific error code.
return PolarZoneError () ;

IlvDouble k = cos(_latitudeOfTrueScale) ;

11l.setY(k * log(tan(IlvMaps::Pi() / 4. + 0.5 * 11.v())));
1l.setX(k * 11.x());

155 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Creating a New Projection

return IlvMaps: :NoError() ;

Writing the Input/Output Functions for the New Parameter

To provide complete 10 support for the new parameter, you must implement awrite
method to save this additional parameter. Thiswrite method must call the write method
of its superclass before writing any data.

void Mercator::write(IlvOutputFile &file) const
{

IlvProjection::write(file);

file.getStream() << _latitudeOfTrueScale << IlvSpc();
}

You must also implement aread constructor. This read constructor calls the read constructor
of its superclass and then reads the latitude of the true scale.

Mercator: :Mercator (IlvInputFile& file)
:IlvProjection(file)
{

file.getStream() >> _latitudeOfTrueScale;
}

Finally, the copy constructor must also be updated to implement the copy of this new
parameter.

Mercator: :Mercator (const Mercator& source)
:I1lvProjection (source),
_latitudeOfTrueScale(source._latitudeOfTrueScale)
{

}

Step 3: Defining a New Projection

This step explains how to add the accessor support for the specific parameters of a
projection.

The complete code of this projectionisin thefilesproj_step3.h and proj_step3 . cpp.

Adding Accessor Support

Accessors provide run-time information about the parameters of a projection. They are
generally used to build generic projection editorsin map applications.

To add an accessor to a projection you must write a getter and a setter function for this
parameter and add the accessor to the 11vProjectionClassInfo during the static
initialization phase.

// The getter for the latitudeOfTrueScale accessor.

static void _getter (const IlvProjection* p, IlvValue& v)

{

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 156

Mercator* mercator = (Mercator*) p;

char buffer[12];

v = IlvMaps::RadianToDMS (buffer,
mercator->getLatitudeOfTrueScale(),
I1True) ;

// The setter for the latitudeOfTrueScale accessor.
static IlvBoolean _setter (IlvProjection* p, const IlvValue& v)

{
Mercator* mercator = (Mercator*) p;
IlvDouble value;
IlvMapsError error = IlvMaps::DMSToRadian (v, value);
if (error != IlvMaps::NoError())

return IlFalse;
mercator->setLatitudeOfTrueScale (value) ;

return IlTrue;

}

void

Mercator: :InitClass ()

{

_polarZoneError =
IlvMaps: :CreateError ("&MercatorPolarZoneError") ;

ClassInfo()->addAccessor (I1vGetSymbol ("latitudeOfTrueScale"),
IlvValueStringType,
_getter,
_setter) ;

157 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

Map Data

Suggested Free Sources

This section provides alist of suggested free sources for downloading map data .

DTEDO

Table7.1 DTEDO

Coverage Web link

Worldwide elevation http://geoengine.nima.mil/
muse-cgi-bin/rast_roam.cgi

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL 158

159

ESRI shape

Table7.2 ESRI Shape

Coverage

Web link

Alternative web link

Worldwide map of countries

http://en.wikipedia.org/wiki/
Global_Administrative_Unit_
Layers_(GAUL)

http://
www.bluemarblegeo.com/
products/
worldmapdata.php?op=down
load

(a lower resolution map)

US time zones

http://www.nationalatlas.gov/
mid/timeznp.html

www/cob/z32000.html for 3
digits

US states http://www.nationalatlas.gov/
mid/statesp.html
US counties http://www.nationalatlas.gov/ | http://www.census.gov/geo/
mid/countyp.html www/cob/st2000.html#shp
US ZIP codes http://lwww.census.gov/geo/ | http://www.census.gov/geo/

www/cob/z52000.html for 5
digits

GeoTIFF, JPG or PNG

Table 7.3 GeoTIFF, JPG or PNG

Coverage

Web link

Worldwide

http://
www.unearthedoutdoors.net/
global_data/true_marble/
download

Worldwide satellite map from
NASA

http:/
earthobservatory.nasa.gov/
Features/BlueMarble/

with a download mirror at
http://mirrors.arsc.edu/nasa/
world_500m/

http://neo.sci.gsfc.nasa.gov/
Search.html
(a lower resolution map)

IBM ILOG VIEWS MAP

S V5.3 — USER’'S MANUAL

Suggested Free Sources

S57
Table7.4 7
Coverage Web link
USA http://
www.nauticalcharts.noaa.gov
/mcd/enc/
download_agreement.htm
VMAPO

Table7.5 VMAP

Coverage Web link

Worldwide http://geoengine.nga.mil/
geospatial/SW_TOOLS/
NIMAMUSE/webinter/
vmapO_legend.html

Other data sources
http://www.nationalatlas.gov/atlasftp.html
http://www.census.gov/geo/www/cob/bdy_files.html

http://data.geocomm.com/catalog/US/group2l.html

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 160

161 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

I N E X
Index
A E
arguments for the constructor 149 elnverse function 153
azimuthal projections 125 ellipsoids
eccentricity squared 135
C equatorial radius 135
overview 133, 134
C++ parameters 135
prerequisites 10 predefined 135
cache algorithm 84, 85 setting 134
CADRG filereader 100 spherical 135
conformal projections 125 equal area projections 125
conic projections 124 error management 129
conversion utilities 133, 139 ESFromFlattening method
converters associated with projections 138 IlvEllipsoid class135
creating aprojection 128 ESFromPolarRadius method
cylindrical projections 123 IlvEllipsoidclass135
examples
D map projection 130
Mercator projection 127
data protection 150
datums E
converting coordinates 140
defining the projection 127 filters
DTED file reader 98 scale 70
DTED format format
introducing 98 GeoTIFF 104
|oad-on-demand 99 format, S57 117
forward function 131, 150
IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 162

G

geocentric coordinates 132

geodetic coordinates 132

georeferenced data 64

GeoTIFF files 104

getDefaul tFeatureRenderer method
IlvMapFeaturelterator interface 53

getLowerRightCorner method
IlvMapFeaturelIterator interface 57

getNextFeature method
IlvMapFeatureIterator interface 53, 58
IlvShapeReader class 92

getProjection method
IlvMapFeaturelterator interface 56

GetRegisteredEllipsoid method
IlvEllipsoid class135

getTile method
IlvTileController class79

getUpperLeftCorner method
IlvMapFeaturelterator interface 57

IlvAttributeArray class 92
IlvAttributeInfoProperty class45
I1vCADRGCoverage class 100
I1vCADRGFrame class 100
I1vCADRGFrameReader class 100, 101
I1vCADRGLayer class101
I1vCADRGTiledLayer class100, 101
I1vCADRGTocReader class 100
I1vCADRTocReader class 100
IlvDefaultFeatureRenderer class48
IlvDefaultRasterRenderer class 99
IlvDefaultTileCache class84
I1vDTEDLayer class 99
I1vDTEDReader class 99
IlvEllipsoidclass
ESFromFlattening method 135
ESFromPolarRadius method 135
GetRegisteredEllipsoid method 135
SPHERE 134
IlvFeatureAttribute class45
IlvFeatureAttributeProperty class4b, 46

IlvFeatureRenderer interface 43
makeGraphic method 47
IlvGeoTIFFLayer class105
I1vGeoTIFFReader class104
I1vGeoTIFFTileLoader class105
I1vGeoTIFFTiler class106
IlvImageLayer class103
IlvImageReader class 101
IlvImageTileloader class102
IlvLayerVisibilityFilter class70
IlvManagerLayer class 73
IlvManagerMagViewInteractor class81
IlvMapFeature object118
IlvMapFeature class43, 44, 45
IlvMapFeaturelterator object118
IlvMapFeaturelterator interfface 91
getDefaultFeatureRenderer method 53
getLowerRightCorner method 57
getNextFeature method 53, 58
getProjection method 56
getUpperLeftCorner method 57
isGeoreferenced method 53, 64
IlvMapGeometry class45
IlvMapLineString class48
IlvMapLoader class44, 63, 65, 101
load method 63
makeFeaturelterator method 66
setDefaultSourceProjection method 64
IlvMapRaster class 99, 102
IlvMapTileLoader class
load 74
IlvNamedProperty class46
IlvObjectSDOFeaturelterator class110
I1vObjectSDOLayer class 110
IlvProjection class44
setEllipsoid method 134
IlvS57Loader object 118
IlvS57Renderer object 118, 120
IlvScaleVisibilityFilter class70
I1vSDOFeaturelterator class108
IlvSDOLayer class109
I1vSDOTileLoader class110
I1lvSDOWriter class109
IlvShapeDBFReader class 91, 93
readRecord method 93

163 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

IlvShapeFileIndex class95
IlvShapeFileReader class91, 92
IlvShapeFileTileLoader class97
IlvShapeFileTiler class97
IlvShapeLayer class 98
IlvShapeReader class
getNextFeature method 92
IlvShapeSHPReader class 92
IlvShapeSpatialIndex class96
IlvSHPReader class91, 92
IlvTileCache class73
IlvTileController class73
getTile method 79
lockTile method 82
setSize method 79
IlvTiledLayer class73
setDebugView method 80
IlvTiledLoader class73
IlvView class80
image file reader 101
importing the library 127
inverse function 131, 152
inverse projection
calculating 130
onto a sphere 152
onto an ellipsoid 153
writing 152
isGeoreferenced method
IlvMapFeaturelterator interface 64

L

load method

IlvMapLoader class 63
load-on-demand

CADRG format 101

controlling 81

DTED format 99

implementing for new data source 87

introducing 73

managing errors 82

managing events 82

scalevisibility filters 82
lockTile method

IlvTileController class82

M

makeFeaturelterator method
IlvMapLoader class 66
makeGraphic method
IlvFeatureRenderer interface 47
managing errors 129
manual
naming conventions 11
notation 11
organization 10
map feature attributes
attaching to objects 46
saving 46
map feature iterators
overview 53
map features
attributes 45
definition 44
geometry 45
volatility 53
map loader 63
and predefined readers 63
extending 66
georeferenced data 63
using specific renderers 65
map projection, example 130
map readers 53
CADRG files 100
creating 54
DTED files98
IlvShapeDBFReader 93
IlvShapeFileReader 92
IlvShapeSHPReader 92
IlvSHPReader 92
predefined 53
shape files 90
maps
loading 62, 63
Mercator projection 127, 139, 153

N

naming conventions 11
notation 11

IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

164

O

offset 132
OGDI

creating amap 35
Oracle Spatial

writer 109

P

predefined unit converters 139
predefined unit converters, List 139
printing geographic coordinates 130
printing the result of a projection 129
processing of errors 129
projecting data 150
projecting data from a non-spherical ellipsoid 151
projection parameters 132
projections

azimuthal 125

conformal 125

conic 124

cylindrical 123

defining 127

ellipsoids 134

equal area125

example 130

example of Mercator projection 127

integrating with IBM ILOG JViews 141

Mercator 139, 153

overview 123

printing the result 129

selecting 61

R

readRecord method

IlvShapeDBFReader class 93
renderers

creating 48

default 48

extending 51

making persistent 50

overview 47

S

S57 117
datafiles117
format 117
scalefilters 70
setDebugView method
IlvTiledLayer class 80
setDefaultSourceProjection method
IlvMapLoader class 64
setEllipsoid method
IlvProjection class134
setSize method
IlvTileController class79
Shapefile format
introducing 91
Shapefile reader 90
slnverse function 152
spherical ellipsoids
defining 135

T

tiled layers 77
saving 84
tiles
cache 84
cached 80
empty 80
listeners 82
loaded 80
loading viathe API 82
lock counters 74, 80
scale visihility filters 82
state of 80
tiling grid 77
size79
structure 78

U

unit converters 139
utilities for conversion 133, 139

165 IBM ILOG VIEwWS MAPS V5.3 — USER’'S MANUAL

w

writers

Oracle Spatial 109
writing the forward projection 150
writing the inverse projection 152

IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL 166

169 IBM ILOG VIEWS MAPS V5.3 — USER’'S MANUAL

	IBM ILOG Views Maps V5.3 User’s Manual
	About This Manual
	Introducing IBM ILOG Views Maps
	What Is IBM ILOG Views Maps?
	The Map Builder
	The Class Library

	Installation of IBM ILOG Views Maps

	Getting Started with IBM ILOG Views Maps
	Data used in Examples
	Creating a Map
	Running IBM ILOG Views Map Builder
	Loading the File Containing the Coastal Borders Information
	Using the IBM ILOG Views Map Builder Toolbar
	Loading the Roads into the Map
	Loading the Towns
	Loading the Large Towns Into the Map
	Editing the Layers
	Saving the File

	Creating a Map with Load-on-Demand
	Loading the Base Structure Map and CADRG Files

	Creating a Map Using Oracle Spatial
	Creating the Layer in the Database
	Displaying an Oracle Spatial Layer with the Map Builder
	Displaying an Oracle Spatial Layer in Load-On-Demand
	Testing the Persistence of the Information

	IBM ILOG Views Maps Reader Framework
	The Classes for Creating Maps: An Overview
	Map Features
	Map Feature Geometry
	Map Feature Attributes
	Attaching Attributes to Graphic Objects

	Renderers
	Overview of Renderers
	Creating a Colored Line Renderer
	Making a Renderer Persistent
	Extending an Existing Renderer

	Feature Iterators
	Overview of IlvMapFeatureIterator
	Writing a New Reader

	Selecting a Target Projection
	Loading Maps into IBM ILOG Views
	Loading a Map of the IBM ILOG Views Format
	The Map Loader

	The Scale Filters

	Using Load-On-Demand
	How Load-on-Demand Works
	Structure and Size of the Tiling Grid
	Structure of the Tiling Grid
	Size of the Tiling Grid

	Displaying the State of Tiles
	Controlling Load-on-Demand
	Using Visibility Filters to Control Load-on-Demand
	Loading Tiles via the API

	Managing Errors and Load-on-Demand Events
	Caching Tiles

	Saving a Tiled Layer
	Writing a New Cache Algorithm
	Implementing Load-on-Demand for a New Data Source

	Predefined Readers
	The Shapefile Reader
	Introducing the Shapefile Format
	Classes for Reading the Shapefile Format
	Shapefile Load-On-Demand

	The DTED File Reader
	Introducing the DTED Format
	Classes for Reading the DTED Format
	Graphical Rendering of a Digital Terrain Model

	The CADRG File Reader
	Classes for Reading the CADRG Format

	The Image File Reader
	The IlvImageReader Class
	The IlvImageTileLoader Class
	Examples
	The IlvImageLayer Class

	The GeoTIFF Reader
	The GeoTIFF Format
	The IlvGeoTIFFReader Class
	The IlvGeoTIFFTileLoader Class
	The IlvGeoTIFFLayer Class
	The IlvGeoTIFFTiler Class

	The Oracle Spatial Features
	Relational Model Classes
	Object Model Classes

	The S57 Map Reader
	Classes for reading S57 format
	Configuring styles, colors and icons

	Map Projections
	Introducing Map Projections
	Cylindrical Projections
	Conic Projections
	Azimuthal Projections
	Equal Area or Conformal Projections

	Projecting Data: An Example
	Complete Code Example
	Running the Example Application
	Including the Projection Declaration
	The Main Function
	Initializing a Projection
	Creating the Projected Data
	Projecting the Data
	Printing the Result of the Projection
	Calculating the Inverse Projection
	Printing Geographic Coordinates
	The Complete Example

	Projection Methods and Parameters
	Forward and Inverse Functions
	Projection Parameters
	Utilities

	Ellipsoids
	Overview of Ellipsoids
	Associating an Ellipsoid with a Projection
	Defining New Ellipsoids
	Predefined Ellipsoids

	Unit Converters
	Using Unit Converters Directly
	Using Converters With Projections
	Defining Unit Converters
	Using Predefined Unit Converters

	Conversion Between Coordinates in Different Geodetic Datums
	Horizontal Datum Shift
	Datum and Projections

	Adding Graphic Objects on Top of an Imported Map
	Complete Code Example
	Running the Example Application
	Defining the Sample Class, the Main Function, and the Constructor
	Getting Map Information
	Adding Cities
	Showing the Mouse Position

	Creating a New Projection
	Step 1: Defining a New Projection
	The Class Declaration
	Defining the Projection
	Writing the Forward Projection
	Writing the Inverse Projection
	Step 2: Defining a New Projection
	Defining a New Parameter
	Defining a New Error Code
	Declaring the New Class
	Defining The Projection
	Initializing the Error Code
	Using the New Parameter and the New Error Code
	Writing the Input/Output Functions for the New Parameter
	Step 3: Defining a New Projection
	Adding Accessor Support

	Map Data
	Suggested Free Sources

	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

