
WebSphere

Business

Integration

Server

Express

and

Express

Plus

Adapter

for

SWIFT

User

Guide

Version

4.3

���

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Adapter

for

SWIFT

User

Guide

Version

4.3

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

Appendix

D,

“Notices,”

on

page

119.

14May2004

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Server

Express,

version

4.3,

IBM

WebSphere

Business

Integration

Server

Express

Plus,

version

4.3,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Prerequisites

for

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vi

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

New

in

release

4.3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Chapter

1.

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Adapter

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Connector

architecture

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Application-connector

communication

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Event

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Guaranteed

event

delivery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Business

object

requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Message

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Error

handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Chapter

2.

Installing

and

configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Overview

of

installation

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Installed

file

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 17

Connector

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Queue

Uniform

Resource

Identifiers

(URI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Meta-object

attributes

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Startup

file

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Creating

multiple

connector

instances

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Starting

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Stopping

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Chapter

3.

Business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Connector

business

object

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Overview

of

SWIFT

message

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Overview

of

business

objects

for

SWIFT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

SWIFT

message

and

business

object

data

mapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Chapter

4.

SWIFT

Data

Handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Configuring

the

SWIFT

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Business

object

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Converting

business

objects

to

SWIFT

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Converting

SWIFT

messages

to

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Chapter

5.

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Startup

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Event

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 83

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Appendix

B.

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

©

Copyright

IBM

Corp.

2004

iii

Overview

of

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Starting

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Running

Configurator

Express

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Using

Connector

Configurator

Express

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Appendix

C.

SWIFT

message

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

SWIFT

message

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

SWIFT

field

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

SWIFT

message

block

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Appendix

D.

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

iv

Adapter

for

SWIFT

User

Guide

About

this

document

The

products

IBM(R)WebSphere

Business

Server

Express

and

IBM(R)

WebSphere

Server

Express

Plus

are

made

up

of

the

following

components:

InterChange

Server

Express,

the

associated

Toolset

Express,

CollaborationFoundation,

and

a

set

of

software

integration

adapters.

The

tools

in

the

Toolset

help

you

to

create,

modify,

and

manage

business

processes.

You

can

choose

from

among

the

prepackaged

adapters

for

your

business

processes

that

span

applications.

The

standard

processes

template--CollaborationFoundation--allows

you

to

quickly

create

customized

processes..

This

document

describes

configuration,

business

object

development,

and

troubleshooting

for

the

WebSphere

Business

Integration

Server

Express

Adapter

for

SWIFT.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM

WebSphere

Business

Integration

Server

Express

and

IBM

WebSphere

Business

Integration

Server

Express

Plus.

The

term

WebSphere

Business

Integration

Server

Express

and

its

variants

refer

to

both

products.

Audience

This

document

is

for

consultants,

developers,

and

system

administrators

who

support

and

manage

the

WebSphereBusiness

Integration

Server

Express

Product

at

customer

sites.

Prerequisites

for

this

document

Users

of

this

document

should

be

familiar

with

v

the

WebSphere

Business

Integration

Server

Express

system

v

business

object

development

v

the

WebSphere

MQ

application

v

the

SWIFT

product

suite

and

protocol

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Server

Express

installations,

and

includes

reference

material

on

specific

components.

You

can

download,

install,

and

view

the

documentation

at

the

following

site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Note:

Important

information

about

this

product

may

be

available

in

Technical

Support

Technotes

and

Flashes

issued

after

this

document

was

published.

These

can

be

found

on

the

WebSphere

Business

Integration

Support

Web

site,

http://www.ibm.com/software/integration/websphere/support/.

Select

the

component

area

of

interest

and

browse

the

Technotes

and

Flashes

sections.

©

Copyright

IBM

Corp.

2004

v

http://www.ibm.com/software/integration/websphere/support/

Typographic

conventions

This

document

uses

the

following

conventions:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

filename,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

ProductDir

Represents

the

directory

where

the

product

is

installed.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths.

For

UNIX

installations,

substitute

slashes

(/)

for

backslashes.

All

product

pathnames

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows(TM)

text

system

variable

or

user

variable.

The

equivalent

notation

in

a

UNIX

environment

is

$text,

indicating

the

value

of

the

text

UNIX

environment

variable.

vi

Adapter

for

SWIFT

User

Guide

New

in

this

release

New

in

release

4.3

This

is

the

first

release

of

this

guide.

©

Copyright

IBM

Corp.

2004

vii

viii

Adapter

for

SWIFT

User

Guide

Chapter

1.

Overview

v

“Adapter

environment”

v

“Connector

architecture”

on

page

2

v

“Application-connector

communication

method”

on

page

4

v

“Event

handling”

on

page

6

v

“Guaranteed

event

delivery”

on

page

9

v

“Business

object

requests”

on

page

10

v

“Message

processing”

on

page

10

v

“Error

handling”

on

page

14

v

“Tracing”

on

page

15

The

connector

for

SWIFT

is

a

runtime

component

of

the

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Adapter

for

SWIFT.

The

connector

allows

the

WebSphere

InterChange

Server

Express

integration

broker

to

exchange

business

objects

with

SWIFT-enabled

business

processes.

Note:

Throughout

this

document,

SWIFT

messages

denote

SWIFT

FIN

messages

unless

otherwise

explicitly

noted.

Connectors

consist

of

an

application-specific

component

and

the

connector

framework.

The

application-specific

component

contains

code

tailored

to

a

particular

application.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

This

document

contains

information

about

the

application-specific

component

and

connector

framework.

It

refers

to

both

of

these

components

as

the

connector.

For

more

information

about

the

relationship

of

the

integration

broker

to

the

connector,

see

the

System

Implementation

Guide.

All

WebSphere

Business

Integration

Server

Express

adapters

operate

with

WebSphere

InterChange

Server

Express

as

their

integration

broker.

The

connector

for

SWIFT

allows

InterChange

Server

Express

to

exchange

business

objects

with

applications

that

send

or

receive

data

in

the

form

of

SWIFT

messages.

Adapter

environment

Before

installing,

configuring,

and

using

the

adapter,

you

must

understand

its

environment

requirements.

v

“Adapter

standards”

v

“Adapter

platforms”

on

page

2

Adapter

standards

The

adapter

supports

the

following

standard.

©

Copyright

IBM

Corp.

2004

1

SWIFTAlliance

Access

The

SWIFTAlliance

Access

gateway

is

a

window

through

which

SWIFT

messages

flow

to

and

from

remote

financial

applications

over

IP.

The

connector

supports

SWIFTAlliance

Access

5.0.

Adapter

platforms

The

adapter

runs

on

the

following

platform:

v

Windows

2000

Connector

architecture

The

connector

allows

WebSphere

business

processes

to

asynchronously

exchange

business

objects

with

applications

that

issue

or

receive

SWIFT

messages

when

changes

to

data

occur.

(The

connector

also

supports

synchronous

acknowledgment.)

SWIFT

stands

for

Society

for

Worldwide

Interbank

Financial

Telecommunications.

It

is

a

United

Nations-sanctioned

International

Standards

Organization

(ISO)

for

the

creation

and

maintenance

of

financial

messaging

standards.

As

shown

in

Figure

1,

the

connector

interacts

with

several

components

(WebSphere

components

are

shown

in

bold)

whose

collective

purpose

is

to

bridge

the

world

of

WebSphere

business

objects

with

that

of

SWIFT

messages.

For

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus,

the

integrator

broker

in

Figure

1,

is

WebSphere

InterChange

Server

Express.

2

Adapter

for

SWIFT

User

Guide

The

SWIFT

environment

is

made

up

of

various

components

that

are

described

below.

Connector

for

SWIFT

The

connector

for

SWIFT

is

metadata-driven.

Message

routing

and

format

conversion

are

initiated

by

an

event

polling

technique.

The

connector

retrieves

WebSphere

MQ

messages

from

queues,

calls

the

SWIFT

data

handler

to

convert

messages

to

their

corresponding

business

objects,

and

then

delivers

the

objects

to

the

corresponding

business

processes.

In

the

opposite

direction,

the

connector

receives

business

objects

from

WebSphere

InterChange

Server

Express,

converts

them

into

SWIFT

messages

using

the

same

data

handler,

and

then

delivers

the

messages

to

a

WebSphere

MQ

queue.

The

type

of

business

object

and

verb

used

in

processing

a

message

are

based

on

the

metadata

in

the

Format

field

of

the

WebSphere

MQ

message

header.

You

construct

a

meta-object

to

store

the

business

object

name

and

verb

to

associate

with

the

WebSphere

MQ

message

header

Format

field

text.

You

can

optionally

construct

a

dynamic

meta-object

that

is

added

as

a

child

to

the

business

object

passed

to

the

connector.

The

child

meta-object

values

override

those

specified

in

the

static

meta-object

that

is

specified

for

the

connector

as

a

whole.

If

the

child

meta-object

is

not

defined

or

does

not

define

a

required

conversion

property,

the

connector,

by

default,

examines

the

static

meta-object

for

the

value.

You

can

specify

one

or

more

dynamic

child

meta-objects

instead

of,

or

to

supplement,

a

single

static

connector

meta-object.

SWIFT
data handler

IBM WebSphere
Integrator Broker

(Processes)

Connector

MQSeries output queue MQSeries input queue

MQSA

SWIFT alliance access gateway

incoming
messages

outgoing
messages

for SWIFT

Mapping
engine

Figure

1.

Connector

for

SWIFT

architecture

Chapter

1.

Overview

3

The

connector

can

poll

multiple

input

queues,

polling

each

in

a

round-robin

manner

and

retrieving

a

configurable

number

of

messages

from

each

queue.

For

each

message

retrieved

during

polling,

the

connector

adds

a

dynamic

child

meta-object

(if

specified

in

the

business

object).

The

child

meta-object

values

can

direct

the

connector

to

populate

attributes

with

the

format

of

the

message

as

well

as

with

the

name

of

the

input

queue

from

which

the

message

was

retrieved.

When

a

message

is

retrieved

from

the

input

queue,

the

connector

looks

up

the

business

object

name

associated

with

the

FORMAT

text

field.

The

message,

along

with

the

business

object

name,

is

then

passed

to

the

data

handler.

If

a

business

object

is

successfully

populated

with

message

content,

the

connector

checks

to

see

if

it

a

collaboration

subscribes

to

it,

and

then

delivers

it

to

InterChange

Server

Express

using

the

gotApplEvents()

method.

SWIFT

data

handler

The

connector

calls

the

SWIFT

data

handler

to

convert

business

objects

into

SWIFT

messages

and

vice

versa.

For

more

on

the

SWIFT

data

handler,

see

Chapter

4,

“SWIFT

Data

Handler,”

on

page

77.

WebSphere

MQ

The

connector

for

SWIFT

uses

an

MQ

implementation

of

the

JavaTM

Message

Service

(JMS),

an

API

for

accessing

enterprise-messaging

systems.

This

makes

possible

interaction

with

incoming

and

outgoing

WebSphere

MQ

event

queues.

MQSA

The

WebSphere

MQ

event

queues

exchange

messages

with

the

WebSphere

MQ

Interface

for

SWIFTAlliance

(MQSA).

The

MQSA

software

integrates

WebSphere

MQ

messaging

capabilities

with

SWIFT

message

types,

performing

delivery,

acknowledgement,

queue

management,

timestamping,

and

other

functions.

SWIFTAlliance

Access

The

SWIFTAlliance

Access

gateway

is

a

window

through

which

SWIFT

messages

flow

to

and

from

remote

financial

applications

over

IP.

The

connector

supports

SWIFTAlliance

Access

5.0.

Application-connector

communication

method

The

connector

makes

use

of

IBM’s

WebSphere

MQ

implementation

of

the

Java

Message

Service

(JMS).

The

JMS

is

an

open-standard

API

for

accessing

enterprise-messaging

systems.

It

is

designed

to

allow

business

applications

to

asynchronously

send

and

receive

business

data

and

events.

Message

request

Figure

2

illustrates

a

message

request

communication.

1.

The

connector

framework

receives

a

business

object

representing

an

ISO

15022

SWIFT

message

from

an

integration

broker.

For

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus,

the

integration

broker

in

Figure

2

is

WebSphere

InterChange

Server

Express.

2.

The

connector

passes

the

business

object

to

the

data

handler.

3.

The

data

handler

converts

the

ISO

15022

business

object

into

an

ISO

15022-compliant

SWIFT

message.

4

Adapter

for

SWIFT

User

Guide

4.

The

connector

dispatches

the

ISO

15022

SWIFT

message

to

the

WebSphere

MQ

output

queue.

5.

The

JMS

layer

makes

the

appropriate

calls

to

open

a

queue

session

and

routes

the

message

to

the

MQSA,

which

issues

the

message

to

the

SWIFT

Alliance

Gateway.

Event

delivery

Figure

3

illustrates

the

message

return

communication.

1.

The

polling

method

retrieves

the

next

applicable

ISO

15022

SWIFT

message

from

the

WebSphere

MQ

input

queue.

2.

The

message

is

staged

in

the

in-progress

queue,

where

it

remains

until

processing

is

complete.

3.

The

data

handler

converts

the

message

into

an

ISO

15022

business

object.

4.

The

SWIFT

data

handler

receives

the

ISO

15022

business

object

and

sets

the

verb

in

it

to

the

default

verb

specified

in

the

data

handler-specific

meta-object.

5.

The

connector

then

determines

whether

the

business

object

is

subscribed

to

by

the

integration

broker.

If

so,

the

connector

framework

delivers

the

business

object

to

the

integration

broker,

and

the

message

is

removed

from

the

in-progress

queue.

For

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus,

the

integration

broker

in

Figure

3

is

WebSphere

InterChange

Server

Express.

Figure

2.

Application-connector

communication

method:

Message

request

Chapter

1.

Overview

5

Event

handling

For

event

notification,

the

connector

detects

an

event

written

to

a

queue

by

an

application

rather

than

by

a

database

trigger.

An

event

occurs

when

SWIFTAlliance

generates

SWIFT

messages

and

stores

them

on

the

WebSphere

MQ

queue.

Retrieval

The

connector

uses

a

polling

method

to

poll

the

WebSphere

MQ

input

queue

at

regular

intervals

for

messages.

When

the

connector

finds

a

message,

it

retrieves

it

from

the

WebSphere

MQ

input

queue

and

examines

it

to

determine

its

format.

If

the

format

has

been

defined

in

the

connector’s

static

or

child

meta-objects,

the

connector

uses

the

data

handler

to

generate

an

appropriate

business

object

with

a

verb.

In-progress

queue

The

connector

processes

messages

by

first

opening

a

transactional

session

to

the

WebSphere

MQ

queue.

This

transactional

approach

allows

for

a

small

chance

that

a

business

object

could

be

delivered

to

a

business

process

twice

due

to

the

connector

successfully

submitting

the

business

object

but

failing

to

commit

the

transaction

in

the

queue.

To

avoid

this

problem,

the

connector

moves

all

messages

to

an

in-progress

queue.

There,

the

message

is

held

until

processing

is

complete.

If

the

connector

shuts

down

unexpectedly

during

processing,

the

message

remains

in

the

in-progress

queue

instead

of

being

reinstated

to

the

original

WebSphere

MQ

queue.

Note:

Transactional

sessions

with

a

JMS

service

provider

require

that

every

requested

action

on

a

queue

be

performed

and

committed

before

events

are

removed

from

the

queue.

Accordingly,

when

the

connector

retrieves

a

message

from

the

queue,

it

does

not

commit

to

the

retrieval

until:

1)

The

Figure

3.

Application-connector

communication

method:

Event

delivery

6

Adapter

for

SWIFT

User

Guide

message

has

been

converted

to

a

business

object;

2)

the

business

object

is

delivered

to

InterChange

Server

Express,

and

3)

a

return

value

is

received.

Synchronous

acknowledgment

To

support

applications

that

require

feedback

on

the

requests

they

issue,

the

connector

for

SWIFT

can

issue

report

messages

to

the

applications

detailing

the

outcome

of

their

requests

once

they

have

been

processed.

To

achieve

this,

the

connector

posts

the

business

data

for

such

requests

synchronously

to

InterChange

Server

Express.

If

the

business

object

is

successfully

processed,

the

connector

sends

a

report

back

to

the

requesting

application

including

the

return

code

fromInterChange

Server

Express

and

any

business

object

changes.

If

the

connector

or

InterChange

Server

Express

fails

to

process

the

business

object,

the

connector

sends

a

report

containing

the

appropriate

error

code

and

error

message.

In

either

case,

an

application

that

sends

a

request

to

the

connector

for

SWIFT

is

notified

of

its

outcome.

If

the

connector

for

SWIFT

receives

any

messages

requesting

positive

or

negative

acknowledgment

reports

(PAN

or

NAN),

it

posts

the

content

of

the

message

synchronously

to

InterChange

Server

Express

and

then

incorporates

the

return

code

and

modified

business

data

in

to

a

report

message

that

is

sent

back

to

the

requesting

application.

Table

1

shows

the

required

structure

of

messages

sent

to

the

connector

to

be

processed

synchronously.

Table

1.

Required

structure

of

synchronous

WebSphere

MQ

messages

MQMD

Field

(message

descriptor)

Description

Supported

values

(multiple

values

should

be

OR’d)

MessageType

Message

type

DATAGRAM

Report

Options

for

report

message

requested

You

can

specify

one

or

both

of

the

following:

v

MQRO_PAN

The

connector

sends

a

report

message

if

the

business

object

can

be

successfully

processed.

v

MQRO_NANThe

connector

sends

a

report

message

if

an

error

occurred

while

processing

the

business

object.

You

can

specify

one

of

the

following

to

control

how

the

correlation

ID

of

the

report

message

is

to

be

set:

v

MQRO_COPY_MSG_ID_TO_CORREL_IDThe

connector

copies

the

message

ID

of

the

request

message

to

the

correlation

ID

of

the

report.

This

is

the

default

action.

v

MQRO_PASS_CORREL_IDThe

connector

copies

the

correlation

ID

of

the

request

message

to

the

correlation

ID

of

the

report.

ReplyToQueue

Name

of

reply

queue

The

name

of

the

queue

to

which

the

report

message

should

be

sent.

ReplyToQueueManager

Name

of

queue

manager

The

name

of

the

queue

manager

to

which

the

report

message

should

be

sent.

Chapter

1.

Overview

7

Table

1.

Required

structure

of

synchronous

WebSphere

MQ

messages

(continued)

MQMD

Field

(message

descriptor)

Description

Supported

values

(multiple

values

should

be

OR’d)

Message

Body

A

serialized

business

object

in

a

format

compatible

with

the

data

handler

configured

for

the

connector.

Upon

receipt

of

a

message

as

described

in

Table

1,

the

connector:

1.

Reconstructs

the

business

object

in

the

message

body

using

the

configured

data

handler.

2.

Looks

up

the

business

process

specified

for

the

business

object

and

verb

in

the

static

metadata

object.

3.

Posts

the

business

object

synchronously

to

the

specified

process.

4.

Generates

a

report

encapsulating

the

result

of

the

processing

and

any

business

object

changes

or

error

messages.

5.

Sends

the

report

to

the

queue

specified

in

the

replyToQueue

and

replyToQueueManager

fields

of

the

request.

Table

2

shows

the

structure

of

the

report

that

is

sent

to

the

requesting

application

from

the

connector.

Table

2.

Structure

of

the

report

returned

to

the

requesting

application

MQMD

field

Description

Supported

values

(multiple

values

should

be

OR’d)

MessageType

Message

type

REPORT

feedback

Type

of

report

One

of

the

following:

v

MQRO_PAN

If

the

business

object

is

successfully

processed.

v

MQRO_NAN

If

the

connector

or

InterChange

Server

Express

encountered

an

error

while

processing

the

request.

Message

Body

If

the

business

object

is

successfully

processed,

the

connector

populates

the

message

body

with

the

business

object

returned

by

InterChange

Server

Express.

This

default

behavior

can

be

overridden

by

setting

the

DoNotReportBusObj

property

to

true

in

the

static

metadata

object.

If

the

request

could

not

be

processed,

the

connector

populates

the

message

body

with

the

error

message

generated

by

the

connector

or

InterChange

Server

Express.

Recovery

Upon

initialization,

the

connector

checks

the

in-progress

queue

for

messages

that

have

not

been

completely

processed,

presumably

due

to

a

connector

shutdown.

The

connector

configuration

property

InDoubtEvents

allows

you

to

specify

one

of

four

options

for

handling

recovery

of

such

messages:

fail

on

startup,

reprocess,

ignore,

or

log

error.

8

Adapter

for

SWIFT

User

Guide

Fail

on

startup

With

the

fail

on

startup

option,

if

the

connector

finds

messages

in

the

in-progress

queue

during

initialization,

it

logs

an

error

and

immediately

shuts

down.

It

is

the

responsibility

of

the

user

or

system

administrator

to

examine

the

message

and

take

appropriate

action,

either

to

delete

these

messages

entirely

or

move

them

to

a

different

queue.

Reprocess

With

the

reprocessing

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

it

processes

these

messages

first

during

subsequent

polls.

When

all

messages

in

the

in-progress

queue

have

been

processed,

the

connector

begins

processing

messages

from

the

input

queue.

Ignore

With

the

ignore

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

the

connector

ignores

them

but

does

not

shut

down.

Log

error

With

the

log

error

option,

if

the

connector

finds

any

messages

in

the

in-progress

queue

during

initialization,

it

logs

an

error

but

does

not

shut

down.

Archiving

If

the

connector

property

ArchiveQueue

is

specified

and

identifies

a

valid

queue,

the

connector

places

copies

of

all

successfully

processed

messages

in

the

archive

queue.

If

ArchiveQueue

is

undefined,

messages

are

discarded

after

processing.

Guaranteed

event

delivery

The

guaranteed-event-delivery

feature

enables

the

connector

framework

to

ensure

that

events

are

never

lost

and

never

sent

twice

between

the

connector’s

event

store,

the

JMS

event

store,

and

the

destination’s

JMS

queue.

To

become

JMS-enabled,

you

must

configure

the

connectorDeliveryTransport

standard

property

to

JMS.

Thus

configured,

the

connector

uses

the

JMS

transport

and

all

subsequent

communication

between

the

connector

and

InterChange

Server

Express

occurs

through

this

transport.

The

JMS

transport

ensures

that

the

messages

are

eventually

delivered

to

their

destination.

Its

role

is

to

ensure

that

once

a

transactional

queue

session

starts,

the

messages

are

cached

there

until

a

commit

is

issued;

if

a

failure

occurs

or

a

rollback

is

issued,

the

messages

are

discarded.

Note:

Without

use

of

the

guaranteed-event-delivery

feature,

a

small

window

of

possible

failure

exists

between

the

time

that

the

connector

publishes

an

event

(when

the

connector

calls

the

gotApplEvent()

method

within

its

pollForEvents()

method)

and

the

time

it

updates

the

event

store

by

deleting

the

event

record

(or

perhaps

updating

it

with

an

“event

posted”

status).

If

a

failure

occurs

in

this

window,

the

event

has

been

sent

but

its

event

record

remains

in

the

event

store

with

an

“in

progress”

status.

When

the

connector

restarts,

it

finds

this

event

record

still

in

the

event

store

and

sends

it,

resulting

in

the

event

being

sent

twice.

You

can

configure

the

guaranteed-event-delivery

feature

for

a

JMS-enabled

connector

with,

or

without,

a

JMS

event

store.

To

configure

the

connector

for

guaranteed

event

delivery,

see

the

System

Implementation

Guide.

If

the

connector

framework

cannot

deliver

the

business

object

to

InterChange

Server

Express,

then

the

object

is

placed

on

a

FaultQueue

(instead

of

Chapter

1.

Overview

9

UnsubscribedQueue

and

ErrorQueue)

and

generates

a

status

indicator

and

a

description

of

the

problem.

FaultQueue

messages

are

written

in

MQRFH2

format.

Business

object

requests

Business

object

requests

are

processed

when

InterChange

Server

Express

issues

a

business

object.

Message

processing

The

connector

processes

business

objects

passed

to

it

by

InterChange

Server

Express

based

on

the

verb

for

each

business

object.

The

connector

uses

business

object

handlers

to

process

the

business

objects

that

the

connector

supports.The

business

object

handlers

contain

methods

that

interact

with

an

application

and

that

transform

business

object

requests

into

application

operations.

The

connector

supports

the

following

business

object

verbs:

v

Create

v

Retrieve

Create

Processing

of

business

objects

with

create

depends

on

whether

the

objects

are

issued

asynchronously

or

synchronously.

Asynchronous

delivery

This

is

the

default

delivery

mode

for

business

objects

with

Create

verbs.

A

message

is

created

from

the

business

object

using

a

data

handler

and

then

written

to

the

output

queue.

If

the

message

is

delivered,

the

connector

returns

BON_SUCCESS,

else

BON_FAIL.

Note:

The

connector

has

no

way

of

verifying

whether

the

message

is

received

or

if

action

has

been

taken.

Synchronous

acknowledgment

If

a

replyToQueue

has

been

defined

in

the

connector

properties

and

a

responseTimeout

exists

in

the

conversion

properties

for

the

business

object,

the

connector

issues

a

request

in

synchronous

mode.

The

connector

then

waits

for

a

response

to

verify

that

appropriate

action

was

taken

by

the

receiving

application.

For

WebSphere

MQ,

the

connector

initially

issues

a

message

with

a

header

as

shown

in

Table

3.

Table

3.

Request

Message

Descriptor

Header

(MQMD)

Field

Description

Value

Format

Format

name

Output

format

as

defined

in

the

conversion

properties

and

truncated

to

8

characters

to

meet

IBM

requirements

(example:

MQSTR).

MessageType

Message

type

MQMT_DATAGRAMa

10

Adapter

for

SWIFT

User

Guide

Table

3.

Request

Message

Descriptor

Header

(MQMD)

(continued)

Field

Description

Value

Report

Options

for

report

message

requested.

When

a

response

message

is

expected,

this

field

is

populated

as

follows:

MQRO_PANa

to

indicate

that

a

positive-action

report

is

required

if

processing

is

successful.

MQRO_NANa

to

indicate

that

a

negative-action

report

is

required

if

processing

fails.

MQRO_COPY_MSG_ID_TO_CORREL_IDa

to

indicate

that

the

correlation

ID

of

the

report

generated

should

equal

the

message

ID

of

the

request

originally

issued.

ReplyToQueue

Name

of

reply

queue

When

a

response

message

is

expected,

this

field

is

populated

with

the

value

of

connector

property

ReplyToQueue.

Persistence

Message

persistence

MQPER_PERSISTENTa

Expiry

Message

lifetime

MQEI_UNLIMITEDa

a

Indicates

constant

defined

by

IBM.

The

message

header

described

in

Table

3

is

followed

by

the

message

body.

The

message

body

is

a

business

object

that

has

been

serialized

using

the

data

handler.

The

Report

field

is

set

to

indicate

that

both

positive

and

negative

action

reports

are

expected

from

the

receiving

application.

The

thread

that

issued

the

message

waits

for

a

response

message

that

indicates

whether

the

receiving

application

was

able

to

process

the

request.

When

an

application

receives

a

synchronous

request

from

the

connector,

it

processes

the

business

object

and

issues

a

report

message

as

described

in

Table

4,

Table

5,

and

Table

6.

Table

4.

Response

Message

Descriptor

Header

(MQMD)

Field

Description

Value

Format

Format

name

Input

format

of

busObj

as

defined

in

the

conversion

properties.

MessageType

Message

type

MQMT_REPORTa

a

Indicates

constant

defined

by

IBM.

Table

5.

Population

of

response

message

Verb

Feedback

field

Message

body

Create

SUCCESS

VALCHANGE

(Optional)

A

serialized

business

object

reflecting

changes.

VALDUPES

FAIL

(Optional)

An

error

message.

Table

6.

Feedback

codes

and

response

values

WebSphere

MQ

feedback

code

Equivalent

WebSphere

Business

Integration

Server

Express

responsea

MQFB_PAN

or

MQFB_APPL_FIRST

SUCCESS

MQFB_NAN

or

MQFB_APPL_FIRST

+

1

FAIL

MQFB_APPL_FIRST

+

2

VALCHANGE

MQFB_APPL_FIRST

+

3

VALDUPES

MQFB_APPL_FIRST

+

4

MULTIPLE_HITS

MQFB_APPL_FIRST

+

5

Not

applicable

Chapter

1.

Overview

11

Table

6.

Feedback

codes

and

response

values

(continued)

WebSphere

MQ

feedback

code

Equivalent

WebSphere

Business

Integration

Server

Express

responsea

MQFB_APPL_FIRST

+

6

Not

applicable

MQFB_APPL_FIRST

+

7

UNABLE_TO_LOGIN

MQFB_APPL_FIRST

+

8

APP_RESPONSE_TIMEOUT

(results

in

immediate

termination

of

connector)

MQFB_NONE

What

the

connector

receives

if

no

feedback

code

is

specified

in

the

response

message

a

See

the

System

Implementation

Guide

for

details.

If

the

business

object

can

be

processed,

the

application

creates

a

report

message

with

the

feedback

field

set

to

MQFB_PAN

(or

a

specific

WebSphere

Business

Integration

Server

Express

system

value).

Optionally

the

application

populates

the

message

body

with

a

serialized

business

object

containing

any

changes.

If

the

business

object

cannot

be

processed,

the

application

creates

a

report

message

with

the

feedback

field

set

to

MQFB_NAN

(or

a

specific

WebSphere

Business

Integration

Server

Express

system

value)

and

then

optionally

includes

an

error

message

in

the

message

body.

In

either

case,

the

application

sets

the

correlationID

field

of

the

message

to

the

messageID

of

the

connector

message

and

issues

it

to

the

queue

specified

by

the

ReplyTo

field.

Upon

retrieval

of

a

response

message,

the

connector

by

default

matches

the

correlationID

of

the

response

to

the

messageID

of

a

request

message.

The

connector

then

notifies

the

thread

that

issued

the

request.

Depending

on

the

feedback

field

of

the

response,

the

connector

either

expects

a

business

object

or

an

error

message

in

the

message

body.

If

a

business

object

was

expected

but

the

message

body

is

not

populated,

the

connector

simply

returns

the

same

business

object

that

was

originally

issued

by

InterChange

Server

Express

for

the

Request

operation.

If

an

error

message

was

expected

but

the

message

body

is

not

populated,

a

generic

error

message

is

returned

to

InterChange

Server

Express

along

with

the

response

code.

However,

you

can

also

use

a

message

selector

to

identify,

filter

and

otherwise

control

how

the

adapter

identifies

the

response

message

for

a

given

request.

This

message

selector

capability

is

a

JMS

feature.

It

applies

to

synchronous

request

processing

only

and

is

described

below.

Filtering

response

messages

using

a

message

selector:

Upon

receiving

a

business

object

for

synchronous

request

processing,

the

connector

checks

for

the

presence

of

a

response_selector

string

in

the

application-specific

information

of

the

verb.

If

the

response_selector

is

undefined,

the

connector

identifies

response

messages

using

the

correlation

ID

as

described

above.

If

response_selector

is

defined,

the

connector

expects

a

name-value

pair

with

the

following

syntax:

response_selector=JMSCorrelationID

LIKE

’selectorstring’

The

message

selectorstring

must

uniquely

identify

a

response

and

its

values

be

enclosed

in

single

quotes

as

shown

in

the

example

below:

response_selector=JMSCorrelationID

LIKE

’Oshkosh’

In

the

above

example,

after

issuing

the

request

message,

the

adapter

would

monitor

the

ReplyToQueue

for

a

response

message

with

a

correlationID

equal

to

12

Adapter

for

SWIFT

User

Guide

″Oshkosh.″

The

adapter

would

retrieve

the

first

message

that

matches

this

message

selector

and

then

dispatch

it

as

the

response.

Optionally,

the

adapter

performs

run-time

substitutions

enabling

you

to

generate

unique

message

selectors

for

each

request.

Instead

of

a

message

selector,

you

specify

a

placeholder

in

the

form

of

an

integer

surrounded

by

curly

braces,

for

example:

’{1}’.

You

then

follow

with

a

colon

and

a

list

of

comma-separated

attributes

to

use

for

the

substitution.

The

integer

in

the

placeholder

acts

as

an

index

to

the

attribute

to

use

for

the

substitution.

For

example,

the

following

message

selector:

response_selector=JMSCorrelationID

LIKE

’{1}’:

MyDynamicMO.CorrelationID

would

inform

the

adapter

to

replace

{1}

with

the

value

of

the

first

attribute

following

the

selector

(in

this

case

the

attribute

named

CorrelationId

of

the

child-object

named

MyDynamicMO.

If

attribute

CorrelationID

had

a

value

of

123ABC,

the

adapter

would

generate

and

use

a

message

selector

created

with

the

following

criteria:

JMSCorrelation

LIKE

’123ABC’

to

identify

the

response

message.

You

can

also

specify

multiple

substitutions

such

as

the

following:

response_selector=PrimaryId

LIKE

’{1}’

AND

AddressId

LIKE

’{2}’

:

PrimaryId,

Address[4].AddressId

In

this

example,

the

adapter

would

substitute

{1}

with

the

value

of

attribute

PrimaryId

from

the

top-level

business

object

and

{2}

with

the

value

of

AddressId

from

the

5th

position

of

child

container

object

Address.

With

this

approach,

you

can

reference

any

attribute

in

the

business

object

and

meta-object

in

the

response

message

selector.

For

more

information

on

how

deep

retrieval

is

performed

using

Address[4].AddressId,

see

JCDK

API

manual

(getAttribute

method)

An

error

is

reported

at

run-time

when

any

of

the

following

occurs:

v

If

you

specify

a

non-integer

value

between

the

’{}’

symbols

v

If

you

specify

an

index

for

which

no

attribute

is

defined

v

If

the

attribute

specified

does

not

exist

in

the

business

or

meta-object

v

If

the

syntax

of

the

attribute

path

is

incorrect

For

example,

if

you

include

the

literal

value

’{’

or

’}’

in

the

message

selector,

you

can

use

’{{’

or

″{}″

respectively.

You

can

also

place

these

characters

in

the

attribute

value,

in

which

case

the

first

″{″

is

not

needed.

Consider

the

following

example

using

the

escape

character:

response_selector=JMSCorrelation

LIKE

’{1}’

and

CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

The

connector

would

resolve

this

message

selector

as

follows:

JMSCorrelationID

LIKE

’123ABC’

and

CompanyName=’A{P’

When

the

connector

encounters

special

characters

such

as

’{’,

’}’,

’:’

or

’;’

in

attribute

values,

they

are

inserted

directly

into

the

query

string.

This

allows

you

to

include

special

characters

in

a

query

string

that

also

serve

as

application-specific

information

delimiters.

Chapter

1.

Overview

13

The

next

example

illustrates

how

a

literal

string

substitution

is

extracted

from

the

attribute

value:

response_selector=JMSCorrelation

LIKE

’{1}’

and

CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

If

MyDynamicMO.CorrelationID

contained

the

value

{A:B}C;D,

the

connector

would

resolve

the

message

selector

as

follows:

JMSCorrelationID

LIKE

’{A:B}C;D’

and

CompanyName=’A{P’

For

more

information

on

the

response

selector

code,

see

JMS

1.0.1

specifications.

Creating

custom

feedback

codes:

You

can

extend

the

WebSphere

MQ

feedback

codes

to

override

default

interpretations

shown

in

Table

6

by

specifying

the

connector

property

FeedbackCodeMappingMO.

This

property

allows

you

to

create

a

meta-object

in

which

all

WebSphere

Business

Integration

Server

Express

system-specific

return

status

values

are

mapped

to

the

WebSphere

MQ

feedback

codes.

The

return

status

assigned

(using

the

meta-object)

to

a

feedback

code

is

passed

to

InterChange

Server

Express.

For

more

information,

see

“FeedbackCodeMappingMO”

on

page

21.

Retrieve

Business

objects

with

the

Retrieve

verb

support

synchronous

delivery

only.

The

connector

processes

business

objects

with

this

verb

as

it

does

for

the

synchronous

delivery

defined

for

create.

However,

when

using

a

Retrieve

verb,

the

responseTimeout

and

replyToQueue

are

required.

Furthermore,

the

message

body

must

be

populated

with

a

serialized

business

object

to

complete

the

transaction.

Table

7

shows

the

response

messages

for

these

verbs.

Table

7.

Population

of

response

message

Verb

Feedback

field

Message

body

Retrieve

FAIL

FAIL_RETRIEVE_BY_CONTENT

(Optional)

An

error

message.

MULTIPLE_HITS

SUCCESS

A

serialized

business

object.

Error

handling

All

error

messages

generated

by

the

connector

are

stored

in

a

message

file

named

SWIFTConnector.txt.

(The

name

of

the

file

is

determined

by

the

LogFileName

standard

connector

configuration

property.)

Each

error

has

an

error

number

followed

by

the

error

message:

Message

number

Message

text

The

connector

handles

specific

errors

as

described

in

the

following

sections.

Application

timeout

The

error

message

ABON_APPRESPONSETIMEOUT

is

returned

when:

v

The

connector

cannot

establish

a

connection

to

the

JMS

service

provider

during

message

retrieval.

v

The

connector

successfully

converts

a

business

object

to

a

message

but

cannot

deliver

it

to

the

outgoing

queue

due

to

connection

loss.

14

Adapter

for

SWIFT

User

Guide

v

The

connector

issues

a

message

but

times

out

waiting

for

a

response

from

a

business

object

whose

conversion

property

TimeoutFatal

is

equal

to

True.

v

The

connector

receives

a

response

message

with

a

return

code

equal

to

APP_RESPONSE_TIMEOUT

or

UNABLE_TO_LOGIN.

Unsubscribed

business

object

The

connector

delivers

a

message

to

the

queue

specified

by

the

UnsubscribedQueue

property

if:

v

The

connector

retrieves

a

message

that

is

associated

with

an

unsubscribed

business

object.

v

The

connector

retrieves

a

message

but

cannot

associate

the

text

in

the

Format

field

with

a

business

object

name.

Note:

If

the

UnsubscribedQueue

is

not

defined,

unsubscribed

messages

are

discarded.

Data

handler

conversion

If

the

data

handler

fails

to

convert

a

message

to

a

business

object,

or

if

a

processing

error

occurs

that

is

specific

to

the

business

object

(as

opposed

to

the

JMS

provider),

the

message

is

delivered

to

the

queue

specified

by

ErrorQueue.

If

ErrorQueue

is

not

defined,

messages

that

cannot

be

processed

due

to

errors

are

discarded.

If

the

data

handler

fails

to

convert

a

business

object

to

a

message,

BON_FAIL

is

returned.

Tracing

Tracing

is

an

optional

debugging

feature

you

can

turn

on

to

closely

follow

connector

behavior.

Trace

messages,

by

default,

are

written

to

STDOUT.

See

the

connector

configuration

properties

in

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

17,

for

more

on

configuring

trace

messages.

For

more

information

on

tracing,

including

how

to

enable

and

set

it,

see

the

System

Implementation

Guide.

What

follows

is

recommended

content

for

connector

trace

messages.

Level

0

This

level

is

used

for

trace

messages

that

identify

the

connector

version.

Level

1

Use

this

level

for

trace

messages

that

provide

key

information

on

each

business

object

processed

or

record

each

time

a

polling

thread

detects

a

new

message

in

an

input

queue.

Level

2

Use

this

level

for

trace

messages

that

log

each

time

a

business

object

is

posted

to

InterChange

Server

Express,

either

from

gotApplEvent()

or

executeCollaboration().

Level

3

Use

this

level

for

trace

messages

that

provide

information

regarding

message-to-business-object

and

business-object-to-
message

conversions

or

provide

information

about

the

delivery

of

the

message

to

the

output

queue.

Level

4

Use

this

level

for

trace

messages

that

identify

when

the

connector

enters

or

exits

a

function.

Level

5

Use

this

level

for

trace

messages

that

indicate

connector

Chapter

1.

Overview

15

initialization,

represent

statements

executed

in

the

application,

indicate

whenever

a

message

is

taken

off

of

or

put

onto

a

queue,

or

record

business

object

dumps.

16

Adapter

for

SWIFT

User

Guide

Chapter

2.

Installing

and

configuring

the

connector

v

“Overview

of

installation

tasks”

v

“Installed

file

structure”

v

“Connector

configuration”

on

page

18

v

“Queue

Uniform

Resource

Identifiers

(URI)”

on

page

23

v

“Meta-object

attributes

configuration”

on

page

24

v

“Startup

file

configuration”

on

page

38

v

“Creating

multiple

connector

instances”

on

page

38

v

“Starting

the

connector”

on

page

39

v

“Stopping

the

connector”

on

page

40

This

chapter

describes

how

to

install

and

configure

the

connector

and

how

to

configure

the

message

queues

to

work

with

the

connector.

Overview

of

installation

tasks

To

install

the

connector

for

SWIFT,

you

must

perform

the

following

tasks.

Confirm

adapter

prerequisites

Before

you

install

the

adapter,

confirm

that

all

the

environment

prerequisites

for

installing

and

running

the

adapter

are

on

your

system.

For

details,

see

“Adapter

environment”

on

page

1.

Install

the

integration

broker

Installing

the

integration

broker,

a

task

that

includes

installing

and

starting

WebSphere

Business

Integration

Server

Express,

is

described

in

the

Installation

Guide

for

WebSphere

Business

Integration

Server

Express.

Install

the

adapter

for

SWIFT

and

related

files

For

information

on

installing

the

adapter,

refer

to

the

Installation

Guide

for

WebSphere

Business

Integration

Server

Express,

located

in

the

WebSphere

Business

Integration

Server

Express

Infocenter

at

the

following

site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Installed

file

structure

The

following

subsection

describes

the

installed

file

structure

on

Windows

systems.

Installing

Windows

files

Table

8

describes

the

Windows

file

structure

used

by

the

connector.

Note:

If

you

are

installing

a

Web

release

of

this

connector,

see

the

Release

Notes

for

installation

instructions.

Table

8.

Installed

Windows

file

structure

for

the

connector

Subdirectory

of

ProductDir

Description

connectors\SWIFT\CWSwift.jar

Connector

jar

file

©

Copyright

IBM

Corp.

2004

17

Table

8.

Installed

Windows

file

structure

for

the

connector

(continued)

Subdirectory

of

ProductDir

Description

connectors\SWIFT\start_SWIFT.bat

The

startup

file

for

the

connector.

connectors\messages\SWIFTConnector.txt

Connector

message

file

repository\SWIFT\CN_SWIFT.txt

Connector

definition

DataHandlers\CwDataHandler.jar

The

SWIFT

data

handler

repository\DataHandlers\MO_DataHandler_SWIFT.txt

Meta-object

for

SWIFT

data

handler

repository\DataHandlers\MO_DataHandler_Default.txt

Data

handler

default

object

connectors\SWIFT\samples\Sample_SWIFT_MO_Config.txt

Sample

configuration

object

connectors\SWIFT\samples\MO_SWIFT_MAPSUBSCRIPTIONS.

txt

Mapping

meta-object

connectors\SWIFT\samples\BO_Definitions\SWIFT_

objects.txt

Business

object

definitions

connectors\SWIFT\samples\Map_Definitions\Map_

objects.txt

Map

definitions

For

more

information

on

installing

the

connector

component,

refer

to

the

WebSphere

Business

Integration

Server

Express

Installation

Guide.

Connector

configuration

Connectors

have

two

types

of

configuration

properties:

standard

configuration

properties

and

adapter-specific

configuration

properties.

You

must

set

the

values

of

these

properties

before

running

the

adapter.

You

use

Connector

Configurator

Express

to

configure

connector

properties:

v

For

a

description

of

Connector

Configurator

Express

and

step-by-step

procedures,

see

Appendix

B,

“Connector

Configurator

Express,”

on

page

97.

v

For

a

description

of

standard

connector

properties,

see

“Standard

connector

properties”

and

then

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

83.

v

For

a

description

of

connector-specific

properties,

see

“Connector-specific

properties”

on

page

19.

A

connector

obtains

its

configuration

values

at

startup.

During

a

runtime

session,

you

may

want

to

change

the

values

of

one

or

more

connector

properties.

Changes

to

some

connector

configuration

properties,

such

as

AgentTraceLevel,

take

effect

immediately.

Changes

to

other

connector

properties

require

component

restart

or

system

restart

after

a

change.

To

determine

whether

a

property

is

dynamic

(taking

effect

immediately)

or

static

(requiring

either

connector

component

restart

or

system

restart),

refer

to

the

Update

Method

column

in

the

Connector

Properties

window

of

Connector

Configurator

Express.

Standard

connector

properties

Standard

configuration

properties

provide

information

that

all

connectors

use.

See

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

83

for

documentation

of

these

properties.

Note:

When

you

set

configuration

properties

in

Connector

Configurator

Express,

the

BrokerType

property

is

set

to

InterChange

Server

Express.

Properties

relevant

to

InterChange

Server

Express

appear

in

the

Connector

Configurator

Express

window.

18

Adapter

for

SWIFT

User

Guide

Connector-specific

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

at

runtime.

Connector-specific

properties

also

provide

a

way

of

changing

static

information

or

logic

within

the

connector

without

having

to

recode

and

rebuild

the

agent.

Note:

Always

check

the

values

WebSphere

MQ

provides

because

they

may

be

incorrect

or

unknown.

If

the

provided

values

are

incorrect,

specify

them

explicitly.

Table

9

lists

the

connector-specific

configuration

properties

for

the

connector

for

SWIFT.

See

the

sections

that

follow

for

explanations

of

the

properties.

Table

9.

Connector-specific

configuration

properties

Name

Possible

values

Default

value

Required

“ApplicationPassword”

on

page

20

Login

password

No

“ApplicationUserID”

on

page

20

Login

user

ID

No

“ArchiveQueue”

on

page

20

Queue

to

which

copies

of

successfully

processed

messages

are

sent

queue://CrossWorlds.

QueueManager/MQCONN.

ARCHIVE

No

“Channel”

on

page

20

MQ

server

connector

channel

Yes

“ConfigurationMetaObject”

on

page

20

Name

of

configuration

meta-object

Yes

“DataHandlerClassName”

on

page

20

Data

handler

class

name

com.crossworlds.

DataHandlers.swift.

SwiftDataHandler

No

“DataHandlerConfigMO”

on

page

20

Data

handler

meta-object

MO_DataHandler_Default

Yes

“DataHandlerMimeType”

on

page

20

MIME

type

of

file

swift

No

“DefaultVerb”

on

page

21

Any

verb

supported

by

the

connector.

Create

“ErrorQueue”

on

page

21

Queue

for

unprocessed

messages

queue://crossworlds.

Queue.manager/

MQCONN.ERROR

No

“FeedbackCodeMappingMO”

on

page

21

Feedback

code

meta-object

No

“HostName”

on

page

21

WebSphere

MQ

server

No

“InDoubtEvents”

on

page

22

FailOnStartup

Reprocess

Ignore

LogError

Reprocess

No

“InputQueue”

on

page

22

Poll

queues

queue://CrossWorlds.

QueueManager/MQCONN.IN

Yes

“InProgressQueue”

on

page

22

In-progress

event

queue

queue://CrossWorlds.

QueueManager/

MQCONN.IN_PROGRESS

No

“PollQuantity”

on

page

22

Number

of

messages

to

retrieve

from

each

queue

specified

in

the

InputQueue

property

1

No

“Port”

on

page

23

Port

established

for

the

WebSphere

MQ

listener

No

“ReplyToQueue”

on

page

23

Queue

to

which

response

messages

are

delivered

when

the

connector

issues

requests

queue://CrossWorlds.

QueueManager/MQCONN.REPLYTO

No

“UnsubscribedQueue”

on

page

23

Queue

to

which

unsubscribed

messages

are

sent

queue://CrossWorlds.

QueueManager/MQCONN.

UNSUBSCRIBE

No

Chapter

2.

Installing

and

configuring

the

connector

19

Table

9.

Connector-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

“UseDefaults”

on

page

23

true

or

false

false

ApplicationPassword

Password

used

with

the

ApplicationUserID

to

log

in

to

WebSphere

MQ.

Default

=

None.

If

the

ApplicationPassword

is

left

blank

or

removed,

the

connector

uses

the

default

password

provided

by

WebSphere

MQ.

ApplicationUserID

User

ID

used

with

the

ApplicationPassword

to

log

in

to

WebSphere

MQ.

Default=None.

If

the

ApplicationUserID

is

left

blank

or

removed,

the

connector

uses

the

default

user

ID

provided

by

WebSphere

MQ.

ArchiveQueue

Queue

to

which

copies

of

successfully

processed

messages

are

sent.

Default

=

queue://crossworlds.Queue.manager/MQCONN.ARCHIVE

Channel

MQ

server

connector

channel

through

which

the

connector

communicates

with

WebSphere

MQ.

Default=None.

If

the

value

of

Channel

is

left

blank

or

the

property

is

removed,

the

connector

uses

the

default

server

channel

provided

by

WebSphere

MQ.

ConfigurationMetaObject

Name

of

static

meta-object

containing

configuration

information

for

the

connector.

Default

=

none.

DataHandlerClassName

Data

handler

class

to

use

when

converting

messages

to

and

from

business

objects.

Default

=

com.crossworlds.DataHandlers.swift.SwiftDataHandler

DataHandlerConfigMO

Meta-object

passed

to

data

handler

to

provide

configuration

information.

Default

=

MO_DataHandler_Default

DataHandlerMimeType

Allows

you

to

request

a

data

handler

based

on

a

particular

MIME

type.

Default

=

swift

20

Adapter

for

SWIFT

User

Guide

DefaultVerb

Specifies

the

verb

to

be

set

within

an

incoming

business

object,

if

it

has

not

been

set

by

the

data

handler

during

polling.

Default=

Create

ErrorQueue

Queue

to

which

messages

that

could

not

be

processed

are

sent.

Default

=

queue://crossworlds.Queue.manager/MQCONN.ERROR

FeedbackCodeMappingMO

Allows

you

to

override

and

reassign

the

default

feedback

codes

used

to

synchronously

acknowledge

receipt

of

messages

to

WebSphere

InterChange

Server

Express.

This

property

enables

you

to

specify

a

meta-object

in

which

each

attribute

name

is

understood

to

represent

a

feedback

code.

The

corresponding

value

of

the

feedback

code

is

the

return

status

that

is

passed

to

InterChange

Server

Express.

For

a

listing

of

the

default

feedback

codes,

see

“Synchronous

acknowledgment”

on

page

7.

The

connector

accepts

the

following

attribute

values

representing

WebSphere

MQ-specific

feedback

codes:

v

MQFB_APPL_FIRST

v

MQFB_APPL_FIRST_OFFSET_N

where

N

is

an

integer

(interpreted

as

the

value

of

MQFB_APPL_FIRST

+

N)

The

connector

accepts

the

following

WebSphere

Business

Integration

Server

Express

system-specific

status

codes

as

attribute

values

in

the

meta-object:

v

SUCCESS

v

FAIL

v

APP_RESPONSE_TIMEOUT

v

MULTIPLE_HITS

v

UNABLE_TO_LOGIN

v

VALCHANGE

v

VALDUPES

Table

10

shows

a

sample

meta-object.

Table

10.

Sample

feedback

code

meta-object

attributes

Attribute

Name

Default

Value

MQFB_APPL_FIRST

SUCCESS

MQFB_APPL_FIRST

+

1

FAIL

MQFB_APPL_FIRST

+

2

UNABLE_TO_LOGIN

Default

=

none.

HostName

The

name

of

the

server

hosting

WebSphere

MQ.

Default=None.

If

the

HostName

is

left

blank

or

removed,

the

connector

allows

WebSphere

MQ

to

determine

the

host.

Chapter

2.

Installing

and

configuring

the

connector

21

InDoubtEvents

Specifies

how

to

handle

in-progress

events

that

are

not

fully

processed

due

to

unexpected

connector

shutdown.

Choose

one

of

four

actions

to

take

if

events

are

found

in

the

in-progress

queue

during

initialization:

v

FailOnStartup.

Log

an

error

and

immediately

shut

down.

v

Reprocess.

Process

the

remaining

events

first,

then

process

messages

in

the

input

queue.

v

Ignore.

Disregard

any

messages

in

the

in-progress

queue.

v

LogError.

Log

an

error

but

do

not

shut

down.

Default

=

Reprocess.

InputQueue

Specifies

the

message

queues

that

the

connector

polls

for

new

messages.

See

the

MQSA

documentation

to

configure

the

WebSphere

MQ

queues

for

routing

to

SWIFTAlliance

gateways.

The

connector

accepts

multiple

semicolon-delimited

queue

names.

For

example,

to

poll

the

queues

MyQueueA,

MyQueueB,

and

MyQueueC,

the

value

for

connector

configuration

property

InputQueue

is:

MyQueueA;MyQueueB;MyQueueC.

The

connector

polls

the

queues

in

a

round-robin

manner

and

retrieves

up

to

pollQuantity

number

of

messages

from

each

queue.

For

example,

pollQuantity

equals

2,

and

MyQueueA

contains

2

messages,

MyQueueB

contains

1

message

and

MyQueueC

contains

5

messages.

With

pollQuanity

set

to

2,

the

connector

retrieves

at

most

2

messages

from

each

queue

per

call

to

pollForEvents.

For

the

first

cycle

(1

of

2),

the

connector

retrieves

the

first

message

from

each

of

MyQueueA,

MyQueueB,

and

MyQueueC.

That

completes

the

first

round

of

polling.

The

connector

starts

a

second

round

of

polling

(2

of

2)

and

retrieves

one

message

each

from

MyQueueA

and

MyQueueC—it

skips

MqQueueB

because

that

queue

is

now

empty.

After

polling

all

queues

twice,

the

call

to

the

method

pollForEvents

is

complete.

The

sequence

of

message

retrieval

is:

1.

1

message

from

MyQueueA

2.

1

message

from

MyQueueB

3.

1

message

from

MyQueueC

4.

1

message

from

MyQueueA

5.

Skip

MyQueueB

because

it

is

empty

6.

1

message

from

MyQueueC

Default

=

queue://crossworlds.Queue.manager/MQCONN.IN

InProgressQueue

Message

queue

where

messages

are

held

during

processing.

You

can

configure

the

connector

to

operate

without

this

queue

by

using

System

Manager

to

remove

the

default

InProgressQueue

name

from

the

connector-specific

properties.

Doing

so

prompts

a

warning

at

startup

that

event

delivery

may

be

compromised

if

the

connector

is

shut

down

while

are

events

pending.

Default=

queue://crossworlds.Queue.manager/MQCONN.IN_PROGRESS

PollQuantity

Number

of

messages

to

retrieve

from

each

queue

specified

in

the

InputQueue

property

during

a

pollForEvents

scan.

22

Adapter

for

SWIFT

User

Guide

Default

=1

Port

Port

established

for

the

WebSphere

MQ

listener.

Default=None.

If

the

value

of

Port

is

left

blank

or

the

property

is

removed,

the

connector

allows

WebSphere

MQ

to

determine

the

correct

port.

ReplyToQueue

Queue

to

which

response

messages

are

delivered

when

the

connector

issues

requests.

Default

=

queue://crossworlds.Queue.manager/MQCONN.REPLYTO

UnsubscribedQueue

Queue

to

which

messages

about

business

objects

that

are

not

subscribed

to

are

sent.

Default

=

queue://crossworlds.Queue.manager/MQCONN.UNSUBSCRIBED

UseDefaults

On

a

Create

operation,

if

UseDefaults

is

set

to

true,

the

connector

checks

whether

a

valid

value

or

a

default

value

is

provided

for

each

isRequired

business

object

attribute.

If

a

value

is

provided,

the

Create

operation

succeeds.

If

the

parameter

is

set

to

false,

the

connector

checks

only

for

a

valid

value

and

causes

the

Create

operation

to

fail

if

it

is

not

provided.

The

default

is

false.

Queue

Uniform

Resource

Identifiers

(URI)

A

URI

uniquely

identifies

a

queue.

A

URI

for

a

queue

begins

with

the

sequence

queue://

followed

by:

v

The

name

of

the

queue

manager

on

which

the

queue

resides

v

A

forward

slash

(/)

v

The

name

of

the

queue

v

Optionally,

a

list

of

name-value

pairs

to

set

the

remaining

queue

properties.

For

example,

the

following

URI

connects

to

queue

IN

on

queue

manager

crossworlds.queue.manager

and

causes

all

messages

to

be

sent

as

SWIFT

messages

with

priority

5.

queue://crossworlds.Queue.manager/MQCONN.IN?targetClient=1&priority=5

Table

11

shows

property

names

for

queue

URIs.

Table

11.

SWIFT-specific

connector

property

names

for

queue

URIs

Property

name

Description

Values

expiry

Lifetime

of

the

message

in

milliseconds.

0

=

unlimited.

positive

integers

=

timeout

(in

ms).

priority

Priority

of

the

message.

0-9,

where

1

is

the

highest

priority.

A

value

of

-1

means

that

the

property

is

determined

by

the

configuration

of

the

queue.

A

value

of

-2

means

that

the

connector

can

use

its

own

default

value.

Chapter

2.

Installing

and

configuring

the

connector

23

Table

11.

SWIFT-specific

connector

property

names

for

queue

URIs

(continued)

Property

name

Description

Values

persistence

Whether

the

message

should

be

retained

in

persistent

memory.

1

=

non-persistent

2

=

persistent

A

value

of

-1

means

that

the

property

is

determined

by

the

configuration

of

the

queue.

A

value

of

-2

means

that

the

connector

uses

its

own

default

value.

CCSID1

Character

set

of

the

destination.

Integers

-

valid

values

listed

in

base

WebSphere

MQ

documentation.

targetClient

Whether

the

receiving

application

is

JMS

compliant

or

not.

1

=

MQ

(MQMD

header

only)

This

value

must

be

set

to

1

for

SWIFTAlliance.

encoding

How

to

represent

numeric

fields.

An

integer

value

as

described

in

the

base

WebSphere

MQ

documentation.

Notes:

1.

The

connector

has

no

control

over

the

character

set

(CCSID)

or

encoding

attributes

of

data

in

MQMessages.

For

the

connector

to

work

properly,

WebSphere

MQ

queues

require

an

ASCII

character

set,

and

must

be

configured

accordingly

in

MQSA.

Because

data

conversion

is

applied

as

the

data

is

retrieved

from

or

delivered

to

the

message

buffer,

the

connector

relies

on

the

IBM

WebSphere

MQ

implementation

of

JMS

to

convert

data

(see

the

IBM

WebSphere

MQ

Java

client

library

documentation).

Accordingly,

these

conversions

should

be

bi-directionally

equivalent

to

those

performed

by

the

native

WebSphere

MQ

API

using

option

MQGMO_CONVERT.

The

connector

has

no

control

over

differences

or

failures

in

the

conversion

process.

It

can

retrieve

message

data

of

any

CCSID

or

encoding

supported

by

WebSphere

MQ

without

additional

modifications

(such

as

those

imposed

by

MQSA).

To

deliver

a

message

of

a

specific

CCSID

or

encoding,

the

output

queue

must

be

a

fully

qualified

URI

and

specify

values

for

CCSID

and

encoding.

The

connector

passes

this

information

to

WebSphere

MQ,

which

(via

the

JMS

API)

uses

the

information

when

encoding

data

for

MQMessage

delivery.

Often,

lack

of

support

for

CCSID

and

encoding

can

be

resolved

by

downloading

the

most

recent

version

of

the

IBM

WebSphere

MQ

Java

client

library

from

the

IBM

website.

For

further

information

on

MQSA

requirements,

see

MQSA

documentation.

If

problems

specific

to

CCSID

and

encoding

persist,

contact

IBM

Technical

Support

to

discuss

the

possibility

of

using

another

Java

Virtual

Machine

to

run

the

connector.

Meta-object

attributes

configuration

The

connector

for

SWIFT

can

recognize

and

read

two

kinds

of

meta-objects:

v

Static

connector

meta-object

v

Dynamic

child

meta-object

The

attribute

values

of

the

dynamic

child

meta-object

duplicate

and

override

those

of

the

static

meta-object.

Static

meta-object

The

static

meta-object

consists

of

a

list

of

conversion

properties

defined

for

different

business

objects.

To

define

the

conversion

properties

for

a

business

object,

first

create

a

string

attribute

and

name

it

using

the

syntax

busObj_verb.

For

example,

to

define

the

conversion

properties

for

a

Customer

object

with

the

verb

Create,

create

an

attribute

named

Swift_MT502_Create.

In

the

application-specific

text

of

the

attribute,

you

specify

the

actual

conversion

properties.

Additionally,

a

reserved

attribute

named

Default

can

be

defined

in

the

meta-object.

When

this

attribute

is

present,

its

properties

act

as

default

values

for

all

business

object

conversion

properties.

24

Adapter

for

SWIFT

User

Guide

Note:

If

a

static

meta-object

is

not

specified,

the

connector

cannot

map

a

given

message

format

to

a

specific

business

object

type

during

polling.

When

this

is

the

case,

the

connector

passes

the

message

text

to

the

configured

data

handler

without

specifying

a

business

object.

If

the

data

handler

cannot

create

a

business

object

based

on

the

text

alone,

the

connector

reports

an

error

indicating

that

this

message

format

is

unrecognized.

Table

12

describes

the

meta-object

properties.

Table

12.

Static

meta-object

properties

Property

name

Description

CollaborationName

The

collaboration

name

must

be

specified

in

the

application-specific

text

of

the

attribute

for

the

business

object/verb

combination.

For

example,

if

you

expect

to

handle

synchronous

requests

for

the

business

object

Customer

with

the

Create

verb,

the

static

metadata

object

must

contain

an

attribute

named

Swift_MTnnn_Verb,

where

nnn

is

the

Swift

message

type,

for

example,

Swift_MT502_Create.

The

Swift_MT502_Create

attribute

must

contain

application-specific

text

that

includes

a

name-value

pair.

For

example,

CollaborationName=MyCustomerProcessingCollab.

See

the

“Application-specific

information”

on

page

26

section

for

syntax

details.

Failure

to

do

this

results

in

runtime

errors

when

the

connector

attempts

to

synchronously

process

a

request

involving

the

Customer

business

object.

Note:

This

property

is

available

only

for

synchronous

requests.

DoNotReportBusObj

Optionally,

you

can

include

the

DoNotReportBusObj

property.

By

setting

this

property

to

true,

all

PAN

report

messages

issued

have

a

blank

message

body.

This

is

recommended

when

you

want

to

confirm

that

a

request

has

been

successfully

processed

but

does

not

need

notification

of

changes

to

the

business

object.

This

does

not

affect

NAN

reports.

If

this

property

is

not

found

in

the

static

meta-object,

the

connector

defaults

to

false

and

populates

the

message

report

with

the

business

object.

Note:

This

property

is

available

only

for

synchronous

requests.

InputFormat

The

input

format

is

the

message

format

to

associate

with

the

given

business

object.

When

a

message

is

retrieved

and

is

in

this

format,

it

is

converted

to

the

given

business

object

if

possible.

If

this

format

is

not

specified

for

a

business

object,

the

connector

does

not

handle

subscription

deliveries

for

the

given

business

object.

In

the

static

MO,

the

InputQueue

property

and

the

InputFormat

property

can

serve

as

criteria

for

the

adapter

to

map

a

given

message

to

a

specific

business

object.

This

feature

is

not

used

by

the

adapter

for

the

SWIFT

protocol.

OutputFormat

The

output

format

is

set

on

messages

created

from

the

given

business

object.

If

a

value

for

the

OutputFormat

property

is

not

specified,

the

input

format

is

used,

if

available.

An

OutputFormat

property

value

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

Chapter

2.

Installing

and

configuring

the

connector

25

Table

12.

Static

meta-object

properties

(continued)

Property

name

Description

InputQueue

The

input

queue

that

the

connector

polls

to

detect

new

messages.

The

InputQueue

property

in

the

connector-specific

properties

defines

which

queues

the

adapter

polls.

This

is

the

only

property

that

the

adapter

uses

to

determine

which

queues

to

poll.

In

the

static

MO,

the

InputQueue

property

and

the

InputFormat

property

can

serve

as

criteria

for

the

adapter

to

map

a

given

message

to

a

specific

business

object.

This

feature

is

not

used

by

the

adapter

for

the

SWIFT

protocol.

OutputQueue

The

output

queue

is

the

queue

to

which

messages

derived

from

the

given

business

object

are

delivered.

An

OutputQueue

property

value

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

ResponseTimeout

The

length

of

time

in

milliseconds

to

wait

for

a

response

before

timing

out.

The

connector

returns

SUCCESS

immediately

without

waiting

for

a

response

if

this

property

is

undefined

or

has

a

value

less

than

zero.

A

ResponseTimeout

property

value

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

TimeoutFatal

If

this

property

is

defined

and

has

a

value

of

true,

the

connector

returns

APP_RESPONSE_TIMEOUT

when

a

response

is

not

received

within

the

time

specified

by

ResponseTimeout.

All

other

threads

waiting

for

response

messages

immediately

return

APP_RESPONSE_TIMEOUT

to

InterChange

Server

Express.

This

causes

InterChange

Server

Express

to

terminate

the

connection

to

the

connector.

A

TimeoutFatal

property

defined

in

a

dynamic

child

meta-object

overrides

the

value

defined

in

the

static

meta-object.

Note:

The

InputQueue

property

in

the

connector-specific

properties

defines

which

queues

the

adapter

polls.

This

is

the

only

property

that

the

adapter

uses

to

determine

which

queues

to

poll.

In

the

static

MO,

the

InputQueue

property

and

the

InputFormat

property

can

serve

as

criteria

for

the

adapter

to

map

a

given

message

to

a

specific

business

object.

For

the

adapter

for

SWIFT,

do

not

use

this

feature.

Application-specific

information

The

application-specific

information

is

structured

in

name-value

pair

format,

separated

by

semicolons.

For

example:

InputFormat=ORDER_IN;OutputFormat=ORDER_OUT

You

can

use

application-specific

information

to

map

a

data

handler

to

an

input

queue.

Mapping

data

handlers

to

InputQueues

You

can

use

the

InputQueue

property

in

the

application-specific

information

of

the

static

meta-object

to

associate

a

data

handler

with

an

input

queue.

This

feature

is

useful

when

dealing

with

multiple

trading

partners

who

have

different

formats

and

conversion

requirements.

To

do

so

you

must:

1.

Use

connector-specific

properties

(see

“InputQueue”

on

page

22)

to

configure

one

or

more

input

queues.

26

Adapter

for

SWIFT

User

Guide

2.

For

each

input

queue,

specify

the

queue

manager

and

input

queue

name

as

well

as

data

handler

class

name

and

mime

type

in

the

application-specific

information.

For

example,

the

following

attribute

in

a

static

meta-object

associates

a

data

handler

with

an

InputQueue

named

CompReceipts:

[Attribute]

Name

=

Swift_MT502_Create

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputQueue=//queue.manager/CompReceipts;

DataHandlerClassName=com.crossworlds.

DataHandlers.swift.disposition_notification;

DataHandlerMimeType=message/

disposition_notification

IsRequiredServerBound

=

false

[End]

Overloading

input

formats

When

retrieving

a

message,

the

connector

normally

matches

the

input

format

to

one

specific

business

object

and

verb

combination.

The

connector

then

passes

the

business

object

name

and

the

contents

of

the

message

to

the

data

handler.

This

allows

the

data

handler

to

verify

that

the

message

contents

correspond

to

the

business

object

that

the

user

expects.

If,

however,

the

same

input

format

is

defined

for

more

than

one

business

object,

the

connector

cannot

determine

which

business

object

the

data

represents

before

passing

it

to

the

data

handler.

In

such

cases,

the

connector

passes

the

message

contents

only

to

the

data

handler

and

then

looks

up

conversion

properties

based

on

the

business

object

that

is

generated.

Accordingly,

the

data

handler

must

determine

the

business

object

based

on

the

message

content

alone.

If

the

verb

on

the

generated

business

object

is

not

set,

the

connector

searches

for

conversion

properties

defined

for

this

business

object

with

any

verb.

If

only

one

set

of

conversion

properties

is

found,

the

connector

assigns

the

specified

verb.

If

more

properties

are

found,

the

connector

fails

the

message

because

it

is

unable

to

distinguish

among

the

verbs.

A

sample

static

meta-object

The

static

meta-object

shown

below

configures

the

connector

to

convert

SWIFT_MT502

business

objects

using

verbs

Create

and

Retrieve.

Note

that

attribute

Default

is

defined

in

the

meta-object.

The

connector

uses

the

conversion

properties

of

this

attribute:

OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true

as

default

values

for

all

other

conversion

properties.

Thus,

unless

specified

otherwise

by

an

attribute

or

overridden

by

a

dynamic

child

meta-object

value,

the

connector

issues

all

business

objects

to

queue

CustomerQueue1

and

then

waits

for

a

response

message.

If

a

response

does

not

arrive

within

5000

milliseconds,

the

connector

terminates

immediately.

Business

object

with

verb

create:

Attribute

Swift_MT502_Create

indicates

to

the

connector

that

any

messages

of

format

NEW

should

be

converted

to

a

business

Chapter

2.

Installing

and

configuring

the

connector

27

object

with

the

verb

Create.

Because

an

output

format

is

not

defined,

the

connector

sends

messages

representing

this

object-verb

combination

using

the

format

defined

for

input

(in

this

case

NEW).

Business

object

with

verb

retrieve:

Attribute

Swift_MT502_Retrieve

specifies

that

business

objects

with

verb

Retrieve

should

be

sent

as

messages

with

format

RETRIEVE.

Note

that

the

default

response

time

has

been

overridden

so

that

the

connector

can

wait

up

10000

milliseconds

before

timing

out

(it

still

terminates

if

a

response

is

not

received).

[ReposCopy]

Version

=

3.1.0

Repositories

=

1cHyILNuPTc=

[End]

[BusinessObjectDefinition]

Name

=

Sample_MO

Version

=

1.0.0

[Attribute]

Name

=

Default

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

OutputQueue=CustomerQueue1;ResponseTimeout=5000;TimeoutFatal=true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_MT502_Create

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

InputFormat=NEW

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_MT502_Retrieve

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

OutputFormat=RETRIEVE;ResponseTimeout=10000

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

28

Adapter

for

SWIFT

User

Guide

Name

=

Retrieve

[End]

[End]

Dynamic

child

meta-object

If

it

is

difficult

or

unfeasible

to

specify

the

necessary

metadata

through

a

static

meta-object,

the

connector

can

optionally

accept

metadata

specified

at

runtime

for

each

business

object

instance.

The

connector

recognizes

and

reads

conversion

properties

from

a

dynamic

meta-object

that

is

added

as

a

child

to

the

top-level

business

object

passed

to

the

connector.

The

attribute

values

of

the

dynamic

child

meta-object

duplicate

the

conversion

properties

that

you

can

specify

via

the

static

meta-object

that

is

used

to

configure

the

connector.

Because

dynamic

child

meta-object

properties

override

those

found

in

static

meta-objects,

if

you

specify

a

dynamic

child

meta-object,

you

need

not

include

a

connector

property

that

specifies

the

static

meta-object.

Accordingly,

you

can

use

either

a

dynamic

child

meta-object

or

a

static

meta-object,

or

both.

Table

13

shows

sample

static

meta-object

properties

for

business

object

Swift_MT502_Create.

Note

that

the

application-specific

text

consists

of

semicolon-delimited

name-value

pairs

Table

13.

Static

meta-object

structure

for

Swift_MT502_Create

Attribute

name

Application-specific

text

Swift_MT502_Create

InputFormat=ORDER_IN;

OutputFormat=ORDER_OUT;

OutputQueue=QueueA;

ResponseTimeout=10000;

TimeoutFatal=False

Table

14

shows

a

sample

dynamic

child

meta-object

for

business

object

Swift_MT_Create.

Table

14.

Dynamic

child

meta-object

Structure

for

Swift_MT502_Create

Property

name

Value

OutputFormat

ORDER_OUT

OutputQueue

QueueA

ResponseTimeout

10000

TimeoutFatal

False

The

connector

checks

the

application-specific

text

of

the

top-level

business

object

received

to

determine

whether

tag

cw_mo_conn

specifies

a

child

meta-object.

If

so,

the

dynamic

child

meta-object

values

override

those

specified

in

the

static

meta-object.

Chapter

2.

Installing

and

configuring

the

connector

29

Population

of

the

dynamic

child

meta-object

during

polling

In

order

to

provide

InterChange

Server

Express

with

more

information

regarding

messages

retrieved

during

polling,

the

connector

populates

specific

attributes

of

the

dynamic

meta-object,

if

already

defined

for

the

business

object

created.

Table

Table

15

shows

how

a

dynamic

child

meta-object

might

be

structured

for

polling.

Table

15.

JMS

dynamic

child

meta-object

structure

for

polling

Property

name

Sample

value

InputFormat

ORDER_IN

InputQueue

MYInputQueue

OutputFormat

CxIgnore

OutputQueue

CxIgnore

ResponseTimeout

CxIgnore

TimeoutFatal

CxIgnore

As

shown

in

Table

15,

you

can

define

an

additional

property,

InputQueue,

in

a

dynamic

child

meta-object.

This

property

contains

the

name

of

the

queue

from

which

a

given

message

has

been

retrieved.

If

this

property

is

not

defined

in

the

child

meta-object,

it

will

not

be

populated.

Example

scenario:

v

The

connector

retrieves

a

message

with

the

format

ORDER_IN

from

the

WebSphere

MQ

queue.

v

The

connector

converts

this

message

to

an

order

business

object

and

checks

the

application-specific

text

to

determine

if

a

meta-object

is

defined.

v

If

so,

the

connector

creates

an

instance

of

this

meta-object

and

populates

the

InputQueue

and

InputFormat

properties

accordingly,

then

publishes

the

business

object

to

available

processes.

Sample

dynamic

child

meta-object

[BusinessObjectDefinition]

Name

=

MO_Sample_Config

Version

=

1.0.0

[Attribute]

Name

=

OutputFormat

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

ORDER

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

OutputQueue

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

OUT

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ResponseTimeout

30

Adapter

for

SWIFT

User

Guide

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

-1

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

TimeoutFatal

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

DefaultValue

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

InputFormat

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

InputQueue

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

[End]

[BusinessObjectDefinition]

Name

=

Swift_MT502

Version

=

1.0.0

AppSpecificInfo

=

cw_mo_conn=MyConfig

[Attribute]

Name

=

FirstName

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

Chapter

2.

Installing

and

configuring

the

connector

31

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

LastName

Type

=

String

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Telephone

Type

=

String

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

MyConfig

Type

=

MO_Sample_Config

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

[End]

JMS

headers,

SWIFT

message

properties,

and

dynamic

child

meta-object

attributes

You

can

add

attributes

to

a

dynamic

meta-object

to

gain

more

information

about,

and

more

control

over,

the

message

transport.

Adding

such

attributes

allows

you

to

modify

JMS

properties,

to

control

the

ReplyToQueue

on

a

per-request

basis

(rather

than

using

the

default

ReplyToQueue

specified

in

the

adapter

properties),

and

to

re-target

a

message

CorrelationID.

This

section

describes

these

attributes

and

how

they

affect

event

notification

and

request

processing

in

both

synchronous

and

asynchronous

modes.

The

following

attributes,

which

reflect

JMS

and

SWIFT

header

properties,

are

recognized

in

the

dynamic

meta-object.

32

Adapter

for

SWIFT

User

Guide

Table

16.

Dynamic

meta-object

header

attributes

Header

attribute

name

Mode

Corresponding

JMS

header

CorrelationID

Read/Write

JMSCorrelationID

ReplyToQueue

Read/Write

JMSReplyTo

DeliveryMode

Read/Write

JMSDeliveryMode

Priority

Read/Write

JMSPriority

Destination

Read

JMSDestination

Expiration

Read

JMSExpiration

MessageID

Read

JMSMessageID

Redelivered

Read

JMSRedelivered

TimeStamp

Read

JMSTimeStamp

Type

Read

JMSType

UserID

Read

JMSXUserID

AppID

Read

JMSXAppID

DeliveryCount

Read

JMSXDeliveryCount

GroupID

Read

JMSXGroupID

GroupSeq

Read

JMSXGroupSeq

JMSProperties

Read/Write

Read-only

attributes

are

read

from

a

message

header

during

event

notification

and

written

to

the

dynamic

meta-object.

These

properties

also

populate

the

dynamic

MO

when

a

response

message

is

issued

during

request

processing.

Read/write

attributes

are

set

on

message

headers

created

during

request

processing.

During

event

notification,

read/write

attributes

are

read

from

message

headers

to

populate

the

dynamic

meta-object.

The

interpretation

and

use

of

these

attributes

are

described

in

the

sections

below.

Note:

None

of

the

above

attributes

are

required.

You

may

add

any

attributes

to

the

dynamic

meta-object

that

relate

to

your

business

process.

JMS

Properties:

Unlike

other

attributes

in

the

dynamic

meta-object,

JMSProperties

must

define

a

single-cardinality

child

object.

Every

attribute

in

this

child

object

must

define

a

single

property

to

be

read/written

in

the

variable

portion

of

the

JMS

message

header

as

follows:

1.

The

name

of

the

attribute

has

no

semantic

value.

2.

The

type

of

the

attribute

should

always

be

String

regardless

of

the

JMS

property

type.

3.

The

application-specific

information

of

the

attribute

must

contain

two

name-value

pairs

defining

the

name

and

format

of

the

JMS

message

property

to

which

the

attribute

maps.

The

table

below

shows

application-specific

information

properties

that

you

must

define

for

attributes

in

the

JMSProperties

object.

Chapter

2.

Installing

and

configuring

the

connector

33

Table

17.

Application-specific

information

for

JMS

property

attributes

Name

Possible

values

Comments

Name

Any

valid

JMS

property

name

This

is

the

name

of

the

JMS

property.

Some

vendors

reserve

certain

properties

to

provide

extended

functionality.

In

general,

users

should

not

define

custom

properties

that

begin

with

JMS

unless

they

are

seeking

access

to

these

vendor-specific

features.

Type

String,

Int,

Boolean,

Float,

Double,

Long,

Short

This

is

the

type

of

the

JMS

property.

The

JMS

API

provides

a

number

of

methods

for

setting

values

in

the

JMS

Message:

setIntProperty,

setLongProperty,

setStringProperty,

etc.

The

type

of

the

JMS

property

specified

here

dictates

which

of

these

methods

is

used

for

setting

the

property

value

in

the

message.

The

figure

below

shows

attribute

JMSProperties

in

the

dynamic

meta-object

and

definitions

for

four

properties

in

the

JMS

message

header:

ID,

GID,

RESPONSE

and

RESPONSE_PERSIST.

The

application-specific

information

of

the

attributes

defines

the

name

and

type

of

each.

For

example,

attribute

ID

maps

to

JMS

property

ID

of

type

String).

Asynchronous

event

notification:

If

a

dynamic

meta-object

with

header

attributes

is

present

in

the

event

business

object,

the

connector

performs

the

following

steps

(in

addition

to

populating

the

meta-object

with

transport-related

data):

1.

Populates

the

CorrelationId

attribute

of

the

meta-object

with

the

value

specified

in

the

JMSCorrelationID

header

field

of

the

message.

2.

Populates

the

ReplyToQueue

attribute

of

the

meta-object

with

the

queue

specified

in

the

JMSReplyTo

header

field

of

the

message.

Since

this

header

field

is

represented

by

a

Java

object

in

the

message,

the

attribute

is

populated

with

the

name

of

the

queue

(often

a

URI).

3.

Populates

the

DeliveryMode

attribute

of

the

meta-object

with

the

value

specified

in

the

JMSDeliveryMode

header

field

of

the

message.

Figure

4.

JMS

properties

attribute

in

a

dynamic

meta-object

34

Adapter

for

SWIFT

User

Guide

4.

Populates

the

Priority

attribute

of

the

meta-object

with

the

JMSPriority

header

field

of

the

message.

5.

Populates

the

Destination

attribute

of

the

meta-object

with

the

name

of

the

JMSDestination

header

field

of

the

message.

Since

the

Destination

is

represented

by

an

object,

the

attribute

is

populated

with

the

name

of

the

Destination

object.

6.

Populates

the

Expiration

attribute

of

the

meta-object

with

the

value

of

the

JMSExpiration

header

field

of

the

message.

7.

Populates

the

MessageID

attribute

of

the

meta-object

with

the

value

of

the

JMSMessageID

header

field

of

the

message.

8.

Populates

the

Redelivered

attribute

of

the

meta-object

with

the

value

of

the

JMSRedelivered

header

field

of

the

message.

9.

Populates

the

TimeStamp

attribute

of

the

meta-object

with

the

value

of

the

JMSTimeStamp

header

field

of

the

message.

10.

Populates

the

Type

attribute

of

the

meta-object

with

the

value

of

the

JMSType

header

field

of

the

message.

11.

Populates

the

UserID

attribute

of

the

meta-object

with

the

value

of

the

JMSXUserID

property

field

of

the

message.

12.

Populates

the

AppID

attribute

of

the

meta-object

with

the

value

of

the

JMSXAppID

property

field

of

the

message.

13.

Populates

the

DeliveryCount

attribute

of

the

meta-object

with

the

value

of

the

JMSXDeliveryCount

property

field

of

the

message.

14.

Populates

the

GroupID

attribute

of

the

meta-object

with

the

value

of

the

JMSXGroupID

property

field

of

the

message.

15.

Populates

the

GroupSeq

attribute

of

the

meta-object

with

the

value

of

the

JMSXGroupSeq

property

field

of

the

message.

16.

Examines

the

object

defined

for

the

JMSProperties

attribute

of

the

meta-object.

The

adapter

populates

each

attribute

of

this

object

with

the

value

of

the

corresponding

property

in

the

message.

If

a

specific

property

is

undefined

in

the

message,

the

adapter

sets

the

value

of

the

attribute

to

CxBlank.

Synchronous

event

notification:

For

synchronous

event

processing,

the

adapter

posts

an

event

and

waits

for

a

response

from

InterChange

Server

Express

before

sending

a

response

message

back

to

the

application.

Any

changes

to

the

business

data

are

reflected

in

the

response

message

returned.

Before

posting

the

event,

the

adapter

populates

the

dynamic

meta-object

just

as

described

for

asynchronous

event

notification.

The

values

set

in

the

dynamic

meta-object

are

reflected

in

the

response-issued

header

as

described

below

(all

other

read-only

header

attributes

in

the

dynamic

meta-object

are

ignored.):

v

CorrelationID

If

the

dynamic

meta-object

includes

the

attribute

CorrelationId,

you

must

set

it

to

the

value

expected

by

the

originating

application.

The

application

uses

the

CorrelationID

to

match

a

message

returned

from

the

connector

to

the

original

request.

Unexpected

or

invalid

values

for

a

CorrelationID

will

cause

problems.

It

is

helpful

to

determine

how

the

application

handles

correlating

request

and

response

messages

before

using

this

attribute.

You

have

four

options

for

populating

the

CorrelationID

in

a

synchronous

request.

1.

Leave

the

value

unchanged.

The

CorrelationID

of

the

response

message

will

be

the

same

as

the

CorrelationID

of

the

request

message.

This

is

equivalent

to

the

WebSphere

MQ

option

MQRO_PASS_CORREL_ID.

Chapter

2.

Installing

and

configuring

the

connector

35

2.

Change

the

value

to

CxIgnore.

The

connector

by

default

copies

the

message

ID

of

the

request

to

the

CorrelationID

of

the

response.

This

is

equivalent

to

the

WebSphere

MQ

option

MQRO_COPY_MSG_ID_TO_CORREL_ID.

3.

Change

the

value

to

CxBlank.

The

connector

will

not

set

the

CorrelationID

on

the

response

message.

4.

Change

the

value

to

a

custom

value.

This

requires

that

the

application

processing

the

response

recognize

the

custom

value.

If

you

do

not

define

attribute

CorrelationID

in

the

meta-object,

the

connector

handles

the

CorrelationID

automatically.

v

ReplyToQueue

If

you

update

the

dynamic

meta-object

by

specifying

a

different

queue

for

attribute

ReplyToQueue,

the

connector

sends

the

response

message

to

the

queue

you

specify.

This

is

not

recommended.

Having

the

connector

send

response

messages

to

different

queues

may

interfere

with

communication

because

an

application

that

sets

a

specific

reply

queue

in

a

request

message

is

assumed

to

be

waiting

for

a

response

on

that

queue.

v

JMS

properties

The

values

set

for

the

JMS

Properties

attribute

in

the

dynamic

meta-object

when

the

updated

business

object

is

returned

to

the

connector

are

set

in

the

response

message.

Asynchronous

request

processing:

The

connector

uses

the

dynamic

meta-object,

if

present,

to

populate

the

request

message

prior

to

issuing

it.

The

connector

performs

the

following

steps

before

sending

a

request

message:

1.

If

attribute

CorrelationID

is

present

in

the

dynamic

meta-object,

the

connector

sets

the

CorrelationID

of

the

outbound

request

message

to

this

value.

2.

If

attribute

ReplyToQueue

is

specified

in

the

dynamic

meta-object,

the

connector

passes

this

queue

via

the

request

message

and

waits

on

this

queue

for

a

response.

This

allows

you

to

override

the

ReplyToQueuevalue

specified

in

the

connector

configuration

properties.

If

you

additionally

specify

a

negative

ResponseTimeout

(meaning

that

the

connector

should

not

wait

for

a

response),

theReplyToQueue

is

set

in

the

response

message,

even

though

the

connector

does

not

actually

wait

for

a

response.

3.

If

attribute

DeliveryMode

is

set

to

2,

the

message

is

sent

persistently.

If

DeliveryMode

is

set

to

1,

the

message

is

not

sent

persistently.

Any

other

value

may

fail

the

connector.

If

DeliveryMode

is

not

specified

in

the

MO,

then

the

JMS

provider

establishes

the

persistence

setting.

4.

If

attribute

Priority

is

specified,

the

connector

sets

the

value

in

the

outgoing

request.

The

Priority

attribute

can

take

values

0

through

9;

any

other

value

may

cause

the

connector

to

terminate.

5.

If

attribute

JMSProperties

is

specified

in

the

dynamic

meta-object,

the

corresponding

JMS

properties

specified

in

the

child

dynamic

meta-object

are

set

in

the

outbound

message

sent

by

the

connector.

Note:

If

header

attributes

in

the

dynamic

meta-object

are

undefined

or

specify

CxIgnore,

the

connector

follows

its

default

settings.

Synchronous

request

processing:

The

connector

uses

the

dynamic

meta-object,

if

present,

to

populate

the

request

message

prior

to

issuing

it.

If

the

dynamic

meta-object

contains

header

attributes,

the

connector

populates

it

with

corresponding

new

values

found

in

the

response

message.

The

connector

performs

the

following

steps

(in

addition

to

populating

the

meta-object

with

transport-related

data)

after

receiving

a

response

message:

36

Adapter

for

SWIFT

User

Guide

1.

If

attribute

CorrelationID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

JMSCorrelationID

specified

in

the

response

message.

2.

If

attribute

ReplyToQueue

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

name

of

the

JMSReplyTo

specified

in

the

response

message.

3.

If

attribute

DeliveryMode

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSDeliveryMode

header

field

of

the

message.

4.

If

attribute

Priority

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSPriority

header

field

of

the

message.

5.

If

attribute

Destination

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

name

of

the

JMSDestination

specified

in

the

response

message.

6.

If

attribute

Expiration

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSExpiration

header

field

of

the

message.

7.

If

attribute

MessageID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSMessageID

header

field

of

the

message.

8.

If

attribute

Redelivered

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSRedelivered

header

field

of

the

message.

9.

If

attribute

TimeStamp

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSTimeStamp

header

field

of

the

message.

10.

If

attribute

Type

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSType

header

field

of

the

message.

11.

If

attribute

UserID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXUserID

header

field

of

the

message.

12.

If

attribute

AppID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXAppID

property

field

of

the

message.

13.

If

attribute

DeliveryCount

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXDeliveryCount

header

field

of

the

message.

14.

If

attribute

GroupID

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXGroupID

header

field

of

the

message.

15.

If

attribute

GroupSeq

is

present

in

the

dynamic

meta-object,

the

adapter

updates

this

attribute

with

the

value

of

the

JMSXGroupSeq

header

field

of

the

message.

16.

If

attribute

JMSProperties

is

defined

in

the

dynamic

meta-object,

the

adapter

updates

any

properties

defined

in

the

child

object

with

the

values

found

in

the

response

message.

If

a

property

defined

in

the

child

object

does

not

exist

in

the

message,

the

value

is

set

to

CxBlank.

Note:

Using

the

dynamic

meta-object

to

change

the

CorrelationID

set

in

the

request

message

does

not

affect

the

way

the

adapter

identifies

the

response

message—the

adapter

by

default

expects

that

the

CorrelationID

of

any

response

message

equals

the

message

ID

of

the

request

sent

by

the

adapter.

Chapter

2.

Installing

and

configuring

the

connector

37

Error

handling:

If

a

JMS

property

cannot

be

read

from

or

written

to

a

message,

the

connector

logs

an

error

and

the

request

or

event

fails.

If

a

user-specified

ReplyToQueue

does

not

exist

or

cannot

be

accessed,

the

connector

logs

an

error

and

the

request

fails.

If

a

CorrelationID

is

invalid

or

cannot

be

set,

the

connector

logs

an

error

and

the

request

fails.

In

all

cases,

the

message

logged

is

from

the

connector

message

file.

Startup

file

configuration

Before

you

start

the

connector

for

SWIFT,

you

must

configure

the

startup

file.

The

section

below

describes

how

to

do

this

for

Windows

2000.

Windows

To

complete

the

configuration

of

the

connector

for

Windows

2000,

you

must

modify

the

start_SWIFT.bat

file:

1.

Open

the

start_SWIFT.bat

file.

2.

Scroll

to

the

section

beginning

with

“Set

the

directory

containing

your

MQ

Java

client

libraries,”

and

specify

the

location

of

your

MQ

Java

client

libraries.

Creating

multiple

connector

instances

Creating

multiple

instances

of

a

connector

is

in

many

ways

the

same

as

creating

a

custom

connector.

Note:

Each

additional

instance

of

any

adapter

supplied

with

WebSphere

Business

Integration

Server

Express

will

be

treated

as

a

separate

adapter

by

the

function

that

limits

the

total

number

of

adapters

that

can

be

deployed.

You

can

set

your

system

up

to

create

and

run

multiple

instances

of

a

connector

by

following

the

steps

below.

You

must:

v

Create

a

new

directory

for

the

connector

instance

v

Make

sure

you

have

the

requisite

business

object

definitions

v

Create

a

new

connector

definition

file

v

Create

a

new

start-up

script

Create

a

new

directory

You

must

create

a

connector

directory

for

each

connector

instance.

This

connector

directory

should

be

named:

ProductDir\connectors\connectorInstance

where

connectorInstance

uniquely

identifies

the

connector

instance.

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

ProductDir\repository\connectorInstance

Create

business

object

definitions

If

the

business

object

definitions

for

each

connector

instance

do

not

already

exist

within

the

project,

you

must

create

them.

1.

If

you

need

to

modify

business

object

definitions

that

are

associated

with

the

initial

connector,

copy

the

appropriate

files

and

use

Business

Object

Designer

38

Adapter

for

SWIFT

User

Guide

Express

to

import

them.

You

can

copy

any

of

the

files

for

the

initial

connector.

Just

rename

them

if

you

make

changes

to

them.

2.

Files

for

the

initial

connector

should

reside

in

the

following

directory:

ProductDir\repository\initialConnectorInstance

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

ProductDir\repository.

Create

a

connector

definition

You

create

a

configuration

file

(connector

definition)

for

the

connector

instance

in

Connector

Configurator

Express.

To

do

so:

1.

Copy

the

initial

connector’s

configuration

file

(connector

definition)

and

rename

it.

2.

Make

sure

each

connector

instance

correctly

lists

its

supported

business

objects

(and

any

associated

meta-objects).

3.

Customize

any

connector

properties

as

appropriate.

Create

a

start-up

script

To

create

a

startup

script:

1.

Copy

the

initial

connector’s

startup

script

and

name

it

to

include

the

name

of

the

connector

directory:

dirname

2.

Put

this

startup

script

in

the

connector

directory

you

created

in

“Create

a

new

directory”

on

page

38.

3.

Create

a

startup

script

shortcut.

4.

Copy

the

initial

connector’s

shortcut

text

and

change

the

name

of

the

initial

connector

(in

the

command

line)

to

match

the

name

of

the

new

connector

instance.

You

can

now

run

both

instances

of

the

connector

on

your

integration

server

at

the

same

time.

Starting

the

connector

A

connector

must

be

explicitly

started

using

its

connector

start-up

script.

The

startup

script

should

reside

in

the

connector’s

runtime

directory:

ProductDir\connectors\connName

where

connName

identifies

the

connector.

The

name

of

the

startup

script

depends

on

the

operating-system

platform,

as

Table

18

shows.

Table

18.

Startup

scripts

for

a

connector

Operating

system

Startup

script

Windows

start_connName.bat

You

can

invoke

the

connector

startup

script

in

any

of

the

following

ways:

v

On

Windows

systems,

from

the

Start

menu

Select

Programs>IBM

WebSphere

Business

Integration

Express>Adapters>Connectors>your_connector_name.

By

default,

the

program

name

is

“IBM

WebSphere

Business

Integration

Express”.

However,

it

can

be

customized.

Alternatively,

you

can

create

a

desktop

shortcut

to

your

connector.

Chapter

2.

Installing

and

configuring

the

connector

39

v

From

the

command

line

–

On

Windows

systems:

start_connName

connName

ICS

[-cconfigFile

]

where

connName

is

the

name

of

the

connector.

v

From

System

Monitor

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

starts

when

the

Windows

system

boots

(for

an

Auto

service)

or

when

you

start

the

service

through

the

Windows

Services

window

(for

a

Manual

service).

For

more

information

on

how

to

start

a

connector,

including

the

command-line

startup

options,

refer

to

the

System

Administration

Guide.

Stopping

the

connector

The

way

to

stop

a

connector

depends

on

the

way

that

the

connector

was

started,

as

follows:

v

If

you

started

the

connector

from

the

command

line,

with

its

connector

startup

script:

–

On

Windows

systems,

invoking

the

startup

script

creates

a

separate

“console”

window

for

the

connector.

In

this

window,

type

“Q”

and

press

Enter

to

stop

the

connector.
v

From

System

Monitor

You

can

load,

activate,

deactivate,

pause,

shutdown

or

delete

a

connector

using

this

tool.

v

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

stops

when

the

Windows

system

shuts

down.

40

Adapter

for

SWIFT

User

Guide

Chapter

3.

Business

objects

v

“Connector

business

object

requirements”

v

“Overview

of

SWIFT

message

structure”

on

page

45

v

“Overview

of

business

objects

for

SWIFT”

on

page

45

v

“SWIFT

message

and

business

object

data

mapping”

on

page

47

The

connector

for

SWIFT

is

a

metadata-driven

connector.

In

WebSphere

business

objects,

metadata

is

data

about

the

application’s

data,

which

is

stored

in

a

business

object

definition

and

which

helps

the

connector

interact

with

an

application.

A

metadata-driven

connector

handles

each

business

object

that

it

supports

based

on

metadata

encoded

in

the

business

object

definition

rather

than

on

instructions

hard-coded

in

the

connector.

Business

object

metadata

includes

the

structure

of

a

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

text.

Because

the

connector

is

metadata-driven,

it

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

code.

However,

the

connector’s

configured

data

handler

makes

assumptions

about

the

structure

of

its

business

objects,

object

cardinality,

the

format

of

the

application-specific

text,

and

the

database

representation

of

the

business

object.

Therefore,

when

you

create

or

modify

a

business

object

for

SWIFT,

your

modifications

must

conform

to

the

rules

the

connector

is

designed

to

follow,

or

the

connector

cannot

process

new

or

modified

business

objects

correctly.

This

chapter

describes

how

the

connector

processes

business

objects

and

describes

the

assumptions

the

connector

makes.

You

can

use

this

information

as

a

guide

to

implementing

new

business

objects.

Connector

business

object

requirements

The

business

object

requirements

for

the

connector

reflect

the

way

the

SWIFT

data

handler

converts

a

SWIFT

message

into

a

WebSphere

business

object,

and

vice

versa.

The

sections

below

discuss

the

requirements

for

WebSphere

business

objects

as

well

as

the

SWIFT

message

structure.

For

a

step-by-step

description

of

how

the

SWIFT

data

handler

interacts

with

WebSphere

business

objects

and

SWIFT

messages,

see

Chapter

4,

“SWIFT

Data

Handler,”

on

page

77.

A

review

of

the

Business

Object

Development

Guide

is

strongly

recommended.

Business

object

hierarchy

WebSphere

business

objects

can

be

flat

or

hierarchical.

All

the

attributes

of

a

flat

business

object

are

simple

(that

is,

each

attribute

represents

a

single

value,

such

as

a

String

or

Integer

or

Date).

In

addition

to

containing

simple

attributes,

a

hierarchical

business

object

has

attributes

that

represent

a

child

business

object,

an

array

of

child

business

objects,

or

a

combination

of

both.

In

turn,

each

child

business

object

can

contain

a

child

business

object

or

an

array

of

business

objects,

and

so

on.

©

Copyright

IBM

Corp.

2004

41

Important:

A

business

object

array

can

contain

data

whose

type

is

a

business

object.

It

cannot

contain

data

of

any

other

type,

such

as

String

or

Integer.

There

are

two

types

of

relationships

between

parent

and

child

business

objects:

v

Single-cardinality—When

an

attribute

in

a

parent

business

object

represents

a

single

child

business

object.

The

attribute

is

of

the

same

type

as

the

child

business

object.

v

Multiple-cardinality—When

an

attribute

in

the

parent

business

object

represents

an

array

of

child

business

objects.

The

attribute

is

an

array

of

the

same

type

as

the

child

business

objects.

WebSphere

uses

the

following

terms

when

describing

business

objects:

v

hierarchical—Refers

to

a

complete

business

object,

including

the

top-level

business

object

and

its

the

child

business

objects

at

any

level.

v

parent—Refers

to

a

business

object

that

contains

at

least

one

child

business

object.

A

top-level

business

object

is

also

a

parent.

v

individual—Refers

to

a

single

business

object,

independent

of

any

child

business

objects

it

might

contain

or

that

contain

it.

v

top-level—Refers

to

the

individual

business

object

at

the

top

of

the

hierarchy,

which

does

not

itself

have

a

parent

business

object.

v

wrapper—Refers

to

a

top-level

business

object

that

contains

information

used

to

process

its

child

business

objects.

For

example,

the

XML

connector

requires

the

wrapper

business

object

to

contain

information

that

determines

the

format

of

its

child

data

business

objects

and

routes

the

children.

Business

object

attribute

properties

Business

object

architecture

defines

various

properties

that

apply

to

attributes.

This

section

describes

how

the

connector

interprets

several

of

these

properties.

For

further

information

on

these

properties,

see

Business

Object

Attributes

and

Attribute

Properties

in

Chapter

2

of

the

Business

Object

Development

Guide.

Name

property

Each

business

object

attribute

must

have

a

unique

name

within

the

business

object.

The

name

should

describe

the

data

that

the

attribute

contains.

For

an

application-specific

business

object,

check

the

connector

or

data

handler

guide

for

specific

naming

requirements.

The

name

can

be

up

to

80

alphanumeric

characters

and

underscores.

It

cannot

contain

spaces,

punctuation,

or

special

characters.

Type

property

The

Type

property

defines

the

data

type

of

the

attribute:

v

For

a

simple

attribute,

the

supported

types

are

Boolean,

Integer,

Float,

Double,

String,

Date,

and

LongText.

v

If

the

attribute

represents

a

child

business

object,

specify

the

type

as

the

name

of

the

child

business

object

definition

(for

example,

Type

=

MT502A)

and

specify

the

cardinality

as

1.

v

If

the

attribute

represents

an

array

of

child

business

objects,

specify

the

type

as

the

name

of

the

child

business

object

definition

and

specify

the

cardinality

as

n.

42

Adapter

for

SWIFT

User

Guide

Note:

All

attributes

that

represent

child

business

objects

also

have

a

ContainedObjectVersion

property

(which

specifies

the

child’s

version

number)

and

a

Relationship

property

(which

specifies

the

value

Containment).

Cardinality

property

Each

simple

attribute

has

cardinality

1.

Each

business

object

attribute

that

represents

a

child

or

array

of

child

business

objects

has

cardinality

1

or

n,

respectively.

Note:

When

specified

for

a

required

attribute,

cardinality

1

indicates

a

child

business

object

must

exist,

and

cardinality

n

indicates

zero

to

many

instances

of

a

child

business

object.

Key

property

At

least

one

attribute

in

each

business

object

must

be

specified

as

the

key.

To

define

an

attribute

as

a

key,

set

this

property

to

true.

When

you

specify

as

key

an

attribute

that

represents

a

child

business

object,

the

key

is

the

concatenation

of

the

keys

in

the

child

business

object.

When

you

specify

as

key

an

attribute

that

represents

an

array

of

child

business

objects,

the

key

is

the

concatenation

of

the

keys

in

the

child

business

object

at

location

0

in

the

array.

Note:

Key

information

is

not

available

in

the

collaboration

mapping

process.

Foreign

key

property

The

Foreign

Key

property

is

typically

used

in

application-specific

business

objects

to

specify

that

the

value

of

an

attribute

holds

the

primary

key

of

another

business

object,

serving

as

a

means

of

linking

the

two

business

objects.

The

attribute

that

holds

the

primary

key

of

another

business

object

is

called

a

foreign

key.

Define

the

Foreign

Key

property

as

true

for

each

attribute

that

represents

a

foreign

key.

You

can

also

use

the

Foreign

Key

property

for

other

processing

instructions.

For

example,

this

property

can

be

used

to

specify

what

kind

of

foreign

key

lookup

the

connector

performs.

In

this

case,

you

might

set

Foreign

Key

to

true

to

indicate

that

the

connector

checks

for

the

existence

of

the

entity

in

the

database

and

creates

the

relationship

only

if

the

record

for

the

entity

exists.

Required

property

The

Required

property

specifies

whether

an

attribute

must

contain

a

value.

If

a

particular

attribute

in

the

business

object

that

you

are

creating

must

contain

a

value,

set

the

Required

property

for

the

attribute

to

true.

For

information

on

enforcing

the

Required

property

for

attributes,

see

the

section

on

initAndValidateAttributes()

in

Connector

Reference:

C++

Class

Library

and

Connector

Reference:

Java

Class

Library.

AppSpecificInfo

The

AppSpecificInfo

property

is

a

String

no

longer

than

255

characters

that

is

specified

primarily

for

an

application-specific

business

object.

Note:

Application-specific

text

is

not

available

in

the

collaboration

mapping

process

.

Chapter

3.

Business

objects

43

Max

length

property

The

Max

Length

property

is

set

to

the

number

of

bytes

that

a

String-type

attribute

can

contain.

Although

this

value

is

not

enforced

by

the

WebSphere

system,

specific

connectors

or

data

handlers

may

use

this

value.

Check

the

guide

for

the

connector

or

data

handler

that

will

process

the

business

object

to

determine

minimum

and

maximum

allowed

lengths.

Note:

The

Max

Length

property

is

very

important

when

you

use

a

fixed

width

data

handler.

Attribute

length

is

not

available

in

the

collaboration

mapping

process.

Default

value

property

The

Default

Value

property

can

specify

a

default

value

for

an

attribute.

If

this

property

is

specified

for

an

application-specific

business

object,

and

the

UseDefaults

connector

configuration

property

is

set

to

true,

the

connector

can

use

the

default

values

specified

in

the

business

object

definition

to

provide

values

for

attributes

that

have

no

values

at

runtime.

For

more

information

on

how

the

Default

Value

property

is

used,

see

the

section

on

initAndValidateAttributes()

in

Connector

Reference:

C++

Class

Library

and

Connector

Reference:

Java

Class

Library.

Comments

property

The

Comments

property

allows

you

to

specify

a

human-readable

comment

for

an

attribute.

Unlike

the

AppSpecificInfo

property,

which

is

used

to

process

a

business

object,

the

Comments

property

provides

only

documentation

information.

Special

attribute

value

Simple

attributes

in

business

objects

can

have

the

special

value,

CxIgnore.

When

it

receives

a

business

object

from

an

integration

broker,

the

connector

ignores

all

attributes

with

a

value

of

CxIgnore.

It

is

as

if

those

attributes

were

invisible

to

the

connector.

If

no

value

is

required,

the

connector

sets

the

value

of

that

attribute

to

CxIgnore

by

default.

Application-specific

text

at

the

attribute

level

Note:

Business

object

level

application-specific

text

is

not

used

by

the

connector.

For

business

object

attributes,

the

application-specific

text

format

consists

of

name-value

parameters.

Each

name-value

parameter

includes

the

parameter

name

and

its

value.

The

format

of

attribute

application-specific

text

is

as

follows:

name=value[:name_n=value_n][...]

Each

parameter

set

is

separated

from

the

next

by

a

colon

(:)

delimiter.

Table

19

describes

the

name-value

parameters

for

attribute

application-specific

text.

44

Adapter

for

SWIFT

User

Guide

Table

19.

Name-value

parameters

in

AppSpecificText

for

attributes

Parameter

Required

Description

block

Yes

for

top-level

object

only

The

number

of

the

block

in

the

SWIFT

message.

Values

range

from

0-5.

For

information

on

the

SWIFT

message

blocks,

see

“Overview

of

SWIFT

message

structure”

on

page

45.

parse

Yes

for

attributes

of

the

top-level

object

only

Describes

whether,

and

how,

to

parse

the

SWIFT

message

block.

Values

are:

fixlen—parse

as

fixed

length

delim—parse

as

delimited

text

field—Block

4

only

no—Do

not

parse;

treat

as

a

single

string.

tag

Yes

for

attributes

of

type

tag

business

object

The

tag

number

of

the

field.

For

more

on

SWIFT

message

tags,

see

Appendix

C,

“SWIFT

message

structure,”

on

page

111.

For

further

information

on

sequence

and

field

business

objects,

see

“Block

4

business

object

structure”

on

page

58.

letter=a

Yes

for

each

attribute

that

points

to

a

tag

business

object

One

or

more

supported

letters

appended

to

the

tag

in

the

SWIFT

message

format.

For

example

20A

or

[A|B|NULL]

(A

or

B

or

null).

Note

that

NULL

must

be

specified

for

tags

where

no

letter

is

a

possibility,

or

for

tags

that

do

not

have

a

letter

option

at

all.

For

example,

tag

59.

content

No

The

qualifier

in

the

SWIFT

message

format.

For

example,

in

a

SWIFT

message

MT502,

tag20C,

the

qualifier

=

SEME.

Overview

of

SWIFT

message

structure

SWIFT

messages

consist

of

five

blocks

of

data.

In

addition,

the

MQSA

component

adds

two

blocks

that

are

used

for

queue

management.

The

high-level

structure

of

a

SWIFT

message

is

as

follows:

MQSA

UUID

SWIFT

1:Basic

Header

Block

SWIFT

2:

Application

Header

Block

SWIFT

3:User

Header

Block

SWIFT

4:

Text

Block

SWIFT

5:

Trailer

MQSA

S

Block

Note:

The

MQSA

component

adds

the

UUID

(User

Unique

Message

Identifier)

and

S

blocks.

Neither

are

parsed

by

the

SWIFT

data

handler.

The

S

block

has

the

same

structure

as

SWIFT

block

5,

except

that

field

tags

consist

of

three

char

strings.

For

example,

{S:{COP:P}}.

For

further

information

on

SWIFT

message

structure,

see

Appendix

C,

“SWIFT

message

structure,”

on

page

111,

and

All

Things

SWIFT:

the

SWIFT

User

Handbook.

Overview

of

business

objects

for

SWIFT

As

shown

in

Figure

5

there

are

five

kinds

of

business

objects

for

SWIFT:

Chapter

3.

Business

objects

45

v

Message

business

object

(Msg

BO)

This

is

the

top-level

business

object

whose

attributes

correspond

to

the

blocks

in

a

SWIFT

message.

For

further

information,

see

“Top-level

business

object

structure”

on

page

47.

v

Message

block

business

object

(MsgBlk

BO)

A

child

object

of

the

Msg

BO

that

can

represent

blocks

1,

2,

3,

or

5

in

a

SWIFT

message.

For

further

information,

see

“Block

1

business

object

structure”

on

page

50.

v

Message

data

business

object

(MsgData

BO)

A

child

object

of

the

Msg

BO

that

represents

block

4

of

the

SWIFT

message.

For

further

information,

see

“Block

4

business

object

structure”

on

page

58.

v

Message

sequence

business

object

(MsgSeq

BO)

A

child

object

of

a

MsgData

BO

or

of

another

MsgSeq

BO.

A

MsgSeq

BO

represents

a

sequence

of

fields

occurring

in

block

4

of

the

SWIFT

message.

For

further

information,

see

“Sequence

business

object

structure”

on

page

63.

v

Message

field

business

object

(MsgField

BO)

A

child

object

of

the

MsgData

BO

or

of

a

MsgSeq

BO

that

contains

the

content

of

a

field.

Fields

correspond

to

tags

in

SWIFT

messages.

For

further

information,

see

“Field

business

object

definitions”

on

page

66.

Each

of

these

business

objects

consist

of

the

following:

v

Name

The

name

of

the

business

object

consists

of

a

SWIFT

Message

name,

a

SWIFT

message

sequence

name,

or

a

SWIFT

field

name.

More

detailed

naming

conventions,

if

any,

are

provided

in

the

sections

for

each

kind

of

business

object

listed

below.

For

example:

–

Swift_MT502

is

the

name

of

the

Msg

BO.

For

further

information,

see

“Top-level

business

object

structure”

on

page

47.

Figure

5.

Business

objects

map

to

SWIFT

message

components

46

Adapter

for

SWIFT

User

Guide

–

Swift_ApplicationHeader

is

the

name

of

a

MsgBlk

BO.

For

further

information,

see

“Block

1

business

object

structure”

on

page

50,

“Block

2

business

object

structure”

on

page

53,

and

“Block

3

business

object

structure”

on

page

56.

–

Swift_MT502Data

is

the

name

of

a

MsgData

BO.

For

further

information,

see

“Block

4

business

object

structure”

on

page

58.

–

Swift_MT502_B1

is

the

name

of

a

MsgSeq

BO.

For

further

information,

see

“Sequence

business

object

structure”

on

page

63.

–

Swift_Tag_22

is

the

name

of

a

MsgField

BO.

For

further

information,

see

“Field

business

object

definitions”

on

page

66.
v

Version

The

version

of

the

business

object

is

set

to

1.1.0.

For

example:

Version

=

1.1.0

v

Attributes

Each

business

object

contains

one

or

more

attributes.

For

more

information

see

“Business

object

attribute

properties”

on

page

42

and

the

sections

below

on

each

kind

of

business

object.

v

Verbs

Each

business

object

supports

the

following

standard

verbs:

–

Create

–

Retrieve

SWIFT

message

and

business

object

data

mapping

The

IBM

WebSphere

Business

Integration

Server

Express

Adapter

for

SWIFT

supports

the

following

type

of

mapping:

v

SWIFT-message-to-WebSphere-business-object

The

sections

below

describe

the

data

mapping

that

occurs

between

SWIFT

messages

and

WebSphere

business

objects.

Top-level

business

object

structure

The

structure

of

the

top-level

business

object

for

a

SWIFT

message,

or

Msg

BO,

reflects

that

of

the

SWIFT

message.

WebSphere

requires

a

business

object

for

each

SWIFT

block.

As

shown

in

Table

20,

the

top-level

business

object

must

have

at

least

5

attributes,

one

for

each

SWIFT

block.

Note:

Only

attribute

properties

of

consequence

are

shown

in

Table

20.

For

a

listing

of

all

attribute

properties,

see

“Sample

top-level

Business

Object

(Msg

BO)

definition”

on

page

49.

Table

20.

Top-level

business

object

structure

Name

Type

Key

Required

Application

specific

info

UUID

(MQSA

prepended)

String

Yes

No

block=0;parse=no

Swift_01Header

Swift_BasicHeader

No

Yes

block=1;

parse=fixlen

Swift_02Header

Swift_Application

Header

No

No

block=2;

parse=fixlen

Swift_03Header

Swift_UserHeader

No

No

block=3;

parse=delim

Swift_Data

Swift_Text

No

No

block=4;parse=field

Swift_05Trailer

String

No

No

block=5;parse=no

Swift_BlockS

(MQSA

appended)

String

No

No

block=6;parse=no

Chapter

3.

Business

objects

47

The

following

rules

apply

to

the

top-level

business

object:

v

The

name

of

the

top-level

object

must

be

constructed

in

the

following

way:

BOPrefix_MTMessageType

where:

BOPrefix

=

an

attribute

of

the

meta-object

(MO).

For

further

information

on

the

meta-object,

see

“Static

meta-object”

on

page

24.

_MT

=

a

constant

string.

MessageType

=

an

attribute

of

block

2

of

the

SWIFT

message.

For

further

information,

see

All

Things

SWIFT:

the

SWIFT

User

Handbook

An

example

of

a

top-level

business

object

name

is

Swift_MT502.

v

UUID,

prepended

to

the

message

by

the

MQSA,

is

represented

with

a

String

attribute

v

Blocks

1-4

are

represented

with

single-cardinality

containers

v

Block

5

is

a

string

attribute,

and

is

not

extracted

from

the

message

by

the

SWIFT

data

handler.

Note:

It

is

possible

to

create

business

objects

for

block

5

and

block

S

using

block

3

as

a

template.

See

Table

19

for

the

attribute

application-specific

information.

Figure

6

shows

a

business

object

definition

for

a

top-level

business

object

of

a

SWIFT

message.

This

Msg

BO

definition

was

created

in

the

WebSphere

development

environment.

The

application-specific

information

contains

the

block

number

and

parsing

parameters

for

each

attribute.

For

further

information

on

attribute

application-specific

text,

see

Table

19.

The

Swift_

attributes

correspond

to

child

business

objects

discussed

in

the

following

sections.

For

a

full

specification

of

this

sample

business

object

definition,

see

“Sample

top-level

Business

Object

(Msg

BO)

definition”

on

page

49.

Of

special

note

is

the

type

for

the

data

block

attribute,

Swift_MT502Data,

which

indicates

SWIFT

message

type

502,

an

order

to

buy

or

sell.

This

attribute

corresponds

to

a

child

object

of

the

top-level

Msg

BO

that

represents

block

4

of

the

SWIFT

message.

The

child

object

is

a

message

data

business

object

(MsgData

BO).

All

SWIFT

top-level

business

object

definitions

are

identical

to

that

shown

in

Figure

6

with

one

exception:

Block

4,

shown

as

Swift_MT502Data,

reflects

the

actual

data

definition

of

a

specific

SWIFT

message.

Figure

6.

Definition

for

top-level

business

object

of

a

SWIFT

message

48

Adapter

for

SWIFT

User

Guide

Note:

To

create

a

top-level

business

object

definition

for

a

SWIFT

message,

you

must

start

Business

Object

Designer

Express

and

then

create

all

the

child

objects

first.

Sample

top-level

Business

Object

(Msg

BO)

definition

This

section

presents

a

sample

definition

of

a

top-level

business

object,

or

Msg

BO,

for

a

SWIFT

message

of

type

MT502—an

order

to

buy

or

sell.

[BusinessObjectDefinition]

Name

=

Swift_MT502

Version

=

1.1.0

[Attribute]

Name

=

UUID

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=0;parse=no

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_01Header

Type

=

Swift_BasicHeader

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=1;parse=fixlen

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_02Header

Type

=

Swift_ApplicationHeader

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=2;parse=fixlen

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_03Header

Type

=

Swift_UserHeader

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=3;parse=delim

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_MT502Data

Type

=

Swift_MT502Data

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Chapter

3.

Business

objects

49

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=4;parse=field

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_05Trailer

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=5;parse=no

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_BlockS

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

block=6;parse=no

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

Block

1

business

object

structure

The

MsgBlck

BO,

Swift_BasicHeader,

has

the

format

and

attributes

shown

in

Table

21.

The

SWIFT

data

handler

converts

each

of

the

SWIFT

fields

in

this

block

into

attributes

in

the

Swift_BasicHeader

business

object.

Note

that

there

is

no

attribute

application-specific

information

for

this

business

object.

Note:

Only

attribute

properties

of

consequence

are

shown

in

Table

21.

For

a

listing

of

all

attribute

properties,

see

“Sample

block

1

business

object

definition”

on

page

51.

Table

21.

Block

1

business

object

structure

Name

Type

Key

Foreign

key

Required

Cardinality

Default

Max

length

BlockIdentifier

String

Yes

No

Yes

1

1:a

2

ApplicationIdentifier

String

No

No

Yes

1

1

ServiceIdentifier

String

No

No

Yes

1

2

50

Adapter

for

SWIFT

User

Guide

Table

21.

Block

1

business

object

structure

(continued)

Name

Type

Key

Foreign

key

Required

Cardinality

Default

Max

length

LTIdentifier

String

No

No

Yes

1

12

SessionNumber

String

No

No

Yes

1

4

SequenceNumber

String

No

No

No

1

4

a

The

BlockIdentifier

attribute

includes

the

delimiter

”:”

as

in

“1:”.

See

Table

19

for

the

attribute

application-specific

information.

Figure

7

shows

a

block

1

business

object

definition

that

has

been

manually

created

in

a

WebSphere

development

environment.

Each

attribute

name

(ApplicationIdentifier,

ServiceIdentifier,

and

so

on)

corresponds

to

a

field

in

this

SWIFT

message

block.

For

further

information

on

this

SWIFT

message

block,

see

Appendix

C,

“SWIFT

message

structure,”

on

page

111,

and

All

Things

SWIFT:

the

SWIFT

User

Handbook.

Specify

Type

String

for

each

named

attribute.

Note

that

there

is

no

attribute

application-specific

information

for

the

components

of

this

business

object.

Note:

Be

sure

to

specify

the

correct

MaxLength

values

for

the

attribute

names

in

this

fixed-length

block

business

definition.

Note:

To

create

a

block

1

business

object

definition

for

a

SWIFT

message,

start

Business

Object

Designer

Express

and

then

enter

values

for

the

attributes

shown

in

“Sample

block

1

business

object

definition”

on

page

51.

Sample

block

1

business

object

definition

This

section

presents

a

sample

definition

of

a

block

1

business

object

for

a

SWIFT

message

of

type

MT502—an

order

to

buy

or

sell.

[BusinessObjectDefinition]

Name

=

Swift_BasicHeader

Version

=

1.1.0

[Attribute]

Name

=

BlockIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

2

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

true

Figure

7.

Block

1

business

object

definition

Chapter

3.

Business

objects

51

DefaultValue

=

1:

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ApplicationIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ServiceIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

2

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

LTIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

12

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

SessionNumber

Type

=

String

Cardinality

=

1

MaxLength

=

4

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

SequenceNumber

Type

=

String

Cardinality

=

1

MaxLength

=

6

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

52

Adapter

for

SWIFT

User

Guide

Block

2

business

object

structure

The

block

2

MsgBlk

BO,

Swift_ApplicationHeader,

has

the

format

and

attributes

shown

in

Table

22.

The

SWIFT

data

handler

converts

each

of

the

SWIFT

fields

in

this

block

into

attributes

in

the

Swift_ApplicationHeader

business

object.

Note

that

there

is

no

attribute

application-specific

information

for

this

business

object.

Note:

Only

attribute

properties

of

consequence

are

shown

in

Table

22.

For

a

listing

of

all

attribute

properties,

see

“Sample

block

2

business

object

definition”

on

page

54.

Table

22.

Block

2

business

object

structure

Name

Type

Key

Required

Cardinality

Default

Max

length

Block

Identifier

String

No

Yes

1

2:a

2

IOIdentifier

String

No

Yes

1

1

MessageType

String

No

Yes

1

3

I_ReceiverAddress

String

No

Yes

1

12

I_MessagePriority

String

No

Yes

1

1

I_DeliveryMonitoring

String

No

No

1

1

I_ObsolescencePeriod

String

No

No

1

3

O_InputTime

String

No

Yes

1

4

O_MessageInputReference

String

No

Yes

1

28

O_OutputDate

String

No

No

1

6

O_OutputMessagePriority

String

No

No

1

6

a

The

BlockIdentifier

attribute

includes

the

delimiter

”:”

as

in

“2:”.

The

first

three

attributes

in

Table

22

are

I/O

attributes.

Attributes

that

start

with

I_

are

input

attributes

and

are

populated

during

SWIFT-to-business-object

conversion.

Attributes

that

start

with

O_

are

output

attributes

and

are

populated

in

business-object-to-SWIFT

conversions.

The

CxIgnore

property

must

be

set

for

business-object-to-SWIFT

conversions.

See

Table

19

for

the

attribute

application-specific

information.

Figure

8

shows

a

block

2

business

object

definition

that

has

been

manually

created

in

a

WebSphere

development

environment.

Each

attribute

name

(BlockIdentifier,

IOIdentifier,

and

so

on)

corresponds

to

a

field

in

this

SWIFT

message

block.

The

definition

shown

is

for

the

input

attributes

(

I_)

are

populated

during

SWIFT-to-business-object

conversion.

For

further

information

on

this

SWIFT

message

block,

see

Appendix

C,

“SWIFT

message

structure,”

on

page

111,

and

All

Things

SWIFT:

the

SWIFT

User

Handbook.

Specify

type

String

for

each

named

attribute.

Note

that

there

is

no

attribute

application-specific

information

for

the

components

of

this

business

object.

Note:

Be

sure

to

specify

the

correct

MaxLength

values

for

the

attribute

names

in

this

fixed-length

block

business

definition.

Chapter

3.

Business

objects

53

Note:

To

create

a

block

2

business

object

definition

for

a

SWIFT

message,

start

Business

Object

Designer

Express

and

then

enter

values

for

the

attributes

shown

in

“Sample

block

2

business

object

definition”

on

page

54.

Sample

block

2

business

object

definition

This

section

presents

a

sample

definition

of

a

block

2

business

object

for

a

SWIFT

message

of

type

MT502—an

order

to

buy

or

sell.

[BusinessObjectDefinition]

Name

=

Swift_ApplicationHeader

Version

=

1.1.0

[Attribute]

Name

=

BlockIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

2

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

DefaultValue

=

2:

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

IOIdentifier

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

DefaultValue

=

O

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

MessageType

Type

=

String

Cardinality

=

1

MaxLength

=

3

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Figure

8.

Block

2

business

object

definition

54

Adapter

for

SWIFT

User

Guide

Name

=

O_InputTime

Type

=

String

Cardinality

=

1

MaxLength

=

4

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

O_MessageInputReference

Type

=

String

Cardinality

=

1

MaxLength

=

28

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

O_OutputDate

Type

=

String

Cardinality

=

1

MaxLength

=

6

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

O_OutputTime

Type

=

String

Cardinality

=

1

MaxLength

=

4

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

O_OutputMessagePriority

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

I_ReceiverAddress

Type

=

String

Cardinality

=

1

MaxLength

=

12

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

I_MessagePriority

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

Chapter

3.

Business

objects

55

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

I_DeliveryMonitoring

Type

=

String

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

I_ObsolescencePeriod

Type

=

String

Cardinality

=

1

MaxLength

=

3

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

Block

3

business

object

structure

The

block

3

MsgBlk

BO,

Swift_UserHeader,

has

the

format

and

attributes

shown

in

Table

23.

Note

that

there

is

attribute

application-specific

information

for

this

business

object:

the

Tag

parameter.

For

Tag

parameters

see

Table

19.

Note:

Only

attribute

properties

of

consequence

are

shown

in

Table

23.

For

a

listing

of

all

attribute

properties,

see

“Sample

block

3

business

object

definition”

on

page

57.

Table

23.

Block

3

business

object

structure

Name

Type

Key

Foreign

Required

Cardinality

Application

specific

information

Max

length

Tag103

String

Yes

No

No

1

Tag=103

6

Tag113

String

No

No

No

1

Tag=113

6

Tag108

String

No

No

No

1

Tag=108

6

Tag119

String

No

No

No

1

Tag=119

6

Tag115

String

No

No

No

1

Tag=115

6

Figure

9

shows

a

block

3

business

object

definition

that

has

been

manually

created

in

a

WebSphere

development

environment.

Each

attribute

name

(Tag103,

Tag113,

and

so

on,)

corresponds

to

a

field

in

this

SWIFT

message

block.

For

further

information

on

this

SWIFT

message

block,

see

Appendix

C,

“SWIFT

message

56

Adapter

for

SWIFT

User

Guide

structure,”

on

page

111,

and

All

Things

SWIFT:

the

SWIFT

User

Handbook.

Specify

type

String

for

each

named

attribute.

Note

that

the

application-specific

information

for

the

components

of

this

business

object

are

SWIFT

tags.

Note:

To

create

a

block

3

business

object

definition

for

a

SWIFT

message,

start

Business

Object

Designer

Express

and

then

enter

values

for

the

attributes

shown

in

“Sample

block

3

business

object

definition”

on

page

57.

Sample

block

3

business

object

definition

This

section

presents

a

sample

definition

of

a

block

3

business

object

for

a

SWIFT

message

of

type

MT502—an

order

to

buy

or

sell.

[BusinessObjectDefinition]

Name

=

Swift_UserHeader

Version

=

1.1.0

[Attribute]

Name

=

Tag103

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=103

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Tag113

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=113

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Tag108

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

Figure

9.

Block

3

business

object

definition

Chapter

3.

Business

objects

57

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=108

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Tag119

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=119

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Tag115

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=115

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

Cardinality

=

1

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

Block

4

business

object

structure

SWIFT

block

4

contains

the

body

of

the

SWIFT

message.

Block

4

is

made

up

of

fields

of

message

tags

and

their

contents

on

the

one

hand,

and

on

the

other,

of

sequences

of

message

tags.

This

data

content

makes

the

block

4

business

object

structure

unlike

that

of

blocks

1,

2,

and

3.

The

block

4

business

object

is

the

message

data

business

object

(MsgData

BO).

Every

tag

and

sequence

in

a

SWIFT

message

is

modeled

as

a

child

business

object

of

the

MsgData

BO.

Accordingly,

a

MsgData

BO

has

child

objects

of

two

types:

field

business

objects

(MsgField

BO)

and

sequence

business

objects

(MsgSeq

BO).

These

business

objects

reflect

how

the

SWIFT

data

is

formatted

in

block

4.

More

specifically,

attributes

in

these

business

objects

model

the

content

(message

tags

and

their

content)

and

order

(sequence)

that

is

specified

in

a

SWIFT

message

format

specification.

The

sequence

of

the

message

tags

is

crucial

if

the

business

object

definition

is

to

faithfully

represent

the

SWIFT

message.

For

further

information

on

MsgField

BOs

and

MsgSeq

BOs,

see

“Sequence

and

field

business

objects”

on

page

62.

As

an

example,

view

the

format

specification

from

the

SWIFT

Standards

Release

Guide

for

MT502,

an

order

to

buy

or

sell.Figure

10

below

shows

the

portion

of

a

58

Adapter

for

SWIFT

User

Guide

business

object

definition

that

corresponds

to

MT502.

The

business

object

definition

reflects

the

structure

of

the

message

tags

and

sequences

in

the

SWIFT

message:

v

The

Status—M

(mandatory)

or

O

(optional)—field

in

the

SWIFT

message

is

mapped

to

the

Required

property

in

the

business

object

definition.

For

example,

the

status

of

SWIFT

Tag

98a

(shown

in

Figure

10)

is

O

or

optional;

Figure

10

shows

the

corresponding

business

object

attribute,

Preparation_DateTime

(of

type

Swift_Tag_98),

for

which

the

Required

property

is

not

checked.

v

The

Tag,

Qualifier,

and

Content/Options

fields

from

the

SWIFT

message

are

mapped

as

attribute

application-specific

text

in

the

business

object

definition.

For

example,

in

the

SWIFT

message

shown

in

Figure

10

Start

of

Block

is

Tag16R

with

Content

of

GENL.

The

corresponding

entry

shown

in

Figure

10

is

the

attribute

Start_Of_Block

of

type

Swift_Tag_16

with

application-specific

information

property

parameters

that

identify

the

Tag,

the

Tag’s

letter,

and

Content

(Tag=16;Letter=R;Content=GENL).

v

Data

formats

are

often

indicated

in

the

Content/Options

field

in

a

SWIFT

message.

For

example,

Figure

10

shows

the

sender’s

reference

for

“Mandatory

Sequence

A

General

Information”

as

Tag20C,

with

a

SEME

qualifier

and

Content

consisting

of

data

format

instructions

(:4!c[/4!c]).

Figure

10

shows

the

corresponding

attribute

application-specific

text:

only

the

Tag

and

Letter

are

shown

in

the

AppSpecInfo

field

(Tag=20;Letter=C).

v

Repeating

sequences

in

SWIFT

messages

are

indicated

by

“---->”

in

the

SWIFT

Format

Specifications

as

shown

in

Figure

10.

Non-repeating

sequences

are

marked

“-----|”.

In

the

business

object

definition,

a

repeating

sequence

is

assigned

cardinality

n.

For

example,

the

repeating

sequence

Tag22F

shown

in

Figure

10

is

mapped

to

the

attribute

Indicator

of

type

Swift_Tag_22

with

a

cardinality

property

of

n.

MsgData

BO

format

The

format

of

a

MsgData

BO

is

summarized

in

the

sections

below.

Figure

10.

Partial

block

4

business

object

definition

Chapter

3.

Business

objects

59

MsgData

BO

name:

The

naming

convention

for

the

MsgData

BO

representing

block

4

of

a

SWIFT

message

is

as

follows:

Swift_MT<message_type>Data

For

example:

Name

=

Swift_MT502Data

MsgData

BO

attribute

names:

Each

attribute

of

the

MsgData

BO

represents

one

of

the

following:

v

a

MsgSeq

BO

v

a

MsgField

BO

Accordingly,

the

attribute

names

are

the

same

as

those

for

MsgSeq

BOs

and

MsgField

BOs.

The

naming

convention

for

MsgField

BO

attributes

is

as

follows:

Swift_<tag_number>_<position_in_the_SWIFT_message>

For

example:

Name

=

Swift_94_1

The

naming

convention

for

MsgSeq

BO

attributes

is

as

follows:

Swift_MT<message_type>_<SWIFT_sequence_name>

For

example:

Name

=

Swift_MT502_B

For

further

information

see

“Sequence

business

object

structure”

on

page

63

and

“Field

business

object

definitions”

on

page

66.

MsgData

BO

attribute

types:

The

type

for

MsgData

attributes

is

as

follows:

For

MsgField

BO

attributes:

Swift_Tag_<tag_number>

For

example:

Type

=

Swift_Tag_94

For

MsgSeq

BO

attributes:

Swift_MT<message_type>_<SWIFT_sequence_name>

For

example:

Type

=

Swift_MT502_B

MsgData

BO

attribute

ContainedObjectVersion:

The

contained

object

version

for

the

MsgData

BO

as

well

as

for

the

its

MsgSeq

BO

attributes

is

1.1.0.

For

example:

[Attribute]

Name

=

Swift_MT502_B

Type

=

Swift_MT502_B

...

ContainedObjectVersion

=

1.1.0

...

[End]

60

Adapter

for

SWIFT

User

Guide

Note:

MsgField

BO

attributes

are

simple,

and

have

no

ContainedObjectVersion.

MsgData

BO

attribute

relationship:

The

relationship

attribute

property

for

MsgData

BO

and

its

MsgSeq

BO

attributes

is

Containment.

For

example:

[Attribute]

Name

=

Swift_MT502Data

Type

=

Swift_MT502Data

...

Relationship

=

Containment

...

[End]

MsgData

BO

attribute

cardinality:

The

MsgData

BO

and

its

MsgSeq

BO

attributes

have

a

cardinality

property

of

n.

MsgField

BO

attributes

that

represent

repeating

fields

also

have

cardinality

n.

All

others

attributes

have

cardinality

1.

For

example:

[Attribute]

Name

=

Swift_16_1

Type

=

Swift_Tag_16

...

Cardinality

=

n

...

[End]

MsgData

BO

attribute

IsKey:

Each

MsgData

BO

definition

must

contain

at

least

one

attribute

defined

as

the

key

attribute

(IsKey

=

true).

The

rule

is

that

the

first

single

cardinality

attribute

in

each

BO

definition

must

be

defined

as

key

attribute.

For

example:

[Attribute]

Name

=

Swift_16.1

Type

=

Swift_Tag_16

...

Cardinality

=

1

IsKey

=

true

[End]

MsgData

BO

attribute

AppSpecificInfo:

In

MsgData

BO

definitions,

only

MsgField

BO

attributes

have

application-specific

information;

this

property

is

always

null

for

MsgSeq

BO

attributes.

The

convention

for

application-specific

information

for

MsgField

BO

attributes

is

as

follows:

Tag=nn;Letter=xx;Content=string

where

nn

is

the

SWIFT

tag

number

of

the

field,

xx

is

one

or

a

list

of

supported

letter

options

for

the

tag,

and

string

is

the

value

of

the

qualifier

for

a

non-generic

field

as

described

in

Table

19

on

page

45.

For

example:

[Attribute]

Name

=

Swift_16_22

Type

=

Swift_Tag_16

Chapter

3.

Business

objects

61

...

AppSpecificInfo

=

Tag=16;Letter=S;Content=OTHRPRTY

...

[End]

When

MsgField

BO

attributes

appear

in

MsgSeq

BOs

and

the

application

specific

information

indicates:

...;Union=True

The

MsgField

child

object—a

TagUnion

business

object

and

its

child

objects,

TagLetterOption

objects—will

be

populated

instead

of

the

DataField

attribute.

For

information

on

TagUnion

business

objects,

see

“Field

business

object

definitions”

on

page

66.

Sequence

and

field

business

objects

As

noted

above,

the

connector

models

sequences

and

tags

in

SWIFT

messages

as

sequence

business

objects

(MsgSeq

BO)

and

field

business

objects

(MsgField

BO),

respectively.

Figure

11

illustrates

the

hierarchical

relationship

of

these

business

objects.

Figure

12

shows

part

of

a

definition

for

a

SWIFT

message

(MT502)

that

illustrates

a

sequence

containing

field

and

sequence

attributes.

The

sequence

attribute

Swift_MT02_B_Order_Details

not

only

includes

several

attributes

of

type

Tag

(for

example,

Swift_Tag_16,

Swift_Tag_94),

but

also

the

subsequence

Swift_MT502_B1_Price.

This

subsequence

is

a

repeating

optional

sequence,

and

its

properties

reflect

this

(Required=

no;

Cardinality=n).

Note

that

the

sequences

contain

no

application-specific

information.

Figure

11.

Field

and

sequence

business

objects

in

the

(block

4)

MsgData

BO

62

Adapter

for

SWIFT

User

Guide

Sequence

business

object

structure

As

shown

in

Figure

13,

each

sequence

business

object

(MsgSeq

BO)

attribute

indicates

one

of

the

following:

v

another

MsgSeq

BO,

or

subsequence

v

a

MsgField

BO

There

is

no

limit

to

the

number

of

subsequences

that

a

MsqSeq

BO

can

nest.

Figure

14

shows

another

excerpt

of

a

MsgSeq

BO.

In

this

excerpt,

the

Swift_Tag_

attributes

represent

MsgField

BOs.

The

Swift_MT502_A1_Linkages

attribute

is

for

a

child

object

that

is

a

subsequence

MsgSeq

BO.

Figure

12.

A

Sequence

containing

tag

and

subsequence

attributes

MsgSeq BO

MsgSeq attribute

MsgField BO

MsgSeq BO
MsgField attribute

MsgField BO

Figure

13.

Field

and

Subsequence

Business

Objects

in

the

MsgSeq

BO

Chapter

3.

Business

objects

63

The

following

rules

apply

to

sequence

business

objects:

v

A

subsequence

business

object

is

an

attribute

of

a

particular

sequence

business

object

type.

v

A

collection

of

more

than

one

repeating

field

is

treated

as

a

subsequence.

v

The

application-specific

information

of

a

sequence

attribute

is

always

NULL.

For

a

sample

sequence

business

object,

see

“Sample

sequence

business

object

definition”

on

page

64.

MsgSeq

BO

format

Like

a

MsgData

BO,

a

MsgSeq

BO

consists

of

attributes

that

are

either

MsgSeq

BOs

or

MsgField

BOs.

For

information

on

the

format

of

these

attributes,

see

“MsgData

BO

format”

on

page

59.

Sample

sequence

business

object

definition

This

section

presents

a

sample

definition

of

a

MsgSeq

BO

for

a

SWIFT

message

of

type

MT502—an

order

to

buy

or

sell.

The

definition

is

of

a

Mandatory

Sequence

A

Order

to

Buy

or

Sell.

[BusinessObjectDefinition]

Name

=

Swift_MT502_A_General_Information

Version

=

1.0.0

[Attribute]

Name

=

Start_Of_Block

Type

=

Swift_Tag_16

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

Tag=16;Letter=R;Content=GENL

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Senders_Reference

Type

=

Swift_Tag_20

ContainedObjectVersion

=

1.0.0

Figure

14.

Excerpt

from

a

sequence

business

object

(MsgSeq

BO)

64

Adapter

for

SWIFT

User

Guide

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

Tag=20;Letter=C

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Function_Of_The_Message

Type

=

Swift_Tag_23

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

Tag=23;Letter=G

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Preparation_DateTime

Type

=

Swift_Tag_98

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Tag=98;Letter=A|C

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Indicator

Type

=

Swift_Tag_22

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

n

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

Tag=22;Letter=F

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_MT502_A1_Linkages

Type

=

Swift_MT502_A1_Linkages

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

n

MaxLength

=

1

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

End_Of_Block

Type

=

Swift_Tag_16

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

1

Chapter

3.

Business

objects

65

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

true

AppSpecificInfo

=

Tag=16;Letter=S;Content=GENL

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

Field

business

object

definitions

WebSphere

represents

every

SWIFT

tag

as

a

field

business

object

(MsgField

BO).

Each

MsgField

BO

is

modeled

using

the

SWIFT

generic

field

structure,

even

if

the

field

is

non-generic.

WebSphere

uses

two

additional

business

object

models

to

represent

the

combination

of

letters

and

options

used

to

represent

and

combine

SWIFT

message

components

as

subfields

in

business

objects:

v

Tag

union

business

object

(TagUnion

BO)

This

is

a

child

object

of

the

MsgField

BO.

A

TagUnion

BO

contains

all

possible

letter

options

for

a

specific

tag,

and

is

not

specific

to

a

particular

message

type.

v

Tag

letter

option

business

object

(TagLetterOption

BO)

This

is

a

letter

option

child

object

of

the

TagUnion

BO

that

defines

the

content

of

the

subfield

as

well

as

its

format

including

delimiters.

MsgField

BO

format

As

shown

in

Figure

15,

each

MsgField

BO

contains

five

attributes,

including

one

and

only

one

TagUnion

BO,

with

the

data

type

shown

in

parentheses

()

below:

The

content

and

order

of

all

subfields

other

than

the

SWIFT

Qualifier

and

Issuer

Code

(IC)

are

captured

in

the

child

object

of

DataField,

which

is

the

TagUnion

BO

MsgField BO

TagUnion BO

TagLetterOption attribute

TagLetterOption BO

Letter attribute
Qualifier attribute
IC Attribute
Data Attribute
DataField Attribute

TagLetterOption BO

Figure

15.

Attributes

and

business

objects

in

the

MsgField

BO

66

Adapter

for

SWIFT

User

Guide

and

its

child

objects,

TagLetterOption

BOs.

The

attributes

and

business

objects

shown

in

Figure

15

are

discussed

in

the

section

below.

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

names:

The

naming

convention

for

a

MsgField

BO

is

as

follows:

Swift_Tag_<N>

where

N

stands

for

the

message

number.

For

example:

Name

=

Swift_Tag_22

The

naming

convention

for

a

TagUnion

BO

is

as

follows:

Swift_Tag_Union_<tag_number>

where

tag_number

is

the

numeric

representation

of

tag

number.

For

example:

Name

=

Swift_Tag_Union_20

The

naming

convention

for

a

TagLetterOption

BO

is

as

follows:

Swift_Tag_Union_<tag_number>_Opt_[<letter_option>]

where

tag_number

is

the

numeric

representation

of

tag

number

and

[<letter_option>]

is

the

letter

option

when

a

tag

is

associated

with

a

letter.

If

the

tag

has

no

letter

associated

with

it,

then

the

name

ends

at

Opt.For

example:

Name

=

Swift_Tag_Union_20_Opt_C

MsgField

BO,

TagUnion

BO,

and

TagLetter

BO

Attribute

names:

The

names

of

the

five

attributes

in

a

MsgField

BO

are

as

follows:

v

Letter

v

Qualifier

v

IC

v

Data

v

DataField

The

names

of

attributes

in

TagUnion

BOs

are

as

follows:

Swift_<tag_number>_[<letter_option>]

where

tag_number

is

the

numeric

representation

of

the

tag

number

and

the

square

brackets

signify

that

the

letter

is

appended

only

when

it

is

associated

with

the

tag.

For

example:

Swift_20_C

The

name

of

the

attribute

in

TagLetterOption

BOs

is

the

concatenation

of

words

in

the

subfield

name

shown

in

the

SWIFT

format

specification

table.

The

first

letter

of

each

word

in

the

concatenated

string

is

always

capitalized,

with

subsequent

letters

in

the

word

appearing

in

lowercase,

regardless

of

how

the

words

are

spelled

in

the

SWIFT

format

specification.

Spaces

and

non-alphabetic

symbols

are

left

out

of

the

concatenated

name.

If

a

field

has

no

subfield,

the

word

Subfield

is

used

as

an

attribute

name.

For

example,

for

the

subfield

“Proprietary

Code”

in

95R,

the

corresponding

attribute

name

in

the

definition

of

TagLetterOption

BO

Swift_Tag_Union_95_Opt_R

is

as

follows:

Name

=

ProprietaryCode

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

attribute

types:

The

type

for

MsgField

attributes

is

as

follows:

Chapter

3.

Business

objects

67

v

Letter

(String)

v

Qualifier

(String)

v

Issuer

Code

(String)

v

Data

(String)

v

DataField

(TagUnion_BO)

For

example,

in

a

MsgField

BO

definition,

the

type

for

a

Swift_Tag_20

attribute

would

be

listed

as

follows:

[Attribute]

Name

=

DataField

Type

=

Swift_Tag_Union_20

The

type

for

attributes

in

the

TagUnion

BO

is

the

name

of

the

TagLetterOption

BO

child

object.

For

example,

in

a

TagUnion

BO

definition

for

Swift_Tag_Union_20,

the

type

for

the

TagLetterOption

attribute

is

as

follows:

[Attribute]

Name

=

Swift_20_C

Type

=

Swift_Tag_Union_20_Opt_C

The

type

for

attributes

in

TagLetterOption

BOs

is

always

String.

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

ContainedObjectVersion:

The

contained

object

version

for

the

MsgField

BO,

the

TagUnion

BO,

and

the

TagLetterOption

BO

is

1.1.0.

For

example:

as

well

as

for

the

its

MsgSeq

BO

attributes

is

1.1.0.

For

example:

[Attribute]

Name

=

Swift_20_C

Type

=

Swift_Tag_Union_20_Opt_C

...

ContainedObjectVersion

=

1.1.0

...

[End]

Note:

MsgField

BO

attributes

are

simple,

and

have

no

ContainedObjectVersion.

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

attribute

cardinality:

The

cardinality

of

attributes

in

TagUnion

BOs

and

TagLetterOption

BOs

is

always

set

to

1.

For

example:

[Attribute]

Name

=

Swift_20_C

Type

=

Swift_Tag_Union_20_Opt_C

...

Cardinality

=

1

...

[End]

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

attribute

IsKey:

In

each

MsgField

BO,

the

attribute

Letter

must

be

defined

as

the

key

attribute.

For

example:

68

Adapter

for

SWIFT

User

Guide

[Attribute]

Name

=

Letter

Type

=

String

IsKey

=

true

...

[End]

The

first

attribute

of

a

TagUnionBO

is

defined

as

key.

The

first

attribute

of

TagLetterOption

BO

is

defined

as

key.

TagLetterOption

BO

attribute

AppSpecificInfo:

The

AppSpecificInfo

attribute

definition

of

a

TagLetterOption

BO

provides

crucial

SWIFT

message

formatting

information

for

business

object

subfields.

The

AppSpecificInfo

attribute

must

contain

the

following

information:

Format=***;Delim=$$$

where

stands

for

the

SWIFT

subfield

format

specification,

which

excludes

delimiter

information

$$$

stands

for

one

or

more

letters

that

constitute

the

delimiter

between

the

current

subfield

and

the

next

subfield.

When

the

delimiters

are

CrLf,

the

symbol

string

CrLf

specifies

that

a

carriage

return

is

immediately

followed

by

a

line

feed.

For

example,

the

AppSpecificInfo

attribute

for

a

TagLetterOption

BO,

Swift_Tag_Union_95_Opt_C,

might

appear

as

follows:

[Attribute]

Name

=

CountryCode

Type

=

String

...

AppSpecificInfo

=

Format=2!a;Delim=/

...

[End]

For

a

sample

object

and

attribute

definitions,

see

“Sample

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

definitions”

on

page

69.

Sample

MsgField

BO,

TagUnion

BO,

and

TagLetterOption

BO

definitions

This

section

presents

a

sample

definition

of

a

MsgField

BO

definition

that

illustrates

TagUnion

and

TagLetterOption

attributes

and

objects.

The

sample

MsgField

BO,

Swift_Tag_21,

is

as

follows:

[BusinessObjectDefinition]

Name

=

Swift_Tag_21

Version

=

3.0.0

[Attribute]

Name

=

Letter

Chapter

3.

Business

objects

69

Type

=

String

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Qualifier

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

IC

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Data

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

DataField

Type

=

Swift_Tag_Union_21

ContainedObjectVersion

=

3.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Delete

70

Adapter

for

SWIFT

User

Guide

[End]

[Verb]

Name

=

Retrieve

[End]

[Verb]

Name

=

Update

[End]

[End]

Note

that

the

DataField

attribute

indicates

a

TagUnion

BO,

whose

name

is

defined

by

the

Type

attribute,

Swift_Tag_Union_21.

Here

is

that

TagUnion

BO,

which

lists

as

attributes

all

the

letter

options

for

Swift_Tag_21.

[BusinessObjectDefinition]

Name

=

Swift_Tag_Union_21

Version

=

1.1.0

[Attribute]

Name

=

Swift_21

Type

=

Swift_Tag_Union_21_Opt

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_A

Type

=

Swift_Tag_Union_21_Opt_A

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_B

Type

=

Swift_Tag_Union_21_Opt_B

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_C

Type

=

Swift_Tag_Union_21_Opt_C

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

Chapter

3.

Business

objects

71

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_D

Type

=

Swift_Tag_Union_21_Opt_D

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_E

Type

=

Swift_Tag_Union_21_Opt_E

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_F

Type

=

Swift_Tag_Union_21_Opt_F

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_G

Type

=

Swift_Tag_Union_21_Opt_G

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_N

Type

=

Swift_Tag_Union_21_Opt_N

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

72

Adapter

for

SWIFT

User

Guide

[End]

[Attribute]

Name

=

Swift_21_P

Type

=

Swift_Tag_Union_21_Opt_P

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

Swift_21_R

Type

=

Swift_Tag_Union_21_Opt_R

ContainedObjectVersion

=

1.0.0

Relationship

=

Containment

Cardinality

=

1

MaxLength

=

0

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

[End]

Note

that

IsKey

=

true

for

the

first

attribute

in

the

TagUnion

BO

above,

Swift_21.

The

attribute

Swift_21_A

indicates

a

child

object

TagLetterOption

BO.

This

child

object’s

name

is

defined

by

the

attribute’s

Type

attribute,

Swift_Tag_Union_21_Opt_A.

Here

is

that

TagLetterOption

BO:

[BusinessObjectDefinition]

Name

=

Swift_Tag_Union_21_Opt_A

Version

=

1.0.0

[Attribute]

Name

=

ReferenceOfTheIndividualAllocation

Type

=

String

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Format=16x

IsRequiredServerBound

=

false

Chapter

3.

Business

objects

73

[End]

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

Note

that

the

only

attribute

of

this

TagLetterOption

BO,

ReferenceOfTheIndividualAllocation,

is

a

concatenation

of

the

corresponding

SWIFT

subfield

name

for

this

tag

option,

with

the

first

letter

of

each

word

in

uppercase.

The

Qualifier

and

Issuer

Code

subfields

are

excluded

from

the

attribute

of

the

TagLetterOption

BOs.

The

IsKey

property

is

also

true

for

this

attribute.

Note:

A

TagUnion

BO

contains

both

generic

and

non-generic

fields.

A

non-generic

field

has

no

subfields.

The

TagLetterOption

BO

can

represent

simple

and

complex

SWIFT

field

and

subfield

formatting.

Here

is

a

business

object

definition

for

Swift_Tag_Union_22_Opt,

a

TagLetterOption

BO

whose

attributes

and

application-specific

information

specify

the

subfield

formatting

for

SWIFT

Field

22,

a

function

for

a

Common

Reference

between

a

sender

and

receiver.

Notice

that

the

AppSpecificInfo

for

Function

specifies

the

format

and

the

delimiter

with

which

to

parse

the

data

in

the

SWIFT

message.

CommonReference

is

the

concatenation

of

the

subfield

name.

The

AppSpecificInfo

for

CommonReference

corresponds

to

that

shown

in

Figure

16.

[BusinessObjectDefinition]

Name

=

Swift_Tag_Union_22_Opt

Version

=

1.0.0

[Attribute]

Name

=

Function

Type

=

String

MaxLength

=

255

IsKey

=

true

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Format=8a;Delim=/

IsRequiredServerBound

=

false

[End]

[Attribute]

Name

=

CommonReference

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

AppSpecificInfo

=

Format=4!a2!c4!n4!a2!c

IsRequiredServerBound

=

false

[End]

74

Adapter

for

SWIFT

User

Guide

[Attribute]

Name

=

ObjectEventId

Type

=

String

MaxLength

=

255

IsKey

=

false

IsForeignKey

=

false

IsRequired

=

false

IsRequiredServerBound

=

false

[End]

[Verb]

Name

=

Create

[End]

[Verb]

Name

=

Retrieve

[End]

[End]

Figure

16.

SWIFT

field

definition

Chapter

3.

Business

objects

75

76

Adapter

for

SWIFT

User

Guide

Chapter

4.

SWIFT

Data

Handler

v

“Configuring

the

SWIFT

data

handler”

v

“Configuring

the

data

handler

child

meta-object”

v

“Converting

business

objects

to

SWIFT

messages”

on

page

78

v

“Converting

SWIFT

messages

to

business

objects”

on

page

79

The

SWIFT

data

handler

is

a

data-conversion

module

whose

primary

roles

are

to

convert

business

objects

into

SWIFT

messages

and

SWIFT

messages

into

business

objects.

Both

default

top-level

data-handler

meta-objects

(connector

and

server)

support

the

swift

MIME

type

and

therefore

support

use

of

the

SWIFT

data

handler.

This

chapter

describes

how

the

SWIFT

data

handler

processes

SWIFT

messages.

It

also

discusses

how

to

configure

the

SWIFT

data

handler.

Configuring

the

SWIFT

data

handler

To

configure

a

SWIFT

data

handler

for

use

with

the

connector,

you

must

do

the

following:

v

Make

sure

that

the

class

name

of

the

SWIFT

data

handler

is

specified

in

the

connector

properties.

v

Enter

the

appropriate

values

for

the

attributes

of

the

SWIFT

data

handler

child

meta-object.

Note:

For

the

SWIFT

data

handler

to

function

properly,

you

must

also

create

or

modify

business

object

definitions

so

that

they

support

the

data

handler.

For

more

information,

see

“SWIFT

field

structure”

on

page

111.

Configuring

the

connector

meta-object

To

configure

the

connector

to

interact

with

the

SWIFT

data

handler,

make

sure

that

the

connector-specific

property

DataHandlerClassName

has

the

value

com.crossworlds.DataHandlers.swift.SwiftDataHandler.

You

must

set

the

value

of

this

property

before

running

the

connector.

Doing

so

will

enable

the

connector

to

access

the

SWIFT

data

handler

when

converting

SWIFT

messages

to

business

objects

and

vice

versa.

For

further

information,

see

“Connector-specific

properties”

on

page

19.

Configuring

the

data

handler

child

meta-object

For

the

SWIFT

data

handler,

WebSphere

delivers

the

default

meta-object

MO_DataHandler_Default.

This

meta-object

specifies

a

child

attribute

of

type

MO_DataHandler_Swift.

Table

24

describes

the

attributes

in

the

child

meta-object,

MO_DataHandler_SWIFT.

©

Copyright

IBM

Corp.

2004

77

Table

24.

Child

Meta-Object

Attributes

for

the

SWIFT

Data

Handler

Attribute

Name

Description

Delivered

Default

Value

BOPrefix

Prefix

used

by

the

default

NameHandler

class

to

build

business

object

names.

The

default

value

must

be

changed

to

match

the

type

of

the

business

object.

The

attribute

value

is

case-sensitive.

Swift

DefaultVerb

The

verb

used

when

creating

business

objects.

Create

ClassName

Name

of

the

data

handler

class

to

load

for

use

with

the

specified

MIME

type.

The

top-level

data-handler

meta-object

has

an

attribute

whose

name

matches

the

specified

MIME

type

and

whose

type

is

the

SWIFT

child

meta-object.

com.crossworlds.

DataHandlers.swift.

SwiftDataHandler

DummyKey

Key

attribute;

not

used

by

the

data

handler

but

required

by

the

integration

broker.

1

The

Delivered

Default

Value

column

in

Table

24

lists

the

value

that

WebSphere

provides

for

the

default

value

of

the

associated

meta-object

attribute.

You

must

ensure

that

all

attributes

in

this

child

meta-object

have

a

default

value

that

is

appropriate

for

your

system

and

your

SWIFT

message

type.

Also,

make

sure

that

at

least

the

ClassName

and

BOPrefix

attributes

have

default

values.

Note:

Use

Business

Object

Designer

Express

to

assign

default

values

to

attributes

in

this

meta-object.

Business

object

requirements

The

SWIFT

data

handler

uses

business

object

definitions

when

it

converts

business

objects

or

SWIFT

messages.

It

performs

the

conversion

using

the

structure

of

the

business

object

and

its

application-specific

text.

To

ensure

that

business

object

definitions

conform

to

the

requirements

of

the

SWIFT

data

handler,

follow

the

guidelines

described

in

Chapter

3,

“Business

objects,”

on

page

41.

Converting

business

objects

to

SWIFT

messages

To

convert

a

business

object

to

a

SWIFT

message,

the

SWIFT

data

handler

loops

through

the

attributes

in

the

top-level

business

object

in

sequential

order.

It

generates

populated

blocks

of

a

SWIFT

message

recursively

based

on

the

order

in

which

attributes

appear

in

the

business

object

and

its

children.

Attributes

without

a

block

number,

or

with

values

unrecognized

by

the

parser

properties,

are

ignored.

Also

ignored

is

block

0,

the

UUID

header

that

is

added

by

the

MQSA.

The

parse=value

application-specific

information

property

is

used

to

determine

how

to

format

strings.

This

property

parses

the

business

object

as

follows:

v

parse=no;

The

attribute

MUST

be

of

type

String

and

is

formatted

as

{block

number:attribute

value}The

block

number

is

the

value

of

the

block=block

value

application-specific

text

property.

v

parse=fixlen;

The

attribute

must

be

a

single

cardinality

container.

It

is

formatted

as

{block

number:attr0

value

attr1

value....attrn

value}where

attrn

value

is

the

attribute

value

of

the

nth

attribute.

All

CxIgnore

and

CxBlank

attributes

are

IGNORED.

v

parse=delim;

The

attribute

must

be

a

single

cardinality

container.

It

is

formatted

as

{block

number:[Tag:attr1

data]...[Tag:attr1

data]}where:

Tag

is

the

value

of

the

Tag

property

of

attribute

application-specific

text

attrn

data

is

the

value

of

the

attribute.

All

CxIgnore

and

CxBlank

attributes

are

IGNORED.

78

Adapter

for

SWIFT

User

Guide

v

parse=field;

This

setting

can

be

used

only

on

Block

4

messages.

Fields

are

printed

out

in

loop

through

non-CxIgnore

and

non-CxBlank

attributes

of

the

business

object.

–

If

appText

==

NULL

and

the

attribute

is

a

container,

call

printBO(childBO).

Handle

multiple

cardinality

if

required.

–

If

appText

!=

NULL,

call

printFieldObj(),

which

handles

multiple

cardinality

and

calls

printFieldBO()

to

write

out

a

tag.
v

All

fields

are

formatted

as

generic

or

non-generic

fields.

The

tag

number

is

determined

by

the

value

of

the

Tag

business

object

attribute.

All

non-CxIgnore

attributes

of

the

tag

business

object

are

printed

out.

For

more

on

generic

or

non-generic

fields,

see

Appendix

C,

“SWIFT

message

structure,”

on

page

111.

Converting

SWIFT

messages

to

business

objects

All

SWIFT

messages

as

well

as

compliance

with

SWIFT

formats

and

syntax,

are

validated

by

SWIFT

before

being

processed

by

the

SWIFT

data

handler.

The

SWIFT

data

handler

performs

validation

of

business

object

structure

and

compliance

only.

The

SWIFT

data

handler

extracts

data

from

a

SWIFT

message

and

sets

corresponding

attributes

in

a

business

object

as

follows:

1.

The

SWIFT

parser

is

called

to

extract

the

first

4

blocks

(UUID

+

blocks

1

through

3).

For

block

2,

the

SWIFT

application

header,

only

the

input

attributes

are

extracted.

2.

The

SWIFT

data

handler

is

called

to

extract

the

name

of

the

business

object

from

block

2

of

the

SWIFT

message.

3.

The

SWIFT

data

handler

creates

an

instance

of

the

top-level

object.

4.

Based

on

the

application-specific

information

parameters,

the

data

handler

processes

SWIFT

message

blocks.

The

blocks

are

parsed

in

one

of

four

different

ways

v

parse=no;

The

block

data

is

treated

as

type

String

and

not

parsed

out.

v

parse=fixlen;

The

block

data

is

parsed

as

a

fixed-length

structure,

based

on

the

values

of

the

maximum

length

attributes

of

the

block

business

object.

v

parse=delim;

The

block

data

is

parsed

as

{n:data}

delimited

format.

v

parse=field;

This

setting

is

used

only

on

block

4

data.

Fields

are

parsed

as

generic

and

non-generic.
5.

For

block

4

data

(parse=field;)

the

data

handler

either

matches

the

field

returned

from

the

parser

to

a

tag

business

object

attribute,

or

finds

the

sequence

business

object

that

the

field

belongs

to.

a.

If

the

application

specific

information

of

the

attribute

is

NULL,

the

child

business

object

is

a

sequence.

The

data

handler

checks

if

the

first

required

attribute

of

the

child

business

object

matches

the

field:

v

If

it

does

match,

the

data

handler

assigns

the

attribute

multiple

cardinality

and

populates

the

sequence

for

the

child

business

object.

v

If

it

does

not

match,

the

data

handler

skips

to

the

next

attribute

of

the

parent

business

object.
b.

If

application-specific

information

is

not

NULL,

the

child

is

a

tag

business

object.

If

the

field

matches

the

application-specific

information,

it

is

handled

with

the

multiple

cardinality

and

extracted,

with

the

data

handler

setting

the

letter

and

data

attributes

of

the

tag

business

object.
6.

If

a

non-NULL

field

is

returned,

the

field

is

written

to

a

log

and

an

exception

is

thrown.

Chapter

4.

SWIFT

Data

Handler

79

7.

The

data

handler

parses

block

5

of

the

SWIFT

message.

The

application-specific

information

for

this

block

is

always

block=5;

parse=no

and

is

of

type

String.

Block

5

is

treated

as

a

single

string.

80

Adapter

for

SWIFT

User

Guide

Chapter

5.

Troubleshooting

This

chapter

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

connector.

Startup

problems

Problem

Potential

solution

/

explanation

The

connector

shuts

down

unexpectedly

during

initialization

and

the

following

message

is

reported:

Exception

in

thread

"main"

java.lang.NoClassDefFoundError:

javax/jms/JMSException...

Connector

cannot

find

file

jms.jar

from

the

IBM

WebSphere

MQ

Java

client

libraries.

Ensure

that

variable

MQSERIES_JAVA_LIB

in

start_connector.bat

points

to

the

IBM

WebSphere

MQ

Java

client

library

folder.

The

connector

shuts

down

unexpectedly

during

initialization

and

the

following

message

is

reported:

Exception

in

thread

"main"

java.lang.NoClassDefFoundError:

com/ibm/mq/jms/MQConnectionFactory...

Connector

cannot

find

file

com.ibm.mqjms.jar

in

the

IBM

WebSphere

MQ

Java

client

libraries.

Ensure

that

variable

MQSERIES_JAVA_LIB

in

start_connector.bat

points

to

the

IBM

WebSphere

MQ

Java

client

library

folder.

The

connector

shuts

down

unexpectedly

during

initialization

and

the

following

message

is

reported:

Exception

in

thread

"main"

java.lang.NoClassDefFoundError:

javax/naming/Referenceable...

Connector

cannot

find

file

jndi.jar

from

the

IBM

WebSphere

MQ

Java

client

libraries.

Ensure

that

variable

MQSERIES_JAVA_LIB

in

start_connector.bat

points

to

the

IBM

WebSphere

MQ

Java

client

library

folder.

The

connector

reports

MQJMS2005:

failed

to

create

MQQueueManager

for

‘:’

Explicitly

set

values

for

the

following

properties:

HostName,

Channel,

and

Port.

Event

processing

Problem

Potential

solution

/

explanation

The

connector

delivers

all

messages

with

an

MQRFH2

header.

To

deliver

messages

with

only

the

MQMD

WebSphere

MQ

header,

append

?targetClient=1

to

the

name

of

output

queue

URI.

For

example,

if

you

output

messages

to

queue

queue://my.queue.manager/OUT,

change

the

URI

to

queue://my.queue.manager/OUT?targetClient=1.

See

Chapter

2,

“Installing

and

configuring

the

connector,”

on

page

17

for

more

information.

The

connector

truncates

all

message

formats

to

8

characters

upon

delivery

regardless

of

how

the

format

has

been

defined

in

the

connector

meta-object.

This

is

a

limitation

of

the

WebSphere

MQ

MQMD

message

header

and

not

the

connector.

©

Copyright

IBM

Corp.

2004

81

82

Adapter

for

SWIFT

User

Guide

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

the

adapters

in

WebSphere

Business

Integration

Server

Express,

running

on

WebSphere

InterChange

Server

Express.

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator

Express,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

Express

You

configure

connector

properties

from

Connector

Configurator

Express,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator

Express,

refer

to

the

Connector

Configurator

Express

appendix.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

©

Copyright

IBM

Corp.

2004

83

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

Express

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

25

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

Table

25.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

IDL

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS

ICS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

truetrue

Dynamic

Repository

directory

is

<REMOTE>

84

Adapter

for

SWIFT

User

Guide

Table

25.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

ControllerTraceLevel

0-5

0

Dynamic

Repository

directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

IDL

or

JMS

IDL

Component

restart

DuplicateEventElimination

true

or

false

false

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

EnableOidForFlowMonitoring

true

or

false

false

Component

restart

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

crossworlds.queue.

manager

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

directory

is

<REMOTE>

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

true

or

false

false

Component

restart

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

is

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

Appendix

A.

Standard

configuration

properties

for

connectors

85

Table

25.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

true

OADAutoRestartAgent

true

or

false

false

Dynamic

Repository

Directory

is

<REMOTE>

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

is

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

is

<REMOTE>

PollEndTime

HH:MM

(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container

Managed

Events

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

Set

to

<REMOTE>

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS:

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

SourceQueue

Valid

JMS

queue

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

Valid

JMS

queue

name

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

86

Adapter

for

SWIFT

User

Guide

Table

25.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

Transport

is

JMS

SynchronousResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS

WireFormat

CwBO

CwBO

Agent

restart

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

that

you

are

using,

which

is

ICS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Appendix

A.

Standard

configuration

properties

for

connectors

87

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

using

Connector

Configurator

Express

in

this

guide.

ConcurrentEventTriggeredFlows

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator

Express.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

88

Adapter

for

SWIFT

User

Guide

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

ControllerStoreAndForwardMode

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

WebSphere

InterChange

Server

Express.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

IDL

for

CORBA

IIOP

or

JMS

for

Java

Messaging

Service.

The

default

is

IDL.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

IDL.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator

Express.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

running

on

WebSphere

InterChange

Server

Express.

Appendix

A.

Standard

configuration

properties

for

connectors

89

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

EnableOidForFlowMonitoring

When

you

set

this

property

to

true,

the

adapter

framework

will

mark

the

incoming

ObjectEventId

as

a

foreign

key

for

the

purpose

of

flow

monitoring.

The

default

is

false.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

The

default

value

is

1m.

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

90

Adapter

for

SWIFT

User

Guide

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(see

DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

using

Connector

Configurator

Express

in

this

guide.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

Appendix

A.

Standard

configuration

properties

for

connectors

91

LogAtInterchangeEnd

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

true

to

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature,

see

the

Installation

Guide

for

Windows.

The

default

value

is

false.

OADMaxNumRetry

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

92

Adapter

for

SWIFT

User

Guide

The

default

value

is

1000.

OADRetryTimeInterval

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

WebSphere

InterChange

Server

Express

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

Appendix

A.

Standard

configuration

properties

for

connectors

93

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

This

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

Express

repository.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

WebSphere

InterChange

Server

Express

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

The

default

is

1.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

88.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

94

Adapter

for

SWIFT

User

Guide

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

This

is

the

message

format

on

the

transport.

The

setting

isCwBO.

Appendix

A.

Standard

configuration

properties

for

connectors

95

96

Adapter

for

SWIFT

User

Guide

Appendix

B.

Connector

Configurator

Express

This

appendix

describes

how

to

use

Connector

Configurator

Express

to

set

configuration

property

values

for

your

adapter.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator

Express”

on

page

97

v

“Starting

Connector

Configurator

Express”

on

page

98

v

“Creating

a

connector-specific

property

template”

on

page

98

v

“Creating

a

new

configuration

file”

on

page

101

v

“Setting

the

configuration

file

properties”

on

page

103

v

“Using

Connector

Configurator

Express

in

a

globalized

environment”

on

page

108

Overview

of

Connector

Configurator

Express

Connector

Configurator

Express

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

WebSphere

InterChange

Server

Express.

You

use

Connector

Configurator

Express

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

Express

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator

Express.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

Express

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

99

to

set

up

a

new

one.

©

Copyright

IBM

Corp.

2004

97

Note:

Connector

Configurator

Express

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

a

UNIX

environment,

use

Connector

Configurator

Express

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

your

UNIX

environment.

Starting

Connector

Configurator

Express

You

can

start

and

run

Connector

Configurator

Express

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

Express

in

stand-alone

mode

You

can

run

Connector

Configurator

Express

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

Business

Integration

Server

Express>

Toolset

Express>Development>Connector

Configurator

Express.

v

Select

File>New>Configuration

File.

You

may

choose

to

run

Connector

Configurator

Express

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

103.)

Running

Configurator

Express

from

System

Manager

You

can

run

Connector

Configurator

Express

from

System

Manager.

To

run

Connector

Configurator

Express:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator

Express.

The

Connector

Configurator

Express

window

opens

and

displays

a

New

Connector

dialog

box.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

99.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

98

Adapter

for

SWIFT

User

Guide

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

Appendix

B.

Connector

Configurator

Express

99

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependencies

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

Express

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator

Express.

100

Adapter

for

SWIFT

User

Guide

Creating

a

new

configuration

file

You

create

a

connector

configuration

file

from

a

connector-specific

template

or

by

modifying

an

existing

configuration

file.

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

Express

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

The

default

broker

is

ICS.

You

cannot

change

this

value.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

Express

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

Express

window,

as

described

later

in

this

chapter.

Appendix

B.

Connector

Configurator

Express

101

Using

an

existing

file

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator

Express,

revise

the

configuration,

and

then

save

the

file

as

a

configuration

file

(*.cfg).

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

InterChange

Server

Express

repository

file.

Definitions

used

in

a

previous

InterChange

Server

Express

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator

Express,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator

Express,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

InterChange

Server

Express

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator

Express.

3.

Click

File>Open>From

Project.

102

Adapter

for

SWIFT

User

Guide

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

Express

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

Connector

Configurator

Express

requires

values

for

properties

described

in

the

following

sections:

v

“Setting

standard

connector

properties”

v

“Setting

application-specific

configuration

properties”

on

page

104

v

“Specifying

supported

business

object

definitions”

on

page

105

v

“Associated

maps”

on

page

106

v

“Setting

trace/log

file

values”

on

page

107

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

special

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

further

information,

see

“Data

handlers”

on

page

108.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

Express

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

You

can

configure

Value

fields.

v

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

Appendix

B.

Connector

Configurator

Express

103

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator

Express,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator

Express,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties”

on

page

103.

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

83.

104

Adapter

for

SWIFT

User

Guide

Connector

properties

are

almost

all

static

and

the

Update

Method

is

Component

restart.

For

changes

to

take

effect,

you

must

restart

the

connector

after

saving

the

revised

connector

configuration

file.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

Express

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

For

you

to

specify

a

supported

business

object,

the

business

objects

and

their

maps

must

exist

in

the

system.

Business

object

definitions,

including

those

for

data

handler

meta-objects,

and

map

definitions

should

be

saved

into

Integration

Component

Library

(ICL)

projects.

For

more

information

on

ICL

projects,

see

the

User

Guide

for

WebSphere

Business

Integration

Server

Express.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

chapter

on

business

objects

in

this

guide

as

well

as

the

Business

Object

Development

Guide.

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

Express

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

Express

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

Agent

support

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Appendix

B.

Connector

Configurator

Express

105

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

Express

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

Associated

maps

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

InterChange

Server

Express.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

Express

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

InterChange

Server

Express

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

106

Adapter

for

SWIFT

User

Guide

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

Express

window,

click

Save

to

Project.

4.

Deploy

the

project

to

InterChange

Server

Express.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

Express

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator

Express.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Appendix

B.

Connector

Configurator

Express

107

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Adapters

that

make

use

of

the

guaranteed

event

delivery

enable

this

tab.

See

the

descriptions

under

ContainerManagedEvents

in

the

Standard

Properties

appendix

for

values

to

use

for

these

properties.

Saving

your

configuration

file

After

you

have

created

the

configuration

file

and

set

its

properties,

you

need

to

deploy

it

to

the

correct

location

for

your

connector.

Save

the

configuration

in

an

ICL

project,

and

use

System

Manager

to

load

the

file

into

InterChange

Server

Express.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

User

Guide

for

IBM

WebSphere

Business

Integration

Server

Express.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

Express

in

a

globalized

environment

Connector

Configurator

Express

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

Express

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

Express

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

108

Adapter

for

SWIFT

User

Guide

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

B.

Connector

Configurator

Express

109

110

Adapter

for

SWIFT

User

Guide

Appendix

C.

SWIFT

message

structure

v

“SWIFT

message

types”

v

“SWIFT

field

structure”

v

“SWIFT

message

block

structure”

on

page

113

This

appendix

describes

SWIFT

message

structure.

SWIFT

message

types

SWIFT

messages

consist

of

five

blocks

of

data

including

three

headers,

message

content,

and

a

trailer.

Message

types

are

crucial

to

identifying

content.

All

SWIFT

messages

include

the

literal

“MT”

(Message

Type).

This

is

followed

by

a

3-digit

number

that

denotes

the

message

type,

category,

and

group.

Consider

the

following

example,

which

is

an

order

to

buy

or

sell

via

a

third

party:

MT502

The

first

digit

(5)

represents

the

category.

A

category

denotes

messages

that

relate

to

particular

financial

instruments

or

services

such

as

Precious

Metals,

Syndications,

or

Travelers

Checks.

The

category

denoted

by

5

is

Securities

Markets.

The

second

digit

(0)

represents

a

group

of

related

parts

in

a

transaction

life

cycle.

The

group

indicated

by

0

is

a

Financial

Institution

Transfer.

The

third

digit

(2)

is

the

type

that

denotes

the

specific

message.

There

are

several

hundred

message

types

across

the

categories.

The

type

represented

by

2

is

a

Third-Party

Transfer.

Each

message

is

assigned

unique

identifiers.

A

4-digit

session

number

is

assigned

each

time

the

user

logs

in.

Each

message

is

then

assigned

a

6-digit

sequence

number.

These

are

then

combined

to

form

an

ISN

(Input

Sequence

Number)

from

the

user’s

computer

to

SWIFT

or

an

OSN

(Output

Sequence

Number)

from

SWIFT

to

the

user’s

computer.

It

is

important

to

remember

that

terminology

is

always

from

the

perspective

of

SWIFT

and

not

the

user.

The

Logical

Terminal

Address

(12

character

BIC),

Day,

Session

and

Sequence

numbers

combine

to

form

the

MIR

(Message

Input

Reference)

and

MOR

(Message

Output

Reference),

respectively.

For

a

full

list

of

SWIFT

message

types,

see

All

Things

SWIFT:

the

SWIFT

User

Handbook.

SWIFT

field

structure

This

section

discusses

the

SWIFT

field

structure.

A

field

is

a

logical

subdivision

of

a

message

block

A,

which

consists

of

a

sequence

of

components

with

a

starting

field

tag

and

delimiters.

A

field

is

always

prefaced

by

a

field

tag

that

consists

of

two

digits

followed,

optionally,

by

an

alphabetic

character.

The

alphabetic

character

is

referred

to

as

an

option.

For

example,

16R

is

a

tag

(16)

with

an

option

(R)

that

indicates

the

start

of

©

Copyright

IBM

Corp.

2004

111

a

block;

16S

is

a

tag

(16)

with

an

option

(S)

that

indicates

the

end

of

a

block.

A

field

is

always

terminated

by

a

field

delimiter.

The

delimiter

depends

on

the

type

of

field

used

in

a

message

block.

There

are

two

types

of

fields

used

in

SWIFT

messages:

generic

and

non-generic.

The

type

of

field

used

in

a

SWIFT

message

block

is

determined

by

the

Message

Type.

What

follows

is

a

discussion

of

these

SWIFT

field

structures.

For

more

on

generic

and

non-generic

fields

and

how

to

distinguish

between

them,

see

Part

III,

Chapter

3

of

the

SWIFT

User

Handbook

Note:

The

symbol

CRLF

shown

below

is

a

control

character

and

represents

carriage

return/line

feed

(0D0A

in

ASCII

hex,

0D25

in

EBCDIC

hex).

Non-generic

fields

The

structure

of

non-generic

fields

in

SWIFT

message

blocks

is

as

follows:

:2!n[1a]:

data

content<CRLF>

where:

:

=

mandatory

colon

2!n

=

numeric

character,

fixed

length

[1a]

=

one

optional

alphabetic

character,

letter

option

:

=

mandatory

colon

data

content

=

the

data

content,

which

is

defined

separately

for

every

tag

<CRLF>

=

field

delimiter

The

following

is

an

example

of

a

non-generic

field:

:20:1234<CRLF>

:32A:...<CRLF>

Note:

In

some

cases

(such

as

with

the

tag

15A...n),

the

data

content

is

optional.

Generic

fields

The

structure

of

generic

fields

in

SWIFT

messages

is

as

follows:

:2!n1a::4!c’/’[8c]’/’data

content

where

:2!n1a:

=

same

format

as

non-generic

fields,

except

that

1a

is

mandatory

:

=

mandatory

second

colon

(required

in

all

generic

fields)

4!c

=

qualifier

’/’

=

first

delimiter

[8c]

=

issuer

code

or

Data

Source

Scheme

(DSS)

’/’

=

second

delimiter

112

Adapter

for

SWIFT

User

Guide

data

content

=

See

Part

III,

Chapter

3

of

the

SWIFT

User

Handbook

for

the

format

definition

Note:

Non-generic

fields

and

generic

fields

cannot

share

the

same

field

tag

letter

option

letter.

In

order

to

distinguish

between

them

easily,

a

colon

is

defined

as

the

first

character

of

the

column

Component

Sequence.

Generic

fields

are

defined

in

the

same

section

(Part

III,

Chapter

3

of

the

SWIFT

User

Handbook)

as

the

non-generic

fields.

The

following

character

restrictions

apply

to

generic

field

data

content:

v

Second

and

subsequent

lines

within

the

data

content

must

start

with

the

delimiter

CRLF.

v

Second

and

subsequent

lines

within

the

data

content

must

never

start

with

a

colon

(:)

or

a

hyphen

(-).

v

The

data

content

must

end

with

the

delimiter

CRLF.

SWIFT

message

block

structure

The

connector

supports

SWIFT

Financial

Application

(FIN)

messages.

They

have

the

following

structure:

{1:

Basic

Header

Block}

{2:

Application

Header

Block}

{3:

User

Header

Block}

{4:

Text

Block

or

body}

{5:

Trailer

Block}

These

five

SWIFT

message

blocks

include

header

information,

the

body

of

the

message,

and

a

trailer.

All

blocks

have

the

same

basic

format:

{n:...}

The

curly

braces

({})

indicate

the

beginning

and

end

of

a

block.

n

is

the

block

identifier,

in

this

case

a

single

integer

between

1

and

5.

Each

block

identifier

is

associated

with

a

particular

part

of

the

message.

There

is

no

carriage

return

or

line

feed

(CRLF)

between

blocks.

Blocks

3,

4,

and

5

may

contain

sub-blocks

or

fields

delimited

by

field

tags.

Block

3

is

optional.

Many

applications,

however,

populate

block

3

with

a

reference

number

so

that

when

SWIFT

returns

the

acknowledgement,

it

can

be

used

for

reconciliation

purposes.

Note:

For

further

information

on

SWIFT

message

blocks,

see

Chapter

2

of

the

SWIFT

User

Handbook

FIN

System

Messages

Document.

{1:

Basic

Header

Block}

The

basic

header

block

is

fixed-length

and

continuous

with

no

field

delimiters.

It

has

the

following

format:

{1:

F

01

BANKBEBB

2222

123456}

(a)

(b)

(c)

(d)

(e)

(f)

a)

1:

=

Block

ID

(always

1)

b)

Application

ID

as

follows:

v

F

=

FIN

(financial

application)

v

A

=

GPA

(general

purpose

application)

v

L

=

GPA

(for

logins,

and

so

on)

Appendix

C.

SWIFT

message

structure

113

c)

Service

ID

as

follows:

v

01

=

FIN/GPA

v

21

=

ACK/NAK

d)

BANKBEBB

=

Logical

terminal

(LT)

address.

It

is

fixed

at

12

characters;

it

must

not

have

X

in

position

9.

e)

2222

=

Session

number.

It

is

generated

by

the

user’s

computer

and

is

padded

with

zeros.

f)

123456

=

Sequence

number

that

is

generated

by

the

user’s

computer.

It

is

padded

with

zeros.

{2:

Application

Header

Block}

There

are

two

types

of

application

headers:

Input

and

Output.

Both

are

fixed-length

and

continuous

with

no

field

delimiters.

The

input

(to

SWIFT)

structure

is

as

follows:

{2:

I

100

BANKDEFFXXXX

U

3

003}

(a)

(b)

(c)

(d)

(e)

(f)

(g)

a)

2:

=

Block

ID

(always

2)

b)

I

=

Input

c)

100

=

Message

type

d)

BANKDEFFXXXX

=

Receiver’s

address

with

X

in

position

9/

It

is

padded

with

Xs

if

no

branch

is

required.

e)

U

=

the

message

priority

as

follows:

v

S

=

System

v

N

=

Normal

v

U

=

Urgent

f)

3

=

Delivery

monitoring

field

is

as

follows:

v

1

=

Non

delivery

warning

(MT010)

v

2

=

Delivery

notification

(MT011)

v

3

=

Both

valid

=

U1

or

U3,

N2

or

N

g)

003

=

Obsolescence

period.

It

specifies

when

a

non-delivery

notification

is

generated

as

follows:

v

Valid

for

U

=

003

(15

minutes)

v

Valid

for

N

=

020

(100

minutes)

The

output

(from

SWIFT)

structure

is

as

follows:

{2:

O

100

1200

970103BANKBEBBAXXX2222123456

970103

1201

N}

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

a)

2:

=

Block

ID

(always

2)

b)

O

=

Output

c)

100

=

Message

type

d)

1200

=

Input

time

with

respect

to

the

sender

e)

The

Message

Input

Reference

(MIR),

including

input

date,

with

Sender’s

address

f)

970103

=

Output

date

with

respect

to

Receiver

114

Adapter

for

SWIFT

User

Guide

g)

1201

=

Output

time

with

respect

to

Receiver

h)

N

=

Message

priority

as

follows:

v

S

=

System

v

N

=

Normal

v

U

=

Urgent

{3:

User

Header

Block}

This

is

an

optional

block

and

has

the

following

structure:

{3:

{113:xxxx}

{108:abcdefgh12345678}

}

(a)

(b)

(

c)

a)

3:

=

Block

ID

(always

3)

b)

113:xxxx

=

Optional

banking

priority

code

c)

This

is

the

Message

User

Reference

(MUR)

used

by

applications

for

reconciliation

with

ACK.

Note:

Other

tags

exist

for

this

block.

They

include

tags

(such

as

119,

which

can

contain

the

code

ISITC

on

an

MT521)

that

may

force

additional

code

word

and

formatting

rules

to

validate

the

body

of

the

message

as

laid

down

by

ISITC

(Industry

Standardization

for

Institutional

Trade

Communication).

For

further

information,

see

All

Things

SWIFT:

the

SWIFT

User

Handbook.

{4:

Text

Block

or

body}

This

block

is

where

the

actual

message

content

is

specified

and

is

what

most

users

see.

Generally

the

other

blocks

are

stripped

off

before

presentation.

The

format,

which

is

variable

length

and

requires

use

of

CRLF

as

a

field

delimiter,

is

as

follows:

{4:CRLF

:20:PAYREFTB54302

CRLF

:32A:970103BEF1000000,CRLF

:50:CUSTOMER

NAME

CRLF

AND

ADDRESS

CRLF

:59:/123-456-789

CRLF

BENEFICIARY

NAME

CRLF

AND

ADDRESS

CRLF

-}

The

symbol

CRLF

is

a

mandatory

delimiter

in

block

4.

The

example

above

is

of

type

MT100

(Customer

Transfer)

with

only

the

mandatory

fields

completed.

It

is

an

example

of

the

format

of

an

ISO7775

message

structure.

Block

4

fields

must

be

in

the

order

specified

for

the

message

type

in

the

appropriate

volume

of

the

SWIFT

User

Handbook.

Note:

The

ISO7775

message

standard

is

gradually

being

replaced

by

the

newer

data

dictionary

standard

ISO15022.

Among

other

things,

the

new

message

standard

makes

possible

generic

fields

for

block

4

of

a

SWIFT

message

structure.

For

further

information,

see

“SWIFT

field

structure”

on

page

111.

The

content

of

the

text

block

is

a

collection

of

fields.

For

more

on

SWIFT

fields,

see

“SWIFT

field

structure”

on

page

111.

Sometimes,

the

fields

are

logically

grouped

into

sequences.

Sequences

can

be

mandatory

or

optional,

and

can

repeat.

Sequences

also

can

be

divided

into

subsequences.

In

addition,

single

fields

and

groups

of

consecutive

fields

can

repeat.

For

example,

sequences

such

as

those

in

Appendix

C.

SWIFT

message

structure

115

the

SWIFT

Tags

16R

and

16S

may

have

beginning

and

ending

fields.

Other

sequences,

such

as

Tag

15,

have

only

a

beginning

field.

In

yet

other

message

types,

no

specific

tags

mark

the

start

or

end

of

a

field

sequence.

The

format

of

block

4

field

tags

is:

:nna:

nn

=

Numbers

a

=

Optional

letter,

which

may

be

present

on

selected

tags

For

example:

:20:

=

Transaction

reference

number

:58A:

=

Beneficiary

bank

The

length

of

a

field

is

as

follows:

nn

=

Maximum

length

nn!

=

Fixed-length

nn-nn

=

Minimum

and

maximum

length

nn

*

nn

=

Maimum

number

of

lines

times

maximum

line

length

The

format

of

the

data

is

as

follows:

n

=

Digits

d

=

Digits

with

decimal

comma

h

=

Uppercase

hexadecimal

a

=

Uppercase

letters

c

=

Uppercase

alphanumeric

e

=

Space

x

=

SWIFT

character

set

y

=

Uppercase

level

A

ISO

9735

characters

z

=

SWIFT

extended

character

set

Some

fields

are

defined

as

optional.

If

optional

fields

are

not

required

in

a

specific

message,

do

not

include

them

because

blank

fields

are

not

allowed

in

the

message.

/,word

=

Characters

“as

is”

[...]

=

Brackets

indicate

an

optional

element

For

example:

116

Adapter

for

SWIFT

User

Guide

4!c[/30x]

This

is

a

fixed

4

uppercase

alphanumeric,

optionally

followed

by

a

slash

and

up

to

30

SWIFT

characters.

ISIN1!e12!c

This

is

a

code

word

followed

by

a

space

and

a

12

fixed

uppercase

alphanumeric.

Note:

In

some

message

types,

certain

fields

are

defined

as

conditional.

For

example,

when

a

certain

field

is

present,

another

field

may

change

from

optional

to

mandatory

or

forbidden.

Certain

fields

may

contain

sub-fields,

in

which

case

there

is

no

CRLF

between

them.

Validation

is

not

supported.

Certain

fields

have

different

formats

that

depend

on

the

option

that

is

chosen.

The

option

is

designated

by

a

letter

after

the

tag

number,

for

example:

:32A:000718GBP1000000,00

Value

Date,

ISO

Currency,

and

Amount

:32B:GBP1000000,00

ISO

Currency

and

Amount

Note:

The

SWIFT

standards

for

amount

formats

are:

no

thousand

separators

are

allowed

(10,000

is

not

allowed,

but

10000

is

allowed);

use

a

comma

(not

a

decimal

point)

for

a

decimal

separator

(1000,45

=

one

thousand

and

forty-five

hundredths).

:58A:NWBKGB2L

Beneficiary

SWIFT

address

:58D:NatWest

Bank

Beneficiary

full

name

and

address
Head

Office

London

{5:

Trailer

Block}

A

message

always

ends

in

a

trailer

with

the

following

format:

{5:

{MAC:12345678}{CHK:123456789ABC}

This

block

is

for

SWIFT

system

use

and

contains

a

number

of

fields

that

are

denoted

by

keywords

such

as

the

following:

MAC

Message

Authentication

Code

calculated

based

on

the

entire

contents

of

the

message

using

a

key

that

has

been

exchanged

with

the

destination

and

a

secret

algorithm.

Found

on

message

categories

1,2,4,5,7,8,

most

6s

and

304.

CHK

Checksum

calculated

for

all

message

types.

PDE

Possible

Duplicate

Emission

added

if

user

thinks

the

same

message

was

sent

previously

DLM

Added

by

SWIFT

if

an

urgent

message

(U)

has

not

been

delivered

within

15

minutes,

or

a

normal

message

(N)

within

100

minutes.

Appendix

C.

SWIFT

message

structure

117

118

Adapter

for

SWIFT

User

Guide

Appendix

D.

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

©

Copyright

IBM

Corp.

2004

119

Burlingame,

CA

94010

U.S.A

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

120

Adapter

for

SWIFT

User

Guide

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

System

Manager

includes

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org/)

WebSphere

Business

Integration

Server

Express

V4.3

and

WebSphere

Business

Integration

Server

Express

Plus

V4.3

Appendix

D.

Notices

121

122

Adapter

for

SWIFT

User

Guide

����

Printed

in

USA

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 4.3

	Chapter 1. Overview
	Adapter environment
	Adapter standards
	Adapter platforms

	Connector architecture
	Connector for SWIFT
	SWIFT data handler
	WebSphere MQ
	MQSA
	SWIFTAlliance Access

	Application-connector communication method
	Message request
	Event delivery

	Event handling
	Retrieval
	Recovery
	Archiving

	Guaranteed event delivery
	Business object requests
	Message processing
	Create
	Retrieve

	Error handling
	Application timeout
	Unsubscribed business object
	Data handler conversion

	Tracing

	Chapter 2. Installing and configuring the connector
	Overview of installation tasks
	Confirm adapter prerequisites
	Install the integration broker
	Install the adapter for SWIFT and related files

	Installed file structure
	Installing Windows files

	Connector configuration
	Standard connector properties
	Connector-specific properties

	Queue Uniform Resource Identifiers (URI)
	Meta-object attributes configuration
	Static meta-object
	Dynamic child meta-object

	Startup file configuration
	Windows

	Creating multiple connector instances
	Create a new directory

	Starting the connector
	Stopping the connector

	Chapter 3. Business objects
	Connector business object requirements
	Business object hierarchy
	Business object attribute properties
	Application-specific text at the attribute level

	Overview of SWIFT message structure
	Overview of business objects for SWIFT
	SWIFT message and business object data mapping
	Top-level business object structure
	Block 1 business object structure
	Block 2 business object structure
	Block 3 business object structure
	Block 4 business object structure
	Sequence and field business objects

	Chapter 4. SWIFT Data Handler
	Configuring the SWIFT data handler
	Configuring the connector meta-object
	Configuring the data handler child meta-object

	Business object requirements
	Converting business objects to SWIFT messages
	Converting SWIFT messages to business objects

	Chapter 5. Troubleshooting
	Startup problems
	Event processing

	Appendix A. Standard configuration properties for connectors
	Configuring standard connector properties
	Using Connector Configurator Express
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Starting Connector Configurator Express
	Running Configurator Express in stand-alone mode

	Running Configurator Express from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Business object name
	Agent support
	Maximum transaction level
	Associated maps
	Resources
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Completing the configuration
	Using Connector Configurator Express in a globalized environment

	Appendix C. SWIFT message structure
	SWIFT message types
	SWIFT field structure
	Non-generic fields
	Generic fields

	SWIFT message block structure
	{1: Basic Header Block}
	{2: Application Header Block}
	{3: User Header Block}
	{4: Text Block or body}
	{5: Trailer Block}

	Appendix D. Notices
	Programming interface information
	Trademarks and service marks

