WebSphere Business Integration Server

Express and Express Plus

Adapter for SWIFT User Guide

Version 4.3.1

<|ll

WebSphere Business Integration Server

Express and Express Plus

Adapter for SWIFT User Guide

Version 4.3.1

<|ll

Note!
FBefore using this information and the product it supports, read the information in[Appendix D, “Notices,” on page 123

30July2004

This edition of this document applies to IBM WebSphere Business Integration Server Express, version 4.3.1, IBM
WebSphere Business Integration Server Express Plus, version 4.3.1, and to all subsequent releases and modifications
until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document . v
Audience . . P
Prerequisites for thls document . v
Related documents . . .V
Typographic conventions .vi

New inthisrelease © © « « v v v v e e e e e e e e e e . . Vi
New in release 4.3.1o i
New in release 4.3o s il

Chapter 1. Overview 1
Adapter environment 1
Connector architecture . . . e 2
Application-connector Commumcatlon method 4
Event handling 6

Guaranteed event dehvery C e
Business object requests .. .10
Message processing. 10
Error handling s s ... 14
Tracing L ... 5

Chapter 2. Installing and configuring the connector17

Overview of installation tasks o L L. o L. ... 17
Installed file structure L oL LY
Connector configuration . . . e L)
Queue Uniform Resource Ident1f1ers (URI) Ce s e
Meta-object attributes configuration .25
Startup file configuration. . . O)
Running multiple instances of the adapter S0
Starting the connector L o L L L L L4
Stopping the connector L . L L L L ... 43

Chapter 3. Businessobjects45

Connector business object requirements .45
Overview of SWIFT message structure .4
Overview of business objects for SWIFT. .4
SWIFT message and business object data mapping .51

Chapter 4. SWIFT DataHandler8

Configuring the SWIFT data handler .8
Business object requirements . . . e 2
Converting business objects to SWIFT messages e,
Converting SWIFT messages to business objects .8

Chapter 5. Troubleshootlng e 15
Startup problems . . . e)
Event processing L8

Appendix A. Standard configuration propertles forconnectors87

Configuring standard connector properties . . . - 4
Summary of standard properties .88
Standard configuration properties ... 0.9

© Copyright IBM Corp. 2004 iii

Appendix B. Connector Configurator Express
Overview of Connector Configurator Express

Starting Connector Configurator Express . .
Running Configurator Express from System Manager
Creating a connector-specific property template .
Creating a new configuration file.

Using an existing file.

Completing a configuration file

Setting the configuration file properties.

Saving your configuration file .

Completing the configuration .

Using Connector Configurator Express ina globahzed env1ronment .

Appendix C. SWIFT message structure
SWIFT message types

SWIFT field structure.

SWIFT message block structure

Appendix D. Notices

Notices

iV Adapter for SWIFT User Guide

. 101
. 101
. 102
. 102
. 102
. 105
. 106
. 107
. 107
112
112
112

. 115
. 115
. 115
117

. 123
. 123

About this document

The products IBM® WebSphere Business Integration Server Express and IBM®
WebSphere Business Integration Server Express Plus are made up of the following
components: InterChange Server Express, the associated Toolset Express,
CollaborationFoundation, and a set of software integration adapters. The tools in
Toolset Express help you to create, modify, and manage business processes. You
can choose from among the prepackaged adapters for your business processes that
span applications. The standard processes template--CollaborationFoundation--
allows you to quickly create customized processes.

This document describes configuration, business object development, and
troubleshooting for the WebSphere Business Integration Server Express Adapter for
SWIFT.

Except where noted, all the information in this guide applies to both IBM
WebSphere Business Integration Server Express and IBM WebSphere Business
Integration Server Express Plus. The term WebSphere Business Integration Server
Express and its variants refer to both products.

Audience

This document is for consultants, developers, and system administrators who
support and manage the WebSphereBusiness Integration Server Express Product at
customer sites.

Prerequisites for this document

Users of this document should be familiar with

* the WebSphere Business Integration Server Express system
* business object development

* the WebSphere MQ application

¢ the SWIFT product suite and protocol

Related documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere Business Integration Server
Express installations, and includes reference material on specific components.

You can download, install, and view the documentation at the following site:
http:/ /www.ibm.com/websphere/wbiserverexpress/infocenter

Note: Important information about this product may be available in Technical
Support Technotes and Flashes issued after this document was published.
These can be found on the WebSphere Business Integration Support Web
site, |http:/ /www.ibm.com /software/integration /websphere /support/|
Select the component area of interest and browse the Technotes and Flashes
sections.

© Copyright IBM Corp. 2004 v

http://www.ibm.com/software/integration/websphere/support/

Typographic conventions

vi

This document uses the following conventions:

courier font

bold
italic, italic
blue outline

ProductDir

[]

/,\

%Stext% and $text

Indicates a literal value, such as a command name, filename,
information that you type, or information that the system
prints on the screen.

Indicates a new term the first time that it appears.

Indicates a variable name or a cross-reference.

A blue outline, which is visible only when you view the
manual online, indicates a cross-reference hyperlink. Click
inside the outline to jump to the object of the reference.
Represents the directory where the IBM WebSphere Business
Integration Server Express for Adapters product is installed.
The defaults for each platform are as follows:

Windows: IBM\WebSphereServer

0OS/400: /QIBM/ProdData/WBIServer43/product

Linux: /home/${username}/IBM/WebSphereServer

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.10g.

In this document, backslashes (\) are used as the convention
for directory paths for Windows. OS/400 and Linux use
forward slashes (/) for directory paths. All WebSphere
Business Integration Server Express system product path
names are relative to the directory where the product is
installed on your system.

Text within percent (%) signs indicates the value of the
Windows™ text system variable or user variable. The
equivalent notation in a UNIX environment is $text,
indicating the value of the text UNIX environment variable.

Adapter for SWIFT User Guide

New in this release

New in release 4.3.1

This release adds support for the following operating systems:

* Microsoft Windows 2003
* IBM OS/400 V5R2, V5R3
* Red Hat Enterprise Linux AS 3.0, Update 1
* SuSE Linux Enterprise Server 8.1 with SP3

New in release 4.3

This is the first release of this guide.

© Copyright IBM Corp. 2004

vii

viii Adapter for SWIFT User Guide

Chapter 1. Overview

« |”Adapter environment”]

+ [“Connector architecture” on page 2|

» |“Application-connector communication method” on page 4|

* |“Event handling” on page 6

* [“Guaranteed event delivery” on page 9|

» [“Business object requests” on page 10|

2

. ’Message Erocessing” on page 10

* ["Error handling” on page 14

* |“Tracing” on page 15

The connector for SWIFT is a runtime component of the WebSphere Business
Integration Server Express and Express Plus Adapter for SWIFT. The connector
allows the WebSphere InterChange Server Express integration broker to exchange
business objects with SWIFT-enabled business processes.

Note: Throughout this document, SWIFT messages denote SWIFT FIN messages
unless otherwise explicitly noted.

Connectors consist of an application-specific component and the connector
framework. The application-specific component contains code tailored to a
particular application. The connector framework, whose code is common to all
connectors, acts as an intermediary between the integration broker and the
application-specific component. The connector framework provides the following
services between the integration broker and the application-specific component:

* Receives and sends business objects
* Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the System Implementation Guide.

All WebSphere Business Integration Server Express adapters operate with
WebSphere InterChange Server Express as their integration broker.

The connector for SWIFT allows InterChange Server Express to exchange business
objects with applications that send or receive data in the form of SWIFT messages.

Adapter environment

Before installing, configuring, and using the adapter, you must understand its
environment requirements.

* [“Adapter standards” on page 2|

* [“Adapter platforms” on page 2

© Copyright IBM Corp. 2004

Adapter platforms
The adapter runs on the following platforms:
* Microsoft Windows 2000
* Microsoft Windows 2003
* IBM OS/400 V5R2, V5R3
* Red Hat Enterprise Linux AS 3.0, Update 1
* SuSE Linux Enterprise Server 8.1 with SP3

Adapter standards

The adapter supports the following standard.

SWIFTAIlliance Access

The SWIFTAlliance Access gateway is a window through which SWIFT messages
flow to and from remote financial applications over IP. The connector supports
SWIFTAlliance Access 5.0.

Locale-dependent data

The connector has been internationalized so that it can support double-byte
character sets and deliver message text in the specified language. When the
connector transfers data from a location that uses one character code set to a
location that uses a different code set, it performs character conversion to preserve
the meaning of the data.

The Java run-time environment within the Java Virtual Machine (JVM) represents
data in the Unicode character code set. Unicode contains encodings for characters
in most known character code sets (both single-byte and multibyte). Most
components in the WebSphere Business Integration Server Express system are
written in Java. Therefore, when data is transferred between most WebSphere
Business Integration Server Express system components, there is no need for
character conversion.

To log error and informational messages in the appropriate language and for the
appropriate country or territory, configure the Locale standard configuration
property for your environment. For more information on configuration properties,
see|Appendix A, “Standard configuration properties for connectors,” on page 87}

Connector architecture

The connector allows WebSphere business processes to asynchronously exchange
business objects with applications that issue or receive SWIFT messages when
changes to data occur. (The connector also supports synchronous
acknowledgment.)

SWIFT stands for Society for Worldwide Interbank Financial Telecommunications.
It is a United Nations-sanctioned International Standards Organization (ISO) for
the creation and maintenance of financial messaging standards.

As shown in the connector interacts with several components (WebSphere
components are shown in bold) whose collective purpose is to bridge the world of
WebSphere business objects with that of SWIFT messages. For IBM WebSphere
Business Integration Server Express and Express Plus, the integrator broker in

is WebSphere InterChange Server Express.

2 Adapter for SWIFT User Guide

SWIFT
data handler

IBM WebSphere
Integrator Broker
(Processes)

Connector
for SWIFT

outgoing coming
messa ages

MQSeries output queue | | MQSeries input queue

N7

SWIFT alliance access gateway

Figure 1. Connector for SWIFT architecture

The SWIFT environment is made up of various components that are described
below.

Connector for SWIFT

The connector for SWIFT is metadata-driven. Message routing and format
conversion are initiated by an event polling technique. The connector retrieves
WebSphere MQ messages from queues, calls the SWIFT data handler to convert
messages to their corresponding business objects, and then delivers the objects to
the corresponding business processes. In the opposite direction, the connector
receives business objects from WebSphere InterChange Server Express, converts
them into SWIFT messages using the same data handler, and then delivers the
messages to a WebSphere MQ queue.

The type of business object and verb used in processing a message are based on
the metadata in the Format field of the WebSphere MQ message header. You
construct a meta-object to store the business object name and verb to associate with
the WebSphere MQ message header Format field text.

You can optionally construct a dynamic meta-object that is added as a child to the
business object passed to the connector. The child meta-object values override
those specified in the static meta-object that is specified for the connector as a
whole. If the child meta-object is not defined or does not define a required
conversion property, the connector, by default, examines the static meta-object for
the value. You can specify one or more dynamic child meta-objects instead of, or to
supplement, a single static connector meta-object.

Chapter 1. Overview 3

The connector can poll multiple input queues, polling each in a round-robin
manner and retrieving a configurable number of messages from each queue. For
each message retrieved during polling, the connector adds a dynamic child
meta-object (if specified in the business object). The child meta-object values can
direct the connector to populate attributes with the format of the message as well
as with the name of the input queue from which the message was retrieved.

When a message is retrieved from the input queue, the connector looks up the
business object name associated with the FORMAT text field. The message, along
with the business object name, is then passed to the data handler. If a business
object is successfully populated with message content, the connector checks to see
if it a collaboration subscribes to it, and then delivers it to InterChange Server
Express using the gotApplEvents() method.

SWIFT data handler

The connector calls the SWIFT data handler to convert business objects into SWIFT
messages and vice versa. For more on the SWIFT data handler, see
[“SWIFT Data Handler,” on page 81

WebSphere MQ

The connector for SWIFT uses an MQ implementation of the JavaTM Message
Service (JMS), an API for accessing enterprise-messaging systems. This makes
possible interaction with incoming and outgoing WebSphere MQ event queues.

MQSA
The WebSphere MQ event queues exchange messages with the WebSphere MQ
Interface for SWIFTAlliance (MQSA). The MQSA software integrates WebSphere
MQ messaging capabilities with SWIFT message types, performing delivery,
acknowledgement, queue management, timestamping, and other functions.

SWIFTAIlliance Access

The SWIFTAlliance Access gateway is a window through which SWIFT messages
flow to and from remote financial applications over IP. The connector supports
SWIFTAlliance Access 5.0.

Application-connector communication method

The connector makes use of IBM’s WebSphere MQ implementation of the Java
Message Service (JMS). The JMS is an open-standard API for accessing
enterprise-messaging systems. It is designed to allow business applications to
asynchronously send and receive business data and events.

Message request

Figure 2|illustrates a message request communication.

1. The connector framework receives a business object representing an ISO 15022
SWIFT message from an integration broker. For IBM WebSphere Business
Integration Server Express and Express Plus, the integration broker in
is WebSphere InterChange Server Express.

2. The connector passes the business object to the data handler.

3. The data handler converts the ISO 15022 business object into an ISO
15022-compliant SWIFT message.

4 Adapter for SWIFT User Guide

4. The connector dispatches the ISO 15022 SWIFT message to the WebSphere MQ

5.

Integration
broker

output queue.

The JMS layer makes the appropriate calls to open a queue session and routes
the message to the MQSA, which issues the message to the SWIFT Alliance
Gateway.

Connector MQSeries output

queue
5\

MQSA

business
object

4
2 ISO 15022
SWIFT message

SWIFT 3
data handler

SWIFT alliance access gateway
\

Gray box indicates
non-WebSphere
components

Figure 2. Application-connector communication method: Message request

Event delivery

illustrates the message return communication.

1.

2.

The polling method retrieves the next applicable ISO 15022 SWIFT message
from the WebSphere MQ input queue.

The message is staged in the in-progress queue, where it remains until
processing is complete.

The data handler converts the message into an ISO 15022 business object.

The SWIFT data handler receives the ISO 15022 business object and sets the
verb in it to the default verb specified in the data handler-specific meta-object.

The connector then determines whether the business object is subscribed to by
the integration broker. If so, the connector framework delivers the business
object to the integration broker, and the message is removed from the
in-progress queue. For IBM WebSphere Business Integration Server Express and
Express Plus, the integration broker in is WebSphere InterChange
Server Express.

Chapter 1. Overview 5

In-progress] MQ Series input
queue queue
Connector
Integration
5
d
MQSA

4 SWIFT data

handler SWIFT alliance access gateway

Gray box Indicates
non-WebSphere
components

Figure 3. Application-connector communication method: Event delivery

Event handling

For event notification, the connector detects an event written to a queue by an
application rather than by a database trigger. An event occurs when SWIFTAlliance
generates SWIFT messages and stores them on the WebSphere MQ queue.

Retrieval

The connector uses a polling method to poll the WebSphere MQ input queue at
regular intervals for messages. When the connector finds a message, it retrieves it
from the WebSphere MQ input queue and examines it to determine its format. If
the format has been defined in the connector’s static or child meta-objects, the
connector uses the data handler to generate an appropriate business object with a
verb.

In-progress queue

The connector processes messages by first opening a transactional session to the
WebSphere MQ queue. This transactional approach allows for a small chance that a
business object could be delivered to a business process twice due to the connector
successfully submitting the business object but failing to commit the transaction in
the queue. To avoid this problem, the connector moves all messages to an
in-progress queue. There, the message is held until processing is complete. If the
connector shuts down unexpectedly during processing, the message remains in the
in-progress queue instead of being reinstated to the original WebSphere MQ queue.

Note: Transactional sessions with a JMS service provider require that every
requested action on a queue be performed and committed before events are
removed from the queue. Accordingly, when the connector retrieves a
message from the queue, it does not commit to the retrieval until: 1) The

6 Adapter for SWIFT User Guide

message has been converted to a business object; 2) the business object is
delivered to InterChange Server Express, and 3) a return value is received.

Synchronous acknowledgment

To support applications that require feedback on the requests they issue, the
connector for SWIFT can issue report messages to the applications detailing the
outcome of their requests once they have been processed.

To achieve this, the connector posts the business data for such requests
synchronously to InterChange Server Express. If the business object is successfully
processed, the connector sends a report back to the requesting application
including the return code fromInterChange Server Express and any business object
changes. If the connector or InterChange Server Express fails to process the
business object, the connector sends a report containing the appropriate error code
and error message.

In either case, an application that sends a request to the connector for SWIFT is
notified of its outcome.

If the connector for SWIFT receives any messages requesting positive or negative
acknowledgment reports (PAN or NAN), it posts the content of the message
synchronously to InterChange Server Express and then incorporates the return
code and modified business data in to a report message that is sent back to the
requesting application.

shows the required structure of messages sent to the connector to be
processed synchronously.

Table 1. Required structure of synchronous WebSphere MQ messages

MQMD Field Supported values (multiple values should
(message descriptor) Description be OR’d)

MessageType Message type DATAGRAM

Report Options for report ~ You can specify one or both of the

message requested following:

* MQRO_PAN The connector sends a report
message if the business object can be
successfully processed.

* MQRO_NANThe connector sends a report
message if an error occurred while
processing the business object.

You can specify one of the following to
control how the correlation ID of the
report message is to be set:

+ MQRO_COPY MSG_ID TO CORREL IDThe
connector copies the message ID of the
request message to the correlation ID of
the report. This is the default action.

* MQRO_PASS_CORREL_IDThe connector
copies the correlation ID of the request
message to the correlation ID of the

report.
ReplyToQueue Name of reply The name of the queue to which the report
queue message should be sent.
ReplyToQueueManager Name of queue The name of the queue manager to which
manager the report message should be sent.

Chapter 1. Overview 7

Table 1. Required structure of synchronous WebSphere MQ messages (continued)

MQMD Field
(message descriptor) Description

Message Body

Supported values (multiple values should
be OR’d)

A serialized business object in a format
compatible with the data handler
configured for the connector.

Upon receipt of a message as described in the connector:
1. Reconstructs the business object in the message body using the configured data

handler.

2. Looks up the business process specified for the business object and verb in the

static metadata object.

3. Posts the business object synchronously to the specified process.

4. Generates a report encapsulating the result of the processing and any business

object changes or error messages.

5. Sends the report to the queue specified in the replyToQueue and
replyToQueueManager fields of the request.

shows the structure of the report that is sent to the requesting application

from the connector.

Table 2. Structure of the report returned to the requesting application

MOQMD field Description
MessageType Message type
feedback Type of report

Message Body

Supported values (multiple values should
be OR’d)

REPORT
One of the following:

* MQRO_PAN If the business object is
successfully processed.

* MQRO_NAN If the connector or
InterChange Server Express encountered
an error while processing the request.

If the business object is successfully

processed, the connector populates the

message body with the business object
returned by InterChange Server Express.

This default behavior can be overridden

by setting the DoNotReportBusObj property

to true in the static metadata object.

If the request could not be processed, the
connector populates the message body
with the error message generated by the
connector or InterChange Server Express.

Recovery

Upon initialization, the connector checks the in-progress queue for messages that
have not been completely processed, presumably due to a connector shutdown.
The connector configuration property InDoubtEvents allows you to specify one of
four options for handling recovery of such messages: fail on startup, reprocess,

ignore, or log error.

8 Adapter for SWIFT User Guide

Fail on startup

With the fail on startup option, if the connector finds messages in the in-progress
queue during initialization, it logs an error and immediately shuts down. It is the
responsibility of the user or system administrator to examine the message and take
appropriate action, either to delete these messages entirely or move them to a
different queue.

Reprocess

With the reprocessing option, if the connector finds any messages in the
in-progress queue during initialization, it processes these messages first during
subsequent polls. When all messages in the in-progress queue have been
processed, the connector begins processing messages from the input queue.

Ignore
With the ignore option, if the connector finds any messages in the in-progress
queue during initialization, the connector ignores them but does not shut down.

Log error
With the log error option, if the connector finds any messages in the in-progress
queue during initialization, it logs an error but does not shut down.

Archiving

If the connector property ArchiveQueue is specified and identifies a valid queue,
the connector places copies of all successfully processed messages in the archive
queue. If ArchiveQueue is undefined, messages are discarded after processing.

Guaranteed event delivery

The guaranteed-event-delivery feature enables the connector framework to ensure
that events are never lost and never sent twice between the connector’s event
store, the JMS event store, and the destination’s JMS queue. To become
JMS-enabled, you must configure the connectorDeliveryTransport standard
property to JMS. Thus configured, the connector uses the JMS transport and all
subsequent communication between the connector and InterChange Server Express
occurs through this transport. The JMS transport ensures that the messages are
eventually delivered to their destination. Its role is to ensure that once a
transactional queue session starts, the messages are cached there until a commit is
issued; if a failure occurs or a rollback is issued, the messages are discarded.

Note: Without use of the guaranteed-event-delivery feature, a small window of
possible failure exists between the time that the connector publishes an
event (when the connector calls the gotApplEvent() method within its
pollForEvents() method) and the time it updates the event store by deleting
the event record (or perhaps updating it with an “event posted” status). If a
failure occurs in this window, the event has been sent but its event record
remains in the event store with an “in progress” status. When the connector
restarts, it finds this event record still in the event store and sends it,
resulting in the event being sent twice.

You can configure the guaranteed-event-delivery feature for a JMS-enabled
connector with, or without, a JMS event store. To configure the connector for

guaranteed event delivery, see the System Implementation Guide.

If the connector framework cannot deliver the business object to InterChange
Server Express, then the object is placed on a FaultQueue (instead of

Chapter 1. Overview 9

UnsubscribedQueue and ErrorQueue) and generates a status indicator and a
description of the problem. FaultQueue messages are written in MQRFH?2 format.

Business object requests

Business object requests are processed when InterChange Server Express issues a
business object.

Message processing

The connector processes business objects passed to it by InterChange Server
Express based on the verb for each business object. The connector uses business
object handlers to process the business objects that the connector supports.The
business object handlers contain methods that interact with an application and that
transform business object requests into application operations.

The connector supports the following business object verbs:
* Create
* Retrieve

Create

Processing of business objects with create depends on whether the objects are
issued asynchronously or synchronously.

Asynchronous delivery

This is the default delivery mode for business objects with Create verbs. A message
is created from the business object using a data handler and then written to the
output queue. If the message is delivered, the connector returns BON_SUCCESS,
else BON_FAIL.

Note: The connector has no way of verifying whether the message is received or if
action has been taken.

Synchronous acknowledgment

If a replyToQueue has been defined in the connector properties and a
responseTimeout exists in the conversion properties for the business object, the
connector issues a request in synchronous mode. The connector then waits for a
response to verify that appropriate action was taken by the receiving application.

For WebSphere MQ, the connector initially issues a message with a header as
shown in .

Table 3. Request Message Descriptor Header (MQMD)

Field Description Value

Format Format name Output format as defined in the conversion properties and
truncated to 8 characters to meet IBM requirements (example:
MQSTR).

MessageType Message type MQMT_DATAGRAM®

10 Adapter for SWIFT User Guide

Table 3. Request Message Descriptor Header (MQMD) (continued)

Field Description Value
Report Options for report message ~When a response message is expected, this field is populated as
requested. follows:

MQRO_PAN® to indicate that a positive-action report is required if
processing is successful.

MQRO_NAN® to indicate that a negative-action report is required if
processing fails.

MQRO_COPY_MSG_ID_TO_CORREL_ID* to indicate that the correlation
ID of the report generated should equal the message ID of the
request originally issued.

ReplyToQueue Name of reply queue When a response message is expected, this field is populated
with the value of connector property ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENT®

Expiry Message lifetime MQEI_UNLIMITED®

@ Indicates constant defined by IBM.

The message header described in [Table 3| is followed by the message body. The
message body is a business object that has been serialized using the data handler.

The Report field is set to indicate that both positive and negative action reports are
expected from the receiving application. The thread that issued the message waits
for a response message that indicates whether the receiving application was able to
process the request.

When an application receives a synchronous request from the connector, it
processes the business object and issues a report message as described in [Table 4

[Table 5, and [Table €

Table 4. Response Message Descriptor Header (MQMD)

Field Description Value
Format Format name Input format of busObj as defined in the conversion properties.
MessageType Message type MQMT_REPORT

@ Indicates constant defined by IBM.

Table 5. Population of response message

Verb Feedback field Message body
Create SUCCESS VALCHANGE (Optional) A serialized business object reflecting
changes.
VALDUPES FAIL (Optional) An error message.

Table 6. Feedback codes and response values

Equivalent WebSphere Business Integration Server

WebSphere MQ feedback code Express response®
MQFB_PAN or MQFB_APPL_FIRST SUCCESS
MQFB_NAN or MQFB_APPL_FIRST + 1 FAIL
MQFB_APPL_FIRST + 2 VALCHANGE
MQFB_APPL_FIRST + 3 VALDUPES
MQFB_APPL_FIRST + 4 MULTIPLE_HITS
MQFB_APPL_FIRST + 5 Not applicable

Chapter 1. Overview 11

Table 6. Feedback codes and response values (continued)

Equivalent WebSphere Business Integration Server

WebSphere MQ feedback code Express response?®

MQFB_APPL_FIRST + 6
MQFB_APPL_FIRST + 7
MQFB_APPL_FIRST + 8

MQFB_NONE

Not applicable

UNABLE_TO_LOGIN
APP_RESPONSE_TIMEOUT (results in immediate
termination of connector)

What the connector receives if no feedback code is
specified in the response message

@ See the System Implementation Guide for details.

If the business object can be processed, the application creates a report message
with the feedback field set to MQFB_PAN (or a specific WebSphere Business
Integration Server Express system value). Optionally the application populates the
message body with a serialized business object containing any changes. If the
business object cannot be processed, the application creates a report message with
the feedback field set to MQFB_NAN (or a specific WebSphere Business Integration
Server Express system value) and then optionally includes an error message in the
message body. In either case, the application sets the correlationID field of the
message to the messagelD of the connector message and issues it to the queue
specified by the ReplyTo field.

Upon retrieval of a response message, the connector by default matches the
correlationID of the response to the messageID of a request message. The
connector then notifies the thread that issued the request. Depending on the
feedback field of the response, the connector either expects a business object or an
error message in the message body. If a business object was expected but the
message body is not populated, the connector simply returns the same business
object that was originally issued by InterChange Server Express for the Request
operation. If an error message was expected but the message body is not
populated, a generic error message is returned to InterChange Server Express
along with the response code. However, you can also use a message selector to
identify, filter and otherwise control how the adapter identifies the response
message for a given request. This message selector capability is a JMS feature. It
applies to synchronous request processing only and is described below.

Filtering response messages using a message selector: Upon receiving a business
object for synchronous request processing, the connector checks for the presence of
a response_selector string in the application-specific information of the verb. If
the response_selector is undefined, the connector identifies response messages
using the correlation ID as described above.

If response_selector is defined, the connector expects a name-value pair with the
following syntax:

response_selector=JMSCorrelationID LIKE ’selectorstring’

The message selectorstring must uniquely identify a response and its values be
enclosed in single quotes as shown in the example below:

response_selector=JMSCorrelationID LIKE 'Oshkosh'

In the above example, after issuing the request message, the adapter would
monitor the ReplyToQueue for a response message with a correlationID equal to

12 Adapter for SWIFT User Guide

"Oshkosh.” The adapter would retrieve the first message that matches this message
selector and then dispatch it as the response.

Optionally, the adapter performs run-time substitutions enabling you to generate
unique message selectors for each request. Instead of a message selector, you
specify a placeholder in the form of an integer surrounded by curly braces, for
example: ' {1}"'. You then follow with a colon and a list of comma-separated
attributes to use for the substitution. The integer in the placeholder acts as an
index to the attribute to use for the substitution. For example, the following
message selector:

response_selector=JMSCorrelationID LIKE '{1}': MyDynamicMO.CorrelationID

would inform the adapter to replace {1} with the value of the first attribute
following the selector (in this case the attribute named Correlationld of the
child-object named MyDynamicMO. If attribute CorrelationID had a value of 123ABC,
the adapter would generate and use a message selector created with the following
criteria:

JMSCorrelation LIKE '123ABC'
to identify the response message.
You can also specify multiple substitutions such as the following:

response_selector=Primaryld LIKE '{1}' AND AddressId LIKE '{2}"
PrimaryId, Address[4].AddressId

In this example, the adapter would substitute {1} with the value of attribute
PrimaryId from the top-level business object and {2} with the value of AddressId
from the 5th position of child container object Address. With this approach, you
can reference any attribute in the business object and meta-object in the response
message selector. For more information on how deep retrieval is performed using
Address[4] .AddressId, see JCDK API manual (getAttribute method)

An error is reported at run-time when any of the following occurs:

* If you specify a non-integer value between the '{}' symbols

* If you specify an index for which no attribute is defined

¢ If the attribute specified does not exist in the business or meta-object
¢ If the syntax of the attribute path is incorrect

For example, if you include the literal value "{" or ’} in the message selector, you
can use '{{” or "{}" respectively. You can also place these characters in the attribute
value, in which case the first "{" is not needed. Consider the following example
using the escape character: response_selector=JMSCorrelation LIKE '{1}' and
CompanyName="A{{P"': MyDynamicM0.CorrelationID

The connector would resolve this message selector as follows:

JMSCorrelationID LIKE '123ABC' and CompanyName='A{P'
When the connector encounters special characters such as ’{’, ’}’, " or ;" in
attribute values, they are inserted directly into the query string. This allows you to
include special characters in a query string that also serve as application-specific
information delimiters.

Chapter 1. Overview 13

The next example illustrates how a literal string substitution is extracted from the
attribute value:

response_selector=JMSCorrelation LIKE '{1}' and CompanyName='A{{P':
MyDynamicMO.CorrelationID

If MyDynamicM0.CorrelationID contained the value {A:B}C;D, the connector would
resolve the message selector as follows: JMSCorrelationID LIKE '{A:B}C;D' and
CompanyName="A{P'

For more information on the response selector code, see JMS 1.0.1 specifications.

Creating custom feedback codes: You can extend the WebSphere MQ feedback
codes to override default interpretations shown in by specifying the
connector property FeedbackCodeMappingMO. This property allows you to create
a meta-object in which all WebSphere Business Integration Server Express
system-specific return status values are mapped to the WebSphere MQ feedback
codes. The return status assigned (using the meta-object) to a feedback code is
passed to InterChange Server Express. For more informatio