
WebSphere

Business

Integration

Server

Express

and

Express

Plus

Adapter

for

Web

Services

User

Guide

4.3.1

���

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Adapter

for

Web

Services

User

Guide

4.3.1

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

Notices.

30July2004

This

edition

of

this

document

applies

to

IBM

WebSphere

Business

Integration

Server

Express,

version

4.3.1,

IBM

Websphere

Business

Integration

Server

Express

Plus,

version

4.3.1,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

To

send

us

your

comments

about

this

document,

email

doc-comments@us.ibm.com.

We

look

forward

to

hearing

from

you.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Audience

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Prerequisites

for

this

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Related

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Typographic

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vi

New

in

this

release

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

New

in

release

4.3.1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Release

4.3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Chapter

1.

Overview

of

the

adapter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Adapter

for

Web

Services

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Components

of

connector

for

web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Architecture

of

connector

for

web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Install,

configure,

and

design

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Limitations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Chapter

2.

Installation

and

startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Overview

of

installation

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Installing

the

connector

and

related

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Installed

file

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Overview

of

configuration

tasks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Running

multiple

instances

of

the

adapter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Starting

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Chapter

3.

Business

object

requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Business

object

meta-data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Connector

business

object

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Developing

business

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Chapter

4.

Web

services

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Connector

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

SOAP/HTTP(S)

web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

SOAP/JMS

web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Event

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Request

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Connector

and

JMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

SSL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Configuring

the

connector

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Connector

at

startup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Logging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Chapter

5.

SOAP

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Configuring

the

SOAP

data

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

SOAP

data

handler

processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Using

application-specific

information

functionality

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Specifying

a

pluggable

name

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Limitations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Chapter

6.

Enabling

collaborations

for

request

processing

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Request

processing

collaboration

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

©

Copyright

IBM

Corp.

2004

iii

Chapter

7.

Exposing

collaborations

as

web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Procedure

checklist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Identifying

or

Developing

Business

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Choosing

or

developing

a

collaboration

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Binding

the

port

of

a

new

collaboration

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

WSDL

Configuration

Wizard

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

Chapter

8.

Using

the

WSDL

ODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Starting

the

WSDL

ODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Running

the

WSDL

ODA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Configuring

the

agent

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Specifying

the

WSDL

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

Confirming

selections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Generating

the

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Limitations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Chapter

9.

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Start-up

problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Run-time

errors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Appendix

A.

Standard

configuration

properties

for

connectors

.

.

.

.

.

.

.

.

.

.

. 169

Configuring

standard

connector

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Summary

of

standard

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Standard

configuration

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Appendix

B.

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Overview

of

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Starting

Connector

Configurator

Express

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Running

Configurator

Express

from

System

Manager

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Creating

a

connector-specific

property

template

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Creating

a

new

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Using

an

existing

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Completing

a

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Setting

the

configuration

file

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Saving

your

configuration

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Completing

the

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Using

Connector

Configurator

Express

in

a

globalized

environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Appendix

C.

Adapter

for

Web

Services

tutorial

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

About

the

tutorial

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

Before

you

start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Installing

and

configuring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Running

the

asynchronous

scenario

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Running

the

synchronous

scenario

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

Appendix

D.

Configuring

HTTPS/SSL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Keystore

setup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

TrustStore

setup

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Generating

a

certificate

signing

request

(CSR)

for

public

key

certificates

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

iv

Adapter

for

Web

Services

User

Guide

About

this

document

The

products

IBM(R)

WebSphere

Business

Integration

Server

Express

and

IBM(R)

WebSphere

Business

Integration

Server

Express

Plus

are

made

up

of

the

following

components:

InterChange

Server

Express,

the

associated

Toolset

Express,

CollaborationFoundation,

and

a

set

of

software

integration

adapters.

The

tools

in

Toolset

Express

help

you

to

create,

modify,

and

manage

business

processes.

You

can

choose

from

among

the

prepackaged

adapters

for

your

business

processes

that

span

applications.

The

standard

processes

template--CollaborationFoundation--
allows

you

to

quickly

create

customized

processes.

This

document

describes

the

installation,

configuration,

and

business

object

development

for

the

adapter

for

web

services.

Except

where

noted,

all

the

information

in

this

guide

applies

to

both

IBM

WebSphere

Business

Integration

Server

Express

and

IBM

WebSphere

Business

Integration

Server

Express

Plus.

The

term

WebSphere

Business

Integration

Server

Express

and

its

variants

refer

to

both

products.

Audience

This

document

is

for

IBM

WebSphere

customers,

consultants,

developers,

and

anyone

who

is

implementing

the

WebSphere

Business

Integration

Adapter

for

web

services.

Prerequisites

for

this

document

A

variety

of

prerequisites

are

cited

throughout

this

book.

Many

of

these

consist

of

references

to

Web

sites

that

contain

information

about,

or

resources

for,

web

services.

You

should

also

be

familiar

with

implementing

the

WebSphere

business

integration

system.

A

good

place

to

start

is

the

System

Implementation

Guide,

which

contains

cross-references

to

more

detailed

documentation.

Related

documents

The

complete

set

of

documentation

available

with

this

product

describes

the

features

and

components

common

to

all

WebSphere

Business

Integration

Server

Express

installations,

and

includes

reference

material

on

specific

components.

You

can

download,

install,

and

view

the

documentation

at

the

following

site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Note:

Important

information

about

this

product

may

be

available

in

Technical

Support

Technotes

and

Flashes

issued

after

this

document

was

published.

These

can

be

found

on

the

WebSphere

Business

Integration

Support

Web

site,

http://www.ibm.com/software/integration/websphere/support/.

Select

the

component

area

of

interest

and

browse

the

Technotes

and

Flashes

sections.

©

Copyright

IBM

Corp.

2004

v

http://www.ibm.com/websphere/wbiserver/express/infocenter
http://www.ibm.com/software/integration/websphere/support

Typographic

conventions

This

document

uses

the

following

conventions

:

courier

font

Indicates

a

literal

value,

such

as

a

command

name,

file

name,

information

that

you

type,

or

information

that

the

system

prints

on

the

screen.

bold

Indicates

a

new

term

the

first

time

that

it

appears.

italic,

italic

Indicates

a

variable

name

or

a

cross-reference.

blue

outline

A

blue

outline,

which

is

visible

only

when

you

view

the

manual

online,

indicates

a

cross-reference

hyperlink.

Click

inside

the

outline

to

jump

to

the

object

of

the

reference.

{

}

In

a

syntax

line,

curly

braces

surround

a

set

of

options

from

which

you

must

choose

one

and

only

one.

[

]

In

a

syntax

line,

square

brackets

surround

an

optional

parameter.

...

In

a

syntax

line,

ellipses

indicate

a

repetition

of

the

previous

parameter.

For

example,

option[,...]

means

that

you

can

enter

multiple,

comma-separated

options.

<

>

In

a

naming

convention,

angle

brackets

surround

individual

elements

of

a

name

to

distinguish

them

from

each

other,

as

in

<server_name><connector_name>tmp.log.

/,

\

In

this

document,

backslashes

(\)

are

used

as

the

convention

for

directory

paths

for

Windows.

OS/400

and

Linux

use

forward

slashes

(/)

for

directory

paths.

All

WebSphere

Business

Integration

Server

Express

system

product

path

names

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

%text%

and

$text

Text

within

percent

(%)

signs

indicates

the

value

of

the

Windows

text

system

variable

or

user

variable.

ProductDir

Represents

the

directory

where

the

IBM

WebSphere

Business

Integration

Server

Express

for

Adapters

product

is

installed.

The

defaults

for

each

platform

are

as

follows:

Windows:

IBM\WebSphereServer

OS/400:

/QIBM/ProdData/WBIServer43/product

Linux:

/home/${username}/IBM/WebSphereServer

”

Indicates

a

choice

from

a

menu

such

as:

Choose

File

”

Update

”

SGML

References

vi

Adapter

for

Web

Services

User

Guide

New

in

this

release

New

in

release

4.3.1

This

release

adds

support

for

the

following

operating

systems:

v

Microsoft

Windows

2003

v

IBM

OS/400

V5R2,

V5R3

v

Red

Hat

Enterprise

Linux

AS

3.0,

Update

1

v

SuSE

Linux

Enterprise

Server

8.1

with

SP3

Release

4.3

This

is

the

initial

release.

©

Copyright

IBM

Corp.

2004

vii

viii

Adapter

for

Web

Services

User

Guide

Chapter

1.

Overview

of

the

adapter

v

“Adapter

for

Web

Services

environment”

v

“Terminology”

on

page

4

v

“Components

of

connector

for

web

services”

on

page

6

v

“Architecture

of

connector

for

web

services”

on

page

10

v

“Install,

configure,

and

design

checklist”

on

page

11

v

“Limitations”

on

page

12

The

connector

is

a

run-time

component

of

the

WebSphere

Business

Integration

Server

Express

and

Express

Plus

for

Web

Services.

The

connector

allows

businesses

to

aggregate,

publish,

and

consume

web

services

for

use

either

within

their

organization

or

by

trading

partners.

The

connector

and

other

components

described

in

this

document

provide

the

functionality

needed

to

exchange

business

object

information

in

the

body

of

a

Simple

Object

Access

Protocol

(SOAP)

message.

This

chapter

describes

the

Adapter

for

Web

Services

component

of

the

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus.

This

chapter

includes

a

description

of

the

scope,

components,

design

tools,

and

architecture

used

to

implement

the

WebSphere

Business

Integration

Server

Express

and

Express

Plus

for

Web

Services.

It

also

provides

an

overview

of

tasks

you

must

complete

to

install

and

configure

the

web

services

components

described

in

this

document.

For

information

about

installing

and

configuring

the

components,

see

“Install,

configure,

and

design

checklist”

on

page

11.

Note:

The

adapter

for

Web

Services

implements

the

standard

Adapter

Framework

API.

For

this

reason,

the

adapter

can

operate

with

any

integration

broker

that

the

Framework

supports.

However,

the

functionality

provided

by

the

adapter

has

been

designed

specifically

to

support

the

IBM

WebSphere

InterChange

Server

Express

integration

broker.

Accordingly,

when

you

select

the

Expose

as

Web

Service

option

in

System

Manager,

this

refers

to

InterChange

Server

Express,

and

not

to

any

other

integration

broker.

Adapter

for

Web

Services

environment

Before

installing,

configuring,

and

using

the

adapter,

you

must

understand

its

environmental

requirements:

v

“Software

prerequisites”

v

“Adapter

platforms”

on

page

2

v

“Standards

and

APIs”

on

page

2

v

“Locale-dependent

data”

on

page

3

Software

prerequisites

Review

the

following

assumptions

and

software

requirements

before

you

install

the

connector

for

web

services:

v

The

design

of

the

connector

and

other

components

is

based

on

the

specifications

published

for

SOAP

1.1.

v

If

you

are

using

SOAP/JMS

web

services,

you

must

install

your

own-

JMS

and

JNDI

implementation.

©

Copyright

IBM

Corp.

2004

1

v

If

you

are

using

HTTPS/SSL,

you

need

your

own

third-party

software

for

creating

keystore

and

truststore.

Adapter

platforms

The

adapter

runs

on

the

following

platforms

(operating

systems):

v

Microsoft

Windows

2000

v

Microsoft

Windows

2003

v

IBM

OS/400

V5R2,

V5R3

v

Red

Hat

Enterprise

Linux

AS

3.0,

Update

1

v

SuSE

Linux

Enterprise

Server

8.1

with

SP3

Standards

and

APIs

A

variety

of

standards

and

technologies

give

web

services

access

to

their

functionality

over

a

network.

The

standards

used

by

the

adapter

are

as

follows:

v

SOAP

version

1.1

See

the

SOAP

specification

version

1.1

v

WSDL

1.1

SOAP

bindings

v

HTTP

1.0

v

JMS

1.0.2

The

APIs

used

by

the

adapter

are

as

follows:

v

Apache

SOAP

2.3.1

APIs:

The

connector

incorporates

the

SOAP

APIs

from

Apache

Foundation.

Apache

SOAP

APIs

are

an

open

source

implementation

of

the

SOAP

version

1.1.

Apache

SOAP

APIs

have

the

following

requirements:

–

Java

Activation

Framework

1.0.1

(activation.jar)

–

JavaMail(TM)

API

1.2

(mail.jar)
v

Xerces

Java

parser

1.4.3

and

higher

Xerces2

is

a

fully

conforming

XML

schema

processor

v

JMS

API

version

1.0.2

v

WSDL4J

1.2.1

-

The

Web

Service

Description

Language

for

Java

API

(WSDL4J)

provides

an

object

model

for

WSDL

documents

v

UDDI4J-WSDL

2.1.0

-

The

UDDI4J-WSDL

API

encapsulate

classes

present

in

the

UDDI4J

API,

as

well

as

some

defined

by

the

WSDL4J

API

v

JNDI

1.2.1

v

WSDL4J

1.0

v

IBM

JSSE

1.0.2

Depending

on

your

configuration,

you

may

need

to

install

additional

software.

The

sections

below

discuss

these

contingencies.

JMS

protocol

If

you

are

using

JMS

protocol,

you

must

install

a

JMS

provider

and

create

queues.

The

queue

creation

really

depends

on

your

requirements.

You

may

use

JMS

Protocol

for

both

exposing

a

collaboration

as

a

web

service

and

also

for

invoking

external

web

services.

For

further

information,

see

“Connector

and

JMS”

on

page

84.

JNDI:

You

must

configure

the

JNDI

and

then

enter

appropriate

parameters

in

the

JNDI

configuration

properties

for

the

connector.

You

also

must

ensure

that

the

2

Adapter

for

Web

Services

User

Guide

Connection

factory

and

JMS

destination

(queue)

object

are

made

available

in

the

JNDI.

If

you

want

to

use

JNDI

and

do

not

have

JNDI

implementation,

you

can

download

the

reference

implementation

of

File

System

JNDI

from

Sun

Microsystems.

For

further

information,

see

“Connector

and

JMS”

on

page

84.

SSL

If

you

plan

to

use

SSL,

you

must

use

third-party

software

for

managing

your

keystores,

certificates,

and

key

generation.

No

tooling

is

provided

to

set

up

keystores,

certificates,

or

for

key

generation.

You

may

choose

to

use

keytool

(shipped

with

IBM

JRE)

to

create

self-signed

certificates

and

to

manage

keystores.

For

further

information,

see

“SSL”

on

page

86.

Locale-dependent

data

The

connector

has

been

internationalized

so

that

it

can

support

double-byte

character

sets

and

deliver

message

text

in

the

specified

language.

When

the

connector

transfers

data

from

a

location

that

uses

one

character

code

set

to

a

location

that

uses

a

different

code

set,

it

performs

character

conversion

to

preserve

the

meaning

of

the

data.

The

Java

run-time

environment

within

the

Java

Virtual

Machine

(JVM)

represents

data

in

the

Unicode

character

code

set.

Unicode

contains

encodings

for

characters

in

most

known

character

code

sets

(both

single-byte

and

multibyte).

Most

components

in

the

WebSphere

Business

Integration

Server

Express

system

are

written

in

Java.

Therefore,

when

data

is

transferred

between

most

WebSphere

Business

Integration

Server

Express

system

components,

there

is

no

need

for

character

conversion.

To

log

error

and

informational

messages

in

the

appropriate

language

and

for

the

appropriate

country

or

territory,

configure

the

Locale

standard

configuration

property

for

your

environment.

For

more

information

on

configuration

properties,

see

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

169.

Web

services

connector

This

section

discusses

localization

and

the

connector.

Event

notification:

The

connector

uses

pluggable

protocol

listeners

for

event

notification.

The

protocol

listeners

extract

the

SOAP

message

from

the

transport

and

invoke

the

SOAP

data

handler.

This

section

describes

how

each

of

the

listeners

encode

SOAP

messages

over

the

transport.

v

SOAP/HTTP-SOAP/HTTPS

listeners:

These

listeners

read

the

body

of

the

HTTP

request

message

as

bytes.

The

encoding

of

the

body

is

given

by

the

charset

parameter

of

the

HTTP

Content-Type

header.

If

the

charset

parameter

is

missing,

ISO-8859-1

(ISO

Latin

1)

is

assumed.

The

listener

uses

this

encoding

to

convert

the

body

of

the

request

message

into

a

Java

String.

This

Java

String

is

used

to

invoke

the

SOAP

data

handler.

For

synchronous

(request-response)

web

services,

the

SOAP

data

handler

is

invoked

using

the

business

object

returned

by

the

collaboration.

The

Java

String

returned

by

the

SOAP

data

Handler

is

converted

into

bytes

using

the

encoding

from

the

HTTP

request

message.

v

SOAP/JMS

listener:

This

listener

supports

JMS

text

messages

as

well

as

JMS

byte

messages.

Request

processing:

The

connector

uses

pluggable

protocol

handlers

for

request

processing.

The

protocol

handlers

invoke

the

SOAP

data

handler.

This

section

describes

how

each

of

the

handlers

encodes

SOAP

messages

over

the

transport.

Chapter

1.

Overview

of

the

adapter

3

v

SOAP/HTTP-SOAP/HTTPS

handlers:

These

handlers

invoke

the

SOAP

data

handler.

To

compose

the

web

services

request,

the

string

returned

by

the

data

handler

is

converted

into

bytes

using

UTF

8

encoding.

For

synchronous

(request-response)

web

services,

the

protocol

handler

reads

the

body

of

the

HTTP

response

message.

The

encoding

of

the

body

is

given

by

the

charset

parameter

of

HTTP

Content-Type

header.

If

the

charset

parameter

is

missing,

ISO-8859-1

is

assumed.

The

handler

uses

this

encoding

to

convert

the

body

of

the

response

message

into

a

Java

String.

The

SOAP

data

handler

is

invoked

using

this

String.

v

SOAP/JMS

handler:

This

handler

suports

JMS

text

messages.

SOAP

data

handler

This

section

discusses

localization

and

the

SOAP

data

handler.

SOAP

character

limitations:

XML

element

names

and

attributes

names

must

be

legal

ascii

characters

that

are

allowed

by

either

business

object

names,

business

object

attribute

names

or

business

object

application-specific

information.

Internationalized

characters

are

not

supported

in

business

object

names

or

business

object

attribute

names.

Only

attribute

values

can

be

internationalized.

SOAP

data

handler

processing:

When

transforming

a

SOAP

message

into

a

business

object,

the

data

handler

can

receive

a

string

only.

The

data

handler

simply

populates

the

business

object

with

string

values

and

returns

the

business

object.

Java

strings

are

UCS2

and

therefore

double-byte

enabled

characters

are

transferred

without

problem.

Only

XML

element

and

attribute

values

can

be

non-ascii

characters

(see

character

limitations).

When

transforming

a

business

object

to

a

SOAP

message,

the

data

handler

uses

the

Xerces

parser

to

convert

a

business

object

to

a

string.

Java

strings

are

UCS2,

so

double-byte

enabled

characters

are

transferred

without

problem.

Only

XML

element

and

attribute

values

can

be

non-ascii

characters

(see

character

limitations).

WSDL

ODA

This

section

discusses

localization

and

the

WSDL

ODA.

The

WSDL

ODA

does

not

support

characters

other

than

legal

ASCII

in

the

WSDL

file.

the

WSDL

ODA

can

support

file

names

and

URLs

in

other

character

sets.

But

the

contents

of

these

files

must

be

in

legal

ASCII.

Properties

in

the

Configuring

Agent

table

of

the

WSDL

ODA

are

globalized

as

follows:

v

WSDL_URL

URL

can

be

in

native

language

v

UDDI_InquiryAPI_URL

Check

UDDI

registry

support

v

WebServiceProvider

Legal

ASCII

characters

only

v

WebService

Legal

ASCII

characters

only

v

MimeType

Legal

ASCII

characters

only

v

BOPrefix

Legal

ASCII

characters

only

v

BOVerb

Legal

ASCII

characters

only

v

Collaboration

Legal

ASCII

characters

only

Terminology

The

following

terms

are

used

in

this

Guide:

4

Adapter

for

Web

Services

User

Guide

v

ASI

(Application-Specific

Information)

is

code

tailored

to

a

particular

application

or

technology.

ASI

exists

at

both

the

attribute

level

and

business

object

level

of

a

business

object

definition.

v

ASBO

(Application-Specific

Business

Object)

A

business

object

that

can

have

ASI.

v

BO

(Business

Object)

A

set

of

attributes

that

represent

a

business

entity

(such

as

Customer)

and

an

action

on

the

data

(such

as

a

create

or

update

operation).

Components

of

the

IBM

WebSphere

system

use

business

objects

to

exchange

information

and

trigger

actions.

v

Content-Type

The

HTTP

protocol

header

that

includes

the

type/subtype

and

optional

parameters.

For

example,

in

the

Content-Type

value

text/xml;charset=ISO-8859-1,

text/xml

is

the

type/subtype

and

charset=ISO-8859-1

is

the

optional

Charset

parameter.

v

ContentType

refers

to

the

type/subtype

portion

of

the

Content-Type

header

value

only.

For

example,

in

the

Content-Type

valuetext/xml;charset=ISO-8859-1,

text/xml

is

referred

to

in

this

document

as

the

ContentType.

v

MO_DataHandler_DefaultSOAPConfig

Child

data

handler

meta-object

specifically

for

the

SOAP

data

handler.

v

GBO

(Generic

Business

Object)

A

business

object

with

no

ASI

and

not

tied

to

any

application.

v

MO_DataHandler_Default

Data

handler

meta-object

used

by

the

connector

agent

to

determine

which

data

handler

to

instantiate.

This

is

specified

in

the

DataHandlerMetaObjectName

configuration

property

of

the

connector.

v

Non-Top

Level

Business

Object

(Non-TLO)A

non-TLO

is

any

business

object

that

does

not

adhere

to

the

web

services

TLO

structure.

v

Protocol

Config

MO

During

request

processing,

the

SOAP/JMS,

SOAP/HTTP-HTTPS

protocol

handlers

use

a

Protocol

Config

MO

to

determine

the

destination

of

the

target

web

service.

If

during

event

processing

you

are

exposing

collaborations

as

SOAP/JMS

web

services,

the

connector

uses

the

Protocol

Config

MO

to

convey

the

JMS

message

header

information

from

the

SOAP/JMS

protocol

listener

to

the

collaboration.

v

SOAP

(Simple

Object

Access

Protocol)

defines

a

model

of

using

simple

request

and

response

messages,

written

in

XML,

as

the

basic

protocol

for

electronic

communication.

SOAP

messaging

is

a

platform-neutral

remote

procedure

call

(RPC)

mechanism,

but

it

can

be

used

for

the

exchange

of

any

kind

of

XML

information

(document

exchange).

v

SOAP

Business

Object

A

SOAP

business

object

is

a

child

of

a

TLO

and

can

be

a

SOAP

Request,

a

SOAP

Response

or

a

SOAP

Fault

business

object.

SOAP

business

objects

contain

information

necessary

for

processing

by

the

SOAP

data

handler,

including

SOAP

ConfigMOs,

which

are

children

of

SOAP

business

objects,

and

also

contain

SOAP

header

container

business

objects.

v

SOAP

Config

MO

(Configuration

Meta

Object)

The

data

handler

requires

an

object

that

contains

configuration

information

about

a

single

transformation,

for

example,

from

a

SOAP

message

to

a

SOAP

business

object.

This

information

is

stored

as

meta-data

in

the

child

of

a

SOAP

business

object.

This

child

object

is

the

SOAP

Config

MO

v

SOAP

Header

Child

Business

Object

A

business

object

that

represents

a

single

header

element

in

a

SOAP

message.

The

header

element

is

an

immediate

child

of

the

SOAP-Env:Header

element

of

the

SOAP

message.

All

attributes

of

a

header

container

business

object

must

be

of

this

type.

These

business

objects

may

have

an

actor

and

a

mustUnderstand

attribute.

These

attributes

correspond

to

the

actor

and

mustUnderstand

attributes

of

the

SOAP

header

element.

Chapter

1.

Overview

of

the

adapter

5

v

SOAP

Header

Container

Business

Object

A

business

object

that

contains

information

about

the

headers

in

a

SOAP

message.

This

business

object

contains

one

or

more

child

business

objects.

Each

child

business

object

represents

a

header

entry

in

the

SOAP

message.

The

SOAP

data

handler

business

object

may

have

an

attribute,

which

is

of

type

SOAP

header

container

business

object.

This

attribute

is

also

referred

to

as

the

SOAP

header

attribute.

Such

an

attribute

has

special

application-specific

information

requirements

as

described

in

Chapter

5,

“SOAP

data

handler,”

on

page

111.

This

attribute

must

be

an

immediate

child

of

a

SOAP

business

object.

v

Top-Level

Business

Object

A

web

services

top-level

business

object

contains

a

SOAP

Request,

a

SOAP

Response

(optional)

and

one

or

more

SOAP

Fault

(optional)

business

objects.

A

TLO

is

used

by

the

connector

for

both

event

processing

and

request

processing.

v

Web

services

are

self-contained,

modular,

distributed,

dynamic

applications

that

can

be

described,

published,

located,

or

invoked

over

the

network

to

create

products,

processes,

and

supply

chains.

They

can

be

local,

distributed,

or

Web-based.

Web

services

are

built

on

top

of

open

standards

such

as

TCP/IP,

HTTP,

Java,

HTML,

and

XML.

Web

services

use

new

standard

technologies

such

as

SOAP

(Simple

Object

Access

Protocol)

for

messaging,

and

UDDI

(Universal

Description,

Discovery

and

Integration)

and

WSDL

(Web

Service

Description

Language)

for

publishing.

v

UDDI

(Universal

Description,

Discovery

and

Integration)

is

a

specification

that

defines

a

way

to

publish

and

discover

information

about

web

services.

UDDI

specification

provides

for

XML-based

interfaces

(APIs)

that

allow

programmatic

access

to

the

UDDI

registry

information.

SOAP

is

the

underlying

RPC

mechanism

for

these

APIs.

v

WSDL

(Web

Services

Description

Language)

is

an

XML

vocabulary

that

defines

the

software

interfaces

for

web

services.

It

organizes

all

of

the

web

service

technical

details

required

for

automatic

integration

at

the

programming

level,

and

is

used

to

publish

IBM

WebSphere

collaborations

as

web

services.

WSDL

is

to

web

services

as

IDL

is

to

CORBA

objects.

Components

of

connector

for

web

services

Figure

1

illustrates

the

connector

for

web

services,

including

its

protocol

handler

and

listener

frameworks

and

the

SOAP

data

handler.

Note:

The

Web

Services

Adapter

comes

with

a

limited

use

license

of

the

XML

data

handler.

The

adapter,

however,

does

not

require

the

XML

data

handler

to

function.

6

Adapter

for

Web

Services

User

Guide

The

following

components

interact

to

enable

data

exchanges

across

the

Internet:

v

Web

services

connector,

including

the

SOAP

data

handler

and

protocol

listeners

and

handlers

v

Web

services-enabled

collaborations

v

Business

objects

and

SOAP

messages

v

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Web

services

connector

During

request

processing,

the

web

services

connector

responds

to

collaboration

service

calls

by

converting

business

objects

to

SOAP

request

messages

and

conveying

them

to

destination

web

services.

Optionally

(for

synchronous

request

processing)

the

connector

converts

SOAP

response

messages

to

SOAP

Response

business

objects

and

returns

these

to

the

collaboration.

During

event

processing,

the

connector

processes

SOAP

request

messages

from

client

web

services

by

converting

them

into

SOAP

Request

business

objects

and

passing

them

on

to

collaborations

(that

have

been

exposed

as

web

services)

for

processing.

The

connector

optionally

receives

SOAP

Response

business

objects

from

the

collaboration,

which

are

converted

to

SOAP

response

messages

and

then

returned

to

client

web

services.

For

further

information,

see

Chapter

4,

“Web

services

connector,”

on

page

61

Note:

In

this

document,

any

mention

of

a

connector

is

a

reference

to

the

web

services

connector,

unless

specified

otherwise.

Protocol

listeners

and

handlers

The

connector

includes

the

following

protocol

listeners

and

handlers:

v

SOAP/HTTP

protocol

listener

v

SOAP/HTTPS

protocol

listener

v

SOAP/JMS

protocol

listener

v

SOAP/HTTP-HTTPS

protocol

handler

Protocol listener
framework

Protocol handler
framework

SOAP/HTTP
protocol
listener

SOAP/JMS
protocol
handler

SOAP/HTTP-HTTPS
protocol
handler

SOAP/HTTPS
protocol
listener

SOAP/JMS
protocol
listener

SOAP
data

handler

Connector for Web Services

Figure

1.

The

connector

for

web

services

Chapter

1.

Overview

of

the

adapter

7

v

SOAP/JMS

protocol

handler

Protocol

listeners

detect

events

from

internal

or

external

web

service

clients

in

SOAP/HTTP,

SOAP/HTTPS,

or

SOAP/JMS

formats.

They

notify

the

connector

of

events

that

require

processing

by

a

collaboration

that

has

been

exposed

as

a

web

service.

Protocol

listeners

then

read

the

business-object-level

and

attribute-level

ASI,

connector

properties,

and

transformation

rules

embedded

in

protocol

configuration

objects

to

determine

the

collaboration,

data

handler,

processing

mode

(synchronous/asynchronous)

and

transport-specific

aspects

of

the

web

services

transaction.

For

a

detailed

account

of

protocol

listener

processing,

see

“Protocol

listeners”

on

page

65.

Protocol

handlers

invoke

web

services

in

SOAP/HTTP,

SOAP/HTTPS,

or

SOAP/JMS

formats

on

behalf

of

a

collaboration.

Protocol

handlers

read

TLO

ASI

and

transformation

rules

embedded

in

protocol

configuration

objects

to

determine

how

to

process

the

request

(synchronously

or

asynchronously),

which

data

handler

to

use

to

convert

SOAP

messages

to

SOAP

business

objects

and

vice

versa,

and

to

determine

the

target

address

of

the

web

service

(from

the

Destination

attribute

of

the

SOAP

Request

business

object

Protocol

Config

MO).

For

synchronous

transactions,

the

protocol

handler

processes

SOAP

response

messages,

converting

them

into

SOAP

Response

business

objects

and

passing

them

back

to

the

collaboration.

For

further

information

on

protocol

handlers,

see

“Protocol

handlers”

on

page

77.

SOAP

data

handler

The

SOAP

data

handler

converts

SOAP

business

objects

to

SOAP

messages

and

vice

versa.

For

further

information

on

the

SOAP

data

handler,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

For

further

details,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Web

services

configuration

tools

You

can

deploy

web

service

solutions

with

collaborations

that

invoke,

or

are

exposed

as,

web

services.

When

you

enable

a

collaboration

for

request

processing,

you

use

the

WSDL

Object

Discovery

Agent

(ODA)

to

generate

web

service

TLOs.

For

further

information

on

request

processing

and

the

WSDL

ODA,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

When

you

expose

a

collaboration

as

a

web

service,

you

use

the

WSDL

Configuration

Wizard,

which

helps

you

generate

a

WSDL

document

for

the

collaboration

that

you

then

publish,

for

example,

via

a

UDDI

registry.

The

connector

provides

no

tools

for

publishing

this

information.

For

information

on

exposing

collaborations

as

web

services,

see

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

Deploying

the

connector

There

are

two

ways

to

deploy

the

web

services

connector:

v

Behind

the

firewall

as

an

intranet-based

solution

(see

Figure

2)

within

an

enterprise

whose

business

processes

communicate

in

SOAP/HTTP,

SOAP/HTTPS,

or

SOAP/JMS

web

service

formats.

8

Adapter

for

Web

Services

User

Guide

v

Behind

the

firewall

with

a

front-end

or

gateway

server

to

process,

filter,

and

otherwise

manage

communications

with

web

services

that

are

external

to

the

enterprise.

Note:

The

web

services

connector

does

not

include

a

gateway

or

front-end

for

managing

incoming

or

outgoing

messages

from

or

to

external

web

services.

You

must

configure

and

deploy

your

own

gateway.

The

connector

must

be

deployed

within

the

enterprise

only,

not

in

the

DMZ

or

outside

of

the

firewall.

ICS Web
service
client

Web
service

Web
service
client

Firewall

Connector for web services

Web
service

Figure

2.

Web

services

adapter

as

an

intranet

solution

Chapter

1.

Overview

of

the

adapter

9

Architecture

of

connector

for

web

services

To

illustrate

the

architecture

of

the

components

at

a

high

level,

this

section

describes

two

data

flows.

Figure

3

illustrates

the

two

scenarios.

These

two

scenarios

are

described

below.

Request

processing

illustrates

the

sequence

of

events

that

occurs

when

a

collaboration

makes

a

service

call

request

to

the

connector

to

invoke

a

web

service.

In

this

scenario,

the

collaboration

plays

the

role

of

a

client,

sending

a

request

to

a

server.

Internet

ICS

Connector for web services

Client
of
WS2

WS1

Client of web
service
(WS1)

Web
service
(WS2)

2

C

B

D

E
5

34 A

F

1

6

Enterprise gateway/web server Ws2Ws1

Figure

3.

Flow

of

a

web

services

message

10

Adapter

for

Web

Services

User

Guide

A

The

collaboration

sends

a

service

call

request

to

the

connector,

which

calls

the

SOAP

data

handler

to

convert

the

business

object

to

a

SOAP

request

message.

B

The

connector

invokes

the

web

service

WS2

by

sending

the

SOAP

message.

If

the

destination

is

an

external

web

service,

the

connector

sends

the

SOAP

message

to

a

gateway.

The

gateway

sends

the

SOAP

message

to

the

endpoint

corresponding

to

the

destination

web

service.

This

invokes

the

web

service.

C

The

invoked

web

service

receives

the

SOAP

request

message

and

performs

the

requested

processing.

D

The

invoked

web

service

sends

a

SOAP

response

(or

fault)

message.

If

the

web

service

is

external

to

the

enterprise,

a

gateway

receives

and

routes

the

SOAP

response

message.

E

The

SOAP

response

(or

fault)

message

is

routed

back

to

the

connector,

which

calls

the

data

handler

to

convert

it

to

a

response

or

fault

business

object.

F

The

connector

returns

the

SOAP

response

or

fault

business

object

to

the

collaboration.

Event

processing

illustrates

the

sequence

of

events

that

occurs

when

a

collaboration

is

called

as

a

web

service.

In

this

scenario,

the

collaboration,

which

is

exposed

as

a

web

service,

plays

the

role

of

the

server,

accepting

a

request

from

a

client,

external

or

internal,

and

responding

as

required.

1

The

client

web

service

(WS1)

sends

a

SOAP

request

message

to

the

destination

specified

in

the

WSDL

document

generated

for

the

collaboration.

2

If

the

client

web

service

is

external,

the

gateway

receives

and

routes

the

message

to

the

connector.

3

The

connector

sends

the

SOAP

message

to

the

SOAP

data

handler

to

convert

the

SOAP

message

to

a

business

object.

The

connector

invokes

the

collaboration

exposed

as

a

web

service.

4

The

collaboration

returns

a

SOAP

Response

(or

Fault)

business

object.

5

The

connector

calls

the

SOAP

data

handler

to

convert

the

SOAP

Response

(or

Fault)

business

object

to

a

SOAP

response

message.

The

connector

returns

the

response

to

the

gateway.

6

If

the

client

web

service

is

external,

the

gateway

routes

the

SOAP

response

message

to

the

client

web

service

(WS1).

Install,

configure,

and

design

checklist

This

section

summarizes

the

tasks

you

must

perform

to

install,

configure,

and

design

your

web

services

solution.

Each

section

briefly

describes

the

tasks

and

then

provides

links

to

sections

in

this

document

(and

cross

references

to

related

documents)

that

describe

how

to

perform

the

task

or

provide

background

information.

Installing

the

adapter

See

Chapter

2,

“Installation

and

startup,”

on

page

15

for

a

description

of

what

and

where

you

must

install.

Chapter

1.

Overview

of

the

adapter

11

Configuring

connector

properties

Connectors

have

two

types

of

configuration

properties:

standard

configuration

properties

and

connector-specific

configuration

properties.

Some

of

these

properties

have

default

values

that

you

do

not

need

to

change.

You

may

need

to

set

the

values

of

some

of

these

properties

before

running

the

connector.

For

more

information,

see

Chapter

4,

“Web

services

connector,”

on

page

61.

Configuring

protocol

handlers

and

listeners

You

configure

protocol

handlers

and

listeners

when

you

assign

values

to

connector

configuration

properties

that

govern

the

behavior

of

these

components.

For

more

information,

see

Chapter

4,

“Web

services

connector,”

on

page

61.

Enabling

collaborations

for

web

services

When

you

enable

collaborations

for

web

services,

you

create

collaborations

that

can

invoke,

or

be

exposed

as,

web

services.

You

also

create

or

adapt

business

objects.

For

an

overview

of

the

tasks

involved,

see

“Web

services

configuration

tools”

on

page

8.

Exposing

collaborations

as

web

services

For

a

step-by-step

description

see

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

Enabling

collaborations

to

invoke

web

services

For

a

step-by-step

description,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

Configuring

the

SOAP

data

handler

You

configure

information

in

data

handler

meta-objects

after

you

install

the

product

files,

but

before

startup.

Unless

you

are

adding

a

custom

name

handler,

you

can

use

the

default

SOAP

data

handler

configuration

to

save

time.

You

must,

however,

configure

specific

meta-object

information

for

each

data

handler

transformation.

This

information

is

contained

in

SOAP

Config

MOs.

You

specify

SOAP

Config

MOs

when

you

create

business

objects.

Much

of

this

work

is

automated

when

you

are

developing

collaborations

that

invoke

web

services

(request

processing):

when

you

use

the

WSDL

ODA

to

generate

business

objects

for

SOAP

messages,

the

SOAP

Config

MOs

are

automatically

generated

for

you.

For

further

information

on

configuring

the

data

handler,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Limitations

v

The

WSDL

ODA

automatically

generates

business

objects.

If

the

results

do

not

meet

your

requirements,

you

must

manually

create

business

objects

using

Business

Object

Designer

Express.

See

describes

WSDL

ODA

support

for

various

combinations

of

attributes

style,

use,

and

part

definitions

using

type

and

element.

v

For

XML

limitations

on

style

(rpc,

document)

use

(literal,

encoded),

and

how

parts

are

defined,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111

and

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

v

The

connector

supports

SOAP/HTTP

and

SOAP/JMS

bindings

only.

v

The

connector’s

SOAP/JMS

protocol

listener

supports

queue

destinations

only;

topics

are

not

supported.

JMS

text

and

byte

messages

are

supported.

12

Adapter

for

Web

Services

User

Guide

v

HTTP

POST

Request

and

Response

are

supported.

No

other

HTTP

method

is

supported.

HTTP

1.1

persistent

connection

is

not

supported.

Chapter

1.

Overview

of

the

adapter

13

14

Adapter

for

Web

Services

User

Guide

Chapter

2.

Installation

and

startup

v

“Overview

of

installation

tasks”

v

“Installing

the

connector

and

related

files”

v

“Overview

of

configuration

tasks”

on

page

18

v

“Running

multiple

instances

of

the

adapter”

on

page

19

v

“Starting

the

connector”

on

page

22

This

chapter

describes

how

to

install

components

for

implementing

the

connector

for

web

services.

For

information

regarding

installation

of

a

Business

Integration

Server

Express

and

Express

Plus

system

generally,

see

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

Windows

or

Linux

or

OS/400,

as

appropriate

for

your

platform.

Overview

of

installation

tasks

For

information

on

broker

compatibility,

adapter

framework,

software

prerequisites,

dependencies,

and

standards

and

APIs,

see

“Adapter

for

Web

Services

environment”

on

page

1.

To

install

the

connector

for

web

services,

you

must

perform

the

following

tasks:

Install

Business

Integration

Server

Express

and

Express

Plus

This

task,

which

includes

installing

the

system

and

starting

Business

Integration

Server

Express

and

Express

Plus,

is

described,

as

appropriate,

in

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

Windows

or

Linux

or

OS/400.

You

must

install

Business

Integration

Server

Express

and

Express

Plus,

version

4.3.1.

To

load

files

into

the

repository,

consult

the

System

Implementation

Guide.

Install

the

connector

and

related

files

This

task

includes

installing

the

files

for

the

connector

(and

related

components)

from

the

software

package

onto

your

system.

See

“Installing

the

connector

and

related

files.”

Installing

the

connector

and

related

files

For

information

on

installing

the

adapter,

refer

to

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

your

platform,

located

in

the

WebSphere

Business

Integration

Server

Express

InfoCenter

at

the

following

site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Installed

file

structure

The

tables

in

this

section

show

the

installed

file

structure.

©

Copyright

IBM

Corp.

2004

15

Windows

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system

and

adds

an

icon

for

the

connector

file

to

the

IBM

WebSphere

Business

Integration

Adapters

menu.

For

a

fast

way

to

start

the

connector,

create

a

shortcut

to

this

file

on

the

desktop.

Table

1

describes

the

Windows

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Table

1.

Installed

Windows

file

structure

for

the

adapter

Subdirectory

of

ProductDir

Description

\lib\WBIA.jar

WebSphere

Business

Integration

Adapter

jar

file

\bin\CWConnEnv.bat

Generic

connector

startup

file

\bin\ODAEnv.bat

Generic

ODA

startup

file

connectors\WebServices\CWWebServices.jar

The

web

services

connector

connectors\WebServices\start_WebServices_service.bat

The

startup

service

file

for

the

connector

DataHandlers\CwSOAPDataHandler.jar

The

SOAP

data

handler

DataHandlers\CwSOAPNameHandler.jar

The

SOAP

name

handlers

repository\DataHandlers\MO_DataHandler_SOAP.txt

SOAP

data

handler-related

files

bin\Data\App\WebServicesConnectorTemplate

Web

services

connector

template

ODA\WSDL\WSDLODA.jar

The

WSDL

ODA

ODA\WSDL\start_WSDLODA.bat

The

WSDL

ODA

startup

file

connectors\WebServices\dependencies\soap.jar

Apache

SOAP

API

required

by

the

SOAP

connector,

SOAP

data

handler,

WSDL

Configuration

Wizard,

and

WSDL

ODA.

connectors\WebServices\dependencies\LICENSE

Apache

license

file

connectors\WebServices\dependencies\mail.jar

The

JavaMail

API

connectors\WebServices\dependencies\activation.jar

The

Java

Activation

Framework

connectors\WebServices\dependencies\ibmjsse.jar

JSSE

(Java

Secure

Socket

Extension)

API

from

IBM

connectors\WebServices\dependencies\jms.jar

The

Java

Messaging

Service

connectors\WebServices\dependencies\uddi4j-wsdl.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\uddi4jv2.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\IPL10.txt

License

file

required

by

WSDL

ODA

connectors\WebServices\dependencies\wsdl4j.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\CPL10.txt

License

file

required

by

WSDL

ODA

connectors\WebServices\dependencies\qname.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\j2ee.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\common.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\ecore.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\xercesImpl.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\xmlParserAPIs.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\xsd.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\wswb2.1.1\xsd.resources.jar

Required

by

WSDL

ODA

connectors\WebServices\dependencies\IBMReadme.txt

License

connectors\WebServices\samples\WebSphereICS\WebServicesSample.jar

Repository

file

for

samples

connectors\WebServices\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo

Sample

(synchronous)

business

object

for

test

connector

connectors\WebServices\samples\WebSphereICS\CLIENT_ASYNCH_TLO_Order.bo

Sample

(asynchronous)

business

object

for

test

connector

connectors\messages\WebServicesConnector.txt

Connector

message

file

ODA\messages\WSDLODAAgent.txt

Message

file

for

WSDL

ODA

Note:

All

product

path

names

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

For

more

information,

see

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

Windows.

16

Adapter

for

Web

Services

User

Guide

OS/400

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

Table

2

describes

the

OS/400

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Table

2.

Installed

OS/400

file

structure

for

the

adapter

Subdirectory

of

ProductDir

Description

/lib/WBIA.jar

WebSphere

Business

Integration

Adapter

jar

file

/bin/CWConnEnv.sh

Generic

connector

startup

file

/bin/CWODAEnv.sh

Generic

ODA

startup

file

connectors/WebServices/CWWebServices.jar

The

web

services

connector

connectors/WebServices/start_WebServices.sh

The

startup

file

for

the

connector

DataHandlers/CwSOAPDataHandler.jar

The

SOAP

data

handler

DataHandlers/CwSOAPNameHandler.jar

The

SOAP

name

handlers

bin/Data/App/WebServices

Web

services

connector

template

ODA/WSDL/WSDLODA.jar

The

WSDL

ODA

ODA/WSDL/start_WSDLODA.sh

The

WSDL

ODA

startup

file

connectors/WebServices/dependencies/soap.jar

Apache

SOAP

API

required

by

the

SOAP

connector,

SOAP

data

handler,

WSDL

Configuration

Wizard,

and

WSDL

ODA.

connectors/WebServices/dependencies/LICENSE

Apache

license

file

connectors/WebServices/dependencies/mail.jar

The

JavaMail

API

connectors/WebServices/dependencies/activation.jar

The

Java

Activation

Framework

connectors/WebServices/dependencies/ibmjsse.jar

JSSE

(Java

Secure

Socket

Extension)

API

from

IBM

connectors/WebServices/dependencies/jms.jar

The

Java

Messaging

Service

connectors/WebServices/dependencies/uddi4j-wsdl.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/uddi4jv2.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/IPL10.txt

License

file

required

by

WSDL

ODA

connectors/WebServices/dependencies/wsdl4j.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/CPL10.txt

License

file

required

by

WSDL

ODA

connectors/WebServices/dependencies/qname.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/j2ee.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/common.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/ecore.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xercesImpl.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xmlParserAPIs.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xsd.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xsd.resources.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/IBMReadme.txt

License

connectors/WebServices/samples/WebSphereICS/WebServicesSample.jar

Repository

file

for

samples

connectors/WebServices/samples/WebSphereICS/CLIENT_SYNCH_TLO_OrderStatus.bo

Sample

(synchronous)

business

object

for

test

connector

connectors/WebServices/samples/WebSphereICS/CLIENT_ASYNCH_TLO_Order.bo

Sample

(asynchronous)

business

object

for

test

connector

connectors/messages/WebServicesConnector.txt

Connector

message

file

ODA/messages/WSDLODAAgent.txt

Message

file

for

WSDL

ODA

Note:

All

product

path

names

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

A

fast

way

to

start

the

connector

is

to

use

the

WebSphere

Business

Integration

Console.

For

information

about

the

Console,

see

the

online

help

provided

with

the

Console.

For

more

information

on

installation,

see

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

OS/400.

Chapter

2.

Installation

and

startup

17

Linux

connector

file

structure

The

Installer

copies

the

standard

files

associated

with

the

connector

into

your

system.

Table

3

describes

the

Linux

file

structure

used

by

the

connector,

and

shows

the

files

that

are

automatically

installed

when

you

choose

to

install

the

connector

through

Installer.

Table

3.

Installed

Linux

file

structure

for

the

adapter

Subdirectory

of

ProductDir

Description

connectors/WebServices/CWWebServices.jar

The

web

services

connector

connectors/WebServices/start_WebServices.sh

The

startup

file

for

the

connector

DataHandlers/CwSOAPDataHandler.jar

The

SOAP

data

handler

DataHandlers/CwSOAPNameHandler.jar

The

SOAP

name

handlers

bin/Data/App/WebServices

Web

services

connector

template

ODA/WSDL/WSDLODA.jar

The

WSDL

ODA

ODA/WSDL/start_WSDLODA.sh

The

WSDL

ODA

startup

file

connectors/WebServices/dependencies/soap.jar

Apache

SOAP

API

required

by

the

SOAP

connector,

SOAP

data

handler,

WSDL

Configuration

Wizard,

and

WSDL

ODA.

connectors/WebServices/dependencies/LICENSE

Apache

license

file

connectors/WebServices/dependencies/mail.jar

The

JavaMail

API

connectors/WebServices/dependencies/activation.jar

The

Java

Activation

Framework

connectors/WebServices/dependencies/ibmjsse.jar

JSSE

(Java

Secure

Socket

Extension)

API

from

IBM

connectors/WebServices/dependencies/jms.jar

The

Java

Messaging

Service

connectors/WebServices/dependencies/uddi4j-wsdl.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/uddi4jv2.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/IPL10.txt

License

file

required

by

WSDL

ODA

connectors/WebServices/dependencies/wsdl4j.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/CPL10.txt

License

file

required

by

WSDL

ODA

connectors/WebServices/dependencies/qname.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/j2ee.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/common.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/ecore.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xercesImpl.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xmlParserAPIs.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xsd.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/wswb2.1.1/xsd.resources.jar

Required

by

WSDL

ODA

connectors/WebServices/dependencies/IBMReadme.txt

License

connectors/WebServices/samples/WebSphereICS/WebServicesSample.jar

Repository

file

for

samples

connectors/WebServices/samples/WebSphereICS/CLIENT_SYNCH_TLO_OrderStatus.bo

Sample

(synchronous)

business

object

for

test

connector

connectors/WebServices/samples/WebSphereICS/CLIENT_ASYNCH_TLO_Order.bo

Sample

(asynchronous)

business

object

for

test

connector

connectors/messages/WebServicesConnector.txt

Connector

message

file

ODA/messages/WSDLODAAgent.txt

Message

file

for

WSDL

ODA

Note:

All

product

path

names

are

relative

to

the

directory

where

the

product

is

installed

on

your

system.

For

more

information,

see

the

WebSphere

Business

Integration

Server

Express

Installation

Guide

for

Linux.

Overview

of

configuration

tasks

After

installation

and

before

startup,

you

must

configure

components

as

follows:

18

Adapter

for

Web

Services

User

Guide

Configure

the

connector

This

task

includes

setting

up

and

configuring

the

connector.

See

“Configuring

the

connector”

on

page

88.

Configure

business

objects

The

steps

for

configuring

business

objects

depend

on

how

you

elect

to

implement

the

product

suite:

v

Request

Processing

You

must

create

the

business

objects

that

correspond

to:

–

The

request

messages

to

be

sent

to

each

web

service

–

Each

possible

response,

including

faults

For

further

information,

review

Chapter

3,

“Business

object

requirements,”

on

page

25

and

then

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

v

Event

Processing

You

can

use

TLO

or

non-TLO

business

objects.

For

further

information,

review

Chapter

3,

“Business

object

requirements,”

on

page

25

and

then

see

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

Configure

the

data

handler

The

SOAP

data

handler

meta-object

must

be

configured

after

installation.

In

addition,

SOAP

Config

MOs

must

be

configured

for

each

SOAP

business

object.

To

configure

the

data

handler,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111

Configure

collaborations

v

Request

processing

For

collaborations

that

invoke

web

services

as

part

of

their

processing,

you

generate

business

objects

using

the

WSDL

ODA

and

then

bind

collaboration

object

ports

to

the

connector.

For

further

information

including

a

step-by-step

procedure,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

v

Event

processing

For

a

collaboration

that

is

exposed

as

a

web

service,

you

must

generate

a

WSDL

document

using

the

WSDL

Configuration

Wizard,

make

the

document

available

to

potential

clients,

and

then

configure

the

ports

of

the

collaboration

object

so

that

clients

can

invoke

the

collaboration.

For

further

information

including

a

step-by-step

procedure,

see

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

Running

multiple

instances

of

the

adapter

Note:

When

you

create

an

additional

instance

of

this

adapter

(or

any

adapter

that

is

supplied

with

WebSphere

Business

Integration

Server

Express

or

Express

Plus),

that

instance

of

the

adapter

will

be

counted

as

a

separate

adapter

by

the

licensing

function

that

limits

the

total

number

of

adapters

that

can

be

deployed.

You

can

set

your

system

up

to

create

and

run

multiple

instances

of

a

connector

by

following

the

steps

below.

You

must:

v

Create

a

new

directory

for

the

connector

instance

v

Make

sure

you

have

the

requisite

business

object

definitions

v

Create

a

new

connector

definition

file

v

Create

a

new

start-up

script

Chapter

2.

Installation

and

startup

19

Create

a

new

directory

You

must

create

a

connector

directory

for

each

connector

instance.

v

For

Windows

platforms,

the

connector

directory

should

be

named:

ProductDir\connectors\connectorInstance

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

ProductDir\repository\connectorInstance

You

can

specify

the

InterChange

Server

Express

server

name

as

a

parameter

of

startup.bat,

for

example:

start_WebServices.bat

connName

serverName

v

For

OS/400

platforms,

the

connector

directory

should

be

named:

/QIBM/UserData/WBIServer43/WebSphereICSName/connectors

/connectorInstance

where

connectorInstance

uniquely

identifies

the

connector

instance

and

where

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

server

instance

with

which

the

connector

runs.

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

/QIBM/UserData/WBIServer43/WebSphereICSName/repository

/connectorInstance

where

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

server

instance

with

which

the

connector

runs.

You

can

specify

the

InterChange

Server

Express

server

name

as

a

parameter

of

startup.sh,

for

example:

start_WebServices.sh

connName

serverName

[-cConfigFile

]

v

For

Linux

platforms,

the

connector

directory

should

be

named:

ProductDir/connectors/connectorInstance

where

connectorInstance

uniquely

identifies

the

connector

instance

If

the

connector

has

any

connector-specific

meta-objects,

you

must

create

a

meta-object

for

the

connector

instance.

If

you

save

the

meta-object

as

a

file,

create

this

directory

and

store

the

file

here:

ProductDir/repository/connectorInstance

You

can

specify

the

InterChange

Server

Express

server

name

as

a

parameter

of

connector_manager,

for

example:

start_WebServices.sh

connName

WebSphereICSName

[-cConfigFile

]

Create

business

object

definitions

If

the

business

object

definitions

for

each

connector

instance

do

not

already

exist

within

the

project,

you

must

create

them.

1.

If

you

need

to

modify

business

object

definitions

that

are

associated

with

the

initial

connector,

copy

the

appropriate

files

and

use

Business

Object

Designer

Express

to

import

them.

You

can

copy

any

of

the

files

for

the

initial

connector.

Just

rename

them

if

you

make

changes

to

them.

2.

Files

for

the

initial

connector

should

reside

in

the

appropriate

directory:

v

For

Windows:

ProductDir\repository\initialconnectorInstance

20

Adapter

for

Web

Services

User

Guide

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

ProductDir\repository

v

For

OS/400:

/QIBM/UserData/WBIServer43/WebSphereICSName/repository

/initialConnectorInstance

where

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

server

instance

with

which

the

connector

runs.

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

/QIBM/UserData/WBIServer43/WebSphereICSName/repository

v

For

Linux:

ProductDir/repository/initialconnectorInstance

Any

additional

files

you

create

should

be

in

the

appropriate

connectorInstance

subdirectory

of

ProductDir/repository

Create

a

connector

definition

You

create

a

configuration

file

(connector

definition)

for

the

connector

instance

in

Connector

Configurator

Express.

To

do

so:

1.

Copy

the

initial

connector’s

configuration

file

(connector

definition)

and

rename

it.

2.

Make

sure

each

connector

instance

correctly

lists

its

supported

business

objects

(and

any

associated

meta-objects).

3.

Customize

any

connector

properties

as

appropriate.

Create

a

startup

script

To

create

a

startup

script:

1.

Copy

the

initial

connector’s

startup

script

and

name

it

to

include

the

name

of

the

connector

directory:

dirname

(For

Linux

only)

Change

the

startup

script

CONJAR

from

CONJAR=${CONDIR}/CW${CONNAME}.jar

to

CONJAR=${CONDIR}/CWWEBSVC.jar

2.

Put

this

startup

script

in

the

connector

directory

you

created

in

“Create

a

new

directory”

on

page

20.

3.

(For

Windows

only)

Create

a

startup

script

shortcut.

4.

(For

Windows

only)

Copy

the

initial

connector’s

shortcut

text

and

change

the

name

of

the

initial

connector

(in

the

command

line)

to

match

the

name

of

the

new

connector

instance.

5.

(For

OS/400

only)

Create

a

job

description

for

the

connector

using

the

following

information:

CRTDUPOBJ

OBJ(QWBIWEBSVC)

FROMLIB(QWBISVR43)

OBJTYPE(*JOBD)

TOLIB(QWBISVR43)

NEWOBJ(newWEBSVCname)

where

newWEBSVCname

is

a

10-character

name

to

be

used

for

the

job

description

for

your

new

web

service

connector.

6.

(For

OS/400

only)

Add

the

new

connector

to

the

Console.

For

information

about

the

Console,

see

the

online

help

provided

with

the

Console.

You

can

now

run

both

instances

of

the

connector

on

your

integration

server

at

the

same

time.

Chapter

2.

Installation

and

startup

21

Starting

the

connector

Important:

As

noted

earlier

in

this

chapter,

the

connector,

business

objects,

the

SOAP

data

handler

meta-objects,

and

collaborations

must

be

configured

after

installation

and

before

starting

the

connector

to

assure

proper

operation.

For

a

summary

of

these

tasks,

see

“Overview

of

configuration

tasks”

on

page

18.

In

addition,

connector

polling

should

not

be

disabled

(connector

polling

is

enabled

by

default).

A

connector

must

be

explicitly

started

using

its

connector

start-up

script.

The

startup

script

should

reside

in

the

connector’s

run-time

directory.

For

example,

for

Windows,

use:

ProductDir\connectors\connName

where

connName

identifies

the

connector.

The

name

of

the

startup

script

depends

on

the

operating-system

platform,

as

Table

4

shows.

Table

4.

Startup

scripts

for

a

connector

Operating

system

Startup

script

Windows

start_connName.bat

OS/400

start_connName.sh

Linux

Before

executing

the

startup

script

you

must

set

environmental

variables.

The

following

command

will

set

these

variables

and

run

the

startup

script

start_connName.sh

automatically:

connector_manager

-start

connName

WebSphereICSName

[-cConfigFile

]

For

more

information

on

how

to

start

a

connector,

including

the

command

line

start-up

options,

see

the

System

Administration

Guide.

Invoking

the

startup

script

on

Windows

On

Windows

platforms,

you

can

invoke

the

connector

startup

script

in

the

following

ways:

v

From

the

Start

menu:

–

Select

Programs>IBM

WebSphere

Business

Integration

Express>Adapters>Connectors>your_connector_name

By

default,

the

program

name

is

″IBM

WebSphere

Business

Integration

Express.″

However,

it

can

be

customized.

Alternatively,

you

can

create

a

desktop

shortcut

to

your

connector.

–

On

Windows

systems,

you

can

configure

the

connector

to

start

as

a

Windows

service.

In

this

case,

the

connector

starts

when

the

Windows

system

boots

(for

an

Auto

service)

or

when

you

start

the

service

through

the

Windows

Services

window

(for

a

Manual

service).
v

From

the

command

line:

start_connName

connName

WebSphereICSName

[-cConfigFile

]

where

connName

is

the

name

of

the

connector

and

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

instance.

By

default,

the

name

of

the

InterChange

Server

Express

instance

is

WebSphereICS.

22

Adapter

for

Web

Services

User

Guide

Invoking

the

startup

script

on

OS/400

On

OS/400

platforms,

you

can

invoke

the

connector

startup

script

in

the

following

ways:

v

From

the

Windows

system

where

the

WebSphere

Business

Integration

Server

Express

Console

is

installed:

Select

Programs>IBM

WebSphere

Business

Integration

Console

>Console.

Then

specify

the

OS/400

system

name

or

IP

address

and

a

user

profile

and

password

that

has

*JOBCTL

special

authority.

Select

the

connName

adapter

from

the

list

of

adapters

and

select

the

Start

Adapter

button.

v

From

the

OS/400

command

line:

–

In

batch

mode:

Run

CL

Command

QSH

and

from

the

QSHELL

environment,

run

/QIBM/ProdData/WBIServer43/bin/submit_adapter.sh

connName

WebSphereICSName

pathToConnNameStartScript

jobDescriptionName

where

connName

is

the

connector

name,

WebSphereICSName

is

the

InterChange

Server

Express

server

name

(default

is

QWBIDFT),

pathToConnNameStartScript

is

the

full

path

to

the

connector

start

script,

and

jobDescriptionName

is

the

name

of

the

job

description

to

use

in

the

QWBISVR43

library.

–

In

interactive

mode:

Run

CL

Command

QSH

and

from

the

QSHELL

environment,

run

/QIBM/UserData/WBIServer43/WebSphereICSName/connectors/connName/

start_connName.sh

connName

WebSphereICSName

[-cConfigFile

]

where

connName

is

the

name

of

your

connector

and

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

instance.

Note:

To

start

with

TCP/IP

servers,

use

the

command:

/QIBM/ProdData/WBIServer43/bin/add_autostart_adapter.sh

connName

WebSphereICSName

pathToConnNameStartScript

jobDescriptionName

where

connName

is

the

name

of

your

connector,

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

instance,

pathToConnNameStartScript

is

the

full

path

to

the

connector

start

script,

and

jobDescriptionName

is

the

name

of

the

job

description

for

the

adapter.

Invoking

the

startup

script

on

Linux

On

Linux

platforms,

you

can

invoke

the

connector

startup

script

in

the

following

way:

v

From

the

command

line,

use

connector_manager

-start

connName

WebSphereICSName

[-cConfigFile

]

where

connName

is

the

name

of

the

connector

and

WebSphereICSName

is

the

name

of

the

InterChange

Server

Express

instance.

Chapter

2.

Installation

and

startup

23

24

Adapter

for

Web

Services

User

Guide

Chapter

3.

Business

object

requirements

v

“Business

object

meta-data”

v

“Connector

business

object

structure”

v

“Synchronous

event

processing

TLOs”

on

page

26

v

“Asynchronous

event

processing

TLOs”

on

page

40

v

“Event

processing

non-TLOs”

on

page

43

v

“Synchronous

request

processing

TLOs”

on

page

44

v

“Synchronous

request

processing

TLOs”

on

page

44

v

“Asynchronous

request

processing

TLOs”

on

page

55

v

“Developing

business

objects”

on

page

59

This

chapter

describes

the

structure,

requirements,

and

attributes

of

connector

business

objects.

Business

object

meta-data

The

connector

for

web

services

is

a

meta-data-driven

connector.

In

business

objects,

meta-data

is

data

about

the

application,

which

is

stored

in

a

business

object

definition

and

which

helps

the

connector

interact

with

an

application.

A

meta-data-driven

connector

handles

each

business

object

that

it

supports

based

on

meta-data

encoded

in

the

business

object

definition

rather

than

on

instructions

hard-coded

in

the

connector.

Business

object

meta-data

includes

the

structure

of

a

business

object,

the

settings

of

its

attribute

properties,

and

the

content

of

its

application-specific

information.

Because

the

connector

is

meta-data-driven,

it

can

handle

new

or

modified

business

objects

without

requiring

modifications

to

the

connector

code.

However,

the

connector’s

configured

data

handler

makes

assumptions

about

the

structure

of

its

business

objects,

object

cardinality,

the

format

of

the

application-specific

text,

and

the

database

representation

of

the

business

object.

Therefore,

when

you

create

or

modify

a

business

object

for

web

services,

your

modifications

must

conform

to

the

rules

the

connector

is

designed

to

follow,

or

the

connector

cannot

process

new

or

modified

business

objects

correctly.

For

more

information

on

meta-data,

meta-objects,

and

their

configuration

and

interaction

with

business

objects

and

SOAP

messages,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Connector

business

object

structure

The

connector

processes

two

kinds

of

business

objects:

v

TLOs

A

web

services

top-level

business

object

(TLO)

contains

a

Request

business

object

and,

optionally,

Response

and

Fault

business

objects.

These

child

objects

contain

content

data

as

well

as

SOAP

Config

MOs,

and,

optionally,

Protocol

Config

MOs.

The

TLO,

Request,

Response,

and

Fault

objects

as

well

as

application-specific

information,

attributes,

and

requirements

with

regard

to

request

versus

event

processing

are

described

and

illustrated

in

the

sections

below.

Note:

TLOs

are

used

for

request

processing

and

event

processing.

©

Copyright

IBM

Corp.

2004

25

v

Non-TLOs

These

are

generic

business

objects

(GBOs)

and

application-specific

business

objects

(ASBOs)

that

are

not

TLOs,

but

which

have

been

used

by

the

WSDL

Configuration

Wizard

in

WSDL

generation.

The

connector

can

process

non-TLOs

during

event

processing.

These

objects

are

discussed

below

in

“Event

processing

non-TLOs”

on

page

43.

For

further

information,

see

“WSDL

Configuration

Wizard”

on

page

148.

Note:

Non-TLOs

are

used

for

event

processing

only.

Note:

SOAP

header

container

and

header

business

objects,

which

are

included

in

Request,

Response,

and

Fault

business

objects,

are

not

discussed

in

this

chapter.

For

information

on

SOAP

header

container

and

header

business

objects,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Synchronous

event

processing

TLOs

For

event

processing

the

connector

allows

two

kinds

of

TLOs—synchronous

and

asynchronous.

This

section

discusses

synchronous

event

processing

TLOs.

Figure

4

on

page

27

shows

the

business

object

hierarchy

for

synchronous

event

processing.

Request

and

Response

objects

are

required,

Fault

objects

are

optional.

26

Adapter

for

Web

Services

User

Guide

The

TLO

contains

object-level

ASI

as

well

as

attributes

with

attribute-level

ASI.

Both

kinds

of

ASI

are

discussed

below.

Object-level

ASI

for

synchronous

event

processing

TLOs

Object-level

ASI

provides

fundamental

information

about

the

nature

of

a

TLO

and

the

objects

it

contains.

Figure

5

shows

the

object-level

ASI

for

SERVICE_SYNCH_OrderStatus,

a

sample

TLO

for

synchronous

event

processing.

Figure

4.

Business

object

hierarchy

for

synchronous

event

processing

Chapter

3.

Business

object

requirements

27

Table

5

below

describes

the

object-level

ASI

for

a

synchronous

event

processing

TLO.

Table

5.

Synchronous

event

processing

TLO

object

ASI

Object-level

ASI

Description

ws_eventtlo=true

If

this

ASI

property

is

set

to

true,

the

connector

treats

this

object

as

a

TLO

for

event

processing

only.

Note

that

the

WSDL

Configuration

Wizard

uses

this

ASI

to

determine

whether

a

business

object

is

a

TLO.

For

more

on

this

see

“WSDL

Configuration

Wizard”

on

page

148.

ws_collab=collabname

This

ASI

tells

the

connector

which

collaboration

to

invoke.

Its

value

is

the

name

of

the

collaboration.

(This

ASI

is

also

used

during

WSDL

generation

to

determine

the

TLO

for

a

collaboration.

For

more

on

this

see

“WSDL

Configuration

Wizard”

on

page

148.)

In

the

sample

shown

inFigure

5,

the

collaboration

name

is

SERVICE_SYNCH_OrderStatus_Collab)

ws_verb=verb

Before

delivering

the

TLO

to

the

collaboration,

the

connector

uses

this

ASI

to

set

the

verb

on

the

TLO.

In

the

sample

shown

inFigure

5,

the

verb

is

Retrieve.

ws_mode=synch

During

event

notification,

the

connector

uses

this

ASI

property

to

determine

whether

to

invoke

the

collaboration

synchronously

(synch)

or

asynchronously

(asynch).

For

synchronous

processing,

this

ASI

must

be

set

to

synch.

The

default

is

asynch.

Attribute-level

ASI

for

synchronous

event

processing

TLOs

Each

synchronous

event

processing

TLO

has

attributes

and

attribute-level

ASI.

Figure

6

shows

the

attributes

of

SERVICE_SYNCH_OrderStatus,

a

sample

TLO.

It

also

shows

the

attribute-level

ASI

in

the

App

Spec

Info

column.

Figure

5.

Top-level

business

object

for

synchronous

event

processing

28

Adapter

for

Web

Services

User

Guide

Table

6

summarizes

the

attribute-level

ASI

for

the

Request,

Response,

Fault,

MimeType,

and

Charset

attributes

of

an

synchronous

event

processing

TLO.

Table

6.

Synchronous

event

processing

TLO

attribute

ASI

TLO

attribute

Attribute-level

ASI

Description

MimeType

Optional

attribute;

if

specified,

its

value

is

used

as

the

mime

type

of

the

data

handler

to

invoke

for

the

synchronous

response.

The

type

is

String

and

the

default

is

xml/soap.

Charset

This

optional

parameter

of

type

String

specifies

the

charset

to

be

set

on

the

data

handler

when

transforming

an

outgoing

business

object

to

the

message.

NOTE:

the

charset

value

specified

in

this

attribute

will

not

be

propagated

in

the

Content-Type

protocol

header

of

the

response

message.

Request

ws_botype=request

This

attribute

corresponds

to

a

web

service

request.

The

connector

uses

its

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Request

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

If

there

is

more

than

one

request

attribute,

the

connector

uses

the

ASI

of

the

first

one.

This

attribute

is

required

for

synchronous

event

processing

TLOs.

Figure

6.

TLO

attributes

for

synchronous

event

processing

Chapter

3.

Business

object

requirements

29

Table

6.

Synchronous

event

processing

TLO

attribute

ASI

(continued)

TLO

attribute

Attribute-level

ASI

Description

Response

ws_botype=response

This

attribute

corresponds

to

the

response

returned

by

a

web

service.

The

connector

uses

this

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Response

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

If

there

is

more

than

one

response

attribute,

the

connector

uses

the

ASI

of

the

first

one.

This

attribute

is

required

for

synchronous

event

processing

TLOs.

Fault

ws_botype=fault

ws_botype=defaultfault

This

attribute,

optional

for

synchronous

event

processing,

corresponds

to

a

fault

message

returned

by

a

collaboration

when

it

cannot

successfully

populate

a

response.

The

connector

uses

this

ASI,

not

the

attribute

name,

to

determine

if

the

attribute

is

of

type

SOAP

Fault

BO.If

ws_botype=defaultfault,then

the

WSDL

Configuration

Wizard

uses

this

Fault

business

object

for

header

processing.

For

further

information,

see

“Header

fault

processing”

on

page

122.

Request

business

object

for

synchronous

event

processing

A

Request

business

object

is

a

child

of

a

TLO

and

is

required

for

synchronous

event

processing.

A

Request

business

object

has

object-level

ASI.

For

example,

if

you

open

SERVICE_SYNCH_OrderStatus_Request

in

Business

Object

Designer

Express

and

click

the

General

tab,

the

object

level

ASI

is

displayed

as

shown

in

Figure

7

on

page

31.

30

Adapter

for

Web

Services

User

Guide

The

object-level

ASI

for

a

Request

business

object

for

synchronous

event

processing

is

described

in

Table

7.

As

shown

in

Figure

7,

you

can

specify

a

default

verb

for

the

Request

business

object.

You

do

so

by

specifying:

DefaultVerb=true;

in

the

ASI

field

for

the

verb

in

the

Supported

Verbs

list

at

the

top-level

of

the

Request

business

object.

If

DefaultVerb

ASI

is

not

specified

and

the

data

handler

processes

a

business

object

with

no

verb

set,

the

business

object

is

returned

without

a

verb.

Table

7.

Synchronous

event

processing:

object-level

ASI

for

Request

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

meta-object

that

defines

the

data

handler

transformation

for

the

Request

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

cw_mo_jms=SOAPJMSCfgMO

or

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

The

first

ASI

designates

the

SOAP/JMS

protocol

listener;

the

second

designates

the

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener.

Both

the

ASI

and

the

Protocol

Config

MO

are

optional.

For

further

information,

see

“Protocol

Config

MO”

on

page

33.

ws_tloname=tloname

This

ASI

specifies

the

name

of

the

web

services

TLO

that

this

object

belongs

to.

During

event

processing,

the

connector

uses

this

ASI

to

determine

whether

the

Request

business

object

delivered

by

the

data

handler

is

a

child

of

the

TLO.

If

so,

the

connector

creates

the

specified

TLO,

sets

the

Request

business

object

as

its

child,

and

uses

the

TLOs

object-level

ASI

to

deliver

it

to

the

subscribing

collaboration.

Response

business

object

for

synchronous

event

processing

A

Response

business

object

is

a

child

of

a

TLO

and

is

required

for

synchronous

event

processing.

The

object-level

ASI

for

a

Response

business

object

for

synchronous

event

processing

is

described

in

Table

8.

Figure

7.

Object-level

ASI

for

synchronous

event

processing

request

object

Chapter

3.

Business

object

requirements

31

Table

8.

Synchronous

event

processing:

object-level

ASI

for

Response

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Response

business

object.

For

further

information,

see

“SOAP

Config

MO.”

Note:

You

can

optionally

include

a

Protocol

Config

MO

object-level

ASI

for

the

Response

BO.

Fault

business

object

for

synchronous

event

processing

A

Fault

business

object

is

a

child

of

a

TLO

and

is

optional

for

synchronous

event

processing.

The

object-level

ASI

for

a

Fault

business

object

for

synchronous

event

processing

is

described

in

Table

9.

Table

9.

Synchronous

event

processing:

object-level

ASI

for

Fault

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Fault

business

object.

For

further

information,

see

“SOAP

Config

MO.”

Note:

You

can

optionally

include

a

Protocol

Config

MO

object-level

ASI

for

the

Fault

BO.

SOAP

Config

MO

Figure

8

shows

a

sample

SOAP

Config

MO,

expanded

in

Business

Object

Designer

Express.

32

Adapter

for

Web

Services

User

Guide

The

SOAP

Config

MO

defines

the

formatting

behavior

for

one

data

handler

transformation

—

either

a

SOAP-message-to-business-object

or

business-object-to-SOAP-message

transformation.

Each

Request,

Response,

and

Fault

attribute

has

a

SOAP

Config

MO.

Its

attributes,

BodyName,

BodyNS,

Style,

Use,

TypeInfo,

TypeCheck

and

BOVerb,

are

always

of

type

String.

They

correspond

to

SOAP

message

elements

and

their

values

determine

how

messages

and

objects

are

read

and

validated

by

the

SOAP

data

handler.

For

more

information

on

SOAP

Config

MOs

and

attributes,

see

“SOAP

configuration

meta-object:

child

of

every

SOAP

business

object”

on

page

113..

All

SOAP

Config

MOs,

whether

for

a

request,

response,

or

fault

object,

must

have

unique

entries

for

default

values

of

BodyName

and

BodyNS.

Protocol

Config

MO

Figure

9

shows

a

JMS

Protocol

Config

MO,

whose

attributes

correspond

to

headers

in

the

inbound

SOAP

message.

Figure

8.

SOAP

Config

MO

attributes

for

synchronous

event

processing

Chapter

3.

Business

object

requirements

33

This

MO

is

optionally

included

as

a

child

of

the

request,

response,

or

fault

business

objects

for

event

processing.

Typically

you

specify

it

when

you

need

to

read

(from

request

messages)

or

propagate

(to

response

or

fault

messages)

the

protocol

headers

and

custom

properties.

As

noted

above,

the

request

business

object

optionally

declares

the

name

of

the

Protocol

Config

MO

as

business-object-level

ASI:

v

cw_mo_jms=JMSProtocolListenerConfigMOAttribute

v

cw_mo_http=HTTPProtocolListenerConfigMOAttribute

During

event

processing,

the

connector

uses

protocol

listeners

(SOAP/HTTP,

SOAP/HTTPS

or

SOAP/JMS)

to

retrieve

events

from

the

transport.

These

events

are

messages

from

internal

or

external

web

service

clients

requesting

service

from

collaborations

that

have

been

exposed

as

web

services.

Each

transport

has

its

own

header

requirements.

The

connector

uses

the

Protocol

Config

MO

to

convey

the

protocol-specific

header

information

from

the

protocol

listener

to

the

collaboration.

The

Protocol

Config

MO

attributes

correspond

to

headers

in

the

inbound

SOAP/JMS

message.

The

connector

sets

the

value

of

these

attributes

in

the

business

object

using

inbound

SOAP

message

content.

For

SOAP/JMS

protocol,

the

Protocol

Config

MO

attributes

for

event

and

request

processing

are

as

follows:

Table

10.

SOAP

JMS

Protocol

Config

MO

attributes:event

and

request

processing

SOAP/JMS

Protocol

Config

MO

attribute

JMSHeaderName

Description

CorrelationID

JMSCorrelationID

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

JMSCorrelationID

header.

Outbound

messages:

:

the

value

from

this

attribute

will

be

set

as

the

JMSCorrelationID

header

of

outgoing

message.

Figure

9.

JMS

Protocol

Config

MO

attributes

for

synchronous

event

processing

34

Adapter

for

Web

Services

User

Guide

Table

10.

SOAP

JMS

Protocol

Config

MO

attributes:event

and

request

processing

(continued)

SOAP/JMS

Protocol

Config

MO

attribute

JMSHeaderName

Description

MessageId

JMSMessageId

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSMessageId

header.

Outbound

messages:

this

attribute

is

not

used

for

outbound

messages.

Priority

JMSPriority

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSPriority

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSPriority

header

of

outgoing

message.

Expiration

JMSExpiration

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSExpiration

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSExpiration

header

of

outgoing

message.

DeliveryMode

JMSDeliveryMode

Inbound

messages:

:

this

atrribute

will

be

populated

with

the

value

from

the

JMSDeliveryMode

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSDeliveryMode

header

of

outgoing

message.

Destination

JMSDestination

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSDestination

header.

Outbound

messages:

Request

processing

the

value

from

this

attribute

will

be

used

as

the

destination

queue

name

and

will

indirectly

be

set

in

the

JMSDestination

header

of

outgoing

messages

to

the

derived

destination

path.
Synchronous

response

in

event

notification:

this

attribute

is

not

used.

Chapter

3.

Business

object

requirements

35

Table

10.

SOAP

JMS

Protocol

Config

MO

attributes:event

and

request

processing

(continued)

SOAP/JMS

Protocol

Config

MO

attribute

JMSHeaderName

Description

Redelivered

JMSRedelivered

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSRedelivered

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSRedelivered

header

of

outgoing

message..

ReplyTo

JMSReplyTo

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSReplyTo

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSReplyTo

header

of

outgoing

message

TimeStamp

JMSTimeStamp

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSTimeStamp

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSTimeStamp

header

of

outgoing

message..

Type

JMSType

Inbound

messages:

this

atrribute

will

be

populated

with

the

value

from

the

JMSType

header.

Outbound

messages:

the

value

from

this

attribute

will

be

set

in

the

JMSType

header

of

outgoing

message.

UserDefinedProperties

See

“User-defined

properties

for

event

processing”

on

page

37.

This

optional

read/write

attribute

will

hold

the

user-defined

protocol

properties

business

object.

For

further

information,

see“User-defined

properties

for

event

processing”

on

page

37.

Note:

It

is

the

responsibility

of

the

collaboration

to

ensure

that

the

header

values

passed

to

the

JMS

Protocol

Config

MO

are

logically

correct

in

the

context

of

a

request-response

event.

36

Adapter

for

Web

Services

User

Guide

For

SOAP/HTTP(S)

protocol,

the

Protocol

Config

MO

attributes

are

as

follows:

Table

11.

HTTP/HTTPS

Protocol

Config

MO

Attributes

for

Event

Processing

Attribute

Required

Type

Description

Content-Type

No

String

The

value

of

this

attribute

defines

the

Content-Type

header

of

the

outgoing

message

(which

includes

message

ContentType

and

0

or

more

parameters

--the

charset--

for

the

outgoing

message).

The

syntax

is

the

same

as

that

for

the

Content-Type

header

in

the

HTTP

Protocol,

for

example:

text/html;

charset=ISO-8859-4.

If

there

is

no

Content-Type

attribute

defined,

the

connector

uses

the

ContentType

of

the

request

as

the

ContentType

of

the

response/fault

message.

UserDefinedProperties

No

Business

object

This

attribute

holds

the

user-defined

protocol

properties

business

object.

One

or

more

HTTP

headers

No

String

This

attribute

allows

the

handler

to

pass

or

retrieve

the

value

for

the

specified

HTTP

header.

Authorization_UserID

No

String

This

attribute

corresponds

to

the

userID

of

the

HTTP

basic

authentication.

Authorization_Password

No

String

This

attribute

corresponds

to

the

password

of

the

HTTP

basic

authentication

These

attributes

are

described

in:

v

“User-defined

properties

for

event

processing”

v

“HTTP

credential

propagation

for

event

processing”

on

page

38

For

further

information

on

protocol

listeners,

see

“Protocol

listeners”

on

page

65.(For

information

describing

the

Protocol

Config

MO

for

request

processing,

see

“Synchronous

request

processing

TLOs”

on

page

44).

User-defined

properties

for

event

processing:

You

can

optionally

specify

custom

properties

in

the

HTTP(S)

Protocol

Config

MO.

You

do

so

by

including

the

UserDefinedProperties

attribute.

This

attribute

corresponds

to

a

business

object

that

has

one

or

more

child

attributes

with

property

values.

Every

attribute

in

this

business

object

must

define

a

single

property

to

be

read

(or,

for

synchronous

responses,

written)

in

the

variable

portion

of

the

message

header

as

follows:

v

The

type

of

the

attribute

should

always

be

String

regardless

of

the

protocol

property

type.

The

application-specific

information

of

the

attribute

can

contain

two

name-value

pairs

defining

the

name

and

format

of

the

protocol

message

property

to

which

the

attribute

maps.

Chapter

3.

Business

object

requirements

37

Table

12summarizes

the

application-specific

information

for

these

attributes.

Table

12.

Application-specific

information

for

user-defined

protocol

property

attributes:

name=value

pair

content

Name

Value

Description

ws_prop_name

(case-insensitive;

if

not

specified

the

attribute

name

will

be

used

as

the

property

name)

Any

valid

protocol

property

name

This

is

the

name

of

the

protocol

property.

Some

vendors

reserve

certain

properties

to

provide

extended

functionality.

In

general,

you

should

not

define

custom

properties

that

begin

with

JMS

(for

JMS

protocol)

unless

you

are

seeking

access

to

these

vendor-specific

features.

ws_prop_type

(case

insensitive,

optional

for

JMS

-

if

not

specified

String

is

assumed;

irrelevant

for

HTTP(S)

since

only

String

types

make

sense)

String,

Integer,

Boolean,

Float,

Double,

Long,

Short

The

type

of

the

protocol

property.

For

JMS

protocol,

the

JMS

API

provides

a

number

of

methods

for

setting

property

values

in

the

JMS

Message:

setIntProperty,

setLongProperty,

setStringProperty,

etc.

The

type

of

the

JMS

property

specified

here

dictates

which

of

these

methods

will

be

used

for

setting

the

property

value

in

the

message.

If

the

given

custom

property

ASI

(either

the

ws_prop_name

or

ws_prop_type)

is

invalid

and

there

is

no

logical

way

to

process

this

header

(such

as

ignoring

the

property

type

for

HTTP

processing),

the

connector

logs

a

warning

and

ignores

this

property.

If

the

value

of

the

custom

property

can

neither

be

set

nor

retrieved

after

the

necessary

check

against

ws_prop_name

or

ws_prop_type

has

been

performed,

the

connector

logs

the

error

and

fails

the

event.

If

the

UserDefinedProperties

attribute

is

specified,

the

connector

will

create

an

instance

of

a

UserDefinedProperties

business

object.

The

connector

then

attempts

to

extract

property

values

from

the

message

and

store

them

in

the

business

object.

If

at

least

one

property

value

is

successfully

retrieved,

the

connector

will

set

a

modified

UserDefinedProperties

attribute

in

the

Protocol

Config

MO.

For

synchronous

event

processing,

if

a

UserDefinedProperties

attribute

is

specified

and

its

business

object

is

instantiated,

the

connector

will

process

each

attribute

of

this

child

business

object

and

set

the

message

property

value

accordingly.

HTTP

credential

propagation

for

event

processing:

For

the

purpose

of

credential

propagation,

the

connector

supports

the

Authorization_UserID

and

Authorization_Password

attributes

in

the

HTTP

Protocol

Config

MO.

The

support

is

limited

to

the

propagation

of

these

credentials

as

part

of

the

HTTP

Basic

authentication

scheme.

If

a

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener

processes

a

SOAP/HTTP

web

service

request

that

includes

an

authorization

header,

the

listener

will

parse

the

header

to

determine

whether

it

conforms

to

HTTP

Basic

authentication.

If

so,

the

38

Adapter

for

Web

Services

User

Guide

listener

extracts

and

decodes

(using

Base64)

the

username

and

password.

This

decoded

string

consists

of

a

username

and

password

separated

by

a

colon.

If

the

protocol

listener

finds

the

Authorization_UserID

and

Authorization_Password

attributes

in

the

Protocol

Config

MO,

the

listener

sets

these

values

with

those

extracted

from

the

event

authorization

header.

Header

container

business

objects

Figure

10

shows

the

expanded

header

container

attribute,

OrderHeader.

The

header

container

attribute,

also

known

as

the

SOAP

header

attribute,

corresponds

to

a

business

object

that

contains

only

child

business

objects.

Each

child

represents

a

header

entry

in

the

SOAP

message.

In

the

example

shown

in

Figure

10,

the

request

header

container

is

OrderHeader.

SOAP

header

attributes

have

application-specific

information

(ASI)

required

by

the

SOAP

data

handler.

For

example,

a

header

container

business

object

is

identified

by

its

ASI:

soap_location=SOAPHeader.

For

information

on

header

processing,

see

“SOAP

data

handler

processing”

on

page

117.

All

SOAP

business

objects,

whether

a

Request,

Response,

or

Fault

object,

have

one

and

only

one

header

container.

Header

child

business

objects

In

the

example

shown

Figure

10,

the

two

child

attributes

of

the

request

header

container

(OrderHeader)

are

1)

transaction

of

type

SERVICE_SYNCH_OrderStatus_TransactionHeaderChild

and

2)

affiliate

of

type

Figure

10.

Header

container

and

child

business

objects

Chapter

3.

Business

object

requirements

39

SERVICE_SYNCH_OrderStatus_TradingPartnerHeaderChild.

These

attributes

correspond

to

header

child

business

objects.

Each

represents

a

single

header

element

in

a

SOAP

message.

The

header

element

is

an

immediate

child

of

the

SOAP-Env:Header

element

of

the

SOAP

message.

As

shown

Figure

10,

the

header

child

business

objects

may

have

an

actor

and

a

mustUnderstand

attribute.

These

attributes

correspond

to

the

actor

and

mustUnderstand

attributes

of

the

SOAP

header

element.

For

information

on

header

processing,

see

“SOAP

data

handler

processing”

on

page

117.

There

may

be

as

many

header

child

objects

as

are

needed

to

represent

the

SOAP

header

message

elements.

Asynchronous

event

processing

TLOs

Figure

11

shows

the

business

object

hierarchy

for

asynchronous

event

processing.

A

request

object

only

is

required.

The

TLO

contains

object-level

ASI

as

well

as

attributes

with

attribute-level

ASI.

Both

kinds

of

ASI

are

discussed

below.

For

information

on

the

header

container

and

header

child

business

objects,

see

“Header

container

business

objects”

on

page

39.

Object-level

ASI

for

asynchronous

event

processing

TLOs

Object-level

ASI

provides

fundamental

information

about

the

nature

of

a

TLO

and

the

objects

it

contains.

Figure

12

shows

the

object-level

ASI

for

SERVICE_ASYNCH_TLO_Order,

a

sample

TLO

for

asynchronous

event

processing.

Figure

11.

Business

object

hierarchy

for

asynchronous

event

processing

40

Adapter

for

Web

Services

User

Guide

Table

5

below

describes

the

object-level

ASI

for

an

asynchronous

event

processing

TLO.

Table

13.

Asynchronous

event

processing

TLO

object

ASI

Object-level

ASI

Description

ws_eventtlo=true

If

this

ASI

property

is

set

to

true,

the

connector

treats

this

object

as

a

TLO

for

event

processing.

Note

that

the

WSDL

Configuration

Wizard

uses

this

ASI

to

determine

whether

a

business

object

is

a

TLO.

For

more

on

this

see

“WSDL

Configuration

Wizard”

on

page

148.

ws_verb=verb

Before

delivering

the

TLO

to

the

collaboration,

the

connector

uses

this

ASI

to

set

the

verb

on

the

TLO.

In

the

sample

shown

inFigure

12,

the

verb

is

Create.

ws_mode=asynch

During

event

notification,

the

connector

uses

this

ASI

property

to

determine

whether

to

invoke

the

collaboration

synchronously

(synch)

or

asynchronously

(asynch).

For

asynchronous

processing,

this

ASI

must

be

set

to

asynch.

The

default

is

asynch.

Note:

Unlike

synchronous

event

processing,

no

collaboration

name

ASI

is

required

at

the

TLO

level

for

asynchronous

event

processing.

Instead

the

integration

broker

assures

that

application

events

reach

all

subscribing

collaborations.

Attribute-level

ASI

for

asynchronous

event

processing

TLOs

Each

asynchronous

event

processing

TLO

has

a

single

attribute

that

corresponds

to

a

Request

business

object.

Figure

13

shows

the

request

attribute

of

SERVICE_ASYNCH_TLO_Order,

a

sample

TLO,

and

the

attribute’s

ASI.

Figure

12.

Top-level

business

object

for

asynchronous

event

processing

Chapter

3.

Business

object

requirements

41

Table

14

summarizes

the

attribute-level

ASI

for

the

request

attribute

of

an

asynchronous

event

processing

TLO.

Table

14.

Asynchronous

event

processing

TLO

attribute

ASI

TLO

attribute

Attribute-level

ASI

Description

Request

ws_botype=request

This

attribute

corresponds

to

a

web

service

request.

The

connector

uses

its

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Request

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

If

there

is

more

than

one

request

attribute,

the

connector

uses

the

ASI

of

the

first

one.

This

attribute

is

required

for

synchronous

event

processing

TLOs.

Request

business

object

for

asynchronous

event

processing

A

Request

business

object

is

a

child

of

a

TLO

and

is

required

for

asynchronous

event

processing.

You

can

specify

a

default

verb

for

the

Request

business

object.

You

do

so

by

specifying:

DefaultVerb=true;

in

the

ASI

field

for

the

verb

in

the

Supported

Verbs

list

at

the

top-level

of

the

Request

business

object.

If

DefaultVerb

ASI

is

not

specified

and

the

data

handler

processes

a

business

object

with

no

verb

set,

the

business

object

is

returned

without

a

verb.

The

object-level

ASI

for

a

Request

business

object

for

asynchronous

event

processing

is

described

in

Table

15.

Table

15.

Asynchronous

event

processing:

object-level

ASI

for

Request

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Request

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

Figure

13.

TLO

attribute

for

asynchronous

event

processing

42

Adapter

for

Web

Services

User

Guide

Table

15.

Asynchronous

event

processing:

object-level

ASI

for

Request

business

objects

(continued)

Object-level

ASI

Description

cw_mo_jms=SOAPJMSCfgMO

or

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

The

first

ASI

designates

the

SOAP/JMS

protocol

listener;

the

second

designates

the

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener.

Both

the

ASI

and

the

Protocol

Config

MO

are

optional.

For

further

information,

see

“Protocol

Config

MO”

on

page

33.

ws_tloname=tloname

This

ASI

specifies

the

name

of

the

web

services

TLO

that

this

object

belongs

to.

During

event

processing,

the

connector

uses

this

ASI

to

determine

whether

the

Request

business

object

delivered

by

the

data

handler

is

a

child

of

the

TLO.

If

so,

the

connector

creates

the

specified

TLO,

sets

the

Request

business

object

as

its

child,

and

uses

the

TLOs

object-level

ASI

to

deliver

it

to

the

subscribing

collaboration.

In

the

sample

shown

in

Figure

14,

the

Request

attribute

contains

a

SOAP

Config

MO

and

header

container

(OrderHeader),

as

well

as

a

content-related

attribute

(OrderLineItems).

The

requirements

and

characteristics

of

the

SOAP

Config

MO,

Protocol

Config

MO,

SOAP

header

container,

and

header

child

business

objects

are

the

same

for

asynchronous

event

processing

as

they

are

for

synchronous

event

processing.

For

further

information,

see

these

topics

above

in

“Synchronous

event

processing

TLOs”

on

page

26.

Event

processing

non-TLOs

If

the

object-level

ASI

ws_eventtlo=true

is

not

present

in

a

business

object,

the

connector

concludes

that

the

object

is

not

a

TLO.

During

event

processing,

the

connector

can

process

non-TLOs—generic

business

objects

and

application

specific

business

objects.

With

non-TLOs,

the

same

business

object

represents

the

Request

and

Response

business

object.

Figure

14.

Request

attributes

for

asynchronous

event

processing

Chapter

3.

Business

object

requirements

43

Non-TLOs

do

not

have

SOAP

Config

MOs.

When

you

expose

a

collaboration

as

a

web

service,

the

WSDL

Configuration

Wizard

configures

the

WSCollaborations

property

of

the

connector.

The

connector

uses

the

WSCollaborations

property

to

determine

the

BodyName

and

BodyNS

of

the

request

message.

Note

that

for

non-TLOs,

the

WSCollaborations

property

is

used

for

business

object

resolution.

The

advantage

to

using

non-TLOs

is

that

you

need

not

develop

new,

TLO-structured

business

objects

for

use

with

your

web

services

solution.

TLOs,

however,

allow

a

more

precise

and

economical

exposure

of

data—customer,

company,

or

otherwise.

TLO

business

objects

also

lend

themselves

to

more

customization

than

do

non-TLOs.

For

further

information

on

requirements

when

using

non-TLOs

as

input

to

the

WSDL

Configuration

Wizard,

see

“Identifying

or

Developing

Business

Objects”

on

page

146.

Synchronous

request

processing

TLOs

For

request

processing

the

connector

allows

two

kinds

of

TLOs—synchronous

and

asynchronous.

This

section

discusses

synchronous

request

processing

TLOs.

Figure

15

shows

the

TLO

business

object

hierarchy

for

synchronous

request

processing.

Request

and

Response

objects

are

required,

Fault

objects

are

optional.

Unlike

event

processing,

a

Protocol

Config

MO

is

required

for

the

Request

objects,

and

optional

for

the

Response

and

Fault

objects.

For

information

on

the

header

container

and

header

child

business

objects,

see

“Header

container

business

objects”

on

page

39.

44

Adapter

for

Web

Services

User

Guide

Object-level

ASI

for

synchronous

request

processing

TLOs

Object-level

ASI

provides

important

information

about

the

nature

of

a

TLO

and

the

objects

it

contains.

Figure

16

shows

CLIENT_SYNCH_TLO_OrderStatus,

a

sample

TLO

for

synchronous

request

processing.

Figure

15.

Business

object

hierarchy

for

synchronous

request

processing

Chapter

3.

Business

object

requirements

45

Table

16

describes

the

object-level

ASI

for

a

synchronous

request

processing

TLO.

Unlike

the

ASI

for

synchronous

event

processing

TLOs,

no

ws_collab,

ws_verb

or

ws_eventtlo

ASI

is

required

at

this

level

for

request

processing.

Table

16.

Synchronous

request

processing

TLO

object

ASI

Object-level

ASI

Description

ws_mode=synch

During

request

processing,

the

connector

uses

this

ASI

property

to

determine

whether

to

invoke

the

web

service

synchronously

(synch)

or

asynchronously

(asynch).

If

synch

is

indicated,

then

the

connector

expects

a

response,

and

the

TLO

must

include

request

and

response

business

objects

and,

optionally,

one

or

more

fault

objects.

The

default

is

asynch.

Attribute-level

ASI

for

synchronous

request

processing

TLOs

Figure

17

shows

the

attributes

of

the

CLIENT_SYNCH_TLO_OrderStatus

TLO

as

well

as

attribute-level

ASI.

Figure

16.

Top-level

business

object

for

synchronous

request

processing

Figure

17.

TLO

attributes

for

synchronous

request

processing

46

Adapter

for

Web

Services

User

Guide

Table

17

describes

the

attributes

and

ASI

shown

in

Figure

17.

Table

17.

Request

processing

TLO

attributes

TLO

attribute

Attribute-level

ASI

Description

MimeType

None

This

attribute

specifies

the

mime

type

of

the

data

handler

that

the

connector

invokes

for

transforming

a

Request

business

object

into

a

request

message.

This

value

may

be

used

for

transforming

synchronous

response/fault

messages

into

business

objects,

depending

on

the

Message

Transformation

Rules

configuration.

BOPrefix

None

This

attribute

of

type

String

is

passed

to

the

data

handler.

Handler

None

This

attribute

specifies

the

protocol

handler

to

use

to

process

the

web

service

request

and

is

for

request

processing

only.

It

takes

one

of

the

following

values:

v

soap/jms

The

connector

uses

the

SOAP/JMS

protocol

handler

to

process

the

request

v

soap/http

The

connector

uses

the

SOAP/HTTP,

SOAP/HTTPS

protocol

handler

to

process

this

web

service

request.

The

default

is

soap/http

Charset

This

optional

parameter

of

type

String

specifies

the

charset

to

be

set

on

the

data

handler

when

transforming

the

Request

business

object

to

a

message.

NOTE:

the

charset

value

specified

in

this

attribute

will

not

be

propagated

in

the

Content-Type

protocol

header

of

the

request

message.

Request

ws_botype=request

This

attribute

corresponds

to

a

web

service

request

business

object.

The

connector

uses

this

attribute

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Request

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

If

there

is

more

than

one

request

attribute,

the

connector

uses

the

ASI

of

the

first

populated

attribute.

Response

ws_botype=response

This

attribute

corresponds

to

the

response

returned

to

a

collaboration

and

is

required

for

synchronous

request

processing.

The

connector

uses

this

attribute

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Response

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

Chapter

3.

Business

object

requirements

47

Table

17.

Request

processing

TLO

attributes

(continued)

TLO

attribute

Attribute-level

ASI

Description

Fault

ws_botype=fault

or

ws_botype=defaultfault

This

attribute,

optional

for

synchronous

request

processing,

corresponds

to

a

fault

message

returned

by

a

web

service

when

it

cannot

successfully

populate

a

response.

The

connector

uses

this

ASI

to

determine

if

the

attribute

of

TLO

is

of

type

SOAP

Fault

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

A

defaultfault

business

object

is

returned

if

the

fault

message

is

a

detail

element.

defaultfault

is

used

in

default

business

object

resolution.

For

further

information,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Request

business

object

for

synchronous

request

processing

A

Request

business

object

is

a

child

of

a

TLO

and

is

required

for

synchronous

request

processing.

A

Request

business

object

has

object-level

ASI.

For

example,

if

you

open

CLIENT_SYNCH_OrderStatus_Request

and

click

the

General

tab,

the

object-level

ASI

is

displayed

as

shown

in

Figure

18.

Table

18

describes

the

object-level

ASI

for

a

Request

business

object

for

synchronous

request

processing.

Table

18.

Synchronous

request

processing:

object-level

ASI

for

Request

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Request

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

Figure

18.

Request

object

ASI

for

synchronous

request

processing

48

Adapter

for

Web

Services

User

Guide

Table

18.

Synchronous

request

processing:

object-level

ASI

for

Request

business

objects

(continued)

Object-level

ASI

Description

cw_mo_jms=SOAPJMSCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

the

Protocol

Config

MO

that

specifies

the

destination

web

service

for

the

JMS

protocol

handler.

For

further

information,

see

“JMS

Protocol

Config

MO

of

request

business

object

for

request

processing”

on

page

50.

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

optional

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

a

separate

Protocol

Config

MO

that

specifies

the

destination

for

the

SOAP/HTTP-HTTPS

protocol

handler.

This

ASI

is

used

by

the

SOAP/HTTP

and

SOAP/HTTPS

Protocol

Handler.

Note

that

the

TLO

request

attribute

must

have

either

a

JMS

or

an

HTTP

Protocol

Config

MO

for

request

processing,

depending

on

the

type

of

web

service

protocol

you

are

using.

For

further

information,

see

“HTTP

Protocol

Config

MO

for

request

processing”

on

page

51.

SOAPAction=SOAPActionURI

The

connector

uses

this

ASI

to

determine

whether

to

set

a

SOAPAction

header

on

the

request

message.

Specify

this

ASI

only

if

the

target

web

service

requires

a

SOAPAction

header.

Note

that

this

ASI

is

used

for

request

processing

but

not

for

event

notification.

Response

business

object

for

synchronous

request

processing

A

Response

business

object

is

a

child

of

a

TLO

and

is

required

for

synchronous

request

processing.

The

object-level

ASI

for

a

Response

business

object

for

synchronous

request

processing

is

described

in

Table

19.

Table

19.

Synchronous

request

processing:

object-level

ASI

for

response

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Protocol

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Response

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

cw_mo_jms=SOAPJMSCfg

MO

or

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

the

Protocol

Config

MO,

optional

for

a

Response

business

object,

that

specifies

the

headers

in

the

response

SOAP

message

for

the

JMS

or

HTTP(s)

protocol

handler.

For

further

information,

see

“Protocol

Config

MO”

on

page

33

You

can

specify

a

default

verb

for

the

Response

business

object.

You

do

so

by

specifying:

DefaultVerb=true;

Chapter

3.

Business

object

requirements

49

in

the

ASI

field

for

the

verb

in

the

Supported

Verbs

list

at

the

top-level

of

the

Response

business

object.

If

DefaultVerb

ASI

is

not

specified

and

the

data

handler

processes

a

business

object

with

no

verb

set,

the

Response

business

object

is

returned

without

a

verb.

Fault

business

object

for

synchronous

request

processing

A

Fault

business

object

is

a

child

of

a

TLO

and

is

optional

for

synchronous

request

processing.

The

object-level

ASI

for

a

Fault

business

object

for

synchronous

request

processing

is

described

in

Table

9.

Table

20.

Synchronous

request

processing:

object-level

ASI

for

Fault

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Protocol

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Fault

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

cw_mo_jms=SOAPJMSCfg

MO

or

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

the

Protocol

Config

MO,

optional

for

a

Fault

business

object,

that

specifies

the

headers

in

the

response

SOAP

message

for

the

JMS

protocol

handler.

For

further

information,

see

“Protocol

Config

MO”

on

page

33

SOAP

Config

MO

The

SOAP

Config

MO

(SOAPCfgMO)

has

the

same

attributes

as

those

for

the

event

processing

SOAP

Config

MO.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.as

well

as

“SOAP

configuration

meta-object:

child

of

every

SOAP

business

object”

on

page

113.

JMS

Protocol

Config

MO

of

request

business

object

for

request

processing

The

JMS

Protocol

Config

MO

is

required

in

a

Request

business

object

when

you

are

using

JMS

web

services,

and

optional

for

Response

and

Fault

objects.

Table

21

on

page

51

describes

the

request

processing

JMS

Protocol

Config

MO—Destination

is

the

most

important

and

only

required

attribute.

The

JMS

protocol

handler

uses

this

attribute

to

locate

the

requested

web

service.

In

addition,

all

the

attributes

described

for

the

JMS

Config

MO

in

“Protocol

Config

MO”

on

page

33

are

optional.

50

Adapter

for

Web

Services

User

Guide

Table

21.

JMS

Protocol

Config

MO

Attributes

for

Request

Processing

Attribute

Required

Type

Description

Destination

Yes

String

The

destination

queue

name

of

the

target

web

service.

The

JMS

Protocol

Handler

uses

this

attribute

to

determine

the

destination

of

the

web

service.

If

the

connector-specific

JNDI

property

LookupQueuesUsingJNDI

is

set

to

true,

the

JMS

Protocol

Handler

looks

up

this

queue

using

JNDI.

Make

sure

that

this

attribute

gives

the

JNDI

name

of

the

destination

queue.

HTTP

Protocol

Config

MO

for

request

processing

During

request

processing,

the

SOAP/HTTP-HTTPS

protocol

handlers

use

the

HTTP

Protocol

Config

MO

to

determine

the

destination

of

the

target

web

service.

This

Protocol

Config

MO

is

required

for

a

Request

business

object.

The

SOAP/HTTP-HTTPS

protocol

handlers

support

HTTP

1.0

POST

request

only.

As

shown

in

Table

22

the

sole

required

attribute

(Destination)

is

the

full

URL

of

the

target

web

service.

The

optional

authorization

attributes

are

described

in

the

sections

below.

Table

22.

HTTP

Protocol

Config

MO

Attributes

for

Request

Processing

Attribute

Required

Type

Description

Destination

Yes

String

The

destination

URL

of

the

target

web

service.

The

SOAP/HTTP-HTTPS

protocol

handler

uses

this

attribute

to

determine

the

destination

of

the

web

service.

Content-Type

Required

for

the

Request

business

object,

otherwise

optional.

String

The

value

of

this

attribute

defines

the

Content-Type

header

of

the

outgoing

message

(which

includes

message

ContentType

and

optionally

charset

for

the

outgoing

message).

The

syntax

is

the

same

as

that

for

the

Content-Type

header

in

the

HTTP

Protocol,

for

example:

text/html;

charset=ISO-8859-4.

If

there

is

no

Content-Type

attribute

defined,

the

connector

uses

text/xml

as

the

ContentType

of

the

message.

Authorization_UserID

No

String

This

attribute

corresponds

to

the

userID

of

the

HTTP

basic

authentication.

For

further

information,

see

“HTTP

credential

propagation

for

request

processing”

on

page

54

Authorization_Password

No

String

This

attribute

corresponds

to

the

password

of

the

HTTP

basic

authentication.

For

further

information,

see

“HTTP

credential

propagation

for

request

processing”

on

page

54

One

or

more

HTTP

headers

No

String

This

attribute

allows

the

handler

to

pass

or

retrieve

the

value

for

the

specified

HTTP

header.

Chapter

3.

Business

object

requirements

51

Table

22.

HTTP

Protocol

Config

MO

Attributes

for

Request

Processing

(continued)

Attribute

Required

Type

Description

UserDefinedProperties

No

Business

object

This

attribute

holds

the

user-defined

protocol

properties

business

object.

For

further

information,

see

“User-defined

properties

for

request

processing.”

MessageTransformationMap

No

Single

cardinality

business

object

This

is

the

attribute

that

points

to

business

object

holding

0

or

more

message

transformation

rules.

The

rules

hold

information

regarding

the

mime

type

and

charset

to

apply

to

the

incoming

message

that

is

specified

in

the

rule.

For

further

information,

see

“Message

transformation

maps”

on

page

53.

Figure

19

shows

some

of

the

HTTP

Protocol

Config

MO

attributes

in

Business

Object

Designer

Express.

The

HTTP

Protocol

Config

MO

attributes

are

described

in:

v

“User-defined

properties

for

request

processing”

v

“Message

transformation

maps”

on

page

53

v

“HTTP

credential

propagation

for

request

processing”

on

page

54

User-defined

properties

for

request

processing:

You

can

optionally

specify

custom

properties

in

the

HTTP

Protocol

Config

MO.

You

do

so

by

including

the

UserDefinedProperties

attribute.

This

attribute

corresponds

to

a

business

object

that

has

one

or

more

child

attributes

with

property

values.

Every

attribute

in

this

business

object

must

define

a

single

property

to

be

read

(or,

for

synchronous

responses,

written)

in

the

variable

portion

of

the

message

header

as

follows:

v

The

type

of

the

attribute

should

always

be

String

regardless

of

the

protocol

property

type.

The

application-specific

information

of

the

attribute

can

contain

two

name-value

pairs

defining

the

name

and

format

of

the

protocol

message

property

to

which

the

attribute

maps.

Figure

19.

HTTP

Protocol

Config

MO

attributes

for

request

processing

52

Adapter

for

Web

Services

User

Guide

Table

23summarizes

the

application-specific

information

for

these

attributes.

Table

23.

Application-specific

information

for

user-defined

protocol

property

attributes:

name=value

pair

content

Name

Value

Description

ws_prop_name

(case-insensitive;

if

not

specified

the

attribute

name

will

be

used

as

the

property

name

Any

valid

protocol

property

name

This

is

the

name

of

the

protocol

property.

Some

vendors

reserve

certain

properties

to

provide

extended

functionality.

In

general,

you

should

not

define

custom

properties

that

begin

with

JMS

(for

JMS

protocol)

unless

you

are

seeking

access

to

these

vendor-specific

features.

ws_prop_type

(case

insensitive,

optional

for

JMS

-

if

not

specified

String

is

assumed;

irrelevant

for

HTTP(S)

since

only

String

types

make

sense)

String,

Integer,

Boolean,

Float,

Double,

Long,

Short

The

type

of

the

protocol

property.

For

JMS

protocol,

the

JMS

API

provides

a

number

of

methods

for

setting

property

values

in

the

JMS

Message:

setIntProperty,

setLongProperty,

setStringProperty,

etc.

The

type

of

the

JMS

property

specified

here

dictates

which

of

these

methods

will

be

used

for

setting

the

property

value

in

the

message.

If

the

given

custom

property

ASI

(either

the

ws_prop_name

or

ws_prop_type)

is

invalid

and

there

is

no

logical

way

to

process

this

header

(such

as

ignoring

the

property

type

for

HTTP

processing),

the

connector

logs

a

warning

and

ignores

this

property.

If

the

value

of

the

custom

property

can

neither

be

set

nor

retrieved

after

the

necessary

check

against

ws_prop_name

or

ws_prop_type

has

been

performed,

the

connector

logs

the

error

and

fails

the

event.

If

the

UserDefinedProperties

attribute

is

specified

and

its

business

object

is

instantiated,

the

connector

processes

each

attribute

of

this

child

business

object

and

sets

the

message

properties

values

accordingly.

For

synchronous

request

processing,

upon

receipt

of

a

response

message

from

the

web

service/url,

if

the

UserDefinedProperties

attribute

is

specified,

the

connector

creates

an

instance

of

a

UserDefinedProperties

business

object

and

attempts

to

extract

property

values

from

the

message

and

then

stores

them

in

the

new

business

object.

If

at

least

one

property

value

was

successfully

retrieved,

the

connector

will

set

modified

UserDefinedProperties

business

object

in

the

Protocol

Config

MO.

Message

transformation

maps:

The

Message

Transformation

Map

(MTM)

feature

is

supported

for

request

processing

HTTP(S)

protocol

handlers

only.

MessageTransformationMap

is

an

optional

attribute

in

the

Protocol

Config

MO

that

points

to

a

business

object.

The

business

object

contains

rules

for

transforming

messages

with

mime

types

and

charsets

that

are

specified

in

the

rules.

If

it

finds

the

(case-sensitive)

attribute

name

MessageTransformationMap

and

this

attribute

is

of

the

business

object

type

(see

Figure

19),

the

connector

uses

the

rules

in

that

object

to

transform

a

message.

Chapter

3.

Business

object

requirements

53

As

shown

inFigure

19,

the

MTM

attribute

must

have

one

cardinality

N

child

business

object

attribute

that

is

named

TransformationRule.

When

trying

to

find

TransformationRule

for

a

message,

the

SOAP/HTTP(s)

Protocol

Handler

first

attempts

to

match

the

message

exactly

by

the

ContentType

specified

in

all

TransFormationRules.

If

unsuccessful,

the

connector

attempts

to

find

the

rule

that

applies

to

multiple

types

of

messages.

For

further

information

on

protocol

handler

processing,

see

“SOAP/HTTP-HTTPS

protocol

handler

processing”

on

page

77.

Each

instance

of

a

TransformationRule

business

object

must

have

attributes

specified

as

shown

in

Table

24.

Table

24.

TransformationRule

attributes

for

MessageTransformationMaps

in

HTTP

Protocol

Config

MO

Attribute

name

Required

Type

Default

value

Description

TransformationRule

No

Business

object,

cardinality

N

This

is

the

attribute

that

holds

1

rule

for

message

transformation.

There

can

be

0

or

more

instances

of

this

attribute

under

the

MessageTranformationMap

attribute.

+ContentType

Yes

String

/

The

value

of

this

property

specifies

the

HTTP

ContentType

of

the

message

for

which

this

transformation

rule

applies.

The

default

value

/

for

this

attribute

enables

the

connector

to

apply

this

rule

to

any

ContentType.

For

further

information

on

protocol

handler

processing,

see

“SOAP/HTTP-HTTPS

protocol

handler

processing”

on

page

77.Note

that

if

Protocol

Handler

finds

more

than

one

rule

that

has

the

same

ContentType

as

the

other

rule,

Protocol

Handler

will

log

the

warning

and

ignore

all

duplicate

rules,

but

will

use

unique

rules

+MimeType

No

The

mime

type

to

use

when

calling

a

data

handler

while

processing

messages

of

the

ContentType

specified

in

this

business

object.

+Charset

No

The

charset

to

use

when

transforming

a

request

of

the

ContentType

specified

in

this

business

object.

HTTP

credential

propagation

for

request

processing:

For

the

purpose

of

credential

propagation,

the

connector

supports

the

Authorization_UserID

and

Authorization_Password

attributes

in

the

HTTP

Protocol

Config

MO.

The

support

is

limited

to

the

propagation

of

these

credentials

as

part

of

the

HTTP

Basic

authentication

scheme.

If

credential

propagation

is

desired

during

request

processing,

you

must

manually

add

the

Authorization_UserID

and

Authorization_Password

attributes

to

the

Protocol

Config

MO

generated

by

the

WSDL

ODA.

You

do

this

in

Business

Object

Designer

Express

after

generating

the

business

object

and

meta-object

definitions.

54

Adapter

for

Web

Services

User

Guide

(For

further

information

on

the

WSDL

ODA,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.)

The

collaboration

sets

the

values

of

the

Authorization_UserID

and

Authorization_Password

attributes

in

the

Protocol

Config

MO.

If

these

attributes

are

neither

null

nor

empty,

the

connector

creates

an

authorization

header

on

the

request

its

sends

to

the

to

the

target

web

service.

The

SOAP

HTTP/HTTPS

protocol

handler

follows

HTTP

Authentication:

Basic

and

Digest

Access

Authentication

(RFC

2617)

when

creating

the

authorization

header.

Note:

The

digest

authentication

scheme

is

not

be

supported,

nor

is

the

optional

challenge-response

mechanism

for

HTTP

authentication

defined

in

Rfc2617.

If

the

HTTP(s)

protocol

handler

is

invoking

a

server

that

requires

a

credential,

the

connector

does

not

wait

for

the

challenge

response

from

the

server.

Instead,

it

sends

the

credentials

continuously.

Asynchronous

request

processing

TLOs

Figure

20

shows

the

business

object

hierarchy

for

asynchronous

request

processing.

A

request

object

only

is

required,

and

this

object

contains

a

SOAP

Config

MO

for

the

SOAP

data

handler

as

well

as

two

Protocol

Config

MOs,

one

each

for

the

SOAP/JMS

and

SOAP/HTTP/HTTPS

protocol

handlers.

These

are

described

in

the

sections

below.

The

TLO

contains

object-level

ASI

as

well

as

attributes

with

attribute-level

ASI.

Both

kinds

of

ASI

are

discussed

below.

For

information

on

the

header

container

and

header

child

business

objects,

see

“Header

container

business

objects”

on

page

39.

Object-level

ASI

for

asynchronous

event

processing

TLOs

Figure

21

shows

CLIENT_ASYNCH_Order_TLO,

a

sample

TLO

for

asynchronous

request

processing.

Web Services TLO

Request BO required

SOAP Config MO

JMS Protocol Config MO

HTTP Protocol Config MO

Header BO

Header BO

Header container optional

Figure

20.

Business

object

hierarchy

for

asynchronous

request

processing

Chapter

3.

Business

object

requirements

55

Table

25

below

describes

the

object-level

ASI

for

an

asynchronous

request

processing

TLO.

Table

25.

Asynchronous

request

processing

TLO

object

ASI

Object-level

ASI

Description

ws_mode=asynch

During

request

processing,

the

connector

uses

this

ASI

property

to

determine

whether

to

invoke

the

collaboration

synchronously

(synch)

or

asynchronously

(asynch).

For

asynchronous

request

processing,

this

ASI

must

be

set

to

asynch.

The

default

is

asynch.

Attribute-level

ASI

for

asynchronous

request

processing

TLOs

Figure

22

shows

the

attributes

of

the

CLIENT_ASYNCH_TLO_Order,

a

sample

request

processing

TLO.

Table

26

summarizes

the

attribute-level

ASI

for

the

request

attribute

of

an

asynchronous

request

processing

TLO.

Figure

21.

Top-level

business

object

for

asynchronous

request

processing

Figure

22.

TLO

attributes

for

asynchronous

request

processing

56

Adapter

for

Web

Services

User

Guide

Table

26.

Asynchronous

request

processing

TLO

attributes

TLO

attribute

Attribute-level

ASI

Description

MimeType

None

This

attribute

specifies

the

mime

type

of

the

data

handler

that

the

connector

invokes.

Note

that

this

attribute

is

used

only

for

Request

Processing.

(For

event

processing,

protocol

listeners

use

the

SOAPDHMimeType

connector-specific

configuration

property.)

The

default

is

xml/soap.

BOPrefix

None

This

attribute

of

type

String

is

reserved

for

future

development

and

not

required.

Handler

None

This

attribute

specifies

the

protocol

handler

to

use

to

process

the

web

service

request

and

is

for

request

processing

only.

It

takes

one

of

the

following

values:

v

soap/jms

The

connector

uses

the

SOAP/JMS

protocol

handler

to

process

the

request

v

soap/http

The

connector

uses

the

SOAP/HTTP-HTTPS

protocol

handler

to

process

this

web

service

request.

The

default

is

soap/http

Request

ws_botype=request

This

attribute

corresponds

to

a

web

service

request

business

object.

The

connector

uses

this

attribute

ASI

to

determine

whether

this

TLO

attribute

is

of

type

SOAP

Request

BO.

This

ASI,

not

the

attribute

name,

determines

the

attribute

type.

If

there

is

more

than

one

request

attribute,

the

connector

uses

the

ASI

of

the

first

one.

Request

business

object

for

asynchronous

request

processing

A

Request

business

object

is

a

child

of

a

TLO

and

is

required

for

asynchronous

request

processing.

The

object-level

ASI

for

a

Request

business

object

for

asynchronous

request

processing

is

described

inTable

27.

Table

27.

Asynchronous

request

processing:

object-level

ASI

for

Request

business

objects

Object-level

ASI

Description

cw_mo_soap=SOAPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

SOAP

Config

MO.

This

is

the

SOAP

Config

MO

that

defines

the

data

handler

transformation

for

the

Request

business

object.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

Chapter

3.

Business

object

requirements

57

Table

27.

Asynchronous

request

processing:

object-level

ASI

for

Request

business

objects

(continued)

Object-level

ASI

Description

cw_mo_jms=SOAPJMSCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

the

Protocol

Config

MO

that

specifies

the

destination

web

service

for

the

JMS

protocol

handler.

For

further

information,

see

“JMS

Protocol

Config

MO

of

request

business

object

for

request

processing”

on

page

50.

cw_mo_http=SOAPHTTPCfgMO

The

value

of

this

ASI

must

match

the

name

of

the

attribute

that

corresponds

to

the

Protocol

Config

MO.

This

is

a

separate

Protocol

Config

MO

that

specifies

the

destination

for

the

SOAP/HTTP-HTTPS

protocol

handler.

This

ASI

is

used

by

the

SOAP/HTTP-HTTPS

Protocol

Handler.

Note

that

the

TLO

request

attribute

must

have

both

JMS

and

HTTP

Protocol

Config

MOs

for

request

processing.

For

further

information,

see

“HTTP

Protocol

Config

MO

for

request

processing”

on

page

51.

SOAPAction=SOAPActionURI

The

connector

uses

this

ASI

to

determine

whether

to

set

a

SOAPAction

header

on

the

request

message.

Specify

this

ASI

only

if

the

target

web

service

requires

a

SOAPAction

header.

Note

that

this

ASI

is

used

for

request

processing

but

not

for

event

notification.

In

the

sample

shown

in

Figure

14,

the

Request

attribute

contains

a

SOAP

Config

MO

and

header

container

(OrderHeader),

as

well

as

a

content-related

attribute

(OrderLineItems).

The

requirements

and

characteristics

of

the

SOAP

Config

MO,

Protocol

Config

MO,

SOAP

header

container,

and

header

child

business

objects

are

the

same

for

asynchronous

request

processing

as

they

are

for

synchronous

request

processing.

For

further

information,

see

these

topics

above

in

“Synchronous

request

processing

TLOs”

on

page

44..

Figure

23.

Request

attributes

for

asynchronous

event

processing

58

Adapter

for

Web

Services

User

Guide

Config

MOs

for

asynchronous

request

processing

The

SOAP

Config

MO

(SOAPCfgMO)

has

the

same

attributes

as

those

for

the

event

processing

SOAP

Config

MO.

For

further

information,

see

“SOAP

Config

MO”

on

page

32.

as

well

as

“SOAP

configuration

meta-object:

child

of

every

SOAP

business

object”

on

page

113.

The

JMS

Protocol

Config

MO

is

required

in

a

Request

business

object

when

you

are

using

JMS

web

services.

For

further

information,

see

“JMS

Protocol

Config

MO

of

request

business

object

for

request

processing”

on

page

50.

During

request

processing,

the

SOAP/HTTP-HTTPS

protocol

handlers

use

the

HTTP

Protocol

Config

MO

to

determine

the

destination

of

the

target

web

service.

This

Protocol

Config

MO

is

required

for

a

Request

business

object.

For

further

information,

see

“HTTP

Protocol

Config

MO

for

request

processing”

on

page

51.

Developing

business

objects

You

use

Business

Object

Designer

Express

to

create

business

objects

and

Connector

Configurator

Express

to

configure

the

connector

to

support

them.

For

more

information

on

the

Business

Object

Designer

Express

tool,

see

the

Business

Object

Development

Guide

and

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

For

further

information

on

Connector

Configurator

Express,

see

Appendix

B,

“Connector

Configurator

Express,”

on

page

183.

Chapter

3.

Business

object

requirements

59

60

Adapter

for

Web

Services

User

Guide

Chapter

4.

Web

services

connector

v

“Connector

processing”

v

“SOAP/HTTP(S)

web

services”

on

page

64

v

“SOAP/JMS

web

services”

on

page

64

v

“Event

processing”

on

page

65

v

“Request

processing”

on

page

76

v

“SSL”

on

page

86

v

“Connector

and

JMS”

on

page

84

v

“Configuring

the

connector”

on

page

88

v

“Connector

at

startup”

on

page

107

v

“Logging”

on

page

108

v

“Tracing”

on

page

108

This

chapter

describes

the

web

services

connector

and

how

to

configure

it.

All

WebSphere

business

integration

connectors

operate

with

an

integration

broker.

The

web

services

connector

operates

with

the

IBM

WebSphere

InterChange

Server

Express

integration

broker,

which

is

described

in

the

System

Implementation

Guide.

A

connector

is

a

run-time

component

of

an

adapter.

Connectors

consist

of

an

application-specific

component

and

the

connector

framework.

The

application-specific

component

contains

code

tailored

to

a

particular

application.

The

connector

framework,

whose

code

is

common

to

all

connectors,

acts

as

an

intermediary

between

the

integration

broker

and

the

application-specific

component.

The

connector

framework

provides

the

following

services

between

the

integration

broker

and

the

application-specific

component:

v

Receives

and

sends

business

objects

v

Manages

the

exchange

of

startup

and

administrative

messages

This

document

contains

information

about

the

application-specific

component

and

connector

framework.

It

refers

to

both

of

these

components

as

the

connector.

For

more

information

about

the

relationship

of

the

integration

broker

to

the

connector,

see

the

System

Administration

Guide.

Connector

processing

The

connector

includes

a

protocol

listener

framework

for

event

processing

and

a

protocol

handler

framework

for

request

processing.

This

bi-directional

functionality

enables

the

connector

framework

to:

v

Expose

collaborations

as

web

services

and

then

process

calls

from

web

service

clients

v

Process

a

request

by

a

collaboration

that

invokes

a

web

service

For

further

information

on

the

SOAP

data

handler,

see

Chapter

5,

“SOAP

data

handler,”

on

page

111.

Note:

The

connector

supports

SOAP/HTTP

and

SOAP/JMS

bindings

only.

©

Copyright

IBM

Corp.

2004

61

Event

processing

overview

Connector

event

processing

(or

event

notification)

is

used

to

handle

requests

from

web

service

clients.

This

event

processing

capability

encompasses

a

protocol

listener

framework,

including

the

following

components,

which

are

discussed

in

greater

detail

later

in

this

chapter:

v

SOAP/HTTP

protocol

listener

v

SOAP/HTTPS

protocol

listener

v

SOAP/JMS

protocol

listener

The

connector

uses

the

listeners

to

expose

collaborations

as

web

services,

and

to

listen

on

the

transport

for

calls

from

web

services

clients

to

exposed

collaborations.

The

SOAP/HTTP

and

SOAP/HTTPS

protocol

listeners

expose

a

collaboration

as

a

SOAP/HTTP

web

service.

The

SOAP/JMS

protocol

listener

exposes

a

collaboration

as

a

SOAP/JMS

web

service.

When

requests

from

web

service

clients

arrive,

the

listener

converts

the

SOAP

request

message

into

a

business

object

and

invokes

the

collaboration.

If

it

is

a

synchronous

request,

the

connector

receives

a

Response

business

object

of

the

same

type

as

the

Request

business

object.

The

listener

converts

the

Response

business

object

into

a

SOAP

response

message.

The

listener

then

transports

the

SOAP

response

message

to

the

web

service

client.

Note

that

event

sequencing

is

not

a

requirement

for

this

connector;

the

connector

may

deliver

the

events

in

any

order.

The

web

services

connector

utilizes

the

SOAP

data

handler

to

convert

incoming

SOAP

request

messages

into

business

objects.

To

aid

the

data

handler

in

determining

which

business

object

to

resolve

for

the

incoming

SOAP

request

message,

the

connector

provides

meta

information

regarding

its

supported

business

objects

to

the

data

handler.

From

its

supported

business

objects,

the

connector

first

makes

a

list

of

all

business

objects

that

are

potential

candidates

for

the

conversion.

This

list

may

be

comprised

of

both

TLOs

and

non-TLOs.

Supported

TLO

business

objects

are

those

that

have

object-level

ASI

ws_eventtlo=true.

If

TLOs

are

used,

the

protocol

listener

reads

the

object-level

ASI

of

the

TLO

as

follows:

v

ws_collab=

This

determines

which

collaboration

to

invoke

v

ws_mode=

This

determines

how

to

invoke

the

collaboration,

synchronously

(synch)

or

asynchronously

(asynch)

If

non-TLOs,

are

used,

then

the

protocol

listener

reads

the

collaboration

and

processing

mode

from

the

WSCollaborations

configuration

property

values

generated

by

the

WSDL

Configuration

Wizard.

The

connector

compares

and

attempts

to

match

the

BodyName

and

BodyNamespace

in

the

SOAP

request

to

the

names

of

potential

business

objects.

In

the

case

of

TLOs,

this

BodyName/BodyNamespace

pair

is

found

using

the

SOAP

Config

MO

properties

of

the

SOAP

Request

business

object.

For

non-TLOs,

the

BodyName/BodyNamespace

pair

is

found

using

the

WSCollaborations

connector

configuration

property.

(Note

that

the

connector

considers

only

those

non-TLOs

that

have

an

entry

in

the

WSCollaborations

property.)

The

data

handler

uses

the

BodyName/BodyNamespace

pair

to

determine

the

business

object

to

use

for

the

SOAP

request

to

business

object

conversion.

62

Adapter

for

Web

Services

User

Guide

The

connector

inspects

the

Request

business

object

returned

by

the

SOAP

data

handler.

If

this

business

object

has

ws_tloname

ASI,

the

connector

sets

the

Request

business

object

in

this

TLO.

This

TLO

is

used

to

invoke

the

collaboration.

However,

if

this

ASI

is

not

set,

the

connector

invokes

the

collaboration

using

the

Request

business

object

returned

by

the

SOAP

data

handler.

For

synchronous

collaboration

execution,

the

connector

utilizes

the

SOAP

data

handler

to

create

a

SOAP

response

or

fault

message

to

send

back

to

the

client.

In

this

case,

the

connector

simply

passes

either

a

SOAP

business

object

(child

of

TLO),

or

a

non-TLO

to

the

data

handler.

The

SOAP

data

handler

returns

a

SOAP

message

based

on

the

business

object

that

it

is

passed

to

it.

Request

processing

overview

On

behalf

of

a

collaboration,

the

connector

can

invoke

web

services

over

SOAP/HTTP(S)

and

SOAP/JMS.

This

request

processing

functionality

is

supported

by

a

WSDL

Object

Discovery

Agent

(ODA)

and

by

a

protocol

handler

framework.

The

WSDL

ODA

is

a

design-time

tool

you

use

to

generate

SOAP

business

objects

that

include

information

about

the

target

web

services.

For

further

information,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

The

protocol

handler

framework

is

a

configurable

run-time

module

that

consists

of

the

following

components,

which

are

discussed

in

detail

later

in

this

chapter:

v

SOAP/HTTP-HTTPS

protocol

handler

v

SOAP/JMS

protocol

handler

Upon

receipt

of

a

collaboration

Request

business

object,

which

is

always

(via

the

WSDL

ODA)

set

in

a

TLO,

the

protocol

handler

framework

loads

the

appropriate

protocol

handler.

The

protocol

handlers

manage

transport-level

details

required

for

invoking

the

web

service

and

(optionally)

securing

a

response,

performing

three

main

tasks:

converting

a

collaboration

Request

business

object

into

a

SOAP

request

message,

invoking

the

endpoint

web

service

with

the

request

message,

and,

if

in

Request/Response

(synchronous)

mode,

converting

the

SOAP

response

message

into

a

business

object

and

returning

that

object

to

the

collaboration.

The

connector

uses

the

SOAP/HTTP-HTTPS

protocol

handler

to

invoke

SOAP/HTTP(S)

web

services,

and

the

SOAP/JMS

protocol

handler

to

invoke

SOAP/JMS

web

services.

The

web

services

connector

is

always

called

from

a

collaboration

using

TLOs.

The

connector

determines

the

SOAP

Request

business

object

from

the

TLO,

and

invokes

the

SOAP

data

handler

with

this

business

object.

The

data

handler

returns

a

request

message

which

is

sent

on

by

the

connector

to

the

web

service.

For

synchronous

web

service

execution,

the

connector

utilizes

the

SOAP

data

handler

to

convert

SOAP

response

and

fault

messages

into

SOAP

Response

and

Fault

business

objects.

To

aid

the

data

handler

in

determining

which

business

object

to

resolve

for

these

SOAP

response/faults

to

business

object

conversions,

the

connector

provides

the

data

handler

with

specific

meta

information.

Specifically,

the

connector

makes

a

list

of

all

Response

and

Fault

business

objects

that

are

children

of

the

invoking

TLO.

There

should

be

only

one

response

business

object

and,

optionally,

many

Fault

business

objects.

There

may

also

be

one

and

only

one

defaultfault

business

object.

The

connector

attempts

to

match,

and

then

map,

the

SOAP

BodyName

and

BodyNamespace

to

a

business

object

name

that

appears

in

the

list

of

all

Response

business

objects.

In

the

case

of

SOAP

Response

business

objects,

this

pair

is

found

using

the

SOAP

Config

MO

properties

of

the

SOAP

Response

business

object.

In

the

case

of

SOAP

Fault

business

objects,

this

pair

is

found

using

the

elem_name

and

elem_ns

attribute-level

ASI

properties

for

the

first

child

of

the

detail

element.

For

the

defaultfault

business

object,

the

connector

Chapter

4.

Web

services

connector

63

simply

notifies

the

data

handler

of

the

name

of

the

defaultfault

business

object.

The

defaultfault

business

object

should

be

resolved

by

the

data

handler

as

a

last

resort

if

no

other

fault

business

objects

are

resolved

for

this

transformation.

SOAP/HTTP(S)

web

services

Web

services

support

the

HTTP

transport

protocol.

HTTP

embodies

a

client-server

model

in

which

an

HTTP

client

opens

a

connection

and

sends

a

request

message

to

an

HTTP

server.

The

client

request

message

is

to

invoke

a

web

service.

The

HTTP

server

dispatches

the

message

containing

the

invocation

and

closes

the

connection.

The

connector’s

SOAP/HTTP

and

SOAP/HTTPS

protocol

listeners

make

use

of

the

HTTP

client-server

and

the

Request/Response

models

when

handling

client

requests

to

a

collaboration

exposed

as

a

web

service.

However,

the

SOAP/HTTP

listener

is

not

intended

to

function

as

an

HTTP

server—

proxy,

intermediary,

or

otherwise.

Rather

the

SOAP/HTTP

listener

functions

as

an

endpoint

for

use

within

an

enterprise

and

behind

a

firewall.

Accordingly,

a

separate

web

server

or

gateway

must

be

deployed

in

the

firewall

to

route

client

requests

to

the

listener.

For

further

information,

see

Chapter

1,

“Overview

of

the

adapter,”

on

page

1.

The

SOAP/HTTP

and

SOAP/HTTPS

protocol

listeners

expose

a

collaboration

as

a

SOAP/HTTP(S)

web

service.

The

connector

uses

the

SOAP/HTTP-HTTPS

protocol

handler

to

invoke

SOAP/HTTP(S)

web

services.

Synchronous

SOAP/HTTP(S)

web

service

From

the

perspective

of

connector

processing,

a

synchronous

HTTP

web

service

is

one

that

follows

a

Request/Response

path.

If

the

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener

successfully

processes

an

HTTP

request

message,

the

body

will

contain

the

web

service

response

and

an

HTTP

status

code

of

200

OK.

If

a

fault

is

returned,

then

the

body

contains

the

fault

message

and

a

status

code

of

500.

Asynchronous

SOAP/HTTP(S)

web

service

From

the

perspective

of

connector

processing,

an

asynchronous

HTTP

web

service

is

one

that

follows

a

request-only

path.

If

the

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener

successfully

receives

and

processes

a

request-only

web

service

operation,

an

HTTP

status

code

of

202

Accepted

is

generated.

You

can

also

configure

the

connector

to

generate

an

HTTP

status

code

of

200

OK

—for

further

information

see

the

HTTPAsyncResponseCode

property

inTable

41.

If

a

fault

occurs,

an

HTTP

status

code

of

500

is

generated.

There

is

no

response,

although

a

fault

body

may

be

returned.

SOAP/JMS

web

services

JMS

is

a

transport

level

API

that

enterprises

can

combine

with

web

service

solutions

for

messaging,

data

persistence,

and

access

to

Java-based

applications.

A

SOAP/JMS

web

service

is

a

web

service

that

implements

a

JMS

queue-based

transport.

A

web

service

solution

may

implement

a

JMS

destination

for

a

queue

or

a

topic.

The

connector’s

SOAP/JMS

protocol

listener

supports

queue

destinations

only;

topics

are

not

supported.

JMS

text

messages

only

are

supported.

During

event

processing,

a

SOAP/JMS

web

service

client

wraps

a

request

message

with

a

JMS

message

and

publishes

it

to

the

queue

whose

JMS

destination

is

a

connector.

The

JMS

destination

retrieves

the

JMS

message

containing

the

web

64

Adapter

for

Web

Services

User

Guide

service

request

and

extracts

the

SOAP

request

message

from

the

JMS

message.

It

then

processes

the

SOAP

request

message.

Synchronous

SOAP/JMS

web

service

For

synchronous

connector

processing

(Request/Response),

a

response

message

is

wrapped

with

a

JMS

message

(like

that

of

the

request

message).

The

JMS

message

containing

the

web

service

response

is

then

sent

to

the

JMSReplyTo

queue

from

the

incoming

request.

JMS

headers

in

the

response

message

are

set

to

the

values

of

the

headers

in

the

JMS

request

message

as

follows:

v

The

JMSCorrelationID

of

the

response

message

must

be

set

to

the

value

of

JMSMessageID

from

the

JMS

request

message

v

The

JMS

DeliveryMode

of

the

response

message

is

set

to

the

JMSDeliveryMode

of

the

request.

v

The

JMSPriority

of

the

response

message

is

set

to

the

JMSPriority

of

the

request.

v

JMSExpiration

of

the

request

message

is

set

to

the

JMSExpiration

of

the

request

This

processing

is

discussed

in

detail

in

“SOAP/JMS

protocol

listener

processing”

on

page

70.

Asynchronous

SOAP/JMS

web

service

From

the

perspective

of

connector

processing,

an

asynchronous

SOAP/JMS

web

service

is

one

that

follows

a

request-only

path.

If

the

SOAP/JMS

protocol

listener

successfully

receives

and

processes

a

request-only

web

service

message,

no

JMS

message

containing

a

response

is

returned

to

the

client.

If

a

ReplyToQueue

is

configured

and

a

fault

occurs

upon

receipt

of

a

JMS

message,

a

fault

message

is

returned

to

the

web

service

client.

In

addition,

if

an

ErrorQueue

is

specified

in

the

SOAP/JMS

listener,

the

fault

message

is

archived

there.

Event

processing

The

first

step

in

implementing

an

event

processing

capability

is

exposing

a

business

process

--

a

collaboration

--

as

a

web

service.

You

then

publish

this

web

service,

in

a

UDDI

registry,

for

example,

and

configure

the

connector

to

respond

to

web

service

clients

that

invoke

the

collaboration.

During

event

processing,

the

connector

uses

protocol

listeners

and

the

SOAP

data

handler

to

convert

SOAP

request

messages

from

web

service

clients

to

business

objects

that

can

be

manipulated

by

collaborations

that

have

been

exposed

as

web

services.

Protocol

listeners

play

a

crucial

role

in

event

processing.

Protocol

listeners

Web

Service

requests

may

come

over

variety

of

transports,

including

HTTP,

HTTPS,

and

JMS.

The

Web

Services

protocol

listener

monitors

the

arrival

of

such

requests

on

its

transport

channel.

There

are

three

protocol

listeners

and

corresponding

channels:

v

SOAP/HTTP

protocol

listener

v

SOAP/HTTPS

protocol

listener

v

SOAP/JMS

protocol

listener

Each

of

these

consists

of

a

thread

that

listens

on

its

transport.

When

it

receives

a

SOAP

request

message

from

a

client,

the

listener

registers

the

event

with

the

protocol

listener

framework.

Chapter

4.

Web

services

connector

65

The

protocol

listener

framework

manages

the

protocol

listeners,

scheduling

requests

as

resources

are

available.

You

configure

the

listeners

and

aspects

of

the

protocol

listener

framework

when

you

set

values

to

connector-specific

properties.

Among

the

protocol

listener

framework

properties

you

can

configure

are

the

following:

v

WorkerThreadCount

Total

number

of

threads

available

to

the

protocol

listener

framework,

which

is

the

number

of

requests

that

it

can

process

in

parallel.

v

RequestPoolSize

Maximum

number

of

requests

that

can

be

registered

with

the

protocol

listener

framework.

If

it

receives

more

than

this

maximum

requests,

it

will

no

longer

register

new

requests.

These

two

connector-specific

properties

control

memory

allocation

in

a

way

that

prevents

protocol

listeners

from

clogging

the

connector

with

infinite

web

service

events.

The

allocation

algorithm

is

as

follows:

At

any

time,

the

connector

can

receive

a

total

number

of

events

equal

to

WorkerThreadCount

+

RequestPoolSize.

It

can

process

WorkerThreadCount

number

of

requests

in

parallel.

You

can

plug

additional

protocol

listeners

into

the

protocol

listener

framework.

For

further

information,

see

“Creating

multiple

protocol

listeners”

on

page

106

and“Connector-specific

configuration

properties”

on

page

89.

SOAP/HTTP

and

SOAP/HTTPS

protocol

listener

processing

The

SOAP/HTTP(S)

protocol

listener

consists

of

a

thread

that

continuously

listens

for

HTTP(S)

requests

from

web

service

clients.

The

listener

thread

binds

the

host

and

port

that

are

specified

in

the

Host

and

Port

connector-specific

configuration

(listener)

properties.

Another

configuration

property—RequestWaitTimeout—defines

the

interval

during

which

the

listener

waits

for

a

request

before

checking

whether

the

connector

has

shut

down.

Figure

24

illustrates

SOAP/HTTP

protocol

listener

processing

for

a

synchronous

operation.

Figure

25

shows

SOAP/HTTP

protocol

listener

processing

for

an

asynchronous

operation.

Figure

24.

SOAP/HTTP

protocol

listener:

synchronous

event

processing

66

Adapter

for

Web

Services

User

Guide

When

a

web

services

client

initiates

a

SOAP/HTTP

or

SOAP/HTTPS

request,

it

posts

a

SOAP

request

message

to

the

URL

of

the

SOAP/HTTP

or

SOAP/HTTPS

listener.

The

client

should

use

the

HTTP

POST

method

to

invoke

the

protocol

listener

URL.

When

an

HTTP(S)

request

arrives,

the

listener

registers

the

request

with

protocol

listener

framework,

which

schedules

the

event

for

processing

as

resources

become

available.

The

listener

then

extracts

the

protocol

headers

and

the

payload

from

the

request.

Table

28

summarizes

the

order

of

precedence

of

rules

used

by

the

listener

to

determine

the

Charset,

MmeType,

ContentType

and

Content-Type

header

for

inbound

messages.

Table

28.

SOAP/HTTP(s)

protocol

listener

processing

rules

for

inbound

message

Order

of

Precedence

Charset

MimeType

ContentType

Content-Type

header

1

Charset

parameter

value

from

the

incoming

HTTP

message

Content-Type

header

value

URLsConfiguration

connector

property

value

for

this

listener

Incoming

HTTP

message

type/subtype

value

from

the

Content-Type

header

value

Incoming

HTTP

message

Content-Type

header

2

URLsConfiguration

property

value

for

this

listener

SOAPDHMimeType

connector

property

value

3

If

the

type

of

the

request

message

ContentType

is

text

with

any

subtype

(for

example,

text/xml,

text/plain,

etc.),

default

to

ISO-8859-1.

Otherwise,

charset

will

not

be

used.

Default

to

ContentType

As

shown

in

Table

28:

v

The

protocol

listener

determines

the

Charset

of

the

inbound

message

according

to

the

following

rules:

1.

The

listener

attempts

to

extract

the

Charset

from

the

charset

parameter

of

HTTP

message

Content-Type

header

value.

Figure

25.

SOAP/HTTP

protocol

listener:

asynchronous

event

processing

Chapter

4.

Web

services

connector

67

2.

If

no

Charset

value

is

obtained

from

the

Content-Type

header,

then

the

protocol

listener

attempts

to

read

the

URLsConfiguration

property

value

for

this

listener.

3.

If

a

Charset

value

is

not

obtained

using

methods

described

in

the

previous

steps,

and

if

type

of

the

message

ContentType

is

text

with

any

subtype

(for

example,

text/xml,

text/plain,

etc.),

the

listener

uses

a

default

Charset

value

of

ISO-8859-1.

Otherwise,

Charset

value

is

not

used.
v

The

listener

determines

the

MimeType

for

the

response

message

according

to

these

rules:

1.

If

you

have

configured

the

TransformationRules

for

the

URL

used

by

the

incoming

request

message,

and

if

the

request

ContentType

matches

the

ContentType

of

a

TransformationRule,

then

the

listener

uses

the

TransformationRule

to

extract

the

MimeType

for

conversion

of

the

request

message

into

a

SOAP

Request

business

object.

The

listener

attempts

to

find

the

exact

TransformationRule

match

based

on

the

ContentType

value

(for

example,

text/xml)

in

the

URLsConfiguration

property

for

the

requested

URL.

2.

If

that

fails,

the

listener

attempts

to

find

a

TransformationRule

that

applies

to

more

than

one

ContentType

under

the

request

URL

(for

example

/).

3.

If

there

is

no

TransformationRule

match

for

the

MimeType,

then

the

listener

uses

the

SOAPDHMimeType

connector

configuration

property

as

the

MimeType

value.

4.

If

all

previous

steps

fail

to

determine

the

MimeType,

the

value

of

ContentType

will

be

used

as

the

MimeType

to

invoke

the

SOAP

data

handler

and

convert

the

request

message

into

a

SOAP

Request

business

object.
v

The

listener

determines

the

ContentType

by

extracting

type/subtype

from

the

incoming

HTTP

message

Content-Type

header.

v

The

listener

determines

the

Content-Type

header

from

that

of

the

incoming

HTTP

message

Content-Type

header.

If

the

collaboration

is

invoked

asynchronously,

the

listener

delivers

the

request

business

object

to

the

integration

broker

and

responds

to

the

web

services

client

with

the

HTTP

status

code

202

Accepted.

This

concludes

listener

processing.

If

it

is

a

synchronous

invocation,

the

listener

invokes

the

collaboration

synchronously.

The

collaboration

responds

with

a

SOAP

Response

business

object.

Table

29

summarizes

the

order

of

precedence

for

rules

used

by

the

listener

when

determining

the

Charset,

MimeType,

ContentType,

and

Content-Type

header

for

response

messages.

Table

29.

SOAP/HTTP(s)

protocol

listener

processing

rules

for

outbound

synchronous

response

message

Order

of

Precedence

Charset

MimeType

ContentType

Content-Type

header

1

Protocol

ConfigMO

Content-Type

Header

MimeType

property

in

the

TLO

Protocol

ConfigMO

Content-Type

header

Protocol

ConfigMO

Content-Type

header

2

The

Charset

property

value

in

the

TLO

The

request

message

MimeType,

but

only

if

the

request

and

response

ContentType

match.

Request

message

ContentType

Construct

Content-Type

Header

using

ContentType

and

Charset

68

Adapter

for

Web

Services

User

Guide

Table

29.

SOAP/HTTP(s)

protocol

listener

processing

rules

for

outbound

synchronous

response

message

(continued)

3

The

request

message

Charset,

but

only

if

the

request

and

response

ContentType

match.

SOAPDHMimeType

connector

property

value

4

If

the

ContentType

is

text/*,

default

to

ISO-8859-1.

Otherwise,

charset

will

not

be

used.

Use

ContentType

value

as

the

MimeType

As

shown

in

Table

29:

v

The

listener

determines

the

Charset

for

the

response

message

according

to

these

rules:

1.

If

Charset

is

specified

in

the

Response

business

object

Protocol

Config

MO,

its

value

is

used.

2.

If

there

is

no

Charset

value

specified

in

the

Response

business

object

Protocol

Config

MO

header

and

if

the

Request

and

Response

business

object

are

children

of

TLOs,

the

listener

checks

if

Charset

is

specified

in

the

TLO.

3.

If

there

is

no

Charset

specified

in

the

TLO,

or

if

the

Response

business

object

is

not

a

TLO,

then

if

the

response

has

the

same

ContentType

as

the

request,

the

Charset

of

the

request

will

be

used

for

the

response.

4.

If

the

previous

steps

fail

to

determine

the

response

Charset

value,

and

if

the

type

portion

of

the

message

ContentType

is

text

with

a

subtype

of

anything

(for

example,

text/xml,

text/plain,

etc.),

the

listener

uses

a

default

Charset

value

of

ISO-8859-1.

Otherwise,

the

Charset

value

is

not

used.
v

The

listener

determines

the

MimeType

for

the

response

message

according

to

these

rules:

1.

The

TLO’s

MimeType

attribute

2.

If

the

TLO

MimeType

attribute

is

missing,

and

if

the

request

and

response

ContentType

match,

the

listener

uses

the

request

MimeType

for

the

response

message.

3.

If

the

previous

steps

fail,

then

the

listener

uses

the

value

of

the

SOAPDHMimeType

connector

property.

4.

Otherwise

the

listener

uses

the

ContentType

value

as

the

MimeType.
v

The

listener

determines

the

ContentType

for

the

response

message

according

to

these

rules:

1.

If

the

Content-Type

header

is

specified

in

the

Response

business

object

Protocol

Config

MO,

the

type/subtype

portion

of

the

Content-Type

header

will

used

as

the

ContentType.

2.

If

the

Content-Type

header

is

not

specified

in

the

Response

business

object

Protocol

Config

MO,

the

listener

constructs

a

Content-Type

header

using

the

determined

ContentType

and

Charset

(if

the

Charset

was

determined

for

the

response

message).

The

listener

processes

the

HTTP

Protocol

Config

MO.

It

is

the

responsibility

of

collaboration

to

ensure

that

the

header

values

passed

in

the

HTTP

Protocol

Config

MO

are

correct

in

the

context

of

the

request-response

event.

The

listener

populates

standard

headers

and

custom

properties

according

to

the

following

rules:

1.

The

listener

will

investigate

each

item

of

the

HTTP

Protocol

Config

MO

in

order

to

ignore

special

attributes

(such

as

ObjectEventId).

2.

Each

non-empty

header

will

be

put

on

the

outgoing

message

and

additional

processing

(for

example,

the

Content-Type

header)

may

take

place.

Chapter

4.

Web

services

connector

69

3.

Please

note

that

with

the

above

approach,

the

listener

may

set

non-standard

headers

on

the

message,

but

will

not

check

that

the

message

is

logically

or

semantically

correct.

4.

If

there

are

one

or

more

custom

properties

in

the

HTTP

Protocol

Config

MO

UserDefinedProperties

attribute,

the

listener

will

add

them

in

the

Entity

Headers

Section

(the

last

headers

section).

For

more

on

custom

properties,

see

“User-defined

properties

for

event

processing”

on

page

37.

Note:

Specifying

any

of

the

following

headers

in

the

HTTP

Protocol

Config

MO

is

very

likely

to

result

in

an

incorrect

HTTP

message:

Connection,

Trailer,

Transfer-Encoding,

Content-Encoding,

Content-Length,

Content-MD5,

Content-Range.

The

listener

then

invokes

the

SOAP

data

handler

to

convert

the

Response

business

object

returned

by

the

Collaboration

into

a

SOAP

response

message.

The

listener

delivers

the

response

message

to

the

web

service

client

and

includes

a

200

OK

HTTP

status

code.

If

the

collaboration

returns

a

SOAP

Fault

business

object,

it

is

converted

to

a

Fault

message.

This

fault

message

is

delivered

to

the

web

service

client

with

a

500

Internal

Server

Error

HTTP

code.

The

listener

then

closes

the

connection

and

the

thread

that

processed

the

event

becomes

available.

Unsupported

SOAP/HTTP

protocol

listener

processing

features

The

SOAP/HTTP

protocol

listener

does

not

support

the

following:

v

Caching:

The

protocol

listener

does

not

perform

any

caching

functions

as

defined

in

HTTP

specifications

(RFC2616)

v

Proxy:

The

protocol

listener

does

not

perform

any

proxy

functions

as

defined

in

HTTP

specifications

(RFC2616).

v

Persistent

Connection:

The

protocol

listener

does

not

support

persistent

connections

as

defined

in

HTTP

specifications

(RFC2616).

Instead,

the

protocol

listener

assumes

that

the

scope

of

each

HTTP

connection

is

a

single

client

request.

and

closes

the

connection

when

the

service

request

is

completed.

The

protocol

listener

does

not

attempt

to

reuse

the

connection

across

the

service

invocations.

v

Redirections:

The

protocol

listener

does

not

support

redirections.

v

Large

file

transfer:

The

protocol

listener

cannot

be

used

for

large

file

transfers.

Alternatively,

you

may

consider

passing

large

files

by

reference

instead.

v

State

management:

The

protocol

listener

does

not

support

the

HTTP

state

management

mechanism

described

by

RFC2965.

v

Cookies:

The

protocol

listener

does

not

support

cookies.

SOAP/HTTPS

listener

processing

using

secure

sockets

SOAP/HTTPS

protocol

listener

processing

is

the

same

as

that

described

in

the

SOAP/HTTP

protocol

listener

processing

section

except

that

HTTPS

uses

secure

sockets.

For

further

information,

see

“SSL”

on

page

86.

SOAP/JMS

protocol

listener

processing

The

SOAP/JMS

protocol

listener

consists

of

a

thread

that

continuously

listens

on

the

InputQueue,

which

is

the

JMS

destination

for

requests

from

web

service

clients.

70

Adapter

for

Web

Services

User

Guide

The

RequestWaitTimeout

connector

configuration

property

defines

how

long

the

listener

will

wait

for

a

request

before

checking

whether

the

connector

has

shut

down.

Figure

26

shows

SOAP/JMS

protocol

listener

processing

for

a

synchronous

operation.

The

figure

does

not

show

JMS

provider

information.

Figure

27

shows

SOAP/JMS

protocol

listener

processing

for

an

asynchronous

operation.

Note:

If

the

LookupQueueUsingJNDI

configuration

property

is

set

to

true,

the

SOAP/JMS

protocol

listener

uses

the

JNDI

to

look

up

the

queue.

The

JNDI

properties

are

specified

in

connector

properties.

For

further

information,

see

“Connector

and

JMS”

on

page

84

and

the

JNDI-related

properties

in

“Connector-specific

configuration

properties”

on

page

89.

When

a

web

service

client

initiates

a

SOAP/JMS

request,

it

sends

a

SOAP

request

message

to

the

InputQueue

on

which

the

SOAP/JMS

listener

is

listening.

When

it

receives

the

SOAP

request

message

from

the

InputQueue,

the

SOAP/JMS

protocol

listener

registers

the

request

with

the

protocol

listener

framework.

The

protocol

listener

framework

schedules

the

request

as

and

when

resources

are

available.

Figure

26.

SOAP/JMS

protocol

listener:

synchronous

event

processing

Figure

27.

SOAP/JMS

protocol

listener:

asynchronous

event

processing

Chapter

4.

Web

services

connector

71

Note:

If

the

connector

configuration

property

InDoubtEvents

is

set

to

Reprocess,

the

protocol

listener

framework

will

schedule

JMS

messages

from

the

InProgressQueue

before

scheduling

messages

from

the

InputQueue.

The

listener

then

dispatches

this

message—the

body

as

well

as

the

required

JMS

headers

(JMSCorrelationID,

JMSMessageID,

JMSPriority,

JMSExpiration,

JMSDeliveryMode,

JMSReplyTo,

JMSTimeStamp,

JMSType)—

to

the

InProgressQueue.

The

protocol

listener

framework

then

registers

the

event.

The

listener

then

reads

the

JMS

message

from

the

InProgressQueue,

extracting

the

body

of

the

message

and

the

following

headers:

v

JMSDestination

v

JMSRedelivered

v

JMSCorrelationID

v

JMSMessageID

v

JMSPriority

v

JMSExpiration

v

JMSDeliveryMode

v

JMSReplyTo

v

JMSTimeStamp

v

JMSType

The

JMSType

can

be

in

TextMessage

or

BytesMessage

format.

In

TextMessage

format,

the

listener

invokes

the

data

handler

through

String

APIs

with

the

Web

Service

Request

message

extracted

as

String.

In

the

case

of

BytesMessage,

the

listener

invokes

the

data

handler

via

Bytes

Data

Handler

APIs

with

the

Web

Service

Request

message

extracted

as

a

bytes

array.

Using

the

SOAPDHMimeType

connector

configuration

property,

the

listener

invokes

the

SOAP

data

handler

to

convert

the

request

message

into

a

SOAP

Request

business

object.

If

errors

occur

during

conversion

and

the

JMSReplyTo

JMS

header

is

specified,

the

listener

responds

with

a

SOAP

fault

message,

setting

the

faultcode

to

Client

and

the

faultstring

to

Cannot

Parse.

The

fault

message

provides

no

other

detail.

The

listener

uses

the

object-level

cw_mo_jms

ASI

of

the

SOAP

Request

business

object

returned

by

the

data

handler

to

determine

the

Protocol

Config

MO.

Note

that

both

the

ASI

and

the

Protocol

Config

MO

are

optional

for

event

processing.

If

it

finds

a

Protocol

Config

MO,

the

listener

populates

it

with

the

JMS

message

headers

extracted

earlier.

Table

43

shows

the

mapping

between

the

attributes

in

the

Protocol

Config

MO

and

the

JMS

message

headers.

Table

30.

JMS

header-Protocol

Config

MO

attribute

mapping

Protocol

Config

MO

attribute

JMS

header

name

Description

CorrelationID

JMSCorrelationID

The

JMSCorrelationID

header

from

the

request

message

MessageId

JMSMessageId

The

JMSMessageID

header

from

the

request

message

Priority

JMSPriority

The

JMSPriority

header

from

the

request

message

72

Adapter

for

Web

Services

User

Guide

Table

30.

JMS

header-Protocol

Config

MO

attribute

mapping

(continued)

Expiration

JMSExpiration

The

JMSExpiration

header

from

the

request

message

DeliveryMode

JMSDeliveryMode

The

JMSDeliveryMode

header

from

the

request

message

ReplyTo

JMSReplyTo

The

JMSReplyTo

header

from

the

request

message.

The

JMS

API

returns

this

header

as

JMSDestination,

but

the

SOAP/JMS

protocol

listener

returns

the

queue

name.

Timestamp

JMSTimestamp

The

JMSTimestamp

header

from

the

request

message

Redelivered

JMSRedelivered

The

JMSRedelivered

header

from

the

request

message

Type

JMSType

The

JMSType

header

from

the

request

message

Destination

JMSDestination

The

JMSDestination

header

from

the

request

message

If

there

are

one

or

more

custom

properties

in

the

SOAP/JMS

Protocol

Config

MO

UserDefinedProperties

attribute,

the

listener

will

try

to

extract

their

values

from

the

message

and

populate

the

UserDefinedProperties

business

object.

For

more

on

custom

properties,

see

“User-defined

properties

for

event

processing”

on

page

37.

If

the

TLO

(in

the

case

of

a

non-TLO

SOAP

Request

business

object)

is

not

subscribed

by

the

integration

broker,

the

listener

logs

an

error.

If

the

JMSReplyTo

header

is

specified

in

the

request

message,

the

listener

creates

a

SOAP

fault

message

and

places

it

on

the

JMSReplyTo

queue.

The

faultcode

is

set

to

Client

and

the

faultString

is

set

to

Not

subscribed

to

this

message.

No

other

detail

is

provided

in

the

fault

message.

If

configured

to

do

so,

the

listener

also

archives

the

original

JMS

request

message

including

its

JMS

headers

to

the

UnsubscribedQueue.

If

the

collaboration

is

invoked

asynchronously,

the

listener

delivers

the

Request

business

object

to

the

integration

broker.

The

listener

then

removes

the

message

from

the

InProgressQueue.

If

configured

to

do

so,

the

listener

also

archives

the

original

JMS

request

message

including

its

JMS

headers

to

the

ArchiveQueue.

If

errors

occur

during

asynchronous

processing

and

JMSReplyTo

is

specified,

the

listener

responds

with

a

fault

message.

Its

faultcode

is

set

to

Server

and

its

faultstring

is

set

to

Internal

Error.

If

configured

to

do

so,

the

listener

also

archives

the

original

JMS

request

message,

including

its

JMS

headers,

to

ErrorQueue.

If

it

is

a

synchronous

invocation,

the

listener

invokes

the

collaboration

synchronously.

The

collaboration

responds

with

a

SOAP

Response

business

object.

The

listener

invokes

the

SOAP

data

handler

to

convert

the

Response

business

object

returned

by

the

Collaboration

into

a

SOAP/JMS

response

message.

The

listener

delivers

the

response

message

to

the

ReplyTo

queue

(this

is

provided

by

the

JMSReplyTo

header

on

the

original

request

message).

The

listener

then

sets

the

response

message

returned

by

the

data

handler

as

a

TextMessage,

setting

the

headers

shown

in

Table

31.

Chapter

4.

Web

services

connector

73

Table

31.

Header

values

set

by

SOAP/JMS

protocol

listener

in

response

message

JMS

header

name

Value

JMSCorrelationId

The

JMSMessageId

of

the

request

message

JMSDeliveryMode

The

JMSDeliveryMode

of

the

request

message

JMSPriority

The

JMSPriority

of

the

request

message

JMSExpiration

The

JMSExpiration

of

the

request

message

JMSRedelivered

The

JMSRedelivered

of

the

request

message

JMSReplyTo

The

JMSReplyTo

of

the

request

message

JMSTimestamp

The

JMSTimestamp

of

the

request

message

JMSType

The

JMSType

of

the

request

message

The

listener

will

set

JMS

Custom

Properties

in

the

response

message

if

they

are

present

in

the

Response

or

Fault

business

objects’

JMS

Protocol

Config

MO

UserDefinedProperties

attribute.

If

configured

to

do

so,

the

listener

then

moves

the

original

JMS

message

(request

from

the

web

service

client),

including

its

headers,

from

the

InProgressQueue

to

the

ArchiveQueue.

If

errors

occur

and

JMSReplyTo

is

specified,

the

listener

responds

with

a

fault

message,

and,

if

configured

to

do

so,

also

archives

the

original

JMS

request

message

to

the

ErrorQueue.

Event

persistence

and

delivery

Event

persistence

is

protocol

contingent:

v

SOAP/HTTP

protocol

listener

no

persistence

and

therefore

no

guaranteed

delivery

v

SOAP/HTTPS

protocol

listener

no

persistence

and

therefore

no

guaranteed

delivery

v

SOAP/JMS

protocol

listener

JMS

queue

event

persistence

and

at-least-once

guaranteed

delivery.

For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Event

sequencing

The

connector

may

deliver

events

in

any

sequence.

Event

triggering

The

event

triggering

mechanism

depends

on

how

the

protocol

listener

is

configured.

v

SOAP/HTTP

protocol

listener

Listening

occurs

over

a

ServerSocket

for

HTTP

connection

requests

v

SOAP/HTTPS

protocol

listener

Listening

occurs

over

a

secure

ServerSocket

layer

for

HTTPS

connection

requests

v

SOAP/JMS

protocol

listener

Listening

occurs

over

the

input

queue

for

incoming

JMS

messages

carrying

web

service

requests.For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Note:

Connector

does

not

distinguish

between

Create

or

Update

or

Retrieve

or

Delete.

All

such

events

follow

the

same

approach.

74

Adapter

for

Web

Services

User

Guide

Event

detection

Event

detection

is

performed

by

each

protocol

listener.

The

event

detection

mechanism

depends

utterly

on

the

transport

and

how

you

configure

the

connector-specific

properties

for

each

listener.

For

more

on

these

properties,

see

“Connector-specific

configuration

properties”

on

page

89.

Event

status

Event

status

is

managed

by

the

protocol

listener

and

depends

on

the

transport

and

also

on

how

you

configure

the

listener.

v

SOAP/HTTP

protocol

listener

HTTP

is

inherently

non-persistent

and

synchronous

in

nature.

Accordingly,

event

status

is

not

maintained.

v

SOAP/HTTPS

protocol

listener

HTTP

is

inherently

non-persistent

and

synchronous

in

nature.

Accordingly,

event

status

is

not

maintained.

v

SOAP/JMS

protocol

listener

JMS

is

a

persistent

transport.

Event

status

is

maintained

using

queues.

For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Event

retrieval

Event

retrieval

is

managed

by

the

protocol

listener

and

depends

on

the

transport

and

also

on

how

you

configure

the

listener.

v

SOAP/HTTP

protocol

listener

Events

are

retrieved

by

extracting

HTTP

requests

from

the

socket.

v

SOAP/HTTPS

protocol

listener

Events

are

retrieved

by

extracting

HTTP

requests

from

the

socket.

v

SOAP/JMS

protocol

listener

Events

are

retrieved

using

the

JMS

API.

The

JMS

protocol

listener

retrieves

events

from

the

JMS

input

queue

and

moves

them

to

the

in-progress

queue.

For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Event

archiving

Event

archiving

is

managed

by

the

protocol

listener

and

depends

on

the

transport

and

also

on

how

you

configure

the

listener.

v

SOAP/HTTP

protocol

listener

Because

of

the

non-persistent

and

synchronous

nature

of

the

transport,

archiving

is

not

performed.

v

SOAP/HTTPS

protocol

listener

Because

of

the

non-persistent

and

synchronous

nature

of

the

transport,

archiving

is

not

performed.

v

SOAP/JMS

protocol

listener

You

can

configure

the

connector

to

archive

events

into

a

JMS

queues

including

those

for

unsubscribed

events,

successful

events,

and

failed

events.

For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Event

recovery

Event

recovery

is

managed

by

the

protocol

listener

and

depends

on

the

transport

and

also

on

how

you

configure

the

listener.

v

SOAP/HTTP

protocol

listener

Because

of

the

non-persistent

nature

of

the

transport,

event

recovery

is

not

performed.

v

SOAP/HTTPS

protocol

listener

Because

of

the

non-persistent

nature

of

the

transport,

event

recovery

is

not

performed.

v

SOAP/JMS

protocol

listener

JMS

is

a

persistent

transport.

If

the

connector

shuts

down

while

events

are

being

processed,

they

remain

available

in

the

Chapter

4.

Web

services

connector

75

InProgressQueue.

You

can

configure

the

connector

to

process

these

events

at

startup,

thereby

enabling

event

recovery.

The

InDoubtEvents

connector

configuration

property

determines

the

event

recovery

mechanism.

Note:

The

SOAP/JMS

listener

assures

at-least

once

delivery

to

the

integration

broker.

The

listener

cannot

assure

once

and

only

once

delivery.

Also,

events

received

by

the

listener

may

be

delivered

in

any

order

to

the

integration

broker.

At

startup,

the

JMS

protocol

listener

first

attempts

to

retrieve

events

from

the

InProgressQueue.

What

happens

next

is

determined

by

the

value

you

assign

to

the

InDoubtEvents

configuration

property.

The

recovery

scenarios

are

illustrated

in

table.

For

more

on

the

JMS

queues,

see

“Connector-specific

configuration

properties”

on

page

89.

Table

32.

Header

values

set

by

SOAP/JMS

protocol

listener

in

response

message

InDoubtEvents

value

Event

recovery

processing

FailOnStartup

If

it

finds

events

in

the

InProgressQueue,

the

listener

logs

a

fatal

error

and

immediately

shuts

down.

Reprocess

If

it

finds

events

in

the

InProgressQueue,

the

listener

processes

those

events

first.

The

listener

can

trace

the

number

of

messages

found

in

the

InProgressQueue.

Ignore

Events

in

the

InProgressQueue

are

ignored.

The

listener

can

trace

the

events

found

in

the

InProgressQueue

and

the

ignoring

of

those

events

by

the

listener.

LogError

If

it

finds

events

in

the

InProgressQueue,

the

listener

logs

error

and

continues

processing.

Request

processing

You

use

the

request

processing

capability

of

the

connector

to

enable

a

collaboration

to

invoke

a

web

service.

The

development

tasks

include

using

the

WSDL

ODA

to

generate

a

web

services

top-level

object

(TLO)

and

configuring

a

collaboration

to

deploy

it.

For

further

information,

see

Chapter

6,

“Enabling

collaborations

for

request

processing,”

on

page

143.

You

must

also

configure

the

connector

and

its

request

processing

components:

the

protocol

handler

framework

and

protocol

handlers.

At

run

time,

the

connector

receives

requests

from

the

collaboration

in

the

form

of

business

objects.

The

business

objects—

SOAP

Request,

and

optionally

SOAP

Response

and

SOAP

Fault

business

objects—

are

contained

by

the

TLO

generated

by

the

WSDL

ODA

and

issued

by

a

collaboration

that

is

configured

to

use

web

services.

The

TLO

and

its

child

business

objects

contain

attributes

and

ASI

that

specify

the

processing

mode

(synchronous

or

asynchronous),

the

data

handler

mime

type,

which

protocol

handler

to

use,

as

well

as

the

address

of

the

target

web

service.

The

protocol

handler

uses

this

information

to

invoke

an

instance

of

the

SOAP

data

handler,

convert

the

Request

business

object

to

a

SOAP

request

message,

and

invoke

the

target

web

service.

If

the

mode

is

synchronous,

the

protocol

handler

again

invokes

the

data

handler

to

convert

the

response

message

into

a

SOAP

Response

business

object

and

returns

this

to

the

collaboration.

In

response

to

a

SOAP

request

message,

the

connector

can

receive

any

of

the

following

from

the

remote

trading

partner:

v

A

SOAP

response

message

that

contains

data

v

A

SOAP

response

message

that

contains

fault

information

76

Adapter

for

Web

Services

User

Guide

Protocol

handlers

play

a

key

role

in

request

processing.

Protocol

handlers

A

collaboration

can

invoke

a

web

service

over

HTTP,

HTTPS,

or

JMS

transports.

The

connector

has

two

protocol

handlers

and

corresponding

channels:

v

A

SOAP/HTTP-HTTPS

protocol

handler

for

invoking

SOAP/HTTP

and

SOAP/HTTPS

web

services

v

A

SOAP/JMS

protocol

handler

for

invoking

SOAP/JMS

web

services

The

protocol

handler

framework

manages

the

protocol

handlers,

loading

them

at

startup

time.

When

the

connector

receives

a

Request

business

object,

the

request

thread

(note

that

each

collaboration

request

comes

in

a

thread

of

its

own)

invokes

the

protocol

handler

framework

to

process

the

request.

The

protocol

handler

framework

reads

the

TLOs

Handler

attribute

ASI

to

determine

which

protocol

handler

to

use.

Applying

a

series

of

rules

(see

“SOAP/HTTP-HTTPS

protocol

handler

processing”

and

“SOAP/JMS

protocol

handler

processing”

on

page

81),

the

protocol

handler

invokes

a

data

handler

to

convert

the

Request

business

object

into

a

SOAP

request

message.

The

protocol

handler

packages

the

request

message

into

the

transport—HTTP(S)

or

JMS—

message.

If

it

finds

SOAPAction

ASI

in

the

Request

business

object,

the

protocol

handler

adds

this

to

the

request

message

header.

The

protocol

handler

then

reads

the

Destination

attribute

of

the

Request

business

object

Protocol

Config

MO

to

determine

the

target

address.

The

protocol

handler

then

invokes

the

target

web

service

with

the

request

message.

Reading

the

ws_mode

TLO

ASI,

the

protocol

handler

determines

whether

the

processing

mode

is

synchronous

or

asynchronous.

If

this

ASI

is

set

to

asynch,

the

protocol

handler

processing

is

completed.

Otherwise

the

protocol

handler

waits

for

a

response

message.

If

a

response

message

arrives,

the

protocol

handler

extracts

the

protocol

headers

and

the

payload.

It

then

invokes

the

data

handler

(indicated

by

the

MimeType

TLO

attribute)

to

convert

the

message

into

a

Response

or

Fault

business

object.

Again

using

the

Protocol

Config

MO,

the

protocol

handler

sets

the

protocol

headers

in

the

business

object.

The

protocol

handler

then

returns

the

Response

or

Fault

business

object

to

the

collaboration.

Depending

on

connector

configuration,

there

may

be

one

or

more

protocol

handlers

plugged

into

the

connector.

Connector-specific

properties

allow

you

to

configure

protocol

handlers.

SOAP/HTTP-HTTPS

protocol

handler

processing

The

SOAP/HTTP(S)

protocol

handler

performs

as

described

in

“Protocol

handlers”

with

exceptions

noted

in

this

section.

Figure

28

shows

the

SOAP/HTTP-HTTPS

protocol

handler

for

a

synchronous

operation.

Chapter

4.

Web

services

connector

77

Figure

29

shows

the

SOAP/HTTP-HTTPS

protocol

handler

for

an

asynchronous

request

process

Note:

This

section

describes

SOAP/HTTP

protocol

handling

only.

The

SOAP/HTTP-HTTPS

protocol

handler

uses

the

object-level

ASI

(cw_mo_http)

of

the

SOAP

Request

business

object

to

determine

the

Protocol

Config

MO.

The

SOAP/HTTP-HTTPS

protocol

handler

determines

the

URL

of

the

target

web

service

by

reading

the

Destination

attribute

in

the

HTTP

Protocol

Config

MO.

If

the

URL

is

missing

or

is

incomplete,

the

protocol

handler

fails

the

service

call.

For

further

information

on

the

HTTP

Protocol

Config

MO

and

its

attributes,

see

“HTTP

Protocol

Config

MO

for

request

processing”

on

page

51.

The

SOAP/HTTP-HTTPS

protocol

handler

invokes

the

web

service

using

the

SOAP

request

message

returned

by

the

SOAP

data

handler.

If

HTTP

Proxy

connector

configuration

properties

are

specified,

the

SOAP/HTTP(S)

protocol

handler

behaves

accordingly.

If

a

response

is

returned,

the

SOAP/HTTP(S)

protocol

handler

reads

it.

Table

33

summarizes

the

order

of

precedence

of

rules

used

by

the

SOAP/HTTP-HTTPS

protocol

handler

to

determine

the

Charset,

MimeType,

ContentType,

and

ContentType

header

for

outgoing

request

messages.

Table

33.

SOAP/HTTP-HTTPS

protocol

handler

processing

rules

for

outbound

messages

Order

of

Precedence

Charset

MimeType

ContentType

ContentType

header

Figure

28.

SOAP/HTTP-HTTPS

protocol

handler:

synchronous

request

processing

Figure

29.

SOAP/HTTP-HTTPS

protocol

handler:

asynchronous

request

processing

78

Adapter

for

Web

Services

User

Guide

Table

33.

SOAP/HTTP-HTTPS

protocol

handler

processing

rules

for

outbound

messages

(continued)

1

Protocol

Config

MO’s

Content-Type

Header

MimeType

property

in

TLO

attribute

Protocol

Config

MO’s

Content-Type

Header

Protocol

Config

MO’s

Content-Type

Header

2

Charset

property

in

TLO

attribute

Default

to

ContentType

Default

to

text/xml

Construct

Content-Type

header

using

ContentType

and

Charset

3

If

the

ContentType

is

text/*,

default

to

ISO-8859-1.

Otherwise,

charset

will

not

be

used.

As

shown

in

Table

33:

v

The

SOAP/HTTP-HTTPS

protocol

handler

determines

the

Charset

for

the

response

message

according

to

these

rules:

1.

If

specified

in

the

Request

business

object

Protocol

Config

MO

headers,

the

Charset

value

is

used.

2.

If

Charset

is

not

determined

by

the

previous

step,

the

protocol

handler

attempts

to

extract

the

Charset

from

the

TLO

attribute.

3.

If

the

operation

described

in

the

previous

step

is

unsuccessful,

the

table

is

used

to

determine

the

Charset:

Table

34.

Default

request

processing

Charsets

ContentType

Default

Charset

text/*

ISO-8859-1

For

further

information,

see

RFC2616,

application/*

No

default

All

others

No

default

4.

If

Charset

was

determined

by

the

previous

step,

the

Charset

is

set

on

the

data

handler.

5.

The

data

Handler

is

invoked

with

Stream

or

Byte

array

APIs,

depending

on

the

data

structure

needed

for

writing

out

the

request.
v

The

SOAP/HTTP-HTTPS

protocol

handler

determines

the

MimeType

for

the

request

according

to

these

rules:

1.

The

TLO

MimeType

attribute.

2.

If

the

TLO

MimeType

attribute

is

missing,

the

protocol

handler

uses

the

ContentType

to

determine

the

MimeType.
v

The

SOAP/HTTP-HTTPS

protocol

handler

determines

the

ContentType

for

the

request

message

according

to

these

rules:

1.

If

the

Content-Type

header

is

specified

in

the

Request

business

object

Protocol

Config

MO,

the

type/subtype

of

the

header

will

be

used

as

ContentType.

2.

Otherwise,

the

handler

uses

the

default

ContentType:

text/xml.
v

The

SOAP/HTTP-HTTPS

protocol

handler

determines

the

Content-Type

header

for

the

request

message

according

to

these

rules:

1.

If

the

Content-Type

header

is

specified

in

the

Request

business

object

Protocol

Config

MO,

its

value

is

set

on

the

outgoing

message.

Chapter

4.

Web

services

connector

79

2.

If

the

Content-Type

header

is

not

specified

in

the

Request

business

object

Protocol

Config

MO,

the

listener

constructs

a

Content-Type

header

using

the

ContentType

and

Charset

parameter

(if

the

Charset

was

determined

for

the

request

message).

Table

35

summarizes

the

order

of

precedence

for

rules

used

by

the

handler

when

determining

the

Charset,

MimeType,

ContentType,

and

ContentType

header

for

response

messages.

Table

35.

SOAP/HTTP(s)

protocol

handler

processing

rules

for

inbound

synchronous

response

message

Order

of

Precedence

Charset

MimeType

ContentType

ContentType

header

1

Charset

parameter

value

from

the

incoming

HTTP

message

Content-Type

header

value

Message

TransformationMap

child

business

object

in

the

Request

business

object’s

Protocol

Config

MO

Incoming

HTTP

message

type/subtype

value

from

the

Content-Type

header

value

Incoming

HTTP

message

Content-Type

header

2

Message

TransformationMap

child

business

object

in

the

Request

business

object’s

Protocol

Config

MO

The

request

message

MimeType,

but

only

if

the

request

and

response

ContentType

match.

3

The

request

message

Charset,

but

only

if

the

request

and

response

ContentType

match.

MimeType

property

in

TLO

4

Charset

property

in

TLO.

Default

to

ContentType

5

If

the

Content-Type

is

text/*,

default

to

ISO-8859-1.

Otherwise,

Charset

is

not

used.

As

shown

in

Table

35:

v

The

protocol

handler

determines

the

Charset

of

the

synchronous

response

message

according

to

the

following

rules:

1.

If

the

Charset

parameter

is

set

in

the

Content-Type

header

of

the

incoming

response

message,

the

protocol

handler

uses

the

Charset

value

to

set

on

the

data

handler.

2.

If

there

is

no

Charset

value

in

the

response

message

header,

then

the

protocol

handler

attempts

to

read

the

collaboration-defined

Charset

from

the

TLO

Request

Protocol

Config

MO

MessageTranformationMap.

3.

If

there

is

no

Charset

value

specified

in

the

TLO,

or

if

there

is

no

TLO,

then

if

the

response

has

the

same

ContentType

as

the

request,

the

Charset

of

the

request

will

be

used

for

the

response.

4.

If

the

previous

step

fails

to

yield

a

Charset

value,

then

the

protocol

handler

attempts

to

read

the

TLO

Charset

attribute.

5.

If

a

Charset

value

is

not

obtained

using

methods

described

in

the

previous

steps,

and

if

type

of

the

message

ContentType

is

text

with

any

subtype

(for

example,

text/xml,

text/plain,

etc.),default

ISO-8859-1.

Otherwise,

charset

value

is

not

used.
v

The

protocol

handler

determines

the

MimeType

of

the

synchronous

response

message

according

to

the

following

rules:

80

Adapter

for

Web

Services

User

Guide

1.

The

protocol

handler

first

attempts

to

extract

the

MimeType

from

the

TLO

Request

Protocol

Config

MO’s

MessageTransformationMap.

Specifically,

the

protocol

handler

tries

to

find

an

exact

ContentType

match

in

the

MTM

to

extract

MessageTransformationRule

and

then

use

the

MimeType

property

value

from

it.

Otherwise,

the

protocol

handler

looks

for

a

MessageTransformationRule

that

applies

to

more

than

one

ContentType

(ContentType

is

/).

2.

If

the

MimeType

is

not

determined

by

using

a

MessageTransformationMap,

the

protocol

handler

uses

the

request

MimeType

for

that

of

the

response

if

and

only

if

the

request

and

response

ContentTypes

match.

3.

If

the

MimeType

cannot

be

extracted

using

the

previous

steps,

the

protocol

handler

uses

the

MimeType

attribute

of

the

TLO.

or

the

default

MimeType,

if

available

to

the

protocol

handler.

4.

If

all

previous

steps

fail,

the

protocol

handler

uses

the

ContentType

to

set

the

MimeType.
v

The

handler

determines

the

ContentType

by

extracting

type/subtype

from

the

incoming

HTTP

message

Content-Type

header.

The

handler

processes

the

HTTP

Protocol

Config

MO.

It

is

the

responsibility

of

the

collaboration

to

ensure

that

the

header

values

passed

in

the

HTTP

Protocol

Config

MO

are

correct

in

the

context

of

the

request-response

event.

The

handler

populates

standard

headers

and

custom

properties

according

to

the

following

rules:

1.

The

handler

will

investigate

each

item

of

the

HTTP

Protocol

Config

MO

in

order

to

ignore

special

attributes

(such

as

ObjectEventId).

2.

Each

non-empty

header

will

be

put

on

the

outgoing

message

and

additional

processing

(for

example,

the

Content-Type

header)

may

take

place.

3.

Please

note

that

with

the

above

approach,

the

handler

may

set

non-standard

headers

on

the

message,

but

will

not

guarantee

that

the

message

is

logically

or

semantically

correct.

4.

If

there

are

one

or

more

custom

properties

in

the

HTTP

Protocol

Config

MO

UserDefinedProperties

attribute,

the

handler

will

add

them

in

the

Entity

Headers

Section

(the

last

headers

section).

For

more

on

custom

properties,

see

“User-defined

properties

for

request

processing”

on

page

52.

Note:

Specifying

any

of

the

following

headers

in

the

HTTP

Protocol

Config

MO

is

very

likely

to

result

in

incorrect

HTTP

messages:

Connection,

Trailer,

Transfer-Encoding,

Content-Encoding,

Content-Length,

Content-MD5,

Content-Range.

SOAP/JMS

protocol

handler

processing

The

SOAP/JMS

protocol

handler

performs

as

described

in

“Protocol

handlers”

on

page

77

with

exceptions

noted

in

this

section.

Note:

If

the

LookupQueueUsingJNDI

configuration

property

is

set

to

true,

the

SOAP/JMS

protocol

handler

uses

the

JNDI

to

look

up

the

destination

queue.

The

JNDI

properties

are

specified

in

connector

properties.

For

further

information,

see

“Connector

and

JMS”

on

page

84

and

the

JNDI-related

properties

in

“Connector-specific

configuration

properties”

on

page

89.

The

SOAP/JMS

protocol

handler

creates

a

JMS

transport

message

using

the

body

of

the

web

service

request

message

returned

by

the

SOAP

data

handler

and

with

JMS

headers

set

as

shown

in

Table

36..

Chapter

4.

Web

services

connector

81

Table

36.

Header

values

set

by

SOAP/JMS

protocol

handler

in

request

message

JMS

header

name

Default

value

if

not

set

in

SOAP/JMS

Protocol

Config

MO

JMSPriority

4

JMSExpiration

0

JMSDeliveryMode

PERSISTENT

JMSReply

JMSCorrelationId

JMSRedelivered

JMSTimestamp

JMSType

If

the

target

web

service

is

invoked

asynchronously,

the

JMSReplyTo

header

is

not

set.

Otherwise

(for

synchronous

processing),

the

SOAP/JMS

protocol

handler

sets

the

JMSReplyTo

header.

Using

the

ReplyToQueue

configuration

property,

the

SOAP/JMS

protocol

handler

obtains

the

JMSDestination—the

return

destination

for

a

response

or

fault

from

the

target

web

service—

and

sets

it

on

the

JMSReplyTo

header

on

the

JMS

transport

message.

Figure

30

shows

SOAP/JMS

protocol

handler

processing

for

a

synchronous

request

operation.

Figure

31

shows

SOAP/JMS

protocol

handler

processing

for

an

asynchronous

request

operation.

Figure

30.

SOAP/JMS

protocol

handler:

synchronous

request

processing

82

Adapter

for

Web

Services

User

Guide

The

SOAP/JMS

protocol

handler

uses

object-level

ASI

(cw_mo_jms)

of

the

SOAP

Request

business

object

to

determine

the

Protocol

Config

MO.

The

Destination

attribute

of

the

Protocol

Config

MO

gives

the

queue

name

of

the

target

web

service.

If

JNDI

is

enabled,

the

SOAP/JMS

protocol

handler

obtains

the

JMSDestination

for

the

SOAP

request

message

by

looking

up

the

JNDI

object.

Otherwise

it

uses

the

Destination

attribute

in

the

SOAP

Protocol

Config

MO.

If

the

response

does

not

arrive

in

the

interval

specified

in

the

ResponseWaitTimeout

property,

the

SOAP/JMS

protocol

handler

fails

the

collaboration

request.

On

arrival

of

the

SOAP

response

(or

fault)

message,

the

SOAP/JMS

protocol

handler

extracts

the

JMS

headers

and

payload

for

conversion

by

the

SOAP

data

handler.

The

SOAP/JMS

protocol

handler

then

sets

the

SOAP

Response

(or

Fault)

business

object

in

the

TLO,

using

the

Protocol

Config

MO

in

the

Response

(or

Fault)

business

object

to

map

the

JMS

headers.

Table

37

shows

this

mapping.

Table

37.

Protocol

Config

MO—JMS

header

attribute

mapping

for

response

during

synchronous

request

processing

Protocol

Config

MO

attribute

JMS

header

name

Description

Destination

JMSDestination

The

JMSDestination

header

from

the

response

message.

MessageId

JMSMessageId

The

JMSMessageId

header

from

the

response

message

Priority

JMSPriority

The

JMSPriority

header

from

the

response

message

Expiration

JMSExpiration

The

JMSExpiration

header

from

the

response

message

DeliveryMode

JMSDeliveryMode

The

JMSDeliveryMode

header

from

the

response

message

ReplyTo

JMSReplyTo

The

JMSReplyTo

header

from

the

response

message.

The

JMS

API

returns

this

header

as

JMSDestination,

but

the

SOAP/JMS

protocol

listener

returns

the

queue

name.

CorrelationId

JMSCorrelationId

The

JMSCorrelationId

header

from

the

response

message

Redelivered

JMSRedelivered

The

JMSRedelivered

header

from

the

response

message

Figure

31.

SOAP/JMS

protocol

handler:

asynchronous

request

processing

Chapter

4.

Web

services

connector

83

Table

37.

Protocol

Config

MO—JMS

header

attribute

mapping

for

response

during

synchronous

request

processing

(continued)

TimeStamp

JMSTimeStamp

The

JMSTimeStamp

header

from

the

response

message

Type

JMSType

The

JMSType

header

from

the

response

message

The

SOAP/JMS

protocol

handler

then

returns

the

TLO

to

the

collaboration.

Connector

and

JMS

Note:

This

section

assumes

that

you

are

familiar

with

JMS

and

JNDI,

especially

how

JMS

works.

For

further

information,

refer

to

your

JMS

and

JNDI

source

documentation.

The

connector

can

expose

collaborations

as

SOAP/JMS

web

services

as

well

as

enable

collaborations

to

invoke

SOAP/JMS

web

services.

The

requirements

for

using

SOAP/JMS

with

the

web

services

connector

are

as

follows:

1.

You

have

installed

and

configured

your

JMS

service

provider.

2.

You

have

installed

and

configured

your

JNDI.

3.

Your

JMS

provider

supports

JMS

API

version

1.0.2.

4.

All

required

jar

files

are

in

the

classpath

of

the

connector.

(See

your

JMS

provider

documentation

to

determine

all

required

jar

files.)

5.

All

required

libraries

are

in

the

path

of

the

connector.

(See

your

JMS

provider

documentation

to

determine

all

required

libraries.)

JNDI

For

SOAP/JMS,

the

connector

uses

JNDI

to

lookup

the

connection

factory

using

JNDI

context.

During

initialization,

the

connector

reads

the

JNDI

connector-specific

property

to

connect

to

JNDI.

If

you

do

not

configure

this

property,

you

will

be

unable

to

use

SOAP/JMS.

You

can

specify

following

JNDI

connector

specific

properties:

v

JNDIProviderURL

v

InitialContextFactory

v

JNDIConnectionFactoryName

v

CTX_ObjectFactories

v

CTX_ObjectFactories

v

CTX_StateFactories

v

CTX_URLPackagePrefixes

v

CTX_DNS_URL

v

CTX_Authoritative

v

CTX_Batchsize

v

CTX_Referral

v

CTX_SecurityProtocol

v

CTX_SecurityAuthentication

v

CTX_SecurityPrincipal

v

CTX_SecurityCredentials

v

CTX_Language

84

Adapter

for

Web

Services

User

Guide

v

LookupQueuesUsingJNDI

Refer

to

your

JNDI

documentation

for

guidance

in

specifying

these

properties.

To

use

SOAP/JMS

with

the

connector,

the

following

JNDI

connector-specific

properties

are

required:

v

JNDIProviderURL

Set

this

property

to

the

URL

of

the

JNDI

Service

provider.

For

the

value

of

this

property,

refer

to

your

JNDI

provider

documentation.

v

InitialContextFactory

Set

this

property

to

the

fully

qualified

class

name

of

the

factory

class

that

will

create

the

JNDI

initial

context.

For

the

value

of

this

property,

refer

to

your

JNDI

provider

documentation.

Make

sure

that

this

class

and

its

dependencies

are

in

the

classpath

of

the

connector.

v

JNDIConnectionFactoryName

Set

this

property

to

the

JNDI

name

of

the

Connection

factory

to

lookup

(using

JNDI

context).

Make

sure

that

this

name

can

be

looked

up

using

the

JNDI.

If

you

set

LookupQueuesUsingJNDI

to

true,

make

sure

all

the

queues

used

by

the

connector

can

be

looked

up

using

JNDI.

Exposing

collaborations

as

SOAP/JMS

web

services

To

expose

collaborations

as

SOAP/JMS

web

services,

you

must

use

the

SOAP/JMS

protocol

listener.

Using

the

SOAP/JMS

protocol

listener

requires

that

you

specify

JNDI

connector

properties.

Your

JMS

provider

configuration

should

reflect

the

requirements

of

the

SOAP/JMS

protocol

listener.

Make

sure

all

the

queues

required

by

the

SOAP/JMS

protocol

listener

are

defined

by

your

JMS

service

provider.

Be

sure

to

check

your

JMS

provider

documentation—

the

task

of

defining

queues

varies

by

provider.

You

must

define

six

queues

for

the

SOAP/JMS

protocol

listener.

You

must

set

the

queue

names

in

SOAP/JMS

listener

configuration

properties

and,

if

you

have

set

JNDI

”

LookupQueuesUsingJNDI

to

true,

you

also

must

specify

the

JNDI

names

of

the

queues

in

the

SOAP/JMS

listener

configuration

properties.

You

should

specify

the

queues

names

as

the

values

of

the

following

SOAP/JMS

Listener

configuration

properties:

v

InputQueue

v

InProgressQueue

v

ArchiveQueue

v

UnsubscribedQueue

v

ErrorQueue

v

ReplyToQueue

InputQueue

and

InProgressQueue

are

required

properties.

Make

sure

that

you

have

correctly

configured

these

queues.

ArchiveQueue,

UnsubscribedQueue

and

ErrorQueue

are

optional

properties.

These

queues

are

used

to

archive

web

service

requests.

If

you

plan

to

use

any

of

these

properties,

make

sure

you

have

configured

the

corresponding

JMS

queues

correctly.

When

defining

these

queues

with

your

JMS

provider,

you

should

carefully

specify

the

capacity

of

these

queues.

Collaborations

invoking

SOAP/JMS

web

services

To

enable

collaborations

to

invoke

SOAP/JMS

web

services,

you

use

the

SOAP/JMS

protocol

handler.

The

SOAP/JMS

protocol

handler

requires

that

you

Chapter

4.

Web

services

connector

85

specify

JNDI

connector

properties.

Work

with

your

web

service

provider

to

determine

the

JMS

and

JNDI

requirements.

To

invoke

SOAP/JMS

web

services,

the

connector

requires

that

the

value

of

the

Destination

attribute

in

the

SOAP/JMS

Protocol

Config

MO

be

set

to

the

input

queue

o

f

the

target

web

service.

If

you

have

set

JNDI

”

LookupQueuesUsingJNDI

to

true,

you

must

specify

the

JNDI

name

of

the

input

queue.

If

you

are

invoking

request-reply

web

services,

you

must

work

with

your

web

service

provider

to

determine

the

requirements

for

the

ReplyTo

queue.

Make

sure

that

the

ReplyTo

queue

is

defined.

Also

make

sure

that

you

have

specified

the

name

of

the

ReplyTo

queue

in

the

ReplyToQueue

configuration

property

of

the

SOAP/JMS

protocol

handler.

If

JNDI

”

LookupQueuesUsingJNDI

is

set

to

true,

the

value

of

the

ReplyToQueue

configuration

property

should

give

the

JNDI

name

of

this

queue.

It

is

important

to

note

that,

unlike

protocol

listeners,

protocol

handlers

are

not

pluggable

to

the

web

services

connector.

As

a

result,

the

connector

uses

the

same

ReplyTo

queue

for

all

the

request-reply

web

services

that

the

connector

invokes.

SSL

This

section

discusses

the

how

the

connector

implements

an

SSL

capability.

For

background

information,

see

your

SSL

documentation.

This

section

assumes

a

familiarity

with

SSL

technology.

JSSE

The

connector

can

expose

collaborations

as

SOAP/HTTPS

web

services

and

enable

collaborations

to

invoke

SOAP/HTTPS

web

services.

The

connector

uses

JSSE

to

provide

support

for

HTTPS

and

SSL.

IBM

JSSE

is

shipped

with

the

connector.

To

enable

this

capability,

make

sure

you

have

the

following

entry

in

the

java.security

file

that

is

among

the

files

installed

with

the

connector:

security.provider.5=com.ibm.jsse.IBMJSSEProvider

Note

that

java.security

is

located

in

the

$ProductDir\lib\security

directory

of

your

connector

installation.

The

connector

uses

the

value

of

the

JavaProtocolHandlerPackages

connector

property

to

set

the

system

property

java.protocol.handler.pkgs.

Note

that

for

the

IBM

JSSE

that

is

shipped

with

the

connector,

the

value

of

this

property

should

be

set

to

com.ibm.net.ssl.internal.www.protocol.

The

JavaProtocolHandlerPackages

configuration

property

defaults

to

this

value.

During

initialization,

the

connector

disables

all

anonymous

cipher

suites

supported

by

JSSE.

KeyStore

and

TrustStore

To

use

SSL

with

the

connector,

you

must

set

up

keystores

and

truststores.

No

tool

is

provided

to

set

up

keystores,

certificates,

and

key

generation.

You

must

use

third

party

software

tools

to

complete

these

tasks.

SSL

Properties

You

can

specify

the

following

SSL

connector-specific

properties:

v

SSLVersion

86

Adapter

for

Web

Services

User

Guide

v

SSLDebug

v

KeyStore

v

KeyStoreAlias

v

KeyStorePassword

v

TrustStore

v

TrustStorePassword

Note

that

these

properties

apply

to

a

connector

instance.

The

same

set

of

SSL

property

values

are

used

by

all

of

the

SOAP/HTTPS

protocol

listeners

plugged

into

the

connector

and

by

the

SOAP/HTTP-HTTPS

protocol

handler

for

each

connector

instance.

For

further

information

on

HTTPS/SSL

setup,

see

Appendix

D,

“Configuring

HTTPS/SSL,”

on

page

211.

Exposing

collaborations

as

SOAP/HTTPS

web

services

When

you

expose

collaborations

as

SOAP/HTTPS

web

services,

you

use

the

SOAP/HTTPS

protocol

listener.

To

use

the

SOAP/HTTPS

protocol

listener,

you

must

specify

SSL

connector-specific

properties.

The

values

you

assign

to

these

properties

should

reflect

your

SSL

requirements:

v

SSLVersion

Make

sure

that

the

SSLVersion

you

want

to

use

is

supported

by

JSSE.

v

KeyStore

Because

the

SOAP/HTTPS

protocol

listener

acts

as

a

server

in

SSL

communications,

you

must

specify

the

keystore.

The

listener

uses

the

keystore

specified

in

the

SSL

”

KeyStore

configuration

property.

The

value

of

this

property

must

be

the

complete

path

to

your

keystore

file.

Make

sure

that

the

keystore

has

key

pair

(private

key

and

public

key)

for

the

connector.

The

alias

of

the

private

key

should

be

specified

as

the

SSL

”

KeyStoreAlias

property.

You

must

specify

the

password

required

to

access

the

keystore

as

the

SSL

”

KeyStorePassword

property.

Also

make

sure

that

the

password

required

to

access

keystore

and

the

private

key

(in

the

keystore)

are

same.

Finally,

you

must

distribute

the

digital

certificate

of

the

connector

to

your

web

service

clients

so

that

they

can

authenticate

the

connector.

v

TrustStore

If

you

want

the

SOAP/HTTPS

protocol

listener

to

authenticate

web

service

clients,

you

must

activate

client

authentication.

You

do

this

by

setting

the

SSL

”

UseClientAuth

property

to

true.

You

must

also

specify:

–

the

location

of

your

truststore

as

the

value

of

the

SSL

”

TrustStore

configuration

property

–

the

password

required

to

access

the

truststore

as

the

value

of

the

SSL

”

TrustStorePassword

property

Make

sure

that

your

truststore

contains

the

digital

certificate

of

your

web

service

clients.

Digital

certificates

used

by

your

Web

Service

clients

may

be

self-signed

or

issued

by

CA.

Note

that

if

your

truststore

trusts

the

root

certificate

of

the

CA,

JSSE

will

authenticate

all

the

digital

certificates

issued

by

that

CA.

For

further

information

on

HTTPS/SSL

setup,

see

Appendix

D,

“Configuring

HTTPS/SSL,”

on

page

211.

Collaborations

invoking

SOAP/HTTPS

web

services

To

enable

collaborations

to

invoke

SOAP/HTTPS

web

services,

you

use

the

SOAP/HTTP-HTTPS

protocol

handler.

If

you

are

using

SSL

with

the

SOAP/HTTP-HTTPS

protocol

handler,

you

must

specify

SSL

connector-specific

properties.

The

values

you

assign

to

these

properties

should

reflect

the

HTTPS/SSL

requirements

of

your

web

services

provider:

Chapter

4.

Web

services

connector

87

v

SSLVersion

Make

sure

that

the

SSLVersion

you

want

to

use

is

supported

by

your

web

service

provider

and

by

JSSE.

v

TrustStore

Because

the

SOAP/HTTP-HTTPS

protocol

handler

acts

as

a

client

in

SSL

communications,

you

must

set

up

a

truststore.

The

handler

uses

the

truststore

specified

in

the

SSL

->

Truststore

configuration

property.

The

value

of

this

property

must

be

the

complete

path

to

your

truststore

file.

You

must

specify

the

password

required

to

access

the

truststore

in

the

SSL

->

TrustStorePassword

property.

Make

sure

that

your

truststore

contains

the

digital

certificate

of

your

web

service

provider.

Digital

certificates

used

by

your

web

service

provider

may

be

self-signed

or

they

may

be

issued

by

CA.

Note

that

if

your

truststore

trusts

the

root

certificate

of

the

CA,

JSSE

will

authenticate

all

the

digital

certificates

issued

by

that

CA.

v

KeyStore

If

your

web

service

provider

requires

client

authentication,

you

must

set

up

a

keystore.

The

SOAP/HTTP-HTTPS

protocol

handler

uses

the

keystore

specified

in

the

SSL

”

KeyStore

configuration

property.

This

value

must

be

the

complete

path

to

your

keystore

file.

Make

sure

that

keystore

has

a

key

pair

(private

key

and

public

key)

configured

for

the

connector.

The

alias

of

the

private

key

must

be

specified

in

the

SSL

”

KeyStoreAlias

property.

The

password

required

to

access

the

keystore

must

be

specified

in

the

SSL

”

KeyStorePassword

property.

Finally,

make

sure

that

the

password

required

to

access

the

keystore

and

the

private

key

(in

the

keystore)

are

the

same.

You

must

distribute

the

connector’s

digital

certificate

to

your

web

service

provider

for

authentication.

For

further

information

on

HTTPS/SSL

setup,

see

Appendix

D,

“Configuring

HTTPS/SSL,”

on

page

211.

Configuring

the

connector

After

using

the

Installer

to

install

the

connector

files

to

your

system,

you

must

set

the

standard

and

application-specific

connector

configuration

properties.

Setting

configuration

properties

Connectors

have

two

types

of

configuration

properties:

standard

configuration

properties

and

connector-specific

configuration

properties.

You

must

set

the

values

of

these

properties

using

System

Manager

(SM)

before

running

the

connector.

Standard

configuration

properties

Standard

configuration

properties

provide

information

that

all

connectors

use.

See

Appendix

A,

“Standard

configuration

properties

for

connectors,”

on

page

169

for

documentation

of

these

properties.

The

table

below

provides

information

specific

to

this

connector

about

configuration

properties

in

the

appendix.

Property

Description

CharacterEncoding

This

connector

does

not

use

this

property.

Locale

Because

this

connector

has

not

been

internationalized,

you

cannot

change

the

value

of

this

property.

See

release

notes

for

the

connector

to

determine

currently

supported

locales.

Because

this

connector

supports

only

InterChange

Server

Express

as

the

integration

broker,

the

only

configuration

properties

relevant

to

it

are

for

InterChange

Server

Express.

You

must

set

at

least

the

following

standard

connector

configuration

properties:

v

AgentTraceLevel

88

Adapter

for

Web

Services

User

Guide

v

ApplicationName

v

ControllerTraceLevel

v

DeliveryTransport

Connector-specific

configuration

properties

Connector-specific

configuration

properties

provide

information

needed

by

the

connector

agent

at

run

time.

Connector-specific

properties

also

provide

a

way

of

changing

static

information

or

logic

within

the

connector

agent

without

having

to

recode

and

rebuild

the

agent.

Table

38

lists

the

connector-specific

configuration

properties.

See

the

sections

that

follow

for

explanations

of

the

properties.

Note

that

some

of

the

properties

contain

other

properties.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Note:

If

you

do

not

intend

to

use

the

SOAP/JMS

protocol

listener

or

SOAP/JMS

protocol

handler

with

the

connector,

be

sure

to

delete

SOAP/JMS-related

connector-specific

properties

or

to

leave

them

blank.

Table

38.

Connector-specific

configuration

properties

Name

Possible

values

Default

value

Required

ConnectorType

Any

valid

connector

type

WebService

Yes

DataHandlerMetaObjectName

Data

handler

meta-object

name

MO_DataHandler_

Default

Yes

JavaProtocolHandlerPackages

Valid

Java

protocol

handler

packages

com.ibm.net.ssl.

internal.www.protocol

No

ProtocolHandlerFramework

This

is

a

hierarchical

property

and

has

no

value

None

No

+ProtocolHandlers

This

is

a

hierarchical

property

and

has

no

value

No

++SOAPHTTPHTTPSHandler

This

is

a

hierarchical

property.

For

information

on

its

sub-properties,

see

“SOAPHTTPHTTPSHandler”

on

page

91.

Yes

++SOAPJMSHandler

This

is

a

hierarchical

property.

For

information

on

its

sub-properties,

see

“SOAPJMSHandler”

on

page

92.

ProtocolListenerFramework

This

is

a

hierarchical

property

and

has

no

value.

No

+WorkerThreadCount

An

integer

greater

than

1that

gives

the

number

of

available

listener

threads.

10

No

+RequestPoolSize

Integer

greater

than

WorkerThreadCount

that

gives

the

resource

pool

size.

20

No

+ProtocolListeners

This

is

a

hierarchical

property

and

has

no

value

++Listener1

Uniquely

named

protocol

listener

Yes

+++Protocol

soap/http,

soap/https,

soap/jms

Yes

+++SOAPDHMimeType

Any

valid

mime

type

of

a

SOAP

data

handler

xml/soap

+++ListenerSpecific

Properties

unique

to

or

required

by

the

listener

See

“ListenerSpecific”

on

page

94.

ProxyServer

This

is

a

hierarchical

property

and

has

no

value

No

+HttpProxyHost

Host

name

for

the

HTTP

proxy

server

No

Chapter

4.

Web

services

connector

89

Table

38.

Connector-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

+HttpProxyPort

Port

number

for

the

HTTP

proxy

server

80

No

+HttpNonProxyHosts

HTTP

host(s)

requiring

direct

connection

No

+HttpsProxyHost

Host

name

for

the

HTTPS

proxy

server

No

+HttpsProxyPort

Port

number

for

the

HTTPS

proxy

server

443

No

+HttpsNonProxyHosts

HTTPS

host(s)

requiring

direct

connection

No

+SocksProxyHost

Socks

proxy

server

name

No

+SocksProxyPort

Socks

proxy

server

port

No

+HttpProxyUsername

Http

proxy

server

username

No

+HttpProxyPassword

Http

proxy

server

password

No

+HttpsProxyUsername

Https

proxy

server

username

No

+HttpsProxyPassword

Https

proxy

server

password

No

SSL

This

is

a

hierarchical

property

and

has

no

value

No

+SSLVersion

SSL,

SSLv2,

SSLv3,

TLS,

TLSv1

SSL

No

+SSLDebug

true,

false

false

No

+KeyStoreType

Any

valid

keystore

type

JKS

No

+KeyStore

Path

to

KeyStore

file.

No

+KeyStorePassword

Password

for

private

key

in

KeyStore

No

+KeyStoreAlias

Alias

for

key

pair

in

KeyStore

No

+TrustStore

Path

to

TrustStore

file

No

+TrustStorePassword

Password

for

TrustStore

No

+UseClientAuth

true

false

false

No

WSCollaborations

This

is

a

hierarchical

property

creating

by

the

WSDL

Configuration

Wizard

and

has

no

value

See

“WSCollaborations”

on

page

103.

+Collaboration1

This

is

a

hierarchical

property

and

has

no

value

++CollaborationPort1

Name

of

the

collaboration

port

Yes

+++WebServiceOperation1

This

is

a

hierarchical

property

and

has

no

value

Yes

++++BodyName

Name

of

web

service

method;

must

be

valid

XML

element

name

Yes

++++BodyNS

Namespace

of

web

service

method;

must

be

valid

XML

namespace

Yes

++++BOName

Name

of

Request

business

object

for

operation

Yes

++++Mode

synch

asynch

asynch

No

JNDI

This

is

a

JMS-related

hierarchical

property

and

has

no

value

No

+LookupQueuesUsingJNDI

true

false

false

No

+JNDIProviderURL

Valid

JNDI

URL

No

+InitialContextFactory

Name

of

factory

class

for

initial

context

No

+JNDIConnectionFactoryName

Name

of

connection

factory

to

look

up

using

JNDI

context.

No

+CTX_ObjectFactories

+CTX_properties

Properties

specifying

additional

information

about

security

and

object

lookup

in

the

JNDI

context

N

90

Adapter

for

Web

Services

User

Guide

ConnectorType:

If

this

property

is

set

to

WebService,

when

binding

the

collaboration

port,

System

Manager

displays

the

connector

as

a

web

services

connector.

Otherwise

it

is

displayed

as

a

normal

connector.

Default

=

WebService.

DataHandlerMetaObjectName:

This

is

the

name

of

the

meta-object

that

the

data

handler

uses

to

set

configuration

properties.

Default

=

MO_DataHandler_Default.

JavaProtocolHandlerPackages:

The

value

of

this

property

gives

the

Java

Protocol

Handler

packages.

The

connector

uses

the

value

of

this

property

to

set

the

system

property

java.protocol.handler.pkgs.

Default

=

com.ibm.net.ssl.internal.www.protocol.

ProtocolHandlerFramework:

The

Protocol

Handler

Framework

uses

this

property

to

load

and

configure

its

protocol

handlers.

This

is

a

hierarchical

property

and

has

no

value.

Default

=

none.

ProtocolHandlers:

This

hierarchical

property

has

no

value.

Its

first-level

children

represent

discrete

protocol

handlers.

Default

=

none.

SOAPHTTPHTTPSHandler:

The

name

of

a

SOAP/HTTP-HTTPS

protocol

handler.

Note

that

this

is

a

hierarchical

property.

Unlike

listeners,

protocol

handlers

may

not

be

duplicated,

and

there

can

be

only

one

handler

for

each

protocol.

Table

39

below

shows

the

sub-properties

for

the

SOAP/HTTP-HTTPS

protocol

handler.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Table

39.

SOAP/HTTP-HTTPS

protocol

handler

configuration

properties

Name

Possible

values

Default

value

Required

++SOAPHTTPHTTPSHandler

This

is

a

hierarchical

property

and

has

no

value.

Yes

+++Protocol

The

kind

of

protocol

the

handler

is

implementing.

For

SOAP/HTTP

and

SOAP/HTTPS,

the

value

is

soap/http.

Note:

If

you

do

not

specify

a

value

for

this

property,

the

connector

will

not

initialize

this

protocol

handler.

Yes

+++HTTPReadTimeout

A

SOAP/HTTP-specific

property

that

specifies

the

timeout

interval

(in

milliseconds)

while

reading

from

the

remote

host

(web

service).If

this

property

is

not

specified

or

if

set

to

0,

the

SOAP/HTTP

protocol

handler

blocks

indefinitely

while

reading

from

the

remote

host.

0

No

Figure

32

shows

the

properties

as

displayed

in

Connector

Configurator

Express.

Chapter

4.

Web

services

connector

91

SOAPJMSHandler:

The

name

of

a

SOAP/JMS

protocol

handler.

Note

that

this

is

a

hierarchical

property.

Unlike

listeners,

protocol

handlers

may

not

be

duplicated,

and

there

can

be

only

one

handler

for

each

protocol.

Table

40

below

shows

the

sub-properties

for

the

SOAP/JMS

protocol

handler.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Table

40.

SOAP/JMS

protocol

handler

configuration

properties

Name

Possible

values

Default

value

Required

++SOAPJMSHandler

This

is

a

hierarchical

property

and

has

no

value.

Yes

+++Protocol

The

kind

of

protocol

the

handler

is

implementing.

For

SOAP/JMS,

the

value

is

soap/jms.

Note:

If

you

do

not

specify

a

value

for

this

property,

the

connector

will

not

initialize

this

protocol

handler.

Yes

+++ResponseWaitTimeout

This

is

a

JMS

protocol

handler-specific

property

that

specifies

the

timeout

interval

(in

milliseconds)

that

the

protocol

handler

waits

on

ReplyToQueue

for

synchronous

request

processing.

If

the

response

does

not

arrive

during

this

interval,

the

handler

fails

the

collaboration

request.

If

this

property

is

not

specified

or

if

set

to

0,

the

protocol

handler

waits

on

ReplyToQueue

indefinitely.

0

No

+++ReplyToQueue

This

is

a

required

JMS

protocol

handler-specific

property

that

names

the

ReplyTo

queue.

For

synchronous

request

processing,

the

handler

sets

the

JMSReplyTo

field

to

this

JMS

destination.

If

LookupQueuesUsingJNDI

=

true,

the

SOAP/JMS

protocol

handler

looks

up

this

queue

using

JNDI.

none

Yes

Figure

33

shows

the

properties

as

displayed

in

Connector

Configurator

Express.

Figure

32.

SOAP/HTTP-HTTPS

protocol

handler

properties

92

Adapter

for

Web

Services

User

Guide

ProtocolListenerFramework:

The

protocol

listener

framework

uses

this

property

to

load

protocol

listeners.

This

is

a

hierarchical

property

and

has

no

value.

WorkerThreadCount:

This

property,

which

must

be

an

integer

greater

than

1,

establishes

the

number

of

protocol

listener

worker

threads

available

to

the

protocol

listener

framework.

For

further

information,

see

“Protocol

listeners”

on

page

65.Default

=

10.

RequestPoolSize:

This

property,

which

must

be

an

integer

greater

than

WorkerThreadCount,

sets

the

resource

pool

size

of

the

protocol

listener

framework.

The

framework

can

process

a

maximum

of

WorkerThreadCount

+

RequestPoolSize

requests

concurrently.

Default

=

20.

ProtocolListeners:

This

is

a

hierarchical

property

and

has

no

value.

Each

first-level

child

of

this

property

represents

a

discrete

protocol

listener.

Listener1:

The

name

of

a

protocol

listener.

There

may

be

multiple

protocol

listeners.

Note

that

this

is

a

hierarchical

property.

You

can

create

multiple

instances

of

this

property

and

create

additional,

uniquely

named

listeners.

When

doing

so,

you

can

change

the

listener-specific

properties

but

not

the

protocol

property.

The

names

of

multiple

listeners

must

be

unique.

Possible

names

(not

values):

SOAPHTTPListener1,

SOAPHTTPSListener1,

SOAPJMSListener1

Protocol:

This

property

specifies

the

protocol

this

listener

is

implementing.

Possible

values:

soap/http,

soap/https,

soap/jms.

Note:

If

you

do

not

specify

a

value

for

this

property,

the

connector

will

not

initialize

this

protocol

listener.

SOAPDHMimeType:

The

SOAP

data

handler

mime

type

to

use

for

the

requests

received

by

this

listener.

Default

=

xml/soap

Figure

33.

SOAP/JMS

protocol

handler

properties

Chapter

4.

Web

services

connector

93

ListenerSpecific:

Listener

specific

properties

are

unique

to,

or

required

by,

the

specified

protocol

listener.

For

example,

the

HTTP

listener

has

a

listener-specific

property

Port,

which

represents

the

Port

number

on

which

Listener

monitors

requests.

Table

41

summarizes

the

HTTP-HTTPS

listener

specific

properties.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Table

41.

SOAP/HTTP

and

SOAP/HTTPS

protocol

listener-specific

configuration

properties

Name

Possible

values

Default

value

Required

+++SOAPHTTPListener1

Unique

name

of

an

HTTP

protocol

listener.

This

is

a

child

of

the

ProtocolListenerFramework

->

ProtocolListeners

hierarchical

property.

There

can

be

multiple

listeners:

you

may

plug-in

additional

HTTP

listeners

by

creating

another

instance

of

this

property

and

its

hierarchy.

Yes

++++Protocol

soap/http

if

SOAP/HTTP

protocol

listener

soap/https

if

SOAP/HTTPS

protocol

listener

Note:

If

you

do

not

specify

a

value

for

this

property,

the

connector

will

not

initialize

this

protocol

listener.

Yes

++++SOAPDHMimeType

xml/soap

xml/soap

No

++++BOPrefix

The

value

of

this

property

is

passed

to

the

data

handler.

No

++++Host

The

listener

will

listen

at

the

IP

address

specified

by

value

of

this

property.

If

Host

is

not

specified,

it

defaults

to

localhost.

Note

that

you

may

either

specify

a

host

name

(DNS

name)

or

an

IP

address

for

the

machine

on

which

the

listener

is

running.

A

machine

may

have

multiple

IP

addresses

or

multiple

names.

localhost

No

++++Port

The

port

on

which

the

listener

listens

for

requests.

If

unspecified,

the

port

defaults

to

80

for

SOAP/HTTP

and

443

for

SOAP/HTTPS.If

you

clone

the

listener

within

a

connector,

then

the

combination

of

Host

and

Port

properties

is

unique

or

the

listener

may

be

unable

to

bind

to

the

port

to

accept

requests.

80

for

SOAP/HTTP

listener

443

for

SOAP/HTTPS

listener

No

++++SocketQueueLength

Length

of

the

queue

(socket

queue)

for

incoming

connection

requests.

Specifies

how

many

incoming

connections

can

be

stored

at

one

time

before

the

host

refuses

connections.

The

maximum

queue

length

is

operating

system

dependent.

5

No

++++RequestWaitTimeout

The

time

interval

in

milli-seconds

that

the

listener

thread

will

block

on

the

host

and

port

while

waiting

for

web

service

requests

to

arrive.

If

it

receives

a

web

service

request

before

this

interval,

the

listener

will

process

it.

Otherwise

the

listener

thread

checks

whether

the

connector

shutdown

flag

is

set.

If

it

is

set,

the

connector

will

terminate.

Otherwise

it

will

continue

to

block

for

RequestWaitTimeout

interval.

If

this

property

is

set

to

0,

it

will

block

for

ever.

If

unspecified,

it

defaults

to

60000ms.

60000

(ms)

No

++++HTTPReadTimeout

The

time

interval

in

milli-seconds

that

the

listener

will

be

blocked

while

reading

a

web

service

request

from

a

client.

If

this

parameter

is

set

to

0,

the

listener

indefinitely

blocks

until

it

receives

the

entire

request

message.

0

No

++++HttpAsyncResponseCode

The

HTTP

response

code

for

asynchronous

requests

to

the

listener:

200

(OK)

202

(ACCEPTED)

202

(ACCEPTED)

No

94

Adapter

for

Web

Services

User

Guide

Table

41.

SOAP/HTTP

and

SOAP/HTTPS

protocol

listener-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

++++URLsConfiguration

This

is

a

hierarchical

property

and

has

no

value.

It

contains

1

or

more

configurations

for

URLs

supported

by

this

listener

and,

optionally,

mime

type

and

charset

values.

Note

that

this

is

child

property

of

ProtocolListenerFramework->ProtocolListeners-
>SOAPHTTPListener1

hierarchical

property.

If

this

property

is

not

specified,

the

listener

assumes

default

values.

ContextPath:

/

Enabled:

true

Data

handler

MimeType:

equal

to

the

ContentType

of

the

request

Charset:

NONE.

For

further

information,

see

“SOAP/HTTP

and

SOAP/HTTPS

protocol

listener

processing”

on

page

66.

No

+++++URL1

This

is

a

hierarchical

property

and

has

no

value.

Its

children

provide

the

name

of

the

URL

supported

by

this

listener.

There

can

be

multiple

supported

URLs.

Note

that

you

can

plug

in

additional

URLs

by

cloning

this

property

and

its

hierarchy.

No

++++++ContextPath

The

URI

for

the

HTTP

requests

received

by

the

listener.

This

value

must

be

unique

among

ContextPath

values

under

the

URLsConfiguration

property.

Otherwise

the

connector

will

log

an

error

and

fail

to

start.

ContextPath

is

case

sensitive.

However

it

may

contain

protocol,

host

name

and

port

which

are

case-insensitive.

If

protocol

is

specified

in

ContextPath,

it

should

be

http.

If

host

is

specified,

it

should

be

equal

to

the

value

of

the

Host

listener

property.

If

port

is

specified,

it

should

be

equal

to

the

value

of

Port

listener

property.

No

++++++Enabled

The

value

of

this

property

determines

if

the

parent

URL

hierarchical

property

is

enabled

for

the

connector.

True

No

++++++TransformationRules

This

is

a

hierarchical

property

and

has

no

value.

It

holds

one

or

more

transformation

rules.

+++++++TransformationRule1

This

is

a

hierarchical

property

and

has

no

value.

It

holds

the

transformation

rule.

No

++++++++ContentType

The

value

of

this

property

specifies

the

ContentType

of

the

incoming

request

for

which

special

handling

(data

handler

mime

type

or

charset)

should

be

applied.

If

ContentType

is

not

specified

by

the

TransformationRuleN

hierarchical

property,

the

connector

logs

a

warning

message

and

ignores

the

TransformationRuleN

property.
Specifying

the

special

value

/

for

this

property

enables

the

protocol

listeners

to

apply

this

rule

to

any

ContentType.

Note

that

if

a

listener

finds

more

than

one

rule

for

the

same

context

path

that

shares

a

ContentType,

the

listener

logs

an

error

and

fails

to

initialize.

No

++++++++MimeType

The

mime

type

to

use

when

calling

a

data

handler

to

process

requests

of

the

specified

ContentType.

No

++++++++Charset

Charset

to

use

when

transforming

the

request

of

the

specified

ContentType

into

a

business

object.

No

Chapter

4.

Web

services

connector

95

Figure

34

shows

the

properties

as

displayed

in

Connector

Configurator

Express.

Table

42

summarizes

the

SOAP/JMS

protocol

listener-specific

properties.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Table

42.

SOAP/JMS

protocol

listener-specific

configuration

properties

Name

Possible

values

Default

value

Required

+++SOAPJMSListener1

Unique

name

of

a

JMS

protocol

listener.

This

is

a

child

of

the

ProtocolListenerFramework

->

ProtocolListeners

hierarchical

property.

There

can

be

multiple

listeners:

you

may

plug-in

additional

JMS

listeners

by

creating

another

instance

of

this

property

and

its

hierarchy.

Yes

++++Protocol

soap/jms

Yes

++++SOAPDHMimeType

xml/soap

xml/soap

No

++++BOPrefix

The

value

of

this

property

is

passed

to

the

data

handler

specified

by

SOAPDHMimeType

property.

No

Figure

34.

SOAP/HTTP

protocol

listener

properties

96

Adapter

for

Web

Services

User

Guide

Table

42.

SOAP/JMS

protocol

listener-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

++++RequestWaitTimeout

This

property

sets

the

time

interval

that

the

SOAP/JMS

listener

thread

blocks

the

InputQueue

while

waiting

for

a

web

service

request.

If

it

receives

a

web

service

request

within

this

interval,

the

listener

processes

it.

If

it

does

not

receive

the

request

within

this

interval,

the

listener

thread

first

checks

if

the

connector

shutdown

flag

is

set.

If

the

connector

shutdown

flag

is

set,

the

connector

will

terminate.

Otherwise

it

will

continue

to

block

for

RequestWaitTimeout

interval.

If

this

property

is

set

to

0,

it

will

block

indefinitely.

60000

milliseconds

No

++++SessionPoolSize

Maximum

number

of

sessions

that

can

be

allocated

for

a

given

listener

and

its

worker

threads.

The

minimum

number

of

sessions

(and

default)

is

2.

For

larger

session

pool

sizes,

the

connector

requires

more

memory.

2

No

++++InputQueue

This

property

gives

the

name

of

the

input

queue

that

the

listener

polls

for

inbound

messages

from

web

services.

If

LookupQueuesUsingJNDI

=

true,

the

listener

looks

up

this

queue

using

JNDI

and

the

value

of

the

InputQueue

property

is

set

to

the

jndiDestinationName

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

the

wsdl:port

section

of

the

WSDL

document.

If

during

WSDL

generation

you

select

the

SOAP/JMS

listener,

System

Manager

automatically

creates

the

jndiDestinationName

attribute

using

the

value

of

this

property.

If

LookupQueueUsingJNDI

=

false,

then

System

Manager

creates

the

jmsProviderDestinationName

attribute

instead.

Yes

++++InProgressQueue

This

property

gives

the

name

of

the

in-progress

queue.

The

listener

sends

copies

of

inbound

messages

from

the

InputQueue

to

InProgressQueue.

If

LookupQueuesUsingJNDI

=

true,

the

listener

looks

up

this

queue

using

JNDI.

Yes

++++ArchiveQueue

This

property

gives

the

name

of

the

archival

queue.

The

listener

sends

copies

of

successfully

processed

messages

from

the

InProgressQueue

to

ArchiveQueue.

If

LookupQueuesUsingJNDI

=

true,

the

listener

looks

up

this

queue

using

JNDI.

No

++++UnsubscribedQueue

This

property

gives

the

name

of

the

unsubscribed

queue.

The

listener

sends

copies

of

unsubscribed

messages

from

the

InProgressQueue

to

UnsubscribedQueue.

If

LookupQueueUsingJNDI

=

true,

the

listener

looks

up

this

queue

using

JNDI.

No

++++ErrorQueue

This

property

gives

the

name

of

the

error

queue.

The

listener

sends

copies

of

failed

messages

to

the

ErrorQueue.

If

LookupQueueUsingJNDI

=

true,

the

listener

looks

up

this

queue

using

JNDI.

No

Chapter

4.

Web

services

connector

97

Table

42.

SOAP/JMS

protocol

listener-specific

configuration

properties

(continued)

Name

Possible

values

Default

value

Required

++++InDoubtEvents

This

property

specifies

how

to

handle

messages

in

the

InProgressQueue

that

are

not

fully

processed

due

to

unexpected

connector

termination.

It

can

take

one

of

the

following

values:

v

FailOnStartup

Log

an

error

and

immediately

shutdown

v

Reprocess

Process

the

remaining

messages

in

the

InProgressQueue

v

Ignore

Disregard

any

messages

in

the

in-progress

queue

v

LogError

Log

an

error

but

do

not

shutdown

Ignore

No

++++ReplyToQueue

This

property

gives

the

name

of

the

ReplyTo

queue.

The

WSDL

Configuration

Wizard

reads

this

property

and

writes

it

to

the

WSDL

document.

If

this

property

is

not

specified,

the

utility

does

not

create

a

ReplyTo

JMS

header

in

the

SOAP/JMS

binding

in

the

WSDL

document.

(The

listener

does

not

use

this

property.)

If

JNDI

properties

are

specified

and

LookupQueueUsingJNDI

=

false,

the

WSDL

Generation

Utility

still

create

JNDI

specific

attributes

in

the

WSDL

document.

Note

that

these

JNDI-specific

attributes

are

required

because

the

SOAP/JMS

binding

does

not

provide

any

way

to

specify

a

ReplyTo

attribute

without

JNDI.

Though

JNDI

lookup

for

the

InputQueue

is

not

required,

JNDI-specific

properties

are

required

for

the

ReplyTo

queue.

If

the

WSDL

utility

does

not

find

JNDI-specific

properties,

the

utility

cannot

create

a

ReplyTo

attribute

in

the

SOAP/JMS

binding.

++++

JMSVendorURI

A

string

that

uniquely

identifies

the

JMS

implementation

and

that

corresponds

to

the

jmsVendorURI

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

wsdl:port

section

of

the

WSDL

document.

The

listener

does

not

use

this

property.

No

Figure

35

shows

the

properties

as

displayed

in

Connector

Configurator

Express.

98

Adapter

for

Web

Services

User

Guide

Note:

Make

sure

that

queue

names

specified

in

following

properties

are

unique:

v

InputQueue

v

InProgressQueue

v

ArchiveQueue

v

UnsubscribedQueue

v

ErrorQueue

ProxyServer:

Configure

the

values

under

this

property

when

the

network

uses

a

proxy

server.

This

is

a

hierarchical

property

and

has

no

value.

The

values

specified

under

this

property

are

used

by

the

SOAP/HTTP/HTTPS

protocol

handlers.

Figure

36

shows

the

ProxyServer

properties

as

displayed

in

Connector

Configurator

Express

and

discussed

below.

Figure

35.

SOAP/JMS

protocol

listener

properties

Chapter

4.

Web

services

connector

99

HttpProxyHost:

The

host

name

for

the

HTTP

proxy

server.

Specify

this

property

if

the

network

uses

a

proxy

server

for

HTTP

protocol.

Default

=

none

HttpProxyPort:

The

port

number

that

the

connector

uses

to

connect

to

the

HTTP

proxy

server.

Default

=

80

HttpNonProxyHosts:

The

value

of

this

property

gives

one

or

more

hosts

(for

HTTP)

that

must

be

connected

not

through

the

proxy

server

but

directly.

The

value

can

be

a

list

of

hosts,

each

separated

by

a

″|″.

Default

=

none

HttpsProxyHost:

The

host

name

for

the

HTTPS

proxy

server.

Default

=

none

HttpsProxyPort:

The

port

number

that

the

connector

uses

to

connect

to

the

HTTPS

proxy

server.

Figure

36.

ProxyServer

properties

100

Adapter

for

Web

Services

User

Guide

Default

=

443

HttpsNonProxyHosts:

The

value

of

this

property

gives

one

or

more

hosts

(for

HTTPS)

that

must

be

connected

not

through

the

proxy

server

but

directly.

The

value

can

be

a

list

of

hosts,

each

separated

by

a

″|″.

Default

=

none

SocksProxyHost:

The

host

name

for

the

Socks

Proxy

server.

Specify

this

property

when

the

network

uses

a

socks

proxy.

Note:

The

underlying

JDK

must

support

socks.

Default

=

none

SocksProxyPort:

The

port

number

to

connect

to

the

Socks

Proxy

server.

Specify

this

property

when

the

network

uses

a

socks

proxy.

Default

=

none

HttpProxyUsername:

The

username

for

the

HTTP

proxy

server.

If

the

destination

for

the

web

service

request

is

an

HTTP

URL

and

you

specify

ProxyServer

->HttpProxyUsername,

the

SOAP

HTTP/HTTPS

protocol

handler

creates

a

Proxy-Authorization

header

when

authenticating

with

the

proxy.

The

handler

uses

the

CONNECT

method

for

authentication.

The

proxy-authentication

header

is

base64

encoded

and

has

the

following

structure:
Proxy-Authorization:

Basic

Base64EncodedString

The

handler

concatenates

the

username

and

the

password

property

values,

separated

by

a

colon

(:),

to

create

the

base64

encoded

string.

Default

=

none

HttpProxyPassword:

The

password

for

the

HTTP

proxy

server.

For

more

on

how

this

value

is

used,

see

“HttpProxyUsername.”

Default

=

none

HttpsProxyUsername:

The

username

for

the

HTTPS

proxy

server.

If

the

destination

for

the

web

service

request

is

an

HTTPS

URL

and

you

specify

ProxyServer

->HttpsProxyUsername,

the

SOAP

HTTP/HTTPS

protocol

handler

creates

a

Proxy-Authorization

header

for

authentication

with

the

proxy.

The

handler

concatenates

the

HttpsProxyUsername

and

HttpsProxyPassword

configuration

property

values,

separated

by

colon

(:),

to

create

the

base64

encoded

string.

Default

=

none

HttpsProxyPassword:

The

password

for

the

HTTPS

proxy

server.

For

more

on

how

this

value

is

used,

see

“HttpsProxyUsername.”

Default

=

none

Chapter

4.

Web

services

connector

101

SSL:

Specify

values

under

this

property

to

configure

SSL

for

the

connector.

This

is

a

hierarchical

property

and

has

no

value.

Figure

37

shows

the

SSL

properties

as

displayed

in

Connector

Configurator

Express

and

discussed

below.

SSLVersion:

The

SSL

version

to

be

used

by

the

connector.

For

further

information,

see

IBM

JSSE

documentation

for

the

supported

SSL

versions.

Default

=

SSL

SSLDebug:

If

value

of

this

property

is

set

to

true,

the

connector

sets

the

value

of

thejavax.net.debug

system

property

to

true.

IBM

JSSE

uses

this

property

to

turn

on

the

trace

facility.

For

further

information,

refer

to

IBM

JSSE

documentation.

Default

=

false

KeyStoreType:

The

value

of

this

property

gives

the

type

of

the

KeyStore

and

TrustStore.

For

further

information,

see

IBM

JSSE

documentation

for

valid

keystore

types.

Default

=

JKS

KeyStore:

This

property

gives

the

complete

path

to

keystore

file.

If

KeyStore

and/or

KeyStoreAlias

properties

are

not

specified,

KeyStorePassword,

KeyStoreAlias,

TrustStore,

TrustStorePassword

properties

are

ignored.

The

connector

will

fail

to

startup

if

it

cannot

load

the

keystore

using

the

path

specified

in

this

property.

The

path

must

be

the

complete

path

to

the

keystore

file.

Default

=

None

Figure

37.

SSL

properties

102

Adapter

for

Web

Services

User

Guide

KeyStorePassword:

This

property

gives

the

password

for

the

private

key

in

the

Keystore.

Default

=

None

KeyStoreAlias:

This

property

gives

the

alias

for

the

key

pair

in

the

KeyStore.

SOAP/HTTPS

listeners

use

this

private

key

from

the

KeyStore.

Also,

the

SOAP/HTTP-HTTPS

protocol

handler

uses

this

alias

from

the

KeyStore

when

invoking

web

services

that

require

client

authentication.

The

property

must

be

set

to

a

valid

JSSE

alias.

Default

=

None

TrustStore:

This

property

gives

the

complete

path

to

the

TrustStore.

TrustStore

is

used

for

storing

the

certificates

that

are

trusted

by

the

connector.

TrustStore

must

be

of

the

same

type

as

KeyStore.

You

must

specify

the

complete

path

to

the

TrustStore

file.

Default

=

None

TrustStorePassword:

This

property

gives

the

password

for

the

Truststore.

Default

=

None

UseClientAuth:

This

property

specifies

whether

SSL

client

authentication

is

used.

When

it

is

set

to

true,

SOAP/HTTPS

listeners

use

client

authentication.

Default

=

false

WSCollaborations:

This

property

is

created

automatically

when

you

expose

a

collaboration

object

as

a

web

services

and

is

used

for

non-TLOs.

This

is

a

hierarchical

property

and

has

no

value.

Each

first-level

child

of

this

property

represents

a

collaboration

exposed

as

a

web

service.

For

information

on

the

tools

used

to

automatically

create

these

properties,

see

Chapter

7,

“Exposing

collaborations

as

web

services,”

on

page

145.

Note:

If

you

delete

a

collaboration

or

its

port

in

System

Manager,

the

connector

will

not

automatically

delete

the

properties

representing

the

collaboration.

You

must

delete

these

properties

using

Connector

Configurator

Express.

Figure

38

shows

WSCollaborations

properties

as

displayed

in

Connector

Configurator

Express

and

discussed

below.

Chapter

4.

Web

services

connector

103

Collaboration1:

This

property

names

the

collaboration

object

that

is

exposed

as

web

service

via

this

connector.

This

is

a

hierarchical

property

and

has

no

value.

There

can

be

multiple

such

properties,

one

for

each

of

collaboration

object

that

is

exposed

as

a

web

service.

Each

first-level

child

of

this

property

represents

a

port

of

this

collaboration

object.

CollaborationPort1:

This

property

names

the

collaboration

port.

This

is

a

hierarchical

property

and

has

no

value.

There

can

be

multiple

such

properties,

one

for

each

of

the

ports

of

this

collaboration

that

are

bound

to

the

connector.

Each

first-

level

child

of

this

property

represents

a

web

services

operation.

WebServiceOperation1:

This

property

represents

a

web

services

operation

for

the

collaboration

object.

This

is

a

hierarchical

property

and

has

no

value.

There

may

be

one

or

more

such

properties,

one

for

each

of

the

web

services

operation

defined

by

the

user

at

the

time

of

WSDL

document

generation.

BodyName:

This

property

gives

the

name

of

the

web

service

method

and

must

be

a

valid

XML

element

name.

Default

=

none

BodyNS:

This

property

gives

the

namespace

of

the

web

service

method

and

must

be

a

valid

XML

namespace.

Default

=

none

BOName:

This

property

gives

the

name

of

the

Request

business

object

for

this

operation.

Default

=

none

Mode:

This

property

specifies

the

processing

mode

for

the

operation.

It

it

is

set

to

synch,

the

connector

synchronously

invokes

the

collaboration.

Otherwise

and

by

default,

the

connector

asynchronously

invokes

the

collaboration

as

a

request

only

operation.

Figure

38.

WSCollaborations

properties

104

Adapter

for

Web

Services

User

Guide

Default

=

asynch

JNDI:

The

connector

maintains

one

set

of

JNDI

(Java

Naming

and

Directory

Interface)

provider

properties

that

are

used

by

the

SOAP/JMS

protocol

handler

and

JMS

protocol

listener

when

connecting

to

JNDI.

This

is

a

hierarchical

property

and

has

no

value.

The

connector

uses

JNDI

to

lookup

the

JMS

connection

factory

object.

Note

that

the

WSDL

Configuration

Wizard

uses

this

property

when

generating

SOAP/JMS

bindings.

Figure

39

shows

JNDI

properties

as

displayed

in

Connector

Configurator

Express

and

discussed

below.

LookupQueuesUsingJNDI:

If

the

value

of

this

property

is

set

to

true,

the

connector’s

SOAP/JMS

listeners

and

SOAP/JMS

protocol

handler

will

look

up

queues

using

JNDI.

Default

=

false

JNDIProviderURL:

This

property

gives

the

URL

of

the

JNDI

service

provider,

which

corresponds

to

jndiProviderURL

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

the

wsdl:port

section.

This

is

used

as

the

default

JNDI

provider

and

must

be

a

valid

JNDI

URL.

For

further

information,

see

JNDI

specifications.

Default

=

none

Figure

39.

JNDI

properties

Chapter

4.

Web

services

connector

105

InitialContextFactory:

This

property

gives

the

fully

qualified

class

name

of

the

factory

class

(for

example,

com.ibm.NamingFactory)that

creates

an

initial

context.

Note

that

this

corresponds

to

the

initialContextFactory

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

the

wsdl:port

section.

Default

=

none

JNDIConnectionFactoryName:

This

property

gives

the

name

of

the

connection

factory

to

look

up

using

JNDI

context.

Note

that

this

corresponds

to

the

jndiConnectionFactoryName

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

the

wsdl:port

section.

Default

=

none

CTX_ObjectFactories:

Properties

specifying

additional

information

about

security

and

object

lookup

in

the

JNDI

context.

Table

43

summarizes

these

properties.

The

+

character

indicates

the

entry’s

position

in

the

property

hierarchy.

Table

43.

Java

Naming

and

Directory

Interface

(JNDI)

provider

properties

Property

Name

Description

+CTX_StateFactories

+CTX_URLPackagePrefixes

+CTX_DNS_URL

+CTX_Authoritative

+CTX_Batchsize

+CTX_Referral

+CTX_SecurityProtocol

+CTX_SecutiryAuthentication

+CTX_SecurityPrincipal

+CTX_SecurityCredentials

+CTX_Language

Properties

specifying

additional

information

about

security

and

object

lookup

in

the

JNDI

context.

See

J2EE

documentation

for

more

information.

These

properties

reflect

those

used

by

the

Adapter

for

JMS.

Creating

multiple

protocol

listeners

You

can

create

multiple

instances

of

protocol

listeners.

Protocol

listeners

are

configured

as

child

properties

of

the

ProtocolListenerFramework

->

ProtocolListeners

connector

property.

Each

child

(of

ProtocolListenerFramework

->

ProtocolListeners)

identifies

a

distinct

protocol

listener

for

the

connector.

Accordingly,

you

can

create

additional

protocol

listeners

by

configuring

new

child

properties

under

the

ProtocolListeners

property.

Make

sure

that

you

specify

all

of

the

child

properties

of

the

newly

created

listener

property.

Each

listener

must

be

uniquely

named.

However,

you

do

not

change

the

listener

Protocol

property

(soap/http,

soap/https,

or

soap/jms),

which

remains

the

same

for

multiple

instances

of

a

listener.

Note:

The

Protocol

property

is

very

important

because

it

serves

as

a

switch.

If

you

do

not

want

to

use

a

listener

or

a

handler,

leave

this

property

empty.

If

you

are

creating

multiple

instances

of

a

SOAP/HTTP

or

SOAP/HTTPS

listener,

be

sure

to

specify

different

Port

and

Host

properties

for

each

instance.

If

you

are

specifying

multiple

SOAP/JMS

listeners,

be

sure

to

use

a

different

set

of

queues

for

each

instance.

You

cannot

create

multiple

instances

of

a

handler.

There

can

be

only

one

handler

for

each

protocol.

106

Adapter

for

Web

Services

User

Guide

Connector

at

startup

When

you

start

the

connector,

the

init()

method

reads

the

configuration

properties

that

were

set

using

System

Manager’s

Connector

Configurator

Express.

For

proper

functioning,

be

sure

not

to

disable

connector

polling

(connector

polling

is

enabled

by

default).

The

sections

below

describe

what

occurs.

Proxy

setup

If

you

specify

the

ProxyServer

connector-specific

property,

the

connector

sets

up

the

proxy

system

properties.

A

proxy

server

is

used

with

the

SOAP/HTTP-HTTPS

protocol

handler

for

request

processing

only.

The

connector

also

traces

each

of

the

system

properties

it

sets

up.

For

more

on

the

ProxyServer

property,

see

“Connector-specific

configuration

properties”

on

page

89.

JNDI

initialization

The

connector-specific

property

JNDI

specifies

the

JNDI

to

be

used

by

the

connector.

The

connector

uses

JNDI

to

lookup

the

JMS

Connection

Factory

object.

If

JNDI

”

LookupQueuesUsingJNDI

is

set

to

true,

the

connector

looks

up

JMS

queue

objects

using

JNDI.

If

you

do

not

want

to

use

SOAP/JMS

(the

SOAP/JMS

protocol

listener

and

SOAP/JMS

protocol

handler),

you

need

not

specify

JNDI

properties.

If

you

specify

JNDI

properties

and

the

connector

cannot

initialize

JNDI,

the

connector

terminates.

Note

that

the

connector

will

not

initialize

JNDI

unless

all

of

the

following

connector-specific

JNDI

properties

are

specified:

v

JNDIProviderURL

v

InitialContextFactory

v

JNDIConnectionFactoryName

Note:

JNDI

implementation

is

not

provided

with

the

connector

Protocol

listener

framework

initialization

During

startup

the

connector

instantiates

the

protocol

listener

framework

and

initializes

it.

This

framework

reads

the

connector-specific

property

ProtocolListenerFramework,

The

connector

then

reads

the

value

of

WorkerThreads

and

RequestPoolSize

connector

properties.

If

the

ProtocolListenerFramework

property

is

unspecified

or

missing,

the

connector

cannot

receive

requests

from

web

service

clients

and

logs

a

warning.

The

connector

next

reads

the

ProtocolListenerFramework

->

ProtocolListeners

property.

All

the

first-level

properties

of

the

ProtocolListeners

property

represent

protocol

listeners.

The

protocol

listener

framework

attempts

to

load

and

initialize

each

of

the

listeners

and

traces

them.

If

persistent

event

capable,

the

listener

attempts

an

event

recovery.

Protocol

handler

framework

initialization

The

connector

reads

the

connector-specific

property

ProtocolHandlerFramework

and

instantiates

and

initializes

the

protocol

handler

framework.

If

this

property

is

missing

or

not

set

properly,

the

connector

cannot

perform

request

processing

and

logs

a

warning.

Next

the

connector

reads

all

the

ProtocolHandlerFramework

”

ProtocolHandlers

properties,

which

correspond

to

protocol

handlers,

and

attempts

to

load,

initialize,

and

trace

them.

Note

that

the

protocol

handlers

are

loaded

Chapter

4.

Web

services

connector

107

during

connector

initialization

and

are

not

instantiated

when

a

collaboration

makes

a

service

request.

The

protocol

handlers

are

multi-thread

safe.

Logging

The

connector

logs

a

warning

when:

v

the

ProtocolListenerFramework

property

is

not

specified.

The

connector

warns

that

it

cannot

perform

event

notification.

(Collaborations

exposed

as

web

services

cannot

be

invoked

by

the

connector.)

v

the

ProtocolHandlerFramework

property

is

not

specified.

The

connector

warns

that

it

cannot

perform

(collaboration)

request

processing.

Tracing

Tracing

is

an

optional

debugging

feature

you

can

turn

on

to

closely

follow

connector

behavior.

Trace

messages,

by

default,

are

written

to

STDOUT.

See

the

connector

configuration

properties

for

more

on

configuring

trace

messages.

Connector

trace

levels

are

as

follows:

Level

0

This

level

is

used

for

trace

messages

that

identify

the

connector

version.

Level

1

Trace

each

time

the

pollForEvents

method

is

called.

Trace

the

TLO

name

created

by

listeners

for

delivery

to

InterChange

Server

Express.

Trace

the

Request

business

object

name

and

the

corresponding

attribute

name

in

the

TLO.

Level

2

Use

this

level

for

trace

messages

that

log

each

time

a

business

object

is

posted

to

InterChange

Server

Express,

either

from

gotApplEvent()

or

executeCollaboration().

Also,

trace

which

protocol

handler

is

processing

the

request.

Level

3

Trace

the

ASI

of

the

business

object

being

processed.

Trace

attributes

of

the

business

object

being

processed.

Trace

the

TLO

of

the

SOAP

Request

business

object

during

event

notification.

Trace

the

business

object

returned

by

the

data

handler.

Level

4

Trace

the

transport

headers

associated

with:

v

a

SOAP

request

message

retrieved

by

the

protocol

listener

from

the

transport

v

a

response

message

sent

to

the

client

by

the

protocol

listener.

Trace

the

spawning

of

threads,

all

ASI

that

is

processed,

and

all

entries

and

exits

of

important

functions.

Level

5

Trace

the

following:

v

the

entries

and

exits

for

each

important

method

v

all

of

the

configuration-specific

properties

v

the

loading

of

each

of

the

protocol

listeners

v

the

request

message

retrieved

by

the

protocol

listener

from

the

transport

v

the

response

message

sent

on

the

transport

to

the

client

by

the

protocol

listener

v

the

loading

of

each

protocol

handler

v

the

messages

returned

by

the

SOAP

data

handler

108

Adapter

for

Web

Services

User

Guide

v

business

object

dumps

of

the

TLO

sent

to

the

collaboration

v

dumps

of

the

business

objects

returned

by

the

data

handler.

Chapter

4.

Web

services

connector

109

110

Adapter

for

Web

Services

User

Guide

Chapter

5.

SOAP

data

handler

v

“Configuring

the

SOAP

data

handler”

v

“SOAP

data

handler

processing”

on

page

117

v

“SOAP

style

and

use

guidelines”

on

page

140

v

“XML

limitations”

on

page

142

The

SOAP

data

handler

is

a

data-conversion

module

whose

primary

roles

are

to

convert

business

objects

into

SOAP

messages

and

SOAP

messages

into

business

objects.

The

SOAP

data

handler

performs

the

following

functions:

v

Request

Processing

–

SOAP

request

business

object

to

SOAP

request

message

–

SOAP

response

message

to

SOAP

response

business

object

–

SOAP

fault

message

to

SOAP

fault

business

object
v

Event

Processing

–

SOAP

request

message

to

SOAP

request

business

object

–

SOAP

response

business

object

to

SOAP

response

message

–

SOAP

fault

business

object

to

SOAP

fault

message

This

chapter

describes

how

to

configure

the

SOAP

data

handler,

how

the

SOAP

data

handler

processes

messages

and

objects,

and

how

to

customize

the

data

handler.

Configuring

the

SOAP

data

handler

The

SOAP

data

handler

is

a

pivotal

component

in

the

connector

for

web

services.

The

connector

calls

the

SOAP

data

handler

to

transform

business

objects

into

web

services-compliant

SOAP

messages.

When

collaborations

are

exposed

as

web

services,

the

connector

also

calls

the

SOAP

data

handler.

The

data

handler

then

transforms

SOAP

messages

sent

from

a

remote

trading

partner

(or

internal

client)

into

business

objects.

The

connector

passes

the

business

objects

to

collaborations

that

have

been

configured

for

web

services.

The

information

in

data

handler

meta-objects

plays

a

crucial

role

in

these

transformations.

You

configure

this

information

after

you

install

the

product

files,

but

before

startup.

Unless

you

are

adding

a

custom

name

handler,

you

can

use

the

default

SOAP

data

handler

configuration

to

save

time.

You

must,

however,

configure

specific

meta-object

information

for

each

data

handler

transformation.

Data

handler

meta-objects

are

discussed

in

the

sections

below.

Meta-object

requirements

Meta-objects

are

business

objects

that

contain

configuration

information.

The

connector

uses

meta-objects

at

run

time

to

configure

the

data

handler

and

create

instances

of

it.

The

SOAP

data

handler

also

uses

meta-objects

to

locate

the

body

of

a

SOAP

message,

to

determine

the

business

object

and

verb

that

the

body

corresponds

to,

to

encode

a

business

object

in

a

SOAP

message,

and

to

perform

a

number

of

other

tasks

discussed

in

this

chapter.

This

section

describes

requirements

for

these

meta-objects.

©

Copyright

IBM

Corp.

2004

111

Meta-object

hierarchy

and

terminology

Figure

28

shows

the

meta-object

structure

for

the

adapter

for

web

services

product.

The

meta-objects

are

named

in

bold

in

the

illustration

and

discussed

below.

The

following

terminology

is

used

throughout

this

document

when

discussing

meta-objects:

v

MO_DataHandler_Default

Data

handler

meta-object

used

by

the

connector

agent

to

determine

which

data

handler

to

instantiate.

This

is

specified

in

the

DataHandlerMetaObjectName

property

of

the

connector.

v

MO_DataHandler_DefaultSOAPConfig

Child

data

handler

meta-object

specifically

for

the

SOAP

data

handler.

v

SOAP

Configuration

Meta-Object

(SOAP

Config

MO)

A

meta-object

specified

as

child

of

each

SOAP

business

object

and

that

contains

the

configuration

information

for

a

single

transformation

from

business

object

to

SOAP

message

or

vice-versa.

MO_DataHandler_Default

The

MO_DataHandler_Default

is

the

top-level

meta-object

for

all

data

handlers

that

are

called

from

connectors.

The

MIME

type

contained

in

these

meta-objects

determines

which

data

handler

to

use.

The

connector

agent

uses

this

meta-object

to

create

instances

of

the

SOAP

data

handler.

Accordingly,

the

MO_DataHandler_Default

object

must

include

an

attribute

named

xml_soap

that

is

of

type

MO_DataHandler_DefaultSOAPConfig.

You

can

configure

the

MO_DataHandler_Default

object

after

installing

it.

You

must

add

xml_soap

of

type

MO_DataHandler_DefaultSOAPConfig.

MO_DataHandler_DefaultSOAPConfig

The

connector

agent

uses

this

meta-object

to

create

and

configure

the

SOAP

data

handler

at

run

time.

The

MO_DataHandler_DefaultSOAPConfig

has

two

attributes

of

type

string

that

designate:

v

The

class

name

for

the

SOAP

data

handler

v

The

SOAP

name

handler

These

attributes

are

shown

in

Table

44.

Unless

you

wish

to

implement

a

custom

name

handler,

which

is

discussed

later

in

this

chapter,

you

can

use

the

MO_DataHandler_DefaultSOAPConfig

as

delivered

and

installed.

No

configuration

is

needed.

MO_DataHandler_Default

ClassName

SOAPNameHandler

MO_DataHandler_DefaultSOAPConfig

Figure

40.

Meta-object

structure

112

Adapter

for

Web

Services

User

Guide

Table

44.

Meta-object

attributes

for

MO_DataHandler_DefaultSOAPConfig

Name

Type

Default

value

Description

ClassName

String

com.ibm.adapters

.dataHandlers.xml.

soap

Standard

attribute

used

by

the

data

handler

base

class

to

find

the

class

name

based

on

a

MIME

type

passed

into

the

createHandler

method.

SOAPName

Handler

String

Name

of

the

SOAP

name

handler

to

use.

SOAP

configuration

meta-object:

child

of

every

SOAP

business

object

A

SOAP

Config

MO

defines

the

data

formatting

behavior

for

one

data

handler

transformation

—

either

a

SOAP-message-to-business-object

or

business-object-to-SOAP-message

transformation.

A

SOAP

Config

MO

is

a

child

of

a

SOAP

business

object.

These

child

SOAP

Config

MOs

are

critical

for

default

business

object

resolution.

When

using

default

business

object

resolution,

all

child

SOAP

Config

MOs,

whether

for

a

request,

response,

or

fault

object,

must

have

unique

entries

for

default

values

of

BodyName

and

BodyNS.

Table

45

shows

these

and

other

attributes

of

a

SOAP

Config

MO.

Table

45.

Attributes

for

SOAP

Config

MOs

Name

Required

Description

BodyNS

Yes

Namespace

to

be

used

for

SOAP

body.

BodyName

Yes

Name

of

the

body

of

the

SOAP

message.

For

SOAP

fault,

set

the

default

value

to

soap:fault.

BOVerb

Yes

Verb

of

the

business

object

that

contains

the

SOAP

Config

MO.

TypeInfo

No

True

or

false

attribute

that

dictates

whether

type

information

(xsi:type)

is

written

to

and

read

from

a

SOAP

element.

Default

=

false

TypeCheck

No

This

property

is

read

only

if

TypeInfo

is

set

to

true.

Possible

values

are

none

and

strict.

If

none,

type

validation

is

skipped

when

reading

SOAP

messages

into

this

business

object.

If

strict,

the

data

handler

will

strictly

validate

all

SOAP

type

names

and

namespaces

against

the

business

object’s

application-specific

information.

Default

=

none

Style

No

This

property

dictates

the

SOAP

message

style

and

has

implications

for

other

attributes

such

as

BodyName

and

BodyNS.

The

possible

values

for

this

attribute

are

rpc

and

document.

Default

=

rpc

Use

No

This

property

dictates

the

SOAP

message’s

use

and

affects

how

the

SOAP

body

is

constructed

from

a

business

object.

The

possible

values

are

literal

and

encoded.

The

default

is

literal.

Figure

41

shows

the

relationship

between

a

SOAP

business

object

and

a

SOAP

Config

MO.

Chapter

5.

SOAP

data

handler

113

Figure

41

shows

a

SOAP

response

business

object

and

its

child

business

object.

The

child

business

object,

SOAPCfgMO,

is

a

SOAP

Config

MO

that

specifies

the

behavior

for

the

SOAP

data

handler

for

a

transformation

from

a

business

object

response

to

a

SOAP

response

message.

The

attribute

indicating

the

child

SOAP

Config

MO

must

use

the

name-value

pair

beginning

cw_mo_soap.

By

convention,

when

reading

business

object

level

application-specific

information

beginning

with

cw_mo_,

the

data

handler

recognizes

that

the

child

object

specified

in

the

name-value

pair

contains

transformation

meta-object

information

and

therefore

does

not

include

this

child

as

content

in

the

body

of

the

message

it

is

transforming.

In

the

example,

the

child

objects

indicated

by

the

name-value

pairs

cw_mo_jms

and

cw_mo_soap

are

recognized

as

meta-objects

and

not

written

into

the

SOAP

response

message.

In

addition,

the

SOAP

data

handler

ignores

all

business

object

level

application-specific

information

beginning

with

cw_mo_

except

for

cw_mo_soap.

Accordingly,

the

SOAP

data

handler

ignores

the

application-specific

information

such

as

cw_mo_tpi.

But

the

SOAP

data

handler

reads

and

uses

the

SOAP

Config

MO

specified

in

cw_mo_soap

to

execute

the

SOAP

response

transformation

from

business

object

to

SOAP

message.

All

SOAP

business

objects

must

have

child

SOAP

Config

MOs

and

these

must

be

specified

as

application-specific

information

at

the

business

object

level.

Much

of

this

is

automated:

when

you

use

the

WSDL

ODA

to

generate

business

objects

for

SOAP

messages,

the

SOAP

Config

MOs

are

automatically

generated

for

you.

Style

and

Use

impact

on

SOAP

messages

The

SOAP

Config

MO

optional

properties,

Style

and

Use,

affect

the

way

that

SOAP

messages

are

created.

The

possible

values

for

Style

are

rpc

and

document,

and

for

Figure

41.

SOAP

configuration

meta-object

114

Adapter

for

Web

Services

User

Guide

Use

are

literal

and

encoded.

The

sections

below

discuss

how

the

Style

and

Use

combinations

impact

SOAP

message

creation.

rpc/literal:

When

the

Style

property

is

set

to

rpc

and

the

Use

property

to

literal,

the

Body

Name

and

Body

Namespace

for

a

SOAP

Message

are

read

from

the

SOAP

ConfigMO’s

BodyName

and

BodyNS

properties,

respectively.

The

following

is

an

example

of

an

rpc/literal

style

message

where

the

Body

Name

and

Body

Namespace

have

been

resolved

to

getOrderStatus

and

OrderStatusNS

respectively:

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=îhttp://schemas.xmlsoap.org/soap/envelope/ì

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:getOrderStatus

xmlns:ns1="http://www.ibm.com/">

<Part1>

<ns2:Elem1

xmlns:ns2="http://www.ibm.com/elem1">

<Child1>1</Child1>

<Child2>2</Child2>

</ns2:Elem1>

<ns3:Elem1

xmlns:ns3="http://www.ibm.com/elem1">

<Child1>3</Child1>

<Child2>4</Child2>

</ns2:Elem1>

<Elem2>10</Elem2>

</Part1>

</ns1:getOrderStatus>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure

42

shows

the

corresponding

business

object

for

this

rpc/literal

message.

Note:

You

must

configure

these

properties

and

business

object

attributes

appropriately

so

that

a

corresponding

SOAP

message

is

created.

rpc/encoded:

When

the

Style

property

is

set

to

rpc

and

Use

is

set

to

encoded,

the

Body

Name

and

Body

Namespace

for

a

SOAP

Message

are

read

from

the

Child

Figure

42.

rpc/literal

SOAP

Config

MO

Chapter

5.

SOAP

data

handler

115

ConfigMO’s

BodyName

and

BodyNS

properties

respectively.

Also,

the

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

attribute

is

added

to

the

Body

tag.

The

following

is

an

example

of

an

rpc/encoded

message

where

the

Body

Name

and

Body

Namespace

have

been

resolved

to

getOrderStatus

and

OrderStatusNS

respectively.

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body

SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<ns1:getOrderStatus

xmlns:ns1="http://www.ibm.com/">

<Part1

xsi:type="ns1:SOAP_Part1Type">

<ns2:Elem1

SOAP-ENC:arrayType="ns2:SOAP_MaxType[2]"

xsi:type="SOAP-ENC:Array"

xmlns:ns2="http://www.ibm.com/elem1">

<item>

<Child1

xsi:type="xsd:string">1</Child1>

<Child2

xsi:type="xsd:string">2</Child2>

</item>

<item>

<Child1

xsi:type="xsd:string">3</Child1>

<Child2

xsi:type="xsd:string">4</Child2>

</item>

</ns2:Elem1>

<Elem2

xsi:type="xsd:string">10</Elem2>

</Part1>

</ns1:getOrderStatus>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure

43

shows

the

corresponding

business

object

for

this

rpc/encoded

message.

document/literal:

When

the

Style

property

is

set

to

document

and

the

Use

property

is

set

to

literal,

an

all

encompassing

Body

Name

tag

will

not

exist.

This

is

an

example

of

a

document

style

SOAP

message

based

on

the

above

BO:

<?xml

version=’1.0’

encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

Figure

43.

rpc/encoded

SOAP

Config

MO

116

Adapter

for

Web

Services

User

Guide

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:Elem1

xmlns:ns1="http://www.ibm.com/elem1">

<Child1>1</Child1>

<Child2>2</Child2>

</ns1:Elem1>

<ns2:Elem1

xmlns:ns2="http://www.ibm.com/elem1">

<Child1>3</Child1>

<Child2>4</Child2>

</ns2:Elem1>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure

44

shows

the

corresponding

business

object

for

this

document/literal

message.

Note

that

the

encodingStyle

attribute

in

the

XML

code

fragment

has

not

been

set.

document/encoded:

This

Style/Use

combination

is

not

supported.

The

data

handler

fails

if

it

encounters

a

SOAP

ConfigMO

with

Style

set

to

document

and

Use

set

to

encoded.

SOAP

data

handler

processing

The

SOAP

data

handler

performs

transformations

between

SOAP

messages

and

business

objects

in

the

following

ways:

v

SOAP

message

to

business

object

processing

–

Request-message-to-SOAP-request-business-object

data

handling

occurs

at

that

stage

in

event

processing

when

web

service

clients

make

calls

to

collaborations

exposed

as

web

services

–

Response-message-to-SOAP-response-business-object

data

handling

occurs

during

request

processing

when

a

web

service

returns

a

SOAP

response

message

to

a

collaboration

that

had

invoked

it.

Alternatively,

fault-message-to-SOAP-business-object

data

handling

may

occur

at

this

phase.

For

a

detailed

description

of

this

processing,

see

“SOAP-body-message-to-
business-object

processing”

on

page

118

later

in

this

section.

v

Business

object

to

SOAP

message

processing

–

Business-object-to-SOAP-response-message

data

handling

occurs

during

event

processing

when

a

response

business

object

is

returned

by

the

collaboration

Figure

44.

document/literal

SOAP

Config

MO

Chapter

5.

SOAP

data

handler

117

that

is

exposed

as

a

web

service.

Alternatively,

fault

business

object-to-SOAP-fault-message

data

handling

may

occur

at

this

phase.

–

Business-object-to-SOAP-request-message

data

handling

occurs

at

that

phase

of

request

processing

when

a

collaboration

makes

a

service

call

to

the

connector

to

convert

a

business

object

to

a

SOAP

request

message.

For

a

detailed

description

of

this

processing,

see

“Business-object-to-SOAP-
message-body

processing”

on

page

120

later

in

this

section.

SOAP-body-message-to-business-object

processing

This

section

provides

a

step-by-step

description

of

the

SOAP-body-message-to-
business-object

transformation.

1.

The

SOAP

data

handler

receives

a

SOAP

message.

2.

Using

Apache

SOAP

APIs,

the

data

handler

parses

the

SOAP

message.

3.

The

data

handler

extracts

the

components

of

the

SOAP

message:

envelope,

header,

and

body.

4.

Header

processing

For

more,

see

“SOAP-header-message-to-business-object

processing”

on

page

119.

5.

Body

processing

The

data

handler

reads

the

first

element

of

the

SOAP

body

to

determine

if

it

carries

a

fault

or

data.

If

the

body

content

is

not

a

fault,

the

data

handler

does

the

following:

a.

Performs

business

object

resolution

to

determine

which

business

object

will

be

used

in

the

transformation.

If

you

have

configured

a

custom

name

handler,

the

default

business

object

resolution

discussed

below

may

not

apply.

For

more

on

specifying

a

pluggable

name

handler,

see

“Specifying

a

pluggable

name

handler”

on

page

140.

b.

The

data

handler

also

resolves

the

SOAP

Config

MO

(a

child

of

the

SOAP

business

object

that

the

data

handler

is

creating)

that

will

be

used

for

the

transformation.

If

an

instance

of

the

SOAP

Config

MO

does

not

exist,

the

data

handler

creates

an

instance

and

reads

its

default

values.

From

the

ConfigMO

attribute

values,

the

data

handler

reads

the

business

object

verb.

The

data

handler

instantiates

the

SOAP

business

object

and

sets

the

verb

accordingly.

This

is

the

business

object

into

which

the

data

handler

will

attempt

to

write

the

SOAP

message.

c.

The

data

handler

continues

parsing

the

SOAP

message

one

element

at

a

time.

For

rpc,

the

data

handler

expects

the

first

element

to

be

the

parent.

d.

The

data

handler

expects

that

the

attributes

of

the

business

object

(or

its

application-specific

information:

for

further

information,

see

“ASI

in

business-object-to-SOAP-message

transformations”

on

page

125)

should

have

the

same

name

as

the

child

elements.

If

the

attribute

is

not

found

in

the

business

object,

the

data

handler

throws

an

exception.

Child

elements

may

be

of

simple

type

or

they

may

be

of

complex

type.

Complex

elements

are

those

which

have

child

elements.

e.

Simple

element

If

a

child

element

is

a

simple

element,

by

default,

the

data

handler

expects

a

business

object

attribute

with

the

same

name

(or

ASI)

as

that

of

a

simple

element.

The

data

handler

reads

the

value

of

the

simple

element

and

sets

it

in

the

business

object.

f.

Complex

element

If

a

child

element

is

of

complex

type,

the

data

handler

expects

the

business

object

to

have

an

attribute

with

the

same

name

(or

ASI)

and

of

type

child

business

object.

This

attribute

may

be

of

single

cardinality

or

of

multiple-cardinality

depending

on

if

there

will

be

a

complex

SOAP

element

or

SOAP

array.

Next

the

data

handler

instantiates

the

child

business

object

(by

default,

the

type

of

the

attribute

gives

the

name

of

the

child

118

Adapter

for

Web

Services

User

Guide

business

object)

and

reads

all

the

child

elements

of

this

complex

element,

setting

their

values

in

the

child

business

object.

The

data

handler

sets

this

child

business

object

into

the

parent

business

object

attribute

after

verifying

the

cardinality

of

this

attribute.

If

the

attribute

is

cardinality

n,

the

data

handler

appends

this

business

object

to

the

container.

The

complex

element

can

have

either

simple

or

complex

child

elements.

These

are

also

handled

in

the

same

way:

if

it

is

simple

element,

the

data

handler

sets

the

value

in

the

child

BO;

if

it

is

a

complex

element,

the

data

handler

instantiates

a

child

business

object.
6.

Fault

processing

The

data

handler

reads

the

name

of

the

first

element

of

the

SOAP

body

to

determine

if

it

is

a

fault.

If

the

name

of

the

first

element

is

Fault,

the

data

handler

concludes

that

this

is

a

fault

message.

Fault

business

object

resolution

occurs

to

determine

into

which

business

object

this

fault

message

should

be

transformed.

The

data

handler

then

follows

the

same

processing

as

that

for

body

processing.

The

data

handler

expects

that

the

business

object

specified

in

the

child

business

object

should

have

the

following

attributes:

a.

faultcode:

Required.

String

attribute

b.

faultstring:

Required.

String

attribute

c.

faultactor:

Not

required

String

attribute

d.

detail:

Not

required.

Child

BO
7.

If

fault

processing

fails

for

any

reason,

the

exception

thrown

will

contain

the

text

from

the

faultcode,

faultstring

and

faultactor

elements

in

the

SOAP

fault

message

Note:

According

to

SOAP

specifications

for

fault

messages,

faultcode,

faultstring,

and

faultactor

are

simple

elements

whereas

detail

is

a

complex

element

(an

element

with

child

elements).

In

addition,

faultcode,

faultstring,

faultactor,

and

detail

belong

to

the

SOAP

envelope

namespace,

whereas

detail

child

elements

may

belong

to

user-defined

namespaces.

SOAP-header-message-to-business-object

processing

This

section

describes

how

the

data

handler

converts

the

header

of

a

SOAP

message

into

a

business

object.

1.

The

SOAP

data

handler

processes

the

body

of

a

SOAP

message.

Body

processing

creates

a

SOAP

business

object.

2.

If

the

SOAP

message

has

a

SOAP

header

element,

the

SOAP

data

handler

expects

a

SOAP

header

attribute

in

the

business

object

obtained

from

body

processing.

The

SOAPHeader

attribute

is

the

child

attribute

of

a

business

object

and

has

soap_location=SOAPHeader

as

its

application-specific

information.

If

there

is

no

such

attribute,

the

SOAP

data

handler

throws

an

error.

The

SOAPHeader

attribute

must

be

of

type

SOAP

Header

Container

business

object.

The

SOAP

data

handler

creates

an

instance

of

this

attribute

in

the

SOAP

business

object

obtained

in

step

1.

3.

For

each

immediate

child

of

the

SOAP-Env:Header

element:

a.

The

data

handler

expects

a

child

attribute

in

the

SOAP

Header

Container

Business

Object.

The

name

of

this

attribute

must

be

the

same

as

that

of

the

header

element

and

conform

to

the

SOAP

Header

Child

business

object.

If

the

data

handler

cannot

find

such

an

attribute,

it

throws

an

error.

Additionally,

the

namespace

of

this

element

should

be

the

same

as

specified

in

the

elem_ns

application-specific

information

of

this

attribute.

If

it

is

not

the

same,

the

data

handler

throws

an

error.

Chapter

5.

SOAP

data

handler

119

b.

The

data

handler

creates

an

instance

of

the

SOAP

Header

Child

business

object

and

places

it

in

the

instance

of

SOAP

Header

Container

business

object

created

in

step

2.

c.

If

this

header

element

has

an

actor

attribute,

the

data

handler

expects

an

actor

attribute

to

exist

in

the

child

business

object

created

above.

If

it

cannot

find

an

actor

attribute,

the

data

handler

throws

an

error.

Note:

If

you

want

to

add

an

actor

attribute,

see

“Specifying

SOAP

attributes”

on

page

128.

d.

If

this

header

element

has

a

mustUnderstand

attribute,

the

data

handler

expects

a

mustUnderstand

attribute

to

exist

in

the

child

business

object

created

above.

If

it

cannot

find

a

mustUnderstand

attribute,

the

data

handler

throws

an

error.

Note:

If

you

want

to

add

a

mustUnderstand

attribute,

see

“Specifying

SOAP

attributes”

on

page

128.

e.

For

each

child

element

of

this

header

element,

the

data

handler

expects

an

attribute

in

the

child

business

object

with

the

same

name.

These

elements

will

be

processed

in

same

way

as

the

child

elements

of

SOAP-Env:Body

element.

Business-object-to-SOAP-message-body

processing

The

following

is

a

step-by-step

description

of

the

business-object-to

SOAP-body-message

transformation.

For

special

cases

involving

application-specific-information,

see

“ASI

in

business-object-to-SOAP-message

transformations”

on

page

125

1.

The

SOAP

data

handler

looks

for

a

SOAP

ConfigMO

that

corresponds

to

the

SOAP

business

object

it

is

transforming.

2.

The

data

handler

composes

the

envelope

and

header

of

the

SOAP

message.

3.

The

data

handler

resolves

the

SOAP

ConfigMO.

If

an

instance

of

the

SOAP

ConfigMO

does

not

exist,

the

data

handler

will

create

an

instance

and

read

from

the

default

values.

By

default,

the

data

handler

reads

the

value

of

the

BodyName

attribute

in

the

SOAP

ConfigMO

to

determine

whether

it

is

processing

a

fault

business

object.

If

it

is

set

to

soap:fault

the

business

object

is

considered

a

SOAP

fault

business

object.

If

it

is

not

a

fault

business

object,

the

data

handler

performs

the

processing

described

under

composing

body

below,

else

that

described

under

composing

fault.

4.

Composing

body

The

following

steps

detail

the

processing

performed

by

the

data

handler

to

compose

the

body

of

the

SOAP

message

from

a

business

object:

v

The

data

handler

obtains

the

BodyName

and

BodyNS

from

the

SOAP

ConfigMO

attributes

and

then

composes

the

first

(parent)

element

of

the

body

of

the

SOAP

message.

The

name

of

first

element

is,

by

default,

the

value

for

the

BodyName.

In

this

document,

it

is

also

referred

to

as

the

body

element.

The

namespace

of

the

body

element

is,

by

default,

the

value

determined

for

BodyNS.

If

the

Style

attribute

of

the

SOAP

ConfigMO

is

set

to

document,

this

step

(creating

the

first

body

element)

is

skipped.

v

The

data

handler

then

reads

the

attributes

of

the

business

object

and

processes

them

by

type.

The

processing

for

each

type

of

attribute

is

described

below.

–

Simple

attributes

If

the

attribute

is

of

type

simple,

the

data

handler

creates

a

child

element

from

the

body

element,

with

the

same

name

as

the

120

Adapter

for

Web

Services

User

Guide

attribute

(unless

otherwise

specified

by

special

application-specific

information).

The

data

handler

sets

the

value

of

this

element

to

the

value

of

the

attribute

in

the

business

object.

–

Cardinality

1

child

business

object

attributes

If

the

attribute

is

a

single

cardinality

child

business

object,

the

data

handler

creates

a

child

element

of

the

body

element.

This

is

referred

to

as

a

child

business

object

element.

The

name

of

the

child

element

created

is

the

same

as

that

of

the

attribute

(unless

otherwise

specified

by

special

ASI

properties).

The

data

handler

then

traverses

the

attributes

of

the

child

business

object,

creating

the

child

elements

for

the

attributes

in

the

same

way

it

processes

the

attributes

of

the

incoming

business

object.

However,

the

child

elements

are

made

children

not

of

the

body

element

but

of

the

child

business

object

element

–

Cardinality

n

child

business

object

attributes

If

an

attribute

is

a

cardinality

n

child

business

object,

the

data

handler

creates

a

SOAP

array.

Each

attribute

is

handled

the

same

way

that

a

single

cardinality

child

business

object

is

handled.
5.

Composing

fault

The

following

section

walks

through

the

process

by

which

the

data

handler

composes

a

fault

message.

v

The

data

handler

expects

the

following

attributes

in

the

business

object:

–

faultcode:

Required,

String

attribute

–

faultstring:

Required,

String

attribute

–

faultactor:

Not

required.

String

attribute

–

detail:

Not

required.

Child

BO

attribute.

If

any

required

attributes

are

missing,

the

data

handler

errors

out.

v

The

data

handler

creates

an

element

for

faultcode.

It

sets

the

value

given

by

the

faultcode

attribute

of

the

business

object.

v

The

data

handler

creates

an

element

for

faultstring.

It

sets

the

value

given

by

the

faultstring

attribute

of

the

business

object.

v

The

data

handler

creates

the

faultactor.

It

sets

the

value

given

by

the

faultactor

attribute

of

the

business

object.

v

If

the

detail

attribute

is

present

in

the

business

object,

the

attribute

should

be

of

child

business

object

type.

Otherwise

the

data

handler

errors

out.

It

handles

the

attributes

of

each

detail

business

object

as

highlighted

in

the

section

on

Composing

body

above.
6.

CxIgnore

processing

If

the

data

handler

finds

out

that

the

value

of

an

attribute

is

set

to

CxIgnore,

the

data

handler

does

not

create

an

element

for

this

attribute.

7.

CxBlank

processing

If

the

data

handler

determines

that

the

value

of

an

attribute

is

set

to

CxBlank,

the

data

handler

creates

an

element

for

this

attribute

but

does

not

set

its

value.

Business-object-to-SOAP-message-header

processing

This

section

describes

the

processing

of

the

SOAP

header

attribute

only.

All

other

attributes

are

processed

as

described

in

“Business-object-to-SOAP-message-body

processing”

on

page

120.

1.

From

the

business

object,

the

SOAP

data

handler

obtains

the

SOAPHeader

attribute.

This

attribute

has

soap_location=SOAPHeader

as

its

application-specific

information.

The

SOAP

data

handler

creates

a

SOAP-Env:Header

element

if

and

Chapter

5.

SOAP

data

handler

121

only

if

the

value

of

this

attribute

is

not

null.

If

a

business

object

contains

more

than

one

SOAPHeader

attribute,

the

first

one

is

processed

and

the

rest

are

treated

as

part

of

the

body.

2.

The

SOAP

data

handler

expects

that

the

SOAPHeader

attribute

is

a

single

cardinality

child

representing

a

SOAP

Header

Container

business

object.

The

data

handler

processes

the

child

attributes

of

the

SOAP

Header

Container

business

object

that

are

of

type

SOAP

Header

Child

business

object.

3.

For

each

attribute

of

the

SOAP

Header

Container

business

object,

the

data

handler

does

the

following:

a.

Checks

the

cardinality:

if

this

attribute

is

NOT

a

1

or

n

cardinality

child

object,

it

is

ignored.

b.

Checks

the

value:

if

the

value

of

this

attribute

is

NULL,

it

will

be

ignored.

c.

If

the

attribute

is

a

1

or

n

cardinality

child

object,

the

SOAP

data

handler

creates

a

header

element

that

is

the

immediate

child

of

the

SOAP-Env:Header

element

created

in

step

1.

The

name

of

this

header

element

is

same

as

that

of

the

attribute.

The

namespace

of

this

element

is

given

by

the

elem_ns

application-specific

information

of

this

attribute.

d.

If

the

attribute

is

a

SOAP

Header

Child

business

object,

all

of

the

attributes

of

this

business

object

are

processed.

This

attribute

may

have

an

actor

and

a

mustUnderstand

attribute.

Note:

If

you

want

to

add

a

mustUnderstand

or

actor

attribute,

see

“Specifying

SOAP

attributes”

on

page

128.

e.

If

a

SOAP

Header

Child

business

object

has

a

non-null

actor

attribute,

the

data

handler

creates

an

actor

attribute

in

the

header

element

that

was

created

in

step

c.

f.

If

a

SOAP

Header

Child

business

object

has

a

non-null

mustUnderstand

attribute,

the

data

handler

will

create

a

mustUnderstand

attribute

in

the

header

element

created

in

step

c.

g.

All

other

non-null

attributes

of

the

SOAP

Header

Child

business

object

become

child

elements

of

this

header

element.

They

are

composed

in

the

same

manner

as

the

child

elements

of

the

SOAP-Env:Body

element.

Header

fault

processing

The

SOAP

specification

states

that

errors

pertaining

to

headers

must

be

returned

in

headers.

These

headers

are

returned

in

the

SOAP

fault

message.

Just

as

message

headers

are

specified

in

the

SOAPHeader

attribute

of

request

and

response

business

objects,

fault

headers

are

specified

in

the

SOAPHeader

attribute

of

fault

business

objects.

Each

of

the

possible

headers

of

request

or

response

business

objects

may

cause

an

error.

Such

errors

are

reported

in

the

headers

of

the

fault

message.

WSDL

documents

have

a

SOAP

binding

header

fault

element

that

allows

you

to

specify

the

fault

header.

For

more

information,

see

the

SOAP

and

WSDL

specifications

listed

in

Chapter

1.

The

application-specific

information

of

headerfault

allows

you

to

specify

header

faults

for

each

of

your

headers.

You

may

specify

headerfault

application-specific

information

for

each

of

the

attributes

of

the

SOAP

Header

Container

business

object.

The

list

of

attributes

in

the

SOAP

Header

Container

business

object

for

the

fault

business

object

is

as

follows:

headerfault=attr1,

attr2,

attr3...

122

Adapter

for

Web

Services

User

Guide

If

the

WSDL

Configuration

Wizard

finds

headerfault

application-specific

information

in

the

SOAP

Header

Child

business

objects

of

request

or

response

objects,

the

utility

creates

headerfault

elements

in

the

WSDL

generated

for

these

headers.

Note

that

WSDL

allows

you

to

specify

multiple

header

faults

for

each

of

your

request

(input)

and

response

(output)

headers.

Therefore

the

value

of

this

application-specific

information

is

a

comma-delimited

list

of

attributes.

Using

application-specific

information

functionality

You

can

specify

object-

and

attribute-level

application-specific

information

(ASI)

to

extend

and

enhance

SOAP

data

handler

functionality.

Table

46

shows

these

attributes,

which

are

discussed

in

the

sections

below.

All

of

the

entries

in

the

table

are

attribute-level

ASI

unless

otherwise

noted.

Table

46.

SOAP

object

ASI

summary

ASI

Possible

values

Description

soap_location

SOAPHeader

Specifies

this

business

object

attribute

as

the

header

attribute

headerfault

String

Identifies

the

BO

attribute

name

of

the

corresponding

SOAP

header

in

the

fault

BO

elem_name

String

Specifies

the

name

for

the

SOAP

element

corresponding

to

this

BO

attribute

elem_ns

String

Specifies

the

namespace

for

the

SOAP

element

corresponding

to

this

BO

attribute

type_name

String

Specifies

the

type

for

the

SOAP

element

corresponding

to

this

BO

attribute

type_ns

String

Specifies

the

type

namespace

for

the

element

corresponding

to

this

BO

attribute

xsdtype

true

Specifies

xsd

as

the

namespace

for

the

element

corresponding

to

this

BO

attribute,

overriding

older

xsd

versions

(such

as

1999,

2000,

etc.)

with

the

latest

version

of

xsd

(for

example,

2001).

attr_name

String

Specifies

the

name

for

the

SOAP

attribute

corresponding

to

this

BO

attribute

attr_ns

String

Specifies

the

namespace

for

the

SOAP

attribute

corresponding

to

this

BO

attribute

Chapter

5.

SOAP

data

handler

123

Table

46.

SOAP

object

ASI

summary

(continued)

ASI

Possible

values

Description

arrayof

String

Specifies

the

name

of

the

n

cardinality

child

business

object

attribute

that

must

be

used

to

create

the

array

for

this

element

dh_mimetype

String

Specifies

the

mimeType

of

the

data

handler

that

will

be

used

to

transform

this

attribute

of

complex

type

cw_mo_*

String

This

business

object

level

ASI

specifies

the

name

of

a

child

config

MO

that

is

interpreted

as

meta-data,

not

content,

by

the

SOAP

data

handler.

Only

cw_mo_soap

specifies

a

child

config

MO

that

is

processed

as

meta-data;

all

other

cw_mo_*

indicate

a

different

component

and

are

therefore

excluded

from

SOAP

data

handler

processing.

All

other

cw_mo*

is

ignored.

cw_mo_soap

String

This

business

object

level

ASI

specifies

the

name

of

the

Child

Config

MO

attribute

that

should

be

used

when

transforming

this

business

object

cw_mo_jms

String

This

business-object

level

ASI

specifies

the

name

of

the

JMS

Protocol

Config

MO

to

use

cw_mo_http

String

This

business-object

level

ASI

specifies

the

name

of

the

HTTP

Protocol

Config

MO

to

use

wrapper

true

Specifies

the

attribute

name

of

the

wrapper

object

within

this

business

object.

Wrapper

objects

are

used

for

certain

schema

indicators,

and

must

not

be

serialized

maxoccurs

Integer

Specifies

this

business

object

attribute’s

maximum

occurrence

possibility.

Depending

on

the

value

of

maxoccurs,

the

business

object

may

or

may

not

have

a

wrapper.

minoccurs

Integer

Specifies

this

business

object

attribute’s

minimum

occurrence

possibility.

Depending

on

the

value

of

minoccurs,

the

object

may

or

may

not

have

a

wrapper.

124

Adapter

for

Web

Services

User

Guide

Table

46.

SOAP

object

ASI

summary

(continued)

ASI

Possible

values

Description

all

String

Specifies

the

child

attribute

that

represents

the

all

indicator

in

the

schema.

choice

String

Specifies

the

child

attribute

that

represents

the

choice

indicator

in

the

schema.

ASI

in

business-object-to-SOAP-message

transformations

The

SOAP

data

handler

uses

a

business

object’s

ASI

to

determine

how

to

construct

a

SOAP

message.

Unless

otherwise

stated,

all

ASI

discussed

in

the

sections

below

refers

to

attribute

level

ASI

and

all

string-based

comparisons

are

performed

without

regard

to

case.

elem_name

and

elem_ns

processing

The

examples

discussed

in

this

section

assume

that

the

attribute

name

is

OrderId

and

the

SOAP

element

namespace

prefix

ns0.

1.

When

neither

elem_name

nor

elem_ns

are

specified,

the

elem_name

defaults

to

the

attribute

name,

and

the

elem_ns

defaults

to

the

namespace

of

the

element’s

parent.The

ASI

is

not

specified.

<OrderId>1</OrderId>

2.

When

the

elem_name

is

specified

and

the

elem_ns

is

not

specified,

the

elem_name

will

be

set

to

the

ASI

elem_name

value,

and

the

elem_ns

will

be

defaulted

to

the

namespace

of

the

SOAP

Body.

The

ASI

is

as

follows:

elem_name=CustOrderId

<CustOrderId>2</CustOrderId>

3.

When

elem_ns

is

specified

and

elem_name

is

not,

elem_name

defaults

to

the

attribute

name

and

elem_ns

is

set

to

the

ASI

elem_ns

value.

The

xmlns

attribute

is

explicitly

written

if

and

only

if

the

element

namespace

is

not

found

elsewhere

in

the

scope

of

this

element.

If

the

element

namespace

is

found,

the

already

defined

namespace

prefix

is

used.

Otherwise

(if

the

element

namespace

is

no

found),

a

unique

prefix

for

the

elem_ns

is

generated.

Consider

the

following

example,

which

presumes

that

a

prefix

is

already

defined

in

scope

(ns1

represents

a

prefix

corresponding

to

a

namespace

already

defined

in

the

scope

of

this

element).

The

ASI

is

as

follows:

elem_ns=

http://www.w3.org/2001/XMLSchema

<ns1:OrderId>3</ns1:OrderId>

The

following

example

presumes

that

prefix

is

not

found

(ns2

represents

a

unique

prefix).

The

ASI

is

as

follows:

elem_ns=CustOrderIdNamespace

<ns2:OrderId

xmlns:ns2="CustOrderIdNamespace">3</ns2:OrderId>

4.

When

both

elem_name

and

elem_ns

are

specified,

elem_name

and

elem_ns

are

set

to

the

ASI

values.

The

same

check

that

is

performed

in

case

3

above

regarding

already

defined

namespaces

applies.

Just

as

in

case

3,

if

the

namespace

is

not

already

defined,

a

unique

prefix

for

the

elem_ns

is

generated.

The

ASI

is

as

follows:

elem_name=CustOrderId;elem_ns=CustOrderIdNamespace

<ns2:CustOrderId

xmlns:ns2="CustOrderIdNamespace">1</ns2:OrderId>

Chapter

5.

SOAP

data

handler

125

type_name

and

type_ns

processing

for

simple

attributes

For

the

examples

in

this

section,

the

attribute

name

is

OrderId,

the

SOAP

element

namespace

prefix

is

ns0,

and

the

attribute

type

is

String.

Note:

type_name

and

type_ns

processing

takes

place

only

when

the

Config

MO

attribute

TypeInfo

is

true.

1.

When

neither

type_name

nor

type_ns

are

specified,

type_name

defaults

to

the

simple

type

and

the

type_ns

defaults

to

the

xml

schema-defined

namespace

(xsd).

The

ASI

is

not

specified

<OrderId

xsi:type="xsd:string">1</OrderId>

2.

When

type_name

is

specified

and

type_ns

is

not,

type_name

is

set

to

the

ASI

type_name

value

and

type_ns

defaults

to

the

namespace

of

the

element.

The

ASI

is

as

follows:

type_name=CustString

<OrderId

xsi:type="ns0:CustString">2</OrderId>

3.

When

type_ns

is

specified

and

type_name

is

not,

the

type_ns

defaults

to

the

simple

type

name

and

type_name

is

set

to

the

ASI

type_ns

value.

The

prefix

is

handled

in

a

way

that

is

comparable

to

elem_ns

creation.

A

unique

prefix

for

the

type

namespace

is

generated

unless

the

namespace

already

exists

in

the

element

scope.

The

ASI

is

as

follows:

type_ns=CustStringNamespace

<OrderId

xmlns:ns2="CustStringNamespace"

xsi:type=

"ns2:String">3</OrderId>

4.

When

both

type_name

and

type_ns

are

specified,

they

are

set

to

the

assigned

ASI

values.

A

unique

prefix

for

the

type

namespace

is

generated.

The

ASI

is

as

follows:

type_name=CustString;type_ns=CustStringNamespace

<OrderId

xmlns:ns2="CustStringNamespace"

xsi:type=

"ns2:CustString">1</OrderId>

type_name

and

type_ns

processing

for

single

cardinality

attributes

For

the

examples

in

this

section,

the

attribute

name

is

OrderStaus,

the

SOAP

element

namespace

prefix

is

ns0,

and

the

attribute

type

is

OrderStatus.

Note:

type_name

and

type_ns

processing

takes

place

only

when

the

Config

MO

attribute

TypeInfo

is

true.

1.

When

neither

type_name

nor

type_ns

are

specified,

type_name

defaults

to

the

business

object

name

and

the

type

namespace

defaults

to

the

namespace

of

the

element.

The

ASI

is

not

specified:

<OrderStatus

xsi:type="ns0:OrderStatus">1</OrderStatus>

2.

When

type_name

is

specified

and

type_ns

is

not,

the

type_name

is

set

to

the

assigned

ASI

value

and

type_ns

defaults

to

the

namespace

of

the

element.

The

ASI

is

as

follows:

type_name=CustOrderStatus

<OrderStatus

xsi:type="ns0:CustOrderStatus">1</OrderStatus>

3.

When

type_ns

is

specified

and

type_name

is

not,

type_name

defaults

to

the

business

object

name

and

type_ns

is

set

to

the

assigned

type_ns

value.

A

unique

prefix

for

the

type

namespace

is

generated.

The

ASI

is

as

follows:

type_ns=CustTypeNS

<OrderStatus

xsi:type="ns2:SOAP_OrderStatusLine

"

xmlns:ns2="CustTypeNS">1</OrderStatus>

126

Adapter

for

Web

Services

User

Guide

4.

When

both

type_name

and

type_ns

are

specified,

they

are

set

to

the

assigned

ASI

values.

A

unique

prefix

for

the

type

namespace

is

generated.

The

ASI

is

as

follows:

type_name=CustOrderStatus;type_ns=CustTypeNS

<OrderStatus

xsi:type="ns2:CustOrderStatus"

xmlns:ns2="CustTypeNS">1</OrderStatus>

type_name

and

type_ns

processing

for

multiple

cardinality

attributes

For

all

the

examples

given

in

this

section

assume

the

attribute

name

to

be

MultiLines

and

the

SOAP

element

namespace

prefix

to

be

ns0.

Assume

the

attribute

type

to

be

OrderStatus.

Note:

type_name

and

type_ns

processing

takes

place

only

when

the

Config

MO

attribute

TypeInfo

is

true.

1.

When

neither

type_name

nor

type_ns

are

specified,

type_name

defaults

to

the

business

object

name

and

type_ns

defaults

to

the

namespace

of

the

element.

The

ASI

is

as

follows:

<MultiLines

SOAP-ENC:arrayType="ns0:OrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

2.

When

type_name

is

specified

and

type_ns

is

not,

type_name

is

set

to

the

assigned

ASI

type_name

value

and

type_ns

defaults

to

the

namespace

of

the

element.

The

ASI

is

as

follows:

type_name=CustOrderStatus

<MultiLines

SOAP-ENC:arrayType="ns0:CustOrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

3.

When

type_ns

is

specified

and

type_name

is

not,

type_name

defaults

to

the

business

object

name,

and

the

type_ns

is

set

to

the

assigned

ASI

type_ns

value.

A

unique

prefix

for

the

type

namespace

is

generated.

The

ASI

is

as

follows:

type_ns=CustTypeNS

<MultiLines

SOAP-ENC:arrayType="ns2:OrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/

"

xmlns:ns2="CustTypeNS"

xsi:type="SOAP-ENC:Array">

4.

When

both

type_name

and

type_ns

are

specified,

they

are

set

to

the

assigned

ASI

values.

A

unique

prefix

for

the

type

namespace

is

generated.

The

ASI

is

as

follows:

type_name=CustOrderStatus;type_ns=CustTypeNS

<MultiLines

SOAP-ENC:arrayType="ns2:CustOrderStatus[2

]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns2="CustTypeNS"

xsi:type="SOAP-ENC:Array">

Note:

The

item

element

representing

the

parent

for

each

Array

element

has

the

same

type

and

namespace

as

the

arrayType.

xsdtype

for

simple,

single,

and

multiple

cardinality

types

For

simple,

single.

and

multiple

cardinality

types,

set

the

xsdtype

ASI

attribute

to

true

for

the

type

name

to

adhere

to

the

current

XSD

for

the

SOAP

message.

The

xsdtype

property

is

read

only

when

both

the

type_name

and

type_ns

properties

are

set.

Given

the

type_name

and

type_ns,

the

SOAP

data

handler

first

attempts

to

map

the

pair

to

a

Java

type

using

the

SOAP

API.

Then

the

data

handler

attempts

to

convert

the

Java

type

back

to

a

SOAP

element

type

using

the

current

XSD

for

the

SOAP

Message.

For

example,

if

the

current

XSD

is

http://www.w3.org/2001/XMLSchema

Chapter

5.

SOAP

data

handler

127

and

the

following

ASI:

type_name=timeInstant;type_ns=http://www.w3.org/1999/XMLSchema;xsdtype=true

The

SOAP

message

type

name

is

written

as:
<OrderDate

xsi:type="xsd:dateTime">

because

dateTime

is

the

2001

XSD

equivalent

of

the

timeInstant

in

the

1999

XSD.

xsdtype

and

simple

type

arrays

For

multiple

cardinality

objects,

you

can

create

a

simple

type

array

such

as

the

following:

<MultiLines

SOAP-ENC:arrayType="xsd:string[4]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

To

achieve

this,

set

the

type_name

property

to

the

desired

simple

type

(for

example,

string)

and

set

the

type_ns

property

to

the

appropriate

XSD

specification.

Then,

set

the

xsdtype

property

to

true

so

that

the

type

is

converted

to

the

current

XSD

type.

Finally,

the

arrayOf

property

should

be

set

to

the

name

of

the

attribute

in

the

container

which

should

hold

the

simple

type

value.

This

is

an

example

of

what

the

ASI

would

look

like

for

a

string

array:

arrayof=size;type_name=string;type_ns=

http://www.w3.org/2001/XMLSchema;

xsdtype=true

ASI

effects

on

fault

processing

The

faultcode,

faultactor,

faultstring,

and

detail

elements

adhere

to

the

following

rules:

1.

Any

elem_name,

elem_ns,

type_name

and

type_ns

ASI

in

these

attributes

is

ignored.

2.

All

children

of

the

detail

elements

are

written

exactly

as

described

in

body

processing.

ASI

effects

on

header

processing

You

can

use

all

ASI

properties

(see

Table

46)

at

the

header

child

object

level

and

below.

Specifying

SOAP

attributes

attr_name

processing

for

simple

types

This

is

not

supported.

A

business

object

attribute

must

be

a

complex

(1

or

n

cardinality)

type

for

SOAP

attributes

to

be

created.

attr_name

processing

for

single

and

multiple

cardinality

types

You

can

specify

ASI

that

translates

business

object

attributes

into

soap

attributes

instead

of

into

soap

elements.

The

data

handler

supports

adding

SOAP

attributes

to

complex

single

and

n-card

types

only.

Consider

the

following

sample:

<CustInfo

City="4"

State="5"

Street="2"

Zip="6">

<Name

xsi:type="xsd:string">1</Name>

<Street2

xsi:type="xsd:string">3</Street2>

</CustInfo>

128

Adapter

for

Web

Services

User

Guide

Given

this

business

object

definition

structure

(with

the

attribute

level

ASI

specified

to

the

right

of

each

attribute

in

Figure

45),

the

data

handler

follows

these

processing

steps:

1.

When

traversing

a

complex

attribute,

the

data

handler

first

generates

a

corresponding

tag

for

this

complex

business

object

attribute.

In

this

example,

CustInfo

represents

the

complex

business

object

attribute.

2.

The

data

handler

iterates

through

the

children

of

the

complex

business

object.

Only

simple

type

attributes

are

considered

for

attribute

creation.

If

a

simple

type

has

an

ASI

property

named

attr_name,

the

data

handler

writes

this

simple

type

as

an

attribute

to

the

SOAP

element.

In

this

example,

the

element

(CustInfo)

will

have

four

attributes;

Street,

City,

State

and

Zip.

3.

The

rest

of

the

attributes

of

the

business

object

are

written

using

standard

BODY

processing.

This

means

that

all

relevant

ASI

will

also

be

evaluated

for

the

business

object

attributes

that

do

not

have

attr_name

ASI.

The

logic

for

processing

multiple

cardinality

types

is

identical

to

that

for

processing

single

cardinality

types.

Specifically,

each

<item>

tag

corresponds

to

each

business

object

instance

in

the

multiple

cardinality

object,

and

will

be

processed

using

ASI.

For

example,

given

this

multiple

cardinality

business

object

definition

structure

with

corresponding

ASI:

If

the

event

sent

to

the

data

handler

had

two

instances

of

this

multiple

cardinality

object,

the

SOAP

message

created

may

look

like

this:

<CustInfo>

<item

City="Armonk"

Street="Main

Street">

<Name>IBM</Name>

<Street2>None</Street2>

</item>

<item

City="Burlingame"

State="Ca"

Figure

45.

attr_name

business

object

Figure

46.

attr_name

multiple

cardinality

business

object

Chapter

5.

SOAP

data

handler

129

Street="577

Airport

Blvd"

Zip="94010">

<Name>Burlingame

Labs</Name>

<Street2>Suite

600</Street2>

</item>

</CustInfo>

Notice

that

the

item

tags

are

treated

as

the

complex

element

type.

Any

attributes

in

the

BO

definition

will

become

SOAP

attributes

of

the

corresponding

item

tag.

arrayof

processing

You

use

the

arrayof

ASI

property

to

assign

SOAP

attributes

to

the

array

element

itself

(not

at

the

child

tag).

You

add

the

arrayof

property

to

the

ASI

of

a

single

cardinality

complex

type.

The

value

of

the

arrayof

property

must

be

the

name

of

the

multiple

cardinality

child

that

the

SOAP

message

will

represent.

When

the

SOAP

message

is

created,

the

multiple

cardinality

child

represents

the

child

tags

of

the

array.

A

business

object

definition

with

an

arrayof

element

and

corresponding

ASI

are

shown

inFigure

47

If

the

event

sent

to

the

data

handler

had

two

instances

of

this

cardinality

n

object,

the

SOAP

message

created

may

look

like

the

following:

<Customer

ID="12">

<CustInfo

City="4"

State="5"

Street="2"

Zip="6">

<Name>1</Name>

<Street2>3</Street2>

</CustInfo>

<CustInfo

City="10"

State="11"

Street="8"

Zip="12">

<Name>7</Name>

<Street2>9</Street2>

</CustInfo>

</Customer>

Notice

that

the

arrayof

property

can

be

used

to

create

array

items

with

a

name

other

than

item.

In

this

example,

the

item

tag

is

replaced

with

CustInfo

tags.

This

element

name

is

derived

from

the

name

of

the

business

object

attribute

that

the

arrayof

ASI

property

points

to.

attr_name

and

attr_ns

processing

You

may

need

to

provide

a

namespace

that

corresponds

to

the

SOAP

attribute

created.

You

do

this

by

specifying

the

attr_ns

ASI

property

for

a

simple

type.

The

Figure

47.

arrayof

business

object

130

Adapter

for

Web

Services

User

Guide

data

handler

processes

the

attr_ns

property

if

and

only

if

attr_name

exists

in

the

same

attribute’s

ASI.

The

following

rules

are

followed

with

attr_name

and

attr_ns:

1.

When

neither

attr_name

nor

attr_ns

exist,

the

business

object

attribute

is

translated

to

a

SOAP

element.

2.

When

only

attr_name

is

set,

the

SOAP

attribute’s

namespace

defaults

to

the

element’s

namespace:

<CustInfo

Street="577

Airport"></CustomerInfo>

3.

When

only

attr_ns

is

set,

the

property

is

ignored

and

the

business

object

attribute

is

translated

to

a

SOAP

element.

4.

When

both

attr_name

and

attr_ns

exist,

the

SOAP

attribute

is

created

like

the

following:

<CustInfo

ns2:Street="577

Airport"

xmlns:ns2=

"AttrNS"></CustomerInfo>

dh_mimetype:

calling

a

data

handler

The

SOAP

data

handler

can

call

another

data

handler

to

write

business

objects

into

any

format

for

which

a

data

handler

exists.

You

do

this

by

adding

encoded

text

to

a

SOAP

message

when

transferring

a

SOAP

child

business

object

into

a

SOAP

String.

An

RNIF

document

is

one

of

the

formats

in

which

a

SOAP

element’s

value

may

be

encoded.

To

make

use

of

this

functionality,

add

an

RNIF

BO

at

any

level

of

a

SOAP

child

business

object.

To

signal

the

SOAP

data

handler

to

call

another

data

handler

when

transforming

this

RNIF

business

object

to

a

string,

add

the

dh_mimetype

property

to

the

attribute’s

ASI.

The

value

of

the

dh_mimetype

ASI

property

must

be

a

legal

mimeType

specified

in

the

MO_DataHandler_Default

meta-object.

The

mimeType

is

used

to

determine

which

data

handler

is

called

to

process

the

business

object.

Figure

48

shows

a

SOAP

child

business

object

in

which

CustomerInfo

is

a

complex

child

and

RNET_Pip3A2PriceAndAvailabilityQuery

is

an

RNIF

business

object:

The

SOAP

message

created

from

this

business

object

may

look

like

this:

<CustomerInfo>

<Name>IBM

Corporation</Name>

<CustID>95626</CustID>

<RNIFexample

xsi:type="xsd:base64Binary">1AWERYER238W98EYR9238728374871892787ASRJK23423

JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJK234

34JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJK2

4234JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJ

234234JKAWERJ234AWERIJHI423488R4HASFWR234

</RNIFexample>

</CustomerInfo>

Figure

48.

RNIF

business

object

with

dh_mimetype

Chapter

5.

SOAP

data

handler

131

Note

that

the

RNIF

example

element

contains

an

RNIF

encoded

string

that

has

been

base64

binary

encoded

as

its

element

value.

Also,

note

that

elem_name,

elem_ns,

type_name,

type_ns,

and

xsdtype

ASI

properties

remain

relevant

for

this

business

object

attribute.

In

this

example,

the

specified

elem_name

dictates

the

name

of

the

SOAP

element

upon

message

creation.

Note:

If

the

element

value

returned

by

the

called

data

handler

is

encoded

text,

the

type_name

property

must

be

set

to

base64Binary,

the

type_ns

must

correspond

to

an

xsd

namespace,

and

xsdtype

must

be

set

to

true.

xsd:base64Binary:

When

you

set

the

type_name

and

type_ns

to

resolve

to

xsd:base64Binary,

the

SOAP

data

handler

encodes

the

value

from

the

business

object

before

setting

the

value

for

the

corresponding

element.

Using

the

Apache

API,

the

data

handler

queries

the

registry

for

a

base64Binary

serializer,

serializes

the

string

returned

from

the

called

data

handler,

and

sets

the

element’s

value.

Schema

complexType

indicators

The

following

sections

discuss

the

effects

of

schema

complexType

Indicators

on

business

objects.

The

indicators

include:

v

maxOccurs

v

minOccurs

v

all

v

sequence

v

choice

maxOccurs

and

minOccurs

indicators

for

simple

types:

The

maxOccurs

indicator

specifies

the

maximum

number

of

times

an

element

can

occur

within

a

complex

type.

The

minOccurs

indicator

specifies

the

minimum

number

of

times

an

element

should

occur

within

a

complexType.

Consider

this

Schema:

<xs:element

name="Address"

type="Address">

<xs:complexType

name="Address">

<xs:sequence>

<xs:element

name="AddressLine"

type="xsd:string"

maxOccurs="10"/>

<xs:element

name="SuiteNumber"

type="xsd:string"

minOccurs="3"

maxoccurs="unbounded"/>

<xs:element

name="City"

type="xsd:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

The

example

above

indicates

that

the

AddressLine

element

can

occur

at

most

ten

times

in

an

Address

element,

while

the

SuiteNumber

element

must

occur

at

least

three

times.

The

business

object

that

corresponds

to

this

schema

must

have

an

N

cardinality

wrapper

object

for

each

maxoccurs/minoccurs

indicator

that

has

the

following

ASI:

maxOccurs=N;wrapper=true

or

minOccurs=3;wrapper=true;

The

wrapper=true

ASI

indicates

that

this

object

is

a

wrapper,

and

therefore

not

explicitly

written

to

the

SOAP

message.

Instead,

there

must

be

one

child

of

simple

type

in

this

wrapper

object.

At

run

time,

for

SOAP

to

business

object

transformations,

the

data

handler

reads

the

N

child

objects

of

the

wrapper

and

132

Adapter

for

Web

Services

User

Guide

creates

a

corresponding

element

for

each

one.

When

performing

business-object-to-SOAP-message

transformations,

the

data

handler

creates

child

objects

in

the

N

cardinality

wrapper

for

every

element

it

encounters.

The

corresponding

SOAP

business

object

resembles

that

shown

in

Figure

49.

The

SOAP

message

that

corresponds

to

the

business

object

shown

in

Figure

49

is

as

follows:

<Address

xsi:type="ns0:Address">

<AddressLine

xsi:type="xsd:string">Line1</AddressLine>

<AddressLine

xsi:type="xsd:string">Line2</AddressLine>

<SuiteNumber

xsi:type="xsd:string">600</SuiteNumber>

<SuiteNumber

xsi:type="xsd:string">650</SuiteNumber>

<SuiteNumber

xsi:type="xsd:string">700</SuiteNumber>

<City

xsi:type="xsd:string">San

Francisco</City>

</Address>

Note:

The

SOAP

data

handler

processes

maxOccurs

and

minOccurs

indicators

in

the

same

way,

without

validating

the

maximum

or

minimum

occurrences

of

elements.

The

data

handler

simply

provides

a

container

structure

to

hold

multiple

instances

of

a

particular

element

with

the

maxOccurs

and

minOccurs

indicators.

This

applies

to

simple

and

complex

types.

maxOccurs

and

minOccurs

indicators

for

complex

types:

The

<maxOccurs>

indicator

specifies

the

maximum

number

of

times

an

element

can

occur

within

a

complex

type.

The

<minOccurs>

indicator

specifies

the

minimum

number

of

times

an

element

should

occur

within

a

complexType.

Consider

the

maxOccurs

indicator

in

the

following

schema:

<xs:element

name="Address"

type="Address">

<xs:complexType

name="Address">

<xs:sequence>

<xs:element

name="AddressInfo"

type="AddressInfo"

maxOccurs="3"/>

<xs:element

name="City"

type="xsd:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType

name="AddressInfo">

<xs:sequence>

Figure

49.

minOccurs

and

maxOccurs

of

simple

type

ASI

in

a

SOAP

business

object

Chapter

5.

SOAP

data

handler

133

<xs:element

name="StreetLine"

type="xsd:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

The

example

above

indicates

that

the

AddressInfo

complex

type

element

can

occur

at

most

three

times

in

an

Address

element.

The

corresponding

business

object

for

this

schema

will

not

have

a

wrapper

object,

since

the

complexType

AddressInfo

itself

can

be

of

N

cardinality.

The

following

ASI

will

be

placed

at

the

N

cardinality

attribute:

maxoccurs=3

Figure

50

shows

the

corresponding

SOAP

business

object.

The

SOAP

message

that

corresponds

to

the

business

object

shown

in

Figure

50

is

as

follows:

<Address

xsi:type="ns0:Address">

<AddressInfo

xsi:type="ns0:AddressInfo">

<StreetLine

xsi:type="xsd:string">100

Market

St.</

StreetLine>

<StreetLine

xsi:type="xsd:string">Apt

15</

StreetLine>

</AddressInfo>

<City

xsi:type="xsd:string">San

Francisco</City>

</Address>

all

indicator:

The

all

indicator

specifies

by

default

that

the

child

elements

for

this

complexType

can

appear

in

any

order

and

that

each

child

element

must

occur

zero

or

one

times.

Consider

the

following

Schema:

<complexType

name="Item">

<all>

<element

name="quantity"

type="xsd:int"/>

<element

name="product"

type="xsd:string"/>

</all>

</complexType>

The

example

above

indicates

that

the

elements

quantity

and

product,

can

occur

in

any

order

in

the

SOAP

message.

The

quantity

element

may

occur

first

and

the

product

element

second,

or

vice

versa.

Figure

51

shows

the

business

object

that

corresponds

to

this

schema

fragment.

Figure

50.

minOccurs

and

maxOccurs

of

complex

type

ASI

in

a

SOAP

business

object

134

Adapter

for

Web

Services

User

Guide

The

corresponding

SOAP

message

fragment

is

as

follows:

<Item

xsi:type="ns0:Item">

<quantity

xsi:type="xsd:string">12</quantity>

<product

xsi:type="xsd:string">2</product>

</Item>

sequence

indicator:

The

sequence

indicator

specifies

that

child

elements

must

appear

in

the

order

specified

in

the

complexType.

<complexType

name="Item">

<sequence>

<element

name="quantity"

type="int"/>

<element

name="product"

type="string"/>

</sequence>

</complexType>

The

SOAP

data

handler

does

not

require

special

ASI

or

wrapper

objects

for

this

indicator.

By

default,

the

data

handler

reads

and

writes

SOAP

elements

in

the

order

specified

in

the

business

object.

choice

indicator:

The

choice

indicator

specifies

that

one

and

only

one

of

the

elements

in

a

complexType

can

appear

in

the

SOAP

message.

Consider

the

following

schema:

<complexType

name="Item">

<choice>

<element

name="quantity"

type="int"/>

<element

name="product"

type="string"/>

</choice>

</complexType>

The

SOAP

data

handler

does

not

require

special

ASI

or

wrapper

objects

for

this

indicator.

When

converting

a

business

object

to

a

SOAP

message,

the

data

handler

defers

to

your

choice

of

which

elements

should

appear

in

the

SOAP

message.

When

converting

a

SOAP

message

to

a

business

object,

the

data

handler

reads

the

existing

element

and

populates

the

attribute

to

which

it

corresponds.

ASI

in

SOAP-to-business

object

transformations

The

SOAP

data

handler

uses

a

business

object’s

ASI

to

read

and

validate

an

incoming

SOAP

message.

The

following

rules

apply

to

ASI

validation

by

the

SOAP

data

handler:

v

Header

and

body

processing

are

the

same.

v

The

SOAP

ConfigMO

property,

TypeCheck,

must

be

set

to

strict

and

TypeInfo

set

to

true

for

the

data

handler

to

perform

the

validation

described

in

the

sections

below.

Figure

51.

all

indicator

ASI

in

a

SOAP

business

object

Chapter

5.

SOAP

data

handler

135

v

type_name

and

type_ns

validation

are

performed

concurrently

since

type

validation

is

generally

dependent

on

both

properties.

Note:

Unless

otherwise

stated,

all

ASI

discussed

in

the

following

sections

is

attribute-level

ASI

elem_name

validation

The

following

rules

apply

to

validation

for

simple,

cardinality

1

and

cardinality

n

attributes:

1.

When

encountering

an

element

while

parsing

a

SOAP

message,

the

data

handler

first

searches

all

of

the

ASI

at

the

business

object

level,

attempting

to

match

the

element’s

name

against

the

elem_name

value.

2.

If

a

match

is

not

found,

the

data

handler

attempts

to

match

the

element’s

name

against

each

of

the

attribute

names

at

that

business

object

level.

3.

If

neither

search

succeeds,

the

data

handler

fails.

elem_ns

validation

The

following

cases

apply

to

validation

for

simple,

cardinality

1

and

cardinality

n

attributes:

1.

When

neither

elem_ns

ASI

nor

xmlns

from

the

SOAP

message

for

this

element

exist,

the

element

is

properly

validated.

2.

When

elem_ns

ASI

does

not

exist

and

the

corresponding

element

from

the

SOAP

message

does

have

an

xmlns

specified,

the

data

handler

defaults

the

elem_ns

to

the

last

elem_ns

read

from

the

business

object

that

was

in

the

scope.

The

data

handler

compares

this

value

with

the

xmlns

value

from

the

SOAP

message.

If

there

is

no

match,

validation

fails.

3.

When

elem_ns

ASI

does

exist

and

the

corresponding

element

from

the

SOAP

message

does

not

have

xmlns

specified,

the

data

handler

verifies

that

the

elem_ns

specified

in

ASI

matches

one

of

the

namespaces

in

the

current

scope

of

the

SOAP

message.

If

there

is

no

match,

validation

fails.

type_name

and

type_ns

validation

The

sections

below

discuss

type_name

and

type_ns

validation.

Simple

attributes:

The

following

rules

apply

to

type_name

and

type_ns

validation

when

xsdType

is

true:

v

Both

type_name

and

type_ns

are

specified

Using

the

type_name

and

type_ns

pair,

the

data

handler

creates

a

corresponding

java

Class

object.

Using

the

incoming

SOAP

message

typename

and

typenamespace,

another

java

Class

object

is

queried.

It

the

two

java

Class

objects

match,

validation

succeeds.

Otherwise,

validation

fails.

v

Neither

type_name

nor

type_ns

are

specified

The

data

handler

maps

the

simple

business

object

attribute

to

a

java

Class

object.

Using

the

incoming

SOAP

message

typename

and

typenamespace,

another

java

Class

object

is

queried.

If

the

two

java

Class

objects

match,

validation

succeeds.

Otherwise,

validation

fails.

v

type_name

only

is

specified

Simple

Type

Validation

fails.

Both

type_name

and

type_ns

or

neither

should

be

specified

when

xsdType

is

true.

v

type_ns

only

is

specified

Simple

Type

Validation

fails.

Both

type_name

and

type_ns

or

neither

should

be

specified

when

xsdType

is

true

The

following

rules

apply

to

type_name

and

type_ns

validation

when

xsdType

is

false:

v

Both

type_name

and

type_ns

are

specified

The

data

handler

performs

a

direct

comparison

between

the

SOAP

message

typename

and

typenamespace

pair

and

136

Adapter

for

Web

Services

User

Guide

the

type_name

and

type_ns

values

specified

in

ASI.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

v

Neither

type_name

nor

type_ns

are

specified

The

data

handler

maps

the

simple

business

object

attribute

to

a

java

Class

object.

Using

the

incoming

SOAP

message

typename

and

typenamespace,

another

java

Class

object

is

queried.

If

the

two

java

Class

objects

match,

validation

succeeds.

Otherwise,

validation

fails.

v

type_name

only

is

specified

The

type_ns

value

defaults

to

the

element

namespace

found

in

the

business

object

ASI.

Using

this

default

type_ns

and

the

type_name

specified

in

ASI,

the

data

handler

performs

a

direct

comparison

between

these

values

and

the

SOAP

message

typename

and

typenamespace.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

v

type_ns

only

is

specified

The

type_name

value

defaults

to

the

business

object

attribute

type.

Using

this

default

type_name

and

the

type_ns

specified

in

ASI,

the

data

handler

performs

a

direct

comparison

between

these

values

and

the

SOAP

message

typename

and

typenamespace.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

Complex

attributes

(cardinality

1

and

n):

The

following

rules

apply

to

type_name

and

type_ns

validation

when

xsdType

is

true:

v

Both

type_name

and

type_ns

are

specified

xsdType

is

ignored.

The

data

handler

processes

as

if

xsdType

is

false.

v

Neither

type_name

nor

type_ns

are

specified

xsdType

is

ignored.

The

data

handler

processes

as

if

xsdType

is

false.

v

type_name

only

is

specified

xsdType

is

ignored.

The

data

handler

processes

as

if

xsdType

is

false.

v

type_ns

only

is

specified

xsdType

is

ignored.

The

data

handler

processes

as

if

xsdType

is

false.

The

following

rules

apply

to

type_name

and

type_ns

validation

when

xsdType

is

false:

v

Both

type_name

and

type_ns

are

specified

The

data

handler

performs

a

direct

comparison

between

the

SOAP

message

typename

and

typenamespace

pair

and

the

type_name

and

type_ns

values

specified

in

ASI.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

v

Neither

type_name

nor

type_ns

are

specified

The

type_name

value

defaults

to

the

business

attribute

type.

The

type_ns

value

defaults

to

the

element

namespace

found

in

the

business

object

ASI.

Using

this

default

behavior,

the

data

handler

performs

a

direct

comparison

between

these

values

and

the

SOAP

message

typename

and

typenamespace

pair.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

v

type_name

only

is

specified

The

type_ns

value

defaults

to

the

element

namespace

found

in

the

business

object

ASI.

Using

this

default

type_ns

and

the

type_name

specified

in

ASI,

the

data

handler

performs

a

direct

comparison

between

these

values

and

the

SOAP

message

typename

and

typenamespace.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

v

type_ns

only

is

specified

The

type_name

value

defaults

to

the

business

object

attribute

type.

Using

this

default

type_name

and

the

type_ns

specified

in

ASI,

the

data

handler

performs

a

direct

comparison

between

these

values

and

the

SOAP

message

typename

and

typenamespace.

If

the

pairs

are

exactly

alike,

validation

succeeds.

Otherwise,

validation

fails.

Chapter

5.

SOAP

data

handler

137

attr_name

and

attr_ns

validation

While

reading

SOAP

message

into

a

business

object,

each

SOAP

element

is

searched

for

SOAP

attributes.

If

found,

these

attributes

are

compared

to

the

attr_name

property

values

from

the

corresponding

BO.

For

example,

consider

this

SOAP

message:

<CustInfo

City="4"

State="5"

Street="2"

Zip="6">

<Name

xsi:type="xsd:string">1</Name>

<Street2

xsi:type="xsd:string">3</Street2>

</CustInfo>

Now

consider

the

business

object

definition

structure

(with

the

attribute

level

ASI

specified

to

the

right

of

each

attribute)

shown

inFigure

52.

The

data

handler

would

follow

these

processing

steps:

1.

Read

the

element

name

CustInfo.

2.

Resolve

the

business

object

attribute

that

corresponds

to

this

element

name.

3.

Read

the

attributes

of

the

SOAP

element

and

attempt

to

match

them

against

the

ASI

of

the

child

attributes.

In

this

case,

the

SOAP

message

Street

matches

the

business

object

attribute

Street1,

City

matches

the

business

object

attribute

City

and

so

on.

4.

The

child

elements

for

CustInfo

are

read

and

processed

in

the

same

manner

as

the

rest

of

the

body.

Note:

attr_ns

is

not

validated.

The

data

handler

loops

through

the

SOAP

attributes

for

a

given

element.

For

each

attribute

encountered,

the

data

handler

searches

the

business

object

for

a

corresponding

attribute.

If

found,

the

business

object

attribute

is

populated

with

the

value

of

the

SOAP

attribute.

If

a

corresponding

business

object

attribute

is

not

found,

the

data

handler

continues

to

the

next

SOAP

attribute.

Calling

a

data

handler

from

within

the

SOAP

data

handler

The

SOAP

data

handler

can

read

an

encoded

element

value

from

a

SOAP

message

into

a

business

object

using

another

data

handler.

For

example,

an

RNIF

document

may

be

one

of

the

formats

in

which

a

SOAP

element

value

is

encoded.

To

make

use

of

this

functionality,

an

RNIF

business

object

can

be

added

at

any

level

of

a

SOAP

Child

business

object.

To

signify

to

the

SOAP

data

handler

that

another

data

handler

must

be

used

when

transforming

this

RNIF

encoded

String

to

an

RNIF

business

object,

you

must

add

the

dh_mimetype

property

to

the

attribute’s

ASI.

The

value

of

the

dh_mimetype

ASI

should

be

a

legal

mimeType

specified

in

the

MO_DataHandler_Default

business

object.

The

mimeType

is

used

to

determine

Figure

52.

attr_name

and

attr_ns

validation

138

Adapter

for

Web

Services

User

Guide

which

data

handler

to

use

on

the

String.

For

example,

given

the

following

SOAP

message

where

RNIFExample

is

the

SOAP

element

that

contains

an

RNIF

encoded

String:

<CustInfo>

<Name>IBM

Corporation</Name>

<CustID>95626</CustID>

<RNIFexample

xsi:type="xsd:base64Binary">

1AWERYER238W98EYR9238728374871892787ASRJK234234JKAWER

J234AWERIJHI423488R4HASF1AWERYER238W98EYR923872837487

1892787ASRJK234234JKAWERJ234AWERIJHI423488R4HASF1AWER

YER238W98EYR9238728374871892787ASRJK234234JKAWERJ234A

WERIJHI423488R4HASF1AWERYER238W98EYR92387283748718927

87ASRJK234234JKAWERJ234AWERIJHI423488R4HASFWR234

</RNIFexample>

</CustomerInfo>

The

SOAP

business

object

would

look

like

that

shown

in

Figure

53.

Note

that

the

RNIFExample

element

contains

an

RNIF

encoded

String

as

its

element

value.

Also,

note

that

elem_name,

elem_ns,

type_name,

type_ns

and

xsdtype

ASI

properties

still

remain

relevant

for

this

business

object

attribute.

Note:

If

the

element

value

returned

by

the

called

data

handler

is

encoded

text,

the

type_name

property

must

be

set

to

base64Binary,

the

type_ns

must

correspond

to

an

xsd

namespace,

and

xsdtype

must

be

set

to

true.

Default

business

object

resolution

For

SOAP

to

business

object

transformations,

the

SOAP

data

handler

and

web

services

connector

adhere

to

a

special

contract

of

exchanging

information

to

resolve

business

object

names.

The

connector

provides

the

SOAP

data

handler

with

a

list

of

business

object

names

mapped

to

BodyName

and

BodyNamespace

pairs.

In

addition,

if

there

is

a

defaultfault

business

object

set

in

the

TLO,

this

information

is

passed

to

the

data

handler.

Given

this

information,

the

SOAP

data

handler

processes

using

the

following

steps:

1.

The

data

handler

receives

a

SOAP

message

2.

The

data

handler

determines

if

this

is

a

SOAP

request,

response

or

fault

message.

a.

If

a

SOAP

request

or

response

message,

the

data

handler

reads

the

BodyName

and

BodyNamespace

from

the

first

child

element

of

the

SOAP-ENV:Body

element.

b.

If

a

SOAP

fault

message,

the

data

handler

reads

the

BodyName

and

BodyNamespace

from

the

first

child

element

of

the

detail

element

in

the

fault

message.

If

there

is

no

detail

element

in

the

fault

message,

the

data

handler

uses

the

defaultfault

business

object

for

this

transformation

Figure

53.

RNIFExample

business

object

Chapter

5.

SOAP

data

handler

139

3.

If

a

defaultfault

business

object

has

not

already

been

chosen,

the

data

handler

attempts

to

match

the

BodyName

and

BodyNamespace

found

in

step

2

to

the

pairs

found

in

the

list

provided

by

the

connector.

If

a

match

is

made,

business

object

resolution

is

successful.

If

no

match

is

made,

the

data

handler

fails

with

a

meaningful

error

message.

Specifying

a

pluggable

name

handler

With

default

business

object

resolution,

you

can

specify

a

pluggable

name

handler

to

determine

the

business

object

to

be

used

in

SOAP-message-to-business-object

transformations.

You

do

this

by

changing

the

MO_DataHandler_DefaultSOAPConfig.

The

MO_DataHandler_DefaultSOAPConfig

has

two

attributes

of

type

string

that

designate:

v

ClassName

The

class

name

for

the

SOAP

data

handler

base

class.

You

do

not

change

this

attribute

value

when

specifying

a

pluggable

name

handler.

v

SOAPNameHandler

The

SOAPNameHandler

attribute

dictates

which

name

handler

is

called.

The

value

of

this

property

should

be

a

class

name.

The

SOAPNameHandler

class

is

an

abstract

class

with

the

following

signatures:

public

static

SOAPNameHandler

createNameHandler(Object

moProps)

public

abstract

String

getBOName(Envelope

msgEnv,

SOAPProperty

prop)

All

name

handlers

written

for

the

SOAP

data

handler

must

implement

the

getBOName

method.

The

object

passed

into

the

createNameHandler

method

sets

the

meta-object

properties

for

this

name

handler.

The

SOAPProperty

passed

into

the

getBOName

method

sets

the

SOAPProperty

passed

by

the

connector

call

to

the

data

handler.

Here

is

how

the

SOAP

data

handler

will

call

the

methods:

SOAPNameHandler

nh

=

SOAPNameHandler.createNameHandler(moProps);

String

boName

=

nh.getBOName(msgEnv,

prop);

If

the

SOAPNameHandler

attribute

has

a

value,

the

SOAP

data

handler

calls

the

specified

name

handler.

If

the

value

does

not

exist,

or

if

the

specified

name

handler

fails

to

get

a

business

object

name,

the

SOAP

data

handler

is

called

by

default

to

perform

default

business

object

resolution.

Default

business

resolution

describes

a

process

whereby

the

connector

delivers

to

the

data

handler

a

list

of

connector-supported

business

object

containers

with

information

such

as

Body

Name,

Body

Namespace,

and

business

object

name.

The

data

handler

uses

this

information

to

create

a

business

object

from

the

SOAP

message.

If

your

name

handler

fails,

the

default

business

object

resolution

occurs.

Limitations

The

sections

below

discuss

data

handler

limitations.

SOAP

style

and

use

guidelines

SOAP

messages

are

created

using

a

style

and

use

defined

by

the

web

service.

The

SOAP

data

handler

provides

the

levels

of

support

shown

in

Table

47.

Table

47.

Style

and

use

guidelines

Style

Use

Parts

defined

using

Data

handler

support

document

literal

element

full

document

literal

type

limited

(see

below)

140

Adapter

for

Web

Services

User

Guide

Table

47.

Style

and

use

guidelines

(continued)

Style

Use

Parts

defined

using

Data

handler

support

document

encoded

element

none

document

encoded

type

limited

(see

below)

rpc

literal

element

none

rpc

literal

type

full

rpc

encoded

element

none

rpc

encoded

type

full

Part

and

part

element

order

When

the

SOAP

data

handler

is

transforming

a

SOAP

message

into

a

business

object

and

the

SOAP

message

follows

either

the

document/literal/type

or

document/encoded/type

formats,

the

message

parts

must

be

in

the

order

described

in

the

WSDL.

For

example,

consider

the

following

WSDL:

<operation

name="GetQuote"

style="document"

...>

<input>

<soap:body

parts="Part1

Part2

Part3

Part4"

use="literal">

</input>

</operation>

<definitions

xmlns:stns="(SchemaTNS)"

xmlns:wtns="(WsdlTNS)"

targetNamespace="(WsdlTNS)">

<schema

targetNamespace="(SchemaTNS)"

elementFormDefault="qualified">

<element

name="SimpleElement"

type="xsd:int"/>

<element

name="CompositElement"

type="stns:CompositeType"/>

<complexType

name="CompositeType">

<all>

<element

name=’elem_a’

type="xsd:int"/>

<element

name=’elem_b’

type="xsd:string"/>

</all>

</complexType>

</schema>

<message...>

<part

name=’Part1’

type="stns:CompositeType"/>

<part

name=’Part2’

type="xsd:int"/>

<part

name=’Part3’

element="stns:SimpleElement"/>

<part

name=’Part4’

element="stns:CompositeElement"/>

</message>

Ö

</definitions>

The

SOAP

message

must

adhere

to

the

order

defined

by

the

parts.

In

the

SOAP

example

below,

notice

that

Part1

elements

precede

Part2,

Part3,

and

Part4

elements.

This

order

must

be

maintained

for

proper

BO

resolution.

<soapenv:body...

xmlns:mns="(MessageNS)"

xmlns:stns="(SchemaTNS)">

<stns:elem_a>123</stns:elem_a>

<stns:elem_b>hello</stns:elem_b>

<soapenc:int>123</soapenc:int>123</soapenc:int>123</soapenc:int>

<stns:SimpleElement>123</stns:SimpleElement>

<stns:CompositeElement>

Chapter

5.

SOAP

data

handler

141

<stns:elem_a>123</stns:elem_a>

<stns:elem_b>hello</stns:elem_b>

</stns:CompositeElement>

</soapenv:body>

When

the

SOAP

message

follows

either

the

document/literal/type

or

document/encoded/type

formats,

part

elements

must

be

in

order,

too.

In

Part1

of

the

example

above,

the

elem_a

tag

must

precede

the

elem_b

tag.

This

limitation

is

dictated

by

the

data

handler’s

business

object

resolution

process.

Since

default

business

object

resolution

for

document

style

makes

use

of

the

first

element’s

body

name

and

namespace,

these

must

be

the

same

element

in

all

SOAP

messages

of

this

particular

request,

response,

or

fault

so

that

the

same

business

object

is

resolved

in

each

case.

Note:

When

the

SOAP

message

follows

either

the

document/literal/type

or

document/encoded/type

formats,

elements

must

not

be

optional.

XML

limitations

The

following

XML

structures,

features,

and

notation

are

not

supported:

v

Multi-dimensional

arrays

v

Partially

transmitted

arrays

v

Sparse

arrays

v

Mixed

content

v

Sequence,

group,

and

choice

model

group

components

with

maxOccurs

greater

than

one

142

Adapter

for

Web

Services

User

Guide

Chapter

6.

Enabling

collaborations

for

request

processing

v

“Request

processing

collaboration

checklist”

This

chapter

describes

the

steps

you

must

follow

to

enable

collaborations

for

request

processing.

Collaborations

use

the

connector

to

invoke

web

services.

Request

processing

collaboration

checklist

Using

Business

Object

Designer

Express

to

generate

business

objects

is

part

of

the

process

of

developing

collaborations.

You

must

perform

the

following

tasks,

described

in

sections

below,

to

generate

business

objects

that

a

collaboration

can

use

to

invoke

web

services:

1.

Identify

the

WSDL

document

either

from

a

URL,

UDDI

or

a

file

system.

You

use

third-party

tools

for

this

task—the

web

services

connector

provides

no

tools

for

this

task.

2.

Open

Business

Object

Designer

Express

and

launch

the

WSDL

ODA.

For

further

information,

see

“Starting

the

WSDL

ODA”

on

page

157.

3.

Configure

the

ODA.

4.

Confirm

your

selections.

5.

Generate

a

top-level

business

object

that

includes

Request

and

(for

synchronous

requests)

Response

and

Fault

business

objects

as

well

as

SOAP

Config

MOs,

Protocol

Config

MOs,

header

container

and

child

objects

and

application-specific

information

appropriate

to

each

object

and

attribute.

The

WSDL

ODA

automates

this

process.

After

you

generate

business

objects,

you

must

perform

tasks

to

enable

a

collaboration

to

invoke

a

web

service

using

the

connector

and

the

SOAP

data

handler.

For

steps

on

developing

a

collaboration,

including

creating

a

collaboration

template

and

object

and

binding

its

ports,

see

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Collaboration

Development

Guide.

For

further

information

on

creating

maps

between

generic

business

objects

and

the

application-specific

business

objects

generated

by

the

WSDL

ODA,

see

IBM

WebSphere

Business

Integration

Server

Express

and

Express

Plus

Map

Development

Guide.

©

Copyright

IBM

Corp.

2004

143

144

Adapter

for

Web

Services

User

Guide

Chapter

7.

Exposing

collaborations

as

web

services

v

“Procedure

checklist”

v

“Identifying

or

Developing

Business

Objects”

on

page

146

v

“Choosing

or

developing

a

collaboration

template”

on

page

146

v

“Binding

the

port

of

a

new

collaboration

object”

on

page

146

v

“WSDL

Configuration

Wizard”

on

page

148

v

“WSDL

Configuration

Wizard

processing

of

business

objects

in

TLO

format”

on

page

150

v

“Processing

requirements

and

exceptions”

on

page

153

This

chapter

describes

the

design-time

procedure

of

exposing

a

collaboration

as

a

web

service.

This

enables

the

connector

to

process

events

when

a

web

service

client

invokes

a

collaboration.

Integrated

design

tools

simplify

the

task

of

exposing

a

collaboration

as

a

web

service.

After

configuring

the

collaboration

and

business

objects

for

web

services,

you

use

the

WSDL

Configuration

Wizard.

The

wizard

creates

a

WSDL

document

and

XML

schema

that

represent

the

collaboration

as

a

web

service.

The

WSDL

outputs

not

only

describe

the

collaboration

but

form

the

basis

for

its

invocation

by

a

web

service

client.

Procedure

checklist

You

must

perform

the

following

tasks,

described

in

the

sections

below,

to

expose

a

collaboration

as

a

web

service:

1.

Identify

or,

as

needed,

develop

the

business

objects

for

use

as

request

and

optionally

(for

synchronous

event

processing)

response

and

fault

SOAP

messages.

There

are

two

ways

to

generate

these

objects:

1)

manually,

using

Business

Object

Designer

Express,

or

2)

if

a

WSDL

interface

file

exists

for

your

web

service,

you

can

use

the

WSDL

ODA

to

generate

the

Request

and

other

(Response

or

Fault)

business

objects.

If

you

are

following

the

second

approach:

a.

Specify

the

name

of

the

collaboration

in

the

Collaboration

WSDL

ODA

configuration

property.

This

value

dictates

the

ws_collab

ASI

in

the

TLO.

b.

Specify

either

a

WSDL_URL

or

UDDI_InquiryAP

I_URL

WSDL

ODA

configuration

property

for

the

WSDL

interface

file

(you

can

also

specify

a

directory

path

to

this

file,

if

it

resides

on

your

network

or

locally).

For

further

information,

see

.“Starting

the

WSDL

ODA”

on

page

157.

2.

Develop

a

collaboration

template

or

choose

an

existing

one

to

use

the

business

objects.

3.

Create

the

collaboration

object

and

its

ports

for

the

web

service.

You

first

must

ensure

that

the

collaboration

object

properly

populates

business

objects.

For

more

information

and

a

step-by-step

procedure

for

creating

a

collaboration

object,

see

the

Implementation

Guide

for

WebSphere

Business

Integration

Server

Express

and

Express

Plus.

Note:

The

collaboration

object

must

have

its

maps

configured

for

the

appropriate

transformations.

Maps

convert

the

business

object

received

in

the

SOAP

request

message

to

the

business

object

used

by

the

©

Copyright

IBM

Corp.

2004

145

collaboration.

Maps

also

convert

the

business

object

returned

by

the

collaboration

to

the

business

object

that

is

embedded

in

the

SOAP

response

message.

For

more

information

about

mapping

and

mapping

procedures,

see

the

Map

Development

Guide.

4.

Use

the

WSDL

Configuration

Wizard

to

create

the

WSDL

document.

The

utility

also

configures

the

web

services

connector.

Note:

The

WSDL

Configuration

Wizard

creates

implementation,

interface,

and

one

or

more

schema

files.

This

document

refers

to

these

outputs

collectively

as

the

WSDL

document.

5.

Publish

the

WSDL

document

as

required.

Note:

The

connector

provides

neither

tools

nor

support

for

publishing

WSDL

documents.

Identifying

or

Developing

Business

Objects

You

use

Business

Object

Designer

Express

to

create

business

objects

and

Connector

Configurator

Express

to

configure

the

connector

to

support

them.

For

more

information

on

Business

Object

Designer

Express,

see

the

Business

Object

Designer

Express.

For

detailed

information

on

web

services

business

objects,

see

Chapter

3,

“Business

object

requirements,”

on

page

25.

Choosing

or

developing

a

collaboration

template

The

collaboration

template

you

choose

or

develop

must

have

one

or

more

scenarios

to

expose

as

a

web

service.

For

further

information

on

collaboration

templates,

see

Collaboration

Development

Guide.

Binding

the

port

of

a

new

collaboration

object

After

you

have

configured

the

port

of

a

collaboration

template

for

a

business

object

type

you

must

create

the

collaboration

object

and

bind

its

port

to

an

instance

of

a

web

services

connector.

To

create

a

new

collaboration

object

and

bind

its

port

to

an

instance

of

the

web

services

connector:

1.

Right

click

the

Collaboration

Objects

folder

and

select

Create

New

Collaboration

Object.

This

displays

the

Create

New

Collaboration

window,

which

displays

the

list

of

templates

(as

shown

in

Figure

54).

146

Adapter

for

Web

Services

User

Guide

2.

Select

a

collaboration

template

from

the

Template

Name

and

enter

a

name

for

the

collaboration

object

in

Collaboration

object

name

field.

This

displays

the

Bind

Ports

window

as

shown

in

Figure

55.

3.

Select

a

port,

click

the

Type

arrow

to

display

the

pull

down

menu

for

the

port

and

choose

WebSerivce

(as

shown

in

Figure

55)

All

instances

of

the

web

services

connector

have

a

ConnectorType

application-specific

property.

By

default,

this

property

is

set

to

WebService.

The

Figure

54.

Create

New

Collaboration

window

Figure

55.

Bind

Ports

window

Chapter

7.

Exposing

collaborations

as

web

services

147

Bind

Collaborations

Port

window

in

System

Manager

uses

the

value

of

the

ConnectorType

property

to

determine

which

connectors

are

web

service

connectors.

4.

Click

the

BindWith

arrow

to

display

a

list

of

connector

instances.

System

Manager

displays

instances

of

connectors

whose

ConnectorType

properties

have

values

set

to

WebService.

Choose

an

instance

of

the

web

services

connector.

(An

example

is

shown

in

Figure

56).

5.

Click

Finish.

You

are

now

ready

to

run

the

WSDL

Configuration

Wizard.

WSDL

Configuration

Wizard

After

you

have

created

the

collaboration

object

and

bound

its

triggering

port

to

an

instance

of

a

web

services

connector,

you

are

ready

to

use

the

WSDL

Configuration

Wizard.

Using

binding,

port

name,

operation

and

other

data

you

specified

for

the

collaboration,

business

object

definition,

and

connector,

the

utility

produces

the

a

WSDL

implementation

file

(*.impl.wsdl),

a

WSDL

interface

file

(*.wsdl),

and

an

xml

schema

file

(*.xsd).

These

files

are

a

composite

of

the

collaboration

exposed

as

a

web

service,

and

the

utility

allows

you

to

specify

whether

to

generate

these

as

separate

files

or

as

one

file.

The

utility

supports

SOAP

over

HTTP,

HTTPS,

and

JMS

protocols.

Configuration

information

for

the

protocol

listener

framework

is

retrieved

from

the

connector-specific

property

ProtocolListenerFramework.

This

property

also

makes

the

list

of

listeners

available.

Running

the

wizard

To

run

the

WSDL

Configuration

Wizard:

1.

Right-click

a

collaboration

object

that

you

have

configured

for

web

services

and

choose

Expose

as

a

web

service

in

the

popup

menu.

The

WSDL

Configuration

Wizard

displays

as

shown

in

Figure

57

Figure

56.

Selecting

an

instance

of

the

web

services

connector

148

Adapter

for

Web

Services

User

Guide

As

shown

in

Figure

57,

the

columns

are

as

follows:

v

Port

(Connector)

The

triggering

port

on

the

collaboration

object

that

is

bound

to

a

web

services

connector.

The

wizard

gets

this

information

from

the

collaboration

object.

v

Operation

If

the

business

object

is

a

TLO,

the

wizard

gets

this

information

from

the

Request

business

object’s

SOAP

Config

Mo

BodyName

attribute.

If

the

business

object

is

a

non-TLO,

then

the

wizard

combines

the

business

object

name

and

the

port

name.

v

Business

Object

Used

to

create

the

schema.

The

wizard

gets

this

information

from

the

connector’s

supported

business

objects

for

this

triggering

port.
2.

Enter

the

following

as

needed:

v

Service

Name

By

default,

the

name

you

used

to

describe

the

collaboration

object

v

Directory

Name

Where

the

adapter

for

web

services

and

collaboration

templates

and

objects

reside

v

Target

NameSpace

The

URL

for

the

collaboration

being

exposed

as

a

web

service.

v

Collaboration

Ports

The

information

in

these

fields

are

as

specified

in

the

Bind

Ports

window

of

the

collaboration

object

configuration

procedure.

v

Collaboration

Mode

for

Non-TLO

This

does

not

apply

if

you

are

using

TLOs.

Otherwise,

if

you

using

a

non-TLO

object

as

input,

you

must

specify

synchronous

or

asynchronous.

Figure

57.

WSDL

Configuration

Wizard

Chapter

7.

Exposing

collaborations

as

web

services

149

v

Schema

and

WSDL

Specify

whether

you

want

these

outputs

in

a

single

file

or

in

separate

files.
3.

Click

Finish.

The

utility

generates

outputs

based

on

the

inputs

and

specifications

you

entered,

all

of

which

are

summarized

in

the

next

section.

WSDL

Configuration

Wizard

processing

of

business

objects

in

TLO

format

The

configuration

wizard

creates

a

WSDL

operation

for

each

triggering

port

of

a

collaboration

object

that

is

bound

to

a

web

services

connector.

The

creation

of

the

operation

is

based

on

the

business

objects

that

are

associated

with

the

invocation

of

this

collaboration.

The

configuration

wizard

determines

that

a

business

object

is

in

the

TLO

format

by

reading

the

object-level

ASI

ws_eventtlo.

If

the

ASI

property

is

set

to

true,

the

business

object

is

a

TLO.

Using

the

TLO,

the

following

WSDL

properties

are

found:

v

Operation

Name

and

BodyNS

When

the

wizard

finds

business

objects

in

TLO

format,

it

creates

an

operation

name

using

the

BodyName

property

of

the

SOAP

Config

MO

within

the

SOAP

Request

business

object

of

the

TLO.

Similarly,

the

wizard

determines

the

message

namespace

to

be

the

BodyNS

property

in

the

same

SOAP

Config

MO

v

Execution

Mode

By

inspecting

the

ws_mode

property

from

the

business

object

level

ASI

of

the

TLO,

the

wizard

determines

that

the

mode

is

either

synchronous

or

asynchronous,

and

creates

a

REQUEST_RESPONSE

or

ONE_WAY

WSDL,

respectively.

To

create

WSDL

operations

based

on

TLOs,

a

collaboration

can

be

configured

in

two

ways,

with

and

without

maps.

TLOs

with

maps:

A

collaboration

is

generally

configured

to

accept

Generic

Business

Object

(GBO)

requests.

That

is,

the

collaboration

template

triggering

ports

subscribe

to

GBOs.

To

use

TLOs

in

this

case,

the

collaboration

must

be

bound

to

a

web

services

connector,

and

the

connector

must

support

the

transformation

of

the

GBO

to

TLOs

via

maps.

Figure

58

shows

this

scenario.

When

the

collaboration

and

connector

are

configured

in

this

way,

the

wizard

determines

that

the

TLO

business

object

will

be

used

to

create

the

operations

described

in

the

WSDL

document.

This

determination

is

made

by

inspecting

the

connector-supported

business

objects

and

associated

maps.

It

is

important

for

the

run-time

processing

of

the

web

services

connector

that

the

configured

maps

always

transform

the

collaboration’s

GBO

to

one

and

only

one

TLO.

Also,

it

is

important

that

the

source

and

destination

business

objects

of

the

inbound

map

translate

to

the

destination

and

source

business

objects

of

the

outbound

map,

respectively.

TLOs

without

maps:

The

wizard

also

supports

processing

TLOs

without

maps.

In

this

case,

the

collaboration

template’s

triggering

ports

subscribe

to

TLOs

directly.

Figure

58.

TLO

with

map

150

Adapter

for

Web

Services

User

Guide

Because

the

web

services

connector

supports

the

TLOs,

maps

are

not

required.

Figure

59

illustrates

this

scenario.

When

the

collaboration

and

connector

have

been

configured

in

this

way,

the

wizard

uses

the

TLO

business

object

found

in

the

collaboration

to

create

the

operations

described

in

the

WSDL

document.

The

wizard

determines

that

no

maps

are

configured

for

this

port.

WSDL

Configuration

Wizard

processing

of

business

objects

in

non-TLO

format

Support

for

non-TLO

business

objects

allows

you

to

use

pre-existing

collaborations

and

maps

for

exposing

as

web

services.

For

this

reason

the

wizard

also

supports

creating

WSDL

operations

using

business

objects

that

are

not

in

TLO

format.

Similar

to

the

TLO

process,

the

wizard

determines

that

a

business

object

is

in

non-TLO

format

by

reading

the

object-level

ASI

ws_eventtlo.

If

the

ASI

property

does

not

exist

or

exists

but

is

set

to

something

other

than

true,

this

business

object

is

a

non-TLO.

A

non-TLO

is

any

business

object

that

does

not

adhere

to

the

web

services

TLO

structure.

Using

the

non-TLO,

the

wizard

discovers

the

following

properties:

v

Operation

Name

and

BodyNS

When

the

wizard

finds

business

objects

in

non-TLO

format,

it

creates

an

operation

name

using

a

combination

of

the

collaboration

name,

the

business

object

name,

and

the

port

name.

The

Body

Namespace

for

the

WSDL

operation

is

configured

using

the

Target

Namespace

entry

in

the

WSDL

Configuration

Wizard.

v

WSCollaborations

The

wizard

creates

a

hierarchy

of

properties

in

the

web

services

connector

that

includes

a

BO

Name,

a

SOAP

Body

Name,

a

SOAP

Body

Namespace,

and

a

Mode

for

each

WSDL

operation

in

a

port

of

a

collaboration

that

is

exposed

as

a

web

service.

Figure

60

shows

a

sample

WSCollaborations

property:

TLO

Collaboration Web services
connector

Figure

59.

TLO

without

map

Chapter

7.

Exposing

collaborations

as

web

services

151

v

Execution

Mode

The

Execution

mode

for

the

WSDL

operation

is

configured

using

the

Collab

Mode

for

Non-TLO

selection

button

in

the

WSDL

Configuration

Wizard.

To

create

WSDL

operations

based

on

non-TLOs,

a

collaboration

can

be

configured

in

two

ways,

with

and

without

maps.

Non-TLOs

with

maps:

Collaborations

are

generally

configured

to

accept

Generic

Business

Object

(GBO)

requests.

At

the

same

time,

there

may

be

pre-existing

maps

that

transform

the

GBO

from

the

collaboration

to

a

non-TLO

business

object.

Figure

61

shows

this

scenario.

In

this

case,

the

wizard

uses

the

non-TLO

business

object

to

create

WSDL

operations

described

in

the

WSDL

document.

It

is

important

for

the

run-time

processing

of

the

web

services

connector

that

the

configured

maps

always

transform

the

collaboration’s

GBO

to

one

and

only

one

non-TLO.

Also,

it

is

important

that

the

source

and

destination

business

objects

of

the

inbound

map

translate

exactly

to

the

destination

and

source

business

objects

of

the

outbound

map

respectively.

Non-TLOs

without

maps:

In

highly

specialized

cases,

collaborations

may

be

configured

to

accept

requests

from

business

objects

other

than

GBOs.

In

this

case,

Figure

60.

WSCollaborations

Figure

61.

Non-TLO

with

map

152

Adapter

for

Web

Services

User

Guide

the

non-TLO

is

a

direct

business

object

for

the

collaboration,

and

no

maps

exist.

Figure

62

shows

this

scenario.

In

this

case,

the

wizard

determines

that

no

maps

are

configured

for

this

port,

so

it

uses

the

non-TLO

business

object

to

create

WSDL

operations

described

in

the

WSDL

document.

Processing

requirements

and

exceptions

The

sections

below

discuss

requirements

of

the

WSDL

Configuration

Wizard

that

apply

to

all

types

of

objects

(TLOs

and

non-TLOs)

unless

otherwise

explicitly

mentioned.

For

further

information

on

business

object

requirements

for

web

services

TLOs,

see

Chapter

3,

“Business

object

requirements,”

on

page

25.

Note:

Among

the

business

object

ASI

that

the

WSDL

tool

reads,

only

the

following

can

have

internationalized

characters:

v

elem_name

v

elem_ns

v

attr_name

v

attr_ns

v

BodyName

v

BodyNS

v

type_name

v

type_ns

Support

for

Use

property

in

SOAP

Config

MO:

The

WSDL

Configuration

Wizard

supports

the

Use

property

in

SOAP

Config

MOs,

but

throws

an

error

if

the

Use

value

in

a

SOAP

Request

BO

and

the

corresponding

SOAP

Response

BO

are

different.

You

can

set

the

Use

value

to

literal

or

encoded

to

generate

a

WSDL

document.

For

more

information

on

the

Use

property

and

its

values,

see

“Style

and

Use

impact

on

SOAP

messages”

on

page

114.

Support

for

Style

in

SOAP

Config

MO:

Only

rpc

style

is

supported

for

exposing

collaborations

as

web

services.

If

the

Style

is

specified

as

document

in

the

SOAP

Config

MO,

the

wizard

will

throw

an

error.

Fault

processing:

The

details

attribute

inside

a

SOAP

Fault

business

object

can

have

one

child

attribute

only.

Otherwise,

the

utility

generates

an

error.

The

utility

accepts

Fault

business

objects.

If

it

encounters

multiple

Fault

business

objects,

the

utility

processes

the

header

container

of

the

first

or

default

fault

business

object.

Processing

is

as

follows:

v

No

Namespace

is

specified

for

the

soap:fault

element

inside

the

binding

section.

v

Fault

is

always

specified

using

the

document

style

and

use

literal.

Figure

62.

Non-TLO

without

map

Chapter

7.

Exposing

collaborations

as

web

services

153

v

Message

parts

are

specified

using

the

element

attribute.

Header

fault

processing:

A

header

fault

is

processed

as

soap:headerfault,

a

child

element

of

soap:header

inside

the

WSDL

document

binding

section.

The

header

fault

is

processed

using

the

headerfault

ASI

specified

in

the

header

child

business

object

as

follows:

v

No

Namespace

is

specified

for

the

soap:headerfault

element.

v

A

header

fault

is

always

specified

using

the

document

style

and

use

literal.

v

Message

parts

are

specified

using

the

element

attribute

instead

of

the

type

attribute.

Header

Processing:

Multiple

header

attributes

are

specified

as

SOAP

header

child

business

objects

inside

a

SOAP

header

container

business

object.

A

Header

container

business

object

is

identified

by

its

ASI:

soap_location=SOAPHeader.

During

utility

processing,

a

soap:header

element

is

created

inside

binding

section

for

each

of

the

attributes

inside

the

header

container

business

object

and

the

following

rules

apply:

v

The

header

is

always

specified

using

document

style

and

use

literal.

v

Message

parts

are

specified

using

the

element

attribute

instead

of

the

type

attribute.

v

If

no

elem_ns

is

specified,

headers

are

written

to

the

Body

Namespace.

Note:

The

header

container

business

object

can

be

a

child

of

SOAP

Request,

Response

or

Fault

business

objects.

The

namespace

attribute

is

not

specified

for

the

soap:header

element.

elem_ns

ASI

processing:

The

utility

ignores

elem_ns

ASI

at

the

message

part

level.

Instead,

elem_ns

is

used

in

second-

and

lower-level

attributes.

Second-

level

business

object

attributes

can

be

defined

in

a

separate

namespace

if

elem_ns

is

specified.

JMS

protocol

processing:

SOAP/JMS

binding

in

the

port

section

of

the

WSDL

document

contains

the

jms:address

element.

The

following

is

an

example

of

jms:address

element.

(Attributes

suffixed

with

″?″

are

optional).

<jms:address

destinationStyle

=

"queue"

jmsVendorURI

=

"http://ibm.com/ns/mqseries"?

initialContextFactory

=

"com.ibm.NamingFactory"?

jndiProviderURL

=

"iiop://something:900/wherever"?

jndiConnectionFactoryName

=

"orange"

jndiDestinationName

=

"fred"

jmsProviderDestinationName="trash"

/>

If

the

LookupQueuesUsingJNDI

connector

property

is

set

to

true,

the

value

of

InputQueue

property

corresponds

to

the

jndiDestinationName

attribute

of

the

jms:address

element

of

the

SOAP/JMS

binding.

The

jms:address

element

is

specified

in

the

wsdl:port

section.

If

LookupQueueUsingJNDI

is

set

to

false,

then

the

jmsProviderDestinationName

attribute

is

set

to

InputQueue.

InputQueue

is

the

connector

property

available

under

the

Listener_JMS

hierarchical

property.

The

initialContextFactory,

jndiProviderURL

and

jndiConnectionFactoryName

properties

will

be

specified

only

for

synchronous

processing.

HTTP

protocol

processing:

A

sample

port

section

from

a

WSDL

document

is

shown

below:

154

Adapter

for

Web

Services

User

Guide

<service

name="StockQuoteWebService">

<port

name="StockQuoteWebServicePort"

binding=

"intf:StockQuoteBinding">

<soap:address

location=

"http://localhost:8080/wbia/webservices/stockquoteservice"/>

</port>

</service>

The

WSDL

Configuration

Wizard

uses

the

value

of

host

name

and

the

port

from

the

context

path.

If

the

context

path

contains

only

the

relative

path

without

the

host

name

and

port,

then

the

value

of

host

name

and

port

property

located

under

the

Listener_HTTP

configuration

property

will

be

used

to

specify

the

location

attribute

in

soap:address

xml

element.

Chapter

7.

Exposing

collaborations

as

web

services

155

156

Adapter

for

Web

Services

User

Guide

Chapter

8.

Using

the

WSDL

ODA

v

“Starting

the

WSDL

ODA”

v

“Running

the

WSDL

ODA”

on

page

158

v

“Configuring

the

agent”

on

page

158

v

“Specifying

the

WSDL

document”

on

page

160

v

“Confirming

selections”

on

page

162

v

“Generating

the

objects”

on

page

162

v

“Limitations”

on

page

163

Note:

The

Web

Services

Description

Language

(WSDL)

Object

Discovery

Agent

(ODA)

is

used

for

generating

business

objects

for

request

processing

and,

when

a

WSDL

Interface

file

is

available,

for

event

processing.

Collaborations

use

the

connector

to

invoke

web

services.

Or

you

can

expose

collaborations

as

web

services.

Web

services

are

described

using

WSDL

(Web

Services

Description

Language).

This

chapter

describes

how

to

use

the

Web

Services

Description

Language

(WSDL)

Object

Discovery

Agent

(ODA)

to

generate

business

objects.

The

connector

and

SOAP

data

handler

use

these

business

objects

when

collaborations

invoke

a

web

service

and

when

exposing

collaborations

as

web

services.

You

use

the

WSDL

ODA

to

generate

business

objects

for

two

purposes:

1.

The

WSDL

ODA

can

take

a

WSDL

implementation

file

and

generate

business

objects

for

a

collaboration

to

invoke

an

external

web

service.

2.

The

WSDL

ODA

can

take

a

WSDL

interface

file

and

generate

business

objects

for

a

collaboration

that

is

exposed

as

a

web

service.

You

can

launch

the

WSDL

ODA

when

you

use

the

Business

Object

Designer

Express.

The

WSDL

ODA

reads

a

WSDL

document

and

creates

the

business

objects

required

by

the

connector

and

SOAP

data

handler.

The

WSDL

ODA

simplifies

the

job

of

business

object

development.

Note:

The

WSDL

ODA

handles

SOAP/HTTP

and

SOAP/JMS

bindings

in

a

WSDL.

Starting

the

WSDL

ODA

You

can

start

the

WSDL

ODA

using

one

of

the

following

scripts:

v

On

Windows:

–

start_WSDLODA.bat

Note:

You

can

also

start

the

WSDL

ODA

using

the

shortcut

that

the

Installer

automatically

creates

for

Windows

environments.
v

On

OS/400,

use

one

of

the

following

methods:

–

From

the

Windows

system

where

WBI

SE

Console

for

OS/400

is

installed,

select

Programs>IBM

Websphere

Business

Integration

Console

>Console

.

Then

specify

the

OS/400

system

name

or

IP

address

and

a

user

profile

and

password

that

has

*JOBCTL

special

authority.

Select

the

ODA

from

the

list

of

ODAs

and

select

the

Start

ODA

button.

–

From

the

OS/400

command

line,

to

start

the

ODA

as

a

batch

job,

run

CL

Command

QSH

and

from

the

QSHELL

environment

run:

©

Copyright

IBM

Corp.

2004

157

/QIBM/ProdData/WBIServer43/bin/submit_oda.sh

pathToODAStartScript

jobDescriptionName

where

pathToODAStartScript

is

the

full

path

to

the

ODA

start

script

and

jobDescriptionName

is

the

name

of

the

job

description

to

use

in

the

QWBISVR43

library.

–

From

the

OS/400

command

line,

to

start

the

ODA

as

a

non-batch

job,

run

the

CL

Command

QSH

and

from

the

QSHELL

command

entry,

run

the

ODA

startup

script

directly:

start_ODAName.sh

v

On

Linux:

–

start_WSDLODA.sh

You

select,

configure,

and

run

the

WSDL

ODA

using

Business

Object

Designer

Express.

Business

Object

Designer

Express

locates

each

ODA

by

the

name

specified

in

the

AGENTNAME

variable

of

each

script

or

batch

file.

Running

the

WSDL

ODA

An

Object

Discovery

Agent

(ODA)

simplifies

the

work

of

building

business

objects

for

request

processing.

Business

Object

Designer

Express

provides

a

graphical

interface

to

all

available

ODAs,

and

helps

you

find

the

agent

you

need.

The

WSDL

ODA

is

named,

by

default,

WSDLODA.

The

name

as

it

appears

in

the

WSDL

Wizard

depends

on

the

value

of

the

AGENTNAME

variable

in

the

start_WSDLODA.bat

file

or

start_WSDLODA.sh

file.

For

more

on

ODAs

and

business

object

definitions

and

how

to

configure,

start

and

use

ODAs,

see

the

IBM

WebSphere

Business

Object

Development

Guide.

You

are

encouraged

to

consult

that

document

as

needed

while

following

the

procedures

below.

After

starting

the

Object

Discovery

Agent,

follow

these

steps

to

launch

the

WSDL

ODA:

1.

Open

Business

Object

Designer

Express.

2.

From

the

File

menu,

select

the

New

Using

ODA...

submenu.

Business

Object

Designer

Express

displays

the

Select

Agent

dialog

box

in

the

Business

Object

Wizard.

3.

Click

the

Find

Agents

button

to

display

all

running

agents

and

select

the

WSDL

ODA..

If

Business

Object

Designer

Express

does

not

locate

your

WSDL

ODA,

check

the

setup

of

the

ODA.

4.

Select

the

WSDL

ODA

in

the

Located

Agents

pane

list

and

click

Next.

This

displays

the

Configure

Agent

wizard

window,

which

shows

the

configuration

properties

you

need

to

specify.

Configuring

the

agent

Figure

63

shows

the

Configure

Agent

window

of

the

WSDL

ODA

Business

Object

Wizard.

158

Adapter

for

Web

Services

User

Guide

Table

48

lists

the

properties

you

must

configure

for

the

WSDL

ODA.

Note:

The

first

time

you

use

the

WSDL

ODA,

you

must

specify

values

for

each

configuration

properties.

After

doing

so,

you

can

save

the

property

values

in

a

profile

by

clicking

the

Save

button.

The

next

time

you

use

the

WSDL

ODA,

you

can

select

the

saved

profile

from

the

“Select

profile”

box.

Table

48.

WSDL

ODA

configuration

properties

Property

Type

Required

Default

Description

WSDL_URL

String

Yes,

when

not

specifying

a

UDDI

None

The

URL

of

the

WSDL

document.

This

value

can

also

be

set

to

the

absolute

path

to

a

local

WSDL

file.

You

can

specify

the

URL

in

a

native

language.

UDDI_InquiryAP

I_URL

String

Yes

for

UDDI

None

The

URL

of

the

UDDI

inquiry

API.

WebServiceProvider

String

Yes

for

UDDI

None

The

name

of

the

target

web

service

provider.

This

is

normally

the

Business

name

as

published

on

the

UDDI

registry.

This

entry

is

case

sensitive

and

requires

English

characters

only.

WebService

String

Yes

for

UDDI

The

name

of

the

web

service.

This

entry

is

case

sensitive

and

requires

English

characters

only.

Figure

63.

Configure

Agent

window

Chapter

8.

Using

the

WSDL

ODA

159

Table

48.

WSDL

ODA

configuration

properties

(continued)

Property

Type

Required

Default

Description

MimeType

String

No

xml/soap

The

mime

type

of

the

data

handler

that

the

connector

invokes.

This

is

set

in

the

business

object

TLO

as

the

default

value

and

must

be

in

English

characters

only.

BOPrefix

String

No

SOAP_

This

is

appended

to

the

front

of

every

business

object

created.

User

configurable

(English

characters

only)

up

to

eight

characters.

BOVerb

String

Yes

Create

The

verb

set

in

the

SOAP

Config

MO

of

the

Request,

and,

optionally,

Response,

and

Fault

business

objects.

Collaboration

String

No

None

This

value

dictates

the

ws_collab

ASI

in

the

TLO

and

is

mandatory

when

generating

objects

for

event

processing.

The

next

section

describes

how

to

specify

the

WSDL

document

in

the

Configure

Agent

window.

Specifying

the

WSDL

document

Web

service

business

objects

are

generated

from

WSDL

documents.

This

section

shows

you

how

to

select

and

specify

the

source

of

a

WSDL

document

in

the

Configure

Agent

window

of

the

ODA.

The

WSDL

document

may

reside

on

the

local

file

system

or

at

a

URL

location

on

the

web

or

in

a

UDDI

registry—you

specify

where

the

WSDL

document

resides

and

the

WSDL

ODA

retrieves

it.

(A

complete

WSDL

service

description

may

consist

of

more

than

one

document.)

Getting

a

WSDL

document

from

a

URL

location

As

shown

in

Figure

63

above:

1.

Specify

the

URL

for

the

WSDL

document

in

the

configuration

property

WSDL_URL

The

ODA

then

retrieves

the

list

of

web

services

from

the

WSDL

document,

resolving

the

URLs

of

imported

documents.

The

WSDL_URL

property

also

allows

you

to

specify

the

location

of

the

WSDL

file

on

the

local

file

system

using

URL

syntax

(for

example:

file://C:/test/wsdl)

or

an

absolute

path

(for

example:

C:\test\wsdl).

You

must

ensure

that

the

ODA

has

access

to

this

document

and

its

dependencies

(all

the

imported

documents).

2.

Click

Next.

160

Adapter

for

Web

Services

User

Guide

The

ODA

queries

the

URL

for

the

web

service

provider

and

retrieves

the

list

of

services

defined

in

the

WSDL

at

this

URL

location

and

then

displays

the

list

as

shown

in

Figure

64.

Note:

The

WSDL

ODA

displays

the

ports

that

have

SOAP/JMS

or

SOAP/HTTP

bindings

only

and

excludes

other

types

of

bindings.

3.

Select

one

and

only

one

of

the

operations

from

the

list

for

the

port

(the

selectable

operations

are

highlighted).

You

cannot

select

the

service

or

port

nodes,

which

are

for

display

purposes

only.

Note

that

WSDL

operations

may

be

of

several

types:

ONE_WAY,

REQUEST_RESPONSE,

SOLICIT_RESPONSE,

and

NOTIFICATION.

The

WSDL

ODA

supports

and

displays

only

REQUEST_RESPONSE

and

ONE_WAY

operations.

4.

Click

Next

and

go

to

“Confirming

selections”

on

page

162.

Getting

a

WSDL

document

from

a

UDDI

registry

The

ODA

can

also

retrieve

a

WSDL

document

from

a

UDDI

registry

instead

of

a

URL

location.

For

this

to

occur:

1.

Specify

the

following

properties

in

the

Configure

Agent

window

for

your

“search

key”:

v

UDDI_InquiryAPI_URL

(for

example:

https://uddi.ibm.com/ubr/inquiryapi)

v

WebServiceProvider

(for

example:

IBM

Corporation)

v

WebService

(for

example:

StockQuoteService)

v

The

WSDL

ODA

uses

exact

name

match

(findQualifier)

for

inquiry

within

the

UDDI

registry.

Ensure

that

you

are

entering

the

right

values

for

the

parameters.

You

can

use

a

regular

UDDI

browser

to

find

services

provided

by

the

service

provider.

The

WSDL

ODA

uses

these

properties,

which

are

described

in

Table

48,

to

connect

to

the

UDDI

registry.

2.

Click

Next.

Figure

64.

Select

Source

window

Chapter

8.

Using

the

WSDL

ODA

161

The

ODA

queries

the

UDDI

registry

for

the

web

service

provider

and

retrieves

the

list

of

services

matching

the

web

service

parameter

you

specified.

The

WSDL

ODA

displays

the

list

of

services

offered

by

the

web

service

provider

in

a

window

like

that

shown

in

Figure

64

When

the

UDDI

query

returns

more

than

one

match,

the

WSDL

ODA

displays

them

appended

with

an

underscore

(_)

and

a

sequence

number.

For

example:

StockQuoteService_1,

StockQuoteService_2,

and

so

on.

Note:

The

WSDL

ODA

displays

the

ports

that

have

SOAP/JMS

or

SOAP/HTTP

bindings

only.

3.

Select

one

and

only

one

of

the

operations

from

the

list

for

the

port.

You

cannot

select

the

service

or

port

nodes,

which

are

for

display

purposes

only.

Note

that

WSDL

operations

may

be

of

several

types:

ONE_WAY,

REQUEST_RESPONSE,

SOLICIT_RESPONSE,

and

NOTIFICATION.

The

WSDL

ODA

supports

and

displays

only

REQUEST_RESPONSE

and

ONE_WAY

operations.

4.

Click

Next

and

go

to

“Confirming

selections”

Note:

The

connector

supports

the

UDDI

Version

2

API

only.

Accordingly,

you

cannot

retrieve

WSDL

from

UDDI

registries

that

do

not

support

UDDI

Version

2.

Confirming

selections

After

selecting

a

web

service

operation

source,

the

WSDL

ODA

Business

Object

Wizard

displays

a

confirmation

screen

like

that

shown

in

Figure

65:

1.

Confirm

your

selections.

2.

Click

Next

and

go

to

“Generating

the

objects.”

Generating

the

objects

After

you

confirm

your

WSDL

document

sources,

the

WSDL

ODA

generates

the

business

objects

and

meta-objects

for

the

web

service

you

wish

to

invoke

or

for

the

collaboration

you

want

to

expose

as

a

web

service.

Figure

65.

Confirm

window

162

Adapter

for

Web

Services

User

Guide

Note:

The

WSDL

ODA

cannot

automatically

select

a

key

attribute

for

the

top-level

business

object.

For

business

objects

at

all

other

levels,

the

WSDL

ODA

sets

the

first

attribute

as

the

key.

Accordingly,

when

you

save

WSDL

ODA-generated

objects

in

Business

Object

Designer

Express,

an

error

message

informs

you

that

the

top-level

object

is

missing

a

key

attribute.

Assign

a

key

attribute

that

reflects

your

business

data

and

business

object

requirements,

then

re-save

the

objects.

Use

caution

when

selecting

the

key

attribute;

it

is

used

in

event

sequencing

and

may

lead

to

performance

issues

if

not

selected

carefully.

1.

Check

Save

business

objects

to

a

file,

or

check

Open

the

business

objects

in

separate

windows.

The

latter

choice

launches

the

Business

Object

Designer

Express

and

opens

the

business

objects

in

that

application.

2.

Check

Shutdown

ODA

and

click

Finish.

For

request

processing,

the

call

to

the

web

service

must

have

a

request

and,

if

synchronous,

a

response

and

fault

messages.

For

event

processing,

the

collaboration

exposed

must

have

a

request

and,

if

synchronous,

a

response

and

fault

messages.

The

WSDL

ODA

generates

business

objects

for

each

of

these

including

the

application-specific

information

(ASI)

at

every

level

as

well

as

SOAP

data

handler,

and

protocol

Config

MOs.

The

SOAP

bindings

in

WSDL

document

determine

the

structure

of

SOAP

message.

For

more

on

business

object

structure,

see

Chapter

3,

“Business

object

requirements,”

on

page

25.

Limitations

Table

49

describes

WSDL

ODA

support

for

various

combinations

of

attributes

style,

use,

and

part

definitions

using

type

and

element.

Table

49.

WSDL

ODA

limitations

Style/Use/Parts

defined

using

Description

rpc/encoded/type

Supported

Figure

66.

Save

window

Chapter

8.

Using

the

WSDL

ODA

163

Table

49.

WSDL

ODA

limitations

(continued)

Style/Use/Parts

defined

using

Description

rpc/encoded/element

Supported

rpc/literal/type

Supported

rpc/literal/element

Supported

doc/encoded/type

Not

supported

doc/encoded/element

Not

supported

doc/literal/type

Supported

doc/literal/element

Supported

The

WSDL

ODA

can

retrieve

WSDL

files

that

are

completely

self-contained

(in

one

file)

or

are

separated

into

an

implementation

file

containing

the

service

element,

an

interface

file

containing

all

the

other

WSDL

elements

including

types,

messages,

portTypes,

and

bindings,

and

one

or

more

files

for

the

schemas.

The

WSDL

ODA

is

not

able

to

successfully

retrieve

WSDL

files

that

have

more

than

one

interface

file,

for

example,

with

messages

and

portTypes

in

one

file

and

bindings

in

another

file.

Schema

in

the

WSDL

document

must

be

self-contained

in

terms

of

namespace

prefixes.

You

cannot

use

a

namespace

prefix

that

is

defined

in

the

<definitions>/<types>

element

of

the

WSDL

document

in

the

<schema>

element

that

is

a

child

of

the

<types>

element.

You

need

to

re-define

the

namespace

prefix

on

the

<schema>

element

if

it

is

to

be

used

in

the

sub-elements

of

the

<schema>

element.

The

following

is

an

example

of

a

schema

that

is

not

self-contained:

<definitions

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:NS="NS">

<types>

<schema

xmlns="http://www.w3.org/1999/XMLSchema">

<element

name="NSElem"

type="NS:NSType"/>

</schema>

</types>

</definitions>

Namespace

prefix

NS

is

defined

on

the

<definitions>

element

and

is

used

without

re-definition

on

the

<schema>

element.

Hence

the

WSDL

ODA

will

throw

an

error.

To

work

around

this

limitation,

re-define

the

namespace

prefix

NS

on

the

<schema>

element

as

shown

below:

<definitions

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:NS="NS">

<types>

<schema

xmlns="http://www.w3.org/1999/XMLSchema"

xmlns:NS="NS">

<element

name="NSElem"

type="NS:NSType"/>

</schema>

</types>

</definitions>

164

Adapter

for

Web

Services

User

Guide

Chapter

9.

Troubleshooting

The

chapter

describes

problems

that

you

may

encounter

when

starting

up

or

running

the

connector.

Start-up

problems

Problem

Potential

solution

/

explanation

Algorithm

Not

Supported/Algorithm

’SSL’

not

available

This

error

occurs

when

the

SSL

version

specified

in

the

Connector

Configurator

Express

is

not

supported

by

your

JSSE

provider.

Solution:

check

JSSE

provider’s

documentation

for

the

supported

SSL

versions.

For

IBM

JSSE

make

sure

your

java.security

file

in

the

ProductDir/lib/security

directory

has

the

following

entry

security.provider.<number>=com.ibm.jsse.

IBMJSSEProvider

where

<number>

is

the

preference

order

for

loading

the

security

provider.

Error

loading

keystore:Keystore

file

path:″<path>″

incorrectly

specified:KeyStore

not

found

This

error

occurs

if

you

specify

an

incorrect

path

for

the

keystore

and/or

truststore

files.

Solution:

check

the

keystore

file

path

specified

in

the

SSL->KeyStore

property

in

the

Connector

Configurator

Express.

Also,

if

you

are

using

truststore,

check

the

truststore

file

path

specified

in

SSL->TrustStore

property

in

the

Connector

Configurator

Express.

KeyManagementError:

KeyStore

is

tampered

with,

KeyManagement

error

This

error

occurs

if

your

keystore

and/or

truststore

have

been

tampered

with

or

otherwise

corrupted.

This

error

may

also

occur

if

you

have

specified

an

incorrect

value

for

the

password.

Solution:

ensure

that

the

keystore

has

not

been

tampered.

Try

recreating

the

keystore.

Also

make

sure

you

have

entered

a

correct

password

in

the

SSL->KeyStorePassword

and

SSL->TrustStorePassword

connector

properties.

Error

loading

certificates

from

keystore

This

error

occurs

if

your

certificates

and/or

keystore,

truststore

have

been

tampered

with.

This

error

may

also

occur

if

you

have

specified

an

incorrect

value

for

the

password.

Solution:

check

to

see

if

the

certificate,

keystore

or

truststore

have

been

tampered

with.

Also,

ensure

that

you

have

specified

a

correct

password

in

the

SSL->KeyStorePassword

and

SSL->TruststorePassword

connector

properties.

Error

creating

the

server

socket,

terminating:

error

This

error

occurs

if

the

SOAP/HTTP

or

SOAP/HTTPS

protocol

listener

cannot

bind

to

the

port

specified

in

connector

properties.

Solution:

check

the

ports

specified

for

all

of

the

SOAP/HTTP

and

SOAP/HTTPS

protocol

listeners.

If

the

same

port

is

specified

for

more

than

one

listener,

only

one

of

the

listeners

can

start

up.

Additionally,

check

if

you

have

any

other

service

running

on

that

port.

If

so,

then

you

may

want

to

choose

a

different

port

for

the

protocol

listeners.

KeyManagementError:UnrecoverableKeyException,

Keys

could

not

be

recovered

This

error

occurs

if

the

keystore

or

truststore

cannot

be

used.

Solution:

create

a

new

keystore.

©

Copyright

IBM

Corp.

2004

165

Problem

Potential

solution

/

explanation

SSL

Handshake

Exception:

Unknown

CA

This

occurs

if

you

do

not

have

a

CA

certificate

in

your

truststore.

Solution:

check

whether

the

CA’s

certificate,

as

well

as

its

self-signed

certificates,

reside

in

the

truststore.

Also,

ensure

that

the

DN

of

the

certificate

has

the

host

name

(preferably

the

IP

address).

You

notice

excessive

JSSE

logging

in

your

log

file.

If

you

do

not

want

to

see

all

of

the

underlying

JSSE

details

on

your

console,

set

the

value

of

SSL->SSLDebug

property

in

the

Connector

Configurator

Express

to

false.

You

have

specified

a

protocol

listener

but

the

listener

is

not

getting

initialized;

you

see

the

following

warning

message

in

the

connector:

Skipping

Protocol

Listener

Property

Set

"SOME_LISTENER_NAME"

with

protocol

property

"":

unable

to

determine

the

protocol

listener

class.]

The

connector

was

unable

to

extract

a

valid

value

for

the

Protocol

property

of

the

protocol

listener.

Valid

values

are

soap/http,

soap/https,

or

soap/jms.

Solution:

this

is

not

an

error

condition.

However,

if

you

want

the

connector

to

use

this

listener,

specify

a

valid

Protocol

property

value.

You

have

specified

a

protocol

handler,

but

it

is

not

getting

initialized;

you

see

following

warning

message

in

the

connector.

Unable

to

determine

the

type

of

the

handler;

skipping

initializing

of

current

handler.

Handler

property

details:

Name:

<Handler

Name>;

Value:

Name:

Protocol;

Value:

Name:

ResponseWaitTimeout;

Value:

Name:

ReplyToQueue;

Value:

.]

The

connector

was

unable

to

extract

a

valid

value

for

the

Protocol

property

of

the

handler.

Valid

values

are

soap/http,

soap/https,

or

soap/jms.

Solution:

This

is

not

an

error

condition.

However,

if

you

want

connector

to

use

this

handler,

specify

a

valid

Protocol

property

value.

java.lang.NoClassDefFoundError:

Javax/jms/JMSException...

The

connector

cannot

find

jms.jar

Solution:

make

sure

that

jms.jar

is

in

the

connector

classpath.

Fail

to

lookup,

queue:

"InProgressQueue"

for

specified

queue

name:

"<queue

name>"

queue

using

JNDI

"<queue

name>""

javax.naming.NameNotFoundException:

<queue

name>

If

you

are

using

SOAP/JMS

web

services

with

the

connector,

then

this

problem

occurs

when

you

do

not

create

queues.

This

error

may

also

occur,

if

you

have

set

JNDI->LookupQueuesUsingJNDI

to

true

and

the

connector

is

not

able

to

look

up

the

queues

using

JNDI.

Solution:

create

the

queues

required

by

the

connector.

If

JNDI->LookupQueuesUsingJNDI

is

set

to

true,

make

sure

queues

required

by

the

connector

can

be

looked

up

using

JNDI.

Error

in

initializing,

JNDI

Context

is

not

initialized,

user

can

not

use

JMS

protocol

If

you

have

configured

the

connector

to

use

a

SOAP/JMS

protocol

listener

or

SOAP/JMS

protocol

handler,

you

must

specify

JNDI

properties.

Solution:

make

sure

that

you

have

specified

required

JNDI

connector-specific

properties.

Refer

to

your

JNDI

provider

documentation

to

determine

the

libraries

and

jar

files

required

to

connect

to

your

JNDI

provider.

Make

sure

all

of

the

required

jar

files

are

in

the

classpath

of

the

connector.

Also,

make

sure

all

of

the

required

libraries

are

in

the

path

of

the

connector.

Error

in

getting

initial

context

If

you

have

configured

the

connector

to

use

a

SOAP/JMS

protocol

listener

or

a

SOAP/JMS

protocol

handler,

you

must

specify

JNDI

properties.

This

error

may

also

occur

if

you

have

not

specified

JNDI

properties

correctly.

Solution:

check

the

JNDI

properties.

Make

sure

your

JNDI

is

configured

properly.

Refer

to

your

JNDI

provider

documentation

to

determine

the

libraries

and

jar

files

required

to

connect

to

your

JNDI

provider.

Make

sure

all

of

the

required

jar

files

are

in

the

classpath

of

the

connector.

Also,

make

sure

all

of

the

required

libraries

are

in

the

path

of

the

connector.

166

Adapter

for

Web

Services

User

Guide

Run-time

errors

Problem

Potential

solution

/

explanation

Error

parsing

HTTP

response:Reached

end

of

stream

while

reading

HTTP

response

header

This

error

occurs

when

the

connector

invokes

a

SOAP/HTTP

web

service.

It

occurs

because

your

target

web

service

sent

an

incorrect

HTTP

response.

Solution:

make

sure

your

target

SOAP/HTTP

web

service

end

point

address

is

correct.

Error

in

the

url

mentioned

,

unable

to

extract

host

and

port

details

,destination

is

wrong

<destination

URL>

This

error

occurs

when

the

connector

invokes

an

SOAP/HTTP

Web

Service.

It

occurs

because

you

have

specified

an

incorrect

end

point

address

for

the

SOAP/HTTP

web

service.

Solution:

make

sure

you

have

specified

the

correct

end

point

address

for

the

web

service.

Failure

in

sending

event

business

object

<BO

Name>

with

verb

<Verb>

to

the

broker.

Received

execution

status

″-1″

and

error

message:

MapException:

Unable

to

find

the

map

to

map

business

objects

<BO

Name>

for

the

connector

controller

WebServicesConnector

.

This

error

occurs

when

the

integration

broker

fails

to

process

the

event

because

the

collaboration

to

which

the

connector

is

sending

the

event

synchronously

either

does

not

exist

or

does

not

accept

the

business

object

verb.

Solution:

if

you

are

using

a

web

services

TLO

for

event

notification,

examine

the

ws_collab

object-level

ASI

of

the

TLO.

(The

name

of

the

TLO

is

given

in

the

error

message.)

Check

the

value

of

the

ws_collab

ASI.

Make

sure

this

collaboration

exists

and

is

running.

If

ws_mode

BO

level

ASI

is

set

to

synch,

ws_collab

ASI

is

required.

Check

the

value

of

ws_verb

object-level

ASI.

Make

sure

the

collaboration

specified

by

the

ws_collab

ASI

can

be

triggered

by

the

verb

specified

in

the

ws_verb

ASI.

If

you

are

using

a

non-TLO

for

event

notification,

examine

the

WSCollaborations

connector

property.

Find

the

collaboration

that

will

be

invoked

synchronously

by

this

business

object.

Make

sure

this

collaboration

exists

and

is

running.

Failed

to

transform

a

soap

request

into

a

request

business

object.

Soap

Fault:

Failure

in

generating

request

object

-

no

verb

could

be

set

on

the

request

bo

This

error

occurs

during

event

notification

when

the

connector

is

unable

to

determine

the

verb

of

the

business

object

that

the

connector

is

attempting

to

send

to

the

integration

broker.

Solution:

if

you

are

using

a

web

services

TLO

for

event

notification,

make

sure

you

have

specified

ws_verb

object-level

ASI

for

this

TLO.

Specify

the

verb

as

the

value

of

this

ASI.

If

you

are

using

a

non-TLO

for

event

notification,

the

SOAP

message

sent

by

your

web

service

client

must

contain

the

verb

element.

The

SOAP

data

handler

sets

the

verb

of

the

business

object

using

the

value

of

the

verb

element

in

the

SOAP

message.If

the

web

service

client

does

not

send

the

verb

in

the

SOAP

message,

the

SOAP

data

handler

cannot

set

the

verb

on

the

business

object.

In

this

case,

the

connector

cannot

deliver

the

business

object

to

the

integration

broker.

If

you

suspect

that

your

web

service

clients

may

not

include

a

verb

element

in

the

SOAP

message,

you

may

provide

a

DefaultVerb

verb-level

ASI

for

this

business

object.

If

you

do

so,

the

connector

sets

this

verb

on

the

business

object

before

sending

it

to

the

integration

broker.

Chapter

9.

Troubleshooting

167

168

Adapter

for

Web

Services

User

Guide

Appendix

A.

Standard

configuration

properties

for

connectors

This

appendix

describes

the

standard

configuration

properties

for

the

connector

component

of

the

adapters

in

WebSphere

Business

Integration

Server

Express,

running

on

WebSphere

InterChange

Server

Express.

Not

every

connector

makes

use

of

all

these

standard

properties.

When

you

select

an

integration

broker

from

Connector

Configurator

Express,

you

will

see

a

list

of

the

standard

properties

that

you

need

to

configure

for

your

adapter.

For

information

about

properties

specific

to

the

connector,

see

the

relevant

adapter

user

guide.

Configuring

standard

connector

properties

Adapter

connectors

have

two

types

of

configuration

properties:

v

Standard

configuration

properties

v

Connector-specific

configuration

properties

This

section

describes

the

standard

configuration

properties.

For

information

on

configuration

properties

specific

to

a

connector,

see

its

adapter

user

guide.

Using

Connector

Configurator

Express

You

configure

connector

properties

from

Connector

Configurator

Express,

which

you

access

from

System

Manager.

For

more

information

on

using

Connector

Configurator

Express,

refer

to

the

Connector

Configurator

Express

appendix.

Setting

and

updating

property

values

The

default

length

of

a

property

field

is

255

characters.

The

connector

uses

the

following

order

to

determine

a

property’s

value

(where

the

highest

number

overrides

other

values):

1.

Default

2.

Repository

3.

Local

configuration

file

4.

Command

line

A

connector

obtains

its

configuration

values

at

startup.

If

you

change

the

value

of

one

or

more

connector

properties

during

a

run-time

session,

the

property’s

Update

Method

determines

how

the

change

takes

effect.

There

are

four

different

update

methods

for

standard

connector

properties:

v

Dynamic

The

change

takes

effect

immediately

after

it

is

saved

in

System

Manager.

v

Component

restart

The

change

takes

effect

only

after

the

connector

is

stopped

and

then

restarted

in

System

Manager.

You

do

not

need

to

stop

and

restart

the

application-specific

component

or

the

integration

broker.

©

Copyright

IBM

Corp.

2004

169

v

Server

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component

and

the

integration

broker.

v

Agent

restart

The

change

takes

effect

only

after

you

stop

and

restart

the

application-specific

component.

To

determine

how

a

specific

property

is

updated,

refer

to

the

Update

Method

column

in

the

Connector

Configurator

Express

window,

or

see

the

Update

Method

column

in

the

Property

Summary

table

below.

Summary

of

standard

properties

Table

50

provides

a

quick

reference

to

the

standard

connector

configuration

properties.

Not

all

the

connectors

make

use

of

all

these

properties,

and

property

settings

may

differ

from

integration

broker

to

integration

broker,

as

standard

property

dependencies

are

based

on

RepositoryDirectory.

You

must

set

the

values

of

some

of

these

properties

before

running

the

connector.

See

the

following

section

for

an

explanation

of

each

property.

Table

50.

Summary

of

standard

configuration

properties

Property

name

Possible

values

Default

value

Update

method

Notes

AdminInQueue

Valid

JMS

queue

name

CONNECTORNAME

/ADMININQUEUE

Component

restart

Delivery

Transport

is

JMS

AdminOutQueue

Valid

JMS

queue

name

CONNECTORNAME/ADMINOUTQUEUE

Component

restart

Delivery

Transport

is

JMS

AgentConnections

1-4

1

Component

restart

Delivery

Transport

is

IDL

AgentTraceLevel

0-5

0

Dynamic

ApplicationName

Application

name

Value

specified

for

the

connector

application

name

Component

restart

BrokerType

ICS

ICS

CharacterEncoding

ascii7,

ascii8,

SJIS,

Cp949,

GBK,

Big5,

Cp297,

Cp273,

Cp280,

Cp284,

Cp037,

Cp437

Note:

This

is

a

subset

of

supported

values.

ascii7

Component

restart

ConcurrentEventTriggeredFlows

1

to

32,767

1

Component

restart

Repository

directory

is

<REMOTE>

ContainerManagedEvents

No

value

or

JMS

No

value

Component

restart

Delivery

Transport

is

JMS

ControllerStoreAndForwardMode

true

or

false

truetrue

Dynamic

Repository

directory

is

<REMOTE>

170

Adapter

for

Web

Services

User

Guide

Table

50.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

ControllerTraceLevel

0-5

0

Dynamic

Repository

directory

is

<REMOTE>

DeliveryQueue

CONNECTORNAME/DELIVERYQUEUE

Component

restart

JMS

transport

only

DeliveryTransport

IDL

or

JMS

IDL

Component

restart

DuplicateEventElimination

true

or

false

false

Component

restart

JMS

transport

only:

Container

Managed

Events

must

be

<NONE>

EnableOidForFlowMonitoring

true

or

false

false

Component

restart

FaultQueue

CONNECTORNAME/FAULTQUEUE

Component

restart

JMS

transport

only

jms.FactoryClassName

CxCommon.Messaging.jms

.IBMMQSeriesFactory

or

any

Java

class

name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

JMS

transport

only

jms.MessageBrokerName

crossworlds.queue.

manager

crossworlds.queue.manager

Component

restart

JMS

transport

only

jms.NumConcurrentRequests

Positive

integer

10

Component

restart

JMS

transport

only

jms.Password

Any

valid

password

Component

restart

JMS

transport

only

jms.UserName

Any

valid

name

Component

restart

JMS

transport

only

JvmMaxHeapSize

Heap

size

in

megabytes

128m

Component

restart

Repository

directory

is

<REMOTE>

JvmMaxNativeStackSize

Size

of

stack

in

kilobytes

128k

Component

restart

Repository

directory

is

<REMOTE>

JvmMinHeapSize

Heap

size

in

megabytes

1m

Component

restart

Repository

directory

is

<REMOTE>

Locale

en_US,

ja_JP,

ko_KR,

zh_CN,

zh_TW,

fr_FR,

de_DE,

it_IT,

es_ES,

pt_BR

Note:

This

is

a

subset

of

the

supported

locales.

en_US

Component

restart

LogAtInterchangeEnd

true

or

false

false

Component

restart

MaxEventCapacity

1-2147483647

2147483647

Dynamic

Repository

Directory

is

<REMOTE>

MessageFileName

Path

or

filename

InterchangeSystem.txt

Component

restart

Appendix

A.

Standard

configuration

properties

for

connectors

171

Table

50.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

MonitorQueue

Any

valid

queue

name

CONNECTORNAME/MONITORQUEUE

Component

restart

JMS

transport

only:

DuplicateEvent

Elimination

must

be

true

OADAutoRestartAgent

true

or

false

false

Dynamic

Repository

Directory

is

<REMOTE>

OADMaxNumRetry

A

positive

number

1000

Dynamic

Repository

Directory

is

<REMOTE>

OADRetryTimeInterval

A

positive

number

in

minutes

10

Dynamic

Repository

Directory

is

<REMOTE>

PollEndTime

HH:MM

(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

PollFrequency

A

positive

integer

in

milliseconds

no

(to

disable

polling)

key

(to

poll

only

when

the

letter

p

is

entered

in

the

connector’s

Command

Prompt

window)

10000

Dynamic

PollQuantity

1-500

1

Agent

restart

JMS

transport

only:

Container

Managed

Events

is

specified

PollStartTime

HH:MM(HH

is

0-23,

MM

is

0-59)

HH:MM

Component

restart

RepositoryDirectory

Location

of

metadata

repository

Agent

restart

Set

to

<REMOTE>

RequestQueue

Valid

JMS

queue

name

CONNECTORNAME/REQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

ResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/RESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS:

RestartRetryCount

0-99

3

Dynamic

RestartRetryInterval

A

sensible

positive

value

in

minutes:

1

-

2147483547

1

Dynamic

SourceQueue

Valid

JMS

queue

name

CONNECTORNAME/SOURCEQUEUE

Agent

restart

Only

if

Delivery

Transport

is

JMS

and

Container

Managed

Events

is

specified

SynchronousRequestQueue

Valid

JMS

queue

name

CONNECTORNAME/

SYNCHRONOUSREQUESTQUEUE

Component

restart

Delivery

Transport

is

JMS

172

Adapter

for

Web

Services

User

Guide

Table

50.

Summary

of

standard

configuration

properties

(continued)

Property

name

Possible

values

Default

value

Update

method

Notes

SynchronousRequestTimeout

0

-

any

number

(millisecs)

0

Component

restart

Delivery

Transport

is

JMS

SynchronousResponseQueue

Valid

JMS

queue

name

CONNECTORNAME/

SYNCHRONOUSRESPONSEQUEUE

Component

restart

Delivery

Transport

is

JMS

WireFormat

CwBO

CwBO

Agent

restart

Standard

configuration

properties

This

section

lists

and

defines

each

of

the

standard

connector

configuration

properties.

AdminInQueue

The

queue

that

is

used

by

the

integration

broker

to

send

administrative

messages

to

the

connector.

The

default

value

is

CONNECTORNAME/ADMININQUEUE.

AdminOutQueue

The

queue

that

is

used

by

the

connector

to

send

administrative

messages

to

the

integration

broker.

The

default

value

is

CONNECTORNAME/ADMINOUTQUEUE.

AgentConnections

The

AgentConnections

property

controls

the

number

of

ORB

connections

opened

by

orb.init[].

By

default,

the

value

of

this

property

is

set

to

1.

There

is

no

need

to

change

this

default.

AgentTraceLevel

Level

of

trace

messages

for

the

application-specific

component.

The

default

is

0.

The

connector

delivers

all

trace

messages

applicable

at

the

tracing

level

set

or

lower.

ApplicationName

Name

that

uniquely

identifies

the

connector’s

application.

This

name

is

used

by

the

system

administrator

to

monitor

the

WebSphere

business

integration

system

environment.

This

property

must

have

a

value

before

you

can

run

the

connector.

BrokerType

Identifies

the

integration

broker

that

you

are

using,

which

is

ICS.

CharacterEncoding

Specifies

the

character

code

set

used

to

map

from

a

character

(such

as

a

letter

of

the

alphabet,

a

numeric

representation,

or

a

punctuation

mark)

to

a

numeric

value.

Appendix

A.

Standard

configuration

properties

for

connectors

173

Note:

Java-based

connectors

do

not

use

this

property.

A

C++

connector

currently

uses

the

value

ascii7

for

this

property.

By

default,

a

subset

of

supported

character

encodings

only

is

displayed

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

using

Connector

Configurator

Express

in

this

guide.

ConcurrentEventTriggeredFlows

Determines

how

many

business

objects

can

be

concurrently

processed

by

the

connector

for

event

delivery.

Set

the

value

of

this

attribute

to

the

number

of

business

objects

you

want

concurrently

mapped

and

delivered.

For

example,

set

the

value

of

this

property

to

5

to

cause

five

business

objects

to

be

concurrently

processed.

The

default

value

is

1.

Setting

this

property

to

a

value

greater

than

1

allows

a

connector

for

a

source

application

to

map

multiple

event

business

objects

at

the

same

time

and

deliver

them

to

multiple

collaboration

instances

simultaneously.

This

speeds

delivery

of

business

objects

to

the

integration

broker,

particularly

if

the

business

objects

use

complex

maps.

Increasing

the

arrival

rate

of

business

objects

to

collaborations

can

improve

overall

performance

in

the

system.

To

implement

concurrent

processing

for

an

entire

flow

(from

a

source

application

to

a

destination

application),

you

must:

v

Configure

the

collaboration

to

use

multiple

threads

by

setting

its

Maximum

number

of

concurrent

events

property

high

enough

to

use

multiple

threads.

v

Ensure

that

the

destination

application’s

application-specific

component

can

process

requests

concurrently.

That

is,

it

must

be

multi-threaded,

or

be

able

to

use

connector

agent

parallelism

and

be

configured

for

multiple

processes.

Set

the

Parallel

Process

Degree

configuration

property

to

a

value

greater

than

1.

The

ConcurrentEventTriggeredFlows

property

has

no

effect

on

connector

polling,

which

is

single-threaded

and

performed

serially.

ContainerManagedEvents

This

property

allows

a

JMS-enabled

connector

with

a

JMS

event

store

to

provide

guaranteed

event

delivery,

in

which

an

event

is

removed

from

the

source

queue

and

placed

on

the

destination

queue

as

a

single

JMS

transaction.

This

property

only

appears

if

the

DeliveryTransport

property

is

set

to

the

value

JMS.

The

default

value

is

No

value.

When

ContainerManagedEvents

is

set

to

JMS,

you

must

configure

the

following

properties

to

enable

guaranteed

event

delivery:

v

PollQuantity

=

1

to

500

v

SourceQueue

=

CONNECTORNAME/SOURCEQUEUE

You

must

also

configure

a

data

handler

with

the

MimeType,

DHClass,

and

DataHandlerConfigMOName

(optional)

properties.

To

set

those

values,

use

the

Data

Handler

tab

in

Connector

Configurator

Express.

The

fields

for

the

values

under

the

Data

Handler

tab

will

be

displayed

only

if

you

have

set

ContainerManagedEvents

to

JMS.

174

Adapter

for

Web

Services

User

Guide

Note:

When

ContainerManagedEvents

is

set

to

JMS,

the

connector

does

not

call

its

pollForEvents()

method,

thereby

disabling

that

method’s

functionality.

ControllerStoreAndForwardMode

Sets

the

behavior

of

the

connector

controller

after

it

detects

that

the

destination

application-specific

component

is

unavailable.

If

this

property

is

set

to

true

and

the

destination

application-specific

component

is

unavailable

when

an

event

reaches

ICS,

the

connector

controller

blocks

the

request

to

the

application-specific

component.

When

the

application-specific

component

becomes

operational,

the

controller

forwards

the

request

to

it.

However,

if

the

destination

application’s

application-specific

component

becomes

unavailable

after

the

connector

controller

forwards

a

service

call

request

to

it,

the

connector

controller

fails

the

request.

If

this

property

is

set

to

false,

the

connector

controller

begins

failing

all

service

call

requests

as

soon

as

it

detects

that

the

destination

application-specific

component

is

unavailable.

The

default

is

true.

ControllerTraceLevel

Level

of

trace

messages

for

the

connector

controller.

The

default

is

0.

DeliveryQueue

Applicable

only

if

DeliveryTransport

is

JMS.

The

queue

that

is

used

by

the

connector

to

send

business

objects

to

the

WebSphere

InterChange

Server

Express.

The

default

value

is

CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies

the

transport

mechanism

for

the

delivery

of

events.

Possible

values

are

IDL

for

CORBA

IIOP

or

JMS

for

Java

Messaging

Service.

The

default

is

IDL.

The

connector

sends

service

call

requests

and

administrative

messages

over

CORBA

IIOP

if

the

value

configured

for

the

DeliveryTransport

property

is

IDL.

JMS

Enables

communication

between

the

connector

and

client

connector

framework

using

Java

Messaging

Service

(JMS).

If

you

select

JMS

as

the

delivery

transport,

additional

JMS

properties

such

as

jms.MessageBrokerName,

jms.FactoryClassName,

jms.Password,

and

jms.UserName,

appear

in

Connector

Configurator

Express.

The

first

two

of

these

properties

are

required

for

this

transport.

Important:

There

may

be

a

memory

limitation

if

you

use

the

JMS

transport

mechanism

for

a

connector

running

on

WebSphere

InterChange

Server

Express.

Appendix

A.

Standard

configuration

properties

for

connectors

175

In

this

environment,

you

may

experience

difficulty

starting

both

the

connector

controller

(on

the

server

side)

and

the

connector

(on

the

client

side)

due

to

memory

use

within

the

WebSphere

MQ

client.

DuplicateEventElimination

When

you

set

this

property

to

true,

a

JMS-enabled

connector

can

ensure

that

duplicate

events

are

not

delivered

to

the

delivery

queue.

To

use

this

feature,

the

connector

must

have

a

unique

event

identifier

set

as

the

business

object’s

ObjectEventId

attribute

in

the

application-specific

code.

This

is

done

during

connector

development.

This

property

can

also

be

set

to

false.

Note:

When

DuplicateEventElimination

is

set

to

true,

you

must

also

configure

the

MonitorQueue

property

to

enable

guaranteed

event

delivery.

EnableOidForFlowMonitoring

When

you

set

this

property

to

true,

the

adapter

framework

will

mark

the

incoming

ObjectEventId

as

a

foreign

key

for

the

purpose

of

flow

monitoring.

The

default

is

false.

FaultQueue

If

the

connector

experiences

an

error

while

processing

a

message

then

the

connector

moves

the

message

to

the

queue

specified

in

this

property,

along

with

a

status

indicator

and

a

description

of

the

problem.

The

default

value

is

CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize

The

maximum

heap

size

for

the

agent

(in

megabytes).

The

default

value

is

128m.

JvmMaxNativeStackSize

The

maximum

native

stack

size

for

the

agent

(in

kilobytes).

The

default

value

is

128k.

JvmMinHeapSize

The

minimum

heap

size

for

the

agent

(in

megabytes).

The

default

value

is

1m.

jms.FactoryClassName

Specifies

the

class

name

to

instantiate

for

a

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(DeliveryTransport).

The

default

is

CxCommon.Messaging.jms.IBMMQSeriesFactory.

176

Adapter

for

Web

Services

User

Guide

jms.MessageBrokerName

Specifies

the

broker

name

to

use

for

the

JMS

provider.

You

must

set

this

connector

property

when

you

choose

JMS

as

your

delivery

transport

mechanism

(see

DeliveryTransport).

The

default

is

crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies

the

maximum

number

of

concurrent

service

call

requests

that

can

be

sent

to

a

connector

at

the

same

time.

Once

that

maximum

is

reached,

new

service

calls

block

and

wait

for

another

request

to

complete

before

proceeding.

The

default

value

is

10.

jms.Password

Specifies

the

password

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

jms.UserName

Specifies

the

user

name

for

the

JMS

provider.

A

value

for

this

property

is

optional.

There

is

no

default.

Locale

Specifies

the

language

code,

country

or

territory,

and,

optionally,

the

associated

character

code

set.

The

value

of

this

property

determines

such

cultural

conventions

as

collation

and

sort

order

of

data,

date

and

time

formats,

and

the

symbols

used

in

monetary

specifications.

A

locale

name

has

the

following

format:

ll_TT.codeset

where:

ll

a

two-character

language

code

(usually

in

lower

case)

TT

a

two-letter

country

or

territory

code

(usually

in

upper

case)

codeset

the

name

of

the

associated

character

code

set;

this

portion

of

the

name

is

often

optional.

By

default,

only

a

subset

of

supported

locales

appears

in

the

drop

list.

To

add

other

supported

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

For

more

information,

see

the

appendix

on

using

Connector

Configurator

Express

in

this

guide.

The

default

value

is

en_US.

If

the

connector

has

not

been

globalized,

the

only

valid

value

for

this

property

is

en_US.

To

determine

whether

a

specific

connector

has

been

globalized,

see

the

connector

version

list

on

these

websites:

http://www.ibm.com/software/websphere/wbiadapters/infocenter,

or

http://www.ibm.com/websphere/integration/wicserver/infocenter

Appendix

A.

Standard

configuration

properties

for

connectors

177

LogAtInterchangeEnd

Specifies

whether

to

log

errors

to

the

integration

broker’s

log

destination.

Logging

to

the

broker’s

log

destination

also

turns

on

e-mail

notification,

which

generates

e-mail

messages

for

the

MESSAGE_RECIPIENT

specified

in

the

InterchangeSystem.cfg

file

when

errors

or

fatal

errors

occur.

For

example,

when

a

connector

loses

its

connection

to

its

application,

if

LogAtInterChangeEnd

is

set

to

true,

an

e-mail

message

is

sent

to

the

specified

message

recipient.

The

default

is

false.

MaxEventCapacity

The

maximum

number

of

events

in

the

controller

buffer.

This

property

is

used

by

flow

control.

The

value

can

be

a

positive

integer

between

1

and

2147483647.

The

default

value

is

2147483647.

MessageFileName

The

name

of

the

connector

message

file.

The

standard

location

for

the

message

file

is

\connectors\messages.

Specify

the

message

filename

in

an

absolute

path

if

the

message

file

is

not

located

in

the

standard

location.

If

a

connector

message

file

does

not

exist,

the

connector

uses

InterchangeSystem.txt

as

the

message

file.

This

file

is

located

in

the

product

directory.

Note:

To

determine

whether

a

specific

connector

has

its

own

message

file,

see

the

individual

adapter

user

guide.

MonitorQueue

The

logical

queue

that

the

connector

uses

to

monitor

duplicate

events.

It

is

used

only

if

the

DeliveryTransport

property

value

is

JMS

and

DuplicateEventElimination

is

set

to

TRUE.

The

default

value

is

CONNECTORNAME/MONITORQUEUE

OADAutoRestartAgent

Specifies

whether

the

connector

uses

the

automatic

and

remote

restart

feature.

This

feature

uses

the

MQ-triggered

Object

Activation

Daemon

(OAD)

to

restart

the

connector

after

an

abnormal

shutdown,

or

to

start

a

remote

connector

from

System

Monitor.

This

property

must

be

set

to

true

to

enable

the

automatic

and

remote

restart

feature.

For

information

on

how

to

configure

the

MQ-triggered

OAD

feature,

see

the

Installation

Guide

for

Windows.

The

default

value

is

false.

OADMaxNumRetry

Specifies

the

maximum

number

of

times

that

the

MQ-triggered

OAD

automatically

attempts

to

restart

the

connector

after

an

abnormal

shutdown.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

178

Adapter

for

Web

Services

User

Guide

The

default

value

is

1000.

OADRetryTimeInterval

Specifies

the

number

of

minutes

in

the

retry-time

interval

for

the

MQ-triggered

OAD.

If

the

connector

agent

does

not

restart

within

this

retry-time

interval,

the

connector

controller

asks

the

OAD

to

restart

the

connector

agent

again.

The

OAD

repeats

this

retry

process

as

many

times

as

specified

by

the

OADMaxNumRetry

property.

The

OADAutoRestartAgent

property

must

be

set

to

true

for

this

property

to

take

effect.

The

default

is

10.

PollEndTime

Time

to

stop

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

PollFrequency

The

amount

of

time

between

polling

actions.

Set

PollFrequency

to

one

of

the

following

values:

v

The

number

of

milliseconds

between

polling

actions.

v

The

word

key,

which

causes

the

connector

to

poll

only

when

you

type

the

letter

p

in

the

connector’s

Command

Prompt

window.

Enter

the

word

in

lowercase.

v

The

word

no,

which

causes

the

connector

not

to

poll.

Enter

the

word

in

lowercase.

The

default

is

10000.

Important:

Some

connectors

have

restrictions

on

the

use

of

this

property.

To

determine

whether

a

specific

connector

does,

see

the

installing

and

configuring

chapter

of

its

adapter

guide.

PollQuantity

Designates

the

number

of

items

from

the

application

that

the

connector

should

poll

for.

If

the

adapter

has

a

connector-specific

property

for

setting

the

poll

quantity,

the

value

set

in

the

connector-specific

property

will

override

the

standard

property

value.

PollStartTime

The

time

to

start

polling

the

event

queue.

The

format

is

HH:MM,

where

HH

represents

0-23

hours,

and

MM

represents

0-59

seconds.

You

must

provide

a

valid

value

for

this

property.

The

default

value

is

HH:MM,

but

must

be

changed.

RequestQueue

The

queue

that

is

used

by

WebSphere

InterChange

Server

Express

to

send

business

objects

to

the

connector.

The

default

value

is

CONNECTOR/REQUESTQUEUE.

Appendix

A.

Standard

configuration

properties

for

connectors

179

RepositoryDirectory

The

location

of

the

repository

from

which

the

connector

reads

the

XML

schema

documents

that

store

the

meta-data

for

business

object

definitions.

This

value

must

be

set

to

<REMOTE>

because

the

connector

obtains

this

information

from

the

InterChange

Server

Express

repository.

ResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Designates

the

JMS

response

queue,

which

delivers

a

response

message

from

the

connector

framework

to

the

integration

broker.

WebSphere

InterChange

Server

Express

sends

the

request

and

waits

for

a

response

message

in

the

JMS

response

queue.

RestartRetryCount

Specifies

the

number

of

times

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

number

of

times

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

The

default

is

3.

RestartRetryInterval

Specifies

the

interval

in

minutes

at

which

the

connector

attempts

to

restart

itself.

When

used

for

a

parallel

connector,

specifies

the

interval

at

which

the

master

connector

application-specific

component

attempts

to

restart

the

slave

connector

application-specific

component.

Possible

values

ranges

from

1

to

2147483647.

The

default

is

1.

SourceQueue

Applicable

only

if

DeliveryTransport

is

JMS

and

ContainerManagedEvents

is

specified.

Designates

the

JMS

source

queue

for

the

connector

framework

in

support

of

guaranteed

event

delivery

for

JMS-enabled

connectors

that

use

a

JMS

event

store.

For

further

information,

see

“ContainerManagedEvents”

on

page

174.

The

default

value

is

CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

request

messages

that

require

a

synchronous

response

from

the

connector

framework

to

the

broker.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

With

synchronous

execution,

the

connector

framework

sends

a

message

to

the

SynchronousRequestQueue

and

waits

for

a

response

back

from

the

broker

on

the

SynchronousResponseQueue.

The

response

message

sent

to

the

connector

bears

a

correlation

ID

that

matches

the

ID

of

the

original

message.

The

default

is

CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

180

Adapter

for

Web

Services

User

Guide

SynchronousResponseQueue

Applicable

only

if

DeliveryTransport

is

JMS.

Delivers

response

messages

sent

in

reply

to

a

synchronous

request

from

the

broker

to

the

connector

framework.

This

queue

is

necessary

only

if

the

connector

uses

synchronous

execution.

The

default

is

CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout

Applicable

only

if

DeliveryTransport

is

JMS.

Specifies

the

time

in

minutes

that

the

connector

waits

for

a

response

to

a

synchronous

request.

If

the

response

is

not

received

within

the

specified

time,

then

the

connector

moves

the

original

synchronous

request

message

into

the

fault

queue

along

with

an

error

message.

The

default

value

is

0.

WireFormat

This

is

the

message

format

on

the

transport.

The

setting

isCwBO.

Appendix

A.

Standard

configuration

properties

for

connectors

181

182

Adapter

for

Web

Services

User

Guide

Appendix

B.

Connector

Configurator

Express

This

appendix

describes

how

to

use

Connector

Configurator

Express

to

set

configuration

property

values

for

your

adapter.

The

topics

covered

in

this

appendix

are:

v

“Overview

of

Connector

Configurator

Express”

on

page

183

v

“Starting

Connector

Configurator

Express”

on

page

184

v

“Creating

a

connector-specific

property

template”

on

page

184

v

“Creating

a

new

configuration

file”

on

page

187

v

“Setting

the

configuration

file

properties”

on

page

189

v

“Using

Connector

Configurator

Express

in

a

globalized

environment”

on

page

194

Overview

of

Connector

Configurator

Express

Connector

Configurator

Express

allows

you

to

configure

the

connector

component

of

your

adapter

for

use

with

WebSphere

InterChange

Server

Express.

You

use

Connector

Configurator

Express

to:

v

Create

a

connector-specific

property

template

for

configuring

your

connector.

v

Create

a

connector

configuration

file;

you

must

create

one

configuration

file

for

each

connector

you

install.

v

Set

properties

in

a

configuration

file.

You

may

need

to

modify

the

default

values

that

are

set

for

properties

in

the

connector

templates.

You

must

also

designate

supported

business

object

definitions

and

maps

for

use

with

collaborations

as

well

as

specify

messaging,

logging

and

tracing,

and

data

handler

parameters,

as

required.

Connector

configuration

properties

include

both

standard

configuration

properties

(the

properties

that

all

connectors

have)

and

connector-specific

properties

(properties

that

are

needed

by

the

connector

for

a

specific

application

or

technology).

Because

standard

properties

are

used

by

all

connectors,

you

do

not

need

to

define

those

properties

from

scratch;

Connector

Configurator

Express

incorporates

them

into

your

configuration

file

as

soon

as

you

create

the

file.

However,

you

do

need

to

set

the

value

of

each

standard

property

in

Connector

Configurator

Express.

The

range

of

standard

properties

may

not

be

the

same

for

all

brokers

and

all

configurations.

Some

properties

are

available

only

if

other

properties

are

given

a

specific

value.

The

Standard

Properties

window

in

Connector

Configurator

Express

will

show

the

properties

available

for

your

particular

configuration.

For

connector-specific

properties,

however,

you

need

first

to

define

the

properties

and

then

set

their

values.

You

do

this

by

creating

a

connector-specific

property

template

for

your

particular

adapter.

There

may

already

be

a

template

set

up

in

your

system,

in

which

case,

you

simply

use

that.

If

not,

follow

the

steps

in

“Creating

a

new

template”

on

page

185

to

set

up

a

new

one.

©

Copyright

IBM

Corp.

2004

183

Note:

Connector

Configurator

Express

runs

only

in

a

Windows

environment.

If

you

are

running

the

connector

in

another

environment,

use

Connector

Configurator

Express

in

Windows

to

modify

the

configuration

file

and

then

copy

the

file

to

the

other

environment.

Starting

Connector

Configurator

Express

You

can

start

and

run

Connector

Configurator

Express

in

either

of

two

modes:

v

Independently,

in

stand-alone

mode

v

From

System

Manager

Running

Configurator

Express

in

stand-alone

mode

You

can

run

Connector

Configurator

Express

independently

and

work

with

connector

configuration

files,

irrespective

of

your

broker.

To

do

so:

v

From

Start>Programs,

click

IBM

WebSphere

Business

Integration

Server

Express>

Toolset

Express>Development>Connector

Configurator

Express.

v

Select

File>New>Configuration

File.

You

may

choose

to

run

Connector

Configurator

Express

independently

to

generate

the

file,

and

then

connect

to

System

Manager

to

save

it

in

a

System

Manager

project

(see

“Completing

a

configuration

file”

on

page

189.)

Running

Configurator

Express

from

System

Manager

You

can

run

Connector

Configurator

Express

from

System

Manager.

To

run

Connector

Configurator

Express:

1.

Open

the

System

Manager.

2.

In

the

System

Manager

window,

expand

the

Integration

Component

Libraries

icon

and

highlight

Connectors.

3.

From

the

System

Manager

menu

bar,

click

Tools>Connector

Configurator

Express.

The

Connector

Configurator

Express

window

opens

and

displays

a

New

Connector

dialog

box.

To

edit

an

existing

configuration

file:

1.

In

the

System

Manager

window,

select

any

of

the

configuration

files

listed

in

the

Connector

folder

and

right-click

on

it.

2.

Click

the

Standard

Properties

tab

to

see

which

properties

are

included

in

this

configuration

file.

Creating

a

connector-specific

property

template

To

create

a

configuration

file

for

your

connector,

you

need

a

connector-specific

property

template

as

well

as

the

system-supplied

standard

properties.

You

can

create

a

brand-new

template

for

the

connector-specific

properties

of

your

connector,

or

you

can

use

an

existing

file

as

the

template.

v

To

create

a

new

template,

see

“Creating

a

new

template”

on

page

185.

v

To

use

an

existing

file,

simply

modify

an

existing

template

and

save

it

under

the

new

name.

184

Adapter

for

Web

Services

User

Guide

Creating

a

new

template

This

section

describes

how

you

create

properties

in

the

template,

define

general

characteristics

and

values

for

those

properties,

and

specify

any

dependencies

between

the

properties.

Then

you

save

the

template

and

use

it

as

the

base

for

creating

a

new

connector

configuration

file.

To

create

a

template:

1.

Click

File>New>Connector-Specific

Property

Template.

2.

The

Connector-Specific

Property

Template

dialog

box

appears,

with

the

following

fields:

v

Template,

and

Name

Enter

a

unique

name

that

identifies

the

connector,

or

type

of

connector,

for

which

this

template

will

be

used.

You

will

see

this

name

again

when

you

open

the

dialog

box

for

creating

a

new

configuration

file

from

a

template.

v

Old

Template,

and

Select

the

Existing

Template

to

Modify

The

names

of

all

currently

available

templates

are

displayed

in

the

Template

Name

display.

v

To

see

the

connector-specific

property

definitions

in

any

template,

select

that

template’s

name

in

the

Template

Name

display.

A

list

of

the

property

definitions

contained

in

that

template

will

appear

in

the

Template

Preview

display.

You

can

use

an

existing

template

whose

property

definitions

are

similar

to

those

required

by

your

connector

as

a

starting

point

for

your

template.
3.

Select

a

template

from

the

Template

Name

display,

enter

that

template

name

in

the

Find

Name

field

(or

highlight

your

selection

in

Template

Name),

and

click

Next.

If

you

do

not

see

any

template

that

displays

the

connector-specific

properties

used

by

your

connector,

you

will

need

to

create

one.

Specifying

general

characteristics

When

you

click

Next

to

select

a

template,

the

Properties

-

Connector-Specific

Property

Template

dialog

box

appears.

The

dialog

box

has

tabs

for

General

characteristics

of

the

defined

properties

and

for

Value

restrictions.

The

General

display

has

the

following

fields:

v

General:

Property

Type

Updated

Method

Description

v

Flags

Standard

flags

v

Custom

Flag

Flag

After

you

have

made

selections

for

the

general

characteristics

of

the

property,

click

the

Value

tab.

Specifying

values

The

Value

tab

enables

you

to

set

the

maximum

length,

the

maximum

multiple

values,

a

default

value,

or

a

value

range

for

the

property.

It

also

allows

editable

values.

To

do

so:

1.

Click

the

Value

tab.

The

display

panel

for

Value

replaces

the

display

panel

for

General.

Appendix

B.

Connector

Configurator

Express

185

2.

Select

the

name

of

the

property

in

the

Edit

properties

display.

3.

In

the

fields

for

Max

Length

and

Max

Multiple

Values,

make

any

changes.

The

changes

will

not

be

accepted

unless

you

also

open

the

Property

Value

dialog

box

for

the

property,

described

in

the

next

step.

4.

Right-click

the

box

in

the

top

left-hand

corner

of

the

value

table

and

click

Add.

A

Property

Value

dialog

box

appears.

Depending

on

the

property

type,

the

dialog

box

allows

you

to

enter

either

a

value,

or

both

a

value

and

range.

Enter

the

appropriate

value

or

range,

and

click

OK.

5.

The

Value

panel

refreshes

to

display

any

changes

you

made

in

Max

Length

and

Max

Multiple

Values.

It

displays

a

table

with

three

columns:

The

Value

column

shows

the

value

that

you

entered

in

the

Property

Value

dialog

box,

and

any

previous

values

that

you

created.

The

Default

Value

column

allows

you

to

designate

any

of

the

values

as

the

default.

The

Value

Range

shows

the

range

that

you

entered

in

the

Property

Value

dialog

box.

After

a

value

has

been

created

and

appears

in

the

grid,

it

can

be

edited

from

within

the

table

display.

To

make

a

change

in

an

existing

value

in

the

table,

select

an

entire

row

by

clicking

on

the

row

number.

Then

right-click

in

the

Value

field

and

click

Edit

Value.

Setting

dependencies

When

you

have

made

your

changes

to

the

General

and

Value

tabs,

click

Next.

The

Dependencies

-

Connector-Specific

Property

Template

dialog

box

appears.

A

dependent

property

is

a

property

that

is

included

in

the

template

and

used

in

the

configuration

file

only

if

the

value

of

another

property

meets

a

specific

condition.

For

example,

PollQuantity

appears

in

the

template

only

if

JMS

is

the

transport

mechanism

and

DuplicateEventElimination

is

set

to

True.

To

designate

a

property

as

dependent

and

to

set

the

condition

upon

which

it

depends,

do

this:

1.

In

the

Available

Properties

display,

select

the

property

that

will

be

made

dependent.

2.

In

the

Select

Property

field,

use

the

drop-down

menu

to

select

the

property

that

will

hold

the

conditional

value.

3.

In

the

Condition

Operator

field,

select

one

of

the

following:

==

(equal

to)

!=

(not

equal

to)

>

(greater

than)

<

(less

than)

>=

(greater

than

or

equal

to)

<=(less

than

or

equal

to)

4.

In

the

Conditional

Value

field,

enter

the

value

that

is

required

in

order

for

the

dependent

property

to

be

included

in

the

template.

5.

With

the

dependent

property

highlighted

in

the

Available

Properties

display,

click

an

arrow

to

move

it

to

the

Dependent

Property

display.

6.

Click

Finish.

Connector

Configurator

Express

stores

the

information

you

have

entered

as

an

XML

document,

under

\data\app

in

the\bin

directory

where

you

have

installed

Connector

Configurator

Express.

186

Adapter

for

Web

Services

User

Guide

Creating

a

new

configuration

file

You

create

a

connector

configuration

file

from

a

connector-specific

template

or

by

modifying

an

existing

configuration

file.

Creating

a

configuration

file

from

a

connector-specific

template

Once

a

connector-specific

template

has

been

created,

you

can

use

it

to

create

a

configuration

file:

1.

Click

File>New>Connector

Configuration.

2.

The

New

Connector

dialog

box

appears,

with

the

following

fields:

v

Name

Enter

the

name

of

the

connector.

Names

are

case-sensitive.

The

name

you

enter

must

be

unique,

and

must

be

consistent

with

the

file

name

for

a

connector

that

is

installed

on

the

system.

Important:

Connector

Configurator

Express

does

not

check

the

spelling

of

the

name

that

you

enter.

You

must

ensure

that

the

name

is

correct.

v

System

Connectivity

The

default

broker

is

ICS.

You

cannot

change

this

value.

v

Select

Connector-Specific

Property

Template

Type

the

name

of

the

template

that

has

been

designed

for

your

connector.

The

available

templates

are

shown

in

the

Template

Name

display.

When

you

select

a

name

in

the

Template

Name

display,

the

Property

Template

Preview

display

shows

the

connector-specific

properties

that

have

been

defined

in

that

template.

Select

the

template

you

want

to

use

and

click

OK.
3.

A

configuration

screen

appears

for

the

connector

that

you

are

configuring.

The

title

bar

shows

the

integration

broker

and

connector

names.

You

can

fill

in

all

the

field

values

to

complete

the

definition

now,

or

you

can

save

the

file

and

complete

the

fields

later.

4.

To

save

the

file,

click

File>Save>To

File

or

File>Save>To

Project.

To

save

to

a

project,

System

Manager

must

be

running.

If

you

save

as

a

file,

the

Save

File

Connector

dialog

box

appears.

Choose

*.cfg

as

the

file

type,

verify

in

the

File

Name

field

that

the

name

is

spelled

correctly

and

has

the

correct

case,

navigate

to

the

directory

where

you

want

to

locate

the

file,

and

click

Save.

The

status

display

in

the

message

panel

of

Connector

Configurator

Express

indicates

that

the

configuration

file

was

successfully

created.

Important:

The

directory

path

and

name

that

you

establish

here

must

match

the

connector

configuration

file

path

and

name

that

you

supply

in

the

startup

file

for

the

connector.

5.

To

complete

the

connector

definition,

enter

values

in

the

fields

for

each

of

the

tabs

of

the

Connector

Configurator

Express

window,

as

described

later

in

this

chapter.

Appendix

B.

Connector

Configurator

Express

187

Using

an

existing

file

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator

Express,

revise

the

configuration,

and

then

save

the

file

as

a

configuration

file

(*.cfg).

You

may

have

an

existing

file

available

in

one

or

more

of

the

following

formats:

v

A

connector

definition

file.

This

is

a

text

file

that

lists

properties

and

applicable

default

values

for

a

specific

connector.

Some

connectors

include

such

a

file

in

a

\repository

directory

in

their

delivery

package

(the

file

typically

has

the

extension

.txt;

for

example,

CN_XML.txt

for

the

XML

connector).

v

An

InterChange

Server

Express

repository

file.

Definitions

used

in

a

previous

InterChange

Server

Express

implementation

of

the

connector

may

be

available

to

you

in

a

repository

file

that

was

used

in

the

configuration

of

that

connector.

Such

a

file

typically

has

the

extension

.in

or

.out.

v

A

previous

configuration

file

for

the

connector.

Such

a

file

typically

has

the

extension

*.cfg.

Although

any

of

these

file

sources

may

contain

most

or

all

of

the

connector-specific

properties

for

your

connector,

the

connector

configuration

file

will

not

be

complete

until

you

have

opened

the

file

and

set

properties,

as

described

later

in

this

chapter.

To

use

an

existing

file

to

configure

a

connector,

you

must

open

the

file

in

Connector

Configurator

Express,

revise

the

configuration,

and

then

resave

the

file.

Follow

these

steps

to

open

a

*.txt,

*.cfg

or

*.in

file

from

a

directory:

1.

In

Connector

Configurator

Express,

click

File>Open>From

File.

2.

In

the

Open

File

Connector

dialog

box,

select

one

of

the

following

file

types

to

see

the

available

files:

v

Configuration

(*.cfg)

v

InterChange

Server

Express

Repository

(*.in,

*.out)

Choose

this

option

if

a

repository

file

was

used

to

configure

the

connector.

A

repository

file

may

include

multiple

connector

definitions,

all

of

which

will

appear

when

you

open

the

file.

v

All

files

(*.*)

Choose

this

option

if

a

*.txt

file

was

delivered

in

the

adapter

package

for

the

connector,

or

if

a

definition

file

is

available

under

another

extension.
3.

In

the

directory

display,

navigate

to

the

appropriate

connector

definition

file,

select

it,

and

click

Open.

Follow

these

steps

to

open

a

connector

configuration

from

a

System

Manager

project:

1.

Start

System

Manager.

A

configuration

can

be

opened

from

or

saved

to

System

Manager

only

if

System

Manager

has

been

started.

2.

Start

Connector

Configurator

Express.

3.

Click

File>Open>From

Project.

188

Adapter

for

Web

Services

User

Guide

Completing

a

configuration

file

When

you

open

a

configuration

file

or

a

connector

from

a

project,

the

Connector

Configurator

Express

window

displays

the

configuration

screen,

with

the

current

attributes

and

values.

Connector

Configurator

Express

requires

values

for

properties

described

in

the

following

sections:

v

“Setting

standard

connector

properties”

v

“Setting

application-specific

configuration

properties”

on

page

190

v

“Specifying

supported

business

object

definitions”

on

page

191

v

“Associated

maps”

on

page

192

v

“Setting

trace/log

file

values”

on

page

193

Note:

For

connectors

that

use

JMS

messaging,

an

additional

category

may

display,

for

special

configuration

of

data

handlers

that

convert

the

data

to

business

objects.

For

further

information,

see

“Data

handlers”

on

page

194.

Setting

the

configuration

file

properties

When

you

create

and

name

a

new

connector

configuration

file,

or

when

you

open

an

existing

connector

configuration

file,

Connector

Configurator

Express

displays

a

configuration

screen

with

tabs

for

the

categories

of

required

configuration

values.

Standard

properties

differ

from

connector-specific

properties

as

follows:

v

Standard

properties

of

a

connector

are

shared

by

both

the

application-specific

component

of

a

connector

and

its

broker

component.

All

connectors

have

the

same

set

of

standard

properties.

These

properties

are

described

in

Appendix

A

of

each

adapter

guide.

You

can

change

some

but

not

all

of

these

values.

v

Application-specific

properties

apply

only

to

the

application-specific

component

of

a

connector,

that

is,

the

component

that

interacts

directly

with

the

application.

Each

connector

has

application-specific

properties

that

are

unique

to

its

application.

Some

of

these

properties

provide

default

values

and

some

do

not;

you

can

modify

some

of

the

default

values.

The

installation

and

configuration

chapters

of

each

adapter

guide

describe

the

application-specific

properties

and

the

recommended

values.

The

fields

for

Standard

Properties

and

Connector-Specific

Properties

are

color-coded

to

show

which

are

configurable:

v

A

field

with

a

grey

background

indicates

a

standard

property.

You

can

change

the

value

but

cannot

change

the

name

or

remove

the

property.

v

A

field

with

a

white

background

indicates

an

application-specific

property.

These

properties

vary

according

to

the

specific

needs

of

the

application

or

connector.

You

can

change

the

value

and

delete

these

properties.

v

You

can

configure

Value

fields.

v

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Setting

standard

connector

properties

To

change

the

value

of

a

standard

property:

1.

Click

in

the

field

whose

value

you

want

to

set.

2.

Either

enter

a

value,

or

select

one

from

the

drop-down

menu

if

it

appears.

Appendix

B.

Connector

Configurator

Express

189

3.

After

entering

all

the

values

for

the

standard

properties,

you

can

do

one

of

the

following:

v

To

discard

the

changes,

preserve

the

original

values,

and

exit

Connector

Configurator

Express,

click

File>Exit

(or

close

the

window),

and

click

No

when

prompted

to

save

changes.

v

To

enter

values

for

other

categories

in

Connector

Configurator

Express,

select

the

tab

for

the

category.

The

values

you

enter

for

Standard

Properties

(or

any

other

category)

are

retained

when

you

move

to

the

next

category.

When

you

close

the

window,

you

are

prompted

to

either

save

or

discard

the

values

that

you

entered

in

all

the

categories

as

a

whole.

v

To

save

the

revised

values,

click

File>Exit

(or

close

the

window)

and

click

Yes

when

prompted

to

save

changes.

Alternatively,

click

Save>To

File

from

either

the

File

menu

or

the

toolbar.

Setting

application-specific

configuration

properties

For

application-specific

configuration

properties,

you

can

add

or

change

property

names,

configure

values,

delete

a

property,

and

encrypt

a

property.

The

default

property

length

is

255

characters.

1.

Right-click

in

the

top

left

portion

of

the

grid.

A

pop-up

menu

bar

will

appear.

Click

Add

to

add

a

property.

To

add

a

child

property,

right-click

on

the

parent

row

number

and

click

Add

child.

2.

Enter

a

value

for

the

property

or

child

property.

3.

To

encrypt

a

property,

select

the

Encrypt

box.

4.

Choose

to

save

or

discard

changes,

as

described

for

“Setting

standard

connector

properties”

on

page

189.

The

Update

Method

displayed

for

each

property

indicates

whether

a

component

or

agent

restart

is

necessary

to

activate

changed

values.

Important:

Changing

a

preset

application-specific

connector

property

name

may

cause

a

connector

to

fail.

Certain

property

names

may

be

needed

by

the

connector

to

connect

to

an

application

or

to

run

properly.

Encryption

for

connector

properties

Application-specific

properties

can

be

encrypted

by

selecting

the

Encrypt

check

box

in

the

Edit

Property

window.

To

decrypt

a

value,

click

to

clear

the

Encrypt

check

box,

enter

the

correct

value

in

the

Verification

dialog

box,

and

click

OK.

If

the

entered

value

is

correct,

the

value

is

decrypted

and

displays.

The

adapter

user

guide

for

each

connector

contains

a

list

and

description

of

each

property

and

its

default

value.

If

a

property

has

multiple

values,

the

Encrypt

check

box

will

appear

for

the

first

value

of

the

property.

When

you

select

Encrypt,

all

values

of

the

property

will

be

encrypted.

To

decrypt

multiple

values

of

a

property,

click

to

clear

the

Encrypt

check

box

for

the

first

value

of

the

property,

and

then

enter

the

new

value

in

the

Verification

dialog

box.

If

the

input

value

is

a

match,

all

multiple

values

will

decrypt.

Update

method

Refer

to

the

descriptions

of

update

methods

found

in

the

Standard

configuration

properties

for

connectors

appendix,

under

“Setting

and

updating

property

values”

on

page

169.

190

Adapter

for

Web

Services

User

Guide

Connector

properties

are

almost

all

static

and

the

Update

Method

is

Component

restart.

For

changes

to

take

effect,

you

must

restart

the

connector

after

saving

the

revised

connector

configuration

file.

Specifying

supported

business

object

definitions

Use

the

Supported

Business

Objects

tab

in

Connector

Configurator

Express

to

specify

the

business

objects

that

the

connector

will

use.

You

must

specify

both

generic

business

objects

and

application-specific

business

objects,

and

you

must

specify

associations

for

the

maps

between

the

business

objects.

For

you

to

specify

a

supported

business

object,

the

business

objects

and

their

maps

must

exist

in

the

system.

Business

object

definitions,

including

those

for

data

handler

meta-objects,

and

map

definitions

should

be

saved

into

Integration

Component

Library

(ICL)

projects.

For

more

information

on

ICL

projects,

see

the

User

Guide

for

WebSphere

Business

Integration

Server

Express.

Note:

Some

connectors

require

that

certain

business

objects

be

specified

as

supported

in

order

to

perform

event

notification

or

additional

configuration

(using

meta-objects)

with

their

applications.

For

more

information,

see

the

chapter

on

business

objects

in

this

guide

as

well

as

the

Business

Object

Development

Guide.

To

specify

that

a

business

object

definition

is

supported

by

the

connector,

or

to

change

the

support

settings

for

an

existing

business

object

definition,

click

the

Supported

Business

Objects

tab

and

use

the

following

fields.

Business

object

name

To

designate

that

a

business

object

definition

is

supported

by

the

connector,

with

System

Manager

running:

1.

Click

an

empty

field

in

the

Business

Object

Name

list.

A

drop-down

list

displays,

showing

all

the

business

object

definitions

that

exist

in

the

System

Manager

project.

2.

Click

on

a

business

object

to

add

it.

3.

Set

the

Agent

Support

(described

below)

for

the

business

object.

4.

In

the

File

menu

of

the

Connector

Configurator

Express

window,

click

Save

to

Project.

The

revised

connector

definition,

including

designated

support

for

the

added

business

object

definition,

is

saved

to

the

project

in

System

Manager.

To

delete

a

business

object

from

the

supported

list:

1.

To

select

a

business

object

field,

click

the

number

to

the

left

of

the

business

object.

2.

From

the

Edit

menu

of

the

Connector

Configurator

Express

window,

click

Delete

Row.

The

business

object

is

removed

from

the

list

display.

3.

From

the

File

menu,

click

Save

to

Project.

Deleting

a

business

object

from

the

supported

list

changes

the

connector

definition

and

makes

the

deleted

business

object

unavailable

for

use

in

this

implementation

of

this

connector.

It

does

not

affect

the

connector

code,

nor

does

it

remove

the

business

object

definition

itself

from

System

Manager.

Agent

support

If

a

business

object

has

Agent

Support,

the

system

will

attempt

to

use

that

business

object

for

delivering

data

to

an

application

via

the

connector

agent.

Appendix

B.

Connector

Configurator

Express

191

Typically,

application-specific

business

objects

for

a

connector

are

supported

by

that

connector’s

agent,

but

generic

business

objects

are

not.

To

indicate

that

the

business

object

is

supported

by

the

connector

agent,

check

the

Agent

Support

box.

The

Connector

Configurator

Express

window

does

not

validate

your

Agent

Support

selections.

Maximum

transaction

level

The

maximum

transaction

level

for

a

connector

is

the

highest

transaction

level

that

the

connector

supports.

For

most

connectors,

Best

Effort

is

the

only

possible

choice.

You

must

restart

the

server

for

changes

in

transaction

level

to

take

effect.

Associated

maps

Each

connector

supports

a

list

of

business

object

definitions

and

their

associated

maps

that

are

currently

active

in

InterChange

Server

Express.

This

list

appears

when

you

select

the

Associated

Maps

tab.

The

list

of

business

objects

contains

the

application-specific

business

object

which

the

agent

supports

and

the

corresponding

generic

object

that

the

controller

sends

to

the

subscribing

collaboration.

The

association

of

a

map

determines

which

map

will

be

used

to

transform

the

application-specific

business

object

to

the

generic

business

object

or

the

generic

business

object

to

the

application-specific

business

object.

If

you

are

using

maps

that

are

uniquely

defined

for

specific

source

and

destination

business

objects,

the

maps

will

already

be

associated

with

their

appropriate

business

objects

when

you

open

the

display,

and

you

will

not

need

(or

be

able)

to

change

them.

If

more

than

one

map

is

available

for

use

by

a

supported

business

object,

you

will

need

to

explicitly

bind

the

business

object

with

the

map

that

it

should

use.

The

Associated

Maps

tab

displays

the

following

fields:

v

Business

Object

Name

These

are

the

business

objects

supported

by

this

connector,

as

designated

in

the

Supported

Business

Objects

tab.

If

you

designate

additional

business

objects

under

the

Supported

Business

Objects

tab,

they

will

be

reflected

in

this

list

after

you

save

the

changes

by

choosing

Save

to

Project

from

the

File

menu

of

the

Connector

Configurator

Express

window.

v

Associated

Maps

The

display

shows

all

the

maps

that

have

been

installed

to

the

system

for

use

with

the

supported

business

objects

of

the

connector.

The

source

business

object

for

each

map

is

shown

to

the

left

of

the

map

name,

in

the

Business

Object

Name

display.

v

Explicit

In

some

cases,

you

may

need

to

explicitly

bind

an

associated

map.

Explicit

binding

is

required

only

when

more

than

one

map

exists

for

a

particular

supported

business

object.

When

InterChange

Server

Express

boots,

it

tries

to

automatically

bind

a

map

to

each

supported

business

object

for

each

connector.

192

Adapter

for

Web

Services

User

Guide

If

more

than

one

map

takes

as

its

input

the

same

business

object,

the

server

attempts

to

locate

and

bind

one

map

that

is

the

superset

of

the

others.

If

there

is

no

map

that

is

the

superset

of

the

others,

the

server

will

not

be

able

to

bind

the

business

object

to

a

single

map,

and

you

will

need

to

set

the

binding

explicitly.

To

explicitly

bind

a

map:

1.

In

the

Explicit

column,

place

a

check

in

the

check

box

for

the

map

you

want

to

bind.

2.

Select

the

map

that

you

intend

to

associate

with

the

business

object.

3.

In

the

File

menu

of

the

Connector

Configurator

Express

window,

click

Save

to

Project.

4.

Deploy

the

project

to

InterChange

Server

Express.

5.

Reboot

the

server

for

the

changes

to

take

effect.

Resources

The

Resource

tab

allows

you

to

set

a

value

that

determines

whether

and

to

what

extent

the

connector

agent

will

handle

multiple

processes

concurrently,

using

connector

agent

parallelism.

Not

all

connectors

support

this

feature.

If

you

are

running

a

connector

agent

that

was

designed

in

Java

to

be

multi-threaded,

you

are

advised

not

to

use

this

feature,

since

it

is

usually

more

efficient

to

use

multiple

threads

than

multiple

processes.

Setting

trace/log

file

values

When

you

open

a

connector

configuration

file

or

a

connector

definition

file,

Connector

Configurator

Express

uses

the

logging

and

tracing

values

of

that

file

as

default

values.

You

can

change

those

values

in

Connector

Configurator

Express.

To

change

the

logging

and

tracing

values:

1.

Click

the

Trace/Log

Files

tab.

2.

For

either

logging

or

tracing,

you

can

choose

to

write

messages

to

one

or

both

of

the

following:

v

To

console

(STDOUT):

Writes

logging

or

tracing

messages

to

the

STDOUT

display.

Note:

You

can

only

use

the

STDOUT

option

from

the

Trace/Log

Files

tab

for

connectors

running

on

the

Windows

platform.

v

To

File:

Writes

logging

or

tracing

messages

to

a

file

that

you

specify.

To

specify

the

file,

click

the

directory

button

(ellipsis),

navigate

to

the

preferred

location,

provide

a

file

name,

and

click

Save.

(If

your

connector

is

not

running

on

the

Windows

platform

on

which

you

have

installed

Connector

Configurator

Express,

you

must

first

map

a

drive

to

a

location

on

the

system

where

you

want

the

file.

)

Logging

or

tracing

message

are

written

to

the

file

and

location

that

you

specify.

Note:

Both

logging

and

tracing

files

are

simple

text

files.

You

can

use

the

file

extension

that

you

prefer

when

you

set

their

file

names.

For

tracing

files,

however,

it

is

advisable

to

use

the

extension

.trace

rather

than

.trc,

to

avoid

confusion

with

other

files

that

might

reside

on

the

system.

For

logging

files,

.log

and

.txt

are

typical

file

extensions.

Appendix

B.

Connector

Configurator

Express

193

Data

handlers

The

data

handlers

section

is

available

for

configuration

only

if

you

have

designated

a

value

of

JMS

for

DeliveryTransport

and

a

value

of

JMS

for

ContainerManagedEvents.

Adapters

that

make

use

of

the

guaranteed

event

delivery

enable

this

tab.

See

the

descriptions

under

ContainerManagedEvents

in

the

Standard

Properties

appendix

for

values

to

use

for

these

properties.

Saving

your

configuration

file

After

you

have

created

the

configuration

file

and

set

its

properties,

you

need

to

deploy

it

to

the

correct

location

for

your

connector.

Save

the

configuration

in

an

ICL

project,

and

use

System

Manager

to

load

the

file

into

InterChange

Server

Express.

The

file

is

saved

as

an

XML

document.

You

can

save

the

XML

document

in

three

ways:

v

From

System

Manager,

as

a

file

with

a

*.con

extension

in

an

Integration

Component

Library,

or

v

In

a

directory

that

you

specify.

v

In

stand-alone

mode,

as

a

file

with

a

*.cfg

extension

in

a

directory

folder.

For

details

about

using

projects

in

System

Manager,

and

for

further

information

about

deployment,

see

the

User

Guide

for

IBM

WebSphere

Business

Integration

Server

Express.

Completing

the

configuration

After

you

have

created

a

configuration

file

for

a

connector

and

modified

it,

make

sure

that

the

connector

can

locate

the

configuration

file

when

the

connector

starts

up.

To

do

so,

open

the

startup

file

used

for

the

connector,

and

verify

that

the

location

and

file

name

used

for

the

connector

configuration

file

match

exactly

the

name

you

have

given

the

file

and

the

directory

or

path

where

you

have

placed

it.

Using

Connector

Configurator

Express

in

a

globalized

environment

Connector

Configurator

Express

is

globalized

and

can

handle

character

conversion

between

the

configuration

file

and

the

integration

broker.

Connector

Configurator

Express

uses

native

encoding.

When

it

writes

to

the

configuration

file,

it

uses

UTF-8

encoding.

Connector

Configurator

Express

supports

non-English

characters

in:

v

All

value

fields

v

Log

file

and

trace

file

path

(specified

in

the

Trace/Log

files

tab)

The

drop

list

for

the

CharacterEncoding

and

Locale

standard

configuration

properties

displays

only

a

subset

of

supported

values.

To

add

other

values

to

the

drop

list,

you

must

manually

modify

the

\Data\Std\stdConnProps.xml

file

in

the

product

directory.

194

Adapter

for

Web

Services

User

Guide

For

example,

to

add

the

locale

en_GB

to

the

list

of

values

for

the

Locale

property,

open

the

stdConnProps.xml

file

and

add

the

line

in

boldface

type

below:

<Property

name="Locale"

isRequired="true"

updateMethod="component

restart">

<ValidType>String</ValidType>

<ValidValues>

<Value>ja_JP</Value>

<Value>ko_KR</Value>

<Value>zh_CN</Value>

<Value>zh_TW</Value>

<Value>fr_FR</Value>

<Value>de_DE</Value>

<Value>it_IT</Value>

<Value>es_ES</Value>

<Value>pt_BR</Value>

<Value>en_US</Value>

<Value>en_GB</Value>

<DefaultValue>en_US</DefaultValue>

</ValidValues>

</Property>

Appendix

B.

Connector

Configurator

Express

195

196

Adapter

for

Web

Services

User

Guide

Appendix

C.

Adapter

for

Web

Services

tutorial

v

“About

the

tutorial”

v

“Before

you

start”

on

page

198

v

“Installing

and

configuring”

on

page

199

v

“Running

the

asynchronous

scenario”

on

page

204

v

“Running

the

synchronous

scenario”

on

page

207

This

appendix

contains

step-by-step

procedures

that:

v

demonstrate

asynchronous

and

synchronous

event

transmission

for

both

request

and

event

processing

v

illustrate

how

to

configure

the

web

services

connector

for

a

SOAP/HTTPS

sample

v

illustrate

how

to

configure

the

web

services

connector

for

a

SOAP/HTTP

sample

v

illustrate

how

to

configure

the

web

services

connector

for

a

SOAP/JMS

sample

About

the

tutorial

This

tutorial

is

intended

to

demonstrate

asynchronous

and

synchronous

event

transmission

for

both

the

request

and

event

processing

facets

of

the

Adapter

for

Web

Services

with

each

of

the

supported

protocols:

SOAP/HTTP,

SOAP/HTTPS

and

SOAP/JMS.

In

each

scenario,

the

adapters

act

as:

v

a

web

service

client

for

collaborations

that

invoke

a

web

service

v

a

proxy

that

exposes

a

WebSphere

Business

Integration

Server

Express

and

Express

Plus

collaboration

as

a

web

service

The

tutorial

is

designed

to

show

the

basic

functionality

of

the

adapter

in

sample

scenarios:

v

An

asynchronous

scenario

that

illustrates

an

asynchronous

(request-only)

web

service

and

its

client

with

the

connector.

There

are

two

samples

in

this

scenario—for

configuration

simplicity,

the

same

Web

Services

connector

is

used

to

expose

a

collaboration

as

a

Web

Service

and

invoke

a

Web

Service

as

a

client.

–

A

collaboration

that

is

exposed

as

a

web

service

In

this

sample,

the

web

service

is

simply

a

collaboration

SERVICE_ASYNCH_Order_Collab

within

WebSphere

Business

Integration

Server

Express

and

Express

Plus

that

is

being

exposed

as

a

web

service

by

the

connector.

The

web

service

is

referred

to

as

Asynch

Order

Service.

If

the

connector

is

properly

configured,

this

Web

Service

can

be

invoked

using

any

(one)

of

the

Web

Services

protocols:

SOAP/HTTP,

SOAP/HTTPS

or

SOAP/JMS.

SERVICE_ASYNCH_Order_Collab

is

a

simple

pass-through

collaboration

that

takes

SERVICE_ASYNCH_TLO_Order.

The

triggering

port

(From)

of

this

collaboration

is

bound

to

the

Web

Services

connector.

The

service

port

(To)

is

bound

to

SampleSiebelConnector.

–

A

collaboration

that

is

invoked

by

a

web

services

client

In

this

sample,

the

web

service

client

is

another

collaboration

CLIENT_ASYNCH_Order_Collab

within

WebSphere

Business

Integration

Server

Express

and

Express

Plus

that

will

invoke

the

Web

Service

Asynch

Order

Service

using

the

Web

Services

connector.

If

the

connector

is

configured

properly,

this

web

service

client

can

invoke

the

Web

Service

over

any

(one)

of

the

Web

Services

protocols:

SOAP/HTTP,

SOAP/HTTPS

or

SOAP/JMS.

CLIENT_ASYNCH_Order_Collab

is

a

simple

pass-through

collaboration

which

takes

CLIENT_ASYNCH_TLO_Order.

The

©

Copyright

IBM

Corp.

2004

197

triggering

port

(From)

of

this

collaboration

is

bound

to

SampleSAPConnector.

The

service

port

(To)

is

bound

to

the

Web

Services

connector.

Both

samples

in

the

asynchronous

scenario

involve

two

applications:

–

SampleSiebel:

Creates

an

order

for

its

clients.

–

SampleSAP:

Creates

an

order
v

A

synchronous

scenario

that

illustrates

a

synchronous

(request-response)

web

service

and

its

client

with

the

connector.

There

are

two

samples

in

this

scenario—for

configuration

simplicity,

the

same

Web

Services

connector

is

used

to

expose

a

collaboration

as

a

Web

Service

and

invoke

a

Web

Service

as

a

client.

–

A

collaboration

that

is

exposed

as

a

web

service

In

this

sample,

the

Web

Service

is

simply

a

collaboration

SERVICE_SYNCH_OrderStatus_Collab

within

WebSphere

Business

Integration

Server

Express

and

Express

Plus

that

is

being

exposed

as

a

web

service

by

the

connector.

In

this

sample,

this

web

service

is

referred

to

as

Synch

OrderStatus

Service.

If

the

connector

is

properly

configured,

the

web

service

can

be

invoked

using

any

of

the

web

services

protocols:

SOAP/HTTP,

SOAP/HTTPS

or

SOAP/JMS.

SERVICE_SYNCH_OrderStatus_Collab

is

a

simple

pass-through

collaboration

which

takes

SERVICE_SYNCH_TLO_OrderStatus.

The

triggering

port

(From)

of

this

collaboration

is

bound

to

the

Web

Services

connector.

The

service

port

(To)

is

bound

to

SampleSiebelConnector.

–

A

collaboration

that

is

invoked

by

a

web

services

client

In

this

sample,

the

web

service

client

is

another

collaboration

CLIENT_SYNCH_OrderStatus_Collab

within

WebSphere

Business

Integration

Server

Express

and

Express

Plus

that

will

invoke

the

web

service

Synch

OrderStatus

Service

using

the

Web

Services

connector.

If

the

connector

is

properly

configured,

this

web

service

client

can

invoke

the

web

service

over

any

of

the

web

services

protocols:

SOAP/HTTP,

SOAP/HTTPS

or

SOAP/JMS.

CLIENT_SYNCH_OrderStatus_Collab

is

a

simple

pass-through

collaboration

which

takes

CLIENT_SYNCH_TLO_OrderStatus.

The

triggering

port

(From)

of

this

collaboration

is

bound

to

SampleSAPConnector.

The

service

port

(To)

is

bound

to

the

Web

Services

connector.

Both

samples

in

the

synchronous

scenario

involve

two

applications:

–

SampleSiebel:

Retrieves

the

status

of

orders

for

its

clients.

–

SampleSAP:

Requests

the

status

of

the

order

Both

scenarios

involve

simulating

the

SampleSiebelConnector

and

SampleSAPConnector

using

two

Test

Connectors.

Before

you

start

Before

you

start

the

tutorial,

be

sure

that:

v

You

have

installed,

and

are

experienced

with,

WebSphere

Business

Integration

Server

Express

and

Express

Plus

4.2.x

or

later.

v

You

have

installed

the

WebSphere

Business

Integration

Adapter

For

Web

Services

in

the

WebSphere

Business

Integration

Server

Express

and

Express

Plus

home

directory.

v

You

are

experienced

with

Web

Services

technology.

v

You

are

experienced

with

SOAP

technology.

198

Adapter

for

Web

Services

User

Guide

Installing

and

configuring

In

the

sections

that

follow,

WBI_folder

refers

to

the

folder

containing

your

current

WebSphere

Business

Integration

Server

Express

and

Express

Plus

installation.

All

environment

variables

and

file

separators

are

specified

in

the

Windows

NT/2000

format.

Start

server

and

tool

1.

Start

WebSphere

Business

Integration

Server

Express

and

Express

Plus

from

the

shortcut.

2.

Start

the

WebSphere

Business

Integration

System

Manager

and

open

the

Component

Navigator

Perspective.

3.

Register

and

connect

your

server

as

a

Server

Instance

in

the

Business

Integration

Server

Express

and

Express

Plus

view.

Load

the

sample

content

From

the

Component

Navigator

Perspective:

1.

Create

a

new

Integration

Component

Library.

2.

Import

the

repos

file

named

WebServicesSample.jar

located

in:

WBI_folder\connectors\WebServices\samples\WebSphereICS\

Compile

the

collaboration

templates

Using

WebSphere

Business

Integration

System

Manager:

v

Compile

All

of

the

Collaboration

Templates

that

were

imported

from

the

WebServicesSample.jar

repos

file.

Configure

the

connector

1.

If

you

have

not

done

so

already,

configure

the

connector

as

described

in

this

guide

and

according

to

your

system.

2.

Using

WebSphere

Business

Integration

System

Manager,

open

WebServicesConnector

in

Connector

Configurator

Express.

3.

You

must

also

configure

WebServicesConnector

for

the

protocol

you

want

to

use

with

the

sample:

v

If

you

want

to

use

SOAP/HTTP,

see

“Configuring

for

the

SOAP/HTTP

protocol

scenario”

to

configure

the

connector

for

SOAP/HTTP.

v

If

you

want

to

use

SOAP/HTTPS,

see

“Configuring

for

the

SOAP/HTTPS

protocol

scenario”

on

page

200

to

configure

the

connector

for

SOAP/HTTPS.

v

If

you

want

to

use

SOAP/JMS,

see

“Configuring

for

the

SOAP/JMS

protocol

scenario”

on

page

202

to

configure

the

connector

for

SOAP/JMS.

Configuring

for

the

SOAP/HTTP

protocol

scenario

This

section

shows

you

how

to

configure

the

connector

for

the

SOAP/HTTP

sample

scenario.

As

described

in

the

body

of

this

document,

the

connector

includes

a

SOAP/HTTP

protocol

listener

and

SOAP/HTTP-HTTPS

protocol

handler.

The

sample

scenario

exposes

SERVICE_ASYNCH_Order_Collab

and

SERVICE_SYNCH_OrderStatus_Collab

collaborations

as

SOAP/HTTP

web

services.

To

expose

a

collaboration

as

a

SOAP/HTTP

web

service,

the

connector

uses

the

SOAP/HTTP

protocol

listener.

The

sample

scenario

comes

with

the

CLIENT_ASYNCH_Order_Collab

and

CLIENT_SYNCH_OrderStatus_Collab

collaborations,

Appendix

C.

Adapter

for

Web

Services

tutorial

199

which

are

SOAP/HTTP

clients

of

SOAP/HTTP

web

services.

To

invoke

a

SOAP/HTTP

web

service,

the

connector

uses

SOAP/HTTPHTTPS

Protocol

Handler.

In

the

steps

and

descriptions

that

follow,

hierarchical

connector

configuration

properties

are

represented

with

the

”

symbol.

For

example,

A”

B

implies

A

is

a

hierarchical

property,

and

B

is

child

property

of

A.

To

configure

the

SOAP/HTTP

protocol

listener

for

this

sample:

1.

In

Connector

Configurator

Express,

click

on

Connector-Specific

Properties

for

the

WebServicesConnector.

2.

Expand

the

ProtocolListenerFramework

property

to

display

the

ProtocolListeners

child

property.

3.

Expand

the

ProtocolListeners

child

property

to

display

the

SOAPHTTPListener1

child

property.

4.

Check

the

value

of

SOAPHTTPListener1”Host

and

SOAPHTTPListener1”Port

property.

Make

sure

there

is

no

other

process

running

on

your

host

and

listening

on

this

TCP/IP

port.

Optionally,

you

may

want

to

set

the

value

of

SOAHTTPListener1”Host

to

the

machine

name

on

which

you

will

run

the

connector.

You

need

not

configure

the

SOAP/HTTP-HTTPS

protocol

handler

for

the

sample.

Configuring

for

the

SOAP/HTTPS

protocol

scenario

This

section

shows

you

how

to

configure

the

connector

for

the

SOAP/HTTPS

sample

scenario.

The

connector

includes

a

SOAP/HTTPS

protocol

listener

and

SOAP/HTTP-HTTPS

protocol

handler.

The

sample

scenario

exposes

the

SERVICE_ASYNCH_Order_Collab

and

SERVICE_SYNCH_OrderStatus_Collab

collaborations

as

SOAP/HTTPS

web

services.

To

expose

a

collaboration

as

a

SOAP/HTTPS

web

service,

the

connector

uses

the

SOAP/HTTPS

protocol

listener.

The

sample

scenario

comes

with

the

CLIENT_ASYNCH_Order_Collab

and

CLIENT_SYNCH_OrderStatus_Collab

collaborations,

which

are

SOAP/HTTPS

clients

of

SOAP/HTTPS

web

services.

To

invoke

a

SOAP/HTTPS

web

service,

the

connector

uses

the

SOAP/HTTPHTTPS

protocol

handler.

In

the

steps

and

descriptions

that

follow,

hierarchical

connector

configuration

properties

are

represented

with

the

”

symbol.

For

example,

A”

B

implies

A

is

a

hierarchical

property,

and

B

is

child

property

of

A.

Note:

In

addition

to

the

pre-install

items

listed

above

in“Before

you

start”

on

page

198,

you

should

also

have

created

and

tested

your

keystore

and

truststore

using

your

Key

and

Certificate

management

software.

Configure

SSL

connector-specific

properties:

For

SOAP/HTTPS,

the

connector

requires

that

you

configure

the

SSL

connector-specific

hierarchical

property.

1.

In

Connector

Configurator

Express,

click

on

the

Connector-Specific

Properties

tab

for

the

WebServicesConnector.

2.

Expand

the

SSL

hierarchical

property

to

view

all

of

its

children

properties.

Additionally,

check

or

change

the

following

child

properties

of

the

hierarchical

SSL

connector-specific

property.

v

SSL”

KeyStore

Set

to

the

complete

path

to

your

keystore

file,

which

you

must

create

using

your

Key

and

Certificate

management

software.

v

SSL”KeyStorePassword

Set

to

the

password

required

to

access

your

KeyStore.

200

Adapter

for

Web

Services

User

Guide

v

SSL”KeyStoreAlias

Set

to

the

alias

of

the

private

key

in

your

KeyStore.

v

SSL”TrustStore

Set

to

the

complete

path

of

your

truststore

file

which

you

have

created

using

your

Key

and

Certificate

management

software.

v

SSL”TrustStorePassword

Set

to

the

password

required

to

access

your

TrustStore.

Note:

Do

not

forget

to

save

the

changes

in

Connector

Configurator

Express.

Configure

the

SOAP/HTTPS

protocol

listener:

1.

In

Connector

Configurator

Express,

click

on

Connector-Specific

Properties

for

the

WebServicesConnector.

2.

Expand

the

ProtocolListenerFramework

property

to

display

the

ProtocolListeners

child

property.

3.

Expand

the

ProtocolListeners

child

property

to

display

the

SOAPHTTPSListener1

child

property.

Check

the

value

of

the

SOAPHTTPSListener1”Host

and

SOAPHTTPSListener1”Port

properties.

Make

sure

no

other

processes

are

running

on

your

host

and

listening

on

this

TCP/IP

port.

Optionally,

you

may

want

to

set

the

value

of

SOAHTTPSListener1”Host

to

the

machine

name

on

which

you

are

running

the

connector.

You

need

not

configure

the

SOAP/HTTP-HTTPS

protocol

handler

for

the

sample.

Setting

up

KeyStore

and

TrustStore:

You

can

quickly

set

up

KeyStore

and

TrustStore

to

use

with

the

sample

scenario.

For

production

systems,

you

must

use

third-party

software

for

to

set

up

and

manage

keystores

as

well

as

certificate

and

key

generation.

No

tool

is

provided

as

part

of

the

Adapter

for

Web

Services

to

set

up

and

manage

these

resources.

This

section

assumes

that

Java

Virtual

Machine

is

installed

on

your

system

and

that

you

are

familiar

with

the

keytool

shipped

with

your

JVM

(Java

Virtual

Machine).

For

more

information

or

for

troubleshooting

problems

with

the

keytool,

please

see

the

documentation

that

accompanies

your

JVM.

To

set

up

KeyStore:

1.

You

create

KeyStore

using

keytool.

You

must

create

a

key

pair

in

the

KeyStore.

To

do

so,

enter

the

following

at

the

command

line:

keytool

-genkey

-alias

wsadapter

-keystore

c:\security\keystore

2.

keytool

immediately

prompts

for

a

password.

Specify

the

password

that

you

entered

for

the

value

of

SSL”KeyStorePassword

connector

property.
Note

that

in

the

above

example

if

you

specified

-keystore

c:\security\keystore

in

the

command

line,

you

would

enter

c:\security\keystore

as

the

value

of

the

SSL”KeyStore

property.

Also,

if

you

specified

-alias

wsadapter

in

the

command

line,

you

would

enter

wsadapter

as

the

value

of

the

SSL”KeyStoreAlias

connector

property.

keytool

would

then

prompt

you

for

the

details

of

the

certificate.

The

following

illustrates

what

you

may

enter

at

each

of

the

prompts,

but

is

an

example

only:

always

refer,

and

defer,

to

keytool

documentation.

What

is

your

first

and

last

name?

[Unknown]:

HostName

What

is

the

name

of

your

organizational

unit?

[Unknown]:

myunit

What

is

the

name

of

your

organization?

[Unknown]:

myorganization

What

is

the

name

of

your

City

or

Locality?

[Unknown]:

mycity

Appendix

C.

Adapter

for

Web

Services

tutorial

201

What

is

the

name

of

your

State

or

Province?

[Unknown]:

mystate

What

is

the

two-letter

country

code

for

this

unit?

[Unknown]:

mycountryIs

<CN=HostName,

OU=myunit,

O=myorganization,

L=mycity,

ST=mystate,

C=mycountry>

correct?

[no]:

yes

3.

Note

that

for

What

is

your

first

and

last

name?,

you

should

enter

the

name

of

the

machine

on

which

you

are

running

the

connector.

keytool

then

prompts

you:

Enter

key

password

for

<wsadapter>

(RETURN

if

same

as

keystore

password):

4.

Press

Return

to

use

the

same

password.

If

you

want

to

use

a

self-signed

certificate,

you

may

want

to

export

the

certificate

created

above.

To

do

so,

enter

following

on

the

command

line:

C:\security>keytool

-export

-alias

wsadapter

-keystore

c:\security\keystore

-file

c:\security\wsadapter.cer

5.

keytool

now

prompts

for

the

keystore

password.

Enter

the

password

that

you

entered

above

To

set

up

TrustStore:

1.

To

import

the

trusted

certificates

into

the

TrustStore,

enter

the

following

command:

keytool

-import

-alias

trusted1

-keystore

c:\security\truststore

-file

c:\security\wsadapter.cer

2.

keytool

now

prompts

for

the

keystore

password.

If

you

entered

-keystore

c:\security\truststore,

make

sure

that

SSL”TrustStore

property

is

set

to

c:\security\truststore.

Also,

set

the

value

of

the

SSL”TrustStorePassword

property

to

the

password

you

entered

above.

Configuring

for

the

SOAP/JMS

protocol

scenario

This

section

shows

you

how

to

configure

the

connector

for

the

SOAP/JMS

sample

scenario.

The

sample

scenario

exposes

the

SERVICE_ASYNCH_Order_Collab

and

SERVICE_SYNCH_OrderStatus_Collab

collaborations

as

SOAP/JMS

web

services.

To

expose

a

collaboration

as

a

SOAP/JMS

web

service,

the

connector

uses

the

SOAP/JMS

protocol

listener.

The

sample

scenario

comes

with

the

CLIENT_ASYNCH_Order_Collab

and

CLIENT_SYNCH_OrderStatus_Collab

collaborations,

which

are

SOAP/JMS

clients

of

SOAP/JMS

web

services.

To

invoke

a

SOAP/JMS

web

service,

the

connector

uses

the

SOAP/JMS

protocol

handler.

In

the

steps

and

descriptions

that

follow,

hierarchical

connector

configuration

properties

are

represented

with

the

”

symbol.

For

example,

A”

B

implies

A

is

a

hierarchical

property,

and

B

is

child

property

of

A.

Note:

In

addition

to

the

pre-install

items

listed

above

in“Before

you

start”

on

page

198,

you

should

also

have

installed

a

JMS

service

provider

and

installed

and

configured

your

JNDI.

Configuring

JNDI

properties:

For

SOAP/JMS,

you

must

configure

JNDI

connector

configuration

properties:

1.

In

Connector

Configurator

Express,

click

Connector-Specific

Properties

for

the

WebServicesConnector.

2.

Expand

the

JNDI

hierarchical

property

to

display

its

child

properties.

Then

check

or

change

the

child

properties

to

match

the

values

listed

below.

v

JNDI”JNDIProviderURL

Set

this

property

to

the

URL

of

the

JNDI

Service

provider.

Refer

to

your

JNDI

provider

documentation.

202

Adapter

for

Web

Services

User

Guide

v

JNDI”InitialContextFactory

Set

this

property

to

fully

qualified

class

name

of

the

factory

class

that

will

create

the

JNDI

initial

context.

Refer

to

your

JNDI

provider

documentation.

v

JNDI”JNDIConnectionFactoryName

Set

this

property

to

the

JNDI

name

of

the

connection

factory

to

lookup

using

JNDI

context.

Make

sure

that

this

name

can

be

looked

up

using

the

JNDI.

v

Refer

to

your

JNDI

documentation

to

see

if

any

of

the

following

properties

are

required

by

your

JNDI

provider:

–

JNDI”CTX_ObjectFactories

–

JNDI”CTX_ObjectFactories

–

JNDI”CTX_StateFactories

–

JNDI”CTX_URLPackagePrefixes

–

JNDI”CTX_DNS_URL

–

JNDI”CTX_Authoritative

–

JND”CTX_Batchsize

–

JNDI”CTX_Referral

–

JNDI”CTX_SecurityProtocol

–

JND”CTX_SecurityAuthentication

–

JNDI”CTX_SecurityPrincipal

–

JNDI”CTX_SecurityCredentials

–

JNDI”CTX_Language

3.

Save

the

changes

in

Connector

Configurator

Express.

Configure

the

JMS

queues

and

SOAP/JMS

protocol

listener:

The

scenario

requires

that

six

queues

be

defined

with

your

JMS

service

provider.

Before

doing

so,

check

your

JMS

provider

documentation;

defining

queues

varies

between

providers.

1.

Define

(or

make

available

via

JNDI

lookup)

the

following

queues:

v

ORDER_INPUT

v

ORDER_INPROGRESS

v

ORDER_ERROR

v

ORDER_ARCHIVE

v

ORDER_UNSUBSCRIBED

v

ORDER_REPLYTO

2.

From

CSM

open

WebServicesConnector

in

Connector

Configurator

Express.

If

you

have

not

done

so

already,

configure

the

connector

as

described

in

the

Installation

Guide

for

your

system.

3.

Click

Application

Config

Properties

in

Connector

Configurator

Express.

4.

Expand

the

ProtocolListenerFramework

property

to

display

the

ProtocolListeners

child

property.

5.

Expand

ProtocolListeners

property

to

display

the

SOAPJMSListener1

child

property.

6.

Check

or

change

the

values

of

the

SOAPJMSListner1

child

properties

to

match

those

listed

below:

v

SOAPJMSListener”Protocol

Set

to

soap/jms

v

SOAPJMSListener1”Protocol

Set

to

soap/jms

v

SOAPJMSListener1”InputQueue

Set

to

ORDER_INPUT

v

SOAPJMSListener1”InProgressQueue

Set

to

ORDER_INPROGRESS

Appendix

C.

Adapter

for

Web

Services

tutorial

203

v

SOAPJMSListener1”ArchiveQueue

Set

to

ORDER_ARCHIVE

v

SOAPJMSListener1”UnsubscribedQueue

Set

to

ORDER_UNSUBSCRIBED

v

SOAPJMSListener1”ErrorQueue

Set

to

ORDER_ERROR

v

SOAPJMSListener1”ReplyToQueue

Set

to

ORDER_REPLYTO

7.

Save

the

changes

in

Connector

Configurator

Express.

Configure

the

SOAP/JMS

protocol

handler:

1.

From

System

Manager

open

WebServicesConnector

in

Connector

Configurator

Express.

If

you

have

not

done

so

already,

configure

the

connector

as

described

in

the

Installation

Guide

for

your

system.

2.

Click

Connector-Config

Properties

in

Connector

Configurator

Express.

3.

Expand

the

ProtocolHandlerFramework

property

to

display

the

ProtocolHandlers

child

property.

4.

Expand

the

ProtocolHandlers

child

property

to

display

the

SOAPJMSHandler

child

property.

Check

or

change

the

values

of

SOAPJMSHandler

child

properties

to

match

the

those

below:

v

SOAPJMSHandler”Protocol

Set

to

soap/jms

v

SOAPJMSHandler”ReplyToQueue

Set

to

value

ORDER_REPLYTO

5.

Save

the

changes

in

Connector

Configurator

Express.

Create

user

project

v

Using

WebSphere

Business

Integration

System

Manager,

create

a

new

User

Project.

Select

all

of

the

components

from

the

Integration

Component

Library

that

was

created

in

“Load

the

sample

content”

on

page

199.

Add

and

deploy

the

project

1.

From

the

Server

Instance

view,

add

the

User

Project

created

in

“Create

user

project”to

WebSphere

Business

Integration

Server

Express

and

Express

Plus

2.

Deploy

all

of

the

components

from

this

User

Project

to

the

Business

Integration

Server

Express

and

Express

Plus.

Reboot

Business

Integration

Server

Express

and

Express

Plus

1.

Reboot

Business

Integration

Server

Express

and

Express

Plus

to

ensure

that

all

changes

take

effect.

2.

Use

the

System

Monitor

tool

to

ensure

that

all

of

the

collaboration

objects,

connector

controllers,

and

maps

are

in

a

green

state.

Running

the

asynchronous

scenario

This

scenario

invokes

the

Asynch

Order

Service

web

service.

Before

running

the

scenario,

review

this

step-by-step

synopsis

of

its

data

flow.

1.

A

CLIENT_ASYNCH_TLO_Order.Create

event

originates

in

the

application

SampleSAP

running

in

one

instance

of

the

Test

Connector.

2.

The

event

is

sent

from

SampleSAP

to

the

collaboration

CLIENT_ASYNCH_Order_Collab.

3.

The

event

is

then

sent

from

the

collaboration

to

the

Web

Services

connector.

4.

The

Web

Services

connector

finds

the

CLIENT_ASYNCH_Order

object

that

is

a

child

of

the

CLIENT_ASYNCH_TLO_Order

object.

5.

The

Request

business

object

is

converted

into

a

SOAP

message

using

the

SOAP

data

handler.

204

Adapter

for

Web

Services

User

Guide

6.

The

Web

Services

connector

sends

the

SOAP

Message

to

the

end-point

(Destination)

of

the

web

service

Asynch

Order

Service.

The

end-point

is

provided

by

the

Destination

attribute

of

the

Protocol

Config

Meta-Object

(MO).

The

Protocol

Config

MO

used

by

the

connector

depends

on

the

value

of

the

Handler

attribute

of

CLIENT_ASYNCH_TLO_Order.

If

it

is

set

to

soap/http

or

soap/https,

the

Destination

attribute

of

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO

will

give

the

end-point

as

the

URL

of

the

web

service.

Otherwise

if

the

Handler

attribute

is

set

to

soap/jms,

the

Destination

attribute

of

CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO

gives

the

end-point

as

a

destination

queue

name.

7.

The

Asynch

Order

Service

web

service

receives

the

SOAP

request.

As

mentioned

earlier,

the

Web

Services

connector

is

the

end-point

for

this

web

service.

The

connector’s

protocol

listener,

listening

on

the

end-point

(to

which

the

request

was

sent),

receives

the

SOAP

message.

8.

The

connector

converts

the

SOAP

message

into

SERVICE_ASYNCH_Order

and

then

creates

a

SERVICE_TLO_Order

object.

The

SERVICE_ASYNCH_Order

object

is

set

as

a

child

of

the

SERVICE_TLO_Order

object.

9.

The

Web

Services

connector

now

asynchronously

posts

the

SERVICE_TLO_Order

object

to

Business

Integration

Server

Express

and

Express

Plus.

This

completes

the

asynchronous

web

service

invocation.

Because

this

is

an

asynchronous

web

service

(request-only),

no

response

is

sent

back

to

the

web

service

client.

When

SERVICE_ASYNCH_Order_Collab

receives

this

object,

the

collaboration

then

sends

the

business

object

to

the

application

namedSampleSiebel,

which

is

running

as

the

second

instance

of

Test

Connector.

The

object

is

displayed

in

the

Test

Connector.

When

Reply

Success

is

selected

from

theSampleSiebel

application,

the

event

will

be

sent

back

to

SERVICE_ASYNCH_Order_Collab.

To

run

the

asynchronous

scenario:

1.

Start

your

InterChange

Server

Express

integration

broker,

if

it

is

not

already

running.

2.

Start

the

Web

Services

connector.

3.

Start

two

instances

of

the

Test

Connector.

4.

Using

the

Test

Connector,

define

a

profile

for

the

SampleSAPConnector

and

the

SampleSiebelConnector.

5.

Select

FILE”CONNECT

AGENT

from

each

Test

Connector

menu

to

begin

simulating

agents.

6.

While

simulating

the

SampleSAPConnector

using

the

Test

Connector,

select

EDIT”LOAD

BO

from

the

menu.

Load

the

following

file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus

\CLIENT_ASYNCH_TLO_Order.bo

The

Test

Connector

should

show

that

the

CLIENT_ASYNCH_TLO_Order

is

loaded.

7.

Verify

the

web

services

end-point

address:

v

For

SOAP/HTTP

web

service

If

you

want

to

use

SOAP/HTTP:

a.

Make

sure

you

have

configured

the

Web

Services

connector

for

SOAP/HTTP.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

for

the

CLIENT_ASYNCH_TLO_Order

business

object

is

set

to

soap/http.

No

quotes

are

allowed

in

this

value.

b.

Expand

the

Request

attribute

of

CLIENT_ASYNCH_TLO_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order

business

object.

Appendix

C.

Adapter

for

Web

Services

tutorial

205

c.

Expand

the

SOAPHTTPCfgMO

attribute

of

CLIENT_ASYNCH_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d.

Make

sure

the

value

of

the

Destination

attribute

of

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO

is

set

to

http://localhost:8080/wbia/webservices/samples.

No

quotes

are

allowed

in

this

value.
v

For

SOAP/HTTPS

web

service

If

you

want

to

use

SOAP/HTTPS:

a.

Make

sure

that

you

have

configured

the

Web

Services

connector

for

SOAP/HTTPS.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

for

the

CLIENT_ASYNCH_TLO_Order

business

object

is

set

to

soap/http.

No

quotes

are

allowed

in

this

value.

Make

sure

the

Destination

attribute

in

the

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO

has

a

secure

URL,

that

is,

a

URL

starting

with

https.

b.

Expand

the

Request

attribute

of

CLIENT_ASYNCH_TLO_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order

business

object.

c.

Expand

the

SOAPHTTPCfgMO

attribute

of

CLIENT_ASYNCH_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d.

Make

sure

the

value

of

the

Destination

attribute

of

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO

is

set

to

https://localhost:8443/wbia/webservices/samples.

No

quotes

are

allowed

in

this

value.
v

For

SOAP/JMS

web

service

If

you

want

to

use

SOAP/JMS:

a.

Make

sure

you

have

configured

the

Web

Services

connector

for

SOAP/JMS.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

of

the

CLIENT_ASYNCH_TLO_Order

business

object

is

set

to

soap/jms.

No

quotes

are

allowed

in

this

value.

b.

Expand

the

Request

attribute

of

CLIENT_ASYNCH_TLO_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order

business

object.

c.

Expand

the

SOAPJMSCfgMO

attribute

of

CLIENT_ASYNCH_Order.

This

attribute

is

of

type

CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO.

d.

Make

sure

the

value

of

the

Destination

attribute

of

CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO

is

set

to

ORDER_INPUT.

No

quotes

are

allowed

in

this

value.

8.

While

simulating

the

SampleSAPConnector

with

the

Test

Connector,

click

on

the

loaded

Test

BO.

Select

REQUEST”SEND

from

the

menu.

See

the

step-by-step

synopsis

earlier

in

this

section

for

more

details

regarding

the

flow

of

the

event.

9.

While

simulating

the

SampleSiebelConnector

with

the

Test

Connector,

select

REQUEST”ACCEPT

REQUEST.

An

Event

Labeled

SERVICE_ASYNCH_TLO_Order.Create

is

displayed

in

the

right

panel

of

the

Test

Connector.

10.

Double-click

the

business

object.

The

business

object

opens

up

in

a

window.

11.

Expand

the

Request

attribute

of

the

business

object.

The

Request

attribute

is

of

type

SERVICE_ASYNCH_Order.

Inspect

the

OrderId,

Customarily

and

other

attributes

of

SERVICE_ASYNCH_Order

to

verify

the

Order

received.

This

completes

the

execution

of

asynchronous

scenario.

12.

Once

you

have

inspected

the

business

object,

close

the

window.

Select

REQUEST

”REPLY”

SUCCESS.

206

Adapter

for

Web

Services

User

Guide

Running

the

synchronous

scenario

This

scenario

invokes

the

Synch

OrderStatus

Service

web

service.

Before

running

the

scenario,

review

this

step-by-step

synopsis

of

its

data

flow.

1.

A

CLIENT_SYNCH_TLO_OrderStatus.Retrieve

event

originates

in

the

application

SampleSAP

running

in

one

instance

of

the

Test

Connector.

2.

The

event

is

sent

from

SampleSAP

to

the

collaboration

named

CLIENT_SYNCH_OrderStatus_Collab.

3.

The

event

is

then

sent

from

the

collaboration

to

the

Web

Services

connector.

4.

The

Web

Services

connector

finds

the

CLIENT_SYNCH_OrderStatus_Request

object,

which

is

a

child

of

the

CLIENT_SYNCH_TLO_OrderStatus

object.

5.

The

Web

Services

connector

invokes

the

SOAP

data

handler

to

convert

the

CLIENT_SYNCH_OrderStatus_Request

business

object

into

a

SOAP

message.

6.

The

Web

Services

connector

sends

the

SOAP

message

to

the

end-point

(Destination)

of

the

web

service

Synch

OrderStatus

Service.

The

end-point

is

provided

by

the

Destination

attribute

of

the

Protocol

Config

MO.

The

Protocol

Config

MO

used

by

the

connector

depends

on

the

value

of

the

Handler

attribute

of

CLIENT_SYNCH_TLO_OrderStatus.

If

it

is

set

to

soap/http

or

soap/https,

the

Destination

attribute

of

CLIENT_SYNCH_OrderStatus_Request_SOAP_HTTP_CfgMO

will

give

the

end-point

as

the

URL

of

a

web

service.

Otherwise,

if

the

Handler

attribute

is

set

to

soap/jms,

the

Destination

attribute

of

CLIENT_SYNCH_OrderStatus_Request_SOAP_JMS_CfgMO

will

give

the

end-point

as

the

destination

queue

name

of

the

web

service).

7.

The

Web

Service

Synch

OrderStatus

Service

receives

the

SOAP

request.

As

mentioned

earlier,

the

Web

Services

connector

is

the

target

end-point.

The

connector’s

protocol

listener,

listening

on

the

end-point

(to

which

request

was

sent),

receive

the

SOAP

message.

8.

The

connector

invokes

the

SOAP

data

handler

with

the

SOAP

message.

The

SOAP

message

is

converted

into

a

SERVICE_SYNCH_OrderStatus_Request

object

by

the

SOAP

data

handler.

The

Web

Services

connector

then

creates

a

SERVICE_TLO_OrderStatus

object.

The

SERVICE_SYNCH_OrderStatus_Request

object

is

set

as

the

child

of

the

SERVICE_TLO_OrderStatus

object.

9.

The

Web

Services

connector

now

synchronously

posts

the

SERVICE_TLO_OrderStatus

object

to

the

SERVICE_SYNCH_OrderStatus_Collab

collaboration

running

in

WebSphere

Business

Integration

Server

Express

and

Express

Plus.

Since

this

is

a

synchronous

execution,

the

Web

Services

connector

remains

blocked

until

the

collaboration

executes

and

returns

the

response.

10.

SERVICE_SYNCH_OrderStatus_Collab

receives

the

SERVICE_TLO_OrderStatus

object.

The

collaboration

then

sends

the

business

object

to

the

application

SampleSiebel,

which

is

running

as

the

second

instance

of

the

Test

Connector.

11.

When

you

select

Reply

Success

from

the

SampleSiebel

application,

the

event

is

sent

back

to

the

SERVICE_SYNCH_OrderStatus_Collab

collaboration.

12.

SERVICE_SYNCH_OrderStatus_Collab

receives

the

SERVICE_TLO_OrderStatus

object.

The

collaboration

then

sends

the

business

object

to

Web

Services

connector.

13.

The

Web

Services

connector

finds

the

SERVICE_SYNCH_OrderStatus_Response

business

object

(or

SERVICE_SYNCH_OrderStatus_Fault,

if

it

is

populated)

that

is

a

child

of

the

SERVICE_SYNCH_OrderStatus_TLO.

This

business

object

will

be

converted

into

a

SOAP

response

message

(or

SOAP

fault

message)

by

the

SOAP

data

handler.

Appendix

C.

Adapter

for

Web

Services

tutorial

207

14.

The

Web

Services

connector

returns

the

SOAP

response

message

(or

SOAP

fault

message)

to

the

web

service

client.

15.

The

web

service

client,

which

in

this

case

is

the

connector,

receives

the

response.

The

connector

invokes

the

SOAP

data

handler

with

the

response

message.

16.

The

SOAP

data

handler

converts

the

response

message

into

either

a

CLIENT_SYNCH_OrderStatus_Response

or

CLIENT_SYNCH_OrderStatus_Fault

business

object,

depending

on

what

was

returned

by

the

Order

Synch

Service.

The

Web

Services

connector

sets

this

object

as

the

child

of

CLIENT_SYNCH_OrderStatus_TLO.

CLIENT_SYNCH_OrderStatus_TLO

is

returned

to

the

CLIENT_SYNCH_OrderStatus_Collab

collaboration.

17)

CLIENT_SYNCH_OrderStatus_Collab

then

sends

CLIENT_SYNCH_OrderStatus_TLO

to

the

SampleSAP

application,

which

is

running

as

the

first

instance

of

the

Test

Connector.

The

Test

Connector

displays

this

object.

To

run

the

synchronous

scenario:

1.

Start

your

InterChange

Server

Express

integration

broker,

if

it

is

not

already

running.

2.

Start

the

Web

Services

connector.

3.

Start

two

instances

of

the

Test

Connector.

4.

Using

the

Test

Connector,

define

a

profile

for

the

SampleSAPConnector

and

the

SampleSiebelConnector.

5.

Select

FILE”CONNECT

AGENT

from

each

Test

Connector

menu

to

begin

simulating

agents.

6.

While

simulating

the

SampleSAPConnector

using

the

Test

Connector,

select

EDIT”LOAD

BO

from

the

menu.

Load

the

following

file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus

\CLIENT_SYNCH_TLO_OrderStatus.bo

The

Test

Connector

should

show

that

the

CLIENT_SYNCH_TLO_OrderStatus

is

loaded.

7.

Verify

the

web

services

end-point

address:

v

For

SOAP/HTTP

web

service

If

you

want

to

use

SOAP/HTTP:

a.

Make

sure

you

have

configured

the

Web

Services

connector

for

SOAP/HTTP.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

for

the

CLIENT_SYNCH_TLO_OrderStatus

business

object

is

set

to

soap/http.

No

quotes

are

allowed

in

this

value.

b.

Expand

the

Request

attribute

of

CLIENT_SYNCH_TLO_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus

business

object.

c.

Expand

SOAPHTTPCfgMO

attribute

of

CLIENT_SYNCH_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

d.

Make

sure

the

value

of

the

Destination

attribute

of

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO

is

set

to

http://localhost:8080/wbia/webservices/samples.

No

quotes

are

allowed

in

this

value.
v

For

SOAP/HTTPS

web

service

If

you

want

to

use

SOAP/HTTPS:

a.

Make

sure

that

you

have

configured

the

Web

Services

connector

for

SOAP/HTTPS.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

for

the

CLIENT_SYNCH_TLO_OrderStatus

business

object

is

set

to

soap/http.

No

quotes

are

allowed

in

this

value.

208

Adapter

for

Web

Services

User

Guide

b.

Expand

the

Request

attribute

of

CLIENT_SYNCH_TLO_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus

business

object.

c.

Expand

the

SOAPHTTPCfgMO

attribute

of

CLIENT_SYNCH_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

d.

Make

sure

value

of

Destination

attribute

of

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO

is

set

to

https://localhost:8443/wbia/webservices/samples.

No

quotes

are

allowed

in

this

value.
v

For

SOAP/JMS

web

service

If

you

want

to

use

SOAP/JMS:

a.

Make

sure

you

have

configured

the

Web

Services

connector

for

SOAP/JMS.

In

your

Test

Connector,

make

sure

that

the

value

of

the

Handler

attribute

of

the

CLIENT_SYNCH_TLO_OrderStatus

business

object

is

set

to

soap/jms.

No

quotes

are

allowed

in

this

value.

b.

Expand

the

Request

attribute

of

CLIENT_SYNCH_TLO_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus

business

object.

c.

Expand

the

SOAPJMSCfgMO

attribute

of

CLIENT_SYNCH_OrderStatus.

This

attribute

is

of

type

CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO.

d.

Make

sure

the

value

of

the

Destination

attribute

of

CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO

is

set

to

ORDER_INPUT.

No

quotes

are

allowed

in

this

value.

8.

While

simulating

the

SampleSAPConnector

with

the

Test

Connector,

click

on

the

loaded

Test

BO.

Select

REQUEST”SEND

from

the

menu.

See

the

step-by-step

synopsis

earlier

in

this

section

for

more

details

regarding

the

data

flow.

9.

An

event

labeled

SERVICE_SYNCH_TLO_OrderStatus.Retrieve

is

displayed

in

the

right

panel

of

the

Test

Connector

instance

that

is

simulating

SampleSiebelConnector.

Double-click

the

business

object

to

display

it

in

a

window.

10.

Expand

the

Request

attribute

of

the

business

object.

The

Request

attribute

is

of

type

SERVICE_SYNCH_OrderStatus_Request.

Inspect

the

OrderId,

attribute

of

SERVICE_ASYNCH_Order

to

verify

that

this

is

the

order

for

which

status

is

required.

v

If

you

know

the

status

of

the

order:

a.

Click

the

Response

attribute

of

SERVICE_SYNCH_TLO_OrderStatus.

The

Response

attribute

is

of

type

CLIENT_SYNCH_OrderStatus_Response.

b.

Right-click

the

Response

attribute.

c.

Click

the

Add

Instance

option.

A

new

instance

for

the

CLIENT_SYNCH_OrderStatus_Response

business

object

is

created.

d.

Enter

values

for

OrderId,

CustomerId

and

all

other

details

you

know

about

this

order.

Once

you

have

entered

all

the

details

for

this

order,

close

this

window.
v

If

you

do

not

know

the

status

of

the

order:

a.

Click

the

Fault

attribute

of

SERVICE_SYNCH_TLO_OrderStatus.

The

Fault

attribute

is

of

type

CLIENT_SYNCH_OrderStatus_Fault.

b.

Right-click

the

Fault

attribute.

c.

Click

the

Add

Instance

option.

A

new

instance

of

CLIENT_SYNCH_OrderStatus_Fault

is

created.

d.

Enter

values

for

faultcode,

faultstring

and

all

other

details

you

want

to

send

in

the

SOAP

fault

message.

Once

you

have

entered

all

the

values

for

this

fault,

close

this

window.

Appendix

C.

Adapter

for

Web

Services

tutorial

209

11.

Select

REQUEST”REPLY”SUCCESS.An

event

labeled

SERVICE_SYNCH_TLO_OrderStatus.Retrieve

is

displayed

in

the

right

panel

of

the

Test

Connector

that

is

simulating

SampleSAPConnector.

12.

Double-click

the

SERVICE_SYNCH_TLO_OrderStatus.Retrieve

business

object,

which

is

then

displayed

in

a

window.

v

If

your

SampleSiebelConnector

returned

an

order

status,

you

should

see

the

Response

attribute

of

the

business

object

populated.

Expand

the

Response

attribute

to

verify

the

order

status.

v

If

your

SampleSiebelConnector

returned

a

fault,

you

should

see

the

Fault

attribute

of

the

business

object

populated.

Expand

the

Fault

attribute

to

determine

the

fault.
13.

Once

you

have

inspected

the

business

object,

close

the

window.

Select

REQUEST”REPLY”SUCCESS.

This

completes

the

execution

of

synchronous

scenario.

210

Adapter

for

Web

Services

User

Guide

Appendix

D.

Configuring

HTTPS/SSL

v

“Keystore

setup”

v

“TrustStore

setup”

on

page

212

v

“Generating

a

certificate

signing

request

(CSR)

for

public

key

certificates”

on

page

212

If

you

are

planning

to

use

SSL,

you

must

use

third-party

software

to

manage

your

keystores,

certificates,

and

key

generation.

The

web

services

connector

does

not

come

with

tooling

for

these

tasks.

However,

you

may

choose

to

use

keytool,

which

ships

with

IBM

JRE,

to

create

self-signed

certificates

and

to

manage

your

keystores.

A

key

and

certificate

management

utility,

keytool

enables

you

to

administer

your

own

public/private

key

pairs

and

associated

certificates.

These

are

intended

for

use

in

self-authentication

(where

you

authenticate

yourself

to

other

users

or

services)

or

data

integrity

and

authentication

services

that

use

digital

signatures.

The

keytool

utility

also

allows

you

to

store

the

public

keys

(in

the

form

of

certificates)

of

peers

with

whom

you

communicate.

This

appendix

describes

how

to

set

up

keystores

using

keytool.

Note

that

this

appendix

is

intended

for

illustration

purposes

only;

it

is

not

intended

as

a

substitute

for

documentation

for

keytool

or

related

products.

Always

refer

to

source

documentation

for

the

tools

you

use

to

set

up

keystores.

For

further

information

on

keytool,

see:

v

http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

Keystore

setup

To

create

KeyStore

using

keytool,

you

first

must

create

a

key

pair

in

the

KeyStore.

For

example,

if

you

enter

the

following

command

line:

keytool

-genkey

-alias

wsadapter

-keystore

c:\security\keystore

keytool

immediately

prompts

you

for

a

password.

You

may

enter

the

password

of

your

choice

(within

keytool

parameters),

but

you

should

specify

the

password

entered

in

keytool

as

the

value

of

the

SSL

”

KeyStorePassword

connector

property.

For

further

information,

see

“KeyStorePassword”

on

page

103.

The

sample

command

creates

the

keystore

named

keystore

in

the

c:\security\keystore

directory.

Accordingly,

you

would

enter

c:\security\keystore

as

the

value

of

the

SSL

”

KeyStore

connector

hierarchical

property.

Also

from

the

command

line

example

above,

you

would

enter

-alias

wsadapter

as

the

value

of

the

SSL

”

KeyStoreAlias

connector

hierarchical

property.

The

keytool

utility

then

prompts

you

for

the

details

of

the

certificate.

The

following

illustrates

what

you

may

enter

for

each

of

the

prompts.

(Refer

to

keytool

documentation.)

What

is

your

first

and

last

name?

[Unknown]:

HostName

What

is

the

name

of

your

organizational

unit?

[Unknown]:

wbi

What

is

the

name

of

your

organization?

[Unknown]:

IBM

What

is

the

name

of

your

City

or

Locality?

[Unknown]:

Burlingame

What

is

the

name

of

your

State

or

Province?

©

Copyright

IBM

Corp.

2004

211

[Unknown]:

CA

What

is

the

two-letter

country

code

for

this

unit?

[Unknown]:

US

Is

<CN=HostName,

OU=wbi,

O=IBM,

L=Burlingame,

ST=CA,

C=US>

correct?

[no]:

yes

keytool

then

prompts

you

for

a

password:

Enter

key

password

for

<wsadapter>

(RETURN

if

same

as

keystore

password):

Press

Return

to

use

the

same

password.

If

you

want

to

use

a

self-signed

certificate,

you

may

want

to

export

the

certificate

created

above.

In

that

case,

enter

following

on

the

command

line:

keytool

-export

-alias

wsadapter

-keystore

c:\security\keystore

-file

wsadapter.cer

keytool

now

prompts

you

for

the

keystore

password.

Enter

the

password

that

you

entered

above.

TrustStore

setup

You

may

want

to

set

up

TrustStore

for

the

following:

If

you

want

the

SOAP/HTTPS

protocol

listener

to

authenticate

the

web

service

client,

set

the

SSL

”

UseClientAuth

connector

configuration

property

to

true

.

In

this

case,

the

SOAP/HTTPS

protocol

listener

expect

s

TrustStore

to

contain

certificates

for

all

trusted

web

service

clients.

Note

that

the

connector

uses

the

JSSE

default

mechanism

to

trust

clients.

If

you

are

invoking

SOAP/HTTPS

web

services,

the

SOAP/HTTP-HTTPS

protocol

handler

requires

that

TrustStore

trust

the

web

service.

This

means

that

TrustStore

must

contain

the

certificates

of

all

trusted

web

services.

Note

that

the

connector

uses

the

JSSE

default

mechanism

to

trust

clients.

To

import

the

trusted

certificates

into

the

TrustStore,

enter

a

command

such

as

the

following:

keytool

-import

-alias

trusted1

-keystore

c:\security\truststore

-file

c:\security\trusted1.cer

keytool

now

prompts

for

the

keystore

password.

If

you

enter

-keystore

c:\security\truststore,

make

sure

that

the

SSL

”

TrustStore

hierarchical

property

is

set

to

c:\security\truststore.

Also

you

must

set

the

value

of

the

SSL

”

TrustStorePassword

hierarchical

property

to

the

password

you

entered

previously.

Generating

a

certificate

signing

request

(CSR)

for

public

key

certificates

If

the

SSL

data

exchange

is

among

already

trusted

partners

who

trust

your

identity,

self-signed

certificates

may

be

adequate.

However,

a

certificate

is

more

likely

to

be

trusted

by

others

when

it

is

signed

by

a

certifying

authority

(CA).

To

get

a

certificate

signed

by

the

CA

using

the

keytool

utility,

you

first

must

generate

a

Certificate

Signing

Request

(CSR),

then

give

the

CSR

to

a

CA.

The

CA

then

signs

the

certificate

and

returns

it

to

you.

You

generate

a

CSR

by

entering

the

following

command:

keytool

-certreq

-alias

wsadapter

-file

wsadapter.csr

-keystore

c:\security\keystore

212

Adapter

for

Web

Services

User

Guide

In

the

command,

alias

is

the

keystore

alias

that

you

created

for

the

private

key.

The

keytool

utility

generates

the

CSR

file,

which

you

provide

to

your

CA.

Your

CA

then

provides

you

with

the

signed

certificate.

You

will

have

to

import

this

certificate

into

your

keystore.

To

do

so,

you

would

enter

the

following

command:

keytool

-import

-alias

wsadapter

-keystore

c:\security\keystore

-trustcacerts

-file

casignedcertificate.cer

Once

you

import,

the

self-signed

certificate

in

keystore

is

replaced

by

the

CA-signed

certificate.

Appendix

D.

Configuring

HTTPS/SSL

213

214

Adapter

for

Web

Services

User

Guide

Notices

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user‘s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Burlingame

Laboratory

Director

IBM

Burlingame

Laboratory

577

Airport

Blvd.,

Suite

800

Burlingame,

CA

94010

U.S.A

©

Copyright

IBM

Corp.

2004

215

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

necessarily

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

All

statements

regarding

IBM‘s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

COPYRIGHT

LICENSE

This

information

may

contain

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Programming

interface

information

Programming

interface

information,

if

provided,

is

intended

to

help

you

create

application

software

using

this

program

General-use

programming

interfaces

allow

you

to

write

application

software

that

obtain

the

services

of

this

program‘s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

216

Adapter

for

Web

Services

User

Guide

Note:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

service

marks

The

following

terms

are

trademarks

or

registered

trademarks

of

International

Business

Machines

Corporation

in

the

United

States

or

other

countries,

or

both:

IBM

the

IBM

logo

AIX

CrossWorlds

DB2

DB2

Universal

Database

Domino

Lotus

Lotus

Notes

MQIntegrator

MQSeries

Tivoli

WebSphere

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

MMX,

Pentium,

and

ProShare

are

trademarks

or

registered

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

This

product

includes

software

developed

by

the

Eclipse

Project

(http://www.eclipse.org).

WebSphere

Business

Integration

Server

Express

V4.3.1

and

WebSphere

Business

Integration

Server

Express

Plus

V4.3.1.

Notices

217

http://www.eclipse.org

218

Adapter

for

Web

Services

User

Guide

����

Printed

in

USA

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 4.3.1
	Release 4.3

	Chapter 1. Overview of the adapter
	Adapter for Web Services environment
	Software prerequisites
	Adapter platforms
	Standards and APIs
	Locale-dependent data

	Terminology
	Components of connector for web services
	Web services connector
	SOAP data handler
	Web services configuration tools
	Deploying the connector

	Architecture of connector for web services
	Install, configure, and design checklist
	Installing the adapter
	Configuring connector properties
	Enabling collaborations for web services
	Configuring the SOAP data handler

	Limitations

	Chapter 2. Installation and startup
	Overview of installation tasks
	Install Business Integration Server Express and Express Plus
	Install the connector and related files

	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	OS/400 connector file structure
	Linux connector file structure

	Overview of configuration tasks
	Configure the connector
	Configure business objects
	Configure the data handler
	Configure collaborations

	Running multiple instances of the adapter
	Create a new directory

	Starting the connector
	Invoking the startup script on Windows
	Invoking the startup script on OS/400
	Invoking the startup script on Linux

	Chapter 3. Business object requirements
	Business object meta-data
	Connector business object structure
	Synchronous event processing TLOs
	Asynchronous event processing TLOs
	Event processing non-TLOs
	Synchronous request processing TLOs
	Asynchronous request processing TLOs

	Developing business objects

	Chapter 4. Web services connector
	Connector processing
	Event processing overview
	Request processing overview

	SOAP/HTTP(S) web services
	Synchronous SOAP/HTTP(S) web service
	Asynchronous SOAP/HTTP(S) web service

	SOAP/JMS web services
	Synchronous SOAP/JMS web service
	Asynchronous SOAP/JMS web service

	Event processing
	Protocol listeners
	SOAP/HTTP and SOAP/HTTPS protocol listener processing
	Unsupported SOAP/HTTP protocol listener processing features
	SOAP/HTTPS listener processing using secure sockets
	SOAP/JMS protocol listener processing
	Event persistence and delivery
	Event sequencing
	Event triggering
	Event detection
	Event status
	Event retrieval
	Event archiving
	Event recovery

	Request processing
	Protocol handlers

	Connector and JMS
	JNDI
	Exposing collaborations as SOAP/JMS web services
	Collaborations invoking SOAP/JMS web services

	SSL
	JSSE
	KeyStore and TrustStore
	SSL Properties
	Exposing collaborations as SOAP/HTTPS web services
	Collaborations invoking SOAP/HTTPS web services

	Configuring the connector
	Setting configuration properties
	Creating multiple protocol listeners

	Connector at startup
	Proxy setup
	JNDI initialization
	Protocol listener framework initialization
	Protocol handler framework initialization

	Logging
	Tracing

	Chapter 5. SOAP data handler
	Configuring the SOAP data handler
	Meta-object requirements

	SOAP data handler processing
	SOAP-body-message-to-business-object processing
	SOAP-header-message-to-business-object processing
	Business-object-to-SOAP-message-body processing
	Business-object-to-SOAP-message-header processing
	Header fault processing

	Using application-specific information functionality
	ASI in business-object-to-SOAP-message transformations
	ASI effects on fault processing
	ASI effects on header processing
	Specifying SOAP attributes
	ASI in SOAP-to-business object transformations

	Specifying a pluggable name handler
	Limitations
	SOAP style and use guidelines

	Chapter 6. Enabling collaborations for request processing
	Request processing collaboration checklist

	Chapter 7. Exposing collaborations as web services
	Procedure checklist
	Identifying or Developing Business Objects
	Choosing or developing a collaboration template
	Binding the port of a new collaboration object
	WSDL Configuration Wizard
	Running the wizard

	Chapter 8. Using the WSDL ODA
	Starting the WSDL ODA
	Running the WSDL ODA
	Configuring the agent
	Specifying the WSDL document
	Getting a WSDL document from a URL location
	Getting a WSDL document from a UDDI registry

	Confirming selections
	Generating the objects
	Limitations

	Chapter 9. Troubleshooting
	Start-up problems
	Run-time errors

	Appendix A. Standard configuration properties for connectors
	Configuring standard connector properties
	Using Connector Configurator Express
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Starting Connector Configurator Express
	Running Configurator Express in stand-alone mode

	Running Configurator Express from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Business object name
	Agent support
	Maximum transaction level
	Associated maps
	Resources
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Completing the configuration
	Using Connector Configurator Express in a globalized environment

	Appendix C. Adapter for Web Services tutorial
	About the tutorial
	Before you start
	Installing and configuring
	Start server and tool
	Load the sample content
	Compile the collaboration templates
	Configure the connector
	Create user project
	Add and deploy the project
	Reboot Business Integration Server Express and Express Plus

	Running the asynchronous scenario
	Running the synchronous scenario

	Appendix D. Configuring HTTPS/SSL
	Keystore setup
	TrustStore setup
	Generating a certificate signing request (CSR) for public key certificates

	Notices
	Notices

