4|lli

IBM ILOG Views
2D Graphics V5.3

User’s M anual

June 2009

© Copyright International Business Machines Corporation 1987, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Copyright notice
© Copyright International Business M achines Cor poration 1987, 20009.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
Trademarks

IBM, the IBM logo, ibm.com, Websphere, ILOG, the ILOG design, and CPLEX are
trademarks or registered trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks
or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux isaregistered trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Javaand all Java-based trademarks and |ogos are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices

For further information see <installdir>/license/notices.txt in the installed product.

Preface

Part |

Chapter 1

Table of Contents

About This Manual 12
What You Need to KNOW e 12
Manual Organizationt e 12
N ON. . e 13
Typographic CONVENLIONSttt e e e e 13
Naming ConNVENTIONSottt e e e e 13
Man AQeIS. . . e e 14
Basic Manager Featurest 16
INtroducing Managersottt e e e 16
2 =T 17
VB S o et e 18
VieW TranSiOrmer. 18
Event Handling.o e 18
Main Features of lIVManager.t e e e 19
ManNager ViBWS . . ottt e 20
View Transformations e 22
Double-buffering. 22

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 4

Chapter 2

Chapter 3

Manager Lay erS . .o e 23

Layer INAEX . ..o e 24
Layer Selectability e 25
Layer Visibility 25
Layer RENAEriNG.o e 26
Managing ObjJeCtS o 27
Modifying the Geometry of Graphic Objects 27
Selecting ObJeCtSot e 28
Selection ProCedUIres.ot 29
Managing Selected ObjJeCtS 29
Managing Object Properties. 30
Arranging ObJeCtSo e 30
Drawing and Redrawingt e 32
Optimizing Drawing TaskKst e e 33
Saving and Reading. e 34
Manager Event Handling 36
The Event Handling Mechanism. e e 36
EVeNnt HOOKS . . . o 37
ViEW INLEIaCTOrS . . ot e e 37
Predefined View INtEractors.t 38
Example: Implementing the llivDragRectangleinteractorClass 39
Example of an Extension: llvMovelnteractor 45
ODbjJeCt INTEraCtOrS . ..ot 52
ACCEIBIAtOrS . . ot 52
Example: Changing the Key Assigned to an Accelerator. 53
Predefined Manager AcCCeleratorsttt e e e 53
Advanced Manager Features. 56
OB EIV IS . o 56
General NOtIfiCatioNS 57
Manager View NOtIficationso 57

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Part Il

Chapter 4

Manager Layer Notifications i e e e 58

Manager Contents Notifications. i 59
Graphic Object Geometry Notifications i e 59
EXamMplE . . . 59
ViEW HOOKS . .o o e 60
Manager View HOOKS o 61
Example: Monitoring the Number of ObjectsinaManager.c ... 62
Example: Maintaining a Scale Displayed With No Transformation 62
Manager Grid 64
Example: Using a Gridot 65
Undoing and Redoing ACLIONSt 66
CommMANd ClaSS. . . . v oottt 66
Managing Undo e 66
Example: Using the llvManagerCommand ClasstoUndo/Redo 67
Managing Modifications e 68
Grapher. 70
Introducing the Grapher Extension of IBM ILOG Views Studio 72
The Main WIiNdOW.o e e 72
BUfer WINAOWS 73
The MENU Bar 74
The ACtiON TOOIDAr.o e 75
The Editing Modes Toolbar e 75
The Palettes Panel 75
The Grapher Palettes. 76
Grapher Extension Commandst 79
MaKENOE . . . 79
NewGrapherBuffer. 79
SelectArcLinklmageMode e 79
SelectDoubleLinklmageMode e 80
SelectDoubleSplineLinklmageMode e 80

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 6

Chapter 5

Part Il

Chapter 6

SelectLinklmageMode e 80

SelectOneLinklmageMode. e 81
SelectOneSplineLinkimageMode. e 81
SelectOrientedArcLinkimageMode e 81
SelectOrientedDoubleLinkimageMode e 81
SelectOrientedDoubleSplineLinklmageMode i 82
SelectOrientedLinklmageMode 82
SelectOrientedOneLinklmageMode. e e 82
SelectOrientedOneSplineLinkimageMode. i 83
SelectOrientedPolylineLinklmageMode e 83
SelectPINEdItorMOdeo e 83
SelectPolylineLinkimageMode. e 83
Features of the Grapher Package. i, 86
Graph Managemento 86
Description of the llvGrapher Class i 87
Loading and Saving Graph DescCriptionst 88
Grapher LinKS. . ..o 89
Base Class for LiNKS 89
Predefined Grapher Links 91
Creating a Custom Grapher link. 96
CONNECHION PiNS. . . .o e e 98
Grapher INTeractors ot 101
Selection INTEractor e 101
Creating NOGESo 102
Creating LiNKS 102
Editing ConNection PiNs. e 104
Editing LiNKS.o 104
Prototypes. 106
Introducing the Prototypes Package 108

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Chapter 7

Chapter 8

An Overview of the Prototypes Package. 108

Business GraphiC ObJectSot 109
Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio 110
Using Prototypes in Applications 110
When Should You Use Prototypes?.ottt 111
The Prototype Design Pattern 111
Specifying Graphic and Interactive Behavior Using Accessors 112
Using IBM ILOG Views Studio to Create BGOs, 114
Creating and Using Prototypest 115
Creating a Prototype Library 115
Creating @ PrototyPeo o 115
Defining the Attributes 116
Drawing the Prototype ot 119
Defining Graphic Behaviors 122
Defining Interactive Behaviors e 127
Editing @ Prototype. . . . oot 128
Testing YOUr Prototypeo 129
Saving a Prototype.o e 129
Loading and Saving Prototype Libraries. i 130
Creating and Editing Prototype InstancesinPanels 131
Choosing a Buffer TYpeo e 131
Creating a Prototype INStancCeo 131
Editing Prototype INStanCest 132
Loading and Saving Panels 132
Connecting Prototype INStanCest 132
The User Interface and Commands 134
OV IV BW L\ vt e e e e 134
Launching IBM ILOG Views Studio With the Prototypes Extension. 135
The Main WINAOW.ot e e e e 135
BUffer WINAOWS 136

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 8

Chapter 9

The MeNU Bar e e e e e 138

The ACtion TOOIDAr.o e e 139
The Editing Modes Toolbar e 140
The Palettes Panel 140
Group Inspector Panel. 142
Prototypes EXtension Commands.ottt 143
CloseProtoLibrary e 143
CoNVEPIOtOMaNAgEr . . . o oo e e 143
DEletE P OOl Pt ot e 144
Edit POty P . . . o 144
GroupINtOGIOUP ettt et e e e e e e 144
NeWProtoLIbrary 145
NEWPTOIOTYPE. .« . o e ottt e et e e e e e 145
NewPrototypeEditionBuffer e 145
NewPrototypeGrapherBuffer e 145
OpENPIOtOLIbDrary. 146
SaveProtoLibraryAs 146
SelectGroupConnectionMOde et 146
SelectGroupSelectionMode e 147
SelectNodeSelectionMOode.ttt 147
ShoWGIOUPEItOr. 147
TOGOIETIME S . o ottt 147
UNGroUpliVGIOUPS . . . et et e e e e e 148
Using Prototypes in C++ Applications 150
ATCNIEECIUNE . . o 150
GlOUPS .« & vt et e e e e e 151
Attributes and Accessor ObjJeCtS e 152
ACCESSOr Parameters. . . . oottt e 154
Prototypes and INStaNCESot 155
Displaying Groups and Instances in Managers and Containers 155
Connecting AttribUtES. 156

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Chapter 10

Linking Application Objects to Prototypesottt 156

Writing C++ Applications Using Prototypes 157
Header Files. 158
Loading a Panel Containing Prototype Instances it 158
Loading Prototypesot 159
Creating Prototype INStanCes.ttt 160
Deleting Prototype INStanCesottt 160
Retrieving Groups and Prototype INStancest 161
Getting and Setting Attributes 161
User-Defined and Predefined Attributes 163
Linking Prototypes to Application Objects i 165
Setting Values DireCtly.o e 165
Using Group Mediatorsttt e 166
Using Proto Mediatorsot e e 168
Advanced Uses of Prototypesot e 169
Writing New ACCESSOr ClasSES . . . oottt et e e e 169
Creating Prototypes by Codingot 173
Customizing IBM ILOG Views Studio With the Prototypes Extension. 175
Predefined ACCESSOISo 178
OVBIVIBW . o ottt e e e e e e e e e 178
Graphic Representation of the Behavior of a Prototype. 179
Data ACCESSOIS .t ittt ettt e e 180
ValUE 180
REfErENCE . . o 181
GlOUD . .ttt 181
ST o 182
CONtIOl ACCESSOIS . o ettt ittt et e e e e e 184
ASSION . o e 184
CONAItION . . . oo 185
FOrmat . . . 186
INCr MmNt . . 186

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 10

11

MU DI, .« 188
Nty . 189
ST o 189
SWILCN. . . 189
TO00lE . e 191
DiSPlay ACCESS OIS . o ot it ettt e 191
Bl 192
MU RO . . o 192
ROtAION . . . oo 193
SCaAlEX . . 194
SCaAlBY . . 195
Translate X . . oo e 195
TrANSIA Y . . o 196
ANIMALION ACCESSOIS . ..ttt it ettt e e e e e e e e 197
BINK . . 197
VI L 198
ROtate. . . . 199
TrIgOEr ACCESSOIS .« o v ittt ettt ettt et e e e 200
CallbaCK . . . oo 200
ClOCK o 201
L (o 201
BVt . 202
MiSCellan@OUS ACCESSOIS . . o\ttt ittt e e e e 203
DEUG. . . o 203
PrOtOtYPE . . o 204
... 206

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

About This Manual

This manual describesthe IBM® ILOG® Views 2D Graphics 5.3 products.

IBM ILOG Views 2D Graphicsis used to develop very efficient 2D vector graphic
representations with full interactive capabilities. It is composed of the Manager, Grapher,
Prototype, and Web Deployment packages.

What You Need to Know

This manual assumes that you are familiar with the PC or UNIX environment in which you
are going to use IBM® ILOG® Views, including its particular windowing system. Since
IBM ILOG Viewsis written for C++ devel opers, the documentation also assumes that you
can write C++ code and that you are familiar with your C++ devel opment environment so as
to manipulate files and directories, use atext editor, and compile and run C++ programs.

Manual Organization

The manual contains four separate parts divided into chapters. Each of these parts describes
one of the packages that make up IBM® ILOG® Views 2D Graphics 5.3, asfollows:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 12

Part I, Managers, describes the IBM ILOG Views Managers package, dedicated to
coordinating large quantities of graphic objects.

Part 11, Grapher, describesthe IBM ILOG Views Grapher package, dedicated to creating
graphic programs that include and represent hierarchical information.

Part 111, Prototypes, describesthe IBM ILOG Views Prototypes package, dedicated to
creating custom domain-specific graphic objects.

Notation

13

Typographic Conventions

The following typographic conventions apply throughout this manual:

4

Code extracts, file names, and entries to be made by the user are written in courier
typeface.

Naming Conventions

Throughout this manual, the following naming conventions apply to the API.

2

2

The names of types, classes, functions, and macros defined in the IBM ILOG Views
libraries begin with T1v.

The names of classes aswell as global functions are written as concatenated words with
each initial letter capitalized:

class IlvDrawingView;

The names of virtual and regular methods begin with alowercase letter; the names of
static methods start with an uppercase letter:

virtual IlvClassInfo* getClassInfo() const;

static IlvClassInfo* ClassInfo* () const;

IBM ILOG ViIEws V5.3 — 2D GRAPHICS

Part |

Managers

Part | describes a high-level IBM® ILOG® Views package called the manager, whichis
dedicated to coordinating large quantities of graphic objects:

& Chapter 1, Basic Manager Features describes the classes, methods, and principles of
managers.

& Chapter 2, Manager Event Handling describes the event handling mechanism of
managers.

& Chapter 3, Advanced Manager Features describes the more advanced features of
managers.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 14

Basic Manager Features

This section describes how to coordinate a large quantity of graphic objects through the use
of amanager, that is, through the 11vManager class and its associated classes.

The basic features of managers are described, in the following order:
Introducing Managers

Manager Views

Manager Layers

Managing Objects

Drawing and Redrawing

Optimizing Drawing Tasks

® 6 6 6 6 o o

Saving and Reading

Introducing Managers
A manager coordinates the interactions between the display of graphic objectsin multiple

views and the organization of graphic objectsin multiple storage places. Thisisillustrated in
Figure 1.1:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 16

17

L

L

Manager

s===4) |

=
ZZ=Z5
-
-~

I

Figurel.l Manager Concept

To introduce some of the important concepts related to managers, the following items are
described:

& lLayers

¢ \iews

¢ \iew Transformer
& Event Handling

& Main Features of [lvManager

Layers

Instances of the 11vManager class handle a set of graphic objects derived from the

IBM® ILOG® Viewsclasscaled 11vGeraphic. When you organize graphic objectsthat the
manager coordinates, you create an unlimited number of graphic objects and place themin
multiple storage areas. These storage areas appear in superimposed layers. That iswhy they
are called manager layers.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Introducing Managers

A manager is therefore atool designed to handle objects placed in different priority levels.
Priority level here means that objects stored in ahigher screen layer are displayed in front of
objectsin lower layers.

Each graphic object stored in alayer is unique to that layer and can be stored only in that
layer.

Note: An object must never be stored in more than one holder such as 11vManager,
IlvContainer, OF I1vGraphicSet.

Graphic objects stored throughout the manager all share the same coordinate system.

Views

A manager uses one or multiple viewsto display its set of graphic objects. These views are
instances of the class 11vview and you can connect as many as you want to the manager.

View Transformer

A geometric transformation (class I11vTransformer) can be associated with each view
connected to a manager. When drawing its graphic objects in aview, the manager will use
the transformer of the view, thereby providing a different representation of the same objects
in each view (zoomed, unzoomed, translated, rotated, and so on).

Event Handling

All events are handled by means of event hooks, view interactors, object interactors, or
accelerators. These are described briefly here and in more detail in section Manager Event
Handling.

Event Hooks

The 11vManagerEventHook classisintended to monitor or filter events dispatched to the
manager.

Interactors

Interactors are classes designed to handle user interactions involving asingle or a complex
combination of events.

& View interactors are classes derived from I1vManagervViewInteractor and handle
interactions in the context of awhole view.

& Object interactors are derived from T1vInteractor and handle user interactions
involving a single graphic object or a set of graphic objects.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 18

Accelerators

An accelerator is an association of an event description with a user-defined action. In other
words, when the event occurs the manager calls the action. This very basic interaction
mechanism is limited to asingle response to a single event, such as double-clicking with the
left mouse button or pressing Ctrl-F.

Main Features of llvManager

The I1vContainer classaready providesways of handling graphic objects. However, you
may require more powerful features. Hereisalist of circumstances under which you might
need to use a manager:

¢ You need to handle alarge number of graphic objects (hundreds or thousands) and
encounter a performance problem using an T1vContainer.

& You wish to associate a specific behavior with aview, but not with a particular graphic
object.

& You want multiple views of the same graphic objects, but without duplicating them.
Remember that objects of the T11vGraphic class are not linked to any particular
IlvView.

& You want to display the graphic objects with differing priorities.

& You want to add extra properties to objects, either individually or within agroup, which
would allow them to be visible or selectable.

4 You want to save your graphic objects.

Managers provide a solution to these problems. They also offer advanced features that
complex graphic applications may need:

¢ Commands
¢ |nput/Output
& Double-buffering
¢ Observers
¢ \iew Hooks
¢ Grid
Commands

Objects can be manipulated and views can be changed by means of instances of the
IlvManagerCommand class. This class has been designed to give 11vManager the ability
to undo and redo changes.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Manager Views

Input/Output

Instances of the T11vGraphic class can deal with input/output. Similarly, the T11vManager
class has a set of member functions to read and write object descriptions. Manager
properties, such as the layer or name of an object, can also be read and written.

Double-buffering

When manipulating thousands of overlapping objects, redrawing operations can be very
time-consuming. They can also be unattractive if each redrawn element reappears
sequentially on the screen. These problems can be avoided by using the double-buffering
technique implemented in T1vManager. When thisfeature is activated, all drawing
functions are performed in a hidden image; when the area has been completely updated, the
image is drawn at once in the working view.

Observers

This mechanism, based on the classes I1vManagerObserver and
IlvManagerObservable, alows the application to be notified when certain modifications
are done to the manager (adding or removing aview, setting atransformer on aview, adding
graphic objects, adding or removing alayer, and so on).

View Hooks

Specific actions can be triggered under predefined circumstances. The manager view hooks
let you connect events that occur in a manager with actions to be performed. Thiswill be
described in more detail in section View Hooks. Some application tasks performed with view
hooks can be implemented with observers.

Grid

Thistool allows you to force mouse events to occur only at locations defined by a snapping
grid.

Manager Views

Attaching multiple views to a manager alows your program to display graphic objects
simultaneously in various configurations. Thisisillustrated in Figure 1.2.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 20

21

Figure1.2 Multiple Views Bound To a Manager
The following 11vManager member functions handle the binding of views to a manager:

€ TIlvManager::addview - Attaches aview to the manager. All events are then handled
by the hierarchy of interactorsin place in the manager.

€ TIlvManager::removeView - Removesaview from the manager view list. Theview is
no longer handled by the manager.

® TIlvManager::getViews - Returnsan array of pointersto all the views currently
connected to the manager.

The following aspects of manager views are described in this section:
& View Transformations
¢ Double-buffering

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Manager Views

View Transformations

Use the following T1vManager member functions to modify the transformer associated
with the view (except for I1vManager: : £itToContents, which modifies the size of the
view):

IlvManager: :setTransformer
IlvManager: :addTransformer
IlvManager: :translateView
IlvManager: : zoomView
IlvManager: :rotateView
IlvManager: : fitToContents

IlvManager: : fitTransformerToContents

® 6 6 6 6 o o o

IlvManager: :ensureVisible

Example: Zooming a View
This accelerator zooms a view using a scaling factor of two:

static void
ZoomView (IlvManager* manager, IlvView* view, IlvEvent& event, IlvAny)
{

IlvPoint pt(event.x(), event.y());

manager->zoomView (view, pt, IlvFloat(2), IlvFloat(2), IlvTrue);

The point given in the zoomview argument keeps its position after the zoom. The last
parameter forces the redrawing of the view.

Double-buffering

The double-buffering member functions can be used to prevent the screen from flickering
when many objects are manipulated. For each manager view, this feature requires the
allocation of a hidden bitmap the size of the view. Depending on the number of views and
the color model, double-buffering may consume alarge amount of memory.

The member functions that handle double-buffering are:
€ IlvManager::isDoubleBuffering

€ IlvManager: :setDoubleBuffering

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 22

€ IlvManager: :setBackground

Note: You must usethe setBackground member function to change the background color
of a view in double-buffering mode.

Example

This function switches the double-buffering mode of the given view:
static void

ToggleDoubleBuffering (IlvManager* manager,

{

IlvView* view)
manager->setDoubleBuffering (view,

Imanager->isDoubleBuffering (view)) ;
}

Manager Layers

Layers are storage places for graphic objects, as shown in Figure 1.3.

Figure1.3 Layers

Once these objects have been stored they are controlled by and organized under the same

manager. Each layer is unique to and can be controlled by only one manager. Each graphic
object handled by a manager belongs to one and only one layer.

Note: For more member functions dealing with layers, see the 11vManager and
IlvManagerLayer Classes.

23 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Manager Layers

This section is divided as follows:
& Layer Index

& Layer Selectability

& Layer Misibility

& Layer Rendering

Layer Index

Layers are stored by the manager according to their index. Thefirst layer hasindex o0 and
layer N hasindex N-1. Layers are represented by an instance of the T11vManagerLayer
class, but most of the time they are identified in member function signatures by their index
in the manager. Various member functions let you manipulate these layers or the objects that
they own.

The manager draws the layers one by one, starting at index 0. Consequently, the top-most
layer on the screen is the one with the highest index. Thisintroduces avisual hierarchy
among graphic objects based on their layer index. In general, graphic objects of amore static
nature—for instance, objects used as background for your IBM ILOG Views programs—are
put in alower layer of the manager. Graphic objects of a dynamic nature—objects with
which users interact—are typically put in a higher layer. The top-most layer (the one with
the highest index) is reserved for use by the manager; it contains the selection objects
displayed as square handles around selected objects. Since the manager increases the index
of this layer as new layers are added, it always remains on the top of the stack.

Setting-Up Layers
By default, a manager is created with two layers. You can change this number when creating
amanager by using the second parameter of the constructor. You can aso change this
number once the manager has been created, by using the T1vManager: : setNumLayers
member function.
Reminder: You must refer to the layers by index numbers starting with 0. For example,
layer 3isindexed as 2.

Example

The following code adds an object to the second layer (specified by index 1) of the manager
and then moves the object to layer 0.

manager->addObject (object, IlvTrue, 1);
manager->setLayer (object, 0);

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 24

25

When adding a graphic object using a non-existing layer index, the number of layersis
increased automatically.

IlvManager* manager = new IlvManager (display); // A manager with 2 layers
IlvRectangle* rect = new IlvRectangle(display, IlvRect (0, 0, 100, 100));
// Add the object in layer 7 and create intermediate layers
manager->addObject (rect, IlFalse, 7);

Layer Selectability

Layer selectability indicates whether the application end-user can select the objectswithin a
certain layer. Preventing your program user from selecting graphic objectsin alayer means
that these objects are fixed and unchangeable. The following member functions are used for
layer selectability:

& |lvManager::setSelectable
& |lvManager::isSelectable

Layer Visibility

Layer visibility indicates whether the objects within a certain layer should be visible to the
user. Thisnotion of layer visibility isnot as simple asit seems because alayer can be hidden
in several different ways:

¢ Globally - Hidden in all the manager views.

¢ Locally - Hidden in one or several manager views.

¢ Contextually - Hidden by an application visibility filter.

A layer isdisplayed in aview if it is not hidden in any of these ways.
Global Visibility

If alayer is hidden globally, it will not be displayed in any of the manager views. The
following T1vManager member functions allow you to get or set the global visibility of a

layer:
® setVisible (int layer, IlBoolean val)

€ isVisible (int layer)

Local Visibility

Use thefollowing 11vManager member functions to get or set the visibility of alayer for a
given manager view:

® setVisible (const IlvView* view, int layer, IlBoolean visible)

® isVisible (const IlvView* view, int layer)

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Manager Layers

Visibility Filter
IlvLayerVisibilityFilter iSan abstract class. Subclasses must redefine the virtual

member function T1vLayervisibilityFilter::isVisible to return the visibility
status of the layer.

Each manager layer handles alist of visibility filters. When alayer must be drawnin aview,
the manager calls the member function T1vLayervisibilityFilter::isvisible for
all thefilters of the layer; if avisibility filter returns t11rFalse, the layer is not displayed.
This mechanism only allows the application to hide layers that would be otherwise visible; it
does not alow you to show hidden layers.

To add avisibility filter to alayer, use T1vManagerLayer: :addVisibilityFilter.

Layer Rendering

Layer rendering indicates how the layer is to be rendered onto the drawing device. Two
attributes of the layer can change its rendering:

& Alpha Value
& Anti-aliasing Mode

Alpha Value

The alphavalue of alayer represents the opacity with which thislayer will be drawn above
other layers. If the layer contains objects having transparent colors, the transparency of the
layer and the transparent objects will be composed.

The default value for this setting is T11vFullIntensity, which meansthat the layer is
completely opaque.

Seethe I1vManagerLayer: : setAlpha method for details.

Anti-aliasing Mode

The anti-aliasing mode of alayer isaglobal setting that will be applied to all the objects of
thislayer. It indicates the anti-aliasing mode with which objects are going to be rendered.

The default value for this setting is T1vDefaultAntialiasingMode, which means that
the anti-aliasing mode of the layer will be inherited from the drawing port itself. For
example, if the anti-aliasing mode of a manager view has been set to
IlvUseAntialiasingMode (Se€@ I1lvPort: :setAntialiasingMode), it meansthat al
the layers of thisview will use anti-aliasing. You can override this setting for a specific layer
by indicating that you do not need anti-aliasing for this layer.

Seethe I1vManagerLayer: :setAntialiasingMode method for details.

Note: These features are only supported on Microsoft Windows with GDI+ installed. See
Appendix B / GDI+ of the Foundation User’s Manual for details

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 26

Managing Objects

27

This section explains how to manipulate the objects contained in a manager. It isdivided as
follows:

& Modifying the Geometry of Graphic Objects
Selecting Objects

Selection Procedures

Managing Selected Objects

Managing Object Properties

* & 6 o o

Arranging Objects

Modifying the Geometry of Graphic Objects

The 11vManager class has been designed to handle alarge number of graphic objects. In
order to perform graphical operations efficiently (for example, redrawing part of aview,
locating the objects at a given position, and so on), the manager uses a complex internal data
structure where graphic objects are organized according to their geometry, that is, their
bounding box. To keep this data structure up to date, the manager needs to be aware of any
modification in the geometry of its graphic objects. Thisiswhy any such modification
should be carried out in the following manner:

1. Take the object out of the manager list.
2. Manipulate its geometric characteristics.

3. Put the object back into the manager list.

The easiest way to do thisisto use the dedicated 11vManager member functions respecting
these requirements:

€ IlvManager: :applyToObject
IlvManager: :applyToObjects
IlvManager: :applyInside
IlvManager: :applyIntersects

IlvManager: :applyToTaggedObjects

* 6 6 o o

IlvManager: :applyToSelections

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Managing Objects

Note: Do not change the size of a managed object by calling its
IlvGraphic::translate OF I1lvGraphic: :scale member functions. The manager
use sophisticated data structures and an intricate indexing system for tracking the position
of objects with respect to each other. You should not interfere with these mechanisms.

For simple geometric operations such as moving, trandating, or reshaping, 11vManager
provides the following member functions that do not need to call
IlvManager: :applyToObject:

€ IlvManager::translateObject
€ IlvManager::moveObject
€ IlvManager: :reshapeObject

Example: Translating an Object

The following code gets a pointer to an object named test from the manager. If this object
exists, itistrandlated 10 pixelsright and 20 pixels down, and then redrawn (fourth
parameter set to T1True):

object = manager->getObject (“test”);

if (object)
manager->translateObject (object, 10, 20, IlvTrue);

Applying Functions to Objects in a Region

In order to apply a user-defined function to objects that are located either partly or wholly
within a specific region, use the following 11vManager member functions:

€ IlvManager: :applyInside

€ IlvManager::applylIntersects

Selecting Objects

Use the following two member functions of T1vManager to handle the selection state of
objects:

€ IlvManager::isSelected

€ IlvManager: :setSelected

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 28

29

Example:

The following code gets a pointer to an object named test from the manager. If this object
exists, it is selected (second parameter is set to T1True) and redrawn (third parameter set to
IlTrue):

object = manager->getObject (“test”);

if (object)
manager->setSelected (object, IlvTrue, IlvTrue);

Selection Procedures

The 11vManager member functions involved in selection tasks are the following:
IlvManager::applyToSelections

IlvManager: :numberOfSelections

IlvManager: :deSelectAll

IlvManager: :getSelections

IlvManager: :deleteSelections

IlvManager: :getSelection

® 6 6 6 6 o o

IlvManager: :setMakeSelection

Example: Customizing Selection Handle Objects

This example shows how to attach new selection handle objects to line objects:

static IlvDrawSelection*
MakeSelection (IlvManager* manager, IlvGraphic* graphic)
{

if (graphic->isSubtypeOf (“*IlvLine”))

return new IlvLineHandle (manager->getDisplay (), graphic);
else
return new IlvDrawSelection (manager->getDisplay (), graphic);

The following code changes the function called to create the selection object. If the selected
object isan T1vLine or an instance of a class derived from it, the manager uses the
IlvLineHandle Object to draw the selection:

manager->setMakeSelection (MakeSelection) ;

Managing Selected Objects

Selecting is abasic process for managers and most manager functions should apply to a
selected list of objects. A manager selection can be thought of as a specia set holding some
of the managed objects. To display selected objects within a manager, IBM® ILOG® Views

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Managing Objects

creates selection objectsthat are stored in the manager. The difference between these objects
and othersisthat they are internally managed and cannot be manipulated.

Example: Translating the Selected Objects

The following example shows an accel erator that translates all selected objects ten pixels
right and 20 pixels down. This accelerator usesthe 11vManager: :applyToSelections
member function to translate each of the objects. Redrawing of the objectsis done once at
the end of the call to this method, asis done for al the apply functions, because its third
parameter is set to the default value 11 True.

static void
TranslateSelectedObjects (IlvGraphic* object, IlvAny arg)
{
IlvManager* manager = (IlvManager*) arg;
manager->translateObject (object, 10, 20, IlvFalse);
}

static void
TranslateAccelerator (IlvManager* manager, IlvView*, IlvEvent&, IlvAny)
{

manager->applyToSelections (TranslateSelectedObjects, manager) ;

}

Managing Object Properties

Several member functions of the T1vManager class describe properties that are assigned to
an object when it is added to amanager (for example, T1vManager: : isSelectable,
IlvManager: :setSelectable, IlvManager: : isResizeable, and SO OI’I).

You can also add specific properties to each object by means of the property-related member
functions of the T1vGraphic class. These properties are application-dependent and have no
effect on the manager.

TI1lvManager provides member functionsto check whether an object has a property or to
change a property of an object.
Example: Setting an Object as Unmovable
Thisisan example of how to set an object in a manager as unmovable:
object = manager->getObject(“test”);

if (object)
manager->setMoveable (object, IlvFalse);

Arranging Objects

The 11vManager class provides member functions to help organize the layout of graphic
objects.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 30

31

& Grouping
& Aligning and Duplicating

Grouping

The I1vManager: : group member function lets you create an 11vGraphicSet froman
array of objects and put the objects from an 11vGraphicset into the manager.

The I1vManager: : unGroup member function lets you do the inverse of this.

Note: Graphic objects grouped in a graphic set are no longer handled by the manager.
The manager only sees the graphic set.

Example: Grouping Objects
Thisis an example of an accelerator that groups selected objects:

static void

Group (IlvManager* manager, IlvView*, IlvEvent&, IlvAny)

{
if (!manager->numberOfSelections()) return;
I1lvUInt n;
IlvGraphic* const* objs = manager->getSelections (n);
IlvGraphicSet* g = manager->group(n, (IlvGraphic* const*)objs);
if (g) manager->setSelected((IlvGraphic*)g, IlvTrue, IlvTrue);

Thefirst line checks the number of objects and returnsif no objects are selected. Then, a
pointer to the selected objects is obtained using the T1vManager: :getSelections
member function. The next line creates the group. The new object is selected at the end of
this accelerator.

Aligning and Duplicating

Some 11vManager member functions are defined to automatically align objects with
respect to each other:

€ IlvManager::align

€ IlvManager::makeColumn
€ IlvManager: :makeRow

€ IlvManager: :sameWidth
€ IlvManager: :sameHeight

Another member function duplicates objects, that is, it creates a copy of the objects and
inserts them into the manager:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Drawing and Redrawing

€ IlvManager::duplicate
l Note: These modifications are always applied to the currently selected objects

Example: Make All Selected Objects the Same Width
This accelerator gives the width of the first selected object to al the selected objects:

static void
SameWidth (I1lvManager* manager, IlvView*, IlvEvent&, I1vAny)
{

manager->sameWidth (I1lvTrue) ;

}

The value T1True passed to I1vManager: : sameWidth indicates that the objects are
automatically redrawn.

Drawing and Redrawing

Use the following 11vManager member functionsto draw objects:
€ IlvManager::draw

€ IlvManager: :reDraw

€ IlvManager: :bufferedDraw

The I1vManager: : buf feredbraw method works in the same way as double-buffering
does, with the following differences:

& |tislocal toaview, aregion, or an object.
& |t only lastsfor the duration of the drawing operation.

The next section, Optimizing Drawing Tasks, describes other 11vManager member
functions used to redraw graphic objects efficiently in a manager.

Redrawing All Views

In some cases, you may want to refresh all the views managed by an 11vManager. To do so,
cal one of the T1vManager: : reDraw member functions:

manager->reDraw () ;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 32

Optimizing Drawing Tasks

33

A special manager feature lets you perform several geometric operations and redraw only
when all the modifications are done. Thisisimplemented by the use of the update region,
which is aregion made up of invalidated rectangles.

The update region stores the appropriate regions before any modifications are carried out on
objects. It also stores the relevant regions after these modifications have been carried out for
each view.

To successfully perform an application task, you must mark the regions where relevant
objects are located as invalid, apply the function, and then invalidate the regions where the
objectsinvolved are now placed. This mechanismis simplified by means of a set of member
functions of the 11vManager class. Regions to be updated are refreshed only when
IlvManager: : reDrawViews iS called, which means that refreshing the views of a
manager is done by marking regionsto be redrawn in a cycle of

IlvManager: :initReDraws and IlvManager: : reDrawViews.

These cycles can be nested so that only the last call to the T1vManager: : reDrawviews
member function actually updates the display.

The 11vManager member functions that help you optimize drawing tasks are:

€ IlvManager::initReDraws - Marksthe beginning of the drawing optimization
operation by emptying the region to update for each managed view. Once thisstep is
completed, direct or indirect callsto adraw directive are deferred. For every
IlvManager: : initReDraws, there should be one call to
IlvManager: : reDrawViews, Or else awarning isissued. Callsto
IlvManager: : initReDraws can be embedded so that the actual refresh takes place
only when thelast call to T1vManager: : reDrawViews iSreached.

& IlvManager::invalidateRegion - Marksaregion asinvaid. Thisregion will be
redrawn later. Each call to T1vManager: : invalidateRegion addsthe region to the
update region in every view.

€ IlvManager::reDrawViews - Sends the drawing commands for the whole update
region. All the objectsinvolved in previous calls to
IlvManager: : invalidateRegion are then updated.

& IlvManager::abortReDraws - Abortsthe mechanism of deferred redraws (for
example, if you need to refresh the whole screen). This function resets the update region
to empty. If needed, you should start again with an T1vManager: : initReDraws cal.

€ IlvManager::isInvalidating - Returns 11True whenthe managerisinan
IlvManager: :initReDraws/IlvManager: :reDrawViews Stae.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Saving and Reading

The successive use of these member functions is a mechanism used in the
IlvManager: :applyToObject member function. In fact, the call:

manager->applyToObject (obj, func, userArg, IlvTrue);

is equivalent to:

manager->initReDraws () ;
manager->invalidateRegion (obj) ;
manager->applyToObject (obj, func, userArg, IlvFalse);
manager->invalidateRegion (obj) ;
manager->reDrawViews () ;

The IlvManager: : invalidateRegion member function workswith the bounding box of
the object given in the parameter. When an operation applied to the object modifiesits
bounding box, T1vManager: : invalidateRegion must be called twice; once before and
once after the operation.

For example, when moving an object, you must invalidate the region where the object was
initially located and invalidate the final region so that the object can be redrawn. If the object
bounding box is not modified, only one call to I11vManager: : invalidateRegion iS
necessary.

Saving and Reading
Manager objects and their properties can be saved and read from particular streams. To
make it easy to save and restore a set of T1vGraphic objects, two classes are provided:
€ TIlvManagerOutputFile (asubtypeof I1voutputFile)
& IlvManagerInputFile (asubtypeof I1vInputFile)
These two classes add only manager-specific information to the object description blocks.

The I1vManagerInputFile class reads the files that have been created using
IlvManagerOutputFile.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 34

35

Example: Using the llvManagerOutputFile Class

The following is an example of subtyping of the T1voutputFile class, wherethe
I1lvOutputFile: :writeObject member function isimplemented to add the manager-
specific information for each object:

void
IlvManagerOutputFile: :writeObject (const IlvGraphic* object)
{
if (getManager ()->isManaged (object))
getStream() << getManager ()->getLayer (object) << IlvSpc();
else
getStream() << "-1 ";
writeObjectBlock (object) ;
}

New information is added before the object descriptor block iswritten. It indicates the layer
where the graphic object lies. If the object was not managed by the manager,

IBM ILOG Viewswritesthevalue -1 to getStream (Whichis not avalid layer index). The
value -1 indicates that the object should not be added to the manager object set.

Note: Soecialized IBM ILOG Views graphic objects called “ gadgets’ need the following
subclasses: 11vGadgetManagerInputFile (subclassof r1vinputFile) and
IlvGadgetManagerOutputFile (subclassof T11voutputFile). These subclasses
handle the persistence of gadget-related properties. Subtyping these two classesis
allowed, but it is mandatory to insert the string ~Gadget” in the subtyped C++ class
name.

The C++ code used to implement the T1vManagerInputFile: : readObject member
function is shown here:

IlvGraphic*
IlvManagerInputFile: :readObject ()
{
IlvGraphic* object;
int layer;
getStream() >> layer;
I1UInt dummyIndex;
IlvGraphic* object = readObjectBlock (dummyIndex) ;
if (object && (layer >= 0))
getManager () ->addObject (object, IlFalse, layer);
return object;

}

The object read is added to the manager only if itslayer index is greater than or equal to 0.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Manager Event Handling

This section describes how managers handle events.

An event can be handled by different types of manager components:
¢ Event Hooks

¢ \iew Interactors

& Object Interactors

& Accelerators

First, the mechanism for handling events is described. Then, the different manager
components that handle events are presented.

The Event Handling Mechanism

The mechanism used by a manager when it receives an event is as follows:
1. It sendsthe event to the list of event hooks.

2. If none of the event hooks consume the event, it is sent to the interactor associated with
the view that received the event.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 36

3. If thereisno view interactor, the manager looks for the top most graphic object at the
event position and sends the event to its object interactor.

4. If thereis no object or no object interactor, or if the object interactor does not handle the
event, it is dispatched to the manager accelerators.

Event Hooks

Event hooks are instances of the T1vManagerEventHook class. They are used to monitor
or filter events occurring in all the views associated with the manager. Each manager has a
list of event hooks. They can be added or removed from the list using the following
IlvManager member functions:

€ IlvManager::installEventHook
€ IlvManager::removeEventHook
Event hooks are the first ones to get hold of the events occurring in a manager.

When it receives an event, the manager callsthe hand1eEvent member function of each
event hook one after the other. If one of them returns T1True, the subsequent event hooks
are not called and the event is considered to be consumed. If none of the event hooks
consume the event, it is dispatched further to interactors or accelerators.

View Interactors

37

Theroleof the I11vManagerviewInteractor classisto handle complex sequences of user
events to be treated by a particular 11vview associated with a manager.

Setting or removing an interactor on aview can be done using the following 11vManager
member functions:

€ IlvManager::getInteractor
€ IlvManager::setInteractor
€ IlvManager::removelnteractor

In this section, the predefined view interactors are first listed and then two examples
showing how to implement view interactors are presented, as follows:

¢ Predefined View Interactors
¢ Example: Implementing the IlvDragRectanglelnteractor Class

¢ Example of an Extension: l1lvMovelnteractor

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Interactors

Predefined View Interactors

Predefined interactors obtained by instantiating subclasses derived from the
IlvDragRectangleInteractor classarelisted here:

€ IlvDragRectangleInteractor

Letsthe user draw arectangle that can be used for any purpose by subclasses (see section
Example: Implementing the llvDragRectanglelnteractor Class for an example showing
how to use this interactor).

Include <ilviews/manager/dragrin.h>

€ IlvMakeRectangleInteractor
Allows you to create T1vRectangle objects.
Include <ilviews/manager/mkrectin.h>

€ IlvMakeFilledRectangleInteractor
Allowsyou to create T1vFilledRectangle Objects.
Include <ilviews/manager/mkrectin.h>

€ IlvMakeReliefRectangleInteractor
Allowsyou to create T1vReliefRectangle Objects.
Include <ilviews/manager/mkrelfin.h>

¢ IlvMakeReliefDiamondInteractor
Allowsyou to create T1vReliefDiamond Objects.
Include <ilviews/manager/mkrelfin.h>

€ IlvMakeRoundRectangleInteractor
Allows you to create T1vRoundRectangle Objects.
Include <ilviews/manager/mkround.h>.

€ IlvMakeFilledRoundRectangleInteractor
Allows you to create T1vFilledRoundRectangle Objects.
Include <ilviews/manager/mkround.h>

€ IlvMakeEllipseInteractor
Allowsyou to create T1vE11lipse Objects.
Include <ilviews/manager/mkarcin.h>

€ IlvMakeFilledEllipseInteractor

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 38

39

Allowsyouto create T1vFilledEllipse Objects.
Include <ilviews/manager/mkarcin.h>
€ TlvMakeZoomInteractor

Handles the zooming command. You draw a rectangular region into which you wish to
zoom.

Include <ilviews/manager/geointer.h>
€ IlvMakeUnZoomInteractor

Handles the unzooming command. You draw arectangular region into which the area
you are watching is unzoomed.

Include <ilviews/manager/geointer.h>
€ IlvMakeBitmapInteractor

Allows you to create a bitmap from the view. You drag arectangle and an 11vIcon
object is created from the contents of the rectangle sel ected.

Include <ilviews/manager/utilint.h>

€ IlvSelectInteractor
Allows you to select, translate, and resize graphic objects.
Include <ilviews/manager/selinter.h>

€ IlvMakeLineInteractor

Allows you to create T1vLine objects. Two derived classes are defined to create
different types of lines. T1vMakeArrowLineInteractor and
IlvMakeReliefLineInteractor.

Include <ilviews/manager/mklinein.h>

Example: Implementing the llvDragRectanglelnteractor Class

This example demonstrates how the T1vDragRectangleInteractor member functions
areimplemented. The example can be used as a starting point to create your own interactor.

The 11vDragRectangleInteractor interactor allows the user to designate a rectangular
region in aview. Thisrectangle can then be used for various purposesin derived interactors;
for instance, a subclass dedicated to the creation of agraphic object can use the rectangle to
define the bounding box of the new object.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Interactors

Hereisadightly revised version of the synopsis of this class:

class IlvDragRectangleInteractor
: public IlvManagerViewInteractor
{
public:
IlvDragRectangleInteractor (IlvManager* manager, IlvView* view)
: IlvManagerViewInteractor (manager, view) {}

virtual void handleEvent (IlvEvent& event) ;
virtual void drawGhost () ;

virtual void doIt (IlvRect&);

virtual void abort();

IlvRect& getRectangle() ;

protected:
IlvRect _xor_rectangle;
IlvPos _firstx;

IlvPos _firsty;
}i

Three protected fields are defined:
& _xor_rectangle - Holdsthe coordinates of the rectangle being dragged by the user.

& _firstxand_firsty - The coordinates of the first button-down event received. This
point is used as the start of the selected rectangle. It can be any one of the 4 corners
depending on the direction in which the user drags the rectangle.

The constructor does nothing and theinitialization is done by the dozt member function.
Also, four member functions of the 11vManagerviewInteractor class are overloaded:
& abort Member Function

¢ handleEvent Member Function

& drawGhost Member Function

4 dolt Member Function

abort Member Function

This member function is called to cancel the interaction. The rectangle width is set to 0.

void
IlvDragRectangleInteractor: :abort ()
{

_xor_rectangle.w(0) ;

}

handleEvent Member Function

The following shows a simplified version of the
IlvDragRectangleInteractor: :handleEvent member function.

void

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 40

IlvDragRectangleInteractor: :handleEvent (IlvEvent& event)
{
switch(event.type()) {
case IlvKeyUp:
case IlvKeyDown:
getManager () ->shortCut (event, getView()) ;

break;
case IlvButtonDown:

if (event.button() != IlvLeftButton)
getManager () ->shortCut (event, getView());

else {
_xor_rectangle.w(0) ;
IlvPoint p(event.x(), event.y());
if (getTransformer ()) getTransformer ()->inverse (p) ;

_firstx = p.x();
_firsty = p.v();
}

break;
case IlvButtonDragged:

if ((event.button() != IlvLeftButton))
getManager () ->shortCut (event, getView());

else {
if (_xor_rectangle.w()) drawGhost () ;
IlvPoint p(event.x(), event.y());
if (getTransformer()) getTransformer ()->inverse (p);

_xor_rectangle.move (I1lvMin(_firstx, p.x()),
IlvMin(_firsty, p.yv()));
_xor_rectangle.resize((IlvDim) (IlvMax(_firstx, p.x())
-_xor_rectangle.x()),
(IlvDim) (IlvMax(_firsty, p.v())
-_xor_rectangle.v()));

ensureVisible (IlvPoint (event.x (), event.y()));
drawGhost () ;

}

break;

case IlvButtonUp:

if (event.button() != IlvLeftButton)
getManager () ->shortCut (event, getView());

else {
if (!_xor_rectangle.w()) return;
drawGhost () ;

IlvRect rect (_xor_rectangle) ;
_xor_rectangle.w(0) ;
doIt (rect);

}

break;

}

Here, only button events are managed. Other events are discarded or sent to the manager for
possible dispatch to accelerators by means of acall to the T1vManager: : shortCut
member function.

The following types of events are handled by the handl eEvent member function:
& Keyboard Events

¢ Button-Down Events

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

View Interactors

& Button-Dragged Events
4 Button-Up Events

Keyboard Events

You want to ignore these events. The best way to do this without losing the information
conveyed by the event is to bypass the natural view interactor process and send the event
back to the manager where it might match an accelerator:

case IlvKeyUp:

case IlvKeyDown:
getManager () ->shortCut (event, getView()) ;
break;

Button-Down Events

case IlvButtonDown:
break;
The mouse position isstored in _firstx and _firsty and therectangleisreset. Thisis

done by setting the width of the rectangle to 0. Then, the coordinates are stored in the object
coordinate system:

if (event.button() != IlvLeftButton)
getManager () ->shortCut (event, getView()) ;

else {
_xor_rectangle.w(0) ;
IlvPoint p(event.x(), event.y());
if (getTransformer()) getTransformer ()->inverse (p);
_firstx = p.x();
_firsty = p.y();

}

Button-Dragged Events
case IlvButtonDragged:

break;
If _xor_rectangle isvalid, the rectangle has been drawn with drawGhost and hasto be
erased:

if (_xor_rectangle.w()) drawGhost () ;

The new rectangle is computed in the object coordinate system:

IlvPoint p(event.x (), event.y());

if (getTransformer()) getTransformer ()->inverse (p);

_xor_rectangle.move (IlvMin (_firstx, p.x()),

IlvMin(_firsty, p.v())):

_xor_rectangle.resize((IlvDim) (IlvMax(_firstx, p.x())

-_xor_rectangle.x()),
(IlvDim) (IlvMax(_firsty, p.v())

-_xor_rectangle.y()));

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 42

43

The following ensures that the dragged point remains on the screen. When the view isin a
scrolled view, you can change the view coordinates to keep the mouse position visible:

ensureVisible (IlvPoint (event.x (), event.y()));

The new rectangle is drawn:

drawGhost () ;

Button-Up Events
A button-up event signifies the end of the interaction; the rectangle has been defined:

case IlvButtonUp:
break;
The previous ghost image is erased:

drawGhost () ;

The current rectangle is saved and the interactor is reset:

IlvRect rect (_xor_rectangle);
_xor_rectangle.w(0) ;

The do1t virtual member function is called. Subclasses overload this method to perform
their final task using the rectangle provided as the parameter:

doIt(rect);

drawGhost Member Function

The T11vDragRectangleInteractor: :drawGhost member function draws a ghost
image of _xor_rectangle:

void
IlvDragRectangleInteractor: :drawGhost ()
{

IlvManager* mgr = getManager () ;

if (_xor_rectangle.w()) {
I1lvRect rect = _xor_rectangle;
if (getTransformer()) getTransformer ()->apply (rect) ;

getView () ->drawRectangle (mgr->getPalette (), rect) ;

}

Because _xor_rectangle isexpressed in the object coordinate system, the transformer of
the view must be applied before drawing the rectangle.

dolt Member Function

The T11vDragRectangleInteractor: :doIt member function does nothing; it is
designed to be overloaded to perform actions once the user has selected arectangular region.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Interactors

Two examples of how to overload this member function are presented:

& Thefirst example shows how to create anew I1vRectangle object with the rectangul ar
region (the same way asthe I1vMakeRectangleInteractor class does).

& The second example shows how to select all the objectslocated in the rectangular region.
Thisillustrates how to manipulate the selection within a manager without using the
select interactor.

Example 1: IlvMakeRectanglelnteractor

Hereisasimplified version of the T1vMakeRectangleInteractor: :doIt member
function, derived from the I1vbragRectangleInteractor class. This member function
deselects al the objects of the manager, creates an T1vRectangle instance, addsit to the
manager, and sets the selection oniit.

void

IlvMakeRectangleInteractor: :dolIt (I1lvRect& rect)

{
IlvGraphic* obj = new IlvRectangle(getDisplay (), rect);
getManager () ->deSelect () ;
getManager () ->addObject (obj) ;
getManager () ->makeSelected (obj) ;

}

IlvGraphic* obj = new IlvRectangle(getDisplay(), rect);

Example 2: Selector

This example shows how to implement a simple interactor to select graphic objects. The
IlvDragRectangleInteractor: :doIt member functionisoverloaded in order to select
every object located within the region the user has created.

The selectanobject function isdefined. Thisis called by an application member
function of the manager. The manager is available in the manager parameter:

static void
SelectAnObject (I1lvGraphic* object, IlvAny manager)
{
((IlvManager*)manager) ->setSelected(object, IlTrue) ;

}

The do1t member function calls selectanobject for each object located in the
designated rectangle. To find these objects, call the manager member function
applyInside:

void

MyRectangleSelector: :doIt (IlvRect& rect)

{

getManager () ->applyInside (rect, SelectAnObject, (IlvAny)getManager());
}

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 44

45

Example of an Extension: llvMovelnteractor

Thisisacomplete example of adirect subtype of the 11vManagerviewInteractor class.
It allows the user to move a graphic object to another location by dragging it with the mouse.
Here isthe declaration of this class (it can aso be found in the header file <i1views/

manager/movinter.h>):

class IlvMovelInteractor

: public IlvManagerViewInteractor

{

public:

IlvMovelnteractor (IlvManager* manager,
IlvView* view)

IlvManagerViewInteractor (manager, view),
_move (0) {}

virtual void handleEvent (I1lvEvent& event) ;
virtual void handleExpose (IlvRegion* clip = 0);
virtual void drawGhost () ;

void drawGhost (const IlvRectg,
IlvRegion* clip = 0);
void drawGhost (I1lvGraphic*, IlvRegion* clip = 0);

virtual void doIt (const IlvPointé&) ;
const IlvRect& getRectangle() const {return _xor_rectangle;}

protected:
I1lvPos _deltax, _deltay;
IlvRect _bbox;
IlvGraphic* _move;
IlvRect _xor_rectangle;
I1Boolean _wasSelected;
void handleButtonDown (const IlvPointé&) ;
void handleButtonDragged (const IlvPointé&) ;
void handleButtonUp (const IlvPointé&);

Y

Thisinteractor lets you select and deselect objects by clicking on them with the left mouse
button and the Shift key pressed. You can move an object or a set of selected objects but you
cannot resize them.

The following protected fields are used in this class:

& _deltax, _deltay - Storesthe distance between the mouse and the top-left corner of
the objects being moved.

& _bbox - Stores the bounding box of the objects being moved.
& _move - Kegps apointer to the object being moved.
& _xor_rectangle - Storesthe rectangle dragged to mark aregion.

& _wasSelected - Keeps aBoolean value indicating whether the designated object was
selected before it was moved. Thisinformation is required because the object is selected
when you start to move it. There are two different cases in thisinteractor, depending on

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Interactors

whether one or more object is being moved. If more than one object is moved, a moving

rectangle that encloses the bounding boxes of these objects is displayed. Otherwise, the
moving objects themselves are displayed.

The following member function are described in this section:

® 6 6 6 6 o o

4

handleEvent Member Function
drawGhost Member Function
drawGhost for a Rectangle

drawGhost for an Object

dolt Member Function
handleButtonDown Member Function
handleButtonDragged Member Function
handleButtonUp Member Function

handleEvent Member Function

The following code focuses on mouse events. All other events are dispatched to accelerators
by acal to 11vManager: : shortcCut, but only if an object is not being moved at this point.
Thisis because some accel erators might remove the object being worked on, which can be
dangerous:

void
IlvMovelInteractor: :handleEvent (IlvEvent& event)

{

switch (event.type()) {
case IlvButtonDown:
_xor_rectangle.w(0) ;
_move = 0;
if (event.modifiers() & (IlvLockModifier | IlvNumModifier)) {
getManager () ->getDisplay () ->bell () ;

return;

}

if (event.button() != IlvLeftButton) ({
getManager () ->shortCut (event, getView());
return;

}
if (levent.modifiers())
handleButtonDown (IlvPoint (event.x (), event.y()));
else {
IlvManager* manager = getManager () ;
if (event.modifiers() & IlvShiftModifier) {
IlvPoint p(event.x(), event.y());
IlvGraphic* obj = manager->lastContains (p,getView());
IlvDrawSelection* sel = 0;
if (obj) sel = getSelection(obj);
if (!sel && obj && manager ()->isSelectable(obj)) {
manager->setSelected (!manager->isSelected(obj)) ;
}

} else

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 46

47

manager->shortCut (event, getView());

}

break;
case IlvButtonUp:
if (event.button() == IlvLeftButton)
handleButtonUp (I1lvPoint (event.x (), event.y()));
else getManager () ->shortCut (event, getView());
break;
case IlvButtonDragged:
if (event.modifiers() == IlvLeftButton) {
IlvPoint p(event.x(), event.y());

handleButtonDragged (p) ;
}
break;
default:
if (!_move)
getManager () ->shortCut (event, getView());
break;

}
The following types of events are handled by the handl eEvent member function:
¢ Button-Down Events
4 Button-Up Events
& Button-Dragged Events

Button-Down Events
The interactor isinitialized by setting _move and _xor_rectangle:

_xor_rectangle.w(0) ;
_move = 0;

Only the left button is handled. If the event involves another mouse button, the event is
ignored and dispatched to manager accelerators:

if (event.button() != IlvLeftButton) {
getManager () ->shortCut (event, getView()) ;
return;

}

The handleButtonbown member functionis caled if thereis no event modifier:

if (!event.modifiers())
handleButtonDown (IlvPoint (event.x (), event.y()));

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

View Interactors

If the Shift modifier is set, the selection state of the object pointed to by the mouse is
toggled:

if (event.modifiers() & IlvShiftModifier) {
IlvPoint p(event.x(), event.y());
IlvGraphic* obj = manager->lastContains(p, getView());
IlvDrawSelection* sel = 0;
if (obj) sel = getSelection(obj);
if (!sel && obj && manager () ->isSelectable(obj)) {
manager->setSelected(!manager->isSelected (obj)) ;
}
}

Button-Up Events

If the event comes from the left button, handleButtonUp is caled. Otherwise, the event is
dispatched to accelerators.

case IlvButtonUp:

if (event.button() == IlvLeftButton)

handleButtonUp (IlvPoint (event.x (), event.y()));
else getManager () ->shortCut (event, getView());
break;

Button-Dragged Events

ThehandleButtonDragged member functionis called, but only if the event comes from
the left button.

case IlvButtonDragged:
if (event.modifiers() == IlvLeftButton) {
IlvPoint p(event.x(), event.y());
handleButtonDragged (p) ;
}
break;

drawGhost Member Function

This member function is split in three parts. the common part, which is the entry point from
the member function handleEvent, and two others, depending on the type of translation
being done.

If there is only one selected object, a specific drawGhost is called for this object.
Otherwise, another drawGhost function that handles arectangleis called:
void

IlvMovelInteractor: :drawGhost ()

{

if (!_xor_rectangle.w()) return;

if (manager ()->numberOfSelections() == 1)
drawGhost (_move) ;

else

drawGhost (_xor_rectangle) ;

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 48

49

drawGhost for a Rectangle

This member function is called if there is more than one selected object. It displays the
bounding box of al the selected objects being moved in the view. The palette of the
IlvManager Object isused:

void
IlvMoveInteractor: :drawGhost (const IlvRect& rect, IlvRegion* clip)
{

if (!rect.w()) return;

IlvManager* manager = getManager () ;

if (clip) manager->getPalette()->setClip(clip);

getView () ->drawRectangle (manager->getPalette(),rect) ;
if (clip) manager->getPalette()->setClip();
}

drawGhost for an Object

This member function is called if there is only one selected object. It displays the object at
its new coordinates by calling the draw member function after its pal ette has been set to xor
mode. The new coordinates are computed from the difference between the coordinates of the
rectangle being dragged and the coordinates of the original bounding box of the object:

void
IlvMovelInteractor: :drawGhost (I1lvGraphic* obj, IlvRegion* clip)
{
if (!getManager ()->isMoveable(obj) || !_xor_rectangle.w())
return;
IlvPos tempdx, tempdy;
if (getTransformer()) {
IlvRect rl(_xor_rectangle);
I1lvRect r2 (_bbox) ;

getTransformer () ->inverse(rl) ;
getTransformer () ->inverse(r2) ;
tempdx = rl.x() - r2.x();
tempdy = rl.y() - r2.y();

} else {
tempdx = _xor_rectangle.x() - _bbox.x();
tempdy = _xor_rectangle.y() - _bbox.y();

}
obj->translate (tempdx, tempdy) ;
obj->setMode (IlvModeXor) ;
obj->draw(getView(), getTransformer(), clip);
obj->setMode (IlvModeSet) ;
obj->translate (-tempdx, -tempdy) ;

}

dolt Member Function

The doTt member function must apply the trandation to all selected objects. The delta
parameter gives the translation vector expressed in the view coordinate system so it must be
converted to the object coordinate system. Then the objects must be trandated. This cannot
be done by calling the T11vGraphic member functions directly; it must be done by the

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Interactors

manager. Here, T1vManager: :applyToSelections CalSTranslateObject for each
selected object:

void
TranslateObject (I1lvGraphic* object, IlvAny argDelta)
{
IlvPoint* delta = (IlvPoint*)argDelta;
object->translate(delta.x(), delta.y()):;
}

void
IlvMovelInteractor: :dolIt (const IlvPoint& delta)
{

IlvPoint origin(0, 0),

tdelta(delta) ;
if (getTransformer()) {
getTransformer () ->inverse (origin) ;

getTransformer () ->inverse(tdelta) ;
}
IlvPoint dp(tdelta.x()-origin.x(),
tdelta.y()-origin.y());
getManager->applyToSelections (TranslateObject, &dp) ;

handleButtonDown Member Function

The handleBut tonbDown member function selects the object to be moved, storing its
previous state in _wasSelected. Then, it computesthe _bbox field by means of acall to

the ComputeBBoxSelections function. Thisfunction returnsin _bbox the bounding box
of al the selected objects:

static void
ComputeBBoxSelections (IlvManager* manager, IlvRect& bbox, IlvView* view)
{
bbox.resize (0, 0);
I1UInt nbselections;
IlvGraphic** objs = manager->getSelections (nbselections) ;
IlvRect rect;
IlvTransformer* t = manager->getTransformer (view) ;
for (I1UInt i1=0; i < nbselections; i++) {
objs[i]->boundingBox (rect, t);
bbox.add (rect) ;

}
void
IlvMoveInteractor: :handleButtonDown (const IlvPoint& p)
{
IlvGraphic* obj = getManager ()->lastContains (p, getView()) ;
if (!obj) return;
IlvDrawSelection* sel = manager()->getSelection (obj) ;
if (!sel && getManager ()->isSelectable(obj)) {
getManager () ->deSelect () ;
getManager () ->makeSelected (obj) ;
_wasSelected = IlFalse;
sel = getManager ()->getSelection (obj);
} else
_wasSelected = IlTrue;

IBM ILOG VIEws V5.3 — 2D GRAPHICS 50

51

if (sel) {

ComputeBBoxSelections (getManager (), _bbox, getView());
_move = obj;

_deltax = _bbox.x() - p.x();

_deltay = _bbox.y() - p.y();

}

The computeBBoxSelections Section isdescribed in more detail .

The first part initializes the result to the empty rectangle, and then queries the manager for
al the selected objects. nbselections isthe number of selected objectsin the array objs:

bbox.resize (0, 0);
I1UInt nbselections;
IlvGraphic** objs = manager->getSelections (nbselections) ;

The next part starts aloop to scan every object:

IlvRect rect;
for (I1UInt 1=0; i < nbselections; i++) {

This next part reads the bounding box of each object, transformed in the view coordinate
system, and addsiit to the result:

objs[i]->boundingBox (rect, t);

for (I1UInt 1=0; i < nbselections; i++) {
objs[i]->boundingBox (rect, t);
bbox.add (rect) ;

handleButtonDragged Member Function

If thereisamoving object and if it is moveable, the dragging position is snapped to the
manager grid (if one exists) and anew _xor_rectangle iscomputed. Then, the member
function ensurevisible makes surethat the point the user dragswill remain on thevisible
part of the view:

void
IlvMovelInteractor: :handleButtonDragged (const IlvPoint& point)
{

if (!_move) return;

IlvPoint p = point;

IlvRect rect;

if (getManager ()->isMoveable (_move)) {
if (_xor_rectangle.w()) drawGhost() ;
p.translate(_deltax, _deltay);
getManager () ->snapToGrid (getView(), p);
p.translate(-_deltax, -_deltay);
_xor_rectangle.move(p.x() + _deltax, p.y() + _deltay);
_xor_rectangle.resize(_bbox.w(), _bbox.h());
ensureVisible (p) ;
drawGhost () ;

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Object Interactors

handleButtonUp Member Function

If there are objects to move, they are trandated by calling the member function doTt.
Otherwise, the last designated object is deselected:

void
IlvMovelInteractor: :handleButtonUp (const IlvPointé&)
{
if (!_move) return;
IlvDrawSelection* sel = getManager () ->getSelection (_move) ;
if (_move && _xor_rectangle.w() && sel) {
drawGhost () ;
IlvDeltaPoint delta(_xor_rectangle.x() - _bbox.x(),
_xor_rectangle.y () - _bbox.y());
_xor_rectangle.w(0) ;
_move = 0;
doIt (delta);
} else {
_xor_rectangle.w(0) ;
_move = 0;
if (sel && _wasSelected) getManager ()->deSelect();

Object Interactors

The I1vManagerObjectInteractor classisdeprecated since IBM ILOG Views 4.0.

For a description of how to use object interactors, see section Managing Events: Object
Interactorsin Chapter 8, IlvContainer: The Graphic Placeholder Class of the
IBM ILOG Views Foundation User’s Manual.

Accelerators

An accelerator isasimple binding of an event description with an application function called
the accelerator action. Accelerators provide a quick way of attaching a behavior to a
manager, but the interaction is basic; it only involves one event (for instance, akey press or
amouse click).

An accelerator is not bound to a particular view or graphic object; it can be triggered in any
view or any object of the manager. However, accelerators come last in the manager event
dispatching mechanism. They can only be activated if event hooks, view interactors, and
object interactors have not intercepted the event.

The accel erator action must be defined as an I1vManageraAcceleratorAction:

typedef void (* IlvManagerAcceleratorAction) (IlvManager*, IlvView*,
IlvEvent&, I1lvAny) ;

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 52

The following T11vManager member functions alow you to manipulate manager
accelerators:

€ IlvManager: :addAccelerator

€ IlvManager::getAccelerator

€ IlvManager: :removeAccelerator
€ IlvManager: :shortCut

The I1vManager: : shortCut member function is called to dispatch an event to
accelerators. If an accelerator event description matches the event to dispatch, the
accelerator action is called.

Example: Changing the Key Assigned to an Accelerator

The code below assigns the Ctrl-F key instead of ‘f’ to the action

IlvManager: : fitTransformerToContents.

IlvManagerAcceleratorAction action;
IlvAny arg;
if (manager->getAccelerator (&action, &arg, IlvKeyUp, ‘f’))
{
manager->addAccelerator (action,
IlvKeyUp,
IlvCtrlChar(‘*f’),
0,
arg) ;
manager->removeAccelerator (I1vKeyUp, ‘f’);

Predefined Manager Accelerators

Managers have built-in accelerators, which are listed below. You can disconnect them by
setting the accelerators parameter of the manager constructor to T1False.

Table2.1 Predefined Manager Accelerators

Event Type Key or Button Action

IlvKeyUp f Modifies the zoom factor of the view so that all
objects can be seen (f for fit).

IlvKeyUp i Sets the transformer of this view to the identity
matrix.

I1vKeyUp p Moves selected objects to a higher layer.

I1vKeyUp P Moves selected objects to a lower layer.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Accelerators

Table2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action

I1vKeyUp Ctrl-D Duplicates all selected objects and moves the
copied objects slightly.

I1lvKeyUp Ctrl-A Selects all objects.

I1vKeyUp Ctrl-S Selects the object designated by the pointing
device.

I1lvKeyUp Del Deletes all selected objects.

IlvKeyDown r Re-executes the last command.

I1lvKeyDown u Undoes the last command.

IlvKeyUp Ctrl-G Groups the selected objects into an
IlvGraphicSet.

IlvKeyUp Ctrl-U Ungroups an I1vGraphicSet.

IlvKeyDown Right Translates the view left.

I1lvKeyDown Left Translates the view right.

I1lvKeyDown Down Translates the view up.

I1lvKeyDown Up Translates the view down.

IlvKeyUp z Zooms into the view.

IlvKeyUp U Zooms out of the view.

I1lvKeyUp Ctrl-B Deselects all objects.

I1lvKeyUp Ctrl-T Inverts all selected objects.

I1vKeyUp Y Flips the selected objects horizontally.

I1lvKeyUp y Flips the selected objects vertically.

I1lvKeyUp . (dot) Flips the selected objects both horizontally and
vertically.

I1lvKeyUp Ctrl-C Copies selected objects on the clipboard.

IlvKeyDown Ctrl-v Inserts objects from the clipboard.

I1lvKeyUp Ctrl-X Deletes selected objects but saves them on the

clipboard.

IBM ILOG VIEwWSs V5.3

2D GRAPHICS 54

55

Table2.1 Predefined Manager Accelerators (Continued)

Event Type Key or Button Action

I1lvKeyDown Rotates the view 90 degrees counter-clockwise.

I1lvKeyDown C Centers the view on the indicated point.

IlvKeyUp T Encapsulates relevant object in
IlvTransformer graphic(s).

By means of callsto T1vManager: :getAccelerator, You can reassign these keys to fit
your own application needs. You can also add your own interactors to this primary list,
remove any of them, or overload them so they act differently.

IBM ILOG VIEwWSs V5.3

2D GRAPHICS

Advanced Manager Features

This section describes more advanced features of managers. These are as follows:
¢ Observers

¢ \iew Hooks

& Manager Grid

4 Undoing and Redoing Actions

Observers

Applications can be notified when the state of a manager changes. This notification
mechanism is based on I1vManagerObserver, asubclass of TI1vobserver. Observersare
created by the application and set on the manager. The manager isin charge of sending
messages to the observer under certain circumstances called reasons.

Notification messages are classified by their reason into different categories. An observer
can choose to receive messages of one or several categories by setting its interest mask. The

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 56

57

manager will only send a message to the observer if the notification reason belongs to a
category of the observer interest mask. These categories are shown in Table 3.1:

Table3.1 Natification Categories

Category Description Mask

General I1lvMgrMsgGeneralMask

Manager view IlvMgrMsgViewMask

Manager layer IlvMgrMsgLayerMask

Manager contents IlvMgrMsgContentsMask

Object geometry I1vMgrMsgObjectGeometryMask

An application wishing to get notification messages must define a subclass of
IlvManagerObserver and overload the virtua member function update. In this member
function, the observer receives an instance of I11vManagerMessage, Or asubclass,
containing the reason and additional relevant information about the notification.

General Notifications
This category concerns general notifications on the managers.
Interest mask: I1vMgrMsgGeneralMask
¢ Delete the manager
Reason: I11vMgrMsgDelete

Message type: I1vManagerMessage

Manager View Notifications
This category concerns notifications on operations performed on manager views.
Interest mask: I1vMgrMsgViewMask
& Add aview to the manager
Reason: 11vMgrMsgAddview
Message type: T1vManagerAddviewMessage
& Remove aview from the manager
Reason: 11vMgrMsgRemoveView
Message type: T1vManagerRemoveViewMessage

& Set an interactor on aview

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

4

Reason: 11vMgrMsgSetInteractor

Message type: T1vManagerSetInteractorMessage
Set atransformer on aview

Reason: I11vMgrMsgSetTransformer

Message type: T1vManagerSetTransformerMessage

Observers

Manager Layer Notifications

This category concerns notifications on operations performed on manager layers.

Interest mask: I1vMgrMsgLayerMask

2

Add alayer to the manager

Reason: 11vMgrMsgAddLayer

Message type: IlvManagerLayerMessage
Remove alayer from the manager

Reason: I11vMgrMsgRemovelayer

Message type: IlvManagerLayerMessage
Change the index of alayer

Reason: I11vMgrMsgMoveLayer

Message type: I1vManagerMoveLayerMessage
Swap indexes between two layers

Reason: I11vMgrMsgSwapLayer

M essage type: IlvManagerSwapLayerMessage
Set the name of alayer

Reason: I11vMgrMsgLayerName

Message type: I1vManagerLayerNameMessage
Set the visibility of alayer

Reason: I11vMgrMsgLayerVisibility
Message type: IlvManagerLayerVisibilityMessage
Set the selectabililty of alayer

Reason: I1vMgrMsgLayerSelectability

Message type: IlvManagerLayerMessage

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

58

59

Manager Contents Notifications
This category concerns notifications on the changes in the contents of managers.
Interest mask: I1vMgrMsgContentsMask
& Add agraphic object to the manager
Reason: I1vMgrMsgAddObject
Message type: I1vManagerContentsMessage
4 Remove a graphic object from the manager
Reason: I1vMgrMsgRemoveObject
Message type: I1vManagerContentsMessage
& Set the layer of a graphic object
Reason: I11vMgrMsgObjectLayer

M essage type: I1vManagerObjectLayerMessage

Graphic Object Geometry Notifications

This category concerns notifications on a change of geometry of the objects (for example,
move, resize, and rotate).

Interest mask: I11vMgrMsgObjectGeometryMask
& Change the geometry of a graphic object
Reason: 11vMgrMsgObjectGeometry

Message type: I1vManagerObjectGeometryMessage

Example

Hereisthe implementation of an observer that receives notifications on adding or removing
layers and views.

class MyManagerObserver
: public IlvManagerObserver
{
public:
MyManagerObserver (I1lvManager* manager)
: IlvManagerObserver (manager,
IlvMgrMsgLayerMask | IlvMgrMsgViewMask)
{}
virtual void update (IlvObservable* o, IlvAny arg);
Yi

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Hooks

The update member function:

void MyManagerObserver: :update (I1lvObservable* obs, IlvAny arg)
{

IlvManager* manager = ((IlvManagerObservable*)obs)->getManager () ;
switch(((IlvManagerMessage*) arg)->_reason) {
// __ Notification on manager view

case IlvMgrMsgAddView:
I1lvPrint ("Add view notification") ;
break;
case IlvMgrMsgRemoveView:
IlvPrint ("Remove view notification");
break;
// __ Notification on manager layer
case IlvMgrMsgAddLayer:
IlvPrint ("Add layer notification: %d4d",
((IlvManagerLayerMessage*)arg) ->getLayer ()) ;
break;
case IlvMgrMsgRemoveLayer:
IlvPrint ("Remove layer notification: %d4d",
((IlvManagerLayerMessage*)arg) ->getLayer ()) ;
break;
default:
IlvPrint ("Unhandled notification");
break;

}

To attach the observer to the manager:

MyManagerObserver* observer = new MyManagerObserver (manager) ;

View Hooks

Manager view hooks are part of a mechanism allowing the application to be notified when
certain actions are performed on or by the manager. This can be used for various reasons
such as monitoring the contents of a manager, performing additional drawings when the
manager redraws its graphic objects, or taking an action when the transformer of a manager
view changes.

I Note: Another notification mechanismis described in section Observers.

This section is divided as follows:
¢ Manager View Hooks
¢ Example: Monitoring the Number of Objectsin a Manager

¢ Example: Maintaining a Scale Displayed With No Transformation

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 60

61

Manager View Hooks

A manager view hook is an instance of the T1vManagerviewHook class. To be active, it
must be associated with a manager view. Each manager view handles alist of view hooks.
To connect and disconnect view hooks from a manager view, use the following
IlvManager member functions:

€ IlvManager::installViewHook
€ IlvManager: :removeViewHook

The 11vManagerViewHook class has a number of virtual member functions that are
automatically called by the manager when certain predefined operations occur. Here isthe
list of these member functions and the circumstances under which they are called:

€ TIlvManagerViewHook: :beforeDraw

Called before the manager draws in the manager view. Applications often overload this
member function to perform additional drawings before the manager displaysits graphic
objects.

€ TIlvManagerViewHook: :afterDraw

Called after the manager has drawn in the manager view. Applications often overload
this member function to perform additional drawings on top of the graphic objects
displayed by the manager.

€ IlvManagerViewHook::afterExpose

Called after the manager has received an Expose event in the view.
€ IlvManagerViewHook: :interactorChanged

Called when the interactor of the manager view changes.
€ IlvManagerViewHook: :transformerChanged

Called when the transformer of the manager view changes.
€ IlvManagerViewHook: :viewResized

Called when the manager view isresized.
€ IlvManagerViewHook: :viewRemoved

Called when the manager view is detached from the manager.
€ IlvManagerViewHook: :contentsChanged

Called when the contents of the manager change, that is, graphic objects have been
added, removed, or their geometry has changed.

When an event occursin view, the manager calls the corresponding member functions of all
the hooks attached to this view.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

View Hooks

Example: Monitoring the Number of Objects in a Manager

The following code is a subclass of T1vManagerviewHook that displaysin an
I1vTextField the number of objects contained in the manager:

class DisplayObjectsHook
: public IlvManagerViewHook
{
public:
DisplayObjectsHook (I1lvManager* manager,
IlvView* view,
IlvTextField* textfield)
: IlvManagerViewHook (manager, view),
_textfield(textfield)
{}
virtual void contentsChanged() ;
protected:
IlvTextField* _textfield;
}i

void DisplayObjectsHook: :contentsChanged ()

{
I1lvUInt count = getManager ()->getCardinal () ;
_textfield->setValue((IlvInt)count, IlvTrue);

Example: Maintaining a Scale Displayed With No Transformation

This part presents an example of subtyping an T1vManagerviewHook. At first thereisa
map and a circular scae used as a compass card. Then, because of hooks, the manager
translates and zooms the view without affecting the compass card. The
IlvManagerViewHook: :afterDraw and

IlvManagerViewHook: : transformerChanged member functions are redefined to
redraw the scale to its original dimensions and location.

static void ILVCALLBACK

Quit (IlvView* view, IlvAny)

{
delete view->getDisplay() ;
I1vExit (0) ;

}

char* labels[] = {“N”, “O”, “S", “E”, ““};

class ExHook

: public IlvManagerViewHook

{

public :
ExHook (IlvManager* m, IlvView* v, const IlvRect* psize=0)
: IlvManagerViewHook (m, V)
{

_cirscale = new IlvCircularScale (m->getDisplay (),

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 62

63

IlvRect (30, 30,
ng 4f",

100,

0, 100, 90., 360.);
_cirscale->setLabels (5, (const char* const*)labels) ;

}

virtual void afterDraw(IlvPort*,

const IlvTransformer* = 0,
const IlvRegion* = 0,
const IlvRegion* = 0);

virtual void transformerChanged(const IlvTransformer*,
const IlvTransformer*);

protected
IlvRect _size;
IlvCircularScale* _cirscale;
}i
void ExHook::afterDraw(IlvPort* dst,
const IlvTransformer*,
const IlvRegion*,
const IlvRegion* clip)

if (getManager ()->isInvalidating())
getManager () ->reDrawViews () ;

_cirscale->draw(dst, 0, 0 /*clip*/);

if (dst->isABitmap())
_cirscale->draw(getView(), 0, 0);

}

void ExHook::transformerChanged (const IlvTransformer* current,

const IlvTransformer* old)

{
IlvRect bbox;
_cirscale->boundingBox (bbox) ;
if (o0ld) old->inverse (bbox) ;
if (current) current->apply (bbox) ;
if (!getManager ()->isInvalidating())
{
getManager () ->initReDraws () ;
getManager () ->invalidateRegion (getView (), bbox) ;

}

static void
SetDoubleBuffering (IlvManager* m,
IlvView* v,

IlvEventé&,
I1vAny)
{
m->setDoubleBuffering (v, !m->isDoubleBuffering(v));
}
int
main(int argc, char* argv(])
{

IlvDisplay* display = new IlvDisplay (“Example”, ““,
if (!display || display->isBad())
{

IlvFatalError (“Can’t open display”);

I1vExit (-1);

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

argc,

100),

argv) ;

Manager Grid

IlvView* view = new IlvView(display, “ExMan”, “Manager”,
IlvRect (0, 0O, 400, 400));

view->setDestroyCallback (Quit) ;

IlvManager* manager = new IlvManager (display);

manager->addView (view) ;

manager->addAccelerator (SetDoubleBuffering, IlvKeyUp, ‘b’);

// Description of a map
manager->read(“../hook.ilv") ;

// Instantiation of the hook class
ExHook* pHook = new ExHook (manager, view) ;

// Connect the hook to the manager view
manager->installViewHook (pHook) ;

manager->setInteractor (new IlvSelectInteractor (manager, view)) ;

IlvMainLoop () ;

Manager Grid

Most editors provide a snapping grid that forces mouse eventsto occur at specified
locations. Usually, the coordinates where the user can move the pointing device are located
at grid points. If the manager is configured to allow standard mouse events, all event
locations can be automatically modified so they occur only at specific locations. Thus, the
effect of filtering user events by a manager grid is to modify their locations to the closest
grid point.

The T11vManagerGrid classisresponsible for the conversion to avalid grid point of the
coordinates of an event that occursin aview.

You can set or remove a snapping grid in each of the views handled by a manager. You can
configure these grids to make them:

& visible or not visible,
& active or inactive.

You can aso make the grid take on different shapes by subtyping the 11vManagerGrid
class. The default implementation is a rectangular grid for which you can set the origin and
the horizontal and vertical spacing values.

When agrid is made visible, it draws dots with the color specified as the foreground color of
thepalette parameter.

The grid can be made invisible when it is created by setting the visible parameter to
I1False. To makethe grid initially inactive, set the active parameter to T1False.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 64

To display only asubset of the grid points, use the last two 11vDim-typed parameters. These
indicate the nature of the subset, that is, one out of every quantity of dots along the
horizontal and vertical axesis displayed in the given direction. However, the event location
snapping takes place on each of the grid points, whether shown or not.

Example: Using a Grid
This code sets a new grid to the view view associated with the manager:

// Get the previous grid
IlvManagerGrid* previousGrid = manager->getGrid(view) ;

// Create a new instance of IlvManagerGrid

IlvManagerGrid* newGrid = new IlvManagerGrid(display->getPalette(),
IlvPoint (0, 0),
10,
10);

// Set the new grid to the view
manager->setGrid(view, newGrid) ;

// If a previous grid existed then delete it
if (previousGrid)
delete previousGrid;

Usually, it is not necessary to delete a previous grid, since by default noneis associated with
the view.

The following code shows how to create an T11vLine whose ends are on the grid:

static void

AddSnappedLine (I1lvManager* manager,
const IlvView* view,
const IlvPoint& start,
const IlvPoint& end)

IlvPoint pl = start;
IlvPoint p2 = end;

// Compute the new coordinates
manager->snapToGrid (view, pl);

manager->snapToGrid (view, p2);

// Create an object IlvLine
IlvGraphic* object = new IlvLine (manager->getDisplay (), pl, p2);

// Add the object to the manager
manager->addObject (object) ;

All the standard interactors of IBM ILOG Views that create graphic objects use
IlvManager: : snapToGrid.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Undoing and Redoing Actions

Undoing and Redoing Actions
This section describes how to implement the undo/redo process with the
IlvManagerCommand class.

In order to remember every action that your program user may apply to objects (and the
objects as well), the manager creates specific instances of the 11vManagerCommand class,
depending on what kind of action was required. The manager can then manipulate a stack of
these commands. A request for T11vManager : : unDo pops an item off the stack, and applies
the inverse operation that created the popped item.

The I1vManager: : reDo operation duplicates the topmost item of the command stack and
executes the operation again.

This section is divided as follows:

¢ Command Class

& Managing Undo

& Example: Using the IlvManager Command Class to Undo/Redo
& Managing Modifications

Command Class

Each ready-to-use command in IBM ILOG Views was implemented with the
IlvManagerCommand class. To carry out undo/redo operations, the subtypes of this class
merely store the arguments of commands. The actual command to be remembered is known
by the type of the T11vManagerCcommand objects.

If you create a new operation for the manager and you want to undo and redo it, you have to
create a specific subtype of the 11vManagerCommand class. A complete example of this
subtyping is described in Example: Using the [lvManager Command Class to Undo/Redo.

Note: All predefined interactors use the 11vManagerCommand class. Therefore, it is
possible to undo and redo their effect.

Managing Undo

The following 11vManager member functions handle undo operations:
€ IlvManager: :addCommand

€ TIlvManager::isUndoEnabled

€ IlvManager::setUndoEnabled
2

IlvManager: : forgetUndo

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 66

€ IlvManager: :reDo
€ IlvManager: :unDo

Each action applied to manager objects isinserted in a special queue maintained by each
IlvManager instance. The undo/redo processis based on this queue management.

Example: Using the llvManagerCommand Class to Undo/Redo

This subsection shows the implementation of the T1vTranslateObjectCommand class,
subclass of I1vManagerCommand:

The constructor of this class stores the parameters of the translation operation:

IlvTranslateObjectCommand: : I1vTranslateObjectCommand (I1lvManager* manager,
IlvGraphic* object,
const IlvPointé& dp)

: IlvManagerCommand (manager) ,

_dx(dp.x()),
_dy(dp.y()),
_object (object)

{}

dolt Member Function

The I1vTranslateObjectCommand: : doIt member function isimplemented as follows:
void

IlvTranslateObjectCommand: :doIt ()

{

_manager->translateObject (_object, _dx, _dy, IlvTrue);

}

The operation to be performed is the trandation of the object by _dx and _dy.

unDo Member Function

The I11vTranslateObjectCommand: : unDo member function is asfollows:
void

IlvTranslateObjectCommand: :unDo ()

{

_manager->translateObject (_object, -_dx, -_dy, IlvTrue);
}

Theinverse translation is applied and the regions are redrawn.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Undoing and Redoing Actions

copy Member Function

The T11vTranslateObjectCommand: : copy member function creates a copy of the
command object and returnsiit.

IlvManagerCommand*
IlvTranslateObjectCommand: : copy () const
{
return new IlvTranslateObjectCommand (_manager, _object, _dx, _dy);

}

Managing Modifications

Thefollowing T1vManager member functionslet you manage the state of objects (modified
or not) handled by the manager:

€ IlvManager::isModified

€ IlvManager: :setModified

€ IlvManager: :contentsChanged

Example: Setting the State of a Manager to Unmodified
manager->setModified(I1lFalse) ;

There are also two global functions:

€ IlvGetContentsChangedUpdate

€ IlvSetContentsChangedUpdate

Example: Disallowing View Hook Calls in contentsChanged

The following code disallows the callsto the T1vManager : : contentsChanged member
functions of the existing view hooks associated with the manager view:

IlvSetContentsChangedUpdate (I1True) ;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 68

69

IBM

ILOG VIiEws V5.3

2D GRAPHICS

Part Il

Grapher

Part 1l describes ahigh-level IBM® ILOG® Views package called the grapher, which is
dedicated to the graphic representation of hierarchical and interconnected information. This
part consists of the following chapters:

& Chapter 1, Introducing the Grapher Extension of IBM [LOG Views Studio describes
how to use the Grapher extension of IBM ILOG Views Studio.

& Chapter 2, Features of the Grapher Package describes the classes, methods, and
principles that make the Grapher package work.

Note: The IBM ILOG Views Grapher package is available only if you have purchased the
IBM ILOG Views 2D Graphics Professional product.

Introducing the Grapher Extension of
IBM ILOG Views Studio

This chapter introduces you to the Grapher extension of IBM® ILOG® Views Studio. You
can find information on the following topics:

& The Main Window
¢ The Palettes Panel
¢ Grapher Extension Commands
Note: The chapters concerning the use of the Grapher extension of IBM ILOG Views

assume that you are familiar with the information in the IBM ILOG Views Sudio User’s
Manual.

The Main Window

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
asfollows:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 72

73

Menu Bar

Action Bar

Editing
Modes

Palettes Panel

Butfer Window:

<[i v HE EEY v | = CANTE S i e
Inzpectar Area — — —

Statuz Areq —a— | Grapher | Selection

,,,,, CEX

__,_t¢|\1‘=lﬁ ’D'

Palettes

ET} .’ g-?i::;s B Grapher - unnamed_2

—’—i -] Gauges
’ More

D J Grapher
s Grapher links
lzn" Grapher views

&-%E:H ﬁn

|>

— Workspace

| 38T
Ja}f@ﬁﬁf

|i€

y h nght Bottom Mame Callback 15

CCICCC I |

Figurel.1 IBM ILOG Views Studio Main Window with Grapher Extension at Start-up

The Main window appears much as it does when only the Foundations package is installed.
However, you will notice that with the Grapher package you have access to an additional
buffer window, additional palettesin the Palettes panel, and additional itemsin the menu bar
and toolbars of the interface.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

With the Grapher extension of IBM® ILOG® Views Studio, you can edit the following
types of buffers:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

The Main Window

& Grapher

& 2D Graphics

An empty Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

Note: You will notice the following difference as you switch between the different types of
buffersin the Main window:

Each buffer type has its own set of editing modes. When you change the current buffer, the
editing modes available as iconsin the toolbar change accordingly.

The Grapher Buffer Window

The Grapher buffer window lets you display and edit graphs. It uses an T1vGrapher to
load, edit, and save nodes and links.

To create a new Grapher buffer window:
1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can aso execute the NewGrapherBuf fer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an 11vGrapher, a Grapher buffer
window is automatically opened.
The 2D Graphics Buffer Window

The 2D Graphics buffer isthe default for the Foundation package. It is still available with
the Grapher extension of IBM ILOG Views Studio. It alows you to edit the contents of an
IlvManager Of an T1lvContainer. It usesan I1vManager toload, edit, and save objects.

To create a new 2D Graphics buffer window:
1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open thiswindow, you can also execute the NewGraphicBuf fer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an T11vManager, a 2D Graphics buffer
window is automatically opened.

The Menu Bar

When the Grapher packageisinstalled, an additional command is available through the
menu bar in the Main window:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 74

B|B Edit Wiew Draw Tools MWindow Help

.
9 20 graphics

o= a-a
[Open... ChrbO j Grapher

E ééﬁ'gg ERR

Rewark

Figure1.2 IBM ILOG Views Studio Grapher Extension Menu Bar

In the menu File > New, there is now the menu item Grapher, which creates a new Grapher
buffer. Thisis the command NewGrapherBuffer.

The Action Toolbar

The Action toolbar remains unchanged from the Foundation package:

EEEEK YA R AT E

The Editing Modes Toolbar

The Editing M odes tool bar appears as follows when the Grapher buffer isthe active window
in the work space:

A2 E R %%EB

Grapher Extension lcons

Figure1.3 IBM ILOG Views Sudio Grapher Extension Editing Modes Toolbar

M ake Node - Use this button to make the selected objects into nodes. It
F implementsthe makeNode command.

Pin Editor Mode - Usethismode to interactively edit the connection pins defined
on grapher nodes. For more information on how you can use this mode, please
refer to Editing Connection Pins.

The Palettes Panel

When using the Grapher extension of IBM® ILOG® Views Studio, you have access to the
Grapher links through the Palettes panel.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

The Palettes Panel

You will notice in the upper pane of the Palettes panel two additional palettes that are
provided with the Grapher extension. Click the appropriate pal ette in the upper pane to
display the various Grapher linksin the lower pane:

Palettes (3]
= ..? Graphics
M tcons
| Gauges
‘ More

Package Il {8 o1 spher links
Palettes L Grapher views

Grapher {' ﬂ Grapher

S e

Figure1.4 IBM ILOG Views Studio Grapher Extension Palettes Panel

The following section describes the objects provided with the Grapher extension. For a
description of the objects provided with the Foundation package, see the IBM ILOG Views
Sudio User’s Manual.

The Grapher Palettes

The Grapher pal ettes contain the following objects that can be used to create Grapher links.
(Links can aso be created by using link edit commands from the command panel.)

To select alinking mode, click on the link itself between the two T1vShadowRectangles,
and the link will appear bounded with an orange box.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 76

77

These modes can only be used in a Grapher buffer.

Note: A Grapher link can only be created between nodes, therefore the objects to be linked
must first be declared as nodes using the MakeNode command. First select the objects and
then click the Make Node button on the Editing Modes tool bar.

ArcLinklmage

the left mouse button on the first node and drag the cursor to the second node.

D,E Use thismode to link two grapher nodes with an I11varcLinkImage object. Press
Rel ease the mouse button to finish the operation.

DoubleLinklmage

Use thismode to link two grapher nodes with an I1vDoubleLinkImage Object.
Press the | eft mouse button on the first node and drag the cursor to the second node.
Rel ease the mouse button to finish the operation.

DoubleSplineLinkimage

object. Press the left mouse button on the first node and drag the cursor to the

D\D Use thismode to link two grapher nodes with an I1vDoubleSplineLinkImage
second node. Release the mouse button to finish the operation.

Linklmage

Use thismode to link two grapher nodes with an 11vLinkImage Object. Pressthe
left mouse button on the first node and drag the cursor to the second node. Release
the mouse button to finish the operation.

OnelLinkimage

Use thismode to link two grapher nodes with an I1voneLinkImage object. Press
the left mouse button on the first node and drag the cursor to the second node.
Rel ease the mouse button to finish the operation.

OneSplineLinklmage

Use thismodeto link two grapher nodes with an I11voneSplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedArcLinklmage

Use thismode to link two grapher nodes with an oriented 11varcLinkImage
% object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

The Palettes Panel

OrientedDoubleLinkimage

Use this mode to link grapher nodes with an oriented T1vDoubleLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedDoubleSplineLinkimage

Use this mode to link selected grapher nodes with an oriented

D\D TIlvDoubleSplineLinkImage Object. Pressthe left mouse button on the first
node and drag the cursor to the second node. Rel ease the mouse button to finish the
operation.

OrientedLinklmage

Use this mode to link two grapher nodes with an oriented T1vLinkImage object.
Press the left mouse button on the first node and drag the cursor to the second node.
Release the mouse button to finish the operation.

OrientedOneLinklmage

Use this mode to link two grapher nodes with an oriented T1vOneLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedOneSplineLinkimage

Use this mode to link grapher nodes with an oriented T1vonesplineLinkImage
object. Press the left mouse button on the first node and drag the cursor to the
second node. Release the mouse button to finish the operation.

OrientedPolylineLinkimage

object. Click on the first node, then on intermediate points as required, and double-

%L’D Use this mode to link grapher nodes with an oriented T1vPolylineLinkImage
click on the second node to finish the operation.

PolylineLinkimage

Click on the first node, then on intermediate points as required, and double-click on

%LD Use this mode to link grapher nodes with an T1vPolylineLinkImage oObject.
the second node to finish the operation.

IlvSCGrapherRectangle

Thiscreates an 11vsCGrapherRectangle object to display the
hSCGrapherRectangle contents of an T1vGrapher. Use either the drag-and-drop operation
or the creation mode operation. (This command is found in the
Grapher Views palette.)

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 78

Grapher Extension Commands

This section presents an a phabetical listing of the additional, predefined commands that are
available in the Grapher extension of IBM® ILOG® Views Studio. (All of the

IBM ILOG Views Studio Foundation commands are also available.) For each command, it
indicates its label, how to accessit if it is accessible other than through the Commands
panel, the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commandsicon E4 in the Action toolbar.

MakeNode
Label Node
Path Main window: Editing Modes toolbar when editing Grapher buffers.

Category grapher, studio

Action If the current buffer is a Grapher buffer, this command makes the selected
objects into nodes.

NewGrapherBuffer
Label Grapher
Path Main window: File menu > New

Category buffer, grapher

Action Creates a new Grapher buffer. This buffer becomes the current buffer.

SelectArcLinklmageMode

Label Arc-shaped link

Path Palettes Panel: Grapher Links palette.

79 IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Extension Commands

Category

mode, grapher

Action

Creates an arc-shaped link between two nodes. See section
IIVArcLinklmage.

SelectDoubleLinklmageMode

Label DoubleLinkimage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend link between two nodes. See section

IlivDoubleLinklmage.

SelectDoubleSplineLinkimageMode

Label DoubleSplineLinklmage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a two-bend curved link between two nodes. See section

llivDoubleSplineLinkIimage.

SelectLinklmageMode

Label Linklmage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a direct link between two nodes. See section Base Class for Links.
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 80

81

SelectOneLinklmageMode

Label OnelLinklmage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend link between two nodes. See section /lvOneLinkimage.

SelectOneSplineLinkimageMode

Label OneSplineLinkimage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates a one-bend curved link between two nodes. See section

IlvOneSplineLinklimage.

SelectOrientedArcLinkimageMode

Label Oriented Arc-shaped link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented arc-shaped link between two nodes. See section

IIVArcLinklmage.

SelectOrientedDoubleLinklmageMode

Label Oriented DoubleLinklmage
Path Palettes Panel: Grapher Links palette.
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Grapher Extension Commands

Category

mode, grapher

Action

Creates an oriented two-bend link between two nodes. See section
IlivDoubleLinklmage.

SelectOrientedDoubleSplineLinklmageMode

Label Oriented DoubleSplineLinkimage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented two-bend curved link between two nodes. See section

llivDoubleSplineLinkimage.

SelectOrientedLinklmageMode

Label Oriented Linkimage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented direct link between two nodes. See section Base Class

for Links.

SelectOrientedOnelLinklmageMode

Label Oriented OneLinklmage
Path Palettes Panel: Grapher Links palette.
Category mode, grapher
Action Creates an oriented one-bend link between two nodes. See section
IlivOneLinkimage.
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 82

83

SelectOrientedOneSplineLinkimageMode

Label Oriented OneSplineLinklmage

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented one-bend curved link between two nodes. See section

IlivOneSplineLinkimage.

SelectOrientedPolylineLinklmageMode

Label Free-shape oriented link

Path Palettes Panel: Grapher Links palette.

Category mode, grapher

Action Creates an oriented free-shaped link between two nodes. See section

IlivPolylineLinkimage.

SelectPinEditorMode

Label PinEditor

Path Main window: Editing Modes toolbar when editing Grapher buffers.
Category grapher

Action Sets the Pin editing mode on the current buffer. See section Editing

Connection Pins.

SelectPolylineLinkimageMode

Label Free-shape link
Path Palettes Panel: Grapher Links palette.
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Grapher Extension Commands

Category mode, grapher

Action Creates a free-shaped link between two nodes. See section
IlvPolylineLinkimage.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 84

85

IBM

ILOG VIiEws V5.3

2D GRAPHICS

Features of the Grapher Package

In this section, you will discover ahigh-level IBM® ILOG® Views package called the
Grapher. This package includes powerful features dedicated to the graphic representation of
hierarchical and interconnected information. This section contains information on the
following:

& Graph Management - The first section introduces you to the graph management class
IlvGrapher. Thisclassisanatural extension of the manager concepts. Itisbased onthe
IlvManager class, and adds built-in mechanisms to handle interconnected graphic
objects.

& Grapher Links - The second section explains the concept of grapher links and how these
entities are represented by aclass hierarchy of customizable graphic objects.

& Grapher Interactors - The third section demonstrates how you can interact with a graph
representation through several families of interactors.

Graph Management

This section describes the management of graphsin IBM ILOG Views. Itisdivided into two
parts:

¢ Description of the IlvGrapher Class

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 86

87

& Loading and Saving Graph Descriptions

Description of the llvGrapher Class

Graphic objects representing graphs are stored in instances of the T1vGrapher class. This
class derives from the T11vManager class and inherits all its features. The constructors of
I1lvManager (the base class) and 11vGrapher have the same parameters:

IlvGrapher (IlvDisplay™* display,
int layers = 2,
I1Boolean useacc = TIlTrue,
I1lvUShort maxInList = IlvMaxObjectsInList,
I1lvUShort maxInNode = IlvMaxObjectsInList);

In addition to the T1vManager concepts, the T11vGrapher classintroduces adistinction
between three types of graphic objects:

¢ Nodes- Nodes are the visual reference pointsin a hierarchy of information. A nodeisa
graphic object—a subtype of the 11vGraphic class—that takes on a particular
functionality when added to the grapher with the 11vGrapher: : addNode method. This
functionality allows links and nodes to stay connected when a node is moved.

¢ Links- Links are the visual representation of connections between nodes. A link isan
instance of the T1vLinkImage class or one of its subclasses. It is added to the grapher
with the T1vGrapher: : addLink method. Since links can only exist between two
existing nodes, you must create them with two graphic objects that are known as nodes
by the grapher. You can use ghost nodes (added with the
IlvGrapher: : addGhostNode method) to create free-end links.

¢ Ordinary graphic objects - Asisthe casein aregular 11vManager instance, you can
incorporate in your graph any I1vGraphic objects that represent neither nodes nor
links.

The 11vGrapher class provides a set of member functions to manage links and nodes. You
can, for example, replace alink with another one through a call to the
IlvGrapher: :changeLink method.

You can aso transform a graphic object stored in the grapher into a node by calling the
IlvGrapher: :makeNode method. You can apply this method to a grapher link. This
allows you to connect the link to other nodes. When dealing with alink that has a node
behavior, you must make sure that there is no cycle in the geometric dependencies that
govern the position of thislink. Similarly, you can transform a graphic object into a grapher
link with the T1vGrapher: :makeLink method. The created link will be an instance of the
IlvLinkHandle class, whichisdescribed in section Grapher Links.

Once objects are stored in an T1vGrapher, you can make a distinction between nodes,
links, and ordinary graphic instances by using the 11vGrapher: : isNode and
IlvGrapher: :isLink methods.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Graph Management

The 11vGrapher API aso provides several methods to query the topology of your graph.
For example, you can test whether two given nodes are connected by using the
IlvGrapher: : isLinkBetween mMethod. You can aso retrieve all the outgoing or
incoming links of a node by using the T1vGrapher: : getLinks method.

The sample code below shows how to usethe T1vGrapher: :mapLinks method to select
al the outgoing links of anode:

static void SelectLink (IlvGraphic* g, IlvAny arg)
{
ILVCAST (IlvGrapher*,arg)->setSelected (g, I1lTrue) ;
}

{

IlvGrapher* graph =;

IlvGraphic* node =; // The node being considered

//== Call the SelectLink function on all outgoing links of <node>
graph->mapLinks (node, SelectLink,graph, IlvLinkFrom) ;

}

Finaly, the T11vGrapher class provides two predefined layout methods to arrange nodesin
avertical or horizontal tree structure. These layouts are implemented in the
IlvGrapher: :nodeXPretty and IlvGrapher: :nodeYPretty methods.

An example showing how to create asimple grapher is provided in the <ILVHOME> /
samples/grapher/simple directory. Also, you can refer to the IBM ILOG Views
Grapher Reference Manual for more information on the member functions of the
IlvGrapher class.

Loading and Saving Graph Descriptions

The T11vGrapher classreads graphs by using the T1vGraphInputFile class, and saves
graphs by using the T1vGraphOutputFile class.

IlvGraphOutputFile

The I11vGraphoutputFile classisasubclass of I1vManageroutputFile. Inthis
subclass, the virtual method T1vGraphoutputFile: :writeObject hasbeen redefined to
add specific information about each object before its description block. In our case, this
information isthe layer index, the type of the object (node, link, both, or an ordinary object),
aswell as the connection pins. Connection pins are described in section Grapher Links.

IlvGraphlnputFile

The I1vGraphInputFile classisasubclass of I11vManagerInputFile. Inthissubclass
the virtual method T11vGraphInputFile: : readobiject has been redefined to read the
specific information written by the T11vGraphoutputFile: :writeObject method.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 88

Grapher Links

89

This section introduces the C++ classes that implement links in a grapher. These classes
inherit the interface of the T11vGraphic class and add specific methods to handle the
relationship between alink and its connected nodes. The following items are described:

& Base Classfor Links

& Predefined Grapher Links

& Creating a Custom Grapher link
L 4

Connection Pins

Base Class for Links

Figure 2.1 illustrates a straight link connecting two nodes:

Figure2.1 Direct Link Between Two Nodes

An I1lvLinkImage instance isagraphic object that represents the connection between two
nodes. By default, it is drawn as a straight line joining the two nodes. The constructor of the
IlvLinkImage classisasfollows:

IlvLinkImage (IlvDisplay* display,
IlBoolean oriented,
IlvGraphic* from,
IlvGraphic* to,
IlvPalette* palette=0);

The from parameter is an object of type 11vGraphic that represents the start node of the
link. The to parameter is an object of type 11vGraphic object that representsits end node.
The oriented parameter specifies whether the link ends with an arrow-head.

Several member functions, prefixed by set and get, let you access these properties. For
example, the end node can be accessed with the T1vLinkImage: : getTo and
IlvLinkImage: : setTo methods. Similarly, you can change the oriented mode of the link
withthe I1vLinkImage: : setOriented method.

Besides storing these properties, the purpose of the T1vLinkImage classisto:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Links

& Compute the shape of the link as afunction of its associated nodes and define how the
link behaves when the geometry of the nodes changes. Thistask is carried out by the
IlvLinkImage: :getLinkPoints virtua method.

& Definehow thelink isdrawn. Thisis done using the computed shape and isimplemented
in the virtual methods inherited from the 11vGraphic class.

Subclassing T1vLinkImage isuseful when you want to create alink with a different
behavior and/or drawing aspect. To change the behavior, overload the
IlvLinkImage: :getLinkPoints method:

virtual IlvPoint* getLinkPoints(I1lUInt& count,
const IlvTransformer* t) const;

The returned array should not be deleted by the caller. You need to allocate this array on a
common memory pool by using the T11vPointPool class. In this method, you can query the
geometry of the start and end nodes to determine the points defining the shape of the link.
There are two categories of such points:

¢ Theend points of the link. These define where the link starts and ends.
¢ Theintermediate points. These define the overall aspect of the link.

The I1vLinkImage class usesthe T1vLinkImage: : computePoints method to compute
the location of the end points of the link:

virtual void computePoints (IlvPointé& src,
IlvPointé& dst,
const IlvTransformer* t = 0) const;

The default implementation first checks whether the link is associated with a connection pin
on the nodes. (See section Connection Pin Management Class for more information.) If no
connection pin is defined, the intersection of the link with the bounding boxes of the start
and end nodes is computed. Thisisillustrated in Figure 2.2:

= = o]
& [x [o]
= = o]

Figure2.2 End point Location When No Connection Pin is Defined

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 90

Predefined Grapher Links

Predefined link classes are available in the grapher library. Each of these classes adds a
specific behavior or drawing functionality to the 11vLinkImage base class. You can either
use these classes as they are or subclass them to create customized links. The following
classes are available:

IlvLinkHandle
llvLinkLabel
IlvOneLinkimage
[lvOneSplineLinkl mage
IlvDoubleLinklmage
IlvDoubleSplineLinkl mage

IIvArcLinklmage

® 6 6 6 6 o o o

IlvPolylineLinklmage

llvLinkHandle

The I1vLinkHandle classisan example of alink class where the shape and behavior of the
link are directly inherited from 11vLinkImage, and where only the drawing of the link has
been redefined.

This class lets you reference any type of graphic object to make it behave as a grapher link.
Also, agraphic object can be referenced by several T1vLinkHand1e instances. Thisalows
you to create very lightweight links with complex shapes. Figure 2.3 illustrates an example
of an 11vLinkHandle instance referencing a polygon:

LinkHandle

Graphic object er e /

Figure2.3 Graphic Objects Used asa Link

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Links

The constructor of this classis asfollows:

IlvLinkHandle (IlvDisplay* display,
IlvGraphic* object,
IlvGraphic* from,
IlvGraphic* to,
IlvDim width = 0,
IlBoolean owner = IlTrue
IlvPalette* palette=0);

Once added to the grapher, thisinstance will draw the graphic object object asalink
between the nodes from and to, using the width width. The owner parameter describesthe
relationship between the handle and its referenced object. When a handle ownsiits
referenced object, the handle is responsible for deleting this object. This means that you can
safely share areferenced object as long asit is not owned by any of its handles.

An example showing how to use the T1vLinkHandle classis provided in the <TLVHOME> /
samples/grapher/linkhand directory.

llvLinkLabel

The I1vLinkLabel class aso inherits the shape and behavior of the 11vLinkImage class.
Links of the T1vLinkLabel type can belabelled with a user-defined character string.

This string can be specified by means of the 1abel parameter of the constructor. It can also
be specified once the link is created, by using the T1vLinkLabel: : setLabel method.

Figure 2.4 shows two I1vLinkLabel Objects:

Two

Figure2.4 Labelled Links

IlvOneLinklmage

The I1voneLinkImage classderivesfrom the I1vLinkImage class and defines anew
shape and a new behavior. Instances of this class are composed of two perpendicular lines,
asillustrated in Figure 2.5:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 92

93

Figure2.5 I1lvOneLinkimage

The shape of the link depends on its orientation property, which indicates whether the link
that leaves the from node starts out vertically (T1vverticalLink) Of

horizontally (T1vHorizontalLink). This property can be specified in the constructor or it
can be specified once the link is created, by using the

IlvOneLinkImage: :setOrientation method.

llvOneSplineLinklmage
This classis asubclass of T1voneLinkImage that drawsthe link asaspline:

Figure2.6 IlvOneSplineLinkimage

The position of the end pointsis similar to the one computed in the I1voneLinkImage
class. The two control points of the drawn spline are both at the intersection of the start and
end tangents of the link. You can modify the position of the double-control point by using
the I1voneSplineLinkImage: : setControlPoint method.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Links

llvDoubleLinklmage

The T11vDoubleLinkImage class derives from 11vLinkImage and defines anew shape
and a new behavior. Instances of this class are composed of three connected lines
intersecting at a 90° angle, asillustrated in Figure 2.7.

Figure2.7 llvDoubleLinkimage
The layout of the three segments follows two modes that are set with the
IlvDoubleLinkImage: : setFixedOrientation method:

& Automatic - The orientation of the segments depends on the vertical and horizontal
separation between the two nodes. The middle segment takes the orientation of the
largest separation.

& Fixed - The orientation of the link is fixed and specifies the direction (horizontal or
vertical) the link takes upon leaving the starting node.
IlvDoubleSplineLinkimage

The 11vDoubleSplineLinkImage classis asubclass of I1vboubleLinkImage that
draws the links with smooth curvesinstead of straight segments, as shown in Figure 2.8. The
behavior of these linksisthe same asin the I1vboubleLinkImage class.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 94

95

///A\

Figure2.8 IlvDoubleSplineLinkimage

llvArcLinklmage

The I1vArcLinkImage classisasubclass of T1vLinkImage that definesanew shape and
anew behavior. Links of thistype are drawn as an arc joining the two nodes, as shown in
Figure 2.9:

Figure2.9 IlvArcLinklmage Joining Three Nodes

The arc isdrawn as a spline with two control points. The distance between these control
points and the segment joining the end points of the link (also called the arc offset) can be
specified with one of the following:

& A fixed value, using the T1vArcLinkImage: : setFixedOffset method,

& A vaue proportional to the length of the segment, using the
IlvArcLinkImage: :setOffsetRatio method.

This arc offset can take negative val ues, in which case the control points are located on the
right of the oriented segment joining the start and end points. You can therefore connect two
nodes with several links without any overlapping, by using different arc offsets.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Links

llvPolylineLinkimage

This class lets you dynamically define the intermediate points of alink. These points are
stored in each T1vPolylineLinkImage instance and can be specified using several
methods:

€ IlvPolylineLinkImage::setPoints
€ IlvPolylineLinkImage::addPoints
€ IlvPolylineLinkImage::removePoints
€ IlvPolylineLinkImage: :movePoint

Aswith al link classes, the resulting shape is computed in the
IlvPolylineLinkImage: :getLinkPoints method. You can aso specify whether the
link is to be drawn with straight segments or with curves by calling the
IlvPolylineLinkImage: : drawSpline method. Figure 2.10 shows an example of the
free-form links created by T1vPolylineLinkImage instances:

Figure2.10 IlvPolylineLinkimage

Creating a Custom Grapher link

Inthissection, T1vLinkImage iSsubclassed to create a grapher link that meets the
following specifications:

& Thelink isalways drawn as a straight line between its two nodes.

& The start point is either defined by a connection pin or located at the center of the start
node.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 96

97

& Theend point issuch that the link stays perpendicular to the face of the end node closest
to the start point. If this cannot be done, the end point is located on the closest corner of
the node bounding box.

Thelink is drawn the same way asin the base class 11vLinkImage. Therefore, the
corresponding methods inherited from 11vGraphic areleft unchanged. Also, there are only
two points defining the shape of the link (the two end points, and no intermediate points).
There are two possibilities for defining the link: overloading the

IlvLinkImage: :getLinkPoints method or the I1vLinkImage: : computePoints
method. The second alternative has been chosen for this example:

void

MyLink: :computePoints (IlvPoint& src,

IlvPointé& dst,
const IlvTransformer* t) const

//== [1] ==
IlvGrapherPin* pin = IlvGrapherPin: :Get (getFrom()) ;
if (!pin || !pin->getLinkLocation(getFrom(),this,t,src)) {

IlvRect bbox;
getFrom () ->boundingBox (bbox, t) ;
src.move (bbox.centerx () ,bbox.centery()) ;

}

//== [2] ==
I1lvRect toBBox;
getTo () ->boundingBox (toBBox, t) ;

if (src.x()<toBBox.x()) {
if (src.y() < toBBox.y()) // Upper left quadrant
dst.move (toBBox.x (),
toBBox.y ());
else if (src.y() >= toBBox.bottom()) // Lower left quadrant

dst.move (toBBox.x (),
toBBox.y () +toBBox.h()-1);
else // Left quadrant
dst.move (toBBox.x (),

src.y());
} else if (src.x()>=toBBox.right()) {
if (src.y() < toBBox.y()) // Upper right quadrant
dst.move (toBBox.x () +toBBox.w()-1,
toBBox.y());
else if (src.y() >= toBBox.bottom()) // Lower right quadrant

dst.move (toBBox.x () +toBBox.w() -1,
toBBox.y () +toBBox.h()-1) ;
else // Right quadrant
dst.move (toBBox.x () +toBBox.w()-1,

src.y());
} else {
if (src.y() < toBBox.y()) // Upper quadrant
dst.move (src.x (),
toBBox.y());
else if (src.y() >= toBBox.bottom()) // Lower quadrant

dst.move (src.x (),
toBBox.y () +toBBox.h()-1) ;
else // src inside toBBox

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Grapher Links

dst.move (toBBox.centerx (), toBBox.centery()) ;
}

Inthefirst part (111) of the code, averification is made to see whether the link is attached to
a connection pin defined on its start node. If thisis not the case, the center of the bounding
box of thisnode is taken.

Oncethe location of the start point has been computed, the position of the start point with
respect to the bounding box of the end node is verified ([21). There are nine possible cases
(the eight quadrants defined by toBBox, plus the case where the start point isinside
toBBox), each defining a unique location.

Connection Pins

Connection pins allow you to control the exact location of link end points on grapher nodes.
When alink is attached to a connection pin, the connecting point stays the same, regardless
of the relative position of its start and end nodes.

The following items are described in this section:
4 Connection Pin Management Class

¢ An All-Purpose lIvGrapherPin Subclass

¢ Extending the llvGrapherPin Class

Connection Pin Management Class

The I1vGrapherPin abstract classis designed to handle a collection of connection pins. Its
first purpose is to maintain the association between links and pins. To do so, pins are
referenced by indexes. You can connect alink to a given connection pin with the
IlvGrapherPin: : setPinIndex method:

IlvLinkImage* link = ..;

//== Recover the IlvGrapherPin instance associated with the starting node
IlvGrapherPin* pin = IlvGrapherPin: :Get (link->getFrom());

//== Connect the link to the pin whose index is 0
pin->setPinIndex (link, 0, I1True) ;

Likewise, you can recover the index of the connection pin to which alink is attached, by
using the T1vGrapherPin: : get PinIndex method.

The second purpose of the T1vGrapherPin classisto provide an interface to query the
coordinates of the connecting points available for agiven node. Each concrete subclass must
provide an implementation for the T1vGrapherPin: :getCardinal and
IlvGrapherPin: :getLocation methods:

virtual I1lUInt getCardinal (const IlvGraphic* node,
const IlvTransformer* t) const;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 98

99

This method returns the number of connection pins handled by the instance for the specified
node node when displayed with the transformer t.

virtual IlBoolean getLocation(I1lUInt pinIndex,
const IlvGraphic* node,
const IlvTransformer* t,
IlvPoint& where) const;

This method returns, inthewhere parameter, the coordinates of the connection pin specified
by the index pinIndex on the node node, when displayed with the transformer .

Other methods of thisinterface (11vGrapherPin: :getClosest,

IlvGrapherPin: :getLinkLocation, and so on) have a default implementation that can
be overloaded. For example, the getClosest method considers all available connection
pins and uses the getLocation method. You can change this method to:

& provide afaster implementation (getLocation may contain computations that can be
doneonly oncein getClosest),

& return the first unused pin instead of the closest one in terms of distance.

An All-Purpose llvGrapherPin Subclass

The 11vGenericPin classis apredefined concrete subclass of T1vGrapherPin that
makes it possible to dynamically define the connection pins on anode. New connection pins
are specified by their desired location on the node when this node is displayed through a
given transformer. Once this position is stored, the T1vGenericPin classwill usethe shape
of the object to accurately locate the connecting point regardless of the applied transformer.

Hereis an example of how to use this class to add connection pins on the four corners of a
node bounding box:

IlvGraphic* node = ...;

//== Create an empty instance of IlvGenericPin
IlvGenericPin* pin = new IlvGenericPin() ;

//== Add the four connecting points

IlvRect bbox;

node->boundingBox (bbox, 0) ;

pin->addPin (node, IlvPoint (bbox.x () ,bbox.y()),0);
pin->addPin (node, IlvPoint (bbox.x () +bbox.w()-1,bbox.y()),0);
pin->addPin (node, IlvPoint (bbox.x () +bbox.w()-1,bbox.y()+bbox.h()-1),0);
pin->addPin (node, I1lvPoint (bbox.x () ,bbox.y()+bbox.h()-1),0);
//== Attach the IlvGenericPin instance to the node

pin->set (node) ;

Note: The pointsin this example are given in the object coordinate system when no
transformer is applied.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Links

Extending the llvGrapherPin Class

An example of a concrete 11vGrapherpPin subclass that handles a single connection pin
located at the center of anode bounding box is presented here. This class, called
CenterPin, is declared asfollows:

#include <ilviews/grapher/pin.h>

class CenterPin
: public IlvGrapherPin
{
public:
CenterPin() {}

virtual I1lUInt getCardinal (const IlvGraphic*,
const IlvTransformer*) const;

virtual IlBoolean getLocation (I1lUInt,
const IlvGraphic*,
const IlvTransformer* t,
IlvPoint&) const;
DeclarePropertyInfoRO() ;
DeclarePropertyIOConstructors (CenterPin) ;
}i

The constructor of the centerPin class does nothing since this class does not store any
information. The DeclarePropertyInfoRO and DeclarePropertyIOConstructors
macros are used to make the centerpin class persistent. Only the getCardinal and
getLocation methods are overloaded since the implementation of the other
IlvGrapherPin methods does not need to be changed. The sourcefile for the centerpin
class defines the following methods:

#include <centerpin.h>

/] mm o
// - I0 Constructors

CenterPin: :CenterPin (IlvInputFile& input, IlvSymbol* s)

: IlvGrapherPin(input, s) {}

CenterPin: :CenterPin(const CenterPin& src)
: IlvGrapherPin(src) {}

I1UInt
CenterPin: :getCardinal (const IlvGraphic*,
const IlvTransformer*) const
{
return 1;

}

/) S e oo
I1Boolean
CenterPin: :getLocation (I1UInt,

const IlvGraphic* node,

const IlvTransformer* t,

IlvPoint& where) const

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 100

IlvRect bbox;

node->boundingBox (bbox, t);

where.move (bbox.centerx (), bbox.centery());
return IlTrue;

/] mm T o
// - Macros to register the class and make it persistent
IlvPredefinedPropertyIOMembers (CenterPin)

IlvRegisterPropertyClass (CenterPin, IlvGrapherPin) ;

The implementation of the getCcardinal method is straightforward and returns 1 for any
node and transformer. The getLocation method simply queries the transformed bounding
box of the node and returnsits center. (The index of the connection pin is not used since this
class defines only one connection pin.) The declaration of the centerpin classis provided
inthefile <TLVHOME>/samples/grapher/include/centerpin.h. ItSimplementation
can be found in the file <ILVHOME> /samples/grapher/src/centerpin. cpp.

Grapher Interactors

101

The 11vManager class provides awide range of interactors that are used to create objects
and change their shape. The T11vGrapher class contains specific interactors designed to
create new nodes and links and change the way they are connected:

¢ Selection Interactor
Creating Nodes
Creating Links

Editing Connection Pins

Editing Links

* & & o

Selection Interactor

The I1vGraphSelectInteractor classderivesfromthe I1vSelectInteractor class.
It contains additional member functions used to manage the drawing of ghost images for
links attached to nodes that are moved or enlarged. This class has the following constructor:

IlvGraphSelectInteractor (IlvManager* manager, IlvView* view) ;

This constructor initializes a new instance of the I11vGraphSelectInteractor classthat
lets you select individual objects or groups of objectsin the view view connected to the
manager manager. This manager is assumed to be an instance of the 11vGrapher class.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Interactors

Creating Nodes

The I11vMakeNodeInteractor classisthe base classfor interactors that allow the user to
interactively create nodes in a grapher. Instances of this class must be attached to a grapher
and one of its connected views, as shown here:

IlvGrapher* graph = ...;

IlvView* view = ...;

IlvMakeNodeInteractor * inter = new IlvMakeNodeInteractor (graph, view);
graph->setInteractor (inter) ;

To create anode, drag arectangular region in the working view. There are two ways to
specify what type of graphic object is created:

¢ Subtypethe 11vMakeNodeInteractor class and overload its
IlvMakeNodeInteractor: :createNode method.

¢ Subtypethe 11vMakeNodeInteractorFactory classand overload its
IlvMakeNodeInteractorFactory: : createNode method. You can associate a node
factory with an interactor by using the T1vMakeNodeInteractor: : setFactory
method.

The grapher library provides predefined subclasses of 11vMakeNodeInteractor:

¢ IlvMakeShadowNodeInteractor - Thisinteractor createsinstances of the
IlvshadowLabel classand storesthem as nodesin the grapher.

€ IlvMakeReliefNodeInteractor - Thisinteractor createsinstances of the
I1lvReliefLabel class and storesthem as nodes in the grapher.

Creating Links

The T11vMakeLinkInteractor classisthe base classfor interactors that allow the user to
interactively connect nodes in a grapher. Its constructor is as follows:

IlvMakeLinkInteractor (IlvManager* manager,
IlvView* view,
I1lBoolean oriented = IlTrue);

The oriented parameter specifies whether created links are oriented. An example of how
to create an interactor of thistype and connect it to a grapher and one of itsview is presented
here:

IlvGrapher* graph = ...;

IlvView* view = graph->getFirstView() ;

IlvMakeLinkInteractor * inter = new IlvMakeLinkInteractor (graph, view) ;
graph->setInteractor (inter) ;

To connect two nodes, perform the following steps:

1. Click the starting node. This nodeis highlighted if it is considered valid by the interactor.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 102

103

2. Drag the mouse until it is positioned over the ending node. If thisnodeisvalid, itisaso
highlighted.

3. Release the mouse button to create the link.

You can control which nodeis valid by overloading the
IlvMakeLinkInteractor: :acceptFromand IlvMakeLinkInteractor: :acceptTo

methods. There are two ways of specifying what type of link should be created:

¢ Subtypethe 11vMakeLinkInteractor class and overload its
IlvMakeLinkInteractor: :createLink method.

¢ Subtypethe 11vMakeLinkInteractorFactory classand overload its
IlvMakeLinkInteractorFactory: :createLink method. You can associate alink
factory with an interactor by using the T1vMakeLinkInteractor: : setFactory
method.

The Grapher library provides several predefined subclasses of T1vMakeLinkInteractor:

& TlvMakeLinkImageInteractor - Thisclassisused to createalink of type
IlvLinkImage.

& TlvMakeLabelLinkImageInteractor - Thisclassisused to create alink of type
IlvLinkLabel.

€ TlvMakeOneLinkImageInteractor - Thisclassis used to create alink of type
IlvOneLinkImage.

€ IlvMakeOneSplineLinkImageInteractor - Thisclassisused to createalink of
type 11vOneSplineLinkImage.

€ TIlvMakeDoubleLinkImageInteractor - Thisclassisused to create alink of type
IlvDoubleLinkImage.

@& IlvMakeDoubleSplineLinkImageInteractor - Thisclassisusedto createalink of
type I11vDoubleSplineLinkImage.

Creating Polyline Links

The I1vMakePolyLinkInteractor classisaspecia kind of interactor that does not
derive from I1vMakeLinkInteractor.

Thisinteractor is used to create links whose intermediate points can be explicitly defined. It
lets you control the shape drawn by the user by means of the
IlvMakePolyLinkInteractor: :accept method:

virtual IlBoolean accept (IlvPoint& point);

By overloading this method, you can add specific constraints on the position of the
intermediate points of the link. Once these points have been defined, thelink is created with
the I1vMakePolyLinkInteractor: :makeLink method, which must be defined in
subclasses to return the appropriate link instance. The grapher library provides one

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Grapher Interactors

predefined subclass, T1vMakePolylineLinkInteractor, Whichisused to create links of
the I1vPolylineLinkImage type.

Editing Connection Pins

TheIlvpPinEditorInteractor classletsthe user interactively edit the connection pins of
a grapher node. When this interactor is active, selecting a node will highlight its connection
pins, as shown in Figure 2.11:

"*-2:3. Connection Pins

Figure2.11 Highlighted Connection Pins
Once a grapher node is selected, you can:

4 Add anew connection pin by clicking inside the node.

4 Remove a connection pin. To do this, select the pin with the mouse and press the Delete
key.

4 Move an existing connection pin. To do this, select the pin with the mouse and drag it to
its desired location.

4 Connect and disconnect linksto or from apin. To do this, first select a connection pin,
and then click the considered link.

Note: If the working node is already associated with a pin management object, this object
must be of the T1vGenericpin type. If the node does not define any connection pin, then
an I1vGenericPin instance isautomatically created.

Editing Links

When alink is selected, its selection object draws handles that you can use to change its
shape or edit the way it is connected. Figure 2.12 shows a link that has been selected:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 104

105

Link Endpoints

Figure2.12 A Selected Link
An end point handle can be dragged to:

& Change the connection pin to which thelink is attached. When the handle is dragged near
aconnection pin, the pin is highlighted and the link uses its position to compute the
location of its end point.

& Connect the link to another node.
The intermediate point handles can be used to edit the shape of the link. The kind of
interaction allowed by these handles depends on the kind of link being edited.

Note: Link editing can be turned off by using the T1vGrapher: : setLinksEditable
method. When an 11vGrapher instanceis created, link editing is disabled by default.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Part |l

Prototypes

Part 11 explains the concepts behind Business Graphic Objects and shows how to create and
use prototypes with both containers and managers. This part consists of the following
chapters:

& Chapter 1, Introducing the Prototypes Package introduces the concepts of prototypes.

& Chapter 3, The User I nterface and Commands describes the main parts of
IBM ILOG Views Studio with the Prototypes extension.

& Chapter 2, Using IBM ILOG Views Studio to Create BGOs explains how to use
IBM ILOG Views Studio to create your prototypes by composing graphic objects and
assigning behaviorsto them.

& Chapter 4, Using Prototypesin C++ Applications describes the classes and methods
used to manipulate prototypes and shows how to structure your application to benefit
fully from BGOs. It then shows how to use prototypes created in IBM ILOG Views
Studio in your C++ applications.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 106

& Chapter 5, Predefined Accessorsliststhe behaviorsthat are predefined in the Prototypes
library.

Note: The IBM ILOG Miews Prototype package is available only if you have purchased the
IBM ILOG Views 2D Graphics Professional product.

107 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Introducing the Prototypes Package

The Prototypes package lets you create custom domain-specific graphic objects called
Business Graphic Objects (BGOs). These objects are created interactively, without writing
C++ code, using the Prototypes extension of IBM ILOG Views Studio.

This section introduces the concepts of BGOs and explains the classes and methods used to
manipul ate the prototypes created with IBM ILOG Views Studio.

An Overview of the Prototypes Package

This section provides an overview of how to use the Prototypes package of
IBM® ILOG® Viewsto create BGOs. Because IBM ILOG Views BGOs are based on the
prototype design pattern, they are often referred to as prototypes.

The following items are described in this section as an introduction to the Prototypes
package:

& Business Graphic Objects

¢ Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
& Using Prototypesin Applications

& \When Should You Use Prototypes?

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 108

& The Prototype Design Pattern
& Specifying Graphic and Interactive Behavior Using Accessors

Business Graphic Objects

Application devel opers often need to define custom graphic objects to represent domain-
specific application objects that the user is able to interact with. The IBM® ILOG® Views
Prototypes package provides a simple and efficient solution for building such business
graphic objects (BGOs). BGOs are created using the Prototypes extension of

IBM ILOG Views Studio. Creating a BGO requires no coding. It is created by performing
three basic steps:

1. Define the application interface of the BGO as a set of typed attributes that represent the
domain of your object. For example, aboiler object representing a power plant boiler can
have Temperature, Capacity, Level, Input valve, and Output valve attributes.

2. Define the look of your objects using basic IBM ILOG Views graphic objects, such as
lines, text, and images. You can a'so include other BGOs to build structured objects. For
example, the boiler object could be represented by a rectangle, the temperature and level
by gauges inside the rectangle, and input and output valves by toggle buttons inside the
rectangle.

3. Attach behaviorsto your graphic objects to define how they should represent the state of
an application object and how they should react to user events. You can dynamically
change the attributes of a shape, animate the object, and connect BGOs together to
reflect the state of the objectsin the user interface. For example, attaching aFill behavior
to the Level attribute ensures that the level of the boiler is kept synchronized with its
graphic representation.

You can then create instances of your BGOs and use them in managers or containers just as

you would do with basic IBM ILOG Views graphic objects. You can link application objects

to their corresponding BGO. The display, synchronization, and user interaction is handled
by the Prototypes package. You can edit and modify aBGO at any time: itsinstanceswill be
automatically updated.

Creating a powerful, direct-manipulation interface for domain-specific objects becomes as
easy as creating a form-based interface for the same objects, but the resulting interface is
much more appealing and explicit to the user.

Figure 1.1 shows examples of application panels built with prototypes.

109 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

An Overview of the Prototypes Package

Figurel.1 Examples of Prototype Applications

Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
When you use IBM ILOG Views Studio to create your BGOs, you can:
& Design the graphic appearance of your BGOs by assembling basic graphic objects.

¢ Define the graphic behavior and interactive aspects of your BGOs by attaching
predefined behaviors to them, or by writing scripts.

& Storethe BGOsin libraries as prototype objects that can be reused, modified, and
instantiated in panels. Since BGOs are mostly used as prototypes, the terms prototype
and BGOs are used interchangeably.

& Add instances of your prototypes to managers or containers.
& Test the behavior of your prototypes and the panels that contain them.

All these operations are performed in WY SIWY G (what you see is what you get) mode
without coding in C++.

Using Prototypes in Applications

You can load IBM® ILOG® Views files containing instances of your prototypesinto a
manager or a container the same way you load files containing basic IBM ILOG Views
graphic objects. You can also create instances of prototypes, attach them to application
objects, and place them in managers or containers.

Prototypes are not subclasses of 11vGraphic. They are groups of graphic objects contained
in an object of the T1vGroup class. The definition of a prototypeis stored in afile so you do
not need to recompile your application if you modify a prototype.

IBM ILOG VIEwS V5.3 — 2D GRAPHICS 110

111

To place prototype instances in an T1vManager OF an I1vContainer You must embed
them in a specific subclass of 11vGraphic caled 11vProtoGraphic. When you use

IBM ILOG Views Studio to place the prototypesin the manager or container,

IBM ILOG Views Studio creates the encapsulating I1vProtoGraphic for you. You can
manipulate T1vProtoGraphic the sameway asan I1vGraphic. You can use the
IlvGroupHolder classto retrieve the prototype instances of agiven view (container or
manager) and modify the properties of your prototype instances according to the application
values you want to display.

When Should You Use Prototypes?

To define aBGO, you can either use prototypes or write the C++ code for a subclass of
I1lvGraphic using direct callsto the IBM ILOG Views methods to draw your object. The
use of prototypes is therefore an aternative to direct coding.

The prototype approach has the following advantages:
& Very short development time that permits an iterative GUI design process.

& Easy maintenance and debugging, since thereis a clear separation between the
implementation of the application and the implementation of the user interface.

¢ Complete integrationin ILOG Views Studio. The user interface designer draws instead
of programming.

& Few C++ programming skills required.

Asaresult, the task of designing the graphical appearance of your objects can be delegated

to non-programmers. For example, graphic designers may be more suited to the task and will
findin IBM ILOG Views Studio adrawing program comparable to the graphic toolsthey are
accustomed to.

Prototypes have been designed and implemented with a strong emphasis on efficiency.
Although prototypes may not always be as efficient as direct C++ coding (because they are
based on composition rather than derivation), applications can create thousands of prototype
instances without encountering performance problems.

The Prototype Design Pattern

The process of creating BGOs is based on the prototype design pattern. You can group basic
objects and use the group as amodel (or prototype) from which you can create clones (or
instances). When the prototype is modified, all its instances are automatically updated with
this modification.

Using the prototype design pattern, it is possible to create complex graphic objects using a
WY SIWY G editor and to use the objects immediately to build application panels.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

An Overview of the Prototypes Package

Specifying Graphic and Interactive Behavior Using Accessors

BGOs define a set of public attributes. These attributes correspond to the application
programming interface of the BGO. You can change the appearance of the BGO by setting
its attributes to given values. You can also query any of these attributes at any time.

You can attach several behaviors to each of these attributes. A behavior defines a side effect
that is executed each time the attribute is changed or queried. For example, you can attach a
Condition behavior to a Temperature attribute. Each time the temperature is changed, the
condition is evaluated and the graphic appearance of the object changes. The Condition
behavior can set the color of an object to red if the temperature is above a predefined
threshold. You can also attach interactive behaviors to your BGO— for example, you can
specify that the temperature should be adjusted when the user clicks on the thermometer.

Attributes and behaviors are implemented by means of accessors (objects of the class
I1lvAccessor). Accessors can be attached to graphic objects and can:

& Store attribute values
& Perform side effects
& Track user events

The accessor mechanism allows you to define complex behaviors. You can combine
accessors to re-create the logic of an entire application. However, it is strongly
recommended that you use the accessor mechanism only to specify the graphic and
interactive behaviors of your objects. Do not use the accessor mechanism to implement
features of the application domain. By doing this, you maintain the sound modular aspects of
your program.

Taken as awhole, the accessors of a BGO define a data flow graphic program. Data flow
programming is as powerful asthe more classical control flow model used in programming
languages such as C++ or Java. However, data flow programming is better adapted to the
definition of small, graphic oriented programs.

To facilitate the definition of complex graphic behaviors, the Script accessor alows you to
define graphic or interactive behavior asan IBM ILOG Script program. This allows more
complex computations to be performed and gives access to the entire suite of

IBM ILOG Script features.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 112

113 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Using IBM ILOG Views Studio to Create
BGOs

This chapter describes how the Prototypes extension |ets you create composite graphic
objects and assign them an application interface, a graphic behavior, and an interactive
behavior through interactive, point-and-click editing. These graphic objects can then be
linked to domain-specific objects following the application interface, providing full

WY SIWY G, direct-manipulation editing of the domain objects.

You can find information on the following topics:
& Creating and Using Prototypes
& Loading and Saving Prototype Libraries
& Creating and Editing Prototype Instances in Panels
& Connecting Prototype Instances
Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views

Sudio assume that you are familar with the information in the IBM ILOG Views Studio
User’'s Manual.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 114

Creating and Using Prototypes

115

The following topics related to creating and using prototypes are presented in this section:

® 6 6 6 6 0 0 o

Creating a Prototype Library
Creating a Prototype

Defining the Attributes
Drawing the Prototype
Defining Graphic Behaviors
Defining Interactive Behaviors
Testing Your Prototype

Saving a Prototype

Creating a Prototype Library

You will probably want to create your BGOs in libraries so that you can retrieve and
manipul ate them all together.

To create anew prototype library, do the following:

1.

From the File menu in the Main window, choose the command New > Prototype Library.
A file selector appears.

Select adirectory for which you have write permission and enter the name of the new
library (it must have a . ip1 extension). Click Save.

A new page, corresponding to the library you have just created, appearsin the Pal ettes
panel.

Creating a Prototype

These are the tasks involved in creating a prototype:

4

4

Defining the attributes of your prototype in the Interface page of the Group Inspector
panel.

Drawing the graphic elements that make up the prototype in the Prototype buffer
window.

Defining the graphic behavior of the prototype using the Group Inspector panel
Defining the interactive behavior of the prototype using the Group Inspector panel.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Creating and Using Prototypes

These tasks can be interleaved: at any point you can add, edit, or remove attributes, graphic

elements, or behaviors of the prototype.

Your prototype is created in a prototype buffer window. Before beginning these tasks:

1. Open aPrototype buffer window by selecting New > Prototype from the File menu.

2. Display the Group Inspector panel by selecting the Group Inspector from the Tools

menu.

Defining the Attributes

Use the following procedure to define and edit the external attributes (or “properties”) of
your prototype or group. (Properties determine how you will access your prototype or group
from your application or from other objects.)

1. Open the Interface page of the Group Inspector Panel. This page allows you to define a
set of attributes, giving each of them atype and a default value:

Inkerface |Graphics | Graphic behavior | Interactive behavior

Edit View Help
Mame Tupe Walue
FED

2. Choose Edit > New Attribute or Ctrl+N to add an attribute.

A new row "Unnamed" appearsin the table.

3. To specify the name of the attribute, click the box Unnamed. Enter a name for this
attribute. This name must be unique to avoid ambiguities; it is used to access the

behavior of this attribute.

4. To specify the type of the attribute, click twice on the adjacent Type combo box (or press
F2 if using only the keyboard). Select the pull-down menu, which will let you specify a

type.

All attributes are typed: each type indicates the kind of values that can be assigned to the
attribute, which helps determine its meaning. The types available are:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 116

117

Value - The attribute holds a val ue that can be set or queried directly (astring, acolor,
an integer, and so on). When you set an attribute to a given value type, the combo box
will display thistype directly.

Reference - A reference to another internal attribute of the group. For instance,
creating an attribute named "temperature”, and having it reference the "value"
attribute of a"dlider" graphic object allows you to access the "value" internal attribute
of the slider under the more appropriate name of "temperature”, which is helpful if the
group isto represent athermometer. Thisis equivalent to apointer or an aliasin a
programming language. When you have set the type to reference, the referenced
attribute, prefixed with “/”, appearsin the combo box that describes the attribute type.

Grouping of attributes - All subattributes in the group bearing the name of the
attribute will be addressed collectively and assigned the same value. For instance,
creating an attribute named "foreground” and giving it the type "group” creates an
attribute that will set the foreground of all objects contained in the group to the same
value.

Script - A script is executed. This script should return avalue, which defines the
attribute. Use the Behavior page to change the name of the function that defines the
value. The name of the function, followed by “()”, appears when you choose this type
of attribute.

NoType - Some attributes can be purely functional, and therefore untyped.

Note: If an attribute has neither a type nor a behavior, it cannot exist. Therefore, setting
atype of "none" to an attribute after creating it is equivalent to deleting the attribute.

. Enter adefault value for the attribute in the Value column of the attribute.

. To set other parameters of the attribute, use the buttons on the right side of the page.

When the button is released, the property is set:

Public (button P in the inspector) - The attribute is visible by outside objects.
Attributes are public by default, but you can hide those attributes that are only used to
perform internal computations.

Persistent (button R in the inspector) - The attribute value will be stored when the
group is saved, alowing the last value set by the user to be maintained. By defaullt,
attributes are persistent. To optimize reading and writing, or to always restore the
attributes to the original state of the prototype when afileisread, you can set them to
non-persistent.

Notifying (button N in theinspector) - When thisis set, the attribute can notify other
attributes that it has changed its value and, therefore, enable other attributes to update
themselves. See section Notify.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

7.

Creating and Using Prototypes

Repeat steps 2 through 6 for each attribute you wish to add to provide a description of the
interface for your prototype.

Using the Edit Menu on the Interface Page

When specifying the interface of your prototype, you can also:

4

Import the interface of another Prototype to add predefined attributes and behaviors from
that prototype:

Select Edit > Delegate To Prototype and choose from the available list the prototype
whose attributes you want to inherit.

A new attribute is created with the inherited attributes shown grayed-out in the table.
You cannot directly edit these inherited attributes, but you can reference them through
other attributes.

Some inherited attributes may already reference other attributes or graphic nodes, and
therefore you may find that not every prototype can be imported into another prototype.

Order the attributes:

Select an attribute and choose Edit > Move Item Up or Edit > Move Item Down.
Delete an attribute:

Select the attribute and choose Edit > Delete.

Cut/Copy/Paste: You can copy or cut awhole attribute and its behavior by selecting the
first line of an attributes tree and selecting Edit > Copy or Edit > Cut. You can paste the
content of the attribute's clipboard by first selecting aline where you want the attribute to
be inserted, and then selecting Edit > Paste.

Using the View Menu on the Interface Page

This menu on the Interface page presents alternative views of the attributes of your group or
prototype, and allows you to select which types of attributes you want to edit for agiven

group or prototype:

4

4

Interface - Lets you access and edit al the attributes defined for the group or prototype.
Thisisthe default presentation.

Public Attributes - Shows only the public attributes of the prototype, those that can be
seen by other objects and by the application.

Modified Vaues - Lists the values of a prototype instance that differ from its prototype.
These values will be saved together with the prototype instance.

All Values - Lists all the prototype values and subvalues. These values can be modified,
but this does not mean that the modifications will be saved with the prototype if some
other behaviors override the new settings.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 118

119

Drawing the Prototype
Define the graphic presentation of your prototype using the Prototype buffer window:

4 You can drag and drop graphic objectsinto the buffer and use the editing modes to create
lines, polygons, and so on: a Prototype buffer window has all the properties of the
IBM ILOG Views Studio 2D Graphics buffer window.

& Asyou draw your prototype, you can see its structure in the Graphics page of the Group
Inspector panel, shown in addition to the Main window. Figure 2.1 shows an example of
this. Thelist of graphic nodes appears organized from bottom to top. Asyou add graphic
objectsto the prototype, the tree structure is updated. You can select graphic nodes either
directly in the Prototypes buffer window (asyou do in IBM ILOG Views Studio) or in
the tree that appears in the Group I nspector panel.

LY ivstudio - testapp

File Edit Wiew Draw Tools Datafccess Application wWindow Help
LI Al I CEYEIET R =1
b EEEDERY ARG |

Falcties & -:;:.Eraphiu.:.unrwrned
” Graphics - - S I < R =13
E i Prototype - E..\ivprotos'libs',pump.ivp EE)E
E|-- Protokypes
O
; €0 sources
; -7 oukpuk
~~HE@ operations 8 |
i H script et
bulb pump i
¥ Group Inspector, g[ﬁ]rz|
|Interface| raphics |Graphic Behavior!élnteractive Behavior|
Edit Help
bol field
il ¥ purmp B mZ |0 |
| Tator mZ |0 |
e |0 g - Ivelipse "z |0
" IPolyine iz [0
thermo display W
[2 1
circGauge alert

—T—

Figure2.1 The Graphics Notebook Page of the Group Inspector Panel

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Creating and Using Prototypes

Editing Prototype Nodes

You can use the fields on the Graphics page of the Group Inspector (see Figure 2.2) to
change a number of properties associated with the elements (or nodes) in your prototypes:

¥ Group Inspector

Interface| Graphics |Graphic Behavior | Interactive Behavior

Edit Help
= purp u 0

ratar o o

IIvElipse 0 0

IlvPalyline 0 v

Figure2.2 The Graphics Notebook Page of the Group Inspector Panel

& |f the selected node is a graphic node, the properties only apply to this particular node.

¢ |f the selected node is a group node—that is, the root node of the prototype, a subgroup
of the prototype, or a prototype instance—the properties apply to al the child graphic
nodes of the selected group.

The following table describes the fields found on the Graphics notebook page:

Table2.1 Fields of the Graphics Notebook Page of the Group Inspector Panel

Field Description

Node name This text field is used to change the name of the node. You
can also use the Name field of the Generic Inspector in the
IBM ILOG Views Studio Main window.

Note: Nodes should contain only alpha-numeric
characters (A-Z, a-z, 0-9).

(V) Visible This toggle controls the visibility of the graphic object in the
prototype.
(H) Hidden in application If this button is set, the selected graphic object is visible only

while editing the prototype or its instances in

IBM ILOG Views Studio. The object is hidden in the final
application. This property can be used to create
intermediate “computing” prototype instances such as those
of the “operations” prototype library.

IBM ILOG VIEwS V5.3 — 2D GRAPHICS 120

121

Table2.1 Fields of the Graphics Notebook Page of the Group Inspector Panel (Continued)

Field

Description

(N) Grapher node

If this button is set, the graphic object is added as a grapher
node when the prototype is instantiated in a grapher. This
allows you to use prototype instances as grapher nodes.
(This button is deprecated and included for compatibility
reasons.)

(T) Transformed

This button controls whether a transformer is associated
with the graphic node to ensure that the graphic object can
be transformed arbitrarily without distortions. Without a local
transformer, some IBM ILOG Views objects lose their
original geometry when they are resized. Using a local
transformer ensures that the geometry of objects is not
modified by geometric transformations. On the other hand,
using a local transformer consumes more memory.

If you select this button, remember that you must use the
standard Selection mode to inspect the graphic object of the
node. If you use the Group Selection mode, the selected
object is an instance of a subclass of
IlvTransformedGraphic and cannot be inspected.

(B) Bounded Size

If set, this flag restricts the zoomability of the objects. Setting
this flag and leaving mZ and MZ to 0 is equivalent to setting
both of them to 1. It is, however, more efficient. If Bounded
Size is set, and mZ or MZ are not 0, this flag makes the
objects disappear if the zoom factor of the view of the
instance is greater than MZ or less than mZ.

(mZ) Min. Zoom

If not zero, this attribute limits the minimum size an object
can have. When the scaling factor of the view holding the
object is below this value, the object does not get any larger.
If Min. Zoom and Max. Zoom are set to the same value, the
object never grows or shrinks in size. If they are set to 1,
they stay at the size at which they were created.

(MZ) Max. Zoom

If not zero, this attribute limits the maximum size an object
can have. When the scaling factor of the view holding the
object is above this value, the object does not get any larger.

Structuring Prototype Nodes

To structure your prototype, you can group graphic nodes into subgroups. This may be
useful when you define your prototype accessors; for example, when you want to rotate a
group of objects or change their color. To create a subgroup:

1. Inthe Prototype buffer window, select the graphic objects you want to group.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Creating and Using Prototypes

2. From the Draw menu select Group.

The objects are grouped into an instance of the class 11vGroup and a subgroup nodeis
created in the prototype. The node tree shows the structure change.

Using the Group Selection mode, subgroups can be selected and moved as awhole. This
mode shows the selected group by drawing a dashed-line frame around the group. You are
still able to select individual graphic objects inside subgroups with the standard Selection
mode.

To include instances of other prototypesin the prototype you are editing:

1. If not already open, activate the Prototypes palette by choosing Palettes from the Tools
menu.

2. Select the desired prototype library.

3. Drag and drop the prototype into the Prototype buffer window. The Nodes page of the
Prototype Inspector will show a new node, similar to a subgroup node, for the prototype
instance.

Having added objects, you may return to the Interface page to define new attributes that
reference the internal nodes, or go to the Behavior page to define dynamic behaviors for the
prototype.

Defining Graphic Behaviors

Define the graphic behaviors of your prototype using the Behavior page of the Group
Inspector (see Figure 2.3). The graphic behaviors determine how the modification of an
attribute affects the visual aspect of your prototype. For each attribute, you can add
behaviors: these are instructions that will be performed each time the value is modified.

¥ Group Inspector

Interface | Graphics| Graphic Behavior (Inkeractive Behavior
Edit Control Display Misc Help
onColor Calor
offColor Calor
= on Boalean
~I do
+ == true 7 gaz.foreground = oniColor ; offiColor
alpha <<group

Figure2.3 The Behavior Notebook Page of the Group Inspector
To add a behavior:

1. Select an attribute in the list.

IBM ILOG VIEwS V5.3 — 2D GRAPHICS 122

123

2. From the Control, Display, or Misc menus, select a behavior to be added:

e Control behaviors enable the change of one attribute to trigger changes of other
attributes, conditionally or not. For instance, if you want athermometer to appear red
when the temperature is above a given threshold, add a Condition accessor on the
temperature attribute that assigns red to the foreground val ue of the gauge.

o Display behaviors enable you to change graphic properties of objects, such as
rotation, zoom, and visibility, or perform animations of objects.

In addition, you can have attributes notify others of their changes, so that the graphic
appearance of the group or prototype can be fully adjusted when one attribute changes its
value. The Notify behavior, from the Control menu, can tell other attributes watching it that
they should execute their behavior, while the Watch behavior, from the Misc menu, alows
one attribute to indicate that it observes another attribute.

The exact effects of al predefined behaviors are described in Predefined Accessors.

Alternatively, you can access this page via online help. Select Help from the menu bar.
Select a behavior in the Control, Display, or Misc menus and a help page describing the
effect of the behavior will appear in the left-hand pane of the panel.

Using the Edit Menu of the Behavior Page
From the Behavior page, you can also:

& Add intermediate or hidden attributes that will be used in intermediate states of the
computation:

1. Select Edit > New Attribute to add an attribute.
A new unnamed attribute appears.
2. Setits name and type, as on the Interface page.
3. When the attribute is selected, one or more behaviors can be added to it.

& Cut/Copy/Paste behaviors. You can copy or cut awhole attribute and its behaviors by
selecting thefirst line of an attributes tree and selecting Edit > Copy or Edit > Cut, or
copy or cut asingle behavior only by selecting the behavior's line and then Edit > Copy
or Edit > Cut. You can paste the content of the attribute's clipboard by first selecting a
line where you want the attribute to be inserted, and then selecting Edit > Paste.

& Delete selected attributes, behaviors, or parameters with Edit > Delete.

& Movebehaviors up or down. Behaviors are triggered from the top to the bottom. You can
decide in which order they are to be triggered.

Setting Accessor Parameters

Depending on its class, a behavior may require additional parameters to be fully defined.
Behavior parameters are edited in the matrix to the right of the Attributes Tree:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Creating and Using Prototypes

Group Inspector,

Interface | Graphics| Graphic Behavior (Interactive Behavior

Edit Control Display Misc Help
onColor Color
offColor Color
= on Boolean
Attributes Tree = da
B == true ? gaz.foreqground = onCalor ;@ affCalor
Operator e
Operand krue
Parameter hatrix Attribute gaz.foreground
if True oniZalor
if False offColar
alpha <<group e

The Group Inspector is designed so that you can define complex behaviors for your
prototypes by simply selecting parameter valuesin combo boxes or dialog boxes.

Each matrix row corresponds to a parameter:
& Theleft column contains the parameter |abel.
¢ Theright column contains the parameter values.

When abehavior is added, a parameter matrix isinitialized with default or empty values that
may need to be filled with appropriate val ues.

To edit a parameter value, click twice on the corresponding item in the matrix. This creates
an editing field on top of the value item, which is either acombo box or atext field (see
Figure 2.4). The combo box isinitialized with relevant values for this parameter.

attribute | ~|
if True onZalar
if False offCalar

Figure2.4 A Combo Box With an Example of a Default Value

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 124

There are four types of parameter, as shown in the following table:
Table 2.2 Behavior Parameters

Parameter Type Description Symbol

Literal/Explicit The value is a string or an enumerated type that must | (e)
be specified explicitly.

Input The value is queried when the accessor is evaluated.

These values can be a constant (a string or a <
number), a reference to other attributes, or an
expression that is a combination of constants and
references.

Output The value is changed when the behavior is evaluated. j

(A call to the changevalue method is made.) Hence,
the value must be a name that references either an
existing attribute of the prototype.

Object/Node The value of the parameter must be the name of an

existing node. Some accessors accept only certain |:|
kinds of objects as a parameter. For instance, display
behaviors act only on graphic nodes.

For input parameters, the editing field is a combo box that contains atree of accessors, as
well astwo special items at the beginning of the tree:

125 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

¥ Group Inspector

Interface | Graphics Graphic Bshavior Interactive Behavior

Edit Contral Display [isc
onColor Calor
offColor Colar
= on Boolean
1= da
= == true ? gaz.foreground = onColor : offCalor
Operatar ==
Cperand true
Attribute gaz.foregraund
if True jonColor
if False [Immediate value]
alpha

seale
centen
centert
baseLayer
transformed
wisible
hidden
ishods
mirZoom

marZoom
finedSize
base

gaz
bordertap
borderleft
borderright
barderbot
line1

line2

line3
contact

Creating and Using Prototypes

¢ [Tmmediate value] - Whenthisitem is selected, the editing field is set up to edit an
immediate parameter value. If the value type can be determined, a value selector (that is,
either a combo box or aresource selector) is created. You can also type the immediate
value directly. If the valueis not a number or a Boolean value, the value can be in double
guotes (for example, you must enter a color as "red"). The value can also be an

expression.

& [All types / Matching types] - Thisitem toggles between the two values. [a11
types] listsall the accessors, even those whose type does not match the expected type.
[Matching types]listsonly the accessors whose type matches the expected type for
thevalue. It is generaly better to edit parameter values from top to bottom, because the
editing field is often initialized using information available from the preceding fields.

Input parameters expressions can contain:

¢ Constants: numeric or strings literals (to be placed between quotation marks)

& Variables: prototype values or node attributes

& Arithmetic operators and parentheses. (+, -, *, **, /, %, ==, |=, >, >=, <, <=, &&, |))

IBM ILOG VIEwWS V5.3 —

2D GRAPHICS 126

127

& Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round, sin,
sgrt, tan. (See your standard C/C++ library user’s manual to get the meaning of these
functions.)

Note: Unlikeits C/ C++ equivalent, rand takes an integer argument. A non-zero
argument is used by the random number generator as a seed when producing a random
number. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.

Notifying behaviors have the side effect of propagating the value of the attributes to their
watching attributes instead of simply setting it. In this case, the behaviors of the watching
attributes are evaluated in sequence. Such behaviors (Trigger accessors) show an outward
arrow on top of their Output parameter, and the val ues they are connected to show an inward
arrow:

|
"Puzh" or "Trigget” Parametars m } »

Some behaviors can have avariable number of parameters. These accessors are identified by
their last row of the parameters column, which indicates “<<Click to add item>>". To create
anew row in the editing matrix of the Group Inspector for these behaviors, press the Enter
key in the value field of the last parameter or simply click in the indicated field.

Defining Interactive Behaviors

Add user behaviors using the Interaction page of the Group I nspector, to determine how user
actions affect the attributes of your prototype:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Creating and Using Prototypes

'Y Group Inspector

Interface| Graphics| Graphic Behavior | Inkeractive Behaviar

Edit Events Control Display Misc Help
=l clicked

+ on callback [All_nodes]. Generic, send O

+ watch clicked

= do

+ toggle running

Figure2.5 The Interaction Page of the Group Inspector.

This page works the same way as the Behaviors page and displays alist of behaviors. The
page starts blank, as only the behaviors that are triggered by user actions are displayed in
this page.

For each attribute, you can add behaviors, which are instructions to be performed each time
the valueis modified:

1. Choose an item in the Events menu to add an interactive behavior:

o |f the user action comes from a callback, select Events > Callback to add a behavior
that will be triggered by some object interactor and callback.

o Otherwise, to directly handle user events such as button clicks, select Events > Event
to add a behavior that will be triggered by simple user events.

2. Enter the parameters for each added behavior.

3. Once you have added the triggering accessor, you can add behaviors that will be
triggered by the user action by adding Control > item or Display > item behaviors, just as
you did for the graphic behaviors.

Itisgenerally agood ideato have the interaction accessors modify only the public attributes
of your prototype, relying on that modification to update all the display behaviors.

Editing a Prototype

Once you have created and saved a prototype, you can edit it again by selecting the
prototype in the palette, and choosing View > Edit Group (Ctrl+E). All the changes you
make will be propagated to the instances you have created when you save it.

IBM ILOG VIEwS V5.3 — 2D GRAPHICS 128

129

For instance, you can select the “bulb” prototype in the “samples’ palette, and double click
onitsicon: the Prototype edition buffer is opened, and the group inspector allows you to edit
itsinterface and behaviors.

Testing Your Prototype

Once you have defined behaviors for a prototype, you can test them by changing the
prototype attributes:

1. Select the Interface page in the Group Inspector.
2. To set an attribute value, click the matrix item.

3. Depending on the type of value, acombo box, aresource selector, or asimpletext fieldis
created. Clicking with the right mouse button displays the list or the selector (if any) ina
singleclick.

4. The prototype valueis changed through a call to the changevalue method when you
pressthe Enter key after editing the field, or when you move to another field after editing
the value.

This allows you to test how the graphic representation of your prototype changes as you set
its attributes to different values.

To test the interactive behavior of your prototype:
1. Switch to the active mode, asis possible for all panels.

2. By clicking and dragging on various items of your prototypes, you can see in the Group
Inspector panel how the attributes are affected by the interactions you define.

Saving a Prototype
To add a prototype to an existing library:
1. Choose the Save As command from the File menu.

2. If the prototype was not already part of alibrary, Prototypes Studio asks if you want to
add your prototype to a prototype library. Click Yes.

3. Fromthedialog box displayed, select the library to which you want to add the prototype.

4. Inthe subsequent dialog box enter the name of the prototype.
To save your prototype elsewhere than in a prototype library:

1. Choose the Save As command from the File menu.

2. Answer No to the question ‘ Save the prototype in alibrary?

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Loading and Saving Prototype Libraries

3. A fileselector dialog box appears and asks for afile name. Specify anamewitha . ivp
extension.

Note: A prototype which is not contained in a prototype library does not appear in the
Prototypes Palette, so you cannot create instances of this prototype in panels from within
IBM ILOG Views Studio. It is strongly suggested that you use prototype libraries instead of
saving each prototype in its own file.

If you make additional changesto your prototype, you can saveit again in the same
prototype library or to the same file using the Save command from the File menu.

You can move the prototype to adifferent library, give it adifferent name, or remove it from
itslibrary with the Save As command.

When a prototype is saved, al the panels containing instances of that prototype are updated
with the new prototype definition.

Loading and Saving Prototype Libraries

To load a prototype library:

1. Choose Open from the File menu.

2. Select Prototype libraries (* . ip1) in the box for file type.
3. Browseto find the name of the library file you want to load.

Oncethelibrary isloaded, it is added as a new palette in the Prototypes pal ette of the
Palettes panel.

You do not need to save a prototype library each time you create or edit a prototype. A
prototype library is saved automatically as necessary while you edit your prototypes.

To change the name of the current prototype library (that is, the library namethat is
displayed in the visible page of the Prototypes Palette):

1. Usethe command Save Prototype Library As... from the File menu.
2. Select the new directory and name of the prototype library file (with a . ip1 extension).

The prototype library name changes accordingly and al the prototypes of the library are
saved in the new directory.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 130

You can close a prototype library that you no longer need by choosing Close Prototype
Library from the File menu. This command removes the library currently displayed in the
Prototypes palette.

Note: The prototypes contained in the library are not actually deleted in memory; they can
still be referenced in panels or in other prototypes.

Creating and Editing Prototype Instances in Panels

131

This section explains how to instantiate the prototypes that you have defined or |oaded, in
order to create panels.

Choosing a Buffer Type

Prototypes Studio has 2 types of buffer windows that can be made into panels: 2D Graphics
and Grapher. When the Gadgets extension isinstalled, a Gadget buffer window is also
available.

& Use a2D Graphics buffer window for graphics-intensive applications: that is, if your
prototypes contain 2D graphic objects such as lines, rectangles, and splines.

& Use aGrapher buffer window if you need Grapher features to connect graphic objectsin
prototype instances, using Grapher links.

¢ If you havetheBM ILOG Views Controls package and your prototypes contain gadgets,
use a Gadget buffer window.

To create a panel in which to use prototype instances, choose the appropriate buffer type
from the menu File > New.

Creating a Prototype Instance
To create a prototype instance:
1. Select aprototype library in the upper pane of the Palettes panel.

2. Drag theicon of the desired prototype to the buffer window.
OR:

1. Click theicon representing a prototype to select it.

2. Click and drag arectangle in abuffer window. An instance of the prototype whose
bounding box is defined by the rectangle you just drew will be created.

The prototype is instantiated in the form of an T1vProtoGraphic object encapsulating the
prototype instance.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Connecting Prototype Instances

Editing Prototype Instances

Prototype instances are edited using the Group Inspector. To display the Group Inspector,
choose Group Inspector from the Tools menu or double-click a prototype instance. When an
instanceis selected, its attributes are displayed in the Attributes notebook page of the Group
Inspector.

Note: The Behavior and Interaction pages are disabled for prototype instances. They can
only be used when editing prototypes. See Defining Graphic Behaviors for an explanation
on how to edit accessor values with the Group Inspector.

Loading and Saving Panels

Panels containing prototype instances are loaded and saved as standard . i 1v files using the
Open, Save, and Save As commands from the File menu.

Connecting Prototype Instances

Prototypes can define notifying attributes that can be connected to the attributes of instances
of other prototypes. This means that when a notifying attribute is modified, its valueis
assigned to the attributes of the objectsit is connected to.

To connect attributes of prototype instances:

1. Select the Group Connection mode from the Editing Modes toolbar:

kO 23 |E Y S E %N
Group Connection lcan

2. Click in the prototype instance that defines the notifying attribute (the value that you
want to be sent).

3. Drag the connection line to the instance to which you want to connect this attribute (the
instance that you want to be notified of attribute modifications).

The Connect two values dialog box is displayed:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 132

133

1Y Connect two values

Output value From myThermometer Input value ko display_2
Action border
termperature Format
maxChars
rnaxirmurn
maximurmCalar
rainirum
minimurmCalar
narminalCalar
notSignificant
notSignificantColar
texkCalar
transparent
value
ternperature value
[Filker input by autput type (Float)
[Ok] [Cancel]

4. Intheleft hand pane, select the notifying attribute from the first instance.

5. Intheright hand pane, select the input attribute for the second instance.

There can be several connections between the same two objects. When the Group
Connection mode is active, existing connections are displayed as green lines. If you click a
green line, the connection details (that is, the names of the output and input values) are

displayed.

temperature -> value
25 i H [double-click ta disconnect]
1]

23

To delete a connection:
1. Double-click the connection line.
A Delete Connection dialog box appears.

2. Select the connection you want to delete, and click Apply.

The next chapter will describe how to link protoypes to application objects, defined in C++
code.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

The User Interface and Commands

This chapter introduces you to the Prototypes extension of IBM® ILOG® Views Studio, an
extension designed to facilitate the devel opment of fully interactive graphical user interfaces
of domain-specific application objects.

You can find information on the following topics:
¢ Overview

¢ The Main Window

¢ The Palettes Panel

& Group Inspector Panel

& Prototypes Extension Commands

Note: The chapters concerning the use of the Prototypes extension of IBM ILOG Views

Sudio assume that you are familar with the information in the IBM ILOG Views Studio
User’s Manual.

Overview

The Prototypes extension of IBM® ILOG® Views Studio allows you to define complex
graphic objects, called prototypes, by interactively assembling IBM® ILOG® Views

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 134

graphic objects. Behaviors can be attached to these prototypes to define the whol e graphical
and interactive part of your application.

The prototypes can be instantiated and used as basic building blocks for application
windows, object inspectors, or direct-manipulation interfaces, that is, when each application
object is directly tied to an interactive graphica representation.

IBM ILOG Views Studio with the Prototypes extension defines a new workflow to build
highly interactive user interfaces: you develop the interactive part of your applicationin a
graphical editor, storeit in libraries, and then link it with your core functionality writtenin
C++.

Launching IBM ILOG Views Studio With the Prototypes Extension

If you haveinstalled the 2D Graphics Pro package, the Prototypes extension is automatically
loaded when IBM ILOG Views Studio is launched. The extension is called smproto in the
configuration file. A compatibility extension enabling now deprecated features can also be
used: smoldpro. Thismanual describes only the features of the smproto extension. To
install or uninstall these extensions, see the section on Loading Plug-Insin Introducing
IBM ILOG Views Studio.

The Main Window

135

When you launch the application, the Main window of IBM® ILOG® Views Studio appears
asfollows:

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

The Main Window

Menu Bar —f— File Edit Wiew Draw Tools Application Window Help
mnpr —-S ARt BRI HEAODR/TE Ha@ TEER
ewng —4-([P D E B QD

Palettes ®] B aoplication_testoppiva. X \

Palettes Panel m 2 Graphics A
E Grapher
=] ﬁ Prototypes

" prototype - unnamed

S b

€Dy sources
O output
@ operations

2N

Wotkspace

Butfer Windowe =]

e J
thermo display
ﬂ u |

citcauge alert i

< |

] |] 1 NI V= SRe¢—
Inspector Are ® W w h Right Eattom Mame Callback 15

NN A | | | Il |0

| Prototype | Selection

Status Area

Figure3.1 IBM ILOG Views Studio Main Window with Prototypes Extension at Sart-up

The Main window appears much as it does when only the IBM ILOG Views Studio
Foundation package is installed. However, you will notice that with the Protoypes package
you have access to additional buffer windows, additional palettes in the Pal ettes panel, and
additional items in the menu bar and toolbars of the interface. These are now briefly
presented.

Buffer Windows

Applications and panels are created in the buffer windows displayed in the Main window.
The current buffer type is shown at the bottom of the Main window.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 136

137

With the Prototypes extension of IBM ILOG Views Studio, you can edit the following types
of buffers:

& 2D Graphics
& Grapher
& Prototypes

An empty 2D Graphics buffer is displayed by default when you launch IBM ILOG Views
Studio.

Asyou switch between the buffers currently loaded in the Main window, you will notice that
each buffer type has its own set of editing modes. When you change the current buffer, the
editing modes available asicons in the toolbar change accordingly.

The 2D Graphics Buffer Window

The 2D Graphics buffer is the default for the Foundation package. It allows you to edit the
contents of an I1vManager Or an IlvContainer. It usesan I1vManager to load, edit, and
save objects.

To create anew 2D Graphics buffer window:
1. Choose New from the File menu.

2. Then choose 2D Graphics from the submenu that appears.

To open this window, you can aso execute the NewGraphicBuf fer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an 11vManager, a2D Graphics buffer
window is automatically opened.

The Grapher Buffer Window

The Grapher buffer window lets you edit the contents of an T1vGrapher. It uses an
IlvGrapher to load, edit, and save nodes and links.

To create a new Grapher buffer window:
1. Choose New from the File menu.

2. Then choose Grapher from the submenu that appears.

To open this window, you can aso execute the NewGrapherBuf fer command from the
Commands panel, which you can display by choosing Commands from the Tools menu.

When you open a . i 1v file that was generated by an 11vGrapher, a Grapher buffer
window is automatically opened.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

The Main Window

The Prototypes Buffer Window

The Prototypes buffer window is used to create and manipulate your prototypes. Graphic
objects, and Prototypes, can be dragged from a Palettes panel to an active Prototypes buffer
window.

To open a new Prototypes buffer window:
1. Choose New from the File menu.

2. Then choose Prototype from the submenu that appears.

Alternatively, when you double-click a Prototype in a Prototypes palette, a Prototypes buffer
window is automatically opened to allow you to modify it or inspect its attributes and
behaviors.

The Menu Bar

When the Prototypes package isinstalled, additional commands are available through the
menu bar in the Main window.

File Edit View Draw Tools Application Window Help

ERT e 4EERS W HEHJE 1@ TEER

b R EPE BE O EE N

Figure3.2 IBM ILOG Views Studio Prototypes Extension Menu Bar

The following tables summarize the additional commands that you can execute through the
menu bar. For details on these commands, see Prototypes Extension Commands, where they
arelisted in aphabetical order.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 138

File Menu Commands

New > Prototype NewPrototypeEditionBuffer
New > Prototype Library... NewProtoLibrary
New > Prototype Grapher NewPrototypeGrapherBuffer

Note: This is a deprecated command and is
provided purely for compatibility with earlier

versions.
Save Prototype Library as... SaveProtoLibraryAs
Close Prototype Library CloseProtoLibrary

Draw Menu Commands

Group GroupintoGroup
Edit Prototype EditPrototype
Delete Prototype DeletePrototype

Tools Menu Command

Group Inspector This opens the Group Inspector of the currently
selected prototype instance or I1vGroup object.

View Menu Command

Toggle Animation Timers ToggleTimers

The Action Toolbar

ESEHO e 4RSS HEBELHIE A @

The Action toolbar remains unchanged from the Foundation package.

139 IBM ILOG VIEwS V5.3 — 2D GRAPHICS

The Palettes Panel

The Editing Modes Toolbar

kO P2E N BE 883 |%

Prototypes Extension lcons

The Prototypes extension of IBM ILOG Views Studio contains an editing mode in addition
to the regular IBM ILOG Views Studio editing modes:

._, Group Connection Mode

t=1 Usethe Group Connection mode for connecting the values of prototype instances.
The Connection mode is used to define connections between prototype
instances.See Connecting Prototype I nstances.

The Palettes Panel

The Prototypes palette is included in the Palettes panel, as shown in Figure 3.3. It shows the
various prototype libraries that you have defined or loaded, and allows you to instantiate
prototypes by dragging their icons to Prototype buffers. Prototypes are manipulated like
other graphic objects. Each library definesits own panel in the Palettes panel.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 140

Palettes =

+ 49 Graphics

- | Grapher

= ﬁ Protobypes
& samples
e
Ty sources
[0 outpuk
EE operations

scripk

bulb pump
symbol field

g -
thermo display

[
circGauge alert
w el

L - ’

-

v

Figure3.3 The Palettes Panel Showing the samples Prototype Library
When the Prototypes extension isinstalled, IBM ILOG Views Studio loads the following

libraries at start-up:

Library Description

samples Sample library loaded at start-up.

sources Prototypes containing value sources.

output Prototypes containing gadgets and defining output values.

lcd LCD displays (one digit and four digits).

operations Prototypes that can be used to connect prototypes and execute
operations on their values.

script Prototypes that use script accessors.

To open one of these prototype libraries, go to the upper pane of the Palettes panel and click
the name in the Prototypes palette.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Group Inspector Panel

You can look at any prototype definition by double-clicking the prototype icon. Thiswill
load the prototype into a Prototype buffer window and open a Group Inspector panel.

Note: When you load a panel file that contains prototype instances, the required prototype
libraries are automatically loaded in the Prototypes palette.

The <ILVHOME>/samples/protos directory provides other samples of how to use
prototypes.

Group Inspector Panel

The Prototypes extension provides an additional panel to let you define the interface and the
graphic and interactive behaviors of your prototypes, as shown in Figure 3.4. It can also be
used to customize groups and prototype instances.

Interface |Graphics| Graphic behavior | Tnkeractive behavior

Edit Wiew

Hame Type

Figure3.4 The Group Inspector Panel

Access to Panel

The panel is accessed by one of the following methods:

4

*
*
*

Choosing Group Inspector from the Tools menu.
Creating a new Prototype buffer window.
Double-clicking a prototype in a Prototypes buffer window.

Choosing Commands from the Tools menu, selecting the ShowGroupInspector
command in thelist, and clicking Apply.

Group Inspector Elements

The Group Inspector panel has four notebook pages:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 142

& The Attributes page is used to define the attributes of a prototype and to customize
prototype instances.

& The Graphics pageis used to display and edit the graphic objects composing aprototype.
& The Behavior page is used to define the graphic behavior of a prototype.
& Thelnteraction page is used to define the interactive behaviors of a prototype.

Full context-sensitive hypertext help is available when you click Help on the inspector. This
help page can be hidden by clicking the Close Help button.

The features of the Group Inspector panel are detailed in Creating and Using Prototypes.

Prototypes Extension Commands

143

This section presents an alphabetical listing of the additional, predefined commands that are
available in the Prototypes extension of IBM® ILOG® Views Studio. (All of the

IBM ILOG Views Studio Foundation commands are available as well.) For each command,
it indicatesits label, how to accessit if it is accessible other than through the Commands
panel, the category to which it belongs, and what it is used for.

To display the Commands panel, choose Commands from the Tools menu in the Main
window or click the Commandsicon = in the Action toolbar.

CloseProtoLibrary

Label Close Prototype Library

Path Main window: File menu

Category prototypes

Action Closes the prototype library currently displayed in the Palettes panel.
ConvertProtoManager

Label Convert ProtoManager

Path Convert ProtoManager: Edit menu

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Prototypes Extension Commands

Category

prototypes

Action

Creates a new regular Studio buffer that copies the content of the currently
active Prototype instance buffer. This command uses the
IlvPrConvertProtoManager function to perform the conversion. It is
meant to help in switching from Views 3.1 prototypes to the more recent API.

DeletePrototype

Label Delete Prototype

Path Main window: Edit menu

Category prototypes

Action Removes the selected prototype from its library.

EditPrototype

Label Edit Prototype

Path Main window: Edit menu

Category prototypes

Action Edits the selected prototype in a new Prototype buffer window, and opens the

Group Inspector panel for the prototype instance.

GrouplIntoGroup

Label IlvGroup

Path Main window: Draw menu > Group

Category prototypes

Action Groups the selected objects into an I1vGroup.

IBM

ILOG VIEws V5.3 —

2D GRAPHICS 144

NewProtoLibrary

Label Prototype Library...

Path Main window: File menu > New

Category prototypes

Action Creates a new prototype library. This library is visible in the Palettes panel.
A file selector dialog box is opened to choose the library file (.ipl).

NewPrototype
Label New Prototype
Path Main Window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

I Note: Thisisa deprecated command and is provided purely for compatibility with earlier
versions.

NewPrototypeEditionBuffer

Label Prototype

Path Main window: File menu > New

Category prototypes

Action Creates a buffer window used to draw and edit prototypes.

NewPrototypeGrapherBuffer

Label Prototype Grapher

Path Main window: File menu > New

145 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Prototypes Extension Commands

Category prototypes
Action Allows you to create an instance of an I1vProtoGrapher class.

I Note: Thisis a deprecated command and is provided purely for compatibility with earlier
versions.

OpenProtoLibrary

Label Open Prototype Library...

Path Main window: File menu > Open

Category prototypes

Action Opens a prototype library file. A selection dialog box is opened to choose the
.ip1 file to open.

SaveProtoLibraryAs

Label Save Prototype Library As...

Path Main window: File menu

Category prototypes

Action Saves a copy of the currently selected prototype library to a different file.

SelectGroupConnectionMode

Label Group Connection
Path Editing Modes toolbar
Category prototypes
Action Selects the Group Connection mode.
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 146

147

SelectGroupSelectionMode

Label Group Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Group Selection mode.

SelectNodeSelectionMode

Label Node Selection

Path Editing Modes toolbar

Category prototypes

Action Selects the Node Selection mode in a Prototype buffer. This mode lets users

select and inspect graphic nodes while editing a prototype.

ShowGroupEditor

Label Group Inspector

Path Tools menu

Category prototypes

Action Shows/hides the Group Inspector panel.

ToggleTimers

Label Toggle Animation Timers
Path View menu
IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Prototypes Extension Commands

Category prototypes

Action Turns on or off the animation timers of the prototype's animation accessors,
thereby allowing you to edit the prototype and then test its behavior.

UngroupllvGroups

Label Ungroup

Path Main window: Draw menu

Category prototypes

Action This command replaces the generic Ungroup command to take into account
IlvGroup objects.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 148

149 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Using Prototypes in C++ Applications

This chapter explains how to use prototypes in your C++ applications. It is divided as
follows:

¢ Architecture

& Wkiting C++ Applications Using Prototypes
& Linking Prototypes to Application Objects
& Advanced Uses of Prototypes

Architecture

The Prototypes package is defined on top of the IBM® ILOG® Views Foundation package
and allows you to perform the following tasks:

& Assemble elementary graphic objects into groups (class 11vGroup).
& Specify the behavior of your groups using predefined accessor objects or scripts.

& Define prototypes and create prototype instances in managers. Prototypes are instances
of asubclass of T1vGroup caled T1vPrototype.

& Connect properties between prototype instances.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 150

151

& Link application objects and prototype instances.
The architecture of the Prototypes package is shown in Figure 4.1.

Prototypes
ro— 1 ¥ al ¥ -1
. — A G
(:II [
L L ﬁ

L

Groups

Composition Accessor Objects
F— — — a rotate
| blink
4 axport
action
script

Managers/Containers Graphic Objects

Figure4.1 Architecture of the Prototypes Package

Groups
Groups are the basic components of the Prototypes package.

To create a BGO with the Prototypes package, you must first assemble basic
IBM ILOG Views graphic objects to build a group. You can use any IBM ILOG Views
graphic object in agroup. You can aso create subgroups to build structured objects.

A group isrepresented in C++ by the 11vGroup class. An I1vGroup oObject containsa
hierarchy of nodes, represented by the following subclasses of the 11vGroupNode class:

& An T1lvGraphicNode isanode that holds a graphic object (an instance of a subclass of
I1lvGraphic). A group contains one graphic node for each of its graphic elements.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Architecture

& An IlvsubGroupNode holds asubgroup, that is, a group contained in another group.
Thisclassis used to create object hierarchies.

Notes. T1vGroup objects are different from 11vGraphicSet objects. AN T1vGroup isa
logical hierarchy of graphic objects that are contained in a manager. Unlike
IlvGraphicSet, I1vGroup iSnot asubclassof I1vGraphic. AN I1vProtoGraphic iS
a subclass of 11vGraphic intended to encapsulate an T11vGroup to placeit in a manager
or container.

Athird class of T1vGroupNode, called T1vvalueSourceNode, isstill present in the
package, but its use is deprecated.

Attributes and Accessor Objects

The Prototypes package | ets you define not only the graphic appearance of your objects, but
also their behavior. The behavior of agroup is controlled by its attributes (also called
properties). These attributes bear distinct names and represent the external interface of the
group, that is, how its appearance will be controlled from your application.

The attributes of a group and their behaviors are defined in accessor objects. Each accessor
object has aname and a type and implements the effect of setting and/or retrieving the value
for the group. Several accessor objects can have the same name, which means they belong to
the same attribute. This means that setting an attribute value can have several side effects.

Accessors can be linked to other attributes of objects or to application data. They define state
or appearance changes in response to user events or application instructions and, by
extension, specify the graphic and interactive behavior of objects. Accessor objects are
instances of subclasses of T1vaccessor.

In other words, the relationship between accessor objects and valuesis the following:
& You interact with a group through its attributes.

¢ A group has a set of accessor objects attached to it. Each accessor object is associated
with a name, which defines an attribute (or facet) of the BGO.

& TheIlvGroup: :changevalue method calsthe changevalue methods of al the
accessor objects of a given name, thereby setting the attribute value.

& TheIlvGroup: :queryValue method calsthe queryvalue methods of al the
accessor objects of a given name, thereby getting the attribute value.

& The effect of each behavior classis defined by the implementation of its changevalue
and queryvalue methods.

& Some accessors can be set through user interaction or by the application, thereby
triggering other behaviorsin a chain.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 152

153

The relationship between accessor objects and attributes/behaviorsin agroup is shownin
Figure 4.2;

(A'ttribute Behavior Graphic Chjects

speed rotation (of the needle)

I: condition

it =30
light foreground = "red"

\rfax - reference scale.max

Figure4.2 Relationship Between Accessor Objects, Attributes, and Behaviors

This example shows a group representing a gauge. The gauge has two attributes: speed and
max.

& The speed attribute isimplemented by two accessor objects, each having a graphic
behavior:

¢ A Rotation accessor object—when the speed attribute is changed, this accessor
object rotates the needle of the gauge.

e A Condition accessor object—when the speed attribute is changed, this accessor
object changes the color of the circleif the value is greater than 30.

& Themax attribute isimplemented by a Reference accessor object, which references a
property of a basic graphic object at the group level. When the max attribute is changed,
this accessor object changes the maximum speed of the scale graphic object.

The following types of accessors can be attached to an attribute:

& Data accessors - State how a dataitem isto be stored (locally or in anode) and what its
typeis. They are comparable to variable declarations in aregular programming
language. Only one of these accessors should be present for each attribute.

& Control accessors - Perform conditional instructions, evaluations, and assignments
based on other attributes. They take input parameters and can have output effects on
other parameters. Typical examples are the Condition accessor, for the conditional
assignment, and the Toggl e accessor.

& Notifying accessor s - Define the entry points of evaluation cycles. Either the application
(when it does apushvalue) or the user (when a callback triggers a Callback accessor)
can “push” values, forcing the accessors to handle them. Connections between attributes
can be made to propagate the evaluation to other values by means of the Watch and
Notify accessors.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Architecture

& Display accessors - Define a side effect of the attribute on the visual presentation of the
nodes of the group. They correspond to calls to the drawing library in a programming
language. When they are set, they change graphic properties, such as rotating a node or
changing the visibility of a graphic component.

& Animation accessors - A specia case of display accessors that periodically change a
graphic attribute.

& Miscellaneous accessors - Consist of two accessors that do not fit into the previous
categories: the Debug accessor and the Delegate to Prototype accessor.

You will find afull description of all the predefined accessor classes in the section
Predefined Accessors.

Accessor Parameters

Accessors define a side effect that is performed on another object or attribute when a given
attribute is set. This means that, as with a function in a programming language, an accessor
has to take parameters to customize its effects. A description of the four types of parameters
that accessors can haveis presented in Table 4.1.

Table4.1 Accessor Parameters

Parameter Type Description

Direct parameters The value is a string or an enumerated type that
must be specified explicitly.

Input parameters The value is queried when the accessor is
evaluated. These values can be a constant (a
string or a number), a reference to other values
(attributes of nodes or prototype values), or an
expression that is a combination of constants and
references.

Output parameters The value is changed when the accessor is
evaluated (A call to the changevalue method is
made). Hence, the value must be a name that
references either an existing attribute of a node or
a prototype value.

Object/Node The value of the parameter must be the name of
parameters an existing node. Some accessors accept only
certain kinds of objects as a parameter. For
instance, display accessors act only on graphic
nodes.

Input parameter expressions can contain:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 154

155

Constants: numeric or string literals
Variables: prototype values or node attributes

Arithmetic operatorsand parentheses. (+, -, *, **, /, %, ==, =, >,>=, <, <=, &&, |)

* & & o

Predefined functions: abs, acos, asin, atan, ceil, cos, exp, floor, log, rand, rint, round,
sin, sgrt, tan

Note: Contrary toits C/C++ equivalent, rand() takes an integer argument. If thisargument
isnon-zero, it is used as a seed for the random generator before a random number is
generated. Otherwise, rand(0) returns the next integer in the random sequence started the
last time the random generator was initialized.

Prototypes and Instances

Once you have defined the graphic contents and the behavior of agroup, you can saveit asa
prototype. A prototype isthe model of a BGO. Usually, you create prototypes with

IBM ILOG Views Studio, although you can also create prototypes directly by coding. See
Creating Prototypes by Coding.

Prototypes are stored, loaded, and saved using prototype libraries, represented by the class
I1lvProtoLibrary.You can create prototype instances from a prototype. A prototype
instance isafull copy of its prototype.

Prototypes are represented by the T1vPrototype class and prototype instances are
represented by the T11vProtoInstance class. Both of these classes are subclasses of
I1vGroup.

When a prototype instance is saved to afile, the manager writes only the values of the
properties that have been modified for that instance. The graphic objects that compose the
prototype instance are not saved to the file. This means that you can completely change the
definition of the prototype, add or remove graphic objects, and so on. Instances of the
modified prototype will be automatically updated with the new definition.

Displaying Groups and Instances in Managers and Containers

To display groups, prototypes, and instances in apanel of your application (an 11vManager
or IlvContainer), you need to place themin an 11vProtoGraphic object and add this
object to the manager or container. T1vProtoGraphic isasubclass of T1vGraphic
designed to encapsul ate all the graphic objects of agroup. You may also add group objectsto
amanager using an I1vGroupHolder, Which isaclass that extends the properties of a
container or manager and lets you directly add or retrieve groups through convenience

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Architecture

functions.This classwill createthe 11vProtoGraphic itself to wrap it around the
I1vGroup.

Note: Soecial manager and container classes I1vProtoManager,
IlvProtoContainer, and I1vProtoGrapher have been added to allow direct
handling of 11vGroup objectsin a container or manager. These classes are provided for
compatibility reasons. Their useis obsolete and should be avoided.

Connecting Attributes

A group has readable and writable attributes that are defined by the accessor objects attached
toit. It can al'so have notifying attributes, which are similar to events generated by the group
or by one of its elements.

A notifying attribute can be connected to an attribute of another group. When the attribute is
modified, the changes are propagated to the groups connected to it. Thisisreferred to asthe
value of the notifying attribute being pushed to its connected attributes.

Linking Application Objects to Prototypes

Once you have defined your prototypes and your panels, you may want to connect these to
real application data and processes defined in C++.

There are three methods available to link prototypes to application objects, depending on the
type of interface you want to produce:

& When the display is graphics-rich but represents only a few application objects and
values, you may want to link the application objects by directly feeding valuesto the
prototype instances of a given panel.

Thisistypically used in static synoptic displays composed of only predefined graphic
components. It is convenient to use feed values directly when the application is not
expecting user input to modify application values through a prototype instance. The
base_feed samplein <ILVHOME>/samples/protos shows how to use this approach
for asimple control panel.

& To build WY SIWY G, direct-manipulation application object editors, you may want to
use an T1vGroupMediator. With this class, you can link an application object to a
given I1vGroup (Or prototype instance) in a panel, allowing interactive editing of its
attributes. A group mediator allows you to bind and unbind application objects
dynamically to a given prototype that serves as an editor for the object.

A typical application of thistypeisaWY SIWY G inspector such as the Guides inspector
in Prototypes Studio. The inspector Sample in <ILVHOME>/samples/protos iSan
example of this kind of editor. It shows how to build a 2D transformation matrix editor
controlling the viewpoint of aview interactively.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 156

4

To create many instances of a prototype dynamically, with each instance linked to a
given application object, you should use an T1vProtoMediator. Thisclassinstantiates
the prototype and links it to an application object of agiven classasit is created. This
alows clear separation of interface design from the application design, each being able
to evolve separately from a commonly agreed upon application interface.

A typical application of thistype alows you to view panels where many objects of many
classes are represented and edited at the same time. Each application classislinked to a
prototype and each instance of the class to an instance of the prototype.

Cartographic displays and all graph displays are examples of applications that can
benefit from prototypes using I1vpProtoMediatorS. <ILVHOME>/samples/protos/
interact_synoptic isan example of this type of application, showing avery simple
air-traffic simulator, where each flight and each airport are represented by prototype
instances. The simulator only deals with changing the attributes of the flight, whereasthe
prototypes can be incrementally refined in the drawing editor to present the best display.

Writing C++ Applications Using Prototypes

157

Asagenera rule, you create your prototypesin IBM® ILOG® Views Studio and then use
them in your application. The following section explains the C++ API that you use to add
prototypes to your application and how to manipulate these prototypes.

Note: Although it is not the general rule, it is possible to create prototypes through direct
coding. For these situations, see the section Creating Prototypes by Coding.

The following items are described in this section:

® 6 6 6 6 0 0 o

Header Files

Loading a Panel Containing Prototype Instances
Loading Prototypes

Creating Prototype Instances

Deleting Prototype Instances

Retrieving Groups and Prototype Instances
Getting and Setting Attributes

User-Defined and Predefined Attributes

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Writing C++ Applications Using Prototypes

Header Files

To make sure that your application is linked with the necessary library packages, you must
first include the header files corresponding to the graphic objects, the accessors (subclasses
of I1vUseraAccessor), and the interactors used in the prototypes that you will load.

To include all the predefined accessor classes, use the header file <TLVHOME>/include/
ilviews/protos/allaccs.h.

Hereisatypica set of header filesto include in order to build an application that can load
prototypes containing any type of graphic object:

#include <ilviews/protos/protogr.h> // for IlvProtoGraphic.

#include <ilviews/protos/allaccs.h> // for all accessors.

#include <ilviews/graphics/all.h> // for all graphic objects.

#include <ilviews/gadgets/gadgets.h> // if you use gadgets in your prototypes.
#include <ilviews/graphics/inter.h> // for all object interactors.

You may also want to add the following header files:

#include <ilviews/protos/groupholder.h> // to get the groups attached
// to a given container or manager.

#include <ilviews/protos/proto.h> // to manipulate prototypes and
// their libraries.

#include <ilviews/protos/grouplin.h> // to attach prototypes to
// application objects.

If you know in advance the Prototypes that you will use, you can reduce the size of your
application by including only the necessary header filesinstead of allaccs.h,
graphics.h, and gadgets.h.

To compile applications that use the prototypes package, you must compile them with the
library i 1vproto. Thislibrary also requires the following libraries: i 1vgrapher, ilvmgr,
and the usual IBM ILOG Views libraries for your platform. The i 1vgdpro library may be
needed for applications that use old features of prototypes.

Loading a Panel Containing Prototype Instances

Toload a. i 1v file containing prototype instances, you simply use the read Or readFile
methods of T1vManager OF IlvContainer:

Container->readFile ("protoSample.ilv");

All the prototypes used in the file will be loaded automatically from their prototype libraries.
Prototype libraries are searched for in the file system using the display path. For example, if
the panel contains prototypes from a prototype library called my1ib located in /usr/home/
yourdir/protolibs/mylib.ipl, you should include /usr/home/yourdir/
protolibs/ inyour ILVPATH environment variable.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 158

159

To alow handling of groups in acontainer or manager, the 11vGroupHolder classprovides
al the necessary interface. Instances of the T1vGroupHolder class are automatically
attached to containers or managers containing prototype instances. This class provides the
methods for adding, removing, and retrieving groups (and thus prototype instances). You
can retrieve the group holder attached to a container, manager, or graphic holder with the
global methods:

€ IlvGroupHolder* groupHolder = IlvGroupHolder: :Get (manager) ;
€ IlvGroupHolder* groupHolder2 = IlvGroupHolder: :Get (manager
->getHolder ()) ;

€ IlvGroupHolder* groupHolder3 = IlvGroupHolder: :Get (container);

Loading Prototypes

You may need to create instances of your prototypes by coding. To create instances of your
prototypes, you must first load them. You can load a whol e prototype library and then load
one or more of the prototypesit contains. To do this, create an instance of the
IlvProtoLibrary classand cal its 1o0ad method:

IlvProtoLibrary* lib = new IlvProtoLibrary (display, "mylib");

if(!1lib->1load())
IlvFatalError ("Could not load prototype library");

If youwant to load a prototype library that is not located in the display path, you can specify
the directory where the library islocated in the call to the constructor:
IlvProtoLibrary* 1lib = new IlvProtoLibrary(display, "mylib",

" /usr/somewhere/protos") ;

if(!1lib->1load())
IlvFatalError ("Could not load prototype library");

Once you have |oaded a prototype library, you can retrieve al its prototypes or a particular
prototype with the following methods:

I1UInt count;
IlvPrototype** protos = lib->getPrototypes (count) ;

or:

IlvPrototype* proto = lib->getPrototype ("myproto") ;

Thearray returned by the get Prototypes method is allocated withthenew [1 operator and
must be released with the delete[] operator when it is no longer needed.

Alternatively, you can load each prototype individually with the global function
IlvLoadPrototype:

IlvPrototype* proto = IlvLoadPrototype("mylib.myproto", display);

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Writing C++ Applications Using Prototypes

The first argument specifies the name of the prototype library and the name of the prototype
(separated by a period). The second argument is the instance of 11vDisplay that your
application has created. The prototype library file and the prototype files are searched for in
thefile system using the display path.

Creating Prototype Instances

To create an instance of a prototype, use the c1one method:

IlvPrototypelInstance* instance = proto->clone ("myinstance") ;

The argument of the c1one method is the name of the new instance. You can pass 0, which
means that a name is generated automatically.

Instances of the T1vGroupHolder class are automatically attached to containers or
managers containing prototype instances. This class provides the methods for adding,
removing, and retrieving groups (and thus prototype instances).

To add the new prototype instance to a manager or a container, you can use the addGroup
methods of the T11vGroupHolder attached to manager/container classes:

IlvGroupHolder* groupHolder = IlvGroupHolder: :Get (manager) ;
groupHolder->addGroup (instance) ;

Alternatively, you can create an T1vProtoGraphic object and directly placeit in the
manager.

IlvPrototype* proto;

// Create an instance of the prototype proto and places it
IlvProtoGraphic* protoGraphicl = new IlvProtoGraphic (proto) ;

// Create an instance of a prototype

IlvProtoInstance* protoInstance = proto->clone(“instance2”) ;
IlvProtoGraphic* protoGraphic2 = new IlvProtoGraphic (protoInstance);
manager->addObject (protoGraphicl) ;

manager->addObject (protoGraphic2) ;

Often, you will set the position of the prototype instance when you add it to a manager or
container. You can do this by either:

& Movingthe 11vProtoGraphic:

manager->moveObject (protoGraphicl, 100, 100).

& Setting the x andy attributes of the prototypeinstance. See Getting and Setting Attributes
for an explanation on how to set several valuesin asingle cal.

Deleting Prototype Instances

To remove a prototype instance from its container or its manager, you can use the
removeGroup methods of the I1vGroupHolder class:

groupHolder->removeGroup (instance) ;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 160

161

You can aso removeits embedding T1vProtoGraphic from its container or manager:

manager->removeObject (protoGraphic) ;

To completely delete a prototype instance, simply call the delete operator. You can also
delete its encapsulating protoGraphic.

Retrieving Groups and Prototype Instances

To get all the groups contained in a manager or container, use the getGroups method of its
attached group holder:

I1UInt count;
I1lvGroup** instances = groupHolder->getGroups (count) ;

Note: The array of pointers returned by the getGroups method is allocated using the
new[] operator and must be deleted with the delete[] operator whenit is no longer
needed.

To retrieve agroup by its name, use the getGroup method:

IlvProtoInstance* pump = (IlvProtoInstance*)groupHolder->getGroup ("pump") ;

This method returns o if the specified group does not exist.

Getting and Setting Attributes

Prototype instances are manipulated through a uniform API based on named attributes (also
called properties or accessors). This API is the same as the one provided by the class
IlvGraphic and basicaly consists of the 11vGraphic: : changevalue and
IlvGraphic: :queryvalue methods.

A named attribute is represented by an instance of the 11vvalue class and is defined by the
following:

& The attribute name, “label” for example, to access the label of a button.

& A vaue, which can be of different types (for example, a character string, an integer, or a
pointer).

& A typethat correspondsto the type of the data.

The type of the value is set automatically by the 11vvalue class. You use constructorsto

initialize values of predefined types (suchas111nt, const char*, I1vColor*, and SO

on). You can also change a value using the assignment operator = or by casting an

Ilvvalue to apredefined type. The 11vvalue class handles al conversions automatically.
For more details, seethe 11vvalue class.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Writing C++ Applications Using Prototypes

To set avalue for a prototype instance, you must create an T1vvalue and call the
IlvGraphic: :changevalue method:

Ilvvalue xval("x", (IlInt)100);
instance->changeValue (xval) ;

Note: The explicit cast of the value 100 to the type T11nt is necessary because an
ambiguity exists between the integer and Boolean types. Without the cast, the compiler
might (on some platforms) call the constructor that createsan r11vvalue of type
TI1Boolean. It isrecommended that you always use explicit casts when using constantsto
initializean T1vvalue.

You do not need to create anew I1vvalue every time you want to change avalue. You can
use an existing T1vvalue and change its data with the assignment operator:

xval = (IlInt)200;
instance->changeValue (xval) ;

You can set severa valuesin asingle cal. To do this, you must create and initialize an array
of I1vvalue objectsand call the changevalues method. The following example shows
how to set the position of an object in asingle cal:

Ilvvalue vals[] = {
Ilvvalue("x", (IlInt)100),
Ilvvalue("y", (IlInt)200)

}i
instance->changeValues (vals, 2);

Toretrieve avalue, use the queryvalue method:

IlvvValue xval ("x");
IlInt x = instance->queryValue(xval) ;

The queryvalue method takes an T1vvalue reference as parameter. The T1vvalue must
be initialized with the name of the value to retrieve. The queryvalue method stores the
retrieved value in its argument and returns areference to it. In the example, assigning the
result of queryvalue to theinteger variable x callsthe T1vvalue tothe I111nt cast
operator.

Toretrieve several valuesin asingle cal, create an array of T11vvalue objectsand call the
queryValues method:

Ilvvalue vals[] = { "x", "y", "width", "height" };
instance->queryValues (vals, 4);

IlInt x = vals[0];

IlInt v = vals[1l];

I1UInt width = vals[2];

I1UInt height = vals[3];

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 162

The 11vvalue class converts values automatically as required. This means that you do not
need to know the exact type of avalue that you set or retrieve. For example, you could set
the position of an object using a string value as follows:

Ilvvalue xval("x", "100");
instance->changeValue (xval) ;

Conversely, when you retrieve avalue, you can convert it to the type you need as follows:

Ilvvalue xval ("x");
instance->queryValue (xval) ;
float x = xval;

User-Defined and Predefined Attributes

A prototype and its instances have three kinds or attributes: user-defined attributes,
predefined attributes, and sub-attributes.

User-Defined Attributes

The user-defined attributes are the attributes defined by the accessors that you attached to
the prototype when you designed it in IBM ILOG Views Studio. They vary from one
prototype to another. The effect of setting or retrieving a user-defined attribute is determined
by the accessor objects that compose it.

For example, suppose that you have created a prototype representing a thermometer. You
defined a temperature atribute by adding a reference accessor that maps the temperature
to the value attribute of a gauge. To change the temperature displayed by an instance of
your prototype, use the changevalue method as follows:

IlvValue tempVal ("temperature") ;

tempval = 22.5;
instance->changeValue (tempVval) ;

Predefined Attributes

The predefined attributes of a group et you modify or retrieve common properties that all
prototypes have, such as the position, the size, the visibility, and so on.

Most predefined attributes take effect only when agroup is added to a manager or a
container, but they can be set before that. They are stored in the graphic node but only take
effect when the group is added.

163 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Writing C++ Applications Using Prototypes

The predefined attributes are listed in Table 4.2.
Table 4.2 Predefined Attributes of Prototypes and Prototype Instances

Attribute

Type

Description

layer

IlInt

Set this attribute to move all the nodes of the group
to a given layer. Retrieving this attribute returns the
layer where the nodes of the group are contained. If
all nodes are not in the same layer, the result is
undefined.

visible

I1Boolean

Set this attribute to hide or show a group. Retrieving
this attribute returns I1True if all the graphic
nodes of the group are visible and I1False if they
are all invisible. The result is undefined if some
nodes are visible and other nodes are invisible.

IlInt

This attribute is the horizontal coordinate of the
upper-left corner (in manager coordinates) of the
group bounding box, without applying any view
transformers.

IlInt

This attribute is the vertical coordinate of the upper-
left corner (in manager coordinates) of the group
bounding box, without applying any view
transformers.

width

I1UInt

This attribute is the width of the group bounding box
(in manager coordinates), without applying any
view transformers.

height

I1UInt

This attribute is the height of the group bounding
box (in manager coordinates), without applying any
view transformers.

centerX

IlInt

This attribute is the horizontal coordinate of the
center of the group bounding box (in manager
coordinates), without applying any view
transformers.

IBM

ILOG VIiEws V5.3

— 2D GRAPHICS 164

Table 4.2 Predefined Attributes of Prototypes and Prototype Instances (Continued)

Attribute Type Description

centerY IlInt This attribute is the vertical coordinate of the center
of the group bounding box (in manager
coordinates), without applying any view
transformers.

interactor const char* Set this attribute to associate an interactor with all
the graphic nodes of the group. The value of the
attribute is the interactor name (for example,
“Button”). Retrieving this attribute returns the
name of the interactor associated with the graphic
nodes of the group. If all nodes do not have the
same interactor, the result is undefined.

Sub-attributes

The sub-attributes of prototypes|let you directly access the attributes of the objects contained
in your prototypes. The names of sub-attributes are built by concatenating the path of the
object and the attribute name. The components of a sub-attribute name are separated by a
period. For example, if your prototype contains an T1vLabel named title, you can Set or
retrieveits label using the attribute name title.label.

All the predefined properties listed in Table 4.2 can also be accessed for a particular graphic
node.

Linking Prototypes to Application Objects

165

This section describes the three methods that can be used to link prototypes to application
objects:

& Setting Values Directly: Thisis the easiest way if you simply want to feed values from
your application to the views.

¢ Using Group Mediators: This allows the application to both drive the interface and be
notified of value changes produced by the user.

& Using Proto Mediators: This enables you to build object factories that will link
application classes with prototypes, thereby creating the interface of a dynamic
application automatically.

Setting Values Directly

The samplebase_feed (contained in the <ILVHOME>/samples/protos directory) shows
how to drive your interface from your application. Once you have downloaded a panel

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Linking Prototypes to Application Objects

containing instances of prototypes, or created your instances in a manager or container, you
retrieve the instances that you want to edit:

IlvGroupHolder* groupHolder= IlvGroupHolder::Get (manager) ;
I1lvGroup* myThermometer= groupHolder->getGroup (“thermometer”) ;

Then, you change its values with the T1vGroup: : changevalue method:

if (myThermometer)
myThermometer->changeValue (IlvValue (“temperature”, (I1UInt) 20)));

Using Group Mediators

A group mediator (class T1vGroupMediator) iSused to connect an object of the
application to a prototype and serves as an interactive graphic editor for the object (also
called an object inspector). The samples inspector and synoptic (contained in the
<ILVHOME>/samples/protos directory) implement agroup mediator and can be used asa
baseline.

The following code sample shows how to develop an application that cleanly separates the
user interface from the application code. Assume that you have an application that includes a
Machine base class and aBoiler specialization class:

class Machine { // The base class of most application objects.
protected:

list<MachineObserver* > observers;
}i
class MachineObserver { // A notification mechanism serving as a

// generic communication means between objects.

public:

void observe (Machine* m) { m->observers.append(this); }

virtual void notify (Machine¥*);
}i
class Boiler : public Machine { // The class for which you want

// to create an object inspector.

public:
// Temperature is an attribute you want the user to have control of.

void set_temperature(float) {

for each observer in observers
observer->notify(this);

}

float get_temperature() ;
}i

These classes perform a simulation, a process control, or any computational activity
independent of any kind of interactive or graphic behavior. A group mediator allows you to
implement a graphical user interface for the Boiler without introducing any dependencies
in the application classes, which are assumed to be much more complex.

For this, you want to create a subclass of T1vGroupMediator that will handle the graphic
representation and the user interaction of a machine of classBoiler:

class BoilerUI : public IlvGroupMediator, public MachineObserver {
public:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 166

167

BoilerUI (IlvGroup* ui, Boiler* b) : IlvGroupMediator (ui, b) {
MachineObserver: :observe (b) ;
if (!temperatureSymbol)
temperatureSymbol=I1vGetSymbol (“temperature”) ;
}
Boiler* boiler() { return (Boiler*) getObject(); 1}
void queryValues (IlvValue* vals, I1lUInt) const {
if (vals[0].getName () == temperatureSymbol))
vals[0] = boiler()->get_temperature() ;
}
void changeValues (const IlvvValue* vals, IlUInt) {
if (vals[0].getName() == temperatureSymbol))
boiler->set_temperature(vals[0]) ;
}
void notify(Machine*) { update(); }
static IlvSymbol* temperatureSymbol;
}i

This class serves as a bridge between a prototype instance and an application object. It
defines four methods:

& The constructor establishes alink and the observe (b) statement declaresto the
application that it wantsto be notified of internal changes occurring to the boiler.

& Thechangevalue () method, which is called whenever the user changes an attribute of
the object. It notifies the object that it should update its temperature value. It can handle
other attributes as well.

& Thegueryvalue () method, which is called whenever the prototype needs to update its
values. It queriesthe internal values of the object and transfers them to the user interface.

& Thenotify () method, which must be called explicitly from within the application
whenever an internal attribute of the object changesin order for these changes to be
reflected in the user interface. Any call to Boiler: :set_temperature()
automatically notifies all observers, which means that the noti fy () method does not
need to be called explicitly. Other applications that do not implement an observable/
observer design pattern such as this may want to call notify () from other parts of the
internal code.

Once the mediator class has been defined, you can dynamically link an object of the
application to a prototype instance that is used as a boiler inspector:

IlvGroup* myBoilerInspector = groupHolder->getGroup ("BoilerInspector") ;
BoilerUI* myBoilerUI = new BoilerUI (myBoilerInspector, myBoiler);

You can change the application object being inspected by the prototype at any time:

myBoilerUI->setObject (myOtherBoiler) ;
Even though this mechanism requires some application-specific coding, it is very generic—
any application data structure can be adapted to use it. Once the mediator class has been

designed, the user interface and the application become compl etely independent entities.
Each can be devel oped and maintained separately. The user interface is developed using

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Linking Prototypes to Application Objects

IBM ILOG Views Studio and the application using any application development
environment.

The group mediator also has alock mechanism that can be used to prevent unnecessary
refreshes of the user interface. In the above example, the boiler set_temperature method
calsthenotify () method of the Boilerux to refresh the user interface. Since the change
of values comes from the Uz, it may be unnecessary to perform this last refresh. Testing the
locked flag prevents such refreshes:

void BoilerUI::changeValues (const IlvValue* vals, I1UInt) {
if (locked()) return;
if (vals[0].getName() == temperatureSymbol))
boiler->set_temperature(vals[0]) ;

Using Proto Mediators

A proto mediator (class I1vProtoMediator) isasubclass of 11vGroupMediator andis
used to dynamically create prototype instances of agiven class and place them in a manager
or container. Theideaisto design a specific prototype for each main application class. When
an object is created by the application, a corresponding prototype isinstantiated and placed
in the manager. This allows you to create a graphical user interface for a complete
application, separating the user interface design from the functiona core of the application.
The following samples from the <TLVHOME>/samples/protos directory implement this
design pattern: interact_synoptic to build an air-traffic control simulator, and
synoptic to build asimulator for a manufacturing plant.

For example, assuming the same base application (Machines and Boilers), you want each
Boiler instanceto be represented and edited at the same time by the user. Create a subclass
of I1vProtoMediator:

class BoilerUI: public IlvProtoMediator, public MachineObserver {
public:
BoilerUI (IlvManager*m, Boiler*b)
:I1lvProtoMediator (m, "BoilerPrototype",6b)
{
observe (b) ;
IlvSymbol* vals[2] =
I1lvGetSymbol ("x"), IlvGetSymbol ("y") };
update(vals); // Sets the position of the current instance.
// The application must have a way of specifying where to place
// the object. Alternatively, you can handle the placement by
// explicitly setting the x and y values of the BGO.
install(m); // Place the prototype in the manager
}
// Other methods are the same as the BoilerUI using the GroupMediator.
}i

Now, the application can have a global “user interface factory” responsible for generating
prototype instances as soon as it createsitsinternal objects. The code of this factory may
look like the following pseudo-code:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 168

class myApplication ({
list<Boiler*> boilers;
void initUI (IlvManager* m) {
for each machine in boilers
new BoilerUI (m, machine) ;
}
void add_boiler (Boiler* b) {
boilers.append(b) ;
new BoilerUI (getManager (), b);

Advanced Uses of Prototypes

169

This section describes the foll owing advanced topics on using prototypes:
& Wkiting New Accessor Classes

& Creating Prototypes by Coding

& Customizing IBM ILOG Views Sudio Wth the Prototypes Extension

Writing New Accessor Classes

The Prototypes package contains many predefined accessor classes that allow you to define
complex behaviorsin your prototypes. You may, however, wish to implement specific
behaviors for your particular needs. This section explains how you can extend the set of
accessor classes you use to build your prototypes. It aso explains how your new accessor
classes are integrated into IBM® ILOG® Views Studio.

To add a class of accessors, you simply have to write two classes:
¢ A subclass of 11vUseraccessor that defines the effect of your new accessor.

& A subclassof T1vAccessorDescriptor that defines the way your accessor will be
edited in IBM ILOG Views Studio.

The <ILVHOME>/samples directory of the IBM ILOG Views distribution contains an
example of anew accessor class (the gpacc.h and gpacc . cpp files). See the README file
in that directory for more information.

Subclassing llvUserAccessor

To define anew accessor class, you can either write adirect subclass of T1vUseraccessor
or derive from an existing subclass that implements the features you want to extend. You
may & so want to make this class persistent.

Defining the Subclass
The declaration of a subclass of T1vUseraccessor will typically appear as follows:

class MyAccessor: public IlvUserAccessor {

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Advanced Uses of Prototypes

public:
MyAccessor (const char* name,
const IlvValueTypeClass* type,
const char* paraml,
const char* param2) ;
DeclareUserAccessorInfo() ;
DeclareUserAccessorIOConstructors (MyAccessor) ;
protected:
IlvSymbol* _paraml;
IlvSymbol* _paraml;
virtual IlBoolean changeValue (IlvAccessorHolder* object,
const IlvValue& val) ;
virtual IlvValue& queryValue(const IlvAccessorHolder* object,
IlvValue& val) const;

}

The following methods must be redefined to create a new accessor class:

€ MyAccessor

MyAccessor (const char* name,
const IlvValueTypeClass* type,
const char* paraml,
const char* param2) ;

This constructor is used to create an instance of your accessor by code. In

IBM ILOG Views Studio, only the input constructor will be used. The name parameter
defines the name of the attribute that will be handled by the accessor and the type
parameter defines the type of the attribute. Your constructor will probably have
additional parameters, such asparaml. These parameters are often character strings that
correspond to the parameters that the user can input in IBM ILOG Views Studio and that
are evaluated at runtime.

€ changeValue

virtual IlBoolean changeValue (IlvAccessorHolder* object,
const IlvValue& val) ;

The changevalue method is called when the attribute handled by the accessor is
changed using a call to changevalue on the prototype or one of its instances. You use
this method to define the effect of changing the value of your accessor. If your accessor
uses parameters, you must evaluate these parameters. This can be done using the
getvalue method that evaluates a string containing either an immediate value or the
name of another accessor.

The object parameter isthe prototype or the prototype instance to which the accessor is
attached. Theval parameter contains the new value. The changevalue method must
return T1True if the value was successfully changed, or T11False if an error occurred
(for example, if one of the parameters could not be eval uated).

€ gueryValue

virtual IlvValue& queryValue (const IlvAccessorHolder* object,
Ilvvalue& val) const;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 170

171

The queryvalue method is caled when the attribute handled by the accessor is
retrieved using a call to queryvalue on the prototype or one of itsinstances. This
method must store the “current” value of the accessor initsval parameter (if doing sois
appropriate). Some accessors store their current value, while others do not (for example,
Condition accessors do not store their value). The current value is stored in the val
parameter using the assignment operator of T11vvalue. The method must return itsval
parameter.

€ initialize
virtual void initialize(const IlvAccessorHolder* object) ;

The initialize method is caled when the accessor object is associated with its
prototype or prototype instance. You can redefine this method to perform any kind of
initialization.
Making the llvUserAccessor Subclass Persistent
Like graphic objects, accessor objects need to be persistent, which means they are saved to
the prototype definition file and are read when the prototype is loaded. The persistence
mechanism for accessor objectsis very similar to the mechanism used for graphic objects.

First, in the .n file of your accessor class, you must call the following macrosin thepublic
section of the class declaration:

DeclareUserAccessorInfo () ;
DeclareUserAccessorIOConstructors (MyAccessor) ;

Thisautomatically createsthe IBM ILOG Views runtime type information for your subclass
and declares the persistence and copy methods.

Inthe . cpp file, you then have to write the following methods:

€ MyAccessor (IlvDisplay* display, IlvGroupInputFile& f)
€ MyAccessor: :MyAccessor (const MyAccessor& source)

€ MyAccessor::write(IlvGroupOututFile& f) const

This constructor reads the description of your accessor object from an input stream. The
I1lvGroupInputFile classissimilar to T1vInputFile. Typically, you use only its
getstream method. This returns areference to an i stream object from which you can
read the description of your accessor object. However, the convenience method readvalue
can be used. Thewritevalue method puts quotation marks around strings containing
spaces, and the readvalue method checks for these quotation marks and reads the string
correctly. Combined use of these methods avoids input/output errors. For example, the
implementation of the method could be as follows:

MyAccessor: :MyAccessor (IlvDisplay* display, IlvGroupInputFile& f)
: IlvUserAccessor (display, f)

{

f.readvalue() ;

f.readvalue() ;

_paraml
_param?2

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Advanced Uses of Prototypes

}

Next, you have to write a copy constructor that will be called when the prototype is copied
or when an instance of the prototypeis created:

MyAccessor: :MyAccessor (const MyAccessor& source)
: IlvUserAccessor (source)
{

_paraml = source._paraml;

_param2 = source._param2;

}

The write method must be redefined to save the description of the accessor. The format
used to save the parameters must match the format defined by the input constructor:

MyAccessor: :write (I1lvGroupOututFile& f) const

{
IlvUserAccessor: ::write(f);
f.writevalue(_paraml); f << IlvSpc();
f.writevalue(_param2); f << endl;

}

Finally, the following macros must be called in the . cpp file:

IlvPredefinedUserAccessorIOMembers (MyAccessor)
IlvRegisterUserAccessorClass (MyAccessor, IlvUserAccessor) ;

Subclassing llvAccessorDescriptor

Once you have written your subclass of T1vUseraAccessor, you need to write another
class, asubclass of T1vAccessorbDescriptor. Thisclass provides the information needed
by the Group Inspector of IBM ILOG Views Studio to edit the parameters of your accessor
class.

The name of the I1vAccessorDescriptor subclass must match the name of the subclass
of T1vUserAccessor. For example, if your accessor classisMyAccessor, the descriptor
class must be called MyAccessorDescriptorClass.

You only need to declare the accessor descriptor class. An instance of it will be
automatically created and associated with your user accessor subclass by the
I1lvRegisterUserAccessorClass Macro.

Hereisatypical example of adescriptor class:

class MyAccessorDescriptorClass :

public IlvAccessorDescriptor {

public:

MyAccessorDescriptorClass ()
IlvAccessorDescriptor ("MyAccessor: an example",

Miscellaneous,
"example %$s %s...",
IlFalse,
&IlvvValueIntType,
0,
2,

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 172

173

"Parameter #1", &IlvValueParameterTypeString,
"Parameter #2", &IlvNodeNameParameterType) {}

}:

The accessor descriptor class only requires a constructor with no arguments. It must call the
IlvAccessorDescriptor constructor. For adetailed explanation of the parameters of this
constructor, see the description of the I1vaccessorDescriptor Class.

Creating Prototypes by Coding

Prototypes are meant to be designed graphically using IBM® ILOG® Views Studio. In
some cases, however, you may need to create prototypes or to modify existing prototypes
from a C++ program. This section explains how you can create prototypes by coding in C++
instead of designing them with IBM ILOG Views Studio.

Creating a New Prototype

A prototype is represented by an instance of the 11vprototype class. To create a new
prototype, use the following constructor:

IlvPrototype* proto = new IlvPrototype("myPrototype") ;

Adding Graphic Nodes

Thefirst step isto define the graphic appearance of the prototype. Thisis done by adding
nodes containing graphic objects. For this, you create instances of the T1vGraphicNode
class and add them to the prototype using the addaNnode method.

IlvLabel* label = new IlvLabel (display, 100, 100, "Hello");

IlvGraphicNode* node = new IlvGraphicNode(label, "label", IlTrue);
proto->addNode (node) ;

The 11vGraphicNode constructor has three parameters:
& An IlvGraphic: the graphic object to include in the prototype.
¢ A string: the name of the node.

& A Boolean: specifies whether alocal transformer should be associated with the graphic
node. (Seethe 11vGraphicNode class for details.)

You must give different names to the graphic nodes of your prototype if you need to
reference them in accessor parameters.

Adding Subgroups

You can create hierarchical objects by adding a subgroup to your prototype. To do this, you
must add a node that is an instance of the T11vsubGroupNode class. This subgroup can be
an T1vGroup that you build yourself by adding graphic nodes to it, or it can be an instance
of another prototype:

// Add a sub-group:
I1lvGroup* subgroup = new IlvGroup ("subgroup") ;

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Advanced Uses of Prototypes

IlvLine* linel = new IlvLine(display, IlvPoint (100, 100),
IlvPoint (200, 200));

subgroup->addNode (new IlvGraphicNode(linel, "linel"));

IlvLine* line2 = new IlvLine(display, IlvPoint (100, 200),
IlvPoint (200, 100));

subgroup->addNode (new IlvGraphicNode(line2, "line2"));

proto->addNode (new IlvSubGroupNode (subgroup)) ;

// Add a prototype instance as a sub-group:

IlvPrototype* proto = IlvLoadPrototype("samples.pump", display);

IlvProtoInstance* instance = proto->clone();

proto->addNode (new IlvSubGroupNode (instance)) ;

Adding Accessor Objects

Once you have “drawn” your prototype by adding graphic objectstoit, you can define its
properties and specify the effect of changing these properties. To do this, you add accessor
objects to your prototype. Accessor objects are instances of subclasses of
IlvUserAccessor.

To add an accessor object to your prototype, create an instance of the appropriate subclass of
I1lvUserAccessor and call the addaccessor method. For example, the following code
adds two accessor objects to a prototype: an T1vvalueAccessor that storesavalue and an
I1lvConditionAccessor that tests a condition and changes a attribute according to the

result.
proto->addAccessor (new IlvValueAccessor ("v", IlvValueFloatType));
proto->addAccessor (new IlvConditionAccessor ("v", IlvValueFloatType,
display,
IlvConditionAccessor: :IlvCondGreaterThan,
"100",
"label.label",
"Greater than 100",
"Smaller than 100"));

See the section Predefined Accessors and the IBM ILOG Views Prototypes Reference
Manual for a complete description of each accessor class.

Adding the Prototype to a Library

Prototypes must be stored in a prototype library so that they can be saved and rel oaded later.
To create a new prototype library, usethe T1vpProtoLibrary class.

IlvProtoLibrary* protoLib = new IlvProtoLibrary(display,

" myLib ",
"/usr/home/myhome/protos") ;

A prototype library storesits prototypesin afile system directory (" /usr/home/myhome/
protos" inthe previous example). You can change this directory later using the setpPath
method.

To add your prototype to the new library, call the addprototype method:

protoLib->addPrototype (proto) ;

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 174

175

Saving the Prototype

To save your prototype, call the T1vabstractProtoLibrary: : save method:
myLib->save (0, IlTrue);

Thefirst parameter is an optional output stream where the library description file is saved.
Set it to 0 so that the description file is saved to its default location (" /usr/home /myhome /

protos/myLib.ipl" inthe previous example). The second parameter isset to T1True to
specify that all the prototypes must be saved.

Customizing IBM ILOG Views Studio With the Prototypes Extension

This section describes the most important classes that you can derive to extend
IBM® ILOG® Views Studio with the Prototypes extension.

Extension Class

The IBM ILOG Views Studio extension is represented by the
IlvStPrototypeExtension class, whichisdeclared in <ILVHOME>/studio/
ivstudio/protos/stproto.h:

class ILVSTPRCLASS IlvStPrototypeExtension
: public IlvStExtension {
public:
IlvStPrototypeExtension (IlvStudio* editor) ;
static IlvStPrototypeExtension* Get (IlvStudio* editor) ;
}i

An instance of this class (or a subclass) must be created after the 11vstudio objectis
created and before the initialize method is called. The static et method returns the
(unique) instance of T1vStPrototypeExtension.

Buffer Classes

IBM ILOG Views Studio defines four subclasses of 11vstBuffer. These classes are dAso
declared in <ILVHOME>/studio/ivstudio/protos/stproto.h.

IlvStPrototypeManagerBuffer

The I1vStPrototypeManagerBuf fer Class represents abuffer of the “Prototype
Instances (2D)” type. TheNewPrototypeManagerBuf fer cOmmand creates an instance of
this class. The manager controlled by an 11vstPrototypeManagerBuffer iSaninstance
of I1vManager:

class ILVSTPRCLASS IlvStPrototypeManagerBuffer
: public IlvStBuffer
{
public:
IlvStPrototypeManagerBuffer (IlvStudio*,
const char* name,
IlvManager* = 0);

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Advanced Uses of Prototypes

IlvStPrototypeEditionBuffer

The 11vstPrototypeEditionBuffer classrepresents abuffer of the “Prototype” type,
that is, a buffer used to edit a prototype. The NewPrototypeEditionBuffer command
creates an instance of this class. The manager controlled by an
IlvStPrototypeEditionBuffer isaninstance of I1vGadgetManager:

class ILVSTPRCLASS IlvStPrototypeEditionBuffer
: public IlvStPrototypeManagerBuffer
{
public:
IlvStPrototypeEditionBuffer (IlvStudio*,
const char* name,
IlvManager* = 0);
void editPrototype (IlvPrototype* prototype,
IlBoolean fromLib = IlTrue,
const char* filename = 0);
IlvPrototype* getPrototypel();
IlvPrototype* getEditedPrototype() ;
}i

The editPrototype method initializes the buffer so that it can edit the prototype specified
by prototype. A copy of the prototype is made and is stored in the associated manager.
The fromLib argument specifies whether the edited prototype is stored in a prototype
library contained in the Prototypes palette or if the prototype is a*“ standalone” prototype
loaded from a . ivp file. In the second case, the optional £ilename argument can contain
the full path name of the . ivp file.

The getPrototype () method returns the prototype contained in the buffer. The
getEditedPrototype () Method returnsthe“original” prototype if the buffer is currently
editing a prototype from alibrary. Otherwise, it returns 0.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 176

177 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Predefined Accessors

Accessors are basic building blocks that define the value and behaviors of aBGO
(T11vGroup Or I1vPrototype). An attribute usually consists of a Data accessor and one or
more Control accessors that define its side effects when the attribute is set. This section lists
the accessor classes that are predefined in the Prototypes library, and is divided as follows:

¢ Overview

Data Accessors
Control Accessors
Display Accessors
Animation Accessors

Trigger Accessors

® & 6 6 o o

Miscellaneous Accessors

Overview

Each accessor classisillustrated by one or more sample prototypes. Most of these samples
are contained in one of the prototype librariesincluded in the IBM® ILOG® Views
distribution:

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 178

179

€ <ILVHOME>/data/ivprotos/libs

¢ <ILVHOME>/samples/protos/*/data/*.ipl subdirectories
To look at a sample prototype:

1. Launch IBM ILOG Views Studio with the Prototypes extension.

2. Openthe . ip1 file containing the corresponding prototype library.

3. Double-click on the prototype in the palette.

Graphic Representation of the Behavior of a Prototype

In the examples that illustrate each behavior class, the data flow defined by the accessors of
aprototype is represented using the following graphic vocabulary:

& A rectangle represents an accessor (elementary piece of behavior).

¢ An attribute is represented by a stack of accessors with a given name. In such a stack, the
accessors are evaluated from top to bottom when the value of the attribute is changed or
queried.

& The order of evaluation is represented by the relative position of an accessor in its stack.
& Aninset rectangle is used to represent the type of the given attribute.

A graphic representing these itemsis shown here:

Mame Mame

=Tyne= ‘

Also:

Slots on the sides of accessors represent the parameters of the accessor.
A round slot represents a value parameter.

A sguare slot represents an object parameter.

Slots at the top represent the input access to a value.

Slots at the bottom represent its output.

® & 6 6 o o

Slotson the | eft side represent input parameters of the accessors (the accessorswill query
their value when they are evaluated).

2

Slots on the right side represent output parameters (the accessors will change the values).

& Finaly, slots with an arrow indicate that the value will be pushed instead of simply set.
The arrow is used to indicate Trigger accessors.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Data Accessors

A graphic representing these items is shown here:

Ohject Input Cutput "Push" or "Trigger"
Farameter Farameters Farameters Farameters

0D

To complete the model, links or direct values are used to connect the accessor output to other
input attributes. The following diagram shows a Condition accessor with these conditions. If
Temperature is set to above 30, the foreground of the Gauge object will be set to Red.
Otherwise, it will be set to Blue.

Tem perature

Gauge foreground

Data Accessors

Data accessors hold avalue or a pointer to values. They define the type of a given attribute.
They are similar to variable declarations in a programming language such as C++. All
attributes should contain one of these accessors and no more.

Note: Some accessors also hold a value (Rotate for instance), which means values that
hold them do not need an extra Data accessor.

The different Data accessors are described as follows:
¢ \alue

¢ Reference

& Group

& Script

Value

The Value accessor (class T1vvalueAccessor) letsyou attach an attribute holding avalue
to a prototype. When the value is modified, it is simply stored. When the value is queried,
the last value stored is returned.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 180

181

Parameters
& No parameters, but the type of the value must be specified since it cannot be deduced.

Example:

The invertedColor atributein the pump prototype of the samples prototype library
stores a color name as atemporary variable.

invertedColor

kolor |

=

Reference

The Reference accessor (class T1vNodeAccessor) isused to reference an attribute of one
of the prototype nodes (also called sub-attributes) at the prototype level. When the
corresponding attribute is changed, the new value is forwarded to the specified sub-accessor.
Conversely, when the attribute is queried, it isfirst queried from the node and forwarded to
the prototype. A Reference accessor is similar to areference (apointer or an dias) in a
programming language.

Parameters

& Accessor: Node attribute or prototype value that holds the value. The type of thevalueis
determined by what the accessor pointsto.

Example

The steps attribute in the thermo prototype of the samples library points directly to the
steps attribute of the scale object. When the attribute steps is set, it is assigned to the
scale.step attribute. If the scale. step attribute is changed by the program, any query
of the attribute returns the new value.

deps

Group

The Group accessor (class T1vGroupUserAccessor) defines an attribute that will
collectively reference all the sub-attributes of the same namein al group nodes. For
example, you can use this accessor with the name foreground and the type color to
change the foreground color of al the prototype elements in one single assignment.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Data Accessors

Parameters

4

No parameters. The name of the attribute is used to determine the subattribute that will
be referenced by this accessor. The type of the accessor isimplicitly determined.

Example

In the pump prototype of the samples prototype library, a1inewidth attribute can be
added. The attribute should be of type urnt. Changing this attribute from the Group
Inspector (using the Attributes notebook page) changes the line width of all the graphic
objects that have a 1inewidth defined.

lineiyictt b

Ulirt

Script

The Script accessor (I1vJavaScriptAccessor) classlets you program the behavior of
your prototypes using the scripting language interpreter included in IBM ILOG Views
Studio.

A Script accessor has two parameters, which are the names of script functions:

4

The set function is called when the value of the accessor is changed. It must be of the
form:

function SetX(obj, newval)

{
}

The obj argument is the prototype associated with the accessor. The newval argument
isthe new value that has been assigned to the attribute.

The get function is called when the value of the accessor is queried. It must be of the
form:

function GetX(obj)
{

return(val) ;

}

The obj argument is the prototype associated with the accessor. The function must
return a value, which becomes the new value of the attribute.

In the functions associated with a Script accessor, you can access and modify any prototype
attribute or a prototype node. Either one of the two function names of the Script accessors
can be none, in which case no function is called.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 182

183

The functions associated with a Script accessor can be edited using the IBM ILOG Views
Studio Script Editor. They will be saved in afilewith a . i js suffix in the same directory and
with the same file name as the prototype. Otherwise, they are saved in the prototype file or
itslibrary file.

Note: Naming conflicts can occur if you load several prototype instances with the same
function names in the same panel. Therefore, it isa good idea to prefix the names of all
the prototype script functions with the prototype name they belong to. For instance, in the
samples.thermo prototype, if the Temp value has a Script accessor, its functions should
be called samplesThermoTempGet () and SamplesThermoTempSet ().

Parameters

& Script function (set): The name of the script function to execute when the attribute is
changed.

& Script function (get): The name of the script function to execute when the attribute is
queried.

& Thetypeisdetermined by the value returned from the set function or taken asa
parameter by the get function. It can, therefore, change dynamically.

Examples
The following function can be used to perform an action similar to a Condition accessor:
function SetTemperature (obj, temperature)

{
if (temperature > obj. threshold) {

obj.gauge. foreground = "red";
} else {
obj.gauge. foreground = "blue";

}
}

function GetTemperature (obj)
{
return obj.gauge.foreground;

}

Y W

temperature

getTempl)
setTemp()

—

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Control Accessors

Control Accessors

Control accessors perform side effects on other attributes when they are evaluated. They
represent the control structures and instructions of a programming language. In the Group
Inspector, you can view them from the “Behaviors’ and “Interaction” notebook pages, under
the“do” clause attached to each attribute.

Note: These accessors arewrite-only. They do not record the last value tested. If you only
define a Control accessor for a value, you will not be able to read this value back. To store
the value associated with an accessor, you must define a Value accessor with the same
name.

The different Control accessors are described as follows:
Assign
Condition
Format
Increment
Min/Max
Multiple
Notify
cript
Switch
Toggle

® 6 6 6 6 6 O 0 0 o

Assign

The Assign accessor (class 11vTriggerAccessor) is used to assign avalue to another
attribute or sub-attribute. When the attribute is set, the target attribute specified by the
target parameter is assigned the specified value.

Parameters
& Attribute: Attribute that is modified when this accessor is evaluated.
& Send: Attribute or expression that is assigned to Attribute.

& Thetype of the accessor is undetermined and irrelevant.

Example
The 1cd2 prototype of the 1cd library uses the Assign accessor.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 184

185

Condition

The Condition accessor (class T1vConditionaAccessor) isused to perform a conditional
assignment of another attribute when the attribute is changed.

Thefirst parameter defines a condition operator that is applied to the new value of the
attribute. For example, if the value of the attribute is changed to 10, the operator parameter
is>, and the operand is 5, the condition testedis 10 > 5. If the operator is
[Operand_valuel, the condition tested is only the value of the operand parameter (that is,
the new value passed to changevalue isignored).

Depending on the test result, the attribute specified by the Attribute parameter is set to one
of two values: Vaueif True or Value if False. The parameters Operand, Value if True, or
Value if False can be either immediate values (such as 1 or "red"), the names of other
attributes that will be queried to get the values used, or an expression containing these
immediate values or attribute names.

Parameters

& Operator: The operator used to test the conditions. It can be one of the following: ==,
I=,>=, <, <=,0r [Operand_value].

4 Operand: The operand value.

& Attribute: Prototype value or node attribute that will be set to true or fal se, depending on
the condition.

& Valueif True: Valueto which the output is set if the condition istrue (or non 0).
& Valueif False: Valueto which the output is set if the condition is false (or 0).

¢ Thetype of the accessor is undetermined and irrelevant. However, it needs to be
compatible with the operand type.
Example

The following example shows the thermo prototype in the samples prototype library. If
the temperature atributeis above 30, the gaugeis drawn in red. Otherwise, itisdrawnin
blue.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Control Accessors

Gauge foreground

Format

The Format accessor (class 11vFormatAccessor) can be used to convert a numeric value
of type Double to a character string using a user-specified format. The formatted string is
then copied to another accessor. The format of the value is specified by the Format
parameter, which is defined in the C library function print f. The numeric value is passed
to the conversion function asan 11bouble, S0 the format should contain a $g specifier.

Parameters

¢ Format (printf-style): Format string as defined by the print £ C library function and
must bea string value. Thisstring must contain at least one %g, since this accessor can
only convert values of type Double.

& Max # of chars: Maximum length of the string after the conversion. If thislengthis
exceeded, the value isreplaced by * characters. It must be an Integer value.

& Attribute: Attribute to which the formatted value is assigned.

Example

Inthe display prototypeinthe samples prototype library, the Format accessor allowsyou
to change in NumberField. label the way the valueis displayed.

format Mumberfield label

maxChars ma: len

Increment

The Increment accessor (class T1vCounteraccessor) isused to increment another
attribute. Each time the attribute containing this attribute is set, another attribute, called a
counter, isincreased by one until a specified maximum value is reached. When thisvalue is
reached, the counter is reset to zero.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 186

187

Parameters

¢ Maximum: Maximum value. The valueto increase isreset to o if it isequal to the
maximum value.

& Attribute: Attribute to increment.

& Thetype of the accessor is undetermined and irrelevant.

Example

A three-state button can be implemented by using a Counter accessor linked to a MultiRep
accessor. The following accessor has been added to the symbo1 prototype of the samples
prototype library. Changing the state_incr value in the Attributes notebook page of the
Group Inspector increments the state and switches its representation.

state_jincr

+1 —

2 %N

Min/Max

The Min/Max accessor (class I1vMinMaxAccessor) issimilar to the Condition accessor
but handles common cases when an attribute must be tested against a minimum and a
maximum threshold. When the attribute is changed, another attribute is set. The assigned
value depends on whether the value of the current attribute is less than the minimum,
between the minimum and the maximum, or greater than the maximum. In addition, an
exception condition can be specified: if the exception condition istrue, no value is changed.

Parameters
¢ Minimum: Defines the minimum value.
¢ Maximum: Defines the maximum value.

& Except if: If thisvalueistrue, the valueisignored and the output value or attribute is not
set. The expression must result in aBoolean value.

& Attribute: Attribute that is set to one of the following three values.
& |f x <min: Valueto which the attribute is set if the value is less than the minimum.

& |f min < x <max: Valueto which the attributeis set if the value is between the minimum
and the maximum.

& |f x> max: Valuetowhich the attribute is set if the valueis greater than the maximum.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Control Accessors

Example 1

This accessor is attached to a Temperature attribute. When Temperature is set, if
Nobody’s at Home iStrue, nothing is done. If the Temperature isbelow 15, HeatOn is
assigned to climateControl. If Temperature isabove 25, Coolingon isassigned to
ClimateControl. If thetemperature is between 15 and 25, A110£ £ isassigned to
ClimateControl.

Temperature
Except If

Mobody's at Home
15
"Heaton"
ClimateContral

25
"Coolingn"

A O

Example 2
This example shows the vertGauge prototypein the sample library.

MeotSignificant
riin Th rzshakd
minThrashokd Color
Giauge forag reu nd

e Thrzshokd

& Thrashold Color

nominalCoker

Multiple

The Multiple accessor (class 11vCompositeaAccessor) assignsthe value of the attribute to
multiple other attributes or sub-attributes. It can be used, for example, to change the colors
of two graphic nodes using a single public value of the prototype.

Parameters

& Thisaccessor has avariable number of parameters. Each of these parametersis an
attribute or subattribute, to which the value is assigned.

& All parameters must have compatible types.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 188

Example
This example shows the Color accessor in the thermo prototype.

Gauge foreground

E llip=e foreground

Notify

The Notify accessor (class I1vOoutputAccessor) tUrns changevalue calson the
attribute to which it is attached into pushvalue calls. Values that are watching the given
attribute will execute all their behaviors.

This accessor triggers behaviors of other attributes that depend on the notifying value. For
example, you can make a change in the Threshold attribute to also re-evaluate the
Temperature attribute. This can be done by attaching a Notify accessor to the Threshold
attribute, and a Watch (Threshold) behavior to the Temperature attribute.

Parameters
& No parameters.

Example

The following example showsthe X_scale attributes of the transformer prototypein the
samples library.

Y S

Angle

| Float |

-

Script

This accessor is described in Data accessors under Script.

Switch

The Switch accessor (class T1vswitchAccessor) implements a switch statement.

189 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Control Accessors

Parameters

& Switch: Anexpression that should return an integer. Depending on its result, the attribute
0...Nwill be assigned the value of the parameter.

& case0: Must be an attribute of the prototype or the value "". If switch evauatesto o,
the behaviors of the attribute named in this parameter will be executed.

& casel: If switch evaluatesto 1, the behaviors of the attribute named in this parameter
will be executed.

& case N: If switch evaluatesto avalue equal to or greater than N, the behaviors of the
attribute named in this parameter will be executed.

Example
A traffic light with varying settings can be implemented like this:

Value Integer
do
Switch Value
case 0 doRed

case 1 doOrange
case 2 doGreen
case 3 Anomaly
doRed
do

greenEllipse.visible=False
orangeellipse.visible=False
redEllipse.visible=True
doBlink=False

doOrange

do
greenEllipse.visible=False
orangeellipse.visible=True
redEllipse.visible=False
doBlink=False

doGreen

do
greenEllipse.visible=True
orangeellipse.visible=False
redEllipse.visible=False
doBlink=False

Anomaly

do
greenEllipse.visible=False
orangeellipse.visible=True
redEllipse.visible=False
doBlink=true

doBlink Boolean

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 190

do
blink orangeEllipse.visible 150

Toggle

The Toggle accessor (class 11vToggleAccessor) Switches another attribute between true
and false each time the attribute is set. The value assigned to the attribute containing atoggle
behavior isignored.

Parameters

& Boolean Attribute: Attribute that is switched when the behavior is evaluated. It must be
a Boolean type (for example, the visihility attribute of the object).
Example

The following example shows the random prototype in the sources prototype library with
thevalue toggle.

tocgle

I'x — drunning

Display Accessors

Display accessors change the graphic appearance of anode. Ultimately, all accessor
networks end up modifying the appearance of the object and, thus, use some kind of Display
accessor. General Display accessors such as Rotation, Scale, or Tranglation change the size
and position of agraphic node. One accessor, MultiRep, controls the visibility of nodes, and
other accessors, such as Fill, control object-specific properties.

The different Display accessors are described as follows:
Fill

MultiRep

Rotation

ScaleX

ScaleY

Trand ateX

® 6 6 6 o o o

TrandateY

191 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Display Accessors

Fill

The Fill accessor operates on two polygon objects contained in a prototype: afilled polygon
and afiller polygon. The value of the attribute represents afill level. When the attribute is
changed, the points of thefiller polygon are modified to fill the polygon to the specified
level. An angle can be specified to fill the polygon in any direction.

Parameters

& Filled Graphic Node: Must be an 11vPolygon graphic node.

& Filler Graphic Node: Must be an 11vPolygon graphic node.

& Angle: A float that indicates the angle at which the fill will be done.

Example

Thefollowing isabottle prototype that contains two polygons: the glass and the wine. A
Fill accessor is used to define the 1evel property. Thefilled polygon is the glass and the
filler polygon isthe wine.

glass I I wine
[envelope)

i}

MultiRep

The MultiRep accessor (class I1vMultiRepAccessor) isused to switch between different
representations of a part of your prototype, depending on an integer value. The parameters
specify alist of nodes that define the different representations. When the value is changed to
n, the accessor showsthe n-th node in the list and hides all the other nodes.

This accessor accepts a variable number of parameters. There are as many representation
states as you define rows in the parameter editing matrix. A new row is automatically
created in the matrix when you validate the value of the last parameter.

Parameters

& Graphic Node: Defines the node that is shown when the value is 0. Must be a graphic
node.

& Graphic Node: Defines the node that is shown when the valueis 1. Must be a graphic
node.

& Thetypeof thisvalueis Int (Integer).

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 192

193

Example

The symbo1l prototype of the samples prototype library usestwo lines, open and closed, to
display atwo-state switch.

Rotation

The Rotation accessor (Class I1vRotationAccessor) letsyou set the rotation angle of an
object to agiven value. The value defined by this accessor is the angle (in degrees) to which
the rotation must be set. The angle is stored every timeiit is set so resetting the value rotates
the object by the angle corresponding to the delta between the old and new angles.

The Minimum Angle, Angle Range, Minimum Value, and Value Range parameters are used
to compute the new rotation angle given to the input value. The new rotation is computed
from the value assigned to the Rotation accessor using the following formula:

angle = minAngle + (value - minimum)* Anglerange / range

The initial value of the rotation angle is assumed to be the value of the Minimum Angle
parameter so theinitial position of the rotating object must correspond to this value.

Note: Not all graphic objects are sensitive to rotation. Rectangles, ellipses, and text
objects do not rotate. It is recommended to use polygons and splines instead.

Parameters

& Graphic Node: Name of the node to rotate. It must be a graphic node.

& Center X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

4

Center Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

Minimum Angle: Minimum angle used to compute the rotation (Float or Integer).
Angle Range: Angle range used to compute the rotation (Float or Integer).

Minimum: Minimum value used to compute the rotation (Float or Integer).

* 6 o o

Range: Vaue range used to compute the rotation (Float or Integer).

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Display Accessors

& HandleInteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

& Thetype of thisvalueis Float (the angle of rotation).

Example

The following example shows a Rotation accessor attached to the t ransformer prototype
inthe samples library.

cioRotation

| Float ‘
2 :I herizen

min Angle

hackogreu nod cante

backoireu nod canterr

Angle range

ScaleX

The ScaleX accessor (class T1vzoomXaccessor) letsyou set the horizontal scaling factor
of an object. When the value of this accessor is changed, the object is scaled based on the
new value. The scaling factor is stored every time it is set so resetting the scale to a different
value scales the object by the delta of the old and new scaling factors.

Note: Not all graphic objects are sensitive to the scaling factor. For example, text objects
cannot be scaled.

Parameters

& Graphic Node: Name of the graphic node to scale. It must be a graphic node.
& Center X: X-coordinate of the center of the scale (Float or Integer).

& Thetype of thisvalueis Float.

Example

This example shows a Scale accessor attached to atransformer object. The full prototype
using this accessor isthe transformer prototypeinthe samples library.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 194

195

M W

doScaleX

| Float |

Centerx/ cx Tranzformer

ScaleY

The ScaleY accessor (class T1vzoomYAccessor) letsyou set the vertical scaling factor of
an object. When the value of thisis changed, the object is scaled based on the new value.
The scaleis stored every timeit is set, so resetting the scaling factor to a different value
changes the size of the object by the delta of the old and new scaling factors.

Parameters

& Graphic Node: Name of the graphic node to scale. It must be a graphic node.
¢ Center Y: Y-coordinate of the center of the scale.

¢ Thetypeof thisvalueis Float.

Example

This example shows a Scale accessor attached to a transformer object. The full prototype
using this accessor is the trans former prototypein the samples library.

doScaley

| Float |

Centery{ cCv Transformer

nc=m

TranslateX

The TranslateX accessor (class T1vslideXAccessor) moves anode horizontaly to a
position determined by a minimum position, a position range, aminimum value, and avalue
range. The new position is computed from the value assigned to the TrandateX accessor
using the following formula:

x = xmin + (v - minimum) * Xrange / range
Parameters
& Graphic Node: Name of the node to move. It must be a graphic node.

¢ Minimum X: Name of the minimum position (Float or Integer).

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Display Accessors

X range: Name of the position range (Float or Integer).
Minimum: Name of the minimum value (Float or Integer).

Range: Name of the value range (Float or Integer).

* & & o

Handle I nteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value is updated accordingly.

& Thetype of thevalueisFloat.

Example

The use of Trandlate accessorsis similar to the use of Scale accessors, except that Trandate
accessors change the position instead of the size of an object. See the transformer
prototype in the samples library.

doTranslatex
| Float |

i -1+D-:| translate|ndicator

HRange

Center.x 120

240

-1000 Minimum

2000 Range

TranslateY

The TranslateY accessor (classT1vslideYaAccessor) movesanode vertically to aposition
determined by a minimum position, a position range, a minimum value, and a value range.
The new position is computed from the val ue assigned to the TranslateY accessor using the
following formula:

y = ymin + (v - minimum) * yrange / range

Parameters

& Graphic Node: Name of the node to move. It must be a graphic node.
MinimumY: Minimum position (Float or Integer).

Y range: Position range (Float or Integer).

Minimum: Minimum value (Float or Integer).

* 6 o o

Range: Vaue range (Float or Integer).

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 196

& HandleInteraction: Boolean specifying whether the accessor should behave like an
Event accessor when the user clicks on the node to rotate it. If it is set to true, the user
can rotate the node and the accessor value will be updated accordingly.

& Thetype of the valueis Float (the distance of trandation).

Example
The use of TrandateX and TrandateY is similar to the use of scaleX and scaleY accessors.

doTranslatey’

| Float |

) A
Centery-120 [MinYy T]translatelndic:ator

240 ¢ vRange

<1000 Minimum

2000 Range

Animation Accessors

197

Animation accessors (class I1vanimationAccessor) are acategory of the Display
accessors that change the appearance of an object periodically. Animation accessors hold a
value of a Boolean type indicating whether the animation is on.

For efficiency reasons, the Animation accessors do not reevaluate their attributes at each
count of thetimer. Thus, if you change one of the attributes of the accessor, you must
reassign the value to itself to force an update of the parameters, using the Assign accessor
for instance. See the pump prototype in the samp1les library for an example.

The different Animation accessors are described as follows:
¢ Blink
¢ |nvert

¢ Rotate

Blink

The Blink accessor (class T1vBlinkAccessor) makes an object of your prototype blink,
that is, it causes the object to appear and disappear at brief, regular intervals. When the
attribute is set to 11 True, the object starts blinking. When the attribute is set to T1False,
the blinking stops.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Animation Accessors

Parameters

& Boolean Attribute: Object attribute that controls the object visibility.

& Period (ms): Theinterval in milliseconds between two blinks (Float or Integer).
& Thetype of thisvalueis Boolean.

Example
The following example shows the £i1e prototype in the sources library with ablink value.

B
M—\@—_} 1Mo sibk

Invert

The Invert accessor (class T1vInvertAccessor) invertsthe color of an element of your
prototype periodically. When the property is set to T1True, the color inversion begins.
When the attribute is set to 11False, the color inversion stops.

Whilethe colors are designated as the foreground and background colors, any colors defined
by the prototype or one of its nodes can be used.

Parameters
& FgCoal. Attribute: Node attribute or prototype value that contains the foreground color.
& Bg Cal. Attribute: Node attribute or prototype value that contains the background color.

& Period (ms): Theinterval, in milliseconds, between two inversions of the object colors
(Float or Integer).

& Type: Boolean (whether the accessors are exchanging their values).

Example

This exampleis presented in the pump prototype of the samples prototype library. When
invert isset to true, the values of rotorColor and invertedColor are exchanged
periodically. The period is defined by the invert attribute.

Note: The invertPeriod value hasan Assign behavior: invert = invert. Thisforces

the accessors to be reevaluated and the internal timer to update its period whenever the
period is changed.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 198

199

invertPeriod < Period

T T

invert

Floolean |

ratorCalar

invertedC olar

Rotate

The Rotate accessor (class I1vRotateAccessor) defines a behavior that, when set to
I1True, makes an object rotate periodically.

The Angle parameter specifies the number of degrees by which the object rotates at every
timer tick. The Center X and Center Y parameters define the rotation center. You should not
use the center of the rotating node itself for these parameters because the rounding problems
that occur while rotating an object might move it slightly. Instead, you should use the center
of another fixed object of the prototype. You can make this reference object invisible if

necessary.

Parameters

& Graphic Node: Name of the node to rotate. Can be a graphic node or a subgroup node.

& Angle: Anglein degrees by which the object isrotated at each step (Float or Integer).

& Center X: X-coordinate of the rotation center. You can use the centerX accessor for this
parameter (Float or Integer).

& Center Y: Y-coordinate of the rotation center. You can use the centerY accessor for this
parameter (Float or Integer).

& Period (ms): Theinterval in milliseconds at which the object rotates. It must be an
Integer.

Example

This exampleis presented in the pump prototype of the samples prototype library. When
the Rotate accessor is set to true, the nodes will turn by 20 degrees every 10 ms.

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS

Trigger Accessors

T

rotate

Boaolean

834 \:I hatizan

background. centerk

background. cerntery

Period Feriod

10 Angle

Trigger Accessors

Trigger accessors define the entry points of evaluation sequences in the graph of accessors.
Triggers are accessors that can react to a user event (callback and event), a change in anode
by the application (by means of the pushvalue method), or some other node change (a
combination of Trigger and Connect).

The different Trigger accessors are described as follows:
¢ Callback

¢ Clock

¢ \\atch

¢ Event

Callback

This accessor (class 11vCallbackAccessor) ataches atrigger that is set when the given
callback is called from a user action on the specified graphic node. For a callback to be
cdled, the node must be either an I11vGadget Or an I1vGraphic to which an interactor has
been attached.

Parameters

& Graphic Node: The name of the graphic node whose callback istriggered.
¢ Callback Name: The name of the callback.

& Input: The valuethat is sent when the callback is triggered.

Example

The following example shows the random prototype in the sources library with the
clickedvaue. Theclicked value pushes 0 to its output when the button is pressed by the

user. This output is connected to the toggle vaue, which in turn switchesthe running
value.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 200

Button I Generic CB

Clock

The Clock accessor (class 11vanimationAccessor) triggersits attribute periodically,
executing the attached behaviors. When set to O, this accessor has no behavior. When set to
another value, this value is used as the period of an internal timer that triggers the behavior
periodically.

Parameters

& Thetype of thisvalueis uint. If non-zero, the attribute will not have any effect.
Otherwise, itsvalue isinterpreted as atimer period.

Watch

The Watch accessor (class I1vLoopbackAccessor) makesits attached attribute observe
another notifying attribute.

This accessor classis often used with the Callback accessor to change a value of the
prototype when a callback is triggered. The Watch accessor connects the triggering attribute
containing the callback to the watching attribute that must be changed.

Parameters

& Notifying Attribute: Attribute that is observed. This attribute must be one of the
attributes that has a Notify or a Callback accessor.
Example

The Watch clicked accessor links the c1icked valueto the toggle value, which allowsthe
running attribute to be switched whenever the user presses the button attached to the
clicked value.

201 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Trigger Accessors

running value

Event

The Event accessor (class T1vEventAccessor) isused to trigger a behavior in response to
user or other application events. When an event of a given type occurs while the mouse
pointer is over a node of the prototype, the attribute to which the accessor is attached is
evaluated, that is, all its behaviors are set.

Whilethe callback pushesits value to another attribute of the prototype, the event notifiesits
own attached attribute. The event is thus similar to attaching a Watch accessor to itself after
attaching a callback.

Parameters

4

Graphic Node: The name of a graphic node. Events received from the input devices are
sent to the accessor over this graphic node to trigger a behavior. The specia value

[A11l Nodes] indicatesthat thisvalueistriggered when any event of the given type
reaches any of the graphic nodes of the prototype.

Event Type: The event type that triggers the accessor. The type can be any of the
standard IBM ILOG Views event types. AnyEvent, KeyUp, KeyDown, But tonDown,
ButtonUp, EnterWindow, LeaveWindow, PointerMoved, ButtonDragged,
Repaint, ModifyWindow, Visibility, MapWindow, UnMapWindow, Reparent,
KeyboardFocusIn, KeyboardFocusOut, DestroyWindow, ClientMessage, and
DoubleClick.

Detail: The detail of the event. This parameter indicates additional filtering of the events
and depends on the event type. For example, for a But tonDown event, the detail can be:
AnyButton, LeftButton, RightButton, MiddleButton, Button4, Or Button5.
For akeyDown event, the detail parameter indicates the key, or anyKey that triggers the
accessor. Seethe 11vEvent classfor alist of the valid keys.

M odifiers: Indicates which modifiers should be pressed. Possible values are:
AnyModifier, NoModifier, Sshift, Ctrl, Meta, Alt, Num, Lock, ALt+G, Or any
combination of the previous modifierssuch as shift+Crtl, Ctrl+Shift+Alt, and so
on.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 202

& Event datato send: The Event attribute that is pushed to the current value. It can be the
Type, Detail, X (the horizontal position of the mouse relative to the window), Y (the
vertical position of the mouse relative to the window), Global X, or GlobalY (the position
of the mouse relative to the screen).

Example

The following example shows the transformer prototype with an EventScaley valuein
the samples library:

Miscellaneous Accessors

These accessors do not fit current existing categories.

The different Miscellaneous accessors are described as follows:
¢ Debug

& Prototype

Debug

The Debug accessor (class T1vbebugaccessor) is used to debug prototypes. It prints a
message to the console or the output window when the corresponding value is modified or
queried.

Example

When thefollowing doTrand ateY accessor isqueried or changed, amessage is printed to the
output console, displaying the current value:

203 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

Miscellaneous Accessors

e %

Center.y- 120 ¢ | translatel nolicator
240 F
.:\.

A0 ¢

2000

Prototype

The Prototype accessor (class I1vPrototypeAccessor) alows anew prototype to inherit
from all the accessors of an existing prototype. The new prototype behaves asif dl the
accessors of an existing prototype were added to it. Thisis useful when building libraries of
complex behaviors and in reusing them in other prototypes. The prototype library containing
the prototype must be open in order for any instance using this accessor to work properly.
From the Group Inspector in IBM ILOG Views Studio, you can add a Prototype accessor to
a prototype by selecting the Attributes tab and choosing the Edit>Del egate to Prototype
item.

Parameters
& Prototype name: Name of the prototype that you want to inherit accessors from.

Example

This accessor is represented as a subgraph showing all the values exported in the context of
the current accessor graph.

The diclock prototype of the sources library encapsulates and exports all the accessors of
the c1ock prototype. It behaves exactly like the c1ock prototype but has a different graphic
representation.

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 204

205

Diclock Accessor Graph

Clock acoessor graph exported through the
inherit accessor.

IBM ILOG VIEwWSs V5.3

Other walues defined by diclock. (In fact
there are no such values, but they could
be added).

T
!

il
™

2D GRAPHICS

Numerics

2D Graphics buffer window
description of 74, 137

A

abortReDraws member function
IlvManager class 33
accelerators
and managers 53, 57
example in managers 53
predefined in managers 53
accept member function
IlvMakePolyLinkInteractor class103
acceptFrom member function
IlvMakeLinkInteractor class103
acceptTo member function
IlvMakeLinkInteractor class 103
accessor objects 152
accessors 112
types 153
writing new classes 169
addAccelerator member function
IlvManager class53
addCommand member function
IlvManager class 66
addGhostNode member function
IlvGrapher class 87
addLink member function

Index

IlvGrapher class87
addNode member function
IlvGrapher class87
addPoints member function
IlvPolylineLinkImage class96
addTransformer member function
IlvManager class22
addview member function
IlvManager class21
addvisibilityFilter member function
IlvManagerLayer class 26
afterDraw member function
IlvManagerViewHook class 61
afterExpose member function
IlvManagerViewHook class 61
align member function
IlvManager class31
animation accessors
description 197
applyInside member function
IlvManager class 28
applyIntersects member function
IlvManager class27, 28
applyToInside member function
IlvManager class27
applyToObject member function
IlvManager class27, 28, 34
applyToObjects member function
IlvManager class27
applyToSelections member function

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 206

IlvManager class 27, 50
applyToTaggedObjects member function
IlvManager class 27
arc offset
description 95
fixed value 95
proportional value 95
ArcLinklmage mode 77
arcs 95
attributes
connecting 156
predefined 163
sub-attribues 165
user-defined 163

B

beforeDraw member function
IlvManagerViewHook class 61
behaviors
attributes 152
graphic representation 179
input parameters 126
prototype graphic behaviors 122
prototype interactive behaviors 127
binding views 20
buf feredDraw member function
IlvManager class 32
business graphic objects
description of 109

C

C++
prerequisites 12
changeLink member function
IlvGrapher class 87
CloseProtoLibrary command 143
commands
and managers 20
computePoints member function
IlvLinkImage class 90, 97
connecting attributes 156
connection pins 75
coordinates 98

description 98
editing 104
managing 98
providing a faster implementation 99
recovering the index 98
returning the unused pin 99
containers
displaying groups and instances 155
contentsChanged member function
IlvManager class 68
IlvManagerViewHook class 61
control accessors
description 184
ConvertProtoManager command 143
copy member function
IlvTranslateObjectCommand class 68
createLink member function
IlvMakeLinkInteractor class103
IlvMakeLinkInteractorFactory class 103
createNode member function
IlvMakeNodeInteractor class 102
IlvMakeNodeInteractorFactory class 102
creating
prototype instances 131
prototype library 115

D

data accessors
description 180
data flow programming 112
DeletePrototype command 144
deleteSelections member function
IlvManager class29
deSelectAll member function
IlvManager class 29
display accessors
description 191
displaying groups and instances 155
displaying objects
and managers 30
drawing 32
doIt member function
IlvDragRectanglelInteractor class43
IlvMakeRectangleInteractor class44

207 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

IlvMoveInteractor class49
IlvTranslateObjectCommand class67
double-buffering
and managers 22
description 20
DoubleLinklmage mode 77
DoubleSplineLinklmage mode 77
draw member function
IlvManager class 32
drawGhost member function
IlvDragRectangleInteractor class43
IlvMovelInteractor class48
drawSpline member function
IlvPolylineLinkImage class 96
duplicate member function
IlvManager class 32

E

editing
prototype instances 132

editing modes
ArcLinklmage 77
DoubleLinklmage 77
DoubleSplineLinklmage 77
group connection 140
Linklmage 77
OneLinkimage 77
OneSplineLinkimage 77
OrientedArcLinklmage 77
OrientedDoubleLinklmage 78
OrientedDoubleSplineLinkImage 78
CrientedLinklmage 78
OrientedOneLinklmage 78
OrientedOneSplineLinklmage 78
OrientedPolylineLinklmage 78
PolylineLinklmage 78

editing modes toolbar 140

EditPrototype command 144

end node 89

end points
position 93

ensureVisible member function
IlvManager class 22

events

and accelerators 19
and interactors 18
and managers 18

F

File Menu Commands 139
fitToContents member function
IlvManager class22
fitTransformerToContents member function
IlvManager class22, 53
forgetUndo member function
IlvManager class 66

G

geometric transformations
and managers 18
and views 18
getAccelerator member function
IlvManager class53
getCardinal member function
IlvGrapherPin class 98
getClosest member function
IlvGrapherPin class99
getInteractor member function
IlvManager class 37
getLinkLocation member function
IlvGrapherPin class99
getLinkPoints member function
IlvLinkImage class90, 97
IlvPolylineLinkImage class 96
getLinks member function
IlvGrapher class88
getPinIndex member function
IlvGrapherPin class 98
getSelections member function
IlvManager class29
getTo member function
IlvLinkImage class 89
getViews member function
IlvManager class21
ghost images
drawing 101
global functions

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 208

IlvGetContentsChangedUpdate 68
IlvSetContentsChangedUpdate 68
grapher
overview 87
Grapher buffer window
description of 74, 137
graphic objects
and managers 28
selecting in manager 28
transforming 87
graphs
loading 88
managing 86
querying the topology 88
saving 88
grids
and managers 64
example 65
snapping 64
group connection mode 140
group inspector
description of 142
group member function
IlvManager class 31
grouping
and managers 31
GroupIntoGroup command 144

H

handleEvent member function
IlvDragRectangleInteractor class40
IlvMovelInteractor class46

handles
description 92

hooks 20, 60

icons

group connection 140
IlvAbstractProtoLIbrary class175
IlvAccessor class152
IlvAccessorDescriptor class172
IlvAnimationAccessor class197, 201

IlvArcLinkImage class

setFixedOf fset member function 95

setOffsetRatio member function 95
IlvBlinkAccessor Class197
IlvCallbackAccessor class 200
IlvCompositeAccessor class 188
IlvConditionAccessor class 185
IlvContainer class19, 74,111, 137

read method 158

readFile method 158
IlvCounterAccessor class 186
IlvDebugAccessor class203
IlvDoubleLinkImage

description 94
IlvDoubleLinkImage class

setFixedOrientation member function 94
IlvDoubleSplineLinkImage class 94, 97
IlvDragRectangleInteractor class38

doIt member function 43

drawGhost member function 43

handleEvent member function 40
I1lvEllipse class38
I1vEvent class 202
IlvEventAccessor class 202
IlvFilledRectangle class 38
IlvFilledRoundRectangle class 38
IlvFormatAccessor class 186
IlvGadgetManagerInputFile class35
IlvGadgetManagerOutputFile class 35
IlvGenericPin class

adding connection pins 99

description 99
IlvGetContentsChangedUpdate global function 68
IlvGrapher APl 88
IlvGrapher class

addGhostNode member function 87

addLink member function 87

addNode member function 87

changeLink member function 87

constructor 87

description 101

getLinks member function 88

isLinkBetween member function 88

isNode member function 87

makeLink member function 87

209 IBM ILOG VIEwS V5.3 — 2D GRAPHICS

makeNode member function 87

mapLinks member function 88

nodeXPretty member function 88

nodeYPretty member function 88
IlvGrapherPin class

description 98

getCardinal member function 98

getClosest member function 99

getLinkLocation member function 99

getPinIndex member function 98

setPinIndex member function 98
IlvGraphic class87

description 17

scale member function 28

translate member function 28
IlvGraphicNode class151, 173
IlvGraphicSet class31
IlvGraphInputFile class

description 88

readObject member function 88
I1lvGraphOutputFile class 88

saving files 88

writeObject member function 88
IlvGraphOutputfile class

writeObject member function 88
IlvGraphSelectInteractor class

constructor 101

description 101
IlvGroup class151

changeValue method 152

description 152

queryValue method 152
IlvGroupHolder class111, 155
IlvGroupMediator class 166
IlvGroupNode class 151
IlvGroupUserAccessor class181
IlvInputFile class34
IlvInteractor class18
IlvInvertAccessor class198
IlvJavaScriptAccessor class 182
IlvLabel class 165
IlvLayerVisibilityFilter class

isVisible member function 26
IlvLine class29
IlvLineHandle class29

IlvLinkHandle class

constructor 92

description 91

referenceto 87
IlvLinkImage class

accessing values 89

computePoints member function 90, 97

computing endpoints 90

constructor 89

creating custom 96

description 87, 89

getLinkPoints member function 90, 97

getTo member function 89

purpose 89

setOriented member function 89

setTo member function 89

subclassing 90
IlvLinkLabel class

description 92

setLabel member function 92
IlvLoadPrototype class 159
IlvLoopbackAccessor class 201
IlvMakeArrowInteractor class39
IlvMakeBitmapInteractor class39
IlvMakeDoubleLinkImageInteractor class103
IlvMakeDoubleSplineLinkImageInteractor

class 103
IlvMakeEllipseInteractor class38
IlvMakeFilledEllipse class39
IlvMakeFilledEllipseInteractor class38
IlvMakeFilledRectangleInteractor class38
IlvMakeFilledRoundRectangleInteractorclass
38

IlvMakeLabelLinkImageInteractor class103
IlvMakeLineInteractor class39
IlvMakeLinkImageInteractor class103
IlvMakeLinkInteractor class

acceptFrom member function 103

acceptTo member function 103

createLink member function 103

description 102

predefined subclasses 103

setFactory member function 103
IlvMakeLinkInteractorFactory class

createLink member function 103

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 210

subtyping 103
IlvMakeNodeInteractor class

createNode member function 102

description 102

setFactory member function 102
IlvMakeNodeInteractorFactory class

createNode member function 102

subtyping 102
IlvMakeOneLinkImageInteractor class103
IlvMakeOneSplineLinkImageInteractor class

103

IlvMakePolylineLinkInteractor class104
IlvMakePolyLinkInteractor class

accept member function 103

description 103

makeLink member function 103
IlvMakeRectangleInteractor class38

description 38

doIt member function 44
IlvMakeReliefDiamondInteractor class38
IlvMakeReliefLineInteractor class39
IlvMakeReliefNodeInteractor class102
IlvMakeReliefRectangleInteractor class38
IlvMakeRoundRectangleInteractor class38
IlvMakeShadowNodeInteractor class102
IlvMakeUnZoomInteractor class39
IlvMakeZoomInteractor class39
IlvManager class74,111, 137

abortReDraws member function 33

addAccelerator member function 53

addCommand member function 66

addTrans former member function 22

addview member function 21

align member function 31

applyInside member function 27, 28

applyIntersects member function 27, 28

applyToObject member function 27, 28, 34

applyToObjects member function 27

applyToSelections member function 27, 50

applyToTaggedObjects member function 27

buf feredbraw member function 32

contentsChanged member function 68

deleteSelections member function 29

description 87

deSelectAll member function 29

211 IBM ILOG VIEwWSs V5.3

draw member function 32
duplicate member function 32
ensureVisible member function 22
fitToContents member function 22
fitTransformerToContents member function 22,
53
forgetUndo member function 66
getAccelerator member function 53
getInteractor member function 37
getSelection member function 29
getSelections member function 29
getViews member function 21
group member function 31
initReDraws member function 33
installEventHook member function 37
installViewHook member function 61
interactors 101
invalidateRegion member function 33
isDoubleBuf fering member function 22
isInvalidating member function 33
isModified member function 68
isSelected member function 28
isUndoEnabled member function 66
makeColumn member function 31
makeRow member function 31
moveObject member function 28
numberOfSelections member function 29
read method 158
readFile method 158
reDo member function 66
reDraw member function 32
reDrawViews member function 33
removeAccelerator member function 53
removeEventHook member function 37
removeInteractor member function 37
removeView member function 21
removeViewHook member function 61
reshapeObject member function 28
rotateView member function 22
sameHeight member function 31
sameWidth member function 31
setBackground member function 23
setDoubleBuf fering member function 22
setInteractor member function 37
setMakeSelection member function 29

— 2D GRAPHICS

setModi fied member function 68

setNumLayer member function 24

setSelected member function 28

setTrans former member function 22

setUndoEnabled member function 66

shortCcut member function 41, 53

snapToGrid member function 65

translateObject member function 28

translateView member function 22

unDo member function 66

unGroup member function 31

view transformation member functions 22

zoomView member function 22
IlvManagerclass

aligning objects member functions 31

main features 19
IlvManagerCommand class

advanced features 66

example 67

instances 19
IlvManagerEventHook class 37
IlvManagerGrid class 64
IlvManagerInputFile class

description 34

readObject member function 35
IlvManagerLayer class

addvisibilityFilter member function 26

setAlpha member function 26
IlvManagerObjectInteractor class52
IlvManagerOutputFile class

description 34

example 35

writeObject member function 35
IlvManagerViewHook class

afterDraw member function 61

afterExpose member function 61

beforeDraw member function 61

contentsChanged member function 61

description 61

interactorChanged member function 61

transformerChanged member function 61

viewRemoved member function 61

viewResized member function 61
IlvManagerViewInteractor class18, 37,45
IlvMinMaxAccessor class 187

IlvMovelInteractor class

doIt member function 49

drawGhost member function 48

example 45

handleEvent member function 46
IlvMultiRepAccessor class 192
IlvNodeAccessor class 181
IlvOneLinkImage

description 92, 95
IlvOneLinkImage class

reference to 93

setOrientation member function 93
IlvOneSplineLinkImage class

description 93

setControlPoint member function 93
IlvOutputAccessor class 189
IlvOutputFile class

description 34
IlvPinEditorInteractor class 104
IlvPointPool class90
IlvPolylineLinkImage class

addPoints member function 96

description 96

drawSpline member function 96

getLinkPoints member function 96

movePoints member function 96

referenceto 104

removePoints member function 96

setPoints member function 96
IlvProtoGraphic class111, 155
IlvProtoInstance class155
IlvProtoLibrary class 155, 159, 174
IlvProtoMediator class 168
IlvPrototype class 155,173
IlvPrototypeAccesssor class204
IlvPrototypeInstance class 160
IlvRectangle class44
IlvReliefDiamond class 38
IlvReliefLabel class 102
I1lvRotateAccessor class 199
IlvRotationAccessor class 193
IlvRoundRectangle class 38
IlvSCGrapherRectangle 78
IlvSelectInteractor class39, 101
IlvSetContentsChangedUpdate global function 68

IBM ILOG VIEwWS V5.3 — 2D GRAPHICS 212

IlvShadowLabel class 102
IlvSlideXAccessor class 195
IlvSlideYAccessor class 196
IlvStPrototypeEditionBuffer class176
IlvStPrototypeExtension class175
IlvStPrototypeManagerBuffer class175
I1vSubGroupNode class152, 173
IlvSwitchAccessor class 189
IlvTextField class62
IlvToggleAccessor class 191
IlvTranslateObjectCommand class

copy member function 68

description 67

doIt member function 67

unDo member function 67
IlvTriggerAccessor Class184
IlvUserAccessor class 158, 169, 174
IlvValue class 161
IlvValueAccessor class180
IlvZoomXAccessor Class 194
IlvZoomYAccessor Class 195
initReDraws member function

IlvManager class 33
inspectors

prototype 142
installEventHook member function

IlvManager class 37
installViewHook member function

IlvManager class61
interactorChanged member function

IlvManagerViewHook class 61
interactors

description 101

drawing ghost images 101

view 37
invalidateRegion member function

IlvManager class 33
isDoubleBuf fering member function

IlvManager class22
isInvalidating member function

IlvManager class 33
isLinkBetween member function

IlvGrapher class88
isModi fied member function

IlvManager class 68

isNode member function
IlvGrapher class87
isSelected member function
IlvManager class28
isUndoEnabled member function
IlvManager class 66
isVisible member function
IlvLayerVisibility class26

L

layers
and managers 18, 23
default number 24
description 17
object selectability 25
object visibility 25
setting up 24

Linklmage mode 77

links
changing the behavior 90
computing the endpoints 90
computing the shape 90
creating 102
creating custom links 96
creating polyline links 103
description 87, 89
editing 104
end 89
how they are drawn 90
intermediate points 96
lightweight 91
managing 87
oriented mode 89
predefined classes 91

loading
prototype library 130

M

makeColumn member function
IlvManager class31

makeLink member function
IlvGrapher class87
IlvMakePolyLinkInteractor class103

213 IBM ILOG VIEwS V5.3 — 2D GRAPHICS

MakeNode command 75
makeNode member function
IlvGrapher class 87
makeRow member function
IlvManager class 31
manager grid 64
manager view hooks
description 61
example 62
managers
andviews 18
applying functionsin aregion 28
binding views 20
commands 19
displaying groups and instances 155
double-buffering 20, 22
hooks 20
input/output 20
modifying geometric properties of objects 27
optimizing drawing tasks 33
overview 16
reading 34
saving 34
selecting objects 28, 29
selection procedures 29
zooming 22
manual
naming conventions 13
notation 13
typographic conventions 13
mapLinks member function
IlvGrapher class88
menu bar 138
miscellaneous accessors
description 203
modifying object states
and managers 68
moveObject member function
IlvManager class28
movePoints member function
IlvPolylineLinkImage class 96
multiple views
and managers 20
description 18

N

naming conflicts 183
naming conventions 13
NewGrapherBuffer command 74, 79, 137
NewGraphicBuffer command 74, 137
NewProtoLibrary command 145
NewPrototype command 145
NewPrototypeEditionBuffer command 145
NewPrototypeGrapherBuffer command 145
nodes
arranging 88
connecting 102
creating 102
description 87
managing 87
retrieving links 88
testing connection 88
nodeXPretty member function
IlvGrapher class88
nodeYPretty member function
IlvGrapher class 88
notation 13
numberOfSelections member function
IlvManager class29

O

object interactors

and managers 52

description 52
object properties

and managers 30
objects

managing 27
OneL.inklmage mode 77
OneSplineLinklmage mode 77
OpenProtoLibrary command 146
orientation 93
OrientedArcLinklmage mode 77
OrientedDoubleLinklmage mode 78
OrientedDoubleSplineLinklmage mode 78
OrientedLinklmage mode 78
OrientedOneLinklmage mode 78
OrientedOneSplineLinkImage mode 78

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 214

OrientedPolylineLinklmage mode 78

P

palettes panel 140
parameters
direct 154
input 154
object/node 154
output 154
perpendicular lines 92
pin editor mode 75
PolylineLinklmage mode 78
prototype accessors
Assign 184
Blink 197
Callback 200
Clock 201
Condition 185
Debug 203
Event 202
Fill 192
Format 186
Group 181
Increment 186
Invert 198
Min/Max 187
Multiple 188
MultiRep 192
Notify 189
Prototype 204
Reference 181
Rotate 199
Rotation 193
ScaleX 194
ScaleY 195
Script 182, 189
Toggle 191
TransateX 195
TrandateY 196
Vaue 180
Watch 201
prototype library
creating 115
loading 130

215 IBM ILOG VIEwWSs V5.3

saving 130

Prototype Studio

buffer types 131
connecting prototype instances 132
creating
prototype instances 131
creating prototype library 115
creating prototypes 115
defining attributes of a prototype 116
drawing a prototype 119
editing
panels with prototype instances 131
prototype instances 132
prototype nodes 120
extending 175
loading
prototype libraries 130
prototype panels 132
saving
prototype libraries 130
prototype panels 132
prototypes 129
structuring prototype nodes 121

prototypes

accessor definition 152
accessor parameters 123, 154
advantages 111
architecture 150
compiling applications 158
connecting instances 132
creating 110
by coding 173
instances 131, 160
with IBM ILOG Views Studio 110
creating prototype library 115
deleting instances 160
design pattern 108
design pattern definition 111
drawing graphic elements 119
editing
instances 132
examples 109
extending 175
getting attributes 161
group mediators 166

— 2D GRAPHICS

groups 151
header files 158
instances 131, 155
librairies 155
librairies for compiling 158
linking
application objects 156, 165
loading
prototype instances 158
overview 108
proto mediators 168
retrieving instances 161
saving 129
setting attributes 161
setting values directly 165
specifying
graphica behavior 112
interactive behavior 112
structuring nodes 121
sub-attributes 165
using in applications 110, 157
values 152
Prototypes buffer window
description of 138
prototypes extension 140

R

read method
IlvContainer class 158
IlvManager class 158
readFile method
IlvContainer class 158
IlvManager class 158
readObject member function
IlvGraphInputFile class88
IlvManagerInputFile class35
reDo member function
IlvManager class 66
reDraw member function
IlvManager class 32
reDrawViews member function
IlvManager class 33
removeAccelerator member function
IlvManager class53

removeEventHook member function
IlvManager class 37
removelInteractor member function
IlvManager class 37
removePoints member function
IlvPolylineLinkImage class 96
removeView member function
IlvManager class21
removeViewHook member function
IlvManager class61
reshapeObject member function
IlvManager class 28
rotateView member function
IlvManager class22

S

sameHeight member function

IlvManager class31
sameWidth member function

IlvManager class31
SaveProtoLibraryAs command 146
saving

prototype library 130

prototypes 129
segment layout

automatic 94

fixed 94
SelecArcLinkImageMode command 79
SelectDoubleLinkImageMode command 80
SelectDoubleSplineLinkImageMode command 80
SelectGroupConnectionMode command 146
SelectGroupSelectionMode command 147
selecting

objects 29
selection procedures

and managers 29

example 29
SelectLinkImageMode command 80
SelectNodeSelectionMode command 147
SelectOneLinkImageMode command 81
SelectOneSplineLinkImageMode command 81
SelectOrientedArcLinkImageMode command 81
SelectOrientedDoubleLinkImageMode command

81

IBM ILOG VIEwWSs V5.3 — 2D GRAPHICS 216

SelectOrientedDoubleSplinelLinkImageMode
command 82
SelectOrientedLinkImageMode command 82
SelectOrientedOneLinkImageMode command 82
SelectOrientedOneSplineLinkImageMode
command 83
SelectOrientedPolylineLinkImageMode
command 83
SelectPinEditorMode command 83
SelectPolylineLinkImageMode command 83
setAlpha member function
IlvManagerLayer class 26
setBackground member function
IlvManager class23
setControlPoint member function
IlvOneSplineLinkImage class93
setDoubleBuf fering member function
IlvManager class22
setFactory member function
IlvMakeLinkInteractor class 103
IlvMakeNodeInteractor class102
setFixedOffset member function
IlvArcLinkImage class 95
setFixedOrientation member function
IlvDoubleLinkImage class94
setInteractor member function
IlvManager class 37
setLabel member function
IlvLinkLabel class 92
setMakeSelection member function
IlvManager class29
setModified member function
IlvManager class 68
setNumLayer member function
IlvManager class 24
setOf fsetRatio member function
IlvArcLinkImage class 95
setOrientation member function
IlvOneLinkImage class 93
setOriented member function
IlvLinkImage class89
setPinIndex member function
IlvGrapherPin class 98
setPoints member function
IlvPolylineLinkImage class 96

setSelected member function
IlvManager class28

setTo member function
IlvLinkImage class 89

setTransformer member function
IlvManager class22

setUndoEnabled member function
IlvManager class 66

shortCut member function
IlvManager class41, 53

ShowApplicationInspector command 142

ShowGroupEditor command 147

smooth curves 94

snapping grids 64

snapToGrid member function
IlvManager class65

start node 89

T

three connected lines 94
ToggleTimers command 147
tool bar
editing modes 140
transformerChanged member function
IlvManagerViewHook class61
translateObject member function
IlvManager class28
translateView member function
IlvManager class22
trigger accessors
description 200
typographic conventions 13

U

unDo member function
IlvManager class 66
IlvTranslateObjectCommand class67
undo/redo actions 66
unGroup member function
IlvManager class31
UngroupIlvGroups command 148
update region 33

217 IBM ILOG VIEwWS V5.3 — 2D GRAPHICS

\Y,

view hooks 60
view interactors

and managers 37

extending 45

manager example 39

predefined in managers 38
viewRemoved member function

IlvManagerViewHook class 61
viewResized member function

IlvManagerViewHook class 61
views

adding 21

and managers 18

getting 21

multiple 18, 20

removing 21

w

windows
2D Graphics 74, 137
Grapher 74, 137
Prototypes 138

writeObject member function
I1lvGraphOutputFile class88
IlvManagerOutputFile class35

4

zoomView member function
IlvManager class22

IBM ILOG VIEwWSs V5.3

2D GRAPHICS

218

219 IBM ILOG VIEwS V5.3 — 2D GRAPHICS

IBM ILOG VIEws V5.3 — 2D GRAPHICS 220

221 IBM ILOG VIEwS V5.3 — 2D GRAPHICS

	IBM ILOG Views 2D Graphics V5.3 User’s Manual
	About This Manual
	Part I Managers
	Basic Manager Features
	Introducing Managers
	Layers
	Views
	View Transformer
	Event Handling
	Main Features of IlvManager

	Manager Views
	View Transformations
	Double-buffering

	Manager Layers
	Layer Index
	Layer Selectability
	Layer Visibility
	Layer Rendering

	Managing Objects
	Modifying the Geometry of Graphic Objects
	Selecting Objects
	Selection Procedures
	Managing Selected Objects
	Managing Object Properties
	Arranging Objects

	Drawing and Redrawing
	Optimizing Drawing Tasks
	Saving and Reading

	Manager Event Handling
	The Event Handling Mechanism
	Event Hooks
	View Interactors
	Predefined View Interactors
	Example: Implementing the IlvDragRectangleInteractor Class
	Example of an Extension: IlvMoveInteractor

	Object Interactors
	Accelerators
	Example: Changing the Key Assigned to an Accelerator
	Predefined Manager Accelerators

	Advanced Manager Features
	Observers
	General Notifications
	Manager View Notifications
	Manager Layer Notifications
	Manager Contents Notifications
	Graphic Object Geometry Notifications
	Example

	View Hooks
	Manager View Hooks
	Example: Monitoring the Number of Objects in a Manager
	Example: Maintaining a Scale Displayed With No Transformation

	Manager Grid
	Example: Using a Grid

	Undoing and Redoing Actions
	Command Class
	Managing Undo
	Example: Using the IlvManagerCommand Class to Undo/Redo
	Managing Modifications

	Part II Grapher
	Introducing the Grapher Extension of IBM ILOG Views Studio
	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	The Grapher Palettes

	Grapher Extension Commands
	MakeNode
	NewGrapherBuffer
	SelectArcLinkImageMode
	SelectDoubleLinkImageMode
	SelectDoubleSplineLinkImageMode
	SelectLinkImageMode
	SelectOneLinkImageMode
	SelectOneSplineLinkImageMode
	SelectOrientedArcLinkImageMode
	SelectOrientedDoubleLinkImageMode
	SelectOrientedDoubleSplineLinkImageMode
	SelectOrientedLinkImageMode
	SelectOrientedOneLinkImageMode
	SelectOrientedOneSplineLinkImageMode
	SelectOrientedPolylineLinkImageMode
	SelectPinEditorMode
	SelectPolylineLinkImageMode

	Features of the Grapher Package
	Graph Management
	Description of the IlvGrapher Class
	Loading and Saving Graph Descriptions

	Grapher Links
	Base Class for Links
	Predefined Grapher Links
	Creating a Custom Grapher link
	Connection Pins

	Grapher Interactors
	Selection Interactor
	Creating Nodes
	Creating Links
	Editing Connection Pins
	Editing Links

	Part III Prototypes
	Introducing the Prototypes Package
	An Overview of the Prototypes Package
	Business Graphic Objects
	Creating BGOs Using the Prototypes Extension of IBM ILOG Views Studio
	Using Prototypes in Applications
	When Should You Use Prototypes?
	The Prototype Design Pattern
	Specifying Graphic and Interactive Behavior Using Accessors

	Using IBM ILOG Views Studio to Create BGOs
	Creating and Using Prototypes
	Creating a Prototype Library
	Creating a Prototype
	Defining the Attributes
	Drawing the Prototype
	Defining Graphic Behaviors
	Defining Interactive Behaviors
	Editing a Prototype
	Testing Your Prototype
	Saving a Prototype

	Loading and Saving Prototype Libraries
	Creating and Editing Prototype Instances in Panels
	Choosing a Buffer Type
	Creating a Prototype Instance
	Editing Prototype Instances
	Loading and Saving Panels

	Connecting Prototype Instances

	The User Interface and Commands
	Overview
	Launching IBM ILOG Views Studio With the Prototypes Extension

	The Main Window
	Buffer Windows
	The Menu Bar
	The Action Toolbar
	The Editing Modes Toolbar

	The Palettes Panel
	Group Inspector Panel
	Prototypes Extension Commands
	CloseProtoLibrary
	ConvertProtoManager
	DeletePrototype
	EditPrototype
	GroupIntoGroup
	NewProtoLibrary
	NewPrototype
	NewPrototypeEditionBuffer
	NewPrototypeGrapherBuffer
	OpenProtoLibrary
	SaveProtoLibraryAs
	SelectGroupConnectionMode
	SelectGroupSelectionMode
	SelectNodeSelectionMode
	ShowGroupEditor
	ToggleTimers
	UngroupIlvGroups

	Using Prototypes in C++ Applications
	Architecture
	Groups
	Attributes and Accessor Objects
	Accessor Parameters
	Prototypes and Instances
	Displaying Groups and Instances in Managers and Containers
	Connecting Attributes
	Linking Application Objects to Prototypes

	Writing C++ Applications Using Prototypes
	Header Files
	Loading a Panel Containing Prototype Instances
	Loading Prototypes
	Creating Prototype Instances
	Deleting Prototype Instances
	Retrieving Groups and Prototype Instances
	Getting and Setting Attributes
	User-Defined and Predefined Attributes

	Linking Prototypes to Application Objects
	Setting Values Directly
	Using Group Mediators
	Using Proto Mediators

	Advanced Uses of Prototypes
	Writing New Accessor Classes
	Creating Prototypes by Coding
	Customizing IBM ILOG Views Studio With the Prototypes Extension

	Predefined Accessors
	Overview
	Graphic Representation of the Behavior of a Prototype

	Data Accessors
	Value
	Reference
	Group
	Script

	Control Accessors
	Assign
	Condition
	Format
	Increment
	Min/Max
	Multiple
	Notify
	Script
	Switch
	Toggle

	Display Accessors
	Fill
	MultiRep
	Rotation
	ScaleX
	ScaleY
	TranslateX
	TranslateY

	Animation Accessors
	Blink
	Invert
	Rotate

	Trigger Accessors
	Callback
	Clock
	Watch
	Event

	Miscellaneous Accessors
	Debug
	Prototype

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

