I .. —
I . A
- - N N
_— I I ——
-_— L9 L& & |
- - L I - .-
I B N W
I BT Y _®

IBM ILOG Views
Prototypes V5.3

User’'s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 2009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is aregistered trademark of Linus Torvaldsin the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Chapter 1

Chapter 2

Chapter 3

Table of Contents

About This Manual e e e 5
What You Need t0 KNOW e e e 5
Manual Organization 5
NOLAtION. . . o 6
TypographiC CONVENLIONSot e e e e e e e e 6
Naming CONVENLIONSot e e e e e e e e 6
Introducing the Prototypes Package 7
An Overview of the Prototypes Package. ... 7
The User Interface and Commands 13
OV IV W .« o ottt e e e 13
The Main WindoW.o e e 14
BUffer WINdOWS 15
The MenuU Bar e 17
The Palettes Panel e 19
Group Inspector Panel. 21
Prototypes EXtension CoOmmands.ttt 22
Using IBM ILOG Views Studioto Create BGOs, 29

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL 3

Chapter 4

Chapter 5

Creating and Using Prototypes e 30

Creating a Prototype Library e 30
Creating @ PrototyPe oot 30
Defining the AttribUtes 31
Drawing the Prototypeo 34
Defining Graphic Behaviors 37
Defining Interactive Behaviors 42
Editing @ Prototype.o 43
Testing YOUr Prototype e 44
Saving a Prototype.o e 44
Loading and Saving Prototype Libraries. 45
Creating and Editing Prototype Instances inPanels 46
Connecting Prototype INStanCesSot e 47
Using Prototypes in C++ Applications i 49
ATCNIEECIUNE . . o 49
Writing C++ Applications Using Prototypes 56
Linking Prototypes to Application Objects i 64
Advanced Uses of Prototypes 68
Writing New AcCCESSOr ClIaSSES . . . ottt e e e 68
Creating Prototypes by Codingottt e 72
Customizing IBM ILOG Views Studio With the Prototypes Extension. 74
Predefined ACCESSOISot 77
OV IVIBW . . . ettt e e e e e e e 77
Data ACCESSOIS . . .ttt ittt e et e 79
CONIOl ACCESS OIS . . o ot ittt et e e 83
DiSpPlay ACCESSOIS . . o ittt e e 90
ANIMALION ACCESSOIS . ..ttt e e e et e e e e e e 96
THIQOEr ACCESSOIS o et ettt e e e e e e e e e e e e e e 99
MiSCellan@OUS ACCESSOIS . . o\ttt ittt e e e e 102
.. 105

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL

About This Manual

This manual describes the Prototypes package of IBM® ILOG® Views.

What You Need to Know

Thismanual assumesthat you are familiar with the PC or UNIX® environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
ILOG Viewsiswritten for C++ developers, the documentation also assumes that you can
write C++ code and that you are familiar with your C++ development environment so asto
manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization

The manual contains the following chapters:
[Chapter 1 introduces the concepts of prototypes.

[Chapter 2 descibes the windows, panels, and the commands of IBM® ILOG® Views
Studio with the Prototypes extension.

[Chapter 3 explains how to use IBM ILOG Views Studio to create your prototypes by
composing graphic objects and assigning behaviors to them.

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL 5

[Chapter 4 describes the classes and methods used to manipulate prototypes and shows
how to structure your application to benefit fully from BGOs. It then shows how to use
prototypes created in IBM ILOG Views Studio in your C++ applications.

[Chapter 5 lists the behaviors that are predefined in the Prototypes library.

Notation

IBM

Typographic Conventions

The following typographic conventions apply throughout this manual:
[Code extracts and file names are written in courier typeface.
[Entries to be made by the user are written in courier italics.

[—Somewordsin italics, when seen for the first time, may be found in the glossary at the
end of this manual.

Naming Conventions
Throughout this manual, the following naming conventions apply to the API.
[_The names of types, classes, functions, and macros defined in the IBM® ILOG® Views
libraries begin with 11v.
[_The names of classes aswell as global functions are written as concatenated words with
each initial letter capitalized.

class IlvDrawingView;

[_The names of virtual and regular methods begin with alowercase letter; the names of
static methods start with an uppercase letter. For example:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo* () const;

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Introducing the Prototypes Package

The Prototypes package lets you create custom domain-specific graphic objects called
Business Graphic Objects (BGOs). These objects are created interactively, without writing
C++ code, using the Prototypes extension of IBM ILOG Views Studio.

This section introduces the concepts of BGOs and explains the classes and methods used to
mani pul ate the prototypes created with IBM ILOG Views Studio.

An Overview of the Prototypes Package

IBM

This section provides an overview of how to use the Prototypes package of
IBM® ILOG® Viewsto create BGOs. Because IBM ILOG Views BGOs are based on the
prototype design pattern, they are often referred to as prototypes.

The following items are described in this section as an introduction to the Prototypes
package:

[Business Graphic Objects

[Creating BGOs Using the Prototypes Extension of IBM ILOG Views Sudio
[Wsing Prototypesin Applications
[When Should You Use Prototypes?

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL 7

[_The Prototype Design Pattern
[Fpecifying Graphic and Interactive Behavior Using Accessors

Business Graphic Objects

Application developers often need to define custom graphic objects to represent domain-
specific application objects that the user is able to interact with. The IBM® ILOG® Views
Prototypes package provides a ssmple and efficient solution for building such business
graphic objects (BGOs). BGOs are created using the Prototypes extension of

IBM ILOG Views Studio. Creating a BGO requires no coding. It is created by performing
three basic steps:

1. Definethe application interface of the BGO as a set of typed attributes that represent the
domain of your object. For example, aboiler object representing a power plant boiler can
have Temperature, Capacity, Level, Input valve, and Output valve attributes.

2. Definethe look of your objects using basic IBM ILOG Views graphic objects, such as
lines, text, and images. You can a so include other BGOs to build structured objects. For
example, the boiler object could be represented by arectangle, the temperature and level
by gauges inside the rectangle, and input and output valves by toggle buttons inside the
rectangle.

3. Attach behaviorsto your graphic objects to define how they should represent the state of
an application object and how they should react to user events. You can dynamically
change the attributes of a shape, animate the object, and connect BGOs together to
reflect the state of the objectsin the user interface. For example, attaching aFill behavior
to the Level attribute ensures that the level of the boiler is kept synchronized with its
graphic representation.

You can then create instances of your BGOs and use them in managers or containers just as

you would do with basic IBM ILOG Views graphic objects. You can link application objects

to their corresponding BGO. The display, synchronization, and user interaction is handled
by the Prototypes package. You can edit and modify a BGO at any time: itsinstanceswill be
automatically updated.

Creating a powerful, direct-manipulation interface for domain-specific objects becomes as
easy as creating aform-based interface for the same objects, but the resulting interfaceis
much more appealing and explicit to the user.

Figure 1.1 shows examples of application panels built with prototypes.

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL

An Overview of the Prototypes Package

Figure1.1 Examplesof Prototype Applications

Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
When you use IBM ILOG Views Studio to create your BGOs, you can:
[Design the graphic appearance of your BGOs by assembling basic graphic objects.

[Define the graphic behavior and interactive aspects of your BGOs by attaching
predefined behaviors to them, or by writing scripts.

[Htorethe BGOs in libraries as prototype objects that can be reused, modified, and
instantiated in panels. Since BGOs are mostly used as prototypes, the terms prototype
and BGOs are used interchangeably.

[Add instances of your prototypes to managers or containers.
[Test the behavior of your prototypes and the panels that contain them.

All these operations are performed in WY SIWY G (what you see is what you get) mode
without coding in C++.

Using Prototypes in Applications

You can load IBM® |ILOG® Views files containing instances of your prototypesinto a
manager or a container the same way you load files containing basic IBM ILOG Views
graphic objects. You can also create instances of prototypes, attach them to application
objects, and place them in managers or containers.

Prototypes are not subclasses of 11vGraphic. They are groups of graphic objects contained
in an object of the T1vGroup class. The definition of a prototypeis stored in afile so you do
not need to recompile your application if you modify a prototype.

IBM ILOG VIEwWS PROTOTYPES V5.3 — USER’'S MANUAL 9

10

IBM

To place prototype instancesin an I1vManager OF an IlvContainer you must embed
them in a specific subclass of 11vGraphic caled I11vProtoGraphic. When you use
IBM ILOG Views Studio to place the prototypes in the manager or container,

IBM ILOG Views Studio creates the encapsulating 11vProtoGraphic for you. You can
manipulate T1vProtoGraphic the sameway asan I1vGraphic. You can use the
IlvGroupHolder classto retrieve the prototype instances of a given view (container or
manager) and modify the properties of your prototype instances according to the application
values you want to display.

When Should You Use Prototypes?

To define a BGO, you can either use prototypes or write the C++ code for a subclass of
IlvGraphic using direct calsto the IBM ILOG Views methods to draw your object. The
use of prototypes is therefore an alternative to direct coding.

The prototype approach has the following advantages:
[Very short development time that permits an iterative GUI design process.

[_Easy maintenance and debugging, since there is a clear separation between the
implementation of the application and the implementation of the user interface.

[Complete integration in ILOG Views Studio. The user interface designer draws instead
of programming.

[Few C++ programming skills required.

Asaresult, the task of designing the graphical appearance of your objects can be delegated

to non-programmers. For exampl e, graphic designers may be more suited to the task and will
findin1BM ILOG Views Studio adrawing program comparable to the graphic toolsthey are
accustomed to.

Prototypes have been designed and implemented with a strong emphasis on efficiency.
Although prototypes may not always be as efficient as direct C++ coding (because they are
based on composition rather than derivation), applications can create thousands of prototype
instances without encountering performance problems.

The Prototype Design Pattern

The process of creating BGOs is based on the prototype design pattern. You can group basic
objects and use the group as amodel (or prototype) from which you can create clones (or
instances). When the prototype is modified, al its instances are automatically updated with
this modification.

Using the prototype design pattern, it is possible to create complex graphic objects using a
WY SIWY G editor and to use the objects immediately to build application panels.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

An Overview of the Prototypes Package

Specifying Graphic and Interactive Behavior Using Accessors

BGOs define a set of public attributes. These attributes correspond to the application
programming interface of the BGO. You can change the appearance of the BGO by setting
its attributes to given values. You can aso query any of these attributes at any time.

You can attach several behaviorsto each of these attributes. A behavior defines a side effect
that is executed each time the attribute is changed or queried. For example, you can attach a
Condition behavior to a Temperature attribute. Each time the temperature is changed, the
condition is evaluated and the graphic appearance of the object changes. The Condition
behavior can set the color of an object to red if the temperature is above a predefined
threshold. You can also attach interactive behaviors to your BGO— for example, you can
specify that the temperature should be adjusted when the user clicks on the thermometer.

Attributes and behaviors are implemented by means of accessors (objects of the class
I1lvAccessor). Accessors can be attached to graphic objects and can:

[$tore attribute values
[Perform side effects
[Track user events

The accessor mechanism allows you to define complex behaviors. You can combine
accessors to re-create the logic of an entire application. However, it is strongly
recommended that you use the accessor mechanism only to specify the graphic and
interactive behaviors of your objects. Do not use the accessor mechanism to implement
features of the application domain. By doing this, you maintain the sound modular aspects of
your program.

Taken as awhole, the accessors of a BGO define a data flow graphic program. Data flow
programming is as powerful asthe more classical control flow model used in programming
languages such as C++ or Java. However, data flow programming is better adapted to the
definition of small, graphic oriented programs.

To facilitate the definition of complex graphic behaviors, the Script accessor allows you to
define graphic or interactive behavior asan IBM ILOG Script program. This allows more
complex computations to be performed and gives access to the entire suite of

IBM ILOG Script features.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 11

12 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

The User Interface and Commands

This chapter introduces you to the Prototypes extension of IBM® ILOG® Views Studio, an
extension designed to facilitate the development of fully interactive graphical user interfaces
of domain-specific application objects.

You can find information on the following topics:
[Dverview
[—The Main Window
[The Palettes Panel
[Group Inspector Panel
[_Prototypes Extension Commands
Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views

Sudio assume that you are familar with the information in the IBM ILOG Views Sudio
User's Manual.

Overview

The Prototypes extension of IBM® ILOG® Views Studio alows you to define complex
graphic objects, called prototypes, by interactively assembling IBM® ILOG® Views

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 13

graphic objects. Behaviors can be attached to these prototypes to define the whole graphical
and interactive part of your application.

The prototypes can be instantiated and used as basic building blocks for application
windows, object inspectors, or direct-manipulation interfaces, that is, when each application
object is directly tied to an interactive graphical representation.

IBM ILOG Views Studio with the Prototypes extension defines a new workflow to build
highly interactive user interfaces: you develop the interactive part of your applicationin a
graphical editor, storeit in libraries, and then link it with your core functionality writtenin
C++.

Launching IBM ILOG Views Studio With the Prototypes Extension

If you haveinstalled the 2D Graphics Pro package, the Prototypes extension isautomatically
loaded when IBM ILOG Views Studio is launched. The extensionis called smproto in the
configuration file. A compatibility extension enabling now deprecated features can also be
used: smoldpro. Thismanual describes only the features of the smproto extension. To
install or uninstall these extensions, see the section on Loading Plug-Insin Introducing
IBM ILOG Views Sudio.

The Main Window

14

IBM

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
asfollows:

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

The Main Window

Menuy Bar —— File Edit Wiew Draw Tools Application Window Help
stonper L S FEH QA |t BERS HEEATE G TAER
e 4 [P F D E B QE |
Palettes 5] ﬁ Application - testapp.iva \
Palettes Panel m% Graphics ol
"] Grapher - _
Bﬁ Prototypes Prototype - unnamed
sources
oubput 4
operations v
bulb pump A
@ @ Wiotkspace
syrbol il
Butfer Window =
e M [
thermo display
ﬂ u |
citcGauge alert b
< | >
i |] T N v|[E= SRe€—
Inspectar Are % W w h Right Eottom Mame Callback. 15
{ NN A | | | Il |0
| Prototype | Selection
Status Area

Figure2.1 IBM ILOG Views Sudio Main Window with Prototypes Extension at Sart-up

The Main window appears much as it does when only the IBM ILOG Views Studio
Foundation package is installed. However, you will notice that with the Protoypes package
you have access to additional buffer windows, additional palettes in the Palettes panel, and
additional items in the menu bar and toolbars of the interface. These are now briefly
presented.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 15

16

IBM

With the Prototypes extension of IBM ILOG Views Studio, you can edit the following types
of buffers:

2D Graphics
[Grapher
[PPrototypes

An empty 2D Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

Asyou switch between the buffers currently loaded in the Main window, you will notice that
each buffer type hasits own set of editing modes. When you change the current buffer, the
editing modes available asicons in the toolbar change accordingly.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundation package. It allows you to edit the
contents of an I1vManager Or an I1lvContainer. It UseSan I1vManager toload, edit, and
save objects.

To create a new 2D Graphics buffer window:
1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open this window, you can a so execute the NewGraphicBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an 11vManager, a 2D Graphics buffer
window is automatically opened.

The Grapher Buffer Window

The Grapher buffer window lets you edit the contents of an 11vGrapher. It usesan
IlvGrapher toload, edit, and save nodes and links.

To create a new Grapher buffer window:
1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can a so execute the NewGrapherBuffer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i1v file that was generated by an 11vGrapher, a Grapher buffer
window is automatically opened.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

The Main Window

The Prototypes Buffer Window

The Prototypes buffer window is used to create and manipulate your prototypes. Graphic
objects, and Prototypes, can be dragged from a Palettes panel to an active Prototypes buffer
window.

To open a new Prototypes buffer window:
1. Choose New from the File menu.

2. Then choose Prototype from the submenu that appears.

Alternatively, when you double-click a Prototype in a Prototypes palette, a Prototypes buffer
window is automatically opened to allow you to modify it or inspect its attributes and
behaviors.

The Menu Bar

When the Prototypes package isinstalled, additional commands are available through the
menu bar in the Main window.

File Edit View Draw Tools Application Window Help

EEREH e+ E02S HEBELIE @ TEFER

RO EDE PE I EE %N

Figure2.2 IBM ILOG Views Sudio Prototypes Extension Menu Bar

The following tables summarize the additional commands that you can execute through the
menu bar. For details on these commands, see Prototypes Extension Commands, where they
arelisted in alphabetical order.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 17

File Menu Commands

New > Prototype NewPrototypeEditionBuffer
New > Prototype Library... NewProtoLibrary
New > Prototype Grapher NewPrototypeGrapherBuffer

Note: This is a deprecated command and is
provided purely for compatibility with earlier

versions.
Save Prototype Library as... SaveProtoLibraryAs
Close Prototype Library CloseProtoLibrary

Draw Menu Commands

Group GroupIntoGroup
Edit Prototype EditPrototype
Delete Prototype DeletePrototype

Tools Menu Command

Group Inspector This opens the Group Inspector of the currently
selected prototype instance or I1vGroup object.

View Menu Command

Toggle Animation Timers ToggleTimers

The Action Toolbar

ERT a7 HEELIE A

The Action toolbar remains unchanged from the Foundation package.

18 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’'S MANUAL

The Palettes Panel

The Editing Modes Toolbar

kO P2E N BE 883 |%

Prototypes Extension lcons

The Prototypes extension of IBM ILOG Views Studio contains an editing mode in addition
to the regular IBM ILOG Views Studio editing modes:

._, Group Connection Mode

t=1 Usethe Group Connection mode for connecting the values of prototype instances.
The Connection mode is used to define connections between prototype
instances.See Connecting Prototype | nstances.

The Palettes Panel

IBM

The Prototypes palette is included in the Palettes panel, as shown in Figure 2.3. It shows the
various prototype libraries that you have defined or loaded, and allows you to instantiate
prototypes by dragging their icons to Prototype buffers. Prototypes are manipulated like
other graphic objects. Each library defines its own panel in the Palettes panel.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 19

Palettes =

+ .? Graphics ~
- | Grapher
= ﬁ Protobypes

& samples
e

(:E; SOuUrces

[0 outpuk
EE operations
scripk ¥

bulb pump e

symbol field

A

thermo display

——

circGauge alert

- - b
< >

Figure 2.3 The Palettes Panel Showing the samples Prototype Library

When the Prototypes extension isinstalled, IBM ILOG Views Studio loads the following
libraries at start-up:

Library Description

samples Sample library loaded at start-up.

sources Prototypes containing value sources.

output Prototypes containing gadgets and defining output values.

lcd LCD displays (one digit and four digits).

operations Prototypes that can be used to connect prototypes and execute
operations on their values.

script Prototypes that use script accessors.

To open one of these prototype libraries, go to the upper pane of the Palettes panel and click
the name in the Prototypes pal ette.

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL

Group Inspector Panel

You can look at any prototype definition by double-clicking the prototypeicon. Thiswill
load the prototype into a Prototype buffer window and open a Group Inspector panel.

Note: When you load a panel file that contains prototype instances, the required prototype
libraries are automatically loaded in the Prototypes pal ette.

The <ILVHOME>/samples/protos directory provides other samples of how to use
prototypes.

Group Inspector Panel

The Prototypes extension provides an additional panel to let you define the interface and the
graphic and interactive behaviors of your prototypes, as shown in Figure 2.4. It can aso be
used to customize groups and prototype instances.

Edit Wiew Help

e | e [T | |

Figure 2.4 The Group Inspector Panel
Access to Panel
The panel is accessed by one of the following methods:

[Choosing Group Inspector from the Tools menu.
[_Creating a new Prototype buffer window.
[Double-clicking a prototype in a Prototypes buffer window.

[Choosing Commands from the Tools menu, selecting the ShowGroupInspector
command in thelist, and clicking Apply.

Group Inspector Elements
The Group Inspector panel has four notebook pages:

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 21

[_The Attributes page is used to define the attributes of a prototype and to customize
prototype instances.

[_The Graphics pageis used to display and edit the graphic objects composing a prototype.
[_The Behavior page is used to define the graphic behavior of a prototype.
[_The Interaction page is used to define the interactive behaviors of a prototype.

Full context-sensitive hypertext help is available when you click Help on the inspector. This
help page can be hidden by clicking the Close Help button.

The features of the Group Inspector panel are detailed in Creating and Using Prototypes.

Prototypes Extension Commands

This section presents an alphabetical listing of the additional, predefined commands that are
available in the Prototypes extension of IBM® ILOG® Views Studio. (All of the

IBM ILOG Views Studio Foundation commands are available as well.) For each command,
it indicatesits label, how to accessit if it is accessible other than through the Commands
panel, the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commandsicon B in the Action toolbar.

CloseProtoLibrary

Label Close Prototype Library

Path Main window: File menu

Category prototypes

Action Closes the prototype library currently displayed in the Palettes panel.
ConvertProtoManager

Label Convert ProtoManager

Path Convert ProtoManager: Edit menu

22 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Prototypes Extension Commands

Category

prototypes

Action

Creates a new regular Studio buffer that copies the content of the currently
active Prototype instance buffer. This command uses the
IlvPrConvertProtoManager function to perform the conversion. It is
meant to help in switching from Views 3.1 prototypes to the more recent API.

DeletePrototype

Label Delete Prototype

Path Main window: Edit menu

Category prototypes

Action Removes the selected prototype from its library.

EditPrototype

Label Edit Prototype

Path Main window: Edit menu

Category prototypes

Action Edits the selected prototype in a new Prototype buffer window, and opens the
Group Inspector panel for the prototype instance.

GrouplIntoGroup

Label livGroup

Path Main window: Draw menu > Group

Category prototypes

Action Groups the selected objects into an I1vGroup.

ILOG VIEws PROTOTYPES V5.3 —

USER'S MANUAL 23

NewProtoLibrary

Label Prototype Library...

Path Main window: File menu > New

Category prototypes

Action Creates a new prototype library. This library is visible in the Palettes panel.
A file selector dialog box is opened to choose the library file (. ip1).

NewPrototype
Label New Prototype
Path Main Window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

I Note: Thisis a deprecated command and is provided purely for compatibility with earlier
versions.

NewPrototypeEditionBuffer

Label Prototype

Path Main window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

NewPrototypeGrapherBuffer

Label Prototype Grapher

Path Main window: File menu > New

24 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Prototypes Extension Commands

Category

prototypes

Action

Allows you to create an instance of an I1vProtoGrapher class.

Note: Thisis a deprecated command and is provided purely for compatibility with earlier

versions.

OpenProtoLibrary

Label Open Prototype Library...

Path Main window: File menu > Open

Category prototypes

Action Opens a prototype library file. A selection dialog box is opened to choose the

.ip1 file to open.

SaveProtoLibraryAs

Label Save Prototype Library As...

Path Main window: File menu

Category prototypes

Action Saves a copy of the currently selected prototype library to a different file.

SelectGroupConnectionMode

Label Group Connection

Path Editing Modes toolbar

Category prototypes

Action Selects the Group Connection mode.

IBM

ILOG VIEws PROTOTYPES V5.3 —

USER'S MANUAL 25

SelectGroupSelectionMode

Label Group Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Group Selection mode.

SelectNodeSelectionMode

Label Node Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Node Selection mode in a Prototype buffer. This mode lets users
select and inspect graphic nodes while editing a prototype.

ShowGroupEditor

Label Group Inspector

Path Tools menu

Category prototypes

Action Shows/hides the Group Inspector panel.

ToggleTimers

Label

Toggle Animation Timers

Path

View menu

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Prototypes Extension Commands

Category prototypes

Action Turns on or off the animation timers of the prototype's animation accessors,
thereby allowing you to edit the prototype and then test its behavior.

UngroupllvGroups

Label Ungroup

Path Main window: Draw menu

Category prototypes

Action This command replaces the generic Ungroup command to take into account
IlvGroup objects.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 27

28 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Using IBM ILOG Views Studio to Create
BGOs

This chapter describes how the Prototypes extension lets you create composite graphic
objects and assign them an application interface, a graphic behavior, and an interactive
behavior through interactive, point-and-click editing. These graphic objects can then be
linked to domain-specific objects following the application interface, providing full

WY SIWY G direct-manipulation editing of the domain objects.

You can find information on the following topics:
[Creating and Using Prototypes
[Lloading and Saving Prototype Libraries
[Creating and Editing Prototype Instances in Panels
[_Connecting Prototype I nstances
Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views

Sudio assume that you are familar with the information in the IBM ILOG Views Sudio
User’'s Manual.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 29

Creating and Using Prototypes

The following topics related to creating and using prototypes are presented in this section:
[Creating a Prototype Library

[Creating a Prototype

[Defining the Attributes

[—_Drawing the Prototype

[Defining Graphic Behaviors

[Defining Interactive Behaviors

[Testing Your Prototype

[—Javing a Prototype

Creating a Prototype Library

You will probably want to create your BGOs in libraries so that you can retrieve and
manipulate them all together.

To create a new prototype library, do the following:
1. From the File menu in the Main window, choose the command New > Prototype Library.
A file selector appears.

2. Select adirectory for which you have write permission and enter the name of the new
library (it must have a . ip1 extension). Click Save.

A new page, corresponding to the library you have just created, appears in the Pal ettes
panel.

Creating a Prototype
These are the tasks involved in creating a prototype:

[Defining the attributes of your prototype in the Interface page of the Group Inspector
panel.

_Drawing the graphic elements that make up the prototype in the Prototype buffer
window.

[Defining the graphic behavior of the prototype using the Group Inspector panel
[Defining the interactive behavior of the prototype using the Group Inspector panel.

30 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

IBM

Creating and Using Prototypes

These tasks can be interleaved: at any point you can add, edit, or remove attributes, graphic

elements, or behaviors of the prototype.

Your prototype is created in a prototype buffer window. Before beginning these tasks:

1. Open a Prototype buffer window by selecting New > Prototype from the File menu.

2. Display the Group Inspector panel by selecting the Group Inspector from the Tools

menu.

Defining the Attributes

Use the following procedure to define and edit the external attributes (or “properties”) of
your prototype or group. (Properties determine how you will access your prototype or group

from your application or from other objects.)

1. Open the Interface page of the Group Inspector Panel. This page alows you to define a
set of attributes, giving each of them atype and a default value:

Edit: Yiew

Interface Graphics |Graphic behavior |Interactive behavior

Help

Walue

2. Choose Edit > New Attribute or Ctrl+N to add an attribute.

A new row "Unnamed" appears in the table.

3. To specify the name of the attribute, click the box Unnamed. Enter a name for this
attribute. This name must be unique to avoid ambiguities; it is used to access the

behavior of this attribute.

4. To specify the type of the attribute, click twice on the adjacent Type combo box (or press
F2 if using only the keyboard). Select the pull-down menu, which will let you specify a

type.

All attributes are typed: each type indicates the kind of values that can be assigned to the
attribute, which helps determine its meaning. The types available are:

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 31

32

IBM

Value - The attribute holds a value that can be set or queried directly (a string, acolor,
an integer, and so on). When you set an attribute to a given value type, the combo box
will display thistype directly.

Reference - A reference to another internal attribute of the group. For instance,
creating an attribute named "temperature”, and having it reference the "value'
attribute of a"slider" graphic object allows you to access the "value" internal attribute
of the slider under the more appropriate name of "temperature”, which is helpful if the
group isto represent athermometer. Thisis equivalent to apointer or an diasin a
programming language. When you have set the type to reference, the referenced
attribute, prefixed with “”, appearsin the combo box that describes the attribute type.

Grouping of attributes - All subattributes in the group bearing the name of the
attribute will be addressed collectively and assigned the same value. For instance,
creating an attribute named "foreground” and giving it the type "group" creates an
attribute that will set the foreground of al objects contained in the group to the same
value.

Script - A script is executed. This script should return avalue, which defines the
attribute. Use the Behavior page to change the name of the function that defines the
value. The name of the function, followed by “()”, appears when you choose this type
of attribute.

NoType - Some attributes can be purely functional, and therefore untyped.

Note: If an attribute has neither a type nor a behavior, it cannot exist. Therefore, setting
a type of "none" to an attribute after creating it is equivalent to deleting the attribute.

5. Enter adefault value for the attribute in the Value column of the attribute.

6. To set other parameters of the attribute, use the buttons on the right side of the page.
When the button is released, the property is set:

. Public (button P in the inspector) - The attribute is visible by outside objects.

Attributes are public by default, but you can hide those attributes that are only used to
perform internal computations.

Persistent (button R in the inspector) - The attribute value will be stored when the
group is saved, allowing the last value set by the user to be maintained. By default,
attributes are persistent. To optimize reading and writing, or to aways restore the
attributes to the original state of the prototype when afileis read, you can set them to
non-persistent.

Notifying (button N in the inspector) - When thisis set, the attribute can notify other
attributes that it has changed its value and, therefore, enable other attributes to update
themselves. See section Notify.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Creating and Using Prototypes

7. Repeat steps 2 through 6 for each attribute you wish to add to provide a description of the
interface for your prototype.

Using the Edit Menu on the Interface Page

When specifying the interface of your prototype, you can also:

[Import the interface of another Prototype to add predefined attributes and behaviors from
that prototype:

Select Edit > Delegate To Prototype and choose from the available list the prototype
whose attributes you want to inherit.

A new attribute is created with the inherited attributes shown grayed-out in the table.
You cannot directly edit these inherited attributes, but you can reference them through
other attributes.

Some inherited attributes may already reference other attributes or graphic nodes, and
therefore you may find that not every prototype can be imported into another prototype.

[Order the attributes:

Select an attribute and choose Edit > Move Item Up or Edit > Move Item Down.
[Delete an attribute:

Select the attribute and choose Edit > Delete.

[Cut/Copy/Paste: You can copy or cut awhole attribute and its behavior by selecting the
first line of an attributes tree and selecting Edit > Copy or Edit > Cut. You can paste the
content of the attribute's clipboard by first selecting aline where you want the attribute to
be inserted, and then selecting Edit > Paste.

Using the View Menu on the Interface Page

This menu on the Interface page presents alternative views of the attributes of your group or
prototype, and allows you to select which types of attributes you want to edit for agiven

group or prototype:

[Interface - Lets you access and edit al the attributes defined for the group or prototype.
Thisisthe default presentation.

—Public Attributes - Shows only the public attributes of the prototype, those that can be
seen by other objects and by the application.

[Modified Values - Lists the values of a prototype instance that differ from its prototype.
These values will be saved together with the prototype instance.

All Values- Lists al the prototype values and subvalues. These values can be modified,
but this does not mean that the modifications will be saved with the prototype if some
other behaviors override the new settings.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 33

34

IBM

Drawing the Prototype
Define the graphic presentation of your prototype using the Prototype buffer window:

[_You can drag and drop graphic objectsinto the buffer and use the editing modes to create
lines, polygons, and so on: a Prototype buffer window has all the properties of the
IBM ILOG Views Studio 2D Graphics buffer window.

[—Asyou draw your prototype, you can see its structure in the Graphics page of the Group
Inspector panel, shown in addition to the Main window. Figure 3.1 shows an example of
this. Thelist of graphic nodes appears organized from bottom to top. Asyou add graphic
objectsto the prototype, the tree structureis updated. You can select graphic nodes either
directly in the Prototypes buffer window (asyou doin IBM ILOG Views Studio) or in
the tree that appears in the Group I nspector panel.

£ ivstudio - testapp

File Edit Wiew Draw Tools Datafccess Application wWindow Help
LI Al I CEYEIET R =1
b EEEDERY ARG |

Palettes L3} -.j-':.ﬁ.Er:aphiu.:.unrwrned
.‘? Graphics - ™ Prototype - E...\ivprotos'Jibs',pump.ivp [=T
M Grapher S
E|-- Protobypes
O
: €0 sources
; -7 oukpuk
: ~Ed@ operations 8 |
i H script b
bulb pump i
1Y Group Inspector E][E]le
|Interface| raphics |Graphic Behavior!élnteractive Behavior|
Edit Help
symbol field =
purp it il '
| Tator |0 I
o v e B IWElipse mZ |0
— IvPolyline e |0
thermo display W
[
circGauge alert

—T—

Figure3.1 The Graphics Notebook Page of the Group Inspector Panel

ILOG VIEWS PROTOTYPES V5.3 — USER’'S MANUAL

Creating and Using Prototypes

Editing Prototype Nodes

You can use the fields on the Graphics page of the Group Inspector (see Figure 3.2) to
change a number of properties associated with the elements (or nodes) in your prototypes:

¥ Group Inspector

Interface| Graphics |Graphic Behavior | Interactive Behavior

Edit Help
= pump u 0

rakor u 0

IIvElipse o o

IIvPalyline 0 o

Figure 3.2 The Graphics Notebook Page of the Group Inspector Panel
_If the selected node is a graphic node, the properties only apply to this particular node.
[_If the selected node is a group node—that is, the root node of the prototype, a subgroup

of the prototype, or a prototype instance—the properties apply to all the child graphic
nodes of the selected group.

The following table describes the fields found on the Graphics notebook page:
Table 3.1 Fields of the Graphics Notebook Page of the Group Inspector Panel

Field Description

Node name This text field is used to change the name of the node. You
can also use the Name field of the Generic Inspector in the
IBM ILOG Views Studio Main window.

Note: Nodes should contain only alpha-numeric
characters (A-Z, a-z, 0-9).

(V) Visible This toggle controls the visibility of the graphic object in the
prototype.
(H) Hidden in application If this button is set, the selected graphic object is visible only

while editing the prototype or its instances in

IBM ILOG Views Studio. The object is hidden in the final
application. This property can be used to create
intermediate “computing” prototype instances such as those
of the “operations” prototype library.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 35

36

IBM

Table 3.1 Fields of the Graphics Notebook Page of the Group Inspector Panel (Continued)

Field

Description

(N) Grapher node

If this button is set, the graphic object is added as a grapher
node when the prototype is instantiated in a grapher. This
allows you to use prototype instances as grapher nodes.
(This button is deprecated and included for compatibility
reasons.)

(T) Transformed

This button controls whether a transformer is associated
with the graphic node to ensure that the graphic object can
be transformed arbitrarily without distortions. Without a local
transformer, some IBM ILOG Views objects lose their
original geometry when they are resized. Using a local
transformer ensures that the geometry of objects is not
modified by geometric transformations. On the other hand,
using a local transformer consumes more memory.

If you select this button, remember that you must use the
standard Selection mode to inspect the graphic object of the
node. If you use the Group Selection mode, the selected
object is an instance of a subclass of
IlvTransformedGraphic and cannot be inspected.

(B) Bounded Size

If set, this flag restricts the zoomability of the objects. Setting
this flag and leaving mZ and MZ to 0 is equivalent to setting
both of them to 1. It is, however, more efficient. If Bounded
Size is set, and mZ or MZ are not 0, this flag makes the
objects disappear if the zoom factor of the view of the
instance is greater than MZ or less than mZ.

(mZ) Min. Zoom

If not zero, this attribute limits the minimum size an object
can have. When the scaling factor of the view holding the
object is below this value, the object does not get any larger.
If Min. Zoom and Max. Zoom are set to the same value, the
object never grows or shrinks in size. If they are set to 1,
they stay at the size at which they were created.

(MZ) Max. Zoom

If not zero, this attribute limits the maximum size an object
can have. When the scaling factor of the view holding the
object is above this value, the object does not get any larger.

Structuring Prototype Nodes

To structure your prototype, you can group graphic nodes into subgroups. This may be
useful when you define your prototype accessors; for example, when you want to rotate a
group of objects or change their color. To create a subgroup:

1. Inthe Prototype buffer window, select the graphic objects you want to group.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Creating and Using Prototypes

2. From the Draw menu select Group.

The objects are grouped into an instance of the class 11vGroup and a subgroup nodeis
created in the prototype. The node tree shows the structure change.

Using the Group Selection mode, subgroups can be selected and moved as awhole. This
mode shows the selected group by drawing a dashed-line frame around the group. You are
still able to select individual graphic objects inside subgroups with the standard Selection
mode.

To include instances of other prototypesin the prototype you are editing:

1. If not already open, activate the Prototypes pal ette by choosing Pal ettes from the Tools
menul.

2. Select the desired prototype library.

3. Drag and drop the prototype into the Prototype buffer window. The Nodes page of the
Prototype Inspector will show a new node, similar to a subgroup node, for the prototype
instance.

Having added objects, you may return to the Interface page to define new attributes that
reference the internal nodes, or go to the Behavior page to define dynamic behaviors for the
prototype.

Defining Graphic Behaviors

Define the graphic behaviors of your prototype using the Behavior page of the Group
Inspector (see Figure 3.3). The graphic behaviors determine how the modification of an
attribute affects the visual aspect of your prototype. For each attribute, you can add
behaviors: these are instructions that will be performed each time the value is modified.

¥ Group Inspector

Interface | Graphics| Graphic Behavior (Inkeractive Behavior

Edit Control Display Misc Help
onColor Calor
offColor Calor

= on Boalean
~I do
+ == true 7 gaz.foreground = oniColor ; offiColor

alpha <<group

Figure 3.3 The Behavior Notebook Page of the Group I nspector
To add abehavior:

1. Select an attribute in the list.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 37

2. From the Control, Display, or Misc menus, select a behavior to be added:

. Control behaviors enable the change of one attribute to trigger changes of other
attributes, conditionally or not. For instance, if you want athermometer to appear red
when the temperature is above a given threshold, add a Condition accessor on the
temperature attribute that assigns red to the foreground value of the gauge.

. Display behaviors enable you to change graphic properties of objects, such as
rotation, zoom, and visibility, or perform animations of objects.

In addition, you can have attributes notify others of their changes, so that the graphic
appearance of the group or prototype can be fully adjusted when one attribute changes its
value. The Notify behavior, from the Control menu, can tell other attributes watching it that
they should execute their behavior, while the Watch behavior, from the Misc menu, allows
one attribute to indicate that it observes another attribute.

The exact effects of all predefined behaviors are described in Predefined Accessors.

Alternatively, you can access this page via online help. Select Help from the menu bar.
Select a behavior in the Control, Display, or Misc menus and a help page describing the
effect of the behavior will appear in the left-hand pane of the panel.

Using the Edit Menu of the Behavior Page
From the Behavior page, you can also:

[—Add intermediate or hidden attributes that will be used in intermediate states of the
computation:

1. Select Edit > New Attribute to add an attribute.
A new unnamed attribute appears.
2. Setitsname and type, as on the Interface page.
3. When the attribute is selected, one or more behaviors can be added to it.

[Cut/Copy/Paste behaviors. You can copy or cut awhole attribute and its behaviors by
selecting thefirst line of an attributes tree and selecting Edit > Copy or Edit > Cut, or
copy or cut asingle behavior only by selecting the behavior's line and then Edit > Copy
or Edit > Cut. You can paste the content of the attribute's clipboard by first selecting a
line where you want the attribute to be inserted, and then selecting Edit > Paste.

[Delete selected attributes, behaviors, or parameters with Edit > Delete.

[Move behaviors up or down. Behaviors are triggered from the top to the bottom. You can
decide in which order they are to be triggered.

Setting Accessor Parameters

Depending on its class, a behavior may require additional parameters to be fully defined.
Behavior parameters are edited in the matrix to the right of the Attributes Tree:

38 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Creating and Using Prototypes

Group Inspector,

Interface | Graphics| Graphic Behavior (Interactive Behavior

Edit Control Display Misc Help
onColor Color
offColor Color
= on Boolean
Attributes Tree = da
B == true ? gaz.foreqground = onCalor ;@ affCalor
Operator e
Operand krue
Parameter hatrix Attribute gaz foreground
if True onZalar
if False offCalar
alpha <= gQroup=

The Group Inspector is designed so that you can define complex behaviors for your
prototypes by simply selecting parameter val ues in combo boxes or dialog boxes.

Each matrix row corresponds to a parameter:
[_The left column contains the parameter label.
[_The right column contains the parameter values.

When a behavior is added, aparameter matrix isinitialized with default or empty values that
may need to be filled with appropriate values.

To edit a parameter value, click twice on the corresponding item in the matrix. This creates
an editing field on top of the value item, which is either a combo box or atext field (see
Figure 3.4). The combo box isinitialized with relevant values for this parameter.

Attribute | v|
if True oniZalor
if False offColar

Figure3.4 A Combo Box With an Example of a Default Value

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 39

There are four types of parameter, as shown in the following table:
Table 3.2 Behavior Parameters

Parameter Type Description Symbol

Literal/Explicit The value is a string or an enumerated type that must | (e)
be specified explicitly.

Input The value is queried when the accessor is evaluated.

These values can be a constant (a string or a <
number), a reference to other attributes, or an
expression that is a combination of constants and
references.

Output The value is changed when the behavior is evaluated. j

(A call to the changevalue method is made.) Hence,
the value must be a name that references either an
existing attribute of the prototype.

Object/Node The value of the parameter must be the name of an

existing node. Some accessors accept only certain |:|
kinds of objects as a parameter. For instance, display
behaviors act only on graphic nodes.

For input parameters, the editing field is a combo box that contains a tree of accessors, as
well astwo special items at the beginning of the tree:

40 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

¥ Group Inspector

Interface | Graphics| Graphic Behavior Interactive Behavior

onColor
offColor
= on
1= do

Cperator
Cperand
Attribute
if True

if False

alpha

Edit Control Display Misc

Color
Color

Boolean

I~ == true ? gaz.foreground = onColor : offCalor

trug
gaz.foreground

o v

e valle]
a types]

center
centert’
baselayer
transformed
visible
hidden
ishode
minZoom
maxZoom
fisedSize
base

gaz
bordertop
borderleft
barderright
barderbat
line

line2

line3
contact

Creating and Using Prototypes

[1immediate value] - When thisitem is selected, the editing field is set up to edit an
immediate parameter value. If the value type can be determined, a value selector (that is,
either a combo box or aresource selector) is created. You can also type the immediate
valuedirectly. If the value is not a number or aBoolean value, the value can be in double
quotes (for example, you must enter acolor as "red"). The value can also be an

expression.

1211 types / Matching types] - Thisitem toggles between the two values. [a11
types] listsall the accessors, even those whose type does not match the expected type.
[Matching types]listsonly the accessors whose type matches the expected type for
thevalue. It is generally better to edit parameter values from top to bottom, because the
editing field is often initialized using information available from the preceding fields.

Input parameters expressions can contain:

[Constants: numeric or strings literals (to be placed between quotation marks)

[Variables: prototype values or node attributes

[Arithmetic operators and parentheses: (+, -, *, **, /, %, ==, |=, >, >=, <, <=, &&, |)

IBM ILOG VIEwWs PROTOTYPES V5.3

— USER’'S MANUAL 41

42

IBM

[—Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round, sin,
sgrt, tan. (See your standard C/C++ library user’s manual to get the meaning of these
functions.)

Note: Unlikeits C/ C++ equivalent, rand takes an integer argument. A non-zero
argument is used by the random number generator as a seed when producing a random
number. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.

Notifying behaviors have the side effect of propagating the value of the attributes to their
watching attributes instead of simply setting it. In this case, the behaviors of the watching
attributes are evaluated in sequence. Such behaviors (Trigger accessors) show an outward
arrow on top of their Output parameter, and the values they are connected to show an inward
arrow:

|
"Pusk" or "Trigget" Parameters ﬁ_ } »

Some behaviors can have avariable number of parameters. These accessors are identified by
their last row of the parameters column, which indicates “ <<Click to add item>>". To create
anew row in the editing matrix of the Group Inspector for these behaviors, press the Enter
key in the value field of the last parameter or simply click in the indicated field.

Defining Interactive Behaviors

Add user behaviors using the Interaction page of the Group Inspector, to determine how user
actions affect the attributes of your prototype:

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Creating and Using Prototypes

'Y Group Inspector

Interface| Graphics| Graphic Behavior | Inkeractive Behaviar

Edit Events Control Display Misc Help
=l clicked

+ on callback [All_nodes]. Generic, send O

+ watch clicked

= do

+ toggle running

Figure3.5 The Interaction Page of the Group Inspector.

This page works the same way as the Behaviors page and displays alist of behaviors. The
page starts blank, as only the behaviors that are triggered by user actions are displayed in
this page.

For each attribute, you can add behaviors, which are instructions to be performed each time
the value is modified:
1. Choose an item in the Events menu to add an interactive behavior:

. |If the user action comes from a callback, select Events > Callback to add a behavior
that will be triggered by some object interactor and callback.

. Otherwise, to directly handle user events such as button clicks, select Events > Event
to add a behavior that will be triggered by simple user events.

2. Enter the parameters for each added behavior.

3. Once you have added the triggering accessor, you can add behaviors that will be
triggered by the user action by adding Control > item or Display > item behaviors, just as
you did for the graphic behaviors.

Itisgenerally agood ideato have the interaction accessors modify only the public attributes
of your prototype, relying on that modification to update all the display behaviors.

Editing a Prototype

Once you have created and saved a prototype, you can edit it again by selecting the
prototype in the palette, and choosing View > Edit Group (Ctrl+E). All the changes you
make will be propagated to the instances you have created when you save it.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 43

44

IBM

For instance, you can select the “bulb” prototype in the “samples’ palette, and double click
onitsicon: the Prototype edition buffer is opened, and the group inspector alows you to edit
itsinterface and behaviors.

Testing Your Prototype

Once you have defined behaviors for a prototype, you can test them by changing the
prototype attributes:

1. Select the Interface page in the Group Inspector.
2. To set an attribute value, click the matrix item.

3. Depending on the type of value, acombo box, aresource selector, or asimpletext fieldis
created. Clicking with the right mouse button displays thelist or the selector (if any) ina
single click.

4. The prototype value is changed through a call to the changevalue method when you
pressthe Enter key after editing thefield, or when you moveto another field after editing
thevalue.

This allows you to test how the graphic representation of your prototype changes as you set
its attributes to different values.

To test the interactive behavior of your prototype:
1. Switch to the active mode, asis possible for al panels.

2. By clicking and dragging on various items of your prototypes, you can seein the Group
Inspector panel how the attributes are affected by the interactions you define.

Saving a Prototype
To add a prototype to an existing library:
1. Choose the Save As command from the File menu.

2. |If the prototype was not already part of alibrary, Prototypes Studio asksif you want to
add your prototype to a prototype library. Click Yes.

3. Fromthe dialog box displayed, select the library to which you want to add the prototype.

4. Inthe subsequent dialog box enter the name of the prototype.
To save your prototype elsewhere than in a prototype library:

1. Choose the Save As command from the File menu.

2. Answer No to the question ‘ Save the prototypein alibrary?

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Loading and Saving Prototype Libraries

3. A file selector dialog box appears and asks for afile name. Specify anamewitha . ivp
extension.

Note: A prototype which is not contained in a prototype library does not appear in the
Prototypes Palette, so you cannot create instances of this prototype in panels from within
IBM ILOG MViews Sudio. It is strongly suggested that you use prototype libraries instead of
saving each prototype in its own file.

If you make additional changesto your prototype, you can save it again in the same
prototype library or to the same file using the Save command from the File menu.

You can move the prototype to adifferent library, giveit adifferent name, or removeit from
itslibrary with the Save As command.

When a prototype is saved, all the panels containing instances of that prototype are updated
with the new prototype definition.

Loading and Saving Prototype Libraries

To load a prototype library:

1. Choose Open from the File menu.

2. Select Prototype libraries (* . ip1) in the box for file type.
3. Browseto find the name of thelibrary file you want to load.

Oncethelibrary isloaded, it is added as a new palette in the Prototypes palette of the
Palettes panel.

You do not need to save a prototype library each time you create or edit a prototype. A
prototype library is saved automatically as necessary while you edit your prototypes.

To change the name of the current prototype library (that is, the library namethat is
displayed in the visible page of the Prototypes Pal ette):

1. Usethe command Save Prototype Library As... from the File menu.
2. Select the new directory and name of the prototype library file (with a . ip1 extension).

The prototype library name changes accordingly and all the prototypes of the library are
saved in the new directory.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 45

You can close a prototype library that you no longer need by choosing Close Prototype
Library from the File menu. This command removes the library currently displayed in the
Prototypes palette.

Note: The prototypes contained in the library are not actually deleted in memory; they can
still bereferenced in panels or in other prototypes.

Creating and Editing Prototype Instances in Panels

46

IBM

This section explains how to instantiate the prototypes that you have defined or loaded, in
order to create panels.

Choosing a Buffer Type

Prototypes Studio has 2 types of buffer windows that can be made into panels: 2D Graphics
and Grapher. When the Gadgets extension isinstalled, a Gadget buffer window is also
available.

[Wse a 2D Graphics buffer window for graphics-intensive applications: that is, if your
prototypes contain 2D graphic objects such aslines, rectangles, and splines.

[Wse a Grapher buffer window if you need Grapher features to connect graphic objectsin
prototype instances, using Grapher links.

[_If you havethe IBM ILOG Views Controls package and your prototypes contain gadgets,
use a Gadget buffer window.

To create a panel in which to use prototype instances, choose the appropriate buffer type
from the menu File > New.

Creating a Prototype Instance
To create a prototype instance:
1. Select aprototype library in the upper pane of the Palettes panel.

2. Drag theicon of the desired prototype to the buffer window.
OR:
1. Click theicon representing a prototype to select it.

2. Click and drag arectangle in a buffer window. An instance of the prototype whose
bounding box is defined by the rectangle you just drew will be created.

The prototype isinstantiated in the form of an 11vProtoGraphic object encapsulating the
prototype instance.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Connecting Prototype Instances

Editing Prototype Instances

Prototype instances are edited using the Group Inspector. To display the Group Inspector,
choose Group Inspector from the Tools menu or double-click a prototype instance. When an
instance is selected, its attributes are displayed in the Attributes notebook page of the Group
Inspector.

Note: The Behavior and Interaction pages are disabled for prototype instances. They can
only be used when editing prototypes. See Defining Graphic Behaviorsfor an explanation
on how to edit accessor values with the Group Inspector.

Loading and Saving Panels

Panels containing prototype instances are loaded and saved as standard . i 1v files using the
Open, Save, and Save As commands from the File menu.

Connecting Prototype Instances

Prototypes can define notifying attributes that can be connected to the attributes of instances
of other prototypes. This means that when a notifying attribute is modified, its value is
assigned to the attributes of the objects it is connected to.

To connect attributes of prototype instances:

1. Select the Group Connection mode from the Editing M odes toolbar:

g D E RS RS D |
Group Connection loon

2. Click in the prototype instance that defines the notifying attribute (the value that you
want to be sent).

3. Drag the connection line to the instance to which you want to connect this attribute (the
instance that you want to be notified of attribute modifications).

The Connect two values dialog box is displayed:

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 47

48

IBM

1Y Connect two values

Output value From myThermometer Input value ko display_2
Action border
termperature Format
maxChars
rnaxirmurn
maximurmCalar
rainirum
minimurmCalar
narminalCalar
notSignificant
notSignificantColar
texkCalar
transparent
value
ternperature value
[Filker input by autput type (Float)
[Ok] [Cancel]

4. Intheleft hand pane, select the notifying attribute from the first instance.

5. Intheright hand pane, select the input attribute for the second instance.

There can be severa connections between the same two objects. When the Group
Connection mode is active, existing connections are displayed as green lines. If you click a
green line, the connection details (that is, the names of the output and input values) are

displayed.

100

74

50 temperature -> value

25 [double-click ta disconnect]

To delete a connection:
1. Double-click the connection line.
A Delete Connection dialog box appears.

2. Select the connection you want to delete, and click Apply.

The next chapter will describe how to link protoypes to application objects, defined in C++
code.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Using Prototypes in C++ Applications

This chapter explains how to use prototypes in your C++ applications. It isdivided as
follows:

[—Avchitecture

[Witing C++ Applications Using Prototypes
[Linking Prototypes to Application Objects
[Advanced Uses of Prototypes

Architecture
The Prototypes package is defined on top of the IBM® ILOG® Views Foundation package
and allows you to perform the following tasks:
[—Assemble elementary graphic objects into groups (class 11vGroup).
—Fpecify the behavior of your groups using predefined accessor objects or scripts.

[_Define prototypes and create prototype instances in managers. Prototypes are instances
of asubclass of 11vGroup called 11vPrototype.

[_Connect properties between prototype instances.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 49

50

IBM

Link application objects and prototype instances.
The architecture of the Prototypes package is shown in Figure 4.1.

Prototypes Prototype Instances

I L il

C.— 1 Lﬁ

'

L

I =
¥ 1
i) %

Groups

Composition Accessor Objects
F— — — a rotate
| blink
4 axport
action
script

Managers/Containers Graphic Objects

Figure4.1 Architecture of the Prototypes Package

Groups
Groups are the basic components of the Prototypes package.

To create a BGO with the Prototypes package, you must first assemble basic
IBM ILOG Views graphic objectsto build agroup. You can use any IBM ILOG Views
graphic object in agroup. You can also create subgroups to build structured objects.

A group isrepresented in C++ by the 11vGroup class. An I1vGroup object containsa
hierarchy of nodes, represented by the following subclasses of the 11vGroupNode class:

[An IlvGraphicNode isanode that holds a graphic object (an instance of a subclass of
IlvGraphic). A group contains one graphic node for each of its graphic elements.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Architecture

[An I1vsubGroupNode holdsasubgroup, that is, a group contained in another group.
This classis used to create object hierarchies.

Notes: T11vGroup Objects are different from 11vGraphicset objects. An I1vGroup isa
logical hierarchy of graphic objects that are contained in a manager. Unlike
IlvGraphicSet, I1vGroup iShot a subclass of I1vGraphic. An I1vProtoGraphic is
a subclass of 11vGraphic intended to encapsulate an 11vGroup to placeit in a manager
or container.

Athird class of 11vGroupNode, called 11vvalueSourceNode, istill present in the
package, but its use is deprecated.

Attributes and Accessor Objects

The Prototypes package lets you define not only the graphic appearance of your objects, but
also their behavior. The behavior of agroup is controlled by its attributes (also called
properties). These attributes bear distinct names and represent the external interface of the
group, that is, how its appearance will be controlled from your application.

The attributes of a group and their behaviors are defined in accessor objects. Each accessor
object has aname and atype and implements the effect of setting and/or retrieving the value
for the group. Several accessor objects can have the same name, which meansthey belong to
the same attribute. This means that setting an attribute val ue can have several side effects.

Accessors can be linked to other attributes of objects or to application data. They define state
or appearance changes in response to user events or application instructions and, by

extension, specify the graphic and interactive behavior of objects. Accessor objects are
instances of subclasses of 11vAccessor.

In other words, the relationship between accessor objects and values is the following:
[You interact with a group through its attributes.

A group has a set of accessor objects attached to it. Each accessor object is associated
with a name, which defines an attribute (or facet) of the BGO.

[The I1vGroup: :changevalue method calls the changevalue methods of all the
accessor objects of a given name, thereby setting the attribute value.

[The IlvGroup: :queryValue method callsthe queryvalue methods of all the
accessor objects of a given name, thereby getting the attribute value.

[_The effect of each behavior classis defined by the implementation of its changevalue
and queryvalue methods.

[—$ome accessors can be set through user interaction or by the application, thereby
triggering other behaviorsin a chain.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 51

52

The relationship between accessor objects and attributes/behaviorsin agroup is shownin

Figure 4.2:
(A'ttribute Behavior Graphic Chjects
spaed rotation {of the needle)

I: condition

it =30
light foreground = "red"

\rfax - reference scale.max

Figure4.2 Relationship Between Accessor Objects, Attributes, and Behaviors
This example shows a group representing a gauge. The gauge has two attributes: speed and

max.

[The speed attribute isimplemented by two accessor objects, each having a graphic
behavior:

. A Rotation accessor object—when the speed attribute is changed, this accessor
object rotates the needle of the gauge.

. A Condition accessor object—when the speed attribute is changed, this accessor
object changes the color of the circle if the value is greater than 30.

[Themax attribute is implemented by a Reference accessor object, which references a
property of a basic graphic object at the group level. When the max attribute is changed,
this accessor object changes the maximum speed of the scale graphic object.

The following types of accessors can be attached to an attribute:

[DData accessor s - State how a dataitem isto be stored (locally or in anode) and what its
typeis. They are comparable to variable declarationsin aregular programming
language. Only one of these accessors should be present for each attribute.

[Control accessors - Perform conditional instructions, evaluations, and assignments
based on other attributes. They take input parameters and can have output effects on
other parameters. Typical examples are the Condition accessor, for the conditional
assignment, and the Toggle accessor.

[Motifying accessor s- Define the entry points of evaluation cycles. Either the application
(when it does apushvalue) or the user (when a callback triggers a Callback accessor)
can “push” values, forcing the accessors to handle them. Connections between attributes
can be made to propagate the evaluation to other values by means of the Watch and
Notify accessors.

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL

IBM

Architecture

[Display accessor s - Define a side effect of the attribute on the visual presentation of the
nodes of the group. They correspond to calls to the drawing library in a programming
language. When they are set, they change graphic properties, such as rotating a node or
changing the visibility of a graphic component.

[—Animation accessors - A special case of display accessors that periodically change a
graphic attribute.

[Miscellaneous accessor s - Consist of two accessors that do not fit into the previous
categories: the Debug accessor and the Delegate to Prototype accessor.

You will find afull description of all the predefined accessor classes in the section
Predefined Accessors.

Accessor Parameters

Accessors define a side effect that is performed on another object or attribute when a given
attribute is set. This means that, as with a function in a programming language, an accessor
has to take parametersto customize its effects. A description of the four types of parameters
that accessors can have is presented in Table 4.1.

Table4.1 Accessor Parameters

Parameter Type Description

Direct parameters The value is a string or an enumerated type that
must be specified explicitly.

Input parameters The value is queried when the accessor is
evaluated. These values can be a constant (a
string or a number), a reference to other values
(attributes of nodes or prototype values), or an
expression that is a combination of constants and
references.

Output parameters The value is changed when the accessor is
evaluated (A call to the changeVvalue method is
made). Hence, the value must be a name that
references either an existing attribute of a node or
a prototype value.

Object/Node The value of the parameter must be the name of
parameters an existing node. Some accessors accept only
certain kinds of objects as a parameter. For
instance, display accessors act only on graphic
nodes.

Input parameter expressions can contain:

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 53

54

IBM

[Constants: numeric or string literals

[Variables: prototype values or node attributes

[—Arithmetic operatorsand parentheses: (+, -, *, **, /, %, ==, I=, >, >=, <, <=, &&, ||)

[Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round,
sin, sgrt, tan

Note: Contrary to its C/C++ equivalent, rand() takes an integer argument. If thisargument
isnon-zero, it is used as a seed for the random generator before a random number is
generated. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.

Prototypes and Instances

Once you have defined the graphic contents and the behavior of agroup, you can saveitasa
prototype. A prototype isthe model of aBGO. Usually, you create prototypes with

IBM ILOG Views Studio, although you can also create prototypes directly by coding. See
Creating Prototypes by Coding.

Prototypes are stored, loaded, and saved using prototype libraries, represented by the class
IlvProtoLibrary.YOU can create prototype instances from a prototype. A prototype
instanceis afull copy of its prototype.

Prototypes are represented by the T1vPrototype class and prototype instances are
represented by the 11vpProtoInstance class. Both of these classes are subclasses of
IlvGroup.

When aprototype instance is saved to afile, the manager writes only the values of the
properties that have been modified for that instance. The graphic objects that compose the
prototype instance are not saved to the file. This means that you can completely change the
definition of the prototype, add or remove graphic objects, and so on. | nstances of the
modified prototype will be automatically updated with the new definition.

Displaying Groups and Instances in Managers and Containers

To display groups, prototypes, and instances in a panel of your application (an 11vManager
or IlvContainer), you need to place themin an I11vpProtoGraphic object and add this
object to the manager or container. 11vProtoGraphic isasubclass of 11vGraphic
designed to encapsul ate all the graphic objects of agroup. You may also add group objectsto
amanager using an I1vGroupHolder, Which is aclass that extends the properties of a
container or manager and lets you directly add or retrieve groups through convenience

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Architecture

functions.This classwill createthe 11vProtoGraphic itself to wrap it around the
IlvGroup.

Note: Special manager and container classes 11vProtoManager,
IlvProtoContainer, and I1vProtoGrapher have been added to allow direct
handling of 11vGroup objectsin a container or manager. These classes are provided for
compatibility reasons. Their useis obsolete and should be avoided.

Connecting Attributes

A group has readable and writable attributes that are defined by the accessor objects attached
toit. It can also have notifying attributes, which are similar to events generated by the group
or by one of its elements.

A notifying attribute can be connected to an attribute of another group. When the attribute is
modified, the changes are propagated to the groups connected to it. Thisisreferred to asthe
value of the notifying attribute being pushed to its connected attributes.

Linking Application Objects to Prototypes

Once you have defined your prototypes and your panels, you may want to connect these to
real application data and processes defined in C++.

There are three methods available to link prototypes to application objects, depending on the
type of interface you want to produce:

[When the display is graphics-rich but represents only afew application objects and
values, you may want to link the application objects by directly feeding values to the
prototype instances of a given panel.

Thisistypically used in static synoptic displays composed of only predefined graphic
components. It is convenient to use feed values directly when the application is not
expecting user input to modify application values through a prototype instance. The
base feed samplein <ILVHOME>/samples/protos showshow to use this approach
for asimple control panel.

[To build WY SIWY G, direct-manipulation application object editors, you may want to
use an I1vGroupMediator. With this class, you can link an application object to a
given 11vGroup (Or prototype instance) in a panel, allowing interactive editing of its
attributes. A group mediator allows you to bind and unbind application objects
dynamically to a given prototype that serves as an editor for the object.

A typical application of thistypeisaWY SIWY G inspector such as the Guides inspector
in Prototypes Studio. The inspector samplein <ILVHOME>/samples/protos iSan
example of thiskind of editor. It shows how to build a 2D transformation matrix editor
controlling the viewpoint of aview interactively.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 55

[_To create many instances of a prototype dynamically, with each instance linked to a

given application object, you should use an 11vProtoMediator. Thisclassinstantiates
the prototype and links it to an application object of a given class asit is created. This
allows clear separation of interface design from the application design, each being able
to evolve separately from acommonly agreed upon application interface.

A typical application of thistype allows you to view panels where many objects of many
classes are represented and edited at the same time. Each application classislinked to a
prototype and each instance of the class to an instance of the prototype.

Cartographic displays and all graph displays are examples of applications that can
benefit from prototypes using 11vProtoMediatorS. <ILVHOME>/samples/protos/
interact_synoptic isan example of thistype of application, showing avery simple
air-traffic simulator, where each flight and each airport are represented by prototype
instances. The simulator only dealswith changing the attributes of the flight, whereasthe
prototypes can be incrementally refined in the drawing editor to present the best display.

Writing C++ Applications Using Prototypes

56

IBM

Asageneral rule, you create your prototypesin IBM® ILOG® Views Studio and then use

them in your application. The following section explains the C++ API that you use to add

prototypes to your application and how to manipulate these prototypes.

Note: Although it is not the general rule, it is possible to create prototypes through direct
coding. For these situations, see the section Creating Prototypes by Coding.

The following items are described in this section:

[—Header Files

[Loading a Panel Containing Prototype Instances
[Lloading Prototypes

[_Creating Prototype Instances

[Deleting Prototype I nstances

[Retrieving Groups and Prototype I nstances

[Getting and Setting Attributes

[Wser-Defined and Predefined Attributes

LOG VIEws PROTOTYPES V5.3 — USER’S MANUAL

IBM

Writing C++ Applications Using Prototypes

Header Files

To make sure that your application is linked with the necessary library packages, you must
first include the header files corresponding to the graphic objects, the accessors (subclasses
of I1vUserAccessor), and the interactors used in the prototypes that you will load.

To include all the predefined accessor classes, use the header file <ILVHOME>/include/
ilviews/protos/allaccs.h.

Hereisatypical set of header filesto includein order to build an application that can load
prototypes containing any type of graphic object:

#include <ilviews/protos/protogr.h> // for IlvProtoGraphic.

#include <ilviews/protos/allaccs.h> // for all accessors.

#include <ilviews/graphics/all.h> // for all graphic objects.

#include <ilviews/gadgets/gadgets.h> // if you use gadgets in your prototypes.
#include <ilviews/graphics/inter.h> // for all object interactors.

You may also want to add the following header files:

#include <ilviews/protos/groupholder.h> // to get the groups attached
// to a given container or manager.

#include <ilviews/protos/proto.h> // to manipulate prototypes and
// their libraries.

#include <ilviews/protos/grouplin.h> // to attach prototypes to
// application objects.

If you know in advance the Prototypes that you will use, you can reduce the size of your
application by including only the necessary header filesinstead of allaccs.h,
graphics.h, and gadgets.h.

To compile applications that use the prototypes package, you must compile them with the
library i1vproto. Thislibrary aso requiresthe following libraries: i1vgrapher, ilvmgr,
and the usua IBM ILOG Views librariesfor your platform. The i1vgdpro library may be
needed for applications that use old features of prototypes.

Loading a Panel Containing Prototype Instances

Toload a. i1v file containing prototype instances, you simply use the read or readFile
methods of I1vManager OF I1vContainer:

Container->readFile ("protoSample.ilv") ;

All the prototypes used in thefile will be loaded automatically from their prototype libraries.
Prototype libraries are searched for in the file system using the display path. For example, if
the panel contains prototypes from a prototype library called my1ib located in /usr/home/
yourdir/protolibs/mylib.ipl, you should include /usr/home/yourdir/
protolibs/ inyour ILVPATH environment variable.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 57

58

IBM

To alow handling of groupsin acontainer or manager, the T1vGroupHolder classprovides
all the necessary interface. Instances of the 11vGroupHolder class are automatically
attached to containers or managers containing prototype instances. This class provides the
methods for adding, removing, and retrieving groups (and thus prototype instances). You
can retrieve the group holder attached to a container, manager, or graphic holder with the
global methods:

[A1vGroupHolder* groupHolder = IlvGroupHolder::Get (manager) ;
[11vGroupHolder* groupHolder2 = IlvGroupHolder::Get (manager
->getHolder ()) ;

[A1vGroupHolder* groupHolder3 = IlvGroupHolder: :Get (container) ;

Loading Prototypes

You may need to create instances of your prototypes by coding. To create instances of your
prototypes, you must first load them. You can load a whole prototype library and then load
one or more of the prototypesit contains. To do this, create an instance of the
IlvProtoLibrary classand cal its 1oad method:

IlvProtoLibrary* lib = new IlvProtoLibrary (display, "mylib");

if (!11ib->load())
IlvFatalError ("Could not load prototype library");

If you want to load a prototype library that is not located in the display path, you can specify
the directory where the library islocated in the call to the constructor:
IlvProtoLibrary* lib = new IlvProtoLibrary(display, "mylib",

" /usr/somewhere/protos") ;

if (11ib->load()
IlvFatalError ("Could not load prototype library");

Once you have loaded a prototype library, you can retrieve all its prototypes or a particular
prototype with the following methods:

I1UInt count;
IlvPrototype** protos = lib->getPrototypes (count) ;

or:

IlvPrototype* proto = lib->getPrototype ("myproto") ;

The array returned by the get Prototypes method isallocated with thenew [1 operator and
must be released with the delete [1 operator when it is no longer needed.

Alternatively, you can load each prototype individually with the global function
IlvLoadPrototype:

IlvPrototype* proto = IlvLoadPrototype ("mylib.myproto", display);

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Writing C++ Applications Using Prototypes

The first argument specifies the name of the prototype library and the name of the prototype
(separated by a period). The second argument is the instance of 11vDisplay that your
application has created. The prototype library file and the prototype files are searched for in
the file system using the display path.

Creating Prototype Instances
To create an instance of a prototype, use the c1one method:

IlvPrototypelInstance* instance = proto->clone ("myinstance") ;

The argument of the c1one method is the name of the new instance. You can pass o, which
means that a name is generated automatically.

Instances of the 11vGroupHolder class are automatically attached to containers or
managers containing prototype instances. This class provides the methods for adding,
removing, and retrieving groups (and thus prototype instances).

To add the new prototype instance to a manager or a container, you can use the addGroup
methods of the I1vGroupHolder attached to manager/container classes:

IlvGroupHolder* groupHolder = IlvGroupHolder: :Get (manager) ;
groupHolder->addGroup (instance) ;

Alternatively, you can create an I1vProtoGraphic object and directly placeit in the
manager.

IlvPrototype* proto;

// Create an instance of the prototype proto and places it
IlvProtoGraphic* protoGraphicl = new IlvProtoGraphic (proto) ;

// Create an instance of a prototype

IlvProtoInstance* protolnstance = proto->clone (“instance2”) ;
IlvProtoGraphic* protoGraphic2 = new IlvProtoGraphic (protoInstance) ;
manager->addObject (protoGraphicl) ;

manager->addObject (protoGraphic?2) ;

Often, you will set the position of the prototype instance when you add it to a manager or
container. You can do this by either:

[Moving the T1vProtoGraphic:

manager->moveObject (protoGraphicl, 100, 100).

[Fetting the x and y attributes of the prototype instance. See Getting and Setting
Attributes for an explanation on how to set several valuesin asingle call.

Deleting Prototype Instances

To remove a prototype instance from its container or its manager, you can use the
removeGroup methods of the I11vGroupHolder class:

groupHolder->removeGroup (instance) ;

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 59

60

IBM

You can also remove its embedding I1vProtoGraphic from its container or manager:

manager->removeObject (protoGraphic) ;

To completely delete a prototype instance, simply call the delete operator. You can aso
delete its encapsulating protoGraphic.

Retrieving Groups and Prototype Instances

To get al the groups contained in a manager or container, use the get Groups method of its
attached group holder:

I1UInt count;
IlvGroup** instances = groupHolder->getGroups (count) ;

Note: The array of pointers returned by the getGroups method is allocated using the
new [] operator and must be deleted with the delete []1 operator when it isno longer
needed.

To retrieve agroup by its name, use the getGroup method:

IlvProtoInstance* pump = (IlvProtolInstance*)groupHolder->getGroup ("pump") ;

This method returns o if the specified group does not exist.

Getting and Setting Attributes

Prototype instances are manipulated through a uniform APl based on named attributes (al so
called properties or accessors). This APl isthe same as the one provided by the class
IlvGraphic and basically consists of the 11vGraphic: : changevalue and
IlvGraphic: :queryvalue methods.

A named attributeis represented by an instance of the 11vvalue classand is defined by the
following:

[The attribute name, “label” for example, to access the label of a button.

A value, which can be of different types (for example, a character string, an integer, or a
pointer).

A type that corresponds to the type of the data.

The type of the valueis set automatically by the T1vvalue class. You use constructors to

initialize values of predefined types (such as 11Int, const char*, I1lvColor*, and SO

on). You can also change a value using the assignment operator = or by casting an

I1lvValue to apredefined type. The 11vvalue classhandlesall conversions automatically.
For more details, see the 11vvalue class.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Writing C++ Applications Using Prototypes

To set avalue for a prototype instance, you must create an 11vvalue and call the
IlvGraphic: : changevalue method:

IlvvValue xval("x", (IlInt)100);
instance->changeValue (xval) ;

Note: The explicit cast of the value 100 to the type T11nt is necessary because an
ambiguity exists between the integer and Boolean types. Without the cast, the compiler
might (on some platforms) call the constructor that createsan r11vvalue of type
I1Boolean. It isrecommended that you always use explicit casts when using constantsto
initializean r1vvalue.

You do not need to create anew I1vvalue every time you want to change avalue. You can
use an existing 11vvalue and change its data with the assignment operator:

xval = (IlInt)200;
instance->changeValue (xval) ;

You can set several valuesin asingle call. To do this, you must create and initialize an array
of I1vvalue objectsand call the changevalues method. The following example shows
how to set the position of an object in asingle call:

Ilvvalue vals[] = {
Ilvvalue("x", (IlInt)100),
Ilvvalue("y", (IlInt)200)

}i

instance->changeValues (vals, 2);

To retrieve avalue, use the queryvalue method:

IlvvValue xval ("x");
IlInt x = instance->queryValue (xval) ;

The queryvalue method takes an 11vvalue reference as parameter. The I1vvalue must
be initialized with the name of the value to retrieve. The queryvalue method stores the
retrieved value in its argument and returns areference to it. In the example, assigning the
result of queryvalue to theinteger variable x callsthe 11vvalue tothe 111Int cast
operator.

To retrieve severa valuesin asingle cal, create an array of 11vvalue objectsand cal the
queryValues method:

Ilvvalue vals[] = { "x", "y", "width", "height" };
instance->queryValues (vals, 4);

IlInt x = vals|[0];

IlInt y = vals[1];

I1UInt width = vals[2];

I1UInt height = vals[3];

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 61

The 11vvalue class converts values automatically as required. This means that you do not
need to know the exact type of avalue that you set or retrieve. For example, you could set
the position of an object using a string value as follows:

Ilvvalue xval("x", "100");
instance->changeValue (xval) ;

Conversely, when you retrieve avalue, you can convert it to the type you need as follows:

IlvValue xval ("x");
instance->queryValue (xval) ;
float x = xval;

User-Defined and Predefined Attributes

A prototype and its instances have three kinds or attributes: user-defined attributes,
predefined attributes, and sub-attributes.

User-Defined Attributes

The user-defined attributes are the attributes defined by the accessors that you attached to
the prototype when you designed it in IBM ILOG Views Studio. They vary from one
prototype to another. The effect of setting or retrieving a user-defined attribute is determined
by the accessor objects that compose it.

For example, suppose that you have created a prototype representing a thermometer. You
defined a temperature attribute by adding a reference accessor that maps the temperature
to the value attribute of a gauge. To change the temperature displayed by an instance of
your prototype, use the changevalue method as follows:

IlvValue tempVal ("temperature") ;
tempval = 22.5;
instance->changeValue (tempVal) ;

Predefined Attributes

The predefined attributes of a group let you modify or retrieve common properties that all
prototypes have, such as the position, the size, the visibility, and so on.

Most predefined attributes take effect only when a group is added to a manager or a
container, but they can be set before that. They are stored in the graphic node but only take
effect when the group is added.

62 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

IBM

Writing C++ Applications Using Prototypes

The predefined attributes are listed in Table 4.2.
Table4.2 Predefined Attributes of Prototypes and Prototype |nstances

Attribute

Type

Description

layer

IlInt

Set this attribute to move all the nodes of the group
to a given layer. Retrieving this attribute returns the
layer where the nodes of the group are contained. If
all nodes are not in the same layer, the result is
undefined.

visible

I1Boolean

Set this attribute to hide or show a group. Retrieving
this attribute returns I1True if all the graphic
nodes of the group are visible and I1False if they
are all invisible. The result is undefined if some
nodes are visible and other nodes are invisible.

IlInt

This attribute is the horizontal coordinate of the
upper-left corner (in manager coordinates) of the
group bounding box, without applying any view
transformers.

IlInt

This attribute is the vertical coordinate of the upper-
left corner (in manager coordinates) of the group
bounding box, without applying any view
transformers.

width

IlUInt

This attribute is the width of the group bounding box
(in manager coordinates), without applying any
view transformers.

height

IlUInt

This attribute is the height of the group bounding
box (in manager coordinates), without applying any
view transformers.

centerX

IlInt

This attribute is the horizontal coordinate of the
center of the group bounding box (in manager
coordinates), without applying any view
transformers.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 63

Table4.2 Predefined Attributes of Prototypes and Prototype | nstances (Continued)

Attribute Type Description

centerY IlInt This attribute is the vertical coordinate of the center
of the group bounding box (in manager
coordinates), without applying any view
transformers.

interactor const char¥* Set this attribute to associate an interactor with all
the graphic nodes of the group. The value of the
attribute is the interactor name (for example,
“Button”). Retrieving this attribute returns the
name of the interactor associated with the graphic
nodes of the group. If all nodes do not have the
same interactor, the result is undefined.

Sub-attributes

The sub-attributes of prototypes|et you directly accessthe attributes of the objects contained
in your prototypes. The names of sub-attributes are built by concatenating the path of the
object and the attribute name. The components of a sub-attribute name are separated by a
period. For example, if your prototype containsan 11vLabel named title, you can Set or
retrieve its label using the attribute name title.label.

All the predefined propertieslisted in Table 4.2 can al so be accessed for a particular graphic
node.

Linking Prototypes to Application Objects

This section describes the three methods that can be used to link prototypes to application
objects:

[3Fetting Values Directly: Thisisthe easiest way if you simply want to feed values from
your application to the views.

[Wsing Group Mediators: This allows the application to both drive the interface and be
notified of value changes produced by the user.

[Wsing Proto Mediators: This enables you to build object factories that will link
application classes with prototypes, thereby creating the interface of adynamic
application automatically.

Setting Values Directly

The samplebase feed (contained inthe < ILVHOME>/samples/protos directory) shows
how to drive your interface from your application. Once you have downloaded a panel

64 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

IBM

Linking Prototypes to Application Objects

containing instances of prototypes, or created your instancesin a manager or container, you
retrieve the instances that you want to edit:

IlvGroupHolder* groupHolder= IlvGroupHolder: :Get (manager) ;
IlvGroup* myThermometer= groupHolder->getGroup (“thermometer”) ;

Then, you change its values with the T1vGroup : : changevalue method:

if (myThermometer)
myThermometer->changeValue (I1lvValue (“temperature”, (I1UInt) 20)));

Using Group Mediators

A group mediator (class I1vGroupMediator) iSused to connect an object of the
application to a prototype and serves as an interactive graphic editor for the object (also
called an object inspector). The samples inspector and synoptic (contained in the
<ILVHOME>/samples/protos directory) implement agroup mediator and can be used asa
baseline.

The following code sample shows how to develop an application that cleanly separates the
user interface from the application code. Assumethat you have an application that includesa
Machine base class and aBoiler specidization class:

class Machine { // The base class of most application objects.
protected:

list<MachineObserver* > observers;
}i

class MachineObserver { // A notification mechanism serving as a
// generic communication means between objects.

public:

void observe (Machine* m) { m->observers.append(this); }

virtual void notify (Machine*);
}i
class Boiler : public Machine { // The class for which you want

// to create an object inspector.

public:
// Temperature is an attribute you want the user to have control of.

void set temperature (float) {

for each observer in observers
observer->notify(this) ;

}

float get_temperature();

}i

These classes perform a simulation, a process control, or any computational activity
independent of any kind of interactive or graphic behavior. A group mediator allows you to
implement a graphical user interface for the Boiler without introducing any dependencies
in the application classes, which are assumed to be much more complex.

For this, you want to create a subclass of 11vGroupMediator that will handle the graphic
representation and the user interaction of amachine of classBoiler:

class BoilerUI : public IlvGroupMediator, public MachineObserver {
public:

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 65

66

IBM

BoilerUI (IlvGroup* ui, Boiler* b) : IlvGroupMediator (ui, b)
MachineObserver: :observe (b) ;
if (!temperatureSymbol)
temperatureSymbol=I1vGetSymbol (“temperature”) ;

}

Boiler* boiler() { return (Boiler*) getObject(); }

void queryValues (IlvValue* vals, IlUInt) const {
if (vals[0] .getName () == temperatureSymbol))
vals[0] = boiler()->get temperature() ;

}

void changeValues (const IlvValue* vals, IlUInt) ({
if (vals[0] .getName () == temperatureSymbol))
boiler->set_ temperature (vals[0]);

}
void notify (Machine*) { update(); }
static IlvSymbol* temperatureSymbol;

}i

This class serves as a bridge between a prototype instance and an application object. It
defines four methods:

[_The constructor establishes alink and the observe (b) statement declaresto the
application that it wants to be notified of internal changes occurring to the boiler.

[The changevalue () method, which iscalled whenever the user changes an attribute of
the object. It notifies the object that it should update its temperature value. It can handle
other attributes as well.

[Thegueryvalue () method, which is called whenever the prototype needsto update its
values. It queriesthe internal values of the object and transfers them to the user interface.

[Thenotify () method, which must be called explicitly from within the application
whenever an internal attribute of the object changes in order for these changes to be
reflected in the user interface. Any call to Boiler: :set temperature ()
automatically notifies all observers, which meansthat the notify () method does not
need to be called explicitly. Other applications that do not implement an observable/
observer design pattern such as this may want to call notify () from other parts of the
internal code.

Once the mediator class has been defined, you can dynamically link an object of the
application to a prototype instance that is used as a boiler inspector:

IlvGroup* myBoilerInspector = groupHolder->getGroup ("BoilerInspector") ;
BoilerUI* myBoilerUI = new BoilerUI (myBoilerInspector, myBoiler) ;

You can change the application object being inspected by the prototype at any time;

myBoilerUI->setObject (myOtherBoiler) ;

Even though this mechanism requires some application-specific coding, it is very generic—
any application data structure can be adapted to use it. Once the mediator class has been
designed, the user interface and the application become completely independent entities.
Each can be developed and maintained separately. The user interface is developed using

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Linking Prototypes to Application Objects

IBM ILOG Views Studio and the application using any application development
environment.

The group mediator also has alock mechanism that can be used to prevent unnecessary
refreshes of the user interface. In the above example, the boiler set temperature method
calsthenotify () method of the BoilerUt to refresh the user interface. Since the change
of values comes from the Uz, it may be unnecessary to perform this last refresh. Testing the
locked flag prevents such refreshes:

void BoilerUI::changeValues (const IlvValue* vals, IlUInt) ({
if (locked()) return;
if (vals[0] .getName () == temperatureSymbol))
boiler->set_temperature (vals[0]) ;

Using Proto Mediators

A proto mediator (class 11vProtoMediator) isasubclass of 11vGroupMediator andis
used to dynamically create prototype instances of a given class and place them in a manager
or container. Theideaisto design aspecific prototype for each main application class. When
an object is created by the application, a corresponding prototype is instantiated and placed
in the manager. This allows you to create a graphical user interface for a complete
application, separating the user interface design from the functional core of the application.
The following samples from the < ILVHOME>/samples/protos directory implement this
design pattern: interact_synoptic to build an air-traffic control simulator, and
synoptic to build asimulator for a manufacturing plant.

For example, assuming the same base application (Machines and Boilers), you want each
Boiler instance to be represented and edited at the same time by the user. Create a subclass
of I1vProtoMediator:

class BoilerUI: public IlvProtoMediator, public MachineObserver {
public:
BoilerUI (IlvManager*m,Boiler*b)
:IlvProtoMediator (m, "BoilerPrototype",b)
{

observe (b) ;
IlvSymbol* vals[2] = {

IlvGetSymbol ("x"), IlvGetSymbol ("y") };
update (vals); // Sets the position of the current instance.
// The application must have a way of specifying where to place
// the object. Alternatively, you can handle the placement by
// explicitly setting the x and y values of the BGO.
install(m); // Place the prototype in the manager

// Other methods are the same as the BoilerUI using the GroupMediator.

}i

Now, the application can have a global “user interface factory” responsible for generating
prototype instances as soon as it createsitsinternal objects. The code of this factory may
look like the following pseudo-code:

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 67

class myApplication ({
list<Boiler*s> boilers;
void initUI (IlvManager* m) {
for each machine in boilers
new BoilerUI (m, machine) ;

void add boiler (Boiler* b) {
boilers.append(b) ;
new BoilerUI (getManager (), b);

Advanced Uses of Prototypes

68

IBM

This section describes the following advanced topics on using prototypes:
[WWiting New Accessor Classes

[Creating Prototypes by Coding

[Customizing IBM ILOG Views Sudio Wth the Prototypes Extension

Writing New Accessor Classes

The Prototypes package contains many predefined accessor classes that allow you to define
complex behaviorsin your prototypes. You may, however, wish to implement specific
behaviors for your particular needs. This section explains how you can extend the set of
accessor classes you use to build your prototypes. It also explains how your new accessor
classes are integrated into IBM® ILOG® Views Studio.

To add a class of accessors, you simply have to write two classes:
A subclass of 11vUserAccessor that defines the effect of your new accessor.

A subclass of I11vAccessorDescriptor that defines the way your accessor will be
edited in IBM ILOG Views Studio.

The <ILVHOME>/samples directory of the IBM ILOG Views distribution contains an
example of anew accessor class (the gpacc.h and gpacc. cpp files). See the README file
in that directory for more information.

Subclassing llvUserAccessor

To define anew accessor class, you can either write adirect subclass of 11vUserAccessor
or derive from an existing subclass that implements the features you want to extend. You
may also want to make this class persistent.

Defining the Subclass
The declaration of a subclass of 11vUseraccessor will typically appear as follows:

class MyAccessor: public IlvUserAccessor {

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Advanced Uses of Prototypes

public:
MyAccessor (const char* name,
const IlvValueTypeClass* type,
const char* paraml,
const char* param2) ;
DeclareUserAccessorInfo() ;
DeclareUserAccessorIOConstructors (MyAccessor) ;
protected:
IlvSymbol* paraml;
IlvSymbol* _paraml;
virtual IlBoolean changeValue (IlvAccessorHolder* object,
const IlvValue& val) ;
virtual IlvValue& queryValue (const IlvAccessorHolder* object,
IlvValue& val) const;

}

The following methods must be redefined to create a new accessor class:

[MyAccessor

MyAccessor (const char* name,
const IlvValueTypeClass* type,
const char* paraml,
const char* param2) ;

This constructor is used to create an instance of your accessor by code. In

IBM ILOG Views Studio, only the input constructor will be used. The name parameter
defines the name of the attribute that will be handled by the accessor and the type
parameter defines the type of the attribute. Your constructor will probably have
additional parameters, such asparami. These parameters are often character strings that
correspond to the parameters that the user can input in IBM ILOG Views Studio and that
are evaluated at runtime.

[dhangeValue

virtual IlBoolean changeValue (IlvAccessorHolder* object,
const IlvValue& val) ;

The changevalue method is called when the attribute handled by the accessor is
changed using a call to changevalue on the prototype or one of its instances. You use
this method to define the effect of changing the value of your accessor. If your accessor
uses parameters, you must eval uate these parameters. This can be done using the
getvalue method that evaluates a string containing either an immediate value or the
name of another accessor.

The object parameter isthe prototype or the prototype instance to which the accessor is
attached. The val parameter contains the new value. The changevalue method must
return T1True if the value was successfully changed, or 11False if an error occurred
(for example, if one of the parameters could not be eval uated).

[dueryvalue

virtual IlvValue& queryValue (const IlvAccessorHolder* object,
IlvvValue& val) const;

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 69

70

IBM

The queryvalue method is called when the attribute handled by the accessor is
retrieved using a call to queryvalue on the prototype or one of itsinstances. This
method must store the “current” value of the accessor initsval parameter (if doing sois
appropriate). Some accessors store their current value, while others do not (for example,
Condition accessors do not store their value). The current valueis stored in the val
parameter using the assignment operator of 11vvalue. The method must return itsval
parameter.

[Anitialize

virtual void initialize (const IlvAccessorHolder* object) ;

The initialize method is caled when the accessor object is associated with its
prototype or prototype instance. You can redefine this method to perform any kind of
initialization.
Making the llvUserAccessor Subclass Persistent
Like graphic objects, accessor objects need to be persistent, which meansthey are saved to
the prototype definition file and are read when the prototype is loaded. The persistence
mechanism for accessor objectsis very similar to the mechanism used for graphic objects.

First, inthe .n file of your accessor class, you must call the following macrosinthepublic
section of the class declaration:

DeclareUserAccessorInfo() ;
DeclareUserAccessorIOConstructors (MyAccessor) ;

Thisautomatically createsthe IBM ILOG Views runtime type information for your subclass
and declares the persistence and copy methods.

Inthe . cpp file, you then have to write the following methods:

[MyAccessor (IlvDisplay* display, IlvGroupInputFile& f)
[MyAccessor: :MyAccessor (const MyAccessor& source)
[MyAccessor: :write (IlvGroupOututFile& f) const

This constructor reads the description of your accessor object from an input stream. The
IlvGroupInputFile classissimilar to I1vInputFile. Typically, you use only its
getStream method. Thisreturns areference to an i st ream object from which you can
read the description of your accessor object. However, the convenience method readvalue
can be used. Thewritevalue method puts quotation marks around strings containing
spaces, and the readvalue method checks for these quotation marks and reads the string
correctly. Combined use of these methods avoids input/output errors. For example, the
implementation of the method could be as follows:

MyAccessor: :MyAccessor (IlvDisplay* display, IlvGroupInputFile& f)
: IlvUserAccessor (display, f)
{
_paraml
_param2

f.readvalue () ;
f.readvalue() ;

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Advanced Uses of Prototypes

}

Next, you have to write a copy constructor that will be called when the prototype is copied
or when an instance of the prototypeis created:

MyAccessor: :MyAccessor (const MyAccessor& source)
: IlvUserAccessor (source)

{

_paraml = source._paraml;
_param2 = source._param2;

}

The write method must be redefined to save the description of the accessor. The format
used to save the parameters must match the format defined by the input constructor:

MyAccessor: :write (I1lvGroupOututFile& f) const

{

IlvUserAccessor: ::write(f) ;
f.writevValue(_paraml); f << IlvSpc();
f.writevalue(_param2); f << endl;

}

Finally, the following macros must be called in the . cpp file:

IlvPredefinedUserAccessorIOMembers (MyAccessor)
IlvRegisterUserAccessorClass (MyAccessor, IlvUserAccessor) ;

Subclassing llvAccessorDescriptor

Once you have written your subclass of 11vUseraccessor, you heed to write another
class, asubclass of 11vaccessorDescriptor. Thisclass provides theinformation needed
by the Group Inspector of IBM ILOG Views Studio to edit the parameters of your accessor
class.

The name of the I1vAccessorDescriptor subclass must match the name of the subclass
of T1vUserAccessor. For example, if your accessor classisMyaccessor, the descriptor
class must be called MyaccessorDescriptorClass.

You only need to declare the accessor descriptor class. Aninstance of it will be
automatically created and associated with your user accessor subclass by the
IlvRegisterUserAccessorClass Macro.

Hereisatypical example of a descriptor class:

class MyAccessorDescriptorClass :

public IlvAccessorDescriptor {

public:

MyAccessorDescriptorClass ()
IlvAccessorDescriptor ("MyAccessor: an example",

Miscellaneous,
"example %s %s...",
IlFalse,
&IlvValueIntType,
0,
2,

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 71

72

IBM

"Parameter #1", &IlvValueParameterTypeString,
"Parameter #2", &IlvNodeNameParameterType) {}

}i

The accessor descriptor class only requires a constructor with no arguments. It must call the
IlvAccessorDescriptor constructor. For adetailed explanation of the parameters of this
constructor, see the description of the I1vAccessorDescriptor class.

Creating Prototypes by Coding

Prototypes are meant to be designed graphically using IBM® ILOG® Views Studio. In
some cases, however, you may need to create prototypes or to modify existing prototypes
from a C++ program. This section explains how you can create prototypes by coding in C++
instead of designing them with IBM ILOG Views Studio.

Creating a New Prototype

A prototype is represented by an instance of the I11vpPrototype class. To create a new
prototype, use the following constructor:

IlvPrototype* proto = new IlvPrototype ("myPrototype") ;

Adding Graphic Nodes

Thefirst step is to define the graphic appearance of the prototype. Thisis done by adding
nodes containing graphic objects. For this, you create instances of the 11vGraphicNode
class and add them to the prototype using the addNode method.

IlvLabel* label = new IlvLabel (display, 100, 100, "Hello");

IlvGraphicNode* node = new IlvGraphicNode (label, "label", IlTrue);
proto->addNode (node) ;

The 11vGraphicNode constructor has three parameters:
[—An I1lvGraphic: the graphic object to include in the prototype.
A string: the name of the node.

A Boolean: specifies whether alocal transformer should be associated with the graphic
node. (Seethe 11vGraphicNode class for details.)

You must give different names to the graphic nodes of your prototype if you need to
reference them in accessor parameters.

Adding Subgroups

You can create hierarchical objects by adding a subgroup to your prototype. To do this, you
must add a node that is an instance of the 11vsubGroupNode class. This subgroup can be
an 11vGroup that you build yourself by adding graphic nodesto it, or it can be an instance
of another prototype:

// Add a sub-group:
IlvGroup* subgroup = new IlvGroup ("subgroup") ;

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Advanced Uses of Prototypes

IlvLine* linel = new IlvLine(display, IlvPoint (100, 100),
IlvPoint (200, 200));

subgroup->addNode (new IlvGraphicNode (1linel, "linel"));

IlvLine* line2 = new IlvLine (display, IlvPoint (100, 200),
IlvPoint (200, 100));

subgroup->addNode (new IlvGraphicNode (line2, "line2"));

proto->addNode (new IlvSubGroupNode (subgroup)) ;

// Add a prototype instance as a sub-group:

IlvPrototype* proto = IlvLoadPrototype ("samples.pump", display) ;

IlvProtoInstance* instance = proto->clone () ;

proto->addNode (new IlvSubGroupNode (instance)) ;

Adding Accessor Objects

Once you have “drawn” your prototype by adding graphic objectsto it, you can defineits
properties and specify the effect of changing these properties. To do this, you add accessor
objects to your prototype. Accessor objects are instances of subclasses of
I1lvUserAccessor.

To add an accessor object to your prototype, create an instance of the appropriate subclass of
IlvUserAccessor and call the addaccessor method. For example, the following code
adds two accessor objectsto aprototype: an 11vvalueAccessor that storesavalue and an
IlvConditionAccessor that tests acondition and changes a attribute according to the
result.
proto->addAccessor (new IlvValueAccessor ("v", IlvValueFloatType)) ;
proto->addAccessor (new IlvConditionAccessor ("v", IlvValueFloatType,

display,

IlvConditionAccessor: : I1vCondGreaterThan,

n l O 0 n ,

"label.label",

"Greater than 100",
"Smaller than 100"));

See the section Predefined Accessors and the IBM ILOG Views Prototypes Reference
Manual for a complete description of each accessor class.

Adding the Prototype to a Library
Prototypes must be stored in a prototype library so that they can be saved and reloaded |ater.

To create a new prototype library, use the 11vProtoLibrary class:
IlvProtoLibrary* protoLib = new IlvProtoLibrary(display,

"myLib" ,
" /usr/home/myhome/protos™") ;

A prototype library storesits prototypesin afile system directory (" /usr/home /myhome/
protos™" inthe previous example). You can change this directory later using the setpath
method.

To add your prototype to the new library, call the addprototype method:

protoLib->addPrototype (proto) ;

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 73

74

IBM

Saving the Prototype

To save your prototype, call the 11vabstractProtoLibrary: : save method:
myLib->save (0, IlTrue);

Thefirst parameter is an optional output stream where the library description fileis saved.
Set it to 0 so that the description fileis saved to its default location (" /usr/home /myhome /

protos/myLib.ipl" inthe previous example). The second parameter is set to I1True to
specify that all the prototypes must be saved.

Customizing IBM ILOG Views Studio With the Prototypes Extension

This section describes the most important classes that you can derive to extend
IBM® ILOG® Views Studio with the Prototypes extension.

Extension Class

The IBM ILOG Views Studio extension is represented by the
IlvStPrototypeExtension class, whichisdeclared in <ILVHOME>/studio/
ivstudio/protos/stproto.h

class ILVSTPRCLASS IlvStPrototypeExtension
: public IlvStExtension
public:
IlvStPrototypeExtension (IlvStudio* editor) ;
static IlvStPrototypeExtension* Get (IlvStudio* editor) ;

}i

An instance of this class (or a subclass) must be created after the 11vstudio objectis
created and before the initialize methodis called. The static et method returns the
(unique) instance of T1vStPrototypeExtension.

Buffer Classes

IBM ILOG Views Studio defines four subclasses of 11vstBuffer. These classes are also
declared in <ILVHOME>/studio/ivstudio/protos/stproto.h.

llvStPrototypeManagerBuffer

The 11vstPrototypeManagerBuffer classrepresents abuffer of the “Prototype
Instances (2D)” type. The NewPrototypeManagerBuf fer command creates an instance of
this class. The manager controlled by an 11vstPrototypeManagerBuffer iSan instance
of T1vManager

class ILVSTPRCLASS IlvStPrototypeManagerBuffer
: public IlvStBuffer
{
public:
IlvStPrototypeManagerBuffer (IlvStudio*,
const char* name,
IlvManager* = 0) ;

}i

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Advanced Uses of Prototypes

IlvStPrototypeEditionBuffer

The 11vstPrototypeEditionBuffer classrepresents abuffer of the “ Prototype” type,
that is, abuffer used to edit a prototype. The NewPrototypeEditionBuf fer command
creates an instance of this class. The manager controlled by an
IlvStPrototypeEditionBuffer isaninstance of I11vGadgetManager:

class ILVSTPRCLASS IlvStPrototypeEditionBuffer
: public IlvStPrototypeManagerBuffer

{
public:
IlvStPrototypeEditionBuffer (IlvStudio*,
const char* name,
IlvManager* = 0) ;
void editPrototype (IlvPrototype* prototype,
I1lBoolean fromLib = IlTrue,
const char* filename = 0);
IlvPrototype* getPrototype() ;
IlvPrototype* getEditedPrototype() ;

}i

The editPrototype method initializes the buffer so that it can edit the prototype specified
by prototype. A copy of the prototype is made and is stored in the associated manager.
The fromLib argument specifies whether the edited prototype is stored in a prototype
library contained in the Prototypes palette or if the prototype is a*“ standalone” prototype
loaded from a . ivp file. In the second case, the optional £ilename argument can contain
the full path name of the . ivp file.

The getPrototype () method returns the prototype contained in the buffer. The
getEditedPrototype () method returnsthe “original” prototype if the buffer is currently
editing a prototype from alibrary. Otherwise, it returns 0.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 75

76 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Predefined Accessors

Accessors are basic building blocks that define the value and behaviors of a BGO
(11vGroup Or I1vPrototype). An attribute usually consists of a Data accessor and one or
more Control accessorsthat defineits side effects when the attribute is set. This section lists
the accessor classes that are predefined in the Prototypes library, and is divided as follows:

[Overview

[Data Accessors
[_Control Accessors
[Display Accessors
[Animation Accessors
[_Trigger Accessors

[Miscellaneous Accessor s

Overview

IBM

Each accessor classisillustrated by one or more sample prototypes. Most of these samples
are contained in one of the prototype libraries included in the I BM® ILOG® Views
distribution:

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 77

[dILVHOME>/data/ivprotos/libs
[dILVHOME>/samples/protos/*/data/*.ipl subdirectories
To look at a sample prototype:

1. Launch IBM ILOG Views Studio with the Prototypes extension.

2. Openthe . ip1 file containing the corresponding prototype library.

3. Double-click on the prototype in the palette.

Graphic Representation of the Behavior of a Prototype

In the examples that illustrate each behavior class, the data flow defined by the accessors of
aprototype is represented using the following graphic vocabulary:

A rectangle represents an accessor (elementary piece of behavior).

[An attribute is represented by a stack of accessors with agiven name. In such a stack, the
accessors are evaluated from top to bottom when the value of the attribute is changed or
queried.

[_The order of evaluation is represented by the relative position of an accessor in its stack.
[—An inset rectangle is used to represent the type of the given attribute.

A graphic representing these itemsis shown here:

Mame Mame

=Tyne= ‘

Also:
[Flots on the sides of accessors represent the parameters of the accessor.
A round dlot represents a value parameter.
A sguare slot represents an object parameter.
[Flots at the top represent the input access to avalue.
[Jots at the bottom represent its output.

[—Flotson theleft side represent input parameters of the accessors (the accessorswill query
their value when they are evaluated).

[Jots on theright side represent output parameters (the accessors will change the values).

[Hinally, slotswith an arrow indicate that the value will be pushed instead of simply set.
The arrow is used to indicate Trigger accessors.

78 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Data Accessors

A graphic representing these itemsis shown here:

Ohject Input Cutput "Push" or "Trigger"
Farameter Farameters Farameters Farameters

0D

To compl ete the model, links or direct values are used to connect the accessor output to other
input attributes. The following diagram shows a Condition accessor with these conditions. If
Temperatureis set to above 30, the foreground of the Gauge object will be set to Red.
Otherwise, it will be set to Blue.

Tem perature

Gauge foreground

Data Accessors

IBM

Data accessors hold avalue or a pointer to values. They define the type of agiven attribute.
They are similar to variable declarations in a programming language such as C++. All
attributes should contain one of these accessors and no more.

Note: Some accessors also hold a value (Rotate for instance), which means values that
hold them do not need an extra Data accessor.

The different Data accessors are described as follows:
[Value

[Reference

_®roup

[Jcript

Value

The Value accessor (class 11vvalueAccessor) letsyou attach an attribute holding avalue
to a prototype. When the value is modified, it is ssmply stored. When the value is queried,
thelast value stored is returned.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 79

80

IBM

Parameters
Mo parameters, but the type of the value must be specified since it cannot be deduced.

Example:

The invertedColor attribute in the pump prototype of the samples prototype library
stores a color name as atemporary variable.

invertedColor

kolor |

Reference

The Reference accessor (class 11vNodeAccessor) isused to reference an attribute of one
of the prototype nodes (also called sub-attributes) at the prototype level. When the
corresponding attribute is changed, the new value isforwarded to the specified sub-accessor.
Conversely, when the attribute is queried, it isfirst queried from the node and forwarded to
the prototype. A Reference accessor is similar to areference (apointer or an dias) ina
programming language.

Parameters

A ccessor : Node attribute or prototype value that holds the value. The type of thevalueis
determined by what the accessor points to.

Example

The steps attribute in the thermo prototype of the samples library points directly to the
steps altribute of the scale object. When the attribute steps is set, it is assigned to the
scale.step atribute. If the scale. step attribute is changed by the program, any query
of the attribute returns the new value.

deps

Group

The Group accessor (class 11vGroupUserAccessor) defines an attribute that will
collectively reference all the sub-attributes of the same name in all group nodes. For
example, you can use this accessor with the name foreground and the type color to
change the foreground color of al the prototype elementsin one single assignment.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Data Accessors

Parameters

Mo parameters. The name of the attribute is used to determine the subattribute that will
be referenced by this accessor. The type of the accessor isimplicitly determined.

Example

In the pump prototype of the samples prototype library, a 1inewidth attribute can be
added. The attribute should be of type uznt. Changing this attribute from the Group
Inspector (using the Attributes notebook page) changes the line width of all the graphic
objects that have a 1inewidth defined.

lineiyictt b

Ulirt

Script

The Script accessor (I1vJavaScriptAccessor) classlets you program the behavior of
your prototypes using the scripting language interpreter included in IBM ILOG Views
Studio.

A Script accessor has two parameters, which are the names of script functions:

[The set function is called when the value of the accessor is changed. It must be of the
form:

function SetX(obj, newval)

{
}

The obj argument is the prototype associated with the accessor. The newval argument
isthe new value that has been assigned to the attribute.

[Theget function is called when the value of the accessor is queried. It must be of the
form:

function GetX(obj)

{

return(val) ;

}
The obj argument is the prototype associated with the accessor. The function must
return avalue, which becomes the new value of the attribute.

In the functions associated with a Script accessor, you can access and modify any prototype
attribute or a prototype node. Either one of the two function names of the Script accessors
can be none, in which case no function is called.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 81

82

IBM

The functions associated with a Script accessor can be edited using the IBM ILOG Views
Studio Script Editor. They will be savedin afilewitha . ijs suffix in the same directory and
with the same file name as the prototype. Otherwise, they are saved in the prototype file or
itslibrary file.

Note: Naming conflicts can occur if you load several prototype instances with the same
function names in the same panel. Therefore, it isa good idea to prefix the names of all
the prototype script functions with the prototype name they belong to. For instance, in the
samples . thermo prototype, if the Temp value hasa Script accessor, its functions should
be called samplesThermoTempGet () and SamplesThermoTempSet ().

Parameters

[Script function (set): The name of the script function to execute when the attribute is
changed.

[—Script function (get): The name of the script function to execute when the attribute is
queried.

[Thetypeisdetermined by the value returned from the set function or taken as a
parameter by the get function. It can, therefore, change dynamically.

Examples
The following function can be used to perform an action similar to a Condition accessor:
function SetTemperature (obj, temperature)

{

if (temperature > obj. threshold) {

obj.gauge. foreground = "red";
} else {
obj.gauge. foreground = "blue";

}
}

function GetTemperature (obj)

{
}

return obj.gauge.foreground;

Y W

temperature

getTempl)
setTemp()

—

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Control Accessors

Control Accessors

IBM

Control accessors perform side effects on other attributes when they are evaluated. They
represent the control structures and instructions of a programming language. In the Group
Inspector, you can view them from the “Behaviors” and “ I nteraction” notebook pages, under
the“do” clause attached to each attribute.

Note: These accessorsarewrite-only. They do not record the last value tested. If you only
definea Control accessor for a value, you will not be able to read this value back. To store
the value associated with an accessor, you must define a Value accessor with the same
name.

The different Control accessors are described as follows:
[Assign

[CTondition
[—Format
[—Increment
[Min/Max
[Multiple
[Motify

[Jcript
—Bwitch
[Toggle

Assign

The Assign accessor (class 11vTriggerAccessor) isused to assign avalue to another
attribute or sub-attribute. When the attribute is set, the target attribute specified by the
target parameter isassigned the specified value.

Parameters

[Attribute: Attribute that is modified when this accessor is evaluated.
[—Fend: Attribute or expression that is assigned to Attribute.
[_Thetype of the accessor is undetermined and irrelevant.

Example
The 1cd2 prototype of the 1cd library uses the Assign accessor.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 83

84

IBM

Condition

The Condition accessor (class 11vConditionAccessor) isused to perform aconditional
assignment of another attribute when the attribute is changed.

Thefirst parameter defines a condition operator that is applied to the new value of the
attribute. For example, if the value of the attribute is changed to 10, the operator parameter
is >, and the operand is 5, the condition testedis10 > 5. If the operator is
[Operand_valuel, the condition tested is only the value of the operand parameter (that is,
the new value passed to changevalue isignored).

Depending on the test result, the attribute specified by the Attribute parameter is set to one
of two values: Valueif True or Value if False. The parameters Operand, Value if True, or
Valueif False can be either immediate values (such as 1 or "red"), the names of other
attributes that will be queried to get the values used, or an expression containing these
immediate values or attribute names.

Parameters

[—Operator: The operator used to test the conditions. It can be one of the following: ==,
l=,>=, <,<=,0r [Operand value].

[Operand: The operand value.

[Attribute: Prototype value or node attribute that will be set to true or false, depending on
the condition.

[Valueif True: Value to which the output is set if the condition istrue (or non o).
[Valueif False: Value to which the output is set if the condition isfalse (or o).

[The type of the accessor is undetermined and irrelevant. However, it needs to be
compatible with the operand type.
Example

The following example shows the thermo prototypein the samples prototype library. If
the temperature attributeis above 30, the gaugeis drawnin red. Otherwise, itisdrawnin
blue.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Control Accessors

Gauge foreground

Format

The Format accessor (class I1vFormatAccessor) can be used to convert a numeric value
of type Double to a character string using a user-specified format. The formatted string is
then copied to another accessor. The format of the value is specified by the Format
parameter, which is defined in the C library function print £. The numeric value is passed
to the conversion function as an 11Double, SO the format should contain a $g specifier.

Parameters

[Hormat (printf-style): Format string as defined by the print £ C library function and
must beastring value. This string must contain at least one %g, since this accessor can
only convert values of type Double.

[Max # of chars: Maximum length of the string after the conversion. If thislengthis
exceeded, the value is replaced by * characters. It must be an Integer value.

[Attribute: Attribute to which the formatted value is assigned.

Example

Inthedisplay prototypeinthe samples prototypelibrary, the Format accessor allowsyou
to change in NumberField.label the way thevalueis displayed.

format Mumberfield label

max len

maxChars

Increment

The Increment accessor (class I1vCounterAccessor) isused to increment another
attribute. Each time the attribute containing this attribute is set, another attribute, called a
counter, isincreased by one until a specified maximum value is reached. When thisvalueis
reached, the counter is reset to zero.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 85

Parameters

[Maximum: Maximum value. Thevaluetoincreaseisreset to o if it isequa to the
maximum value.

[Attribute: Attribute to increment.

[_Thetype of the accessor is undetermined and irrelevant.

Example

A three-state button can be implemented by using a Counter accessor linked to a MultiRep
accessor. The following accessor has been added to the symbo1 prototype of the samples
prototype library. Changing the state_incr value in the Attributes notebook page of the
Group Inspector increments the state and switches its representation.

state_jincr

+1 —

2 %N

Min/Max

The Min/Max accessor (class 11vMinMaxAccessor) issimilar to the Condition accessor
but handles common cases when an attribute must be tested against aminimum and a
maximum threshold. When the attribute is changed, another attribute is set. The assigned
value depends on whether the value of the current attribute is less than the minimum,
between the minimum and the maximum, or greater than the maximum. In addition, an
exception condition can be specified: if the exception condition istrue, no value is changed.

Parameters
C_Minimum: Defines the minimum value.
M aximum: Defines the maximum vaue.

_Except if: If thisvalueistrue, the value isignored and the output value or attributeis not
set. The expression must result in a Boolean value.

[Attribute: Attribute that is set to one of the following three values.
[1f x < min: Value to which the attribute is set if the value is less than the minimum.

C1f min < x < max: Valueto which the attribute is set if the value is between the minimum
and the maximum.

[1f x > max: Valueto which the attribute is set if the value is greater than the maximum.

86 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

IBM

Control Accessors

Example 1

This accessor is attached to a Temperature attribute. When Temperature isset, if
Nobody’s at Home iStrue, nothing is done. If the Temperature isbelow 15, Heaton is
assigned to ClimateControl. If Temperature isabove 25, Cooling0On isassighed to
ClimateControl. If thetemperature is between 15 and 25, A110£ £ isassigned to

ClimateControl.

Mobody's at Home
15
"Heaton"
ClimateContral

25
"Coolingn"

A O

Example 2
This example shows the vertGauge prototype in the samp1le library.

Tempermture
Except If

MeotSignificant
riin Th rzshakd
minThrashokd Color
Giauge forag reu nd

e Thrzshokd

& Thrashold Color

nominalCoker

Multiple

The Multiple accessor (class 11vCompositeAccessor) assignsthe value of the attribute to
multiple other attributes or sub-attributes. It can be used, for example, to change the colors
of two graphic nodes using a single public value of the prototype.

Parameters

[_This accessor has avariable number of parameters. Each of these parametersisan
attribute or subattribute, to which the value is assigned.

[All parameters must have compatible types.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 87

88

IBM

Example
This example shows the Color accessor in the thermo prototype.

Gauge foreground

E llip=e foreground

Notify

The Notify accessor (class I1voutputAccessor) tUrns changevalue calson the
attribute to which it is attached into pushvalue calls. Vauesthat are watching the given
attribute will execute all their behaviors.

This accessor triggers behaviors of other attributes that depend on the notifying value. For
example, you can make a change in the Threshold attribute to al so re-eval uate the
Temperature attribute. This can be done by attaching a Notify accessor to the Threshold
attribute, and a Watch (Threshold) behavior to the Temperature attribute.

Parameters
[o parameters.

Example

The following example showsthe x_scale attributes of the t ransformer prototypein the
samples library.

Y S

Angle

| Float |

-

Script

This accessor is described in Data accessors under Script.

Switch

The Switch accessor (class 11vswitchAccessor) implements a switch statement.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Control Accessors

Parameters

—Jwitch: An expression that should return an integer. Depending on its result, the attribute
0...Nwill be assigned the value of the parameter.

[dase 0: Must be an attribute of the prototype or the value"". If switch evaluatesto o,
the behaviors of the attribute named in this parameter will be executed.

[dase 1: If switch evaluatesto 1, the behaviors of the attribute named in this parameter
will be executed.

(IR

[dase N: If switch evaluatesto avalue equal to or greater than v, the behaviors of the
attribute named in this parameter will be executed.

Example
A traffic light with varying settings can be implemented like this:

Value Integer
do
Switch Value
case 0 doRed
case 1 doOrange
case 2 doGreen
case 3 Anomaly

doRed

do
greenEllipse.visible=False
orangeellipse.visible=False
redEllipse.visible=True
doBlink=False

doOrange

do
greenEllipse.visible=False
orangeellipse.visible=True
redEllipse.visible=False
doBlink=False

doGreen

do
greenEllipse.visible=True
orangeellipse.visible=False
redEllipse.visible=False
doBlink=False

Anomaly

do
greenEllipse.visible=False
orangeellipse.visible=True
redEllipse.visible=False
doBlink=true

doBlink Boolean

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 89

do
blink orangeEllipse.visible 150

Toggle

The Toggle accessor (class 11vToggleAccessor) Switches another attribute between true
and false each time the attribute is set. The value assigned to the attribute containing atoggle
behavior isignored.

Parameters

[—Boolean Attribute: Attribute that is switched when the behavior is evaluated. It must be
a Boolean type (for example, the visibility attribute of the object).
Example

The following example shows the random prototype in the sources prototype library with
thevalue toggle.

tocgle

e — running

Display Accessors

Display accessors change the graphic appearance of anode. Ultimately, all accessor
networks end up modifying the appearance of the object and, thus, use some kind of Display
accessor. General Display accessors such as Rotation, Scale, or Trand ation change the size
and position of a graphic node. One accessor, MultiRep, controls the visibility of nodes, and
other accessors, such as Fill, control object-specific properties.

The different Display accessors are described as follows:
C_Hill
[MultiRep
[—Rotation
[—FcaleX
[—3FcaleY
[TranslateX
[TrandlateY

90 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

Display Accessors

Fill

The Fill accessor operates on two polygon objects contained in a prototype: afilled polygon
and afiller polygon. The value of the attribute represents afill level. When the attributeis
changed, the points of the filler polygon are modified to fill the polygon to the specified
level. An angle can be specified to fill the polygon in any direction.

Parameters

Hilled Graphic Node: Must be an 11vPolygon graphic node.
Hiller Graphic Node: Must be an 11vPolygon graphic node.

[Angle: A float that indicates the angle at which the fill will be done.

Example

Thefollowing isabottle prototype that contains two polygons: the glass and the wine. A
Fill accessor is used to define the 1evel property. The filled polygon is the glass and the
filler polygon isthe wine.

glass I I wine
[envelope)

i}

MultiRep

The MultiRep accessor (class I1vMultiRepAccessor) isused to switch between different
representations of a part of your prototype, depending on an integer value. The parameters
specify alist of nodes that define the different representations. When the value is changed to
n, the accessor showsthe n-th nodein thelist and hides all the other nodes.

This accessor accepts a variable number of parameters. There are as many representation
states as you define rows in the parameter editing matrix. A new row is automatically
created in the matrix when you validate the value of the last parameter.

Parameters

[Graphic Node: Defines the node that is shown when the value is 0. Must be a graphic
node.

[Graphic Node: Defines the node that is shown when thevalueis 1. Must be a graphic
node.

[Thetypeof thisvalueis Int (Integer).

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 91

92

IBM

Example

The symbo1l prototype of the samples prototype library uses two lines, open and closed, to
display atwo-state switch.

Rotation

The Rotation accessor (class I1vRotationAccessor) letsyou set the rotation angle of an
object to agiven value. The value defined by this accessor isthe angle (in degrees) to which
the rotation must be set. The angleis stored every timeit is set so resetting the val ue rotates
the object by the angle corresponding to the delta between the old and new angles.

The Minimum Angle, Angle Range, Minimum Value, and Value Range parameters are used
to compute the new rotation angle given to the input value. The new rotation is computed
from the value assigned to the Rotation accessor using the following formula:

angle = minAngle + (value - minimum)* Anglerange / range

Theinitial value of the rotation angle is assumed to be the value of the Minimum Angle
parameter so theinitial position of the rotating object must correspond to this value.

Note: Not all graphic objects are sensitive to rotation. Rectangles, ellipses, and text
objects do not rotate. It is recommended to use polygons and splines instead.
Parameters
[Graphic Node: Name of the node to rotate. It must be a graphic node.

[Center X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

[Center Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

C_Minimum Angle: Minimum angle used to compute the rotation (Float or Integer).
[—Angle Range: Angle range used to compute the rotation (Float or Integer).
C_Minimum: Minimum value used to compute the rotation (Float or Integer).

[Range: Value range used to compute the rotation (Float or | nteger).

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Display Accessors

[Handle I nteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

[Thetype of thisvaueis Float (the angle of rotation).

Example
The following example shows a Rotation accessor attached to the transformer prototype
inthe samples library.

cloRotation

| Float ‘
2 :I herizen

min Angle

hackogreu nod cante

backoireu nod canterr

Angke rance

riin

rRnge

ScaleX

The ScaleX accessor (class I1vZoomxAccessor) letsyou set the horizontal scaling factor
of an object. When the value of this accessor is changed, the object is scaled based on the
new value. The scaling factor isstored every timeit is set so resetting the scale to adifferent
value scales the object by the delta of the old and new scaling factors.

Note: Not all graphic objects are sensitive to the scaling factor. For example, text objects
cannot be scaled.

Parameters

[Graphic Node: Name of the graphic node to scale. It must be a graphic node.
[CTenter X: X-coordinate of the center of the scale (Float or Integer).
[Thetype of thisvaueisFloat.

Example

This example shows a Scale accessor attached to atransformer object. The full prototype
using this accessor isthe t ransformer prototypein the samples library.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 93

94

IBM

M W

doScaleX

| Float |

Centerx/ cx Tranzformer

ScaleY

The ScaleY accessor (class I1vZoomYAccessor) letsyou set the vertical scaling factor of
an object. When the value of thisis changed, the object is scaled based on the new value.
The scaleis stored every timeit is set, so resetting the scaling factor to a different value
changes the size of the object by the delta of the old and new scaling factors.

Parameters

[Graphic Node: Name of the graphic node to scale. It must be a graphic node.
[Center Y: Y-coordinate of the center of the scale.

[Thetype of thisvaueisFloat.

Example

This example shows a Scale accessor attached to atransformer object. The full prototype
using this accessor is the t ransformer prototypein the samples library.

doScaley

| Float |

Centery{ cCv Transformer

nc=m

TranslateX

The TranslateX accessor (class 11vSlideXAccessor) moves anode horizontally to a
position determined by a minimum position, a position range, aminimum value, and avalue
range. The new position is computed from the value assigned to the TranslateX accessor
using the following formula:

X = xmin + (v - minimum) * xrange / range
Parameters
[Graphic Node: Name of the node to move. It must be a graphic node.

C_Minimum X: Name of the minimum position (Float or Integer).

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Display Accessors

X range: Name of the position range (Float or Integer).
C_Minimum: Name of the minimum value (Float or Integer).
[Range: Name of the value range (Float or Integer).

[Handle I nteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

[Thetype of the valueis Float.

Example

The use of Trandate accessorsis similar to the use of Scale accessors, except that Trandate
accessors change the position instead of the size of an object. Seethe transformer
prototype in the samples library.

doTranslatex
| Float |

i -1+D-:| translate|ndicator

HRange

Center.x 120

240

-1000 Minimum

2000 Range

TranslateY

The TranslateY accessor (class11vslideYAccessor) movesanode vertically to aposition
determined by a minimum position, a position range, a minimum value, and a value range.
The new position is computed from the value assigned to the TranslateY accessor using the
following formula:

y = ymin + (v - minimum) * yrange / range

Parameters

[Graphic Node: Name of the node to move. It must be a graphic node.
C_MinimumY: Minimum position (Float or |nteger).

Y range: Position range (Float or Integer).

C_Minimum: Minimum value (Float or Integer).

[Range: Value range (Float or Integer).

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 95

[Handle I nteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value will be updated accordingly.

[Thetype of the value is Float (the distance of trandation).

Example
The use of TrandateX and TrandateY is similar to the use of scaleX and scaleY accessors.

doTranslatey’

| Float |

) A
Centery-120 [MinYy T]translatelndic:ator

240 ¢ vRange

<1000 Minimum

2000

Range

Animation Accessors

96

IBM

Animation accessors (class 11vAnimationAccessor) are acategory of the Display
accessors that change the appearance of an object periodically. Animation accessors hold a
value of a Boolean type indicating whether the animation is on.

For efficiency reasons, the Animation accessors do not reevaluate their attributes at each
count of thetimer. Thus, if you change one of the attributes of the accessor, you must
reassign the value to itself to force an update of the parameters, using the Assign accessor
for instance. See the pump prototype in the samples library for an example.

The different Animation accessors are described as follows:
Blink
Invert
[—Rotate

Blink

The Blink accessor (class 11vBlinkAccessor) makes an object of your prototype blink,
that is, it causes the object to appear and disappear at brief, regular intervals. When the
attribute is set to 11True, the object starts blinking. When the attributeisset to 11ralse,

the blinking stops.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

IBM

Animation Accessors

Parameters

[Boolean Attribute: Object attribute that controls the object visibility.

[Period (ms): Theinterval in milliseconds between two blinks (Float or Integer).
[_Thetype of thisvaueis Boolean.

Example
The following example showsthe £i1e prototypeinthe sources library with ablink value.

Invert

The Invert accessor (class I1vInvertAccessor) invertsthe color of an element of your
prototype periodically. When the property is set to 11 True, the color inversion begins.
When the attribute is set to 11False, the color inversion stops.

Whilethe colors are designated as the foreground and background colors, any colors defined
by the prototype or one of its nodes can be used.

Parameters
[Fg Col. Attribute: Node attribute or prototype value that contains the foreground color.
[Bg Col. Attribute: Node attribute or prototype value that contains the background color.

[Period (ms): Theinterval, in milliseconds, between two inversions of the object colors
(Float or Integer).

[_Type: Boolean (whether the accessors are exchanging their values).

Example

This exampleis presented in the pump prototype of the samples prototype library. When
invert isset to true, the values of rotorColor and invertedColor are exchanged
periodically. The period is defined by the invert attribute.

Note: The invertPeriod value hasan Assign behavior: invert = invert. Thisforces

the accessors to be reevaluated and the internal timer to update its period whenever the
period is changed.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 97

98

IBM

T T

invert

Floolean |

invertPeriod < Period

ratorCalar

invertedC olar

Rotate

The Rotate accessor (class I11vRotateAccessor) defines a behavior that, when set to
I1True, makes an object rotate periodicaly.

The Angle parameter specifies the number of degrees by which the object rotates at every
timer tick. The Center X and Center Y parameters define the rotation center. You should not
use the center of the rotating node itself for these parameters because the rounding problems
that occur while rotating an object might moveit slightly. Instead, you should use the center
of another fixed object of the prototype. You can make this reference object invisible if
necessary.

Parameters
[Graphic Node: Name of the node to rotate. Can be a graphic node or a subgroup node.
[—Angle: Anglein degrees by which the object isrotated at each step (Float or Integer).

[CTenter X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

[CTenter Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

[—Period (ms): Theinterval in milliseconds at which the object rotates. It must be an
Integer.

Example

This exampleis presented in the pump prototype of the samples prototype library. When
the Rotate accessor is set to true, the nodes will turn by 20 degrees every 10 ms.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Trigger Accessors

M g W

rotate

Boaolean

N
o :| hatizan

background. certerk

background.centery

Period Feriod

10 Angle

Trigger Accessors

IBM

Trigger accessors define the entry points of evaluation sequencesin the graph of accessors.
Triggers are accessors that can react to a user event (callback and event), achange in anode
by the application (by means of the pushvalue method), or some other node change (a
combination of Trigger and Connect).

The different Trigger accessors are described as follows:
[Callback

[Tlock

[Watch

—Hvent

Callback

This accessor (class 11vcallbackAccessor) ataches atrigger that is set when the given
callback is called from a user action on the specified graphic node. For a callback to be
called, the node must be either an 11vGadget oOr an I1vGraphic to which aninteractor has
been attached.

Parameters

[Graphic Node: The name of the graphic node whose callback is triggered.
[Callback Name: The name of the callback.

[Iinput: The value that is sent when the callback is triggered.

Example

The following example shows the random prototype in the sources library with the
clicked value. The clicked value pushes o to its output when the button is pressed by the
user. This output is connected to the toggle value, which in turn switches the running
value,

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 99

Clock

The Clock accessor (class 11vanimationAccessor) triggersits attribute periodicaly,
executing the attached behaviors. When set to 0, this accessor has no behavior. When set to
another value, this valueis used as the period of an internal timer that triggers the behavior
periodically.

Parameters

[Thetype of thisvalueis uint. If non-zero, the attribute will not have any effect.
Otherwise, itsvalue isinterpreted as atimer period.

Watch

The Watch accessor (class I1vLoopbackAccessor) makesits attached attribute observe
another notifying attribute.

This accessor classis often used with the Callback accessor to change a value of the
prototype when a callback istriggered. The Watch accessor connects the triggering attribute
containing the callback to the watching attribute that must be changed.

Parameters

[Motifying Attribute: Attribute that is observed. This attribute must be one of the
attributes that has a Notify or a Callback accessor.
Example

The Watch clicked accessor linksthe c1icked valueto the toggle value, which allows the
running attribute to be switched whenever the user presses the button attached to the
clicked value.

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Trigger Accessors

running value

Event

The Event accessor (class I11vEventAccessor) isused to trigger abehavior in response to
user or other application events. When an event of agiven type occurs while the mouse
pointer is over anode of the prototype, the attribute to which the accessor is attached is
evaluated, that is, al its behaviors are set.

Whilethe callback pushesits value to another attribute of the prototype, the event notifiesits
own attached attribute. The event is thus similar to attaching a Watch accessor to itself after
attaching a callback.

Parameters

[Graphic Node: The name of a graphic node. Events received from the input devices are
sent to the accessor over this graphic node to trigger a behavior. The special value
[Aa11 Nodes] indicatesthat thisvalueis triggered when any event of the given type
reaches any of the graphic nodes of the prototype.

[Event Type: The event type that triggers the accessor. The type can be any of the
standard IBM ILOG Views event types. AnyEvent, KeyUp, KeyDown, But tonDown,
ButtonUp, EnterWindow, LeaveWindow, PointerMoved, ButtonDragged,
Repaint, ModifyWindow, Visibility, MapWindow, UnMapWindow, Reparent,
KeyboardFocusIn, KeyboardFocusOut, DestroyWindow, ClientMessage, and
DoubleClick.

[Detail: The detail of the event. This parameter indicates additional filtering of the events
and depends on the event type. For example, for aBut tonbown event, the detail can be:
AnyButton, LeftButton, RightButton, MiddleButton, Button4, Of Buttonb5.
For akeyDown event, the detail parameter indicates the key, or AnyKey that triggersthe
accessor. Seethe 11vEvent classfor alist of the valid keys.

[Modifiers: Indicates which modifiers should be pressed. Possible values are:
AnyModifier, NoModifier, Shift, Ctrl, Meta, Alt, Num, Lock, ALt+G, OF any
combination of the previous modifierssuch asshift+Crtl, Ctrl+Shift+Alt, and SO
on.

IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 101

[Event data to send: The Event attribute that is pushed to the current value. It can be the
Type, Detail, X (the horizontal position of the mouse relative to the window), Y (the
vertical position of the mouse relative to the window), Global X, or Global Y (the position
of the mouse relative to the screen).

Example
The following example showsthe t ransformer prototype with an EventScaley valuein
the samples library:

Miscellaneous Accessors

These accessors do not fit current existing categories.

The different Miscellaneous accessors are described as follows:
[Debug
[PPrototype

Debug

The Debug accessor (class T1vDebugAccessor) isused to debug prototypes. It prints a
message to the console or the output window when the corresponding value is modified or

queried.

Example

When the following doTranslateY accessor is queried or changed, amessageis printed to the
output console, displaying the current value:

102 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

IBM

Miscellaneous Accessors

doTranslatey’

* Flost

-
Centery-120 © Minv 4 | translatel nolicator

240 :"/.YRange
.:\.\
e

S1000 { Minimum
Sy

2000 | Range

Prototype

The Prototype accessor (class 11vPrototypeAccessor) alowsanew prototype to inherit
from al the accessors of an existing prototype. The new prototype behaves asif all the
accessors of an existing prototype were added to it. Thisis useful when building libraries of
complex behaviorsand in reusing them in other prototypes. The prototype library containing
the prototype must be open in order for any instance using this accessor to work properly.
From the Group Inspector in IBM ILOG Views Studio, you can add a Prototype accessor to
aprototype by selecting the Attributes tab and choosing the Edit>Delegate to Prototype
item.

Parameters
[_Prototype name: Name of the prototype that you want to inherit accessors from.

Example

This accessor is represented as a subgraph showing all the values exported in the context of
the current accessor graph.

Thediclock prototype of the sources library encapsul ates and exports all the accessors of
the clock prototype. It behaves exactly like the c1ock prototype but has a different graphic
representation.

ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL 103

104

IBM

Diclock Accessor Graph

Clock acoessor graph exported through the
inherit accessor.

Other walues defined by diclock. (In fact
there are no such values, but they could
be added).

T
!

il
™

ILOG VIEwWs PROTOTYPES V5.3 — USER’S MANUAL

Numerics

2D Graphics buffer window
description of 16

A

accessor objects 51
accessors 11
types 52
writing new classes 68
animation accessors
description 96
attributes
connecting 55
predefined 62
sub-attribues 64
user-defined 62

B

behaviors
attributes 51
graphic representation 78
input parameters 41

prototype graphic behaviors 37
prototype interactive behaviors 42

business graphic objects
description of 8

C

C++

prerequisites 5
CloseProtoLibrary command 22
connecting attributes 55
containers

displaying groups and instances 54
control accessors

description 83
ConvertProtoManager command 22
creating

prototype instances 46

prototype library 30

D

data accessors

description 79
data flow programming 11
DeletePrototype command 23
display accessors

description 90
displaying groups and instances 54

E

editing
prototype instances 47
editing modes

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL

Index

105

group connection 19
editing modes toolbar 19
EditPrototype command 23

F

File Menu Commands 18

G

Grapher buffer window
description of 16
group connection mode 19
group inspector
description of 21
GroupIntoGroup command 23

icons

group connection 19
IlvAbstractProtoLIbrary class74
IlvAccessor class51
IlvAccessorDescriptor class71
IlvAnimationAccessor class 96, 100
IlvBlinkAccessor class96
IlvCallbackAccessor class99
IlvCompositeAccessor class87
IlvConditionAccessor class84
IlvContainer class10, 16

read method 57

readFile method 57
IlvCounterAccessor class 85
IlvDebugAccessor class 102
IlvEvent class101
IlvEventAccessor class 101
IlvFormatAccessor class85
IlvGraphicNode class50, 72
I1lvGroup class50

changeValue method 51

description 51

queryValue method 51
IlvGroupHolder class 10, 54
IlvGroupMediator class 65
I1lvGroupNode class 50

IlvGroupUserAccessor class 80
IlvInvertAccessor class 97
IlvJavaScriptAccessor class81
IlvLabel class64
IlvLoadPrototype class58
I1lvLoopbackAccessor class 100
IlvManager class 10, 16

read method 57

readFile method 57
IlvMinMaxAccessor class 86
IlvMultiRepAccessor class91
IlvNodeAccessor class 80
IlvOutputAccessor class88
IlvProtoGraphic class10, 54
IlvProtolInstance class54
IlvProtoLibrary class54, 58, 73
IlvProtoMediator class67
IlvPrototype class54, 72
IlvPrototypeAccesssor class 103
IlvPrototypeInstance class59
I1lvRotateAccessor class 98
IlvRotationAccessor class 92
IlvSlideXAccessor class 94
IlvSlideYAccessor class 95
IlvStPrototypeEditionBuffer class75
IlvStPrototypeExtension class74
IlvStPrototypeManagerBuffer class74
I1vSubGroupNode class51, 72
IlvSwitchAccessor class 88
IlvToggleAccessor class 90
IlvTriggerAccessor class83
I1lvUserAccessor class57, 68, 73
IlvValue class60
IlvValueAccessor class79
IlvZoomXAccessor class93
IlvZoomYAccessor class 94
inspectors

prototype 21

L

loading
prototype library 45

106 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

M

managers
displaying groups and instances 54
manual
naming conventions 6
notation 6
organization 5
typographic conventions 6
menu bar 17
miscellaneous accessors
description 102

N

naming conflicts 82

naming conventions 6

NewGrapherBuffer command 16
NewGraphicBuffer command 16
NewProtoLibrary command 24
NewPrototype command 24
NewPrototypeEditionBuffer command 24
NewPrototypeGrapherBuf fer command 24
notation 6

O

OpenProtoLibrary command 25

P

palettes panel 19

parameters
direct 53
input 53
object/node 53
output 53

prototype accessors
Assign 83
Blink 96
Callback 99
Clock 100
Condition 84
Debug 102
Event 101

Fill 91

Format 85

Group 80

Increment 85

Invert 97

Min/Max 86

Multiple 87

MultiRep 91

Notify 88

Prototype 103

Reference 80

Rotate 98

Rotation 92

ScaleX 93

ScaleY 94

Script 81, 88

Toggle 90

TrandateX 94

TrandateY 95

Vaue79

Watch 100

prototype library

creating 30

loading 45

saving 45

Prototype Studio

buffer types 46

connecting prototype instances 47

creating
prototype instances 46

creating prototype library 30

creating prototypes 30

defining attributes of a prototype 31

drawing a prototype 34

editing
panels with prototype instances 46
prototype instances 47
prototype nodes 35

extending 74

loading
prototype libraries 45
prototype panels 47

saving
prototype libraries 45
prototype panels 47

IBM ILOG VIEwWs PROTOTYPES V5.3 — USER’'S MANUAL 107

prototypes 44
structuring prototype nodes 36
prototypes
accessor definition 51
accessor parameters 38, 53
advantages 10
architecture 49
compiling applications 57
connecting instances 47
creating 9
by coding 72
instances 46, 59
with IBM ILOG Views Studio 9
creating prototype library 30
deleting instances 59
design pattern 7
design pattern definition 10
drawing graphic elements 34
editing
instances 47
examples 8
extending 74
getting attributes 60
group mediators 65
groups 50
header files 57
instances 46, 54
librairies 54
librairies for compiling 57
linking
application objects 55, 64
loading
prototype instances 57
overview 7
proto mediators 67
retrieving instances 60
saving 44
setting attributes 60
setting values directly 64
specifying
graphical behavior 11
interactive behavior 11
structuring nodes 36
sub-attributes 64
using in applications 9, 56

values51
Prototypes buffer window
description of 17
prototypes extension 19

R

read method
IlvContainer class57
IlvManager class57

readFile method
IlvContainer class57
IlvManager class57

S

SaveProtoLibraryAs command 25
saving

prototype library 45

prototypes 44
SelectGroupConnectionMode command 25
SelectGroupSelectionMode command 26
SelectNodeSelectionMode command 26
ShowApplicationInspector command 21
ShowGroupEditor command 26

T

ToggleTimers command 26
toolbar
editing modes 19
trigger accessors
description 99
typographic conventions 6

U

UngroupIlvGroups command 27

wW

windows
2D Graphics 16
Grapher 16
Prototypes 17

108 IBM ILOG VIEWS PROTOTYPES V5.3 — USER’S MANUAL

	IBM ILOG Views Prototypes V5.3 User’s Manual
	About This Manual
	Introducing the Prototypes Package
	An Overview of the Prototypes Package
	Business Graphic Objects
	Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
	Using Prototypes in Applications
	When Should You Use Prototypes?
	The Prototype Design Pattern
	Specifying Graphic and Interactive Behavior Using Accessors

	The User Interface and Commands
	Overview
	Launching IBM ILOG Views Studio With the Prototypes Extension

	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	Group Inspector Panel
	Prototypes Extension Commands
	CloseProtoLibrary
	ConvertProtoManager
	DeletePrototype
	EditPrototype
	GroupIntoGroup
	NewProtoLibrary
	NewPrototype
	NewPrototypeEditionBuffer
	NewPrototypeGrapherBuffer
	OpenProtoLibrary
	SaveProtoLibraryAs
	SelectGroupConnectionMode
	SelectGroupSelectionMode
	SelectNodeSelectionMode
	ShowGroupEditor
	ToggleTimers
	UngroupIlvGroups

	Using IBM ILOG Views Studio to Create BGOs
	Creating and Using Prototypes
	Creating a Prototype Library
	Creating a Prototype
	Defining the Attributes
	Drawing the Prototype
	Defining Graphic Behaviors
	Defining Interactive Behaviors
	Editing a Prototype
	Testing Your Prototype
	Saving a Prototype

	Loading and Saving Prototype Libraries
	Creating and Editing Prototype Instances in Panels
	Choosing a Buffer Type
	Creating a Prototype Instance
	Editing Prototype Instances
	Loading and Saving Panels

	Connecting Prototype Instances

	Using Prototypes in C++ Applications
	Architecture
	Groups
	Attributes and Accessor Objects
	Accessor Parameters
	Prototypes and Instances
	Displaying Groups and Instances in Managers and Containers
	Connecting Attributes
	Linking Application Objects to Prototypes

	Writing C++ Applications Using Prototypes
	Header Files
	Loading a Panel Containing Prototype Instances
	Loading Prototypes
	Creating Prototype Instances
	Deleting Prototype Instances
	Retrieving Groups and Prototype Instances
	Getting and Setting Attributes
	User-Defined and Predefined Attributes

	Linking Prototypes to Application Objects
	Setting Values Directly
	Using Group Mediators
	Using Proto Mediators

	Advanced Uses of Prototypes
	Writing New Accessor Classes
	Creating Prototypes by Coding
	Customizing IBM ILOG Views Studio With the Prototypes Extension

	Predefined Accessors
	Overview
	Graphic Representation of the Behavior of a Prototype

	Data Accessors
	Value
	Reference
	Group
	Script

	Control Accessors
	Assign
	Condition
	Format
	Increment
	Min/Max
	Multiple
	Notify
	Script
	Switch
	Toggle

	Display Accessors
	Fill
	MultiRep
	Rotation
	ScaleX
	ScaleY
	TranslateX
	TranslateY

	Animation Accessors
	Blink
	Invert
	Rotate

	Trigger Accessors
	Callback
	Clock
	Watch
	Event

	Miscellaneous Accessors
	Debug
	Prototype

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

