WebSphere Business Integration
Server Express and Express Plus

Adapter for Web Services User Guide

4.3.1

<|ll

WebSphere Business Integration
Server Express and Express Plus

Adapter for Web Services User Guide

4.3.1

<|ll

Note!
FBefore using this information and the product it supports, read the information in

30July2004

This edition of this document applies to IBM WebSphere Business Integration Server Express, version 4.3.1, IBM
Websphere Business Integration Server Express Plus, version 4.3.1, and to all subsequent releases and modifications
until otherwise indicated in new editions.

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing
from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document .

Audience .
Prerequisites for thls document .
Related documents . ..
Typographic conventions .vi

<< <

New inthisrelease © © « « v v v v e e e e e e e e e e . . Vi
New in release 4.3.1o i
Release 4.3o s i

Chapter 1. Overview of the adapter . 1
Adapter for Web Services environment .. .1
Terminology .o .4
Components of connector for web services ..6
Architecture of connector for web services .10
Install, configure, and design checklist .1
Limitations L L L L L Lo s 12

Chapter 2. Installationand startup.15
Overview of installation tasks .15
Installing the connector and related files. .15
Installed file structure . . . O o
Overview of configuration tasks e £
Running multiple instances of the adapter .19
Starting the connector L L L L L L L e e 22

Chapter 3. Business object requirements.25
Business object meta-data. .25
Connector business object structure .25
Developing business objects ..o 059

Chapter 4. Web servicesconnector«61
Connector processing . . N
SOAP/HTTP(S) web services .04
SOAP/JMS web services .04
Event processing .65
Request processing L L. L L L L. ... T76
Connector and JMS. L L L L. s s s s s
Conﬁgurmg the connector O
Connector at startup L L L . oo
Logging L ..o e 108
Tracing 108

Chapter 5. SOAPdatahandler1M
Configuring the SOAP data handler. .11
SOAP data handler processing. . . e § V4
Using application-specific information functlonahty e 12
Specifying a pluggable name handler .10
Limitations . . . e L10]

Chapter 6. Enabling collaborations for request processing. 143
Request processing collaboration checklist. .143

© Copyright IBM Corp. 2004 iii

Chapter 7. Exposing collaborations as web services
Procedure checklist

Identifying or Developing Busmess Ob]ects

Choosing or developing a collaboration template

Binding the port of a new collaboration object

WSDL Configuration Wizard .

Chapter 8. Using the WSDL ODA .
Starting the WSDL ODA

Running the WSDL ODA

Configuring the agent .
Specifying the WSDL document .
Confirming selections .
Generating the objects

Limitations .

Chapter 9. Troubleshootlng
Start-up problems .
Run-time errors

Appendix A. Standard configuration properties for connectors .

Configuring standard connector properties
Summary of standard properties .
Standard configuration properties

Appendix B. Connector Configurator Express
Overview of Connector Configurator Express

Starting Connector Configurator Express . .

Running Configurator Express from System Manager .

Creating a connector-specific property template .

Creating a new configuration file.

Using an existing file.

Completing a configuration file

Setting the configuration file properties.

Saving your configuration file .

Completing the configuration . .
Using Connector Configurator Express in a globahzed env1ronment .

Appendix C. Adapter for Web Services tutorial .
About the tutorial .

Before you start .o

Installing and configuring .

Running the asynchronous scenario .

Running the synchronous scenario

Appendix D. Conflgurlng HTTPS/SSL .

Keystore setup .
TrustStore setup

Generating a certificate 51gn1ng request (CSR) for pubhc key cerhﬁcates.

Notices .
Notices

iv Adapter for Web Services User Guide

. 145
. 145
. 146
. 146
. 146
. 148

. 157
. 157
. 158
. 158
. 160
. 162
. 162
. 163

. 165
. 165
. 167

. 169
. 169
. 170
173

. 183
. 183
. 184
. 184
. 184
. 187
. 188
. 189
. 189
. 194
. 194
. 194

. 197
. 197
. 198
. 199
. 204
. 207

. 21
211
. 212
. 212

. 215
. 215

About this document

The products IBM® WebSphere Business Integration Server Express and IBM®
WebSphere Business Integration Server Express Plus are made up of the following
components: InterChange Server Express, the associated Toolset Express,
CollaborationFoundation, and a set of software integration adapters. The tools in
Toolset Express help you to create, modify, and manage business processes. You
can choose from among the prepackaged adapters for your business processes that
span applications. The standard processes template--CollaborationFoundation--
allows you to quickly create customized processes.

This document describes the installation, configuration, and business object
development for the adapter for web services.

Except where noted, all the information in this guide applies to both IBM
WebSphere Business Integration Server Express and IBM WebSphere Business
Integration Server Express Plus. The term WebSphere Business Integration Server
Express and its variants refer to both products.

Audience

This document is for IBM WebSphere customers, consultants, developers, and
anyone who is implementing the WebSphere Business Integration Adapter for web
services.

Prerequisites for this document

A variety of prerequisites are cited throughout this book. Many of these consist of
references to Web sites that contain information about, or resources for, web
services. You should also be familiar with implementing the WebSphere business
integration system. A good place to start is the System Implementation Guide, which
contains cross-references to more detailed documentation.

Related documents

The complete set of documentation available with this product describes the
features and components common to all WebSphere Business Integration Server
Express installations, and includes reference material on specific components.

You can download, install, and view the documentation at the following site:
|http: / /www.ibm.com /websphere /wbiserverexpress/ infocenter|

Note: Important information about this product may be available in Technical
Support Technotes and Flashes issued after this document was published.
These can be found on the WebSphere Business Integration Support Web
site, fhttp:/ /www.ibm.com /software/integration /websphere /support /|
Select the component area of interest and browse the Technotes and Flashes
sections.

© Copyright IBM Corp. 2004 v

http://www.ibm.com/websphere/wbiserver/express/infocenter
http://www.ibm.com/software/integration/websphere/support

Typographic conventions

vi

This document uses the following conventions :

courier font

bold
italic, italic
blue outline

{1
[]

/,\

%Stext% and $text

ProductDir

Indicates a literal value, such as a command name, file
name, information that you type, or information that the
system prints on the screen.

Indicates a new term the first time that it appears.

Indicates a variable name or a cross-reference.

A blue outline, which is visible only when you view the
manual online, indicates a cross-reference hyperlink. Click
inside the outline to jump to the object of the reference.

In a syntax line, curly braces surround a set of options from
which you must choose one and only one.

In a syntax line, square brackets surround an optional
parameter.

In a syntax line, ellipses indicate a repetition of the previous
parameter. For example, option[,...] means that you can
enter multiple, comma-separated options.

In a naming convention, angle brackets surround individual
elements of a name to distinguish them from each other, as
in <server_name><connector_name>tmp.1og.

In this document, backslashes (\) are used as the convention
for directory paths for Windows. OS/400 and Linux use
forward slashes (/) for directory paths. All WebSphere
Business Integration Server Express system product path
names are relative to the directory where the product is
installed on your system.

Text within percent (%) signs indicates the value of the
Windows text system variable or user variable.

Represents the directory where the IBM WebSphere Business
Integration Server Express for Adapters product is installed.
The defaults for each platform are as follows:

Windows: IBM\WebSphereServer

0OS/400: /QIBM/ProdData/WBIServer43/product

Linux: /home/${username}/IBM/WebSphereServer
Indicates a choice from a menu such as: Choose File ”
Update ” SGML References

Adapter for Web Services User Guide

New in this release

New in release 4.3.1

This release adds support for the following operating systems:

* Microsoft Windows 2003
* IBM OS/400 V5R2, V5R3
* Red Hat Enterprise Linux AS 3.0, Update 1
* SuSE Linux Enterprise Server 8.1 with SP3

Release 4.3

This is the initial release.

© Copyright IBM Corp. 2004

vii

viii Adapter for Web Services User Guide

Chapter 1. Overview of the adapter

* |“Adapter for Web Services environment”]

¢ |“Terminology” on page 4

+ |“Components of connector for web services” on page 6|

* [“Architecture of connector for web services” on page 10|

+ [“Install, configure, and design checklist” on page 11|

* [“Limitations” on page 12|

The connector is a run-time component of the WebSphere Business Integration
Server Express and Express Plus for Web Services. The connector allows businesses
to aggregate, publish, and consume web services for use either within their
organization or by trading partners. The connector and other components
described in this document provide the functionality needed to exchange business
object information in the body of a Simple Object Access Protocol (SOAP) message.

This chapter describes the Adapter for Web Services component of the IBM
WebSphere Business Integration Server Express and Express Plus. This chapter
includes a description of the scope, components, design tools, and architecture
used to implement the WebSphere Business Integration Server Express and Express
Plus for Web Services. It also provides an overview of tasks you must complete to
install and configure the web services components described in this document. For
information about installing and configuring the components, see m
fconfigure, and design checklist” on page 11

Note: The adapter for Web Services implements the standard Adapter Framework
APL For this reason, the adapter can operate with any integration broker
that the Framework supports. However, the functionality provided by the
adapter has been designed specifically to support the IBM WebSphere
InterChange Server Express integration broker. Accordingly, when you select
the Expose as Web Service option in System Manager, this refers to
InterChange Server Express, and not to any other integration broker.

Adapter for Web Services environment

Before installing, configuring, and using the adapter, you must understand its
environmental requirements:

« |"Software prerequisites”|

* [“Adapter platforms” on page 2|

+ [“Standards and APIs” on page 2|

* [“Locale-dependent data” on page 3|

Software prerequisites

Review the following assumptions and software requirements before you install
the connector for web services:

¢ The design of the connector and other components is based on the specifications
published for SOAP 1.1.

 If you are using SOAP/JMS web services, you must install your own- JMS and
JNDI implementation.

© Copyright IBM Corp. 2004 1

* If you are using HTTPS/SSL, you need your own third-party software for
creating keystore and truststore.

Adapter platforms
The adapter runs on the following platforms (operating systems):
* Microsoft Windows 2000
* Microsoft Windows 2003
» IBM OS/400 V5R2, V5R3
* Red Hat Enterprise Linux AS 3.0, Update 1
* SuSE Linux Enterprise Server 8.1 with SP3

Standards and APIs

A variety of standards and technologies give web services access to their
functionality over a network.

The standards used by the adapter are as follows:

* SOAP version 1.1 See the SOAP specification version 1.1
* WSDL 1.1 SOAP bindings

* HTTP 1.0

e JMS1.0.2

The APIs used by the adapter are as follows:

¢ Apache SOAP 2.3.1 APIs: The connector incorporates the SOAP APIs from
Apache Foundation. Apache SOAP APIs are an open source implementation of
the SOAP version 1.1. Apache SOAP APIs have the following requirements:
— Java Activation Framework 1.0.1 (activation.jar)
— JavaMail(TM) API 1.2 (mail jar)

* Xerces Java parser 1.4.3 and higher Xerces2 is a fully conforming XML schema
processor

* JMS API version 1.0.2

* WSDL4J 1.2.1 - The Web Service Description Language for Java API (WSDL4])
provides an object model for WSDL documents

« UDDI4J-WSDL 2.1.0 - The UDDI4]J-WSDL API encapsulate classes present in the
UDDI4J API, as well as some defined by the WSDL4] API

- JNDI 1.2.1
« WSDL4J 1.0
- IBM JSSE 1.0.2

Depending on your configuration, you may need to install additional software. The
sections below discuss these contingencies.

JMS protocol

If you are using JMS protocol, you must install a JMS provider and create queues.
The queue creation really depends on your requirements. You may use JMS
Protocol for both exposing a collaboration as a web _service and also for invoking
external web services. For further information, see [“Connector and JMS” on page|

JNDI: You must configure the JNDI and then enter appropriate parameters in the
JNDI configuration properties for the connector. You also must ensure that the

2 Adapter for Web Services User Guide

Connection factory and JMS destination (queue) object are made available in the
JNDL. If you want to use JNDI and do not have JNDI implementation, you can
download the reference implementation of File System JNDI from Sun
Microsystems. For further information, see [“Connector and JMS” on page 84

SSL

If you plan to use SSL, you must use third-party software for managing your
keystores, certificates, and key generation. No tooling is provided to set up
keystores, certificates, or for key generation. You may choose to use keytool
(shipped with IBM JRE) to create self-signed certificates and to manage keystores.
For further information, see [“SSL” on page 86

Locale-dependent data

The connector has been internationalized so that it can support double-byte
character sets and deliver message text in the specified language. When the
connector transfers data from a location that uses one character code set to a
location that uses a different code set, it performs character conversion to preserve
the meaning of the data.

The Java run-time environment within the Java Virtual Machine (JVM) represents
data in the Unicode character code set. Unicode contains encodings for characters
in most known character code sets (both single-byte and multibyte). Most
components in the WebSphere Business Integration Server Express system are
written in Java. Therefore, when data is transferred between most WebSphere
Business Integration Server Express system components, there is no need for
character conversion.

To log error and informational messages in the appropriate language and for the
appropriate country or territory, configure the Locale standard configuration
property for your environment. For more information on configuration properties,
see|Appendix A, “Standard configuration properties for connectors,” on page 169|

Web services connector
This section discusses localization and the connector.

Event notification: The connector uses pluggable protocol listeners for event
notification. The protocol listeners extract the SOAP message from the transport
and invoke the SOAP data handler. This section describes how each of the listeners
encode SOAP messages over the transport.

* SOAP/HTTP-SOAP/HTTPS listeners: These listeners read the body of the HTTP
request message as bytes. The encoding of the body is given by the charset
parameter of the HTTP Content-Type header. If the charset parameter is missing,
ISO-8859-1 (ISO Latin 1) is assumed. The listener uses this encoding to convert
the body of the request message into a Java String. This Java String is used to
invoke the SOAP data handler. For synchronous (request-response) web services,
the SOAP data handler is invoked using the business object returned by the
collaboration. The Java String returned by the SOAP data Handler is converted
into bytes using the encoding from the HTTP request message.

* SOAP/JMS listener: This listener supports JMS text messages as well as J]MS
byte messages.

Request processing: The connector uses pluggable protocol handlers for request

processing. The protocol handlers invoke the SOAP data handler. This section
describes how each of the handlers encodes SOAP messages over the transport.

Chapter 1. Overview of the adapter 3

* SOAP/HTTP-SOAP/HTTPS handlers: These handlers invoke the SOAP data
handler. To compose the web services request, the string returned by the data
handler is converted into bytes using UTF 8 encoding. For synchronous
(request-response) web services, the protocol handler reads the body of the
HTTP response message. The encoding of the body is given by the charset
parameter of HTTP Content-Type header. If the charset parameter is missing,
ISO-8859-1 is assumed. The handler uses this encoding to convert the body of
the response message into a Java String. The SOAP data handler is invoked
using this String.

* SOAP/JMS handler: This handler suports JMS text messages.

SOAP data handler

This section discusses localization and the SOAP data handler.

SOAP character limitations: XML element names and attributes names must be
legal ascii characters that are allowed by either business object names, business
object attribute names or business object application-specific information.

Internationalized characters are not supported in business object names or business
object attribute names. Only attribute values can be internationalized.

SOAP data handler processing: When transforming a SOAP message into a
business object, the data handler can receive a string only. The data handler simply
populates the business object with string values and returns the business object.
Java strings are UCS2 and therefore double-byte enabled characters are transferred
without problem. Only XML element and attribute values can be non-ascii
characters (see character limitations).

When transforming a business object to a SOAP message, the data handler uses the
Xerces parser to convert a business object to a string. Java strings are UCS2, so
double-byte enabled characters are transferred without problem. Only XML
element and attribute values can be non-ascii characters (see character limitations).

WSDL ODA
This section discusses localization and the WSDL ODA.

The WSDL ODA does not support characters other than legal ASCII in the WSDL
file. the WSDL ODA can support file names and URLs in other character sets. But
the contents of these files must be in legal ASCIL

Properties in the Configuring Agent table of the WSDL ODA are globalized as
follows:

* WSDL_URL URL can be in native language

* UDDI_InquiryAPI_URL Check UDDI registry support
* WebServiceProvider Legal ASCII characters only

* WebService Legal ASCII characters only

* MimeType Legal ASCII characters only

* BOPrefix Legal ASCII characters only

* BOVerb Legal ASCII characters only

* Collaboration Legal ASCII characters only

Terminology

The following terms are used in this Guide:

4 Adapter for Web Services User Guide

ASI (Application-Specific Information) is code tailored to a particular
application or technology. ASI exists at both the attribute level and business
object level of a business object definition.

ASBO (Application-Specific Business Object) A business object that can have
ASI.

BO (Business Object) A set of attributes that represent a business entity (such as
Customer) and an action on the data (such as a create or update operation).
Components of the IBM WebSphere system use business objects to exchange
information and trigger actions.

Content-Type The HTTP protocol header that includes the type/subtype and
optional parameters. For example, in the Content-Type

value text/xml;charset=IS0-8859-1, text/xml is the type/subtype and
charset=150-8859-1 is the optional Charset parameter.

ContentType refers to the type/subtype portion of the Content-Type header value
only. For example, in the Content-Type valuetext/xml;charset=150-8859-1,
text/xml is referred to in this document as the ContentType.

MO_DataHandler_DefaultSOAPConfig Child data handler meta-object
specifically for the SOAP data handler.

GBO (Generic Business Object) A business object with no ASI and not tied to
any application.

MO_DataHandler_Default Data handler meta-object used by the connector
agent to determine which data handler to instantiate. This is specified in the
DataHandlerMetaObjectName configuration property of the connector.

Non-Top Level Business Object (Non-TLO)A non-TLO is any business object
that does not adhere to the web services TLO structure.

Protocol Config MO During request processing, the SOAP/JMS,
SOAP/HTTP-HTTPS protocol handlers use a Protocol Config MO to determine
the destination of the target web service. If during event processing you are
exposing collaborations as SOAP/JMS web services, the connector uses the
Protocol Config MO to convey the JMS message header information from the
SOAP/JMS protocol listener to the collaboration.

SOAP (Simple Object Access Protocol) defines a model of using simple request
and response messages, written in XML, as the basic protocol for electronic
communication. SOAP messaging is a platform-neutral remote procedure call
(RPC) mechanism, but it can be used for the exchange of any kind of XML
information (document exchange).

SOAP Business Object A SOAP business object is a child of a TLO and can be a
SOAP Request, a SOAP Response or a SOAP Fault business object. SOAP
business objects contain information necessary for processing by the SOAP data
handler, including SOAP ConfigMOs, which are children of SOAP business
objects, and also contain SOAP header container business objects.

SOAP Config MO (Configuration Meta Object) The data handler requires an
object that contains configuration information about a single transformation, for
example, from a SOAP message to a SOAP business object. This information is
stored as meta-data in the child of a SOAP business object. This child object is
the SOAP Config MO

SOAP Header Child Business Object A business object that represents a single
header element in a SOAP message. The header element is an immediate child
of the SOAP-Env:Header element of the SOAP message. All attributes of a
header container business object must be of this type. These business objects
may have an actor and a mustUnderstand attribute. These attributes correspond
to the actor and mustUnderstand attributes of the SOAP header element.

Chapter 1. Overview of the adapter 5

* SOAP Header Container Business Object A business object that contains
information about the headers in a SOAP message. This business object contains
one or more child business objects. Each child business object represents a
header entry in the SOAP message. The SOAP data handler business object may
have an attribute, which is of type SOAP header container business object. This
attribute is also referred to as the SOAP header attribute. Such an attribute has
special application-specific information requirements as described in
[“SOAP data handler,” on page 111.|This attribute must be an immediate child of
a SOAP business object.

* Top-Level Business Object A web services top-level business object contains a
SOAP Request, a SOAP Response (optional) and one or more SOAP Fault
(optional) business objects. A TLO is used by the connector for both event
processing and request processing.

* Web services are self-contained, modular, distributed, dynamic applications that
can be described, published, located, or invoked over the network to create
products, processes, and supply chains. They can be local, distributed, or
Web-based. Web services are built on top of open standards such as TCP/IP,
HTTP, Java, HTML, and XML. Web services use new standard technologies such
as SOAP (Simple Object Access Protocol) for messaging, and UDDI (Universal
Description, Discovery and Integration) and WSDL (Web Service Description
Language) for publishing.

* UDDI (Universal Description, Discovery and Integration) is a specification that
defines a way to publish and discover information about web services. UDDI
specification provides for XML-based interfaces (APIs) that allow programmatic
access to the UDDI registry information. SOAP is the underlying RPC
mechanism for these APlIs.

WSDL (Web Services Description Language) is an XML vocabulary that defines
the software interfaces for web services. It organizes all of the web service
technical details required for automatic integration at the programming level,
and is used to publish IBM WebSphere collaborations as web services. WSDL is
to web services as IDL is to CORBA objects.

Components of connector for web services

ﬂlustrates the connector for web services, including its protocol handler
and listener frameworks and the SOAP data handler.

Note: The Web Services Adapter comes with a limited use license of the XML data
handler. The adapter, however, does not require the XML data handler to
function.

6 Adapter for Web Services User Guide

Connector for Web Services

Protocol handler Protocol listener
framework framework
SOAP/HTTP-HTTPS||SOAP/JMS ||| SOAP/HTTP || SOAP/HTTPS|| SOAP/JMS

protocol protocol protocol protocol protocol
handler handler listener listener listener

SOAP

data
handler

Figure 1. The connector for web services

The following components interact to enable data exchanges across the Internet:

* Web services connector, including the SOAP data handler and protocol listeners
and handlers

¢ Web services-enabled collaborations
* Business objects and SOAP messages
* WebSphere Business Integration Server Express and Express Plus

Web services connector

During request processing, the web services connector responds to collaboration
service calls by converting business objects to SOAP request messages and
conveying them to destination web services. Optionally (for synchronous request
processing) the connector converts SOAP response messages to SOAP Response
business objects and returns these to the collaboration.

During event processing, the connector processes SOAP request messages from
client web services by converting them into SOAP Request business objects and
passing them on to collaborations (that have been exposed as web services) for
processing. The connector optionally receives SOAP Response business objects
from the collaboration, which are converted to SOAP response messages and then
returned to client web services.

For further information, see [Chapter 4, “Web services connector,” on page 61|

Note: In this document, any mention of a connector is a reference to the web
services connector, unless specified otherwise.

Protocol listeners and handlers
The connector includes the following protocol listeners and handlers:

* SOAP/HTTP protocol listener

¢ SOAP/HTTPS protocol listener

* SOAP/JMS protocol listener

e SOAP/HTTP-HTTPS protocol handler

Chapter 1. Overview of the adapter

7

* SOAP/JMS protocol handler

Protocol listeners detect events from internal or external web service clients in
SOAP/HTTP, SOAP/HTTPS, or SOAP/JMS formats. They notify the connector of
events that require processing by a collaboration that has been exposed as a web
service. Protocol listeners then read the business-object-level and attribute-level
ASI, connector properties, and transformation rules embedded in protocol
configuration objects to determine the collaboration, data handler, processing mode
(synchronous/asynchronous) and transport-specific aspects of the web services
transaction. For a detailed account of protocol listener processing, see
listeners” on page 65|

Protocol handlers invoke web services in SOAP/HTTP, SOAP/HTTPS, or
SOAP/JMS formats on behalf of a collaboration. Protocol handlers read TLO ASI
and transformation rules embedded in protocol configuration objects to determine
how to process the request (synchronously or asynchronously), which data handler
to use to convert SOAP messages to SOAP business objects and vice versa, and to
determine the target address of the web service (from the Destination attribute of
the SOAP Request business object Protocol Config MO). For synchronous
transactions, the protocol handler processes SOAP response messages, converting
them into SOAP Response business objects and passing them back to the
collaboration.

For further information on protocol handlers, see [“Protocol handlers” on page 77

SOAP data handler

The SOAP data handler converts SOAP business objects to SOAP messages and
vice versa. For further information on the SOAP data handler, see
[‘'SOAP data handler,” on page 111

For further details, see [Chapter 5, “SOAP data handler,” on page 111.|

Web services configuration tools

You can deploy web service solutions with collaborations that invoke, or are
exposed as, web services.

When you enable a collaboration for request processing, you use the WSDL Object
Discovery Agent (ODA) to generate web service TLOs. For further information on
request processing and the WSDL ODA, see [Chapter 6, “Enabling collaborations for]
frequest processing,” on page 143

When you expose a collaboration as a web service, you use the WSDL
Configuration Wizard, which helps you generate a WSDL document for the
collaboration that you then publish, for example, via a UDDI registry. The
connector provides no tools for publishing this information. For information on
exposing collaborations as web services, see [Chapter 7, “Exposing collaborations as
[web services,” on page 145

Deploying the connector
There are two ways to deploy the web services connector:

* Behind the firewall as an intranet-based solution (see within an
enterprise whose business processes communicate in SOAP/HTTP,
SOAP/HTTPS, or SOAP/JMS web service formats.

8 Adapter for Web Services User Guide

ICS

Web Web
. service
service .
client
\ 4 \ 4
Connector for web services
7\ X
\4

e

|

[

Web
service
client
QU
Web

service

Firewall

Figure 2. Web services adapter as an intranet solution

* Behind the firewall with a front-end or gateway server to process, filter, and
otherwise manage communications with web services that are external to the
enterprise.

Note: The web services connector does not include a gateway or front-end for

managing incoming or outgoing messages from or to external web services.

You must configure and deploy your own gateway. The connector must be
deployed within the enterprise only, not in the DMZ or outside of the
firewall.

Chapter 1. Overview of the adapter

9

Architecture of connector for web services

To illustrate the architecture of the components at a high level, this section
describes two data flows. illustrates the two scenarios. These two
scenarios are described below.

Client
ws1 ICS of
ws2

&

Oy © &

Connector for web services
1 =
E e

se gateway/web server Ws2

(o]

Ws1 Enterpr

Internet

HDD

I
LTI
=]

—

Wi

Client of web

service T

(WS1) Web
service
(WS2)

Figure 3. Flow of a web services message

Request processing illustrates the sequence of events that occurs when a
collaboration makes a service call request to the connector to invoke a web service.
In this scenario, the collaboration plays the role of a client, sending a request to a
server.

10 Adapter for Web Services User Guide

A The collaboration sends a service call request to the connector, which calls
the SOAP data handler to convert the business object to a SOAP request
message.

B The connector invokes the web service WS2 by sending the SOAP message.
If the destination is an external web service, the connector sends the SOAP
message to a gateway. The gateway sends the SOAP message to the
endpoint corresponding to the destination web service. This invokes the
web service.

C The invoked web service receives the SOAP request message and performs
the requested processing.

D The invoked web service sends a SOAP response (or fault) message. If the
web service is external to the enterprise, a gateway receives and routes the
SOAP response message.

E The SOAP response (or fault) message is routed back to the connector,
which calls the data handler to convert it to a response or fault business
object.

F The connector returns the SOAP response or fault business object to the
collaboration.

Event processing illustrates the sequence of events that occurs when a
collaboration is called as a web service. In this scenario, the collaboration, which is
exposed as a web service, plays the role of the server, accepting a request from a
client, external or internal, and responding as required.

1 The client web service (WS1) sends a SOAP request message to the
destination specified in the WSDL document generated for the
collaboration.

2 If the client web service is external, the gateway receives and routes the

message to the connector.

3 The connector sends the SOAP message to the SOAP data handler to
convert the SOAP message to a business object. The connector invokes the
collaboration exposed as a web service.

4 The collaboration returns a SOAP Response (or Fault) business object.

5 The connector calls the SOAP data handler to convert the SOAP Response
(or Fault) business object to a SOAP response message. The connector
returns the response to the gateway.

6 If the client web service is external, the gateway routes the SOAP response
message to the client web service (WS1).

Install, configure, and design checklist

This section summarizes the tasks you must perform to install, configure, and
design your web services solution. Each section briefly describes the tasks and then
provides links to sections in this document (and cross references to related
documents) that describe how to perform the task or provide background
information.

Installing the adapter

See [Chapter 2, “Installation and startup,” on page 15|for a description of what and
where you must install.

Chapter 1. Overview of the adapter 11

Configuring connector properties

Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. Some of these properties
have default values that you do not need to change. You may need to set the
values of some of these properties before running the connector. For more
information, see |Chapter 4, “Web services connector,” on page 61.|

Configuring protocol handlers and listeners

You configure protocol handlers and listeners when you assign values to connector
configuration properties that govern the behavior of these components. For more
information, see [Chapter 4, “Web services connector,” on page 61

Enabling collaborations for web services

When you enable collaborations for web services, you create collaborations that
can invoke, or be exposed as, web services. You also create or adapt business
objects. For an overview of the tasks involved, see [“Web services configuration|
ftools” on page 8

Exposing collaborations as web services
For a step-by-step description see [Chapter 7, “Exposing collaborations as web|
lservices,” on page 145

Enabling collaborations to invoke web services
For a step-by-step description, see|Chapter 6, “Enabling collaborations for request]
[processing,” on page 143

Configuring the SOAP data handler

You configure information in data handler meta-objects after you install the
product files, but before startup. Unless you are adding a custom name handler,
you can use the default SOAP data handler configuration to save time. You must,
however, configure specific meta-object information for each data handler
transformation. This information is contained in SOAP Config MOs. You specify
SOAP Config MOs when you create business objects. Much of this work is
automated when you are developing collaborations that invoke web services
(request processing): when you use the WSDL ODA to generate business objects
for SOAP messages, the SOAP Config MOs are automatically generated for you.

For further information on configuring the data handler, see [Chapter 5, “SOAD|
(data handler,” on page 111

Limitations

* The WSDL ODA automatically generates business objects. If the results do not
meet your requirements, you must manually create business objects using
Business Object Designer Express.

See describes WSDL ODA support for various combinations of attributes style,
use, and part definitions using type and element.

¢ For XML limitations on style (rpc, document) use (literal, encoded), and how
parts are defined, see [Chapter 5, “SOAP data handler,” on page 111{and
[Chapter 6, “Enabling collaborations for request processing,” on page 143

* The connector supports SOAP/HTTP and SOAP/JMS bindings only.

* The connector’s SOAP/JMS protocol listener supports queue destinations only;
topics are not supported. JMS text and byte messages are supported.

12 Adapter for Web Services User Guide

e HTTP POST Request and Response are supported. No other HTTP method is
supported. HTTP 1.1 persistent connection is not supported.

Chapter 1. Overview of the adapter 13

14 Adapter for Web Services User Guide

Chapter 2. Installation and startup

« |"Overview of installation tasks”|

+ [“Installing the connector and related files”]

+ |“Overview of configuration tasks” on page 1§

* [“Running multiple instances of the adapter” on page 19|

« [“Starting the connector” on page 22|

This chapter describes how to install components for implementing the connector
for web services. For information regarding installation of a Business Integration
Server Express and Express Plus system generally, see the WebSphere Business
Integration Server Express Installation Guide for Windows or Linux or O5/400, as
appropriate for your platform.

Overview of installation tasks

For information on broker compatibility, adapter framework, software
prerequisites, dependencies, and standards and APIs, see [“Adapter for Web|
Services environment” on page 1.

To install the connector for web services, you must perform the following tasks:

Install Business Integration Server Express and Express Plus

This task, which includes installing the system and starting Business Integration
Server Express and Express Plus, is described, as appropriate, in the WebSphere
Business Integration Server Express Installation Guide for Windows or Linux or
0S5/400. You must install Business Integration Server Express and Express Plus,
version 4.3.1.

To load files into the repository, consult the System Implementation Guide.

Install the connector and related files

This task includes installing the files for the connector (and related components)
from the software package onto your system. See [‘Installing the connector and|

related files.”

Installing the connector and related files

For information on installing the adapter, refer to the WebSphere Business Integration
Server Express Installation Guide for your platform, located in the WebSphere
Business Integration Server Express InfoCenter at the following site:

http:/ /www.ibm.com/websphere/wbiserverexpress/infocenter

Installed file structure

The tables in this section show the installed file structure.

© Copyright IBM Corp. 2004 15

Windows connector file structure

The Installer copies the standard files associated with the connector into your
system and adds an icon for the connector file to the IBM WebSphere Business

Integration Adapters menu.

For a fast way to start the connector, create a shortcut to this file on the desktop.

describes the Windows file structure used by the connector, and shows the
files that are automatically installed when you choose to install the connector

through Installer.

Table 1. Installed Windows file structure for the adapter

Subdirectory of ProductDir

\Tib\WBIA. jar

\bin\CWConnEnv.bat

\bin\ODAEnv.bat
connectors\WebServices\CWWebServices.jar
connectors\WebServices\start_WebServices_service.bat
DataHandlers\CwSOAPDataHandler. jar
DataHandlers\CwSOAPNameHandler. jar
repository\DataHandlers\MO_DataHandler_SOAP.txt
bin\Data\App\WebServicesConnectorTemplate
ODA\WSDL\WSDLODA. jar

ODA\WSDL\start_WSDLODA.bat
connectors\WebServices\dependencies\soap.jar

connectors\WebServices\dependencies\LICENSE
connectors\WebServices\dependencies\mail.jar
connectors\WebServices\dependencies\activation.jar
connectors\WebServices\dependencies\ibmjsse.jar
connectors\WebServices\dependencies\jms.jar
connectors\WebServices\dependencies\uddi4j-wsdl.jar
connectors\WebServices\dependencies\uddi4jv2.jar
connectors\WebServices\dependencies\IPL10.txt
connectors\WebServices\dependencies\wsd14j.jar
connectors\WebServices\dependencies\CPL10.txt
connectors\WebServices\dependencies\gname.jar
connectors\WebServices\dependencies\j2ee.jar
connectors\WebServices\dependencies\wswb2.1.1\common. jar

connectors\WebServices\dependencies\wswh2.1.1\ecore.jar
connectors\WebServices\dependencies\wswb2.1.1\xercesImpl.jar
connectors\WebServices\dependencies\wswb2.1.1\xmlParserAPIs.jar
connectors\WebServices\dependencies\wswh2.1.1\xsd.jar

connectors\WebServices\dependencies\wswb2.1.1\xsd.resources.jar
connectors\WebServices\dependencies\IBMReadme.txt
connectors\WebServices\samples\WebSphereICS\WebServicesSample.jar
connectors\WebServices\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo

connectors\WebServices\samples\WebSphereICS\CLIENT_ASYNCH_TLO_Order.bo

connectors\messages\WebServicesConnector.txt
ODA\messages\WSDLODAAgent . txt

Description

WebSphere Business Integration Adapter jar file
Generic connector startup file

Generic ODA startup file

The web services connector

The startup service file for the connector
The SOAP data handler

The SOAP name handlers

SOAP data handler-related files

Web services connector template

The WSDL ODA

The WSDL ODA startup file

Apache SOAP API required by the SOAP
connector, SOAP data handler, WSDL
Configuration Wizard, and WSDL ODA.

Apache license file

The JavaMail API

The Java Activation Framework
JSSE (Java Secure Socket Extension) API from IBM
The Java Messaging Service
Required by WSDL ODA

Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

License

Repository file for samples

Sample (synchronous) business object for test
connector

Sample (asynchronous) business object for test
connector

Connector message file
Message file for WSDL ODA

Note: All product path names are relative to the directory where the product is

installed on your system.

For more information, see the WebSphere Business Integration Server Express

Installation Guide for Windows.

16 Adapter for Web Services User Guide

0S/400 connector file structure

The Installer copies the standard files associated with the connector into your

system.

describes the OS/400 file structure used by the connector, and shows the
files that are automatically installed when you choose to install the connector

through Installer.
Table 2. Installed OS/400 file structure for the adapter

Subdirectory of ProductDir

/1ib/WBIA.jar

/bin/CWConnEnv.sh

/bin/CWODAENnv. sh
connectors/WebServices/ClWebServices. jar
connectors/WebServices/start_WebServices.sh
DataHandlers/CwSOAPDataHandler. jar
DataHandlers/CwSOAPNameHandler. jar
bin/Data/App/WebServices
ODA/WSDL/WSDLODA. jar
ODA/WSDL/start_WSDLODA. sh
connectors/WebServices/dependencies/soap.jar

connectors/WebServices/dependencies/LICENSE
connectors/WebServices/dependencies/mail.jar
connectors/WebServices/dependencies/activation.jar
connectors/WebServices/dependencies/ibmjsse.jar
connectors/WebServices/dependencies/jms.jar
connectors/WebServices/dependencies/uddi4j-wsdl.jar
connectors/WebServices/dependencies/uddi4jv2.jar
connectors/WebServices/dependencies/IPL10.txt
connectors/WebServices/dependencies/wsd14j.jar
connectors/WebServices/dependencies/CPL10.txt
connectors/WebServices/dependencies/gname. jar
connectors/WebServices/dependencies/j2ee. jar
connectors/WebServices/dependencies/wswb2.1.1/common.jar
connectors/WebServices/dependencies/wswb2.1.1/ecore.jar
connectors/WebServices/dependencies/wswb2.1.1/xercesImpl.jar
connectors/WebServices/dependencies/wswb2.1.1/xmlParserAPIs.jar
1

Description

WebSphere Business Integration Adapter jar file
Generic connector startup file

Generic ODA startup file

The web services connector

The startup file for the connector

The SOAP data handler

The SOAP name handlers

Web services connector template

The WSDL ODA

The WSDL ODA startup file

Apache SOAP API required by the SOAP
connector, SOAP data handler, WSDL
Configuration Wizard, and WSDL ODA.

Apache license file

The JavaMail API

The Java Activation Framework
JSSE (Java Secure Socket Extension) API from IBM
The Java Messaging Service
Required by WSDL ODA

Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

connectors/WebServices/dependencies/wswb2.1.1/xsd. jar Required by WSDL ODA
connectors/WebServices/dependencies/wswb2.1.1/xsd.resources. jar Required by WSDL ODA
connectors/WebServices/dependencies/IBMReadme. txt License
connectors/WebServices/samples/WebSphereICS/WebServicesSample. jar Repository file for samples

connectors/WebServices/samples/WebSphereICS/CLIENT_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object for test

connector

connectors/WebServices/samples/WebSphereICS/CLIENT_ASYNCH_TLO_Order.bo Sample (asynchronous) business object for test

connector
connectors/messages/WebServicesConnector.txt Connector message file
0DA/messages/WSDLODAAgent. txt Message file for WSDL ODA

Note: All product path names are relative to the directory where the product is
installed on your system.

A fast way to start the connector is to use the WebSphere Business Integration
Console. For information about the Console, see the online help provided with the

Console.

For more information on installation, see the WebSphere Business Integration Server
Express Installation Guide for OS/400.

Chapter 2. Installation and startup 17

Linux connector file structure

The Installer copies the standard files associated with the connector into your
system.

describes the Linux file structure used by the connector, and shows the files
that are automatically installed when you choose to install the connector through
Installer.

Table 3. Installed Linux file structure for the adapter

Subdirectory of ProductDir Description
connectors/WebServices/CWebServices.jar The web services connector
connectors/WebServices/start_WebServices.sh The startup file for the connector
DataHandlers/CwSOAPDataHandler. jar The SOAP data handler
DataHandlers/CwSOAPNameHandler. jar The SOAP name handlers
bin/Data/App/WebServices Web services connector template
ODA/WSDL/WSDLODA. jar The WSDL ODA
ODA/WSDL/start_WSDLODA.sh The WSDL ODA startup file

connectors/WebServices/dependencies/soap.jar Apache SOAP API required by the SOAP
connector, SOAP data handler, WSDL
Configuration Wizard, and WSDL ODA.
connectors/WebServices/dependencies/LICENSE Apache license file
connectors/WebServices/dependencies/mail.jar The JavaMail API

connectors/WebServices/dependencies/activation.jar The Java Activation Framework

connectors/WebServices/dependencies/ibmjsse.jar JSSE (Java Secure Socket Extension) API from IBM

connectors/WebServices/dependencies/jms.jar
connectors/WebServices/dependencies/uddi4j-wsdl.jar
connectors/WebServices/dependencies/uddi4jv2.jar
connectors/WebServices/dependencies/IPL10.txt
connectors/WebServices/dependencies/wsd14j.jar
connectors/WebServices/dependencies/CPL10.txt
connectors/WebServices/dependencies/qname. jar
connectors/WebServices/dependencies/j2ee. jar
connectors/WebServices/dependencies/wswb2.1.1/common.jar

The Java Messaging Service
Required by WSDL ODA

Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

License file required by WSDL ODA
Required by WSDL ODA

Required by WSDL ODA

Required by WSDL ODA

connectors/WebServices/dependencies/wswb2.1.1/ecore.jar Required by WSDL ODA
connectors/WebServices/dependencies/wswb2.1.1/xercesImpl.jar Required by WSDL ODA
connectors/WebServices/dependencies/wswb2.1.1/xmlParserAPIs. jar Required by WSDL ODA
connectors/WebServices/dependencies/wswb2.1.1/xsd.jar Required by WSDL ODA
connectors/WebServices/dependencies/wswb2.1.1/xsd.resources. jar Required by WSDL ODA
connectors/WebServices/dependencies/IBMReadme. txt License
connectors/WebServices/samples/WebSphereICS/WebServicesSample. jar Repository file for samples

connectors/WebServices/samples/WebSphereICS/CLIENT_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object for test

connector

connectors/WebServices/samples/WebSphereICS/CLIENT_ASYNCH_TLO Order.bo Sample (asynchronous) business object for test

connector
connectors/messages/WebServicesConnector.txt Connector message file
ODA/messages/WSDLODAAgent . txt Message file for WSDL ODA

Note: All product path names are relative to the directory where the product is
installed on your system.

For more information, see the WebSphere Business Integration Server Express
Installation Guide for Linux.

Overview of configuration tasks

After installation and before startup, you must configure components as follows:

18 Adapter for Web Services User Guide

Configure the connector

This task includes setting up and configuring the connector. See [“Configuring the|
fconnector” on page 88

Configure business objects

The steps for configuring business objects depend on how you elect to implement
the product suite:

* Request Processing You must create the business objects that correspond to:
— The request messages to be sent to each web service
— Each possible response, including faults

For further information, review |[Chapter 3, “Business object requirements,” on|
bage 25 and then see [Chapter 6, “Enabling collaborations for request|
processing,” on page 143]

* Event Processing You can use TLO or non-TLO business objects.

For further information, review [Chapter 3, “Business object requirements,” on|
age 25/and then see [Chapter 7, “Exposing collaborations as web services,” on|
age 145.

Configure the data handler

The SOAP data handler meta-object must be configured after installation. In
addition, SOAP Config MOs must be configured for each SOAP business object. To
configure the data handler, see [Chapter 5, “SOAP data handler,” on page 111|

Configure collaborations

* Request processing For collaborations that invoke web services as part of their
processing, you generate business objects using the WSDL ODA and then bind
collaboration object ports to the connector. For further information including a
step-by-step procedure, see [Chapter 6, “Enabling collaborations for request|
[processing,” on page 143

* Event processing For a collaboration that is exposed as a web service, you must
generate a WSDL document using the WSDL Configuration Wizard, make the
document available to potential clients, and then configure the ports of the
collaboration object so that clients can invoke the collaboration. For further
information including a step-by-step procedure, see [Chapter 7, “Exposing|
[collaborations as web services,” on page 145 .|

Running multiple instances of the adapter

Note: When you create an additional instance of this adapter (or any adapter that
is supplied with WebSphere Business Integration Server Express or Express
Plus), that instance of the adapter will be counted as a separate adapter by
the licensing function that limits the total number of adapters that can be
deployed.

You can set your system up to create and run multiple instances of a connector by
following the steps below. You must:

* Create a new directory for the connector instance
* Make sure you have the requisite business object definitions
* Create a new connector definition file

* Create a new start-up script

Chapter 2. Installation and startup 19

Create a new directory
You must create a connector directory for each connector instance.
¢ For Windows platforms, the connector directory should be named:
ProductDir\connectors\connectorInstance

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file,
create this directory and store the file here:

ProductDir\repository\connectorInstance

You can specify the InterChange Server Express server name as a parameter of
startup.bat, for example:

start_WebServices.bat connName serverName
* For OS5/400 platforms, the connector directory should be named:

/QIBM/UserData/WBIServerd3/WebSphereICSName/connectors
/connectorInstance

where connectorInstance uniquely identifies the connector instance and where
WebSphereICSName is the name of the InterChange Server Express server instance
with which the connector runs.

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file,
create this directory and store the file here:

/QIBM/UserData/WBIServerd3/WebSphereICSName/repository
/connectorInstance

where WebSphereICSName is the name of the InterChange Server Express server
instance with which the connector runs.

You can specify the InterChange Server Express server name as a parameter of
startup.sh, for example:

start_WebServices.sh connName serverName [-cConfigFile]
* For Linux platforms, the connector directory should be named:
ProductDir/connectors/connectorInstance

where connectorInstance uniquely identifies the connector instance

If the connector has any connector-specific meta-objects, you must create a
meta-object for the connector instance. If you save the meta-object as a file,
create this directory and store the file here:

ProductDir/repository/connectorinstance

You can specify the InterChange Server Express server name as a parameter of
connector_manager, for example:

start_WebServices.sh connName WebSphereICSName [-cConfigFile]

Create business object definitions
If the business object definitions for each connector instance do not already exist
within the project, you must create them.

1. If you need to modify business object definitions that are associated with the
initial connector, copy the appropriate files and use Business Object Designer
Express to import them. You can copy any of the files for the initial connector.
Just rename them if you make changes to them.

2. Files for the initial connector should reside in the appropriate directory:
* For Windows:
ProductDir\repository\initialconnectorInstance

20 Adapter for Web Services User Guide

Any additional files you create should be in the appropriate
connectorInstance subdirectory of ProductDir\repository

e For OS/400:

/QIBM/UserData/WBIServerd3/WebSphereICSName/repository
/initialConnectorInstance

where WebSphereICSName is the name of the InterChange Server Express
server instance with which the connector runs.

Any additional files you create should be in the appropriate
connectorInstance subdirectory of
/QIBM/UserData/WBIServer43/WebSphereICSName/repository

e For Linux:

ProductDir/repository/initialconnectorInstance

Any additional files you create should be in the appropriate
connectorInstance subdirectory of ProductDir/repository

Create a connector definition
You create a configuration file (connector definition) for the connector instance in
Connector Configurator Express. To do so:

1.

2.

3.

Copy the initial connector’s configuration file (connector definition) and rename
it.

Make sure each connector instance correctly lists its supported business objects
(and any associated meta-objects).

Customize any connector properties as appropriate.

Create a startup script
To create a startup script:

1.

Copy the initial connector’s startup script and name it to include the name of
the connector directory:

dirname

(For Linux only) Change the startup script CONJAR from
CONJAR=${CONDIR}/CW${CONNAME]} jar to
CONJAR=${CONDIR}/CWWEBSVC jar

Put this startup script in the connector directory you created in
[directory” on page 20.|

(For Windows only) Create a startup script shortcut.

(For Windows only) Copy the initial connector’s shortcut text and change the
name of the initial connector (in the command line) to match the name of the
new connector instance.

(For OS/400 only) Create a job description for the connector using the
following information:

CRTDUPOBJ 0BJ(QWBIWEBSVC) FROMLIB(QWBISVR43) OBJTYPE(*JOBD)
TOLIB(QWBISVR43) NEWOBJ(newWEBSVCname)

where newWEBSVCname is a 10-character name to be used for the job description
for your new web service connector.

(For OS/400 only) Add the new connector to the Console. For information
about the Console, see the online help provided with the Console.

You can now run both instances of the connector on your integration server at the
same time.

Chapter 2. Installation and startup 21

Starting the connector

Important: As noted earlier in this chapter, the connector, business objects, the
SOAP data handler meta-objects, and collaborations must be
configured after installation and before starting the connector to assure
proper operation. For a summary of these tasks, see
[configuration tasks” on page 18] In addition, connector polling should
not be disabled (connector polling is enabled by default).

A connector must be explicitly started using its connector start-up script. The
startup script should reside in the connector’s run-time directory. For example, for
Windows, use:

ProductDir\connectors\connName

where connName identifies the connector. The name of the startup script depends

on the operating-system platform, as shows.

Table 4. Startup scripts for a connector

Operating system Startup script

Windows start_connName .bat

0S/400 start_connName.sh

Linux Before executing the startup script you must set

environmental variables. The following command will set
these variables and run the startup script
start_connName . sh automatically:

connector_manager -start connName
WebSphereICSName [-cConfigFile]

For more information on how to start a connector, including the command line
start-up options, see the System Administration Guide.

Invoking the startup script on Windows

On Windows platforms, you can invoke the connector startup script in the
following ways:

¢ From the Start menu:

— Select Programs>IBM WebSphere Business Integration
Express>Adapters>Connectors>your_connector_name
By default, the program name is "IBM WebSphere Business Integration
Express.” However, it can be customized. Alternatively, you can create a
desktop shortcut to your connector.

— On Windows systems, you can configure the connector to start as a Windows
service. In this case, the connector starts when the Windows system boots (for
an Auto service) or when you start the service through the Windows Services
window (for a Manual service).

* From the command line:

start_connName connName WebSphereICSName [-cConfigFile]

where connName is the name of the connector and WebSpherelCSName is the name

of the InterChange Server Express instance. By default, the name of the

InterChange Server Express instance is WebSpherelCS.

22 Adapter for Web Services User Guide

Invoking the startup script on 0S/400
On OS/400 platforms, you can invoke the connector startup script in the following
ways:
¢ From the Windows system where the WebSphere Business Integration Server
Express Console is installed:

Select Programs>IBM WebSphere Business Integration Console >Console.
Then specify the OS/400 system name or IP address and a user profile and
password that has *JOBCTL special authority. Select the connName adapter from
the list of adapters and select the Start Adapter button.
* From the OS/400 command line:
— In batch mode:
Run CL Command QSH and from the QSHELL environment, run

/QIBM/ProdData/WBIServer43/bin/submit_adapter.sh connName

WebSphereICSName pathToConnNameStartScript

JobDescriptionName

where connName is the connector name, WebSphereICSName is the InterChange
Server Express server name (default is QWBIDFT),
pathToConnNameStartScript is the full path to the connector start script, and
JobDescriptionName is the name of the job description to use in the
QWBISVR43 library.

— In interactive mode:
Run CL Command QSH and from the QSHELL environment, run

/QIBM/UserData/WBIServerd3/WebSphereICSName/connectors/connName/
start_connName.sh connName WebSphereICSName [-cConfigFile]

where connName is the name of your connector and WebSphereICSName is the
name of the InterChange Server Express instance.

Note: To start with TCP/IP servers, use the command:

/QIBM/ProdData/WBIServer43/bin/add_autostart_adapter.sh
connName WebSphereICSName pathToConnNameStartScript
JjobDescriptionName

where connName is the name of your connector, WebSphereICSName is the
name of the InterChange Server Express instance, pathToConnNameStartScript
is the full path to the connector start script, and jobDescriptionName is the
name of the job description for the adapter.

Invoking the startup script on Linux
On Linux platforms, you can invoke the connector startup script in the following
way:
e From the command line, use
connector_manager -start connName WebSphereICSName [-cConfigFile]

where connName is the name of the connector and WebSphereICSName is the name
of the InterChange Server Express instance.

Chapter 2. Installation and startup 23

24 Adapter for Web Services User Guide

Chapter 3. Business object requirements

« |“Business object meta-data”|

+ [“Connector business object structure’]

+ |“Synchronous event processing TLOs” on page 26|

* [“Asynchronous event processing TLOs” on page 40|

* |“Event processing non-TLOs” on page 43

* |“Synchronous request processing TLOs” on page 44

* [“Synchronous request processing TLOs” on page 44

* |“Asynchronous request processing TLOs” on page 5§|

» [“Developing business objects” on page 59|

This chapter describes the structure, requirements, and attributes of connector
business objects.

Business object meta-data

The connector for web services is a meta-data-driven connector. In business objects,
meta-data is data about the application, which is stored in a business object
definition and which helps the connector interact with an application. A
meta-data-driven connector handles each business object that it supports based on
meta-data encoded in the business object definition rather than on instructions
hard-coded in the connector.

Business object meta-data includes the structure of a business object, the settings of
its attribute properties, and the content of its application-specific information.
Because the connector is meta-data-driven, it can handle new or modified business
objects without requiring modifications to the connector code. However, the
connector’s configured data handler makes assumptions about the structure of its
business objects, object cardinality, the format of the application-specific text, and
the database representation of the business object. Therefore, when you create or
modify a business object for web services, your modifications must conform to the
rules the connector is designed to follow, or the connector cannot process new or
modified business objects correctly.

For more information on meta-data, meta-objects, and their configuration and
interaction with business objects and SOAP messages, see |[Chapter 5, “SOAP data|
lhandler,” on page 111)

Connector business object structure

The connector processes two kinds of business objects:

¢ TLOs A web services top-level business object (TLO) contains a Request
business object and, optionally, Response and Fault business objects. These child
objects contain content data as well as SOAP Config MOs, and, optionally,
Protocol Config MOs. The TLO, Request, Response, and Fault objects as well as
application-specific information, attributes, and requirements with regard to
request versus event processing are described and illustrated in the sections
below.

Note: TLOs are used for request processing and event processing.

© Copyright IBM Corp. 2004 25

* Non-TLOs These are generic business objects (GBOs) and application-specific
business objects (ASBOs) that are not TLOs, but which have been used by the
WSDL Configuration Wizard in WSDL generation. The connector can process
non-TLOs during event processing. These objects are discussed below in[“Even{]
processing non-TLOs” on page 43.| For further information, see |”WSD!]
Configuration Wizard” on page 148

Note: Non-TLOs are used for event processing only.

Note: SOAP header container and header business objects, which are included in
Request, Response, and Fault business objects, are not discussed in this
chapter. For_information on SOAP header container and header business
objects, see |Chapter 5, “SOAP data handler,” on page 111.]

Synchronous event processing TLOs

For event processing the connector allows two kinds of TLOs—synchronous and
asynchronous. This section discusses synchronous event processing TLOs.

[Figure 4 on page 27 shows the business object hierarchy for synchronous event
processing. Request and Response objects are required, Fault objects are optional.

26 Adapter for Web Services User Guide

[Web Services TLO]

—[Request BO required]

_[Header container optional J

Header BO]

Header BO]

—[SOAP Config MO

)

—(Protocol Config MO optional]

required]

_[Header container optional]

Header BO]

Header BO]

—[SOAP Config MO

] { Protocol Config MO optional]

—[Fault BO optional]

SOAP Config MO

] (Protocol Config MO eptional]

HeaderFault container optional }

L[MimeType optional]

HeaderFault BO]

—[Charset optional]

HeaderFault BO]

Figure 4. Business object hierarchy for synchronous event processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for synchronous event processing TLOs
Object-level ASI provides fundamental information about the nature of a TLO and
the objects it contains. shows the object-level ASI for

SERVICE_SYNCH_OrderStatus, a sample TLO for synchronous event processing.

Chapter 3. Business object requirements

27

&l Business Dbject Designer - [SER¥ICE_SYNCH_TLD_OrderStatus:Local Project]

& File Edit Wiew Tools Window Help
[Pes@x|smm|s¢ (&=

General I Attributes I

Business Object Level Application-specific information;

|ws_mode=synch; ws_collab=SERVICE_SYMNCH_OrderStatus_Collab; ws_verb=R etieve; ws_eventtlo=tue;

Supported Yerbs:

Marme T Application-specific information
1 |create
2 |Delete
3 |Retrieve h
4 |Update
5

Figure 5. Top-level business object for synchronous event processing

below describes the object-level ASI for a synchronous event processing

TLO.

Table 5. Synchronous event processing TLO object AS/

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO for event processing only.

Note that the WSDL Configuration Wizard uses this
ASI to determine whether a business object is a
TLO. For more on this see [*WSDL Configuration|
[Wizard” on page 148

ws_collab=collabname This ASI tells the connector which collaboration to
invoke. Its value is the name of the collaboration.
(This ASI is also used during WSDL generation to
determine the TLO for a collaboration. For more on
this see ["'WSDL Configuration Wizard” on page|
[148.) In the sample shown infFigure 5| the
collaboration name is
SERVICE_SYNCH_OrderStatus_Collab)

ws_verb=verb Before delivering the TLO to the collaboration, the
connector uses this ASI to set the verb on the TLO.

In the sample shown i the verb is

Retrieve.

ws_mode=synch During event notification, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For synchronous
processing, this ASI must be set to synch.

The default is asynch.

Attribute-level ASI for synchronous event processing TLOs

Each synchronous event processing TLO has attributes and attribute-level ASL
shows the attributes of SERVICE_SYNCH_OrderStatus, a sample TLO. It
also shows the attribute-level ASI in the App Spec Info column.

28 Adapter for Web Services User Guide

& Business Dbject Designer - [SERYICE_SYNCH_TLD_OrderStatus:Local Project]

B File Edit Wiew Tools Window Help

jpes@x(smr|s ||z

General l Adtributes]

Pos Matme: Type KeQ{ Fareign R:;;ui Card App Spec Info
1 1 H Reguest SERWICE_SYMCH_OrderStatus_Reguest Ird I -r 1 wes_hatype=regquest
2 |z M Response SERYICE_SYMCH_OrderStatus_Response| [- - 1 we_botypesresponse
3 |z M Fautt SERWICE _SYMCH_OrderStatus_Fault - - - 1 we_botype=tault
4 |4 |OhjectEvertld String
5 s r r r

Figure 6. TLO attributes for synchronous event processing

summarizes the attribute-level ASI for the Request, Response, Fault,
MimeType, and Charset attributes of an synchronous event processing TLO.

Table 6. Synchronous event processing TLO attribute ASI

TLO attribute

Attribute-level ASI

Description

MimeType

Optional attribute; if
specified, its value is used as
the mime type of the data
handler to invoke for the
synchronous response. The
type is String and the default
is xm1/soap.

Charset

This optional parameter of
type String specifies the
charset to be set on the data
handler when transforming
an outgoing business object
to the message. NOTE: the
charset value specified in this
attribute will not be
propagated in the
Content-Type protocol
header of the response
message.

Request

ws_botype=request

This attribute corresponds to
a web service request. The
connector uses its ASI to
determine whether this TLO
attribute is of type SOAP
Request BO. This ASI, not
the attribute name,
determines the attribute type.
If there is more than one
request attribute, the
connector uses the ASI of the
first one.

This attribute is required for
synchronous event
processing TLOs.

Chapter 3. Business object requirements 29

Table 6. Synchronous event processing TLO attribute ASI (continued)

TLO attribute

Attribute-level ASI

Description

Response

ws_botype=response

This attribute corresponds to
the response returned by a
web service. The connector
uses this ASI to determine
whether this TLO attribute is
of type SOAP Response BO.
This ASI, not the attribute
name, determines the
attribute type. If there is
more than one response
attribute, the connector uses
the ASI of the first one.

This attribute is required for
synchronous event
processing TLOs.

Fault

ws_botype=fault
ws_botype=defaultfault

This attribute, optional for
synchronous event
processing, corresponds to a
fault message returned by a
collaboration when it cannot
successfully populate a
response. The connector uses
this ASI, not the attribute
name, to determine if the
attribute is of type SOAP
Fault BO.If
ws_botype=defaultfault,then
the WSDL Configuration
Wizard uses this Fault
business object for header
processing. For further

information, see |”Heade;|

fault processing” on page|

i22]

Request business object for synchronous event processing

A Request business object is a child of a TLO and is required for synchronous
event processing. A Request business object has object-level ASI. For example, if
you open SERVICE_SYNCH_OrderStatus_Request in Business Object Designer
Express and click the General tab, the object level ASI is displayed as shown in

[Figure 7 on page 31|

30 Adapter for Web Services User Guide

=i SERYICE_SYMNCH_OrderStatus_Request:WebServicesSample *

General] Aftributes]

Businesz Dbject Level Application-specific information:

|cw_mo_soap=SDAPCngD; cw_mo_jms=50APJMSCigMO; ws_tloname=SERVICE_SYNCH_TLO_OrderStat.

Supported Werbs:

Mame _ Application-specific information

Create

Delete

Retrieve Default’/erb=true;

Upcdate

| =] w| o] =

Figure 7. Object-level ASI for synchronous event processing request object

The object-level ASI for a Request business object for synchronous event processing
is described in As shown in you can specify a default verb for the
Request business object. You do so by specifying;:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the
Request business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the business object is returned

without a verb.

Table 7. Synchronous event processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SO0APCfgMo

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the meta-object that defines the data
handler transformation for the Request business

object. For further information, see ["'SOAP Config]
[MO” on page 32.|

cw_mo_jms=SOAPJMSCfgMO
or
cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. The first ASI designates the SOAP/JMS
protocol listener; the second designates the
SOAP/HTTP or SOAP/HTTPS protocol listener.
Both the ASI and the Protocol Config MO are

optional. For further information, see
[Config MO” on page 33|

ws_tloname=¢tloname

This ASI specifies the name of the web services
TLO that this object belongs to. During event
processing, the connector uses this ASI to
determine whether the Request business object
delivered by the data handler is a child of the
TLO. If so, the connector creates the specified
TLO, sets the Request business object as its child,
and uses the TLOs object-level ASI to deliver it to
the subscribing collaboration.

Response business object for synchronous event processing
A Response business object is a child of a TLO and is required for synchronous

event processing. The object-level ASI for a Response business object for
synchronous event processing is described in [Table 8

Chapter 3. Business object requirements 31

Table 8. Synchronous event processing: object-level ASI for Response business objects

Object-level ASI Description

cw_mo_soap=SO0APCfgMO The value of this AST must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Response
business object. For further information, see
[“'SOAP Config MO.”|

Note: You can optionally include a Protocol Config MO object-level ASI for the
Response BO.

Fault business object for synchronous event processing
A Fault business object is a child of a TLO and is optional for synchronous event
processing. The object-level ASI for a Fault business object for synchronous event

processing is described in

Table 9. Synchronous event processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the
data handler transformation for the Fault business

object. For further information, see ["SOAP Config]

Note: You can optionally include a Protocol Config MO object-level ASI for the
Fault BO.

SOAP Config MO
shows a sample SOAP Config MO, expanded in Business Object Designer
Express.

32 Adapter for Web Services User Guide

Bl Business Object Designer - SERYICE_SYNCH_OrderStatus_Request:Local Project

File Edit Yiew Tools Window Help

[tez | @x|rer|s ¢ |8

General l Aftributes I

ReciLi e
Pos Mame Type Key |Foreign :;LUI Card E;:;Jr:n Defautt
L Orderld String ¥ r Ird 255
2 SERWICE_SYMCH_SOAP
4 | ESOAPMSCIMO |"p e o stats e | T | T | T | 1
3 |5 |ObjectEvertid String
4
SERVICE_SYMCH_Order
2 B OrclerHeader Status_Request_Header r r r 1
5 SERWICE_SYMCH_Crder
B 5 =04F-faMO status_Request_crovo | I | T (A
N =5 Bclyhame String F|l O | 255 f;*orders
LS
S2 |33 Style String r r r 285 rpc
53 |34 Typelnfa String r r - 255 true
34 |35 TypeCheck String r r - 285 norE
35 |32 BOWerh String r r] 255 Retrieve
58 |37 OhjectEvertld String
a7 it A
e Ty COM
3 BiockyhS String r r r 255 pary.com!
samples/o
rderstatus

Figure 8. SOAP Config MO attributes for synchronous event processing

The SOAP Config MO defines the formatting behavior for one data handler
transformation — either a SOAP-message-to-business-object or
business-object-to-SOAP-message transformation. Each Request, Response, and
Fault attribute has a SOAP Config MO. Its attributes, BodyName, BodyNS, Style,
Use, Typelnfo, TypeCheck and BOVerb, are always of type String. They
correspond to SOAP message elements and their values determine how messages
and objects are read and validated by the SOAP data handler. For more
information on SOAP Config MOs and attributes, see ['SOAP configuration|
Imeta-object: child of every SOAP business object” on page 113] All SOAP Config
MOs, whether for a request, response, or fault object, must have unique entries for
default values of BodyName and BodyNS.

Protocol Config MO

shows a JMS Protocol Config MO, whose attributes correspond to headers
in the inbound SOAP message.

Chapter 3. Business object requirements 33

&l Business Object Designer - [SERYICE_SYNCH_TLO_OrderStatus:Local Project]

& File Edt View Tools ‘Window Help
[es @x|tme|s ¢ ||| s

General] Aftributes I

Poz Mame Type Ke{ Fareign R;E:‘Ui Card

T h H Request SERWICE_SvMCH_OrderStatus_Request v - [1
11 |14 Croerld String =2 - =

12 s ObjectEvertld String

13 145 B S0APCTMO SERWICE_S¥MCH_OrderStatus _Request_Clgho r - - 1
144 B SOAPIMSCgMO | SERVICE_SYMNCH_SOAF_JIMS_OrderStatus_Reguest_Cfogho | [r [1
140144 Messageld String v I [
14.1142 Pricrity String r r [
141143 Expiration String r r |l
141144 DeliveryMode |String r r -
141145 ReplyTo String r r |l
141148 ObjectEvertld | String

Figure 9. JMS Protocol Config MO attributes for synchronous event processing

This MO is optionally included as a child of the request, response, or fault business
objects for event processing. Typically you specify it when you need to read (from
request messages) or propagate (to response or fault messages) the protocol
headers and custom properties. As noted above, the request business object
optionally declares the name of the Protocol Config MO as business-object-level
ASI:

e cw_mo_jms=JMSProtocolListenerConfigMOAttribute
e cw_mo_http=HTTPProtocollListenerConfigMOAttribute

During event processing, the connector uses protocol listeners (SOAP/HTTP,
SOAP/HTTPS or SOAP/JMS) to retrieve events from the transport. These events
are messages from internal or external web service clients requesting service from
collaborations that have been exposed as web services. Each transport has its own
header requirements. The connector uses the Protocol Config MO to convey the
protocol-specific header information from the protocol listener to the collaboration.
The Protocol Config MO attributes correspond to headers in the inbound
SOAP/JMS message. The connector sets the value of these attributes in the
business object using inbound SOAP message content. For SOAP/JMS protocol, the
Protocol Config MO attributes for event and request processing are as follows:

Table 10. SOAP JMS Protocol Config MO attributes:event and request processing

SOAP/JMS Protocol Config
MO attribute JMSHeaderName Description

CorrelationID JMSCorrelationID Inbound messages: this
atrribute will be populated
with the value from
JMSCorrelationID header.
Outbound messages: : the
value from this attribute will
be set as the
JMSCorrelationID header of
outgoing message.

34 Adapter for Web Services User Guide

Table 10. SOAP JMS Protocol Config MO attributes:event and request

processing (continued)

SOAP/JMS Protocol Config
MO attribute

JMSHeaderName

Description

Messageld

JMSMessageld

Inbound messages: this
atrribute will be populated
with the value from the
JMSMessageld header.
Outbound messages: this
attribute is not used for
outbound messages.

Priority

JMSPriority

Inbound messages: this
atrribute will be populated
with the value from the
JMSPriority header.
Outbound messages: the
value from this attribute will
be set in the JMSPriority
header of outgoing message.

Expiration

JMSExpiration

Inbound messages: this
atrribute will be populated
with the value from the
JMSExpiration header.
Outbound messages: the
value from this attribute will
be set in the JMSExpiration
header of outgoing message.

DeliveryMode

JMSDel1iveryMode

Inbound messages: : this
atrribute will be populated
with the value from the
JMSDeliveryMode header.
Outbound messages: the
value from this attribute will
be set in the
JMSDeliveryMode header of
outgoing message.

Destination

JMSDestination

Inbound messages: this
atrribute will be populated
with the value from the
JMSDestination header.
Outbound messages:
Request processing the
value from this attribute will
be used as the destination
queue name and will
indirectly be set in the
JMSDestination header of
outgoing messages to the
derived destination path.
Synchronous response in
event notification: this
attribute is not used.

Chapter 3. Business object requirements 35

Table 10. SOAP JMS Protocol Config MO attributes:event and request
processing (continued)

SOAP/JMS Protocol Config
MO attribute JMSHeaderName Description

Redelivered JMSRedelivered Inbound messages: this
atrribute will be populated
with the value from the
JMSRedelivered header.
Outbound messages: the
value from this attribute will
be set in the JMSRedelivered
header of outgoing message..

ReplyTo JMSReplyTo Inbound messages: this
atrribute will be populated
with the value from the
JMSReplyTo header.
Outbound messages: the
value from this attribute will
be set in the JMSReplyTo
header of outgoing message

TimeStamp JMSTimeStamp Inbound messages: this
atrribute will be populated
with the value from the
JMSTimeStamp header.
Outbound messages: the
value from this attribute will
be set in the JMSTimeStamp
header of outgoing message..

Type JMSType Inbound messages: this
atrribute will be populated
with the value from the
JMSType header.

Outbound messages: the
value from this attribute will
be set in the JMSType header
of outgoing message.

UserDefinedProperties See|“User-defined propertieq |This optional read /write
for event processing” on| attribute will hold the
page 37| user-defined protocol

properties business object.
For further information,
seq"User-defined properties
for event processing” o

page 37.|

Note: It is the responsibility of the collaboration to ensure that the header values
passed to the JMS Protocol Config MO are logically correct in the context of
a request-response event.

36 Adapter for Web Services User Guide

For SOAP/HTTP(S) protocol, the Protocol Config MO attributes are as follows:
Table 11. HTTP/HTTPS Protocol Config MO Attributes for Event Processing

Attribute Required Type Description

Content-Type No String The value of this attribute
defines the Content-Type
header of the outgoing message
(which includes message
ContentType and 0 or more
parameters —-the charset-- for
the outgoing message). The
syntax is the same as that for
the Content-Type header in the
HTTP Protocol, for example:
text/html;
charset=150-8859-4. If there is
no Content-Type attribute
defined, the connector uses the
ContentType of the request as
the ContentType of the
response/fault message.

UserDefinedProperties No Business object | This attribute holds the
user-defined protocol properties
business object.

One or more HTTP No String This attribute allows the
headers handler to pass or retrieve the
value for the specified HTTP
header.

Authorization_UserID No String This attribute corresponds to
the userID of the HTTP basic
authentication.

Authorization_Password | No String This attribute corresponds to
the password of the HTTP basic
authentication

These attributes are described in:

* [“User-defined properties for event processing”|

* [“HTTP credential propagation for event processing” on page 38|

For further information on protocol listeners, see [“Protocol listeners” on page]
65 [For information describing the Protocol Config MO for request processing, see
“Synchronous request processing TLOs” on page 44)).

User-defined properties for event processing: You can optionally specify custom
properties in the HTTP(S) Protocol Config MO. You do so by including the
UserDefinedProperties attribute. This attribute corresponds to a business object that
has one or more child attributes with property values. Every attribute in this
business object must define a single property to be read (or, for synchronous
responses, written) in the variable portion of the message header as follows:

* The type of the attribute should always be String regardless of the protocol
property type. The application-specific information of the attribute can contain
two name-value pairs defining the name and format of the protocol message
property to which the attribute maps.

Chapter 3. Business object requirements 37

Table 12summarizes the application-specific information for these attributes.

Table 12. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name

Value

Description

Ws_prop_name
(case-insensitive; if not
specified the attribute name
will be used as the property
name)

Any valid protocol property
name

This is the name of the
protocol property. Some
vendors reserve certain
properties to provide
extended functionality. In
general, you should not
define custom properties that
begin with JMS (for JMS
protocol) unless you are
seeking access to these
vendor-specific features.

ws_prop_type (case
insensitive, optional for JMS
- if not specified String is
assumed; irrelevant for
HTTP(S) since only String
types make sense)

String, Integer, Boolean,
Float, Double, Long, Short

The type of the protocol
property. For JMS protocol,
the JMS API provides a
number of methods for
setting property values in the
JMS Message: setIntProperty,

setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods will be
used for setting the property
value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is
invalid and there is no logical way to process this header (such as ignoring the
property type for HTTP processing), the connector logs a warning and ignores this
property. If the value of the custom property can neither be set nor retrieved after
the necessary check against ws_prop_name or ws_prop_type has been performed,
the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified, the connector will create an
instance of a UserDefinedProperties business object. The connector then attempts
to extract property values from the message and store them in the business object.
If at least one property value is successfully retrieved, the connector will set a
modified UserDefinedProperties attribute in the Protocol Config MO.

For synchronous event processing, if a UserDefinedProperties attribute is specified
and its business object is instantiated, the connector will process each attribute of
this child business object and set the message property value accordingly.

HTTP credential propagation for event processing: For the purpose of credential
propagation, the connector supports the Authorization_UserID and
Authorization_Password attributes in the HTTP Protocol Config MO. The support
is limited to the propagation of these credentials as part of the HTTP Basic
authentication scheme.

If a SOAP/HTTP or SOAP/HTTPS protocol listener processes a SOAP/HTTP web

service request that includes an authorization header, the listener will parse the
header to determine whether it conforms to HTTP Basic authentication. If so, the

38 Adapter for Web Services User Guide

listener extracts and decodes (using Base64) the username and password. This
decoded string consists of a username and password separated by a colon. If the
protocol listener finds the Authorization_UserID and Authorization_Password
attributes in the Protocol Config MO, the listener sets these values with those
extracted from the event authorization header.

Header container business objects
shows the expanded header container attribute, OrderHeader.

Bl Business Dbject Designer - [SERYICE_SYNCH_TLO_OrderStatus:Local Projeckt]
& File Edit Wew Tools wWindow Help

[boas@x|sme|sr &=]

General l Aftributes I

Pos Mame Type Ke\{ erc;w Card Anp Spec Info
1 1 H Reguest SERVICE_SYMNCH_CrilerStatus_| p r 1 wz_hotype=reguest
14144 Orderld String V| F
12 |14 H S04PIMSCTghO SERWICE_SYMCH_S08P_MS_ | [T - 1
13 115 OhjectEventld String
14 SERVICE_SYMNCH_OrderStatus .
12 B CrderHeader Recuest, Header I r 1 s0ap_location=S0APHeader
14 headetF autt=transactionF ault; elem
1) SERVICE_SYMNCH_OrderStatus _ns=http: Mhasnssy mycompany .Com
(Rl Eiransaction TransactionHesder Chid MOy fsamplestransaction;typs_name=
Tranzaction_HeaderChild
141121, Transactionld | String Ird r
141121, OhjectEvertld |String
141121, actar Siring Il r attr_name=actor
141121, mustUncerstand | String - r attr_name=mustinderstand
141123 OhjectEventld String
1.4. headerF aut=affiliateF ault; elem_ns
3 - SERVICE_SYMNCH_OrderStatus_ =hittp: s My COMPENY COMIEE
U2 =|GHER TradingPartnerHeaderChild . ! mplesipartner;type_name=Trading
Partner _HeaderChild
1411232 partnerld Siring I r
1411232 OhjectEvertld |String
1411232 routingMumber | String - r
15 |13 H SOAPCTGMO SERVICE_SYNCH_OrderStatus_| [T r 1
2 2 H RBSFIDI'ISE SERV|CE_SYNCH_OFdBFS’[a‘tUS_ r r 1 Wg_hotypezregpgnge
=) 3 H Fautt SERVICE_SYNCH_OrderStatus_| [T r 1 wE_botype=tautt

Figure 10. Header container and child business objects

The header container attribute, also known as the SOAP header attribute,
corresponds to a business object that contains only child business objects. Each
child represents a header entry in the SOAP message. In the example shown in

the request header container is OrderHeader. SOAP header attributes
have application-specific information (ASI) required by the SOAP data handler. For
example, a header container business object is identified by its ASI:
soap_location=SO0APHeader. For information on header processing, see
lhandler processing” on page 117

All SOAP business objects, whether a Request, Response, or Fault object, have one
and only one header container.

Header child business objects
In the example shown the two child attributes of the request header

container (OrderHeader) are 1) transaction of type
SERVICE_SYNCH_OrderStatus_TransactionHeaderChild and 2) affiliate of type

Chapter 3. Business object requirements 39

SERVICE_SYNCH_OrderStatus_TradingPartnerHeaderChild. These attributes
correspond to header child business objects. Each represents a single header
element in a SOAP message. The header element is an immediate child of the
SOAP-Env:Header element of the SOAP message. As shown the header
child business objects may have an actor and a mustUnderstand attribute. These
attributes correspond to the actor and mustUnderstand attributes of the SOAP
header element. For information on header processing, see [“SOAP data handler|
[processing” on page 117

There may be as many header child objects as are needed to represent the SOAP
header message elements.

Asynchronous event processing TLOs

shows the business object hierarchy for asynchronous event processing. A
request object only is required.

[Web Services TLO]

_{ Request BO required]

—[Header container optional]

—[Header BO]
_[Header BO]

—[SOAP Config MO]

—[Protocol Config MO optional]

Figure 11. Business object hierarchy for asynchronous event processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.
Both kinds of ASI are discussed below. For information on the header container
and header child business objects, see [‘Header container business objects” on page|

Object-level ASI for asynchronous event processing TLOs
Object-level ASI provides fundamental information about the nature of a TLO and
the objects it contains. shows the object-level ASI for
SERVICE_ASYNCH_TLO_Order, a sample TLO for asynchronous event processing.

40 Adapter for Web Services User Guide

&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project

File Edit Yiew Tools Window Help

[Pz Rx|sed|s ¢ |8

=i SERYICE_ASYNCH_TLO_Order:Local Projec

t

General I Attributes I

Business Object Level Application-specific information:

Supported Yerbs:

st_mude=asynch, ws_verb=Create; ws_eventtlo=true;

Maime Application-specific infarmstion

Create

Delete

Retrieve

Update

| & w]] =

Figure 12. Top-level business object for asynchronous event processing

below describes the object-level ASI for an asynchronous event processing

TLO.

Table 13. Asynchronous event processing TLO object ASI

Object-level ASI

Description

ws_eventtlo=true

If this ASI property is set to true, the connector
treats this object as a TLO for event processing.

Note that the WSDL Configuration Wizard uses this
ASI to determine whether a business object is a
TLO. For more on this see [“WSDL Configuration|
[Wizard” on page 148

ws_verb=verb

Before delivering the TLO to the collaboration, the
connector uses this ASI to set the verb on the TLO.
In the sample shown i the verb is
Create.

ws_mode=asynch

During event notification, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For asynchronous
processing, this ASI must be set to asynch.

The default is asynch.

Note: Unlike synchronous event processing, no collaboration name ASI is required
at the TLO level for asynchronous event processing. Instead the integration
broker assures that application events reach all subscribing collaborations.

Attribute-level ASI for asynchronous event processing TLOs

Each asynchronous event |

:)rocessinf TLO has a single attribute that corresponds to

a Request business object.

Figure 13| shows the request attribute of

SERVICE_ASYNCH_TLO_Order, a sample TLO, and the attribute’s ASL

Chapter 3. Business object requirements 41

&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edit WYiew Tools ‘Window Help

|[pes@x | rerlse &

= SERYICE_ASYNCH_TLO_Order:Local Projeck = |EI|1|

General l Aftributes I

Recui [Maceimu

Pos hame Type Key |Foreign card n App Spec Info
L H Request SERWVICE_ASYMCH_Order | W - |1 ws_hotype=request
2 |2 |ChjectEventld String
I] Il Il - 255

Figure 13. TLO attribute for asynchronous event processing

summarizes the attribute-level ASI for the request attribute of an
asynchronous event processing TLO.

Table 14. Asynchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

Request ws_botype=request This attribute corresponds to
a web service request. The
connector uses its ASI to
determine whether this TLO
attribute is of type SOAP
Request BO. This ASI, not
the attribute name,
determines the attribute type.
If there is more than one
request attribute, the
connector uses the ASI of the
first one.

This attribute is required for
synchronous event
processing TLOs.

Request business object for asynchronous event processing
A Request business object is a child of a TLO and is required for asynchronous
event processing. You can specify a default verb for the Request business object.
You do so by specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the
Request business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the business object is returned
without a verb. The object-level ASI for a Request business object for asynchronous

event processing is described in [Table 15

Table 15. Asynchronous event processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see
[“SOAP Config MO” on page 32

42 Adapter for Web Services User Guide

Table 15. Asynchronous event processing: object-level ASI for Request business
objects (continued)

Object-level ASI Description

cw_mo_jms=SOAPJMSCfgMO The value of this ASI must match the name of the
or attribute that corresponds to the Protocol Config
cw_mo_http=SOAPHTTPCfgMO MO. The first ASI designates the SOAP/JMS

protocol listener; the second designates the
SOAP/HTTP or SOAP/HTTPS protocol listener.
Both the ASI and the Protocol Config MO are

optional. For further information, see

[Config MO” on page 33

ws_tloname=tloname This ASI specifies the name of the web services
TLO that this object belongs to. During event
processing, the connector uses this ASI to
determine whether the Request business object
delivered by the data handler is a child of the
TLO. If so, the connector creates the specified
TLO, sets the Request business object as its child,
and uses the TLOs object-level ASI to deliver it to
the subscribing collaboration.

In the sample shown in the Request attribute contains a SOAP Config
MO and header container (OrderHeader), as well as a content-related attribute
(OrderLineltems). The requirements and characteristics of the SOAP Config MO,
Protocol Config MO, SOAP header container, and header child business objects are
the same for asynchronous event processing as they are for synchronous event
processing. For further information, see these topics above in |”Synchronous evenﬂ
[processing TLOs” on page 26|

&l Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edit Yiew Tools Window Help

[cos @ |i=r|s |8

= SER¥ICE_ASYNCH_TLO_Order:Local Project = |EI|5|
General l Aftributes I
- T

Pos Mame Type Key R:;u' Card Ma::mu App Spec Info
L H Request SERWICE_ASYMCH_Order | [- |1 wz_botype=request
11 111 Orderly String v I~ 255
12 42 CrderDate Dste |l
13 |13 Customerld String Cl 255
1.4

14 A CrderLinetems =] (Rl - - |n type_name=Order_Linetem

_Linstem
15 115 H OrderHeader S:RVCI!CE_ASYNCH_Order r Im soap_location=S04PHeadsr
Cader

16 SERWICE_ASYNCH_Order

16 SOAPCTGMO = = 1

2] o “cighto |

1.7 SERWICE_ASYNCH_SOAP)

17 H SOAPMSCTghis " MS_Order CfaMO r |]
18 |1g ObjectEvertid String
2 |2 |ObjectEventid String
I - Il 255

Figure 14. Request attributes for asynchronous event processing

Event processing non-TLOs

If the object-level ASI ws_eventtlo=true is not present in a business object, the
connector concludes that the object is not a TLO. During event processing, the
connector can process non-TLOs—generic business objects and application specific
business objects. With non-TLOs, the same business object represents the Request
and Response business object.

Chapter 3. Business object requirements 43

Non-TLOs do not have SOAP Config MOs. When you expose a collaboration as a
web service, the WSDL Configuration Wizard configures the WSCollaborations
property of the connector. The connector uses the WSCollaborations property to
determine the BodyName and BodyNS of the request message. Note that for
non-TLOs, the WSCollaborations property is used for business object resolution.

The advantage to using non-TLOs is that you need not develop new,
TLO-structured business objects for use with your web services solution. TLOs,
however, allow a more precise and economical exposure of data—customer,
company, or otherwise. TLO business objects also lend themselves to more
customization than do non-TLOs.

For further information on requirements when using non-TLOs as input to the
WSDL Configuration Wizard, see|“Identifying or Developing Business Objects” on|

Synchronous request processing TLOs

For request processing the connector allows two kinds of TLOs—synchronous and
asynchronous. This section discusses synchronous request processing TLOs.

shows the TLO business object hierarchy for synchronous request
processing. Request and Response objects are required, Fault objects are optional.
Unlike event processing, a Protocol Config MO is required for the Request objects,
and optional for the Response and Fault objects. For information on the header
container and header child business objects, see [“Header container business|
fobjects” on page 39.]

44 Adapter for Web Services User Guide

[

Web Services TLO]

_[Request BO required]

_[Header container optional }

Header BO]

Header BO]

—[SOAP Config MO]

—[IMS Protocol Config MO] [HTTP Protocol Config Mo]

required]

—[Header container optional }
Header BO]
Header BO]

—[SOAP Config MO]

—[IMS Protocol Config MO optional] [HTTP Protocol Config MO optianal]

_[Fault BO optional]

—[HeaderFault container optional J

Header BO]

Header BO]

—[SOAP Config MO J

—[JMS Protocol Config MO optional] [HTTP Protocol Config MO optional]

—[MimeType optional]

_[Charset optional]

—[BOPrefix optional]

Figure 15. Business object hierarchy for synchronous request processing

Object-level ASI for synchronous request processing TLOs
Object-level ASI provides important information about the nature of a TLO and the
objects it contains. shows CLIENT_SYNCH_TLO_OrderStatus, a sample

TLO for synchronous request processing.

Chapter 3. Business object requirements

45

& Business Dbject Designer - CLIENT_SYNCH_TLO_OrderStatus:Local Project

File Edit Wiew Tools Window Help
[pas@xs=als+|a]=s]

General] Aftributes I

Buzinesz Object Level Application-specific infarmatior:

|ws_mode=synch;

Supported Verbs:

Matme Application-specific information
Create
Delete
Retrieve
Uplate

| & w|] =

Figure 16. Top-level business object for synchronous request processing

describes the object-level ASI for a synchronous request processing TLO.
Unlike the ASI for synchronous event processing TLOs, no ws_collab, ws_verb or
ws_eventtlo ASI is required at this level for request processing.

Table 16. Synchronous request processing TLO object ASI

Object-level ASI Description

ws_mode=synch During request processing, the connector uses this
ASI property to determine whether to invoke the
web service synchronously (synch) or
asynchronously (asynch). If synch is indicated, then
the connector expects a response, and the TLO
must include request and response business objects
and, optionally, one or more fault objects.

The default is asynch.

Attribute-level ASI for synchronous request processing TLOs

shows the attributes of the CLIENT_SYNCH_TLO_OrderStatus TLO as
well as attribute-level ASI.

&l Business Dbject Designer - CLIENT_SYNCH_TLO_OrderStatus:Local Project

File Edit Wiew Tools Window Help

Jpes @x|smms ¢ |&]|a 5]

= CLIENT_SYNCH_TLO_OrderStatus:Local Project

General] Attributes I

Pos Mame Type Key Card mal_x;ﬁ;— Default App Spec Info
1 |7 |ObjectEvertld String
2 2 tditneType String I 255 wimlfsoap
3 |3 |BOPrefix String Il 255
4 Handler String I 255 soapitp
g CLIENT_SYNCH_Order
(3 H Fault Status_Fault I 1 ws_hotype=tautt
5} CLIENT_SYNCH_Order _
4 H Request Status_Request = 1 wys_hotypes=request
T CLIEMT_SYNCH_Oroer _
5 H Responze Stetus_Response I 1 wez_botypesresponse

Figure 17. TLO attributes for synchronous request processing

46 Adapter for Web Services User Guide

describes the attributes and ASI shown in [Figure 17}

Table 17. Request processing TLO attributes

TLO attribute

Attribute-level ASI

Description

MimeType

None

This attribute specifies the mime
type of the data handler that the
connector invokes for transforming
a Request business object into a
request message. This value may be
used for transforming synchronous
response/fault messages into
business objects, depending on the
Message Transformation Rules
configuration.

BOPrefix

None

This attribute of type String is
passed to the data handler.

Handler

None

This attribute specifies the protocol
handler to use to process the web
service request and is for request
processing only. It takes one of the
following values:

* soap/jms The connector uses the
SOAP/JMS protocol handler to
process the request

* soap/http The connector uses the
SOAP/HTTP, SOAP/HTTPS
protocol handler to process this
web service request.

The default is soap/http

Charset

This optional parameter of type
String specifies the charset to be set
on the data handler when
transforming the Request business
object to a message. NOTE: the
charset value specified in this
attribute will not be propagated in
the Content-Type protocol header of
the request message.

Request

ws_botype=request

This attribute corresponds to a web
service request business object. The
connector uses this attribute ASI to
determine whether this TLO
attribute is of type SOAP Request
BO. This ASI, not the attribute
name, determines the attribute type.
If there is more than one request
attribute, the connector uses the ASI
of the first populated attribute.

Response

ws_botype=response

This attribute corresponds to the
response returned to a collaboration
and is required for synchronous
request processing. The connector
uses this attribute ASI to determine
whether this TLO attribute is of type
SOAP Response BO. This ASI, not
the attribute name, determines the
attribute type.

Chapter 3. Business object requirements 47

Table 17. Request processing TLO attributes (continued)

TLO attribute | Attribute-level ASI

Description

Fault ws_botype=fault

or

ws_botype=defaultfault

This attribute, optional for
synchronous request processing,
corresponds to a fault message
returned by a web service when it
cannot successfully populate a
response.

The connector uses this ASI to
determine if the attribute of TLO is
of type SOAP Fault BO. This ASI,
not the attribute name, determines
the attribute type. A defaultfault
business object is returned if the
fault message is a detail element.
defaultfault is used in default
business object resolution. For
further information, see |Chapter 5,|
['SOAP data handler,” on page 111/

Request business object for synchronous request processing
A Request business object is a child of a TLO and is required for synchronous
request processing. A Request business object has object-level ASI.

For example, if you open CLIENT_SYNCH_OrderStatus_Request and click the
General tab, the object-level ASI is displayed as shown in

Bl Business Dbject Designer - [CLIENT_SYNCH_OrderStatus_Request:Local Project]

& Fle Edit Wiew Tools Window Help

jpez@x|i=als < &z
General].ﬂ.rtrlbl,ntesl

Business Object Level Application-specific infarmation:

Icw_mn_snap:SDAF‘Eng 0: cw_ma_jms=504PIMS Clak0;: cve_ma_http=S04PHT TPCIaMO: SOAPACction=http:/ www mycompang. comdsamples/orderstatus:

Supported Yerbs:

hlame

Applicstion-specific information

Create

Dielete

Retrigve

Upilate

] B W] R =

Figure 18. Request object ASI for synchronous request processing

describes the object-level ASI for a Request business object for

synchronous request processing.

Table 18. Synchronous request processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see

[“SOAP Confie MO” on page 32

48 Adapter for Web Services User Guide

Table 18. Synchronous request processing: object-level ASI for Request business

objects (continued)

Object-level ASI

Description

cw_mo_jms=S0APJMSCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO that specifies
the destination web service for the JMS protocol
handler. For further information, see |”]MS|

Protocol Config MO of request business object forf

request processing” on page 50.|

cw_mo_http=SOAPHTTPCfgMO

The value of this optional ASI must match the
name of the attribute that corresponds to the
Protocol Config MO. This is a separate Protocol
Config MO that specifies the destination for the
SOAP/HTTP-HTTPS protocol handler. This ASI is
used by the SOAP/HTTP and SOAP/HTTPS
Protocol Handler. Note that the TLO request
attribute must have either a JMS or an HTTP
Protocol Config MO for request processing,
depending on the type of web service protocol
you are using. For further information, see |“HTTP|

Protocol Confie MO for request processing” on|

page 51.|

SOAPAction=SOAPActionURI

The connector uses this ASI to determine whether
to set a SOAPAction header on the request
message. Specify this ASI only if the target web
service requires a SOAPAction header. Note that
this ASI is used for request processing but not for
event notification.

Response business object for synchronous request processing
A Response business object is a child of a TLO and is required for synchronous

request processing. The object-level ASI for a Response business object for
synchronous request processing is described in [Table 19

Table 19. Synchronous request processing: object-level ASI for response business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Protocol
Config MO. This is the SOAP Config MO that
defines the data handler transformation for the
Response business object. For further information,
see [‘SOAP Config MO” on page 32|

cw_mo_jms=S0APJMSCfg MO
or
cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO, optional for
a Response business object, that specifies the
headers in the response SOAP message for the
JMS or HTTP(s) protocol handler. For further
information, see [“Protocol Config MO” on page|

You can specify a default verb for the Response business object. You do so by

specifying:
DefaultVerb=true;

Chapter 3. Business object requirements 49

in the ASI field for the verb in the Supported Verbs list at the top-level of the
Response business object. If DefaultVerb ASI is not specified and the data handler
processes a business object with no verb set, the Response business object is
returned without a verb.

Fault business object for synchronous request processing
A Fault business object is a child of a TLO and is optional for synchronous request

processing. The object-level ASI for a Fault business object for synchronous request
processing is described in

Table 20. Synchronous request processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the SOAP Protocol
Config MO. This is the SOAP Config MO that
defines the data handler transformation for the
Fault business object. For further information, see
[“SOAP Confic MO” on page 32

cw_mo_jms=SO0APJMSCfg MO The value of this AST must match the name of the
or attribute that corresponds to the Protocol Config
cw_mo_http=SOAPHTTPCfgMO MO. This is the Protocol Config MO, optional for

a Fault business object, that specifies the headers
in the response SOAP message for the JMS
protocol handler. For further information, see
[“Protocol Config MO” on page 33|

SOAP Config MO

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the
event processing SOAP Config MO. For further information, seel”SOAP Conﬁa
MO” on page 32.hs well as[*SOAP configuration meta-object: child of every SOAP|
business object” on page 113

JMS Protocol Config MO of request business object for request
processing

The JMS Protocol Config MO is required in a Request business object when you
are using JMS web services, and optional for Response and Fault objects.
describes the request processing JMS Protocol Config MO—Destination
is the most important and only required attribute. The JMS protocol handler uses
this attribute to locate the requested web service. In addition, all the attributes

described for the J]MS Config MO in [“Protocol Confie MO” on page 33 are
optional.

50 Adapter for Web Services User Guide

Table 21. JMS Protocol Config MO Attributes for Request Processing

Attribute

Required

Type

Description

Destination

Yes

String

The destination queue name of

the target web service. The JMS
Protocol Handler uses this
attribute to determine the
destination of the web service.
If the connector-specific JNDI
property
LookupQueuesUsing]NDI is set
to true, the JMS Protocol
Handler looks up this queue
using JNDI. Make sure that this
attribute gives the JNDI name
of the destination queue.

HTTP Protocol Config MO for request processing

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the
HTTP Protocol Config MO to determine the destination of the target web service.
This Protocol Config MO is required for a Request business object. The
SOAP/HTTP-HTTPS protocol handlers support HTTP 1.0 POST request only. As
shown in the sole required attribute (Destination) is the full URL of the
target web service. The optional authorization attributes are described in the

sections below.

Table 22. HTTP Protocol Config MO Attributes for Request Processing

Attribute

Required

Type

Description

Destination

Yes

String

The destination URL of the target web service.
The SOAP/HTTP-HTTPS protocol handler uses
this attribute to determine the destination of the
web service.

Content-Type

Required for
the Request
business object,
otherwise
optional.

String

The value of this attribute defines the
Content-Type header of the outgoing message
(which includes message ContentType and
optionally charset for the outgoing message).
The syntax is the same as that for the
Content-Type header in the HTTP Protocol, for
example: text/html; charset=1S0-8859-4. If
there is no Content-Type attribute defined, the
connector uses text/xml as the ContentType of
the message.

Authorization_UserID

No

String

This attribute corresponds to the userID of the
HTTP basic authentication. For further
information, see [“HTTP credential propagation|
[for request processing” on page 54|

Authorization_Password

No

String

This attribute corresponds to the password of
the HTTP basic authentication. For further
information, see |"HTTP credential propagation|
[for request processing” on page 54

One or more HTTP headers | No

String

This attribute allows the handler to pass or
retrieve the value for the specified HTTP
header.

Chapter 3. Business object requirements 51

Table 22. HTTP Protocol Config MO Attributes for Request Processing (continued)

Attribute

Required Type Description

UserDefinedProperties

No Business object This attribute holds the user-defined protocol
properties business object. For further
information, see[“User-defined properties for]
[request processing.”|

MessageTransformationMap | No Single cardinality | This is the attribute that points to business

business object object holding 0 or more message
transformation rules. The rules hold
information regarding the mime type and
charset to apply to the incoming message that
is specified in the rule. For further information,
see ["Message transformation maps” on page 53)

shows some of the HTTP Protocol Config MO attributes in Business
Object Designer Express.

General Alirides l

Pas l Ml l Type [n:,.]Fntz'gn R:‘:'" [card |’“’:”‘“ | Detek l App Spec Infa
1 11 Crdens string 3 r I3 255
1z |z B Orriderbe ader CLENT_SYMCH_OrderStalus_Request_Heatier i r r 1
ERERE HTTRCigvO CLENT_SYMCH_OrderSialus_HTTRCIgD w r (B 1 ‘
a1 | 3 Cale -Strng [r [N 255
|32 |3z Carter.Typs String I r I 255
EENEE S MeszageTranslormationitap HTTP_Croho_MegTrresiMes i r B 1
E 334 B TranzfoemalionRue HTTR_Cfghia_WsgTrmetRue [r I N ‘
E_-‘3; 331, Cantend-Type :Strng = r 2 255 »
3—1- 331. MimeType Steing] r I |255
3-3-_ 331. Cherset String] r B 255
3;?- 331, ChyjactEwanild |Steing
_EE 332 ObjeciEventld |String
34 l3sg S UserDeflinedProgetias HTTP_Cfghia_CustoeProgetias I r I 1
E 341 CuslomPropery1 String 2 L B 255
340382 CuslomFropery? String = r [N 255 'wg_pmpjyceﬂnegar
|34 [223 CustomFropertys |string m m| r 255 |vws_prop type=Baclean,
En-t ObjectEvertid :Sir'ng | |
35 las CljedEwertd String
[¥ |a obecEvens e
= |= ol ol 0 255

Figure 19. HTTP Protocol Config MO attributes for request processing

The HTTP Protocol Config MO attributes are described in:

+ |[“User-defined properties for request processing”|

* [“Message transformation maps” on page 53|

+ |“HTTP credential propagation for request processing” on page 54|

User-defined properties for request processing: You can optionally specify
custom properties in the HTTP Protocol Config MO. You do so by including the
UserDefinedProperties attribute. This attribute corresponds to a business object that
has one or more child attributes with property values. Every attribute in this
business object must define a single property to be read (or, for synchronous
responses, written) in the variable portion of the message header as follows:

* The type of the attribute should always be String regardless of the protocol
property type. The application-specific information of the attribute can contain
two name-value pairs defining the name and format of the protocol message
property to which the attribute maps.

52 Adapter for Web Services User Guide

Table 23summarizes the application-specific information for these attributes.

Table 23. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name

Value

Description

WSs_prop_name
(case-insensitive; if not
specified the attribute name
will be used as the property
name

Any valid protocol property
name

This is the name of the
protocol property. Some
vendors reserve certain
properties to provide
extended functionality. In
general, you should not
define custom properties that
begin with JMS (for JMS
protocol) unless you are
seeking access to these
vendor-specific features.

ws_prop_type (case
insensitive, optional for JMS
- if not specified String is
assumed; irrelevant for
HTTP(S) since only String
types make sense)

String, Integer, Boolean,
Float, Double, Long, Short

The type of the protocol
property. For JMS protocol,
the JMS API provides a
number of methods for
setting property values in the
JMS Message: setIntProperty,
setLongProperty,
setStringProperty, etc. The
type of the JMS property
specified here dictates which
of these methods will be
used for setting the property
value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is
invalid and there is no logical way to process this header (such as ignoring the
property type for HTTP processing), the connector logs a warning and ignores this
property. If the value of the custom property can neither be set nor retrieved after
the necessary check against ws_prop_name or ws_prop_type has been performed,
the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified and its business object is
instantiated, the connector processes each attribute of this child business object and
sets the message properties values accordingly.

For synchronous request processing, upon receipt of a response message from the
web service/url, if the UserDefinedProperties attribute is specified, the connector
creates an instance of a UserDefinedProperties business object and attempts to
extract property values from the message and then stores them in the new business
object. If at least one property value was successfully retrieved, the connector will
set modified UserDefinedProperties business object in the Protocol Config MO.

Message transformation maps: The Message Transformation Map (MTM) feature
is supported for request processing HTTP(S) protocol handlers only.
MessageTransformationMap is an optional attribute in the Protocol Config MO that
points to a business object. The business object contains rules for transforming
messages with mime types and charsets that are specified in the rules. If it finds
the (case-sensitive) attribute name MessageTransformationMap and this attribute is
of the business object type (see , the connector uses the rules in that
object to transform a message.

Chapter 3. Business object requirements 53

As shown i the MTM attribute must have one cardinality N child
business object attribute that is named TransformationRule. When trying to find
TransformationRule for a message, the SOAP/HTTP(s) Protocol Handler first
attempts to match the message exactly by the ContentType specified in all
TransFormationRules. If unsuccessful, the connector attempts to find the rule that
applies to multiple types of messages. For further information on protocol handler

processing, see ["SOAP/HTTP-HTTPS protocol handler processing” on page 77]

Each instance of a TransformationRule business object must have attributes

specified as shown in [Table 24

Table 24. TransformationRule attributes for Message TransformationMaps in HTTP Protocol Config MO

Attribute name

Required Type

Default value

Description

TransformationRule

No Business object,
cardinality N

This is the attribute that holds 1
rule for message transformation.
There can be 0 or more instances of
this attribute under the
MessageTranformationMap
attribute.

+ContentType

Yes String

The value of this property specifies
the HTTP ContentType of the
message for which this
transformation rule applies. The
default value */+ for this attribute
enables the connector to apply this
rule to any ContentType. For
further information on protocol
handler processing, see

‘SOAP/HTTP-HTTPS protocoll

handler processing” on page]

ZNote that if Protocol Handler
finds more than one rule that has
the same ContentType as the other
rule, Protocol Handler will log the
warning and ignore all duplicate
rules, but will use unique rules

+MimeType

No

The mime type to use when calling
a data handler while processing
messages of the ContentType
specified in this business object.

+Charset

The charset to use when
transforming a request of the
ContentType specified in this
business object.

HTTP credential propagation for request processing: For the purpose of
credential propagation, the connector supports the Authorization_UserID and
Authorization_Password attributes in the HTTP Protocol Config MO. The support
is limited to the propagation of these credentials as part of the HTTP Basic

authentication scheme.

If credential propagation is desired during request processing, you must manually
add the Authorization_UserID and Authorization_Password attributes to the
Protocol Config MO generated by the WSDL ODA. You do this in Business Object
Designer Express after generating the business object and meta-object definitions.

54 Adapter for Web Services User Guide

(For further information on the WSDL ODA, see|Chapter 6, “Enabling]
fcollaborations for request processing,” on page 143))

The collaboration sets the values of the Authorization_UserID and
Authorization_Password attributes in the Protocol Config MO. If these attributes
are neither null nor empty, the connector creates an authorization header on the
request its sends to the to the target web service. The SOAP HTTP/HTTPS
protocol handler follows HTTP Authentication: Basic and Digest Access Authentication
(RFC 2617) when creating the authorization header.

Note: The digest authentication scheme is not be supported, nor is the optional
challenge-response mechanism for HTTP authentication defined in Rfc2617.
If the HTTP(s) protocol handler is invoking a server that requires a
credential, the connector does not wait for the challenge response from the
server. Instead, it sends the credentials continuously.

Asynchronous request processing TLOs
shows the business object hierarchy for asynchronous request processing.
A request object only is required, and this object contains a SOAP Config MO for
the SOAP data handler as well as two Protocol Config MOs, one each for the
SOAP/JMS and SOAP/HTTP/HTTPS protocol handlers. These are described in
the sections below.

[Web Services TLO]

_[Request BO required]

_[SOAP Config MO }

_[JMS Protocol Contig MOJ

—[HTTP Protocol Config MO]

_[Header container optional J

—[Header BO]
—[Header BO]

Figure 20. Business object hierarchy for asynchronous request processing

The TLO contains object-level ASI as well as attributes with attribute-level ASI.
Both kinds of ASI are discussed below. For information on the header container
and header child business objects, see [“Header container business objects” on page|

Object-level ASI for asynchronous event processing TLOs
shows CLIENT_ASYNCH_Order_TLO, a sample TLO for asynchronous
request processing.

Chapter 3. Business object requirements 55

E! Business Object Designer - CLIENT_ASYNCH_TLO_Order:WebServicesSample

File Edit Wiew Tools Window Help

IEEEIEE) EXE

General I Aftributes I

Buziness Object Level Application-specific information:

= CLIENT_ASYNCH_TLO_Order:WebServicesSample

|ws_mode=asynch;

Supported Yerbs:

Mame)

Application-zpecific information

Create

Delete

Retrieve

=] wf] =

Update

Figure 21. Top-level business object for asynchronous request processing

below describes the object-level ASI for an asynchronous request

processing TLO.

Table 25. Asynchronous request processing TLO object ASI

Object-level ASI

Description

ws_mode=asynch

During request processing, the connector uses this
ASI property to determine whether to invoke the
collaboration synchronously (synch) or
asynchronously (asynch). For asynchronous request
processing, this ASI must be set to asynch.

The default is asynch.

Attribute-level ASI for asynchronous request processing TLOs

shows the attributes of the CLIENT_ASYNCH_TLO_Order, a sample
request processing TLO.

&l Business Dbject Designer - CLIENT_ASYNCH_TLO_Order:WebServicesSample

File Edit Wew Tools Window Help

IEEEICESE L et Ea

General l Attributes I

= CLIENT_ASYNCH_TLO_Order:WebServicesSample

Recjui [Maximum
P [l T K Card Detault App S Inef
0z ame vpe S) ar Length efaul pp Spec Info
T 1 Handler String Ird Ird 255 soaphttp
2 |2 imeType String I I 255 xmlizoap
3 |3 |BoPrefic String |l 255
4
4 H Request ::dL:NT—ASYNCH—O r |1 wes_hotype=regquest
5 |5 |OhjectEvertld String

Figure 22. TLO attributes for asynchronous request processing

summarizes the attribute-level ASI for the request attribute of an
asynchronous request processing TLO.

56 Adapter for Web Services User Guide

Table 26. Asynchronous request processing TLO attributes

TLO attribute | Attribute-level ASI

Description

MimeType None

This attribute specifies the mime
type of the data handler that the
connector invokes. Note that this
attribute is used only for Request
Processing. (For event processing,
protocol listeners use the
SOAPDHMimeType
connector-specific configuration
property.) The default is xm1/soap.

BOPrefix None

This attribute of type String is
reserved for future development and
not required.

Handler None

This attribute specifies the protocol
handler to use to process the web
service request and is for request
processing only. It takes one of the
following values:

* soap/jms The connector uses the
SOAP/JMS protocol handler to
process the request

* soap/http The connector uses the
SOAP/HTTP-HTTPS protocol
handler to process this web
service request.

The default is soap/http

Request ws_botype=request

This attribute corresponds to a web
service request business object. The
connector uses this attribute ASI to
determine whether this TLO
attribute is of type SOAP Request
BO. This ASI, not the attribute
name, determines the attribute type.
If there is more than one request
attribute, the connector uses the ASI
of the first one.

Request business object for asynchronous request processing
A Request business object is a child of a TLO and is required for asynchronous
request processing. The object-level ASI for a Request business object for

asynchronous request processing is described i

Table 27. Asynchronous request processing: object-level ASI for Request business objects

Object-level ASI

Description

cw_mo_soap=SOAPCfgMO

The value of this ASI must match the name of the
attribute that corresponds to the SOAP Config
MO. This is the SOAP Config MO that defines the
data handler transformation for the Request
business object. For further information, see

[“SOAP Config MO” on page 32

Chapter 3. Business object requirements 57

Table 27. Asynchronous request processing: object-level ASI for Request business
objects (continued)

Object-level ASI Description

cw_mo_jms=SO0APJIMSCfgMO The value of this AST must match the name of the
attribute that corresponds to the Protocol Config
MO. This is the Protocol Config MO that specifies
the destination web service for the JMS protocol
handler. For further information, see |”]MS|
Protocol Config MO of request business object for]
request processing” on page 50.

cw_mo_http=SOAPHTTPCfgMO The value of this ASI must match the name of the
attribute that corresponds to the Protocol Config
MO. This is a separate Protocol Config MO that
specifies the destination for the
SOAP/HTTP-HTTPS protocol handler. This ASI is
used by the SOAP/HTTP-HTTPS Protocol
Handler. Note that the TLO request attribute must
have both JMS and HTTP Protocol Config MOs
for request processing. For further information,
see ["HTTP Protocol Config MO for request]
[processing” on page 51.

SOAPAction=SOAPActionURI The connector uses this ASI to determine whether
to set a SOAPAction header on the request
message. Specify this ASI only if the target web
service requires a SOAPAction header. Note that
this ASI is used for request processing but not for
event notification.

In the sample shown in the Request attribute contains a SOAP Config
MO and header container (OrderHeader), as well as a content-related attribute
(OrderLineltems). The requirements and characteristics of the SOAP Config MO,
Protocol Config MO, SOAP header container, and header child business objects are
the same for asynchronous request processing as they are for synchronous request
processing. For further information, see these topics above in [“Synchronous request]
fprocessing TLOs” on page 44/

& Business Object Designer - SERYICE_ASYNCH_TLO_Order:Local Project
File Edt Yiew Tools Window Help

[Pos EX|i=|se &

=i SERYICE_ASYNCH_TLO_Drder:Local Projeck =101 x|
General } Adtributes I
|

Pos Matme: Type Hey erc‘;ul Carrd Ma:;lmu App Spec Info
1 | B Request SERVICE_ASYMCH_Order | [| wa_botype=request
11 144 Crderld String ¥ | F 255
12 |12 OrderDate Date] |
13 113 Customerld String C|l 255
= 1.4 | Orderlinetems Gl] I r r |w type_name=COrder_Linetem

_Linettem

15 115 M CrderHeader SE::DI’(;E_ASYNCH_Order - - |1 soap_location=S0APHeadder
16 SERVICE_ASYNCH_Order

16 H SOAPCIGMO S |
1.7 SERWVICE_ASYNCH_SOAP

17 H SOAPJMSCTGMO M5 Order ClaMo r |]
18 |18 OhjectEventld String
2 |z |ObjectEventid String
3 |3 r Il 255

Figure 23. Request attributes for asynchronous event processing

58 Adapter for Web Services User Guide

Config MOs for asynchronous request processing

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the
event processing SOAP Config MO. For further information, see["SOAP Config]
IMO” on page 32)as well as ['SOAP configuration meta-object: child of every SOAP)|
business object” on page 113

The JMS Protocol Config MO is required in a Request business object when you
are using JMS web services. For further information, see|“JMS Protocol Config Md
|of request business object for request processing” on page 50|

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the
HTTP Protocol Config MO to determine the destination of the target web service.
This Protocol Config MO is required for a Request business object. For further
information, see [“HTTP Protocol Config MO for request processing” on page 51

Developing business objects

You use Business Object Designer Express to create business objects and Connector
Configurator Express to configure the connector to support them. For more
information on the Business Object Designer Express tool, see the Business Object
Development Guide and |Chapter 7, “Exposing collaborations as web services,” on|
page 145.| For further information on Connector Configurator Express, see
Appendix B, “Connector Configurator Express,” on page 183)

Chapter 3. Business object requirements 59

60 Adapter for Web Services User Guide

Chapter 4. Web services connector

* |“Connector processing”|

+ ["SOAP/HTTP(S) web services” on page 64|
* [“SOAP/JMS web services” on page 64|

* |“Event processing” on page 65

+ [“Request processing” on page 76]
* |“SSL” on page 86
* |“Connector and JMS” on paw

« |“Configuring the connector” on page 88|

» [“Connector at startup” on page 107]

* |"Logging” on page 108]
* [“Tracing” on page 108|

This chapter describes the web services connector and how to configure it.

All WebSphere business integration connectors operate with an integration broker.
The web services connector operates with the IBM WebSphere InterChange Server
Express integration broker, which is described in the System Implementation Guide.

A connector is a run-time component of an adapter. Connectors consist of an
application-specific component and the connector framework. The
application-specific component contains code tailored to a particular application.
The connector framework, whose code is common to all connectors, acts as an
intermediary between the integration broker and the application-specific
component. The connector framework provides the following services between the
integration broker and the application-specific component:

* Receives and sends business objects
* Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and
connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the
connector, see the System Administration Guide.

Connector processing

The connector includes a protocol listener framework for event processing and a
protocol handler framework for request processing. This bi-directional functionality
enables the connector framework to:

* Expose collaborations as web services and then process calls from web service
clients

* Process a request by a collaboration that invokes a web service

For further information on the SOAP data handler, see [Chapter 5, “SOAP data|
lhandler,” on page 111/

Note: The connector supports SOAP/HTTP and SOAP/JMS bindings only.

© Copyright IBM Corp. 2004 61

Event processing overview

Connector event processing (or event notification) is used to handle requests from
web service clients. This event processing capability encompasses a protocol
listener framework, including the following components, which are discussed in
greater detail later in this chapter:

e SOAP/HTTP protocol listener
¢ SOAP/HTTPS protocol listener
* SOAP/JMS protocol listener

The connector uses the listeners to expose collaborations as web services, and to
listen on the transport for calls from web services clients to exposed collaborations.

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a
SOAP/HTTP web service. The SOAP/JMS protocol listener exposes a collaboration
as a SOAP/JMS web service.

When requests from web service clients arrive, the listener converts the SOAP
request message into a business object and invokes the collaboration. If it is a
synchronous request, the connector receives a Response business object of the same
type as the Request business object. The listener converts the Response business
object into a SOAP response message. The listener then transports the SOAP
response message to the web service client. Note that event sequencing is not a
requirement for this connector; the connector may deliver the events in any order.

The web services connector utilizes the SOAP data handler to convert incoming
SOAP request messages into business objects. To aid the data handler in
determining which business object to resolve for the incoming SOAP request
message, the connector provides meta information regarding its supported
business objects to the data handler. From its supported business objects, the
connector first makes a list of all business objects that are potential candidates for
the conversion. This list may be comprised of both TLOs and non-TLOs. Supported
TLO business objects are those that have object-level ASI ws_eventtlo=true.

If TLOs are used, the protocol listener reads the object-level ASI of the TLO as
follows:

* ws_collab= This determines which collaboration to invoke

* ws_mode= This determines how to invoke the collaboration, synchronously
(synch) or asynchronously (asynch)

If non-TLOs, are used, then the protocol listener reads the collaboration and
processing mode from the WSCollaborations configuration property values
generated by the WSDL Configuration Wizard.

The connector compares and attempts to match the BodyName and
BodyNamespace in the SOAP request to the names of potential business objects. In
the case of TLOs, this BodyName/BodyNamespace pair is found using the SOAP
Config MO properties of the SOAP Request business object. For non-TLOs, the
BodyName/BodyNamespace pair is found using the WSCollaborations connector
configuration property. (Note that the connector considers only those non-TLOs
that have an entry in the WSCollaborations property.) The data handler uses the
BodyName/BodyNamespace pair to determine the business object to use for the
SOAP request to business object conversion.

62 Adapter for Web Services User Guide

The connector inspects the Request business object returned by the SOAP data
handler. If this business object has ws_tToname ASI, the connector sets the Request
business object in this TLO. This TLO is used to invoke the collaboration.
However, if this ASI is not set, the connector invokes the collaboration using the
Request business object returned by the SOAP data handler.

For synchronous collaboration execution, the connector utilizes the SOAP data
handler to create a SOAP response or fault message to send back to the client. In
this case, the connector simply passes either a SOAP business object (child of TLO),
or a non-TLO to the data handler. The SOAP data handler returns a SOAP message
based on the business object that it is passed to it.

Request processing overview

On behalf of a collaboration, the connector can invoke web services over
SOAP/HTTP(S) and SOAP/JMS. This request processing functionality is supported
by a WSDL Object Discovery Agent (ODA) and by a protocol handler framework.
The WSDL ODA is a design-time tool you use to generate SOAP business objects
that include information about the target web services. For further information, see
(Chapter 6, “Enabling collaborations for request processing,” on page 143] The
protocol handler framework is a configurable run-time module that consists of the
following components, which are discussed in detail later in this chapter:

¢ SOAP/HTTP-HTTPS protocol handler
* SOAP/JMS protocol handler

Upon receipt of a collaboration Request business object, which is always (via the
WSDL ODA) set in a TLO, the protocol handler framework loads the appropriate
protocol handler. The protocol handlers manage transport-level details required for
invoking the web service and (optionally) securing a response, performing three
main tasks: converting a collaboration Request business object into a SOAP request
message, invoking the endpoint web service with the request message, and, if in
Request/Response (synchronous) mode, converting the SOAP response message
into a business object and returning that object to the collaboration. The connector
uses the SOAP/HTTP-HTTPS protocol handler to invoke SOAP/HTTP(S) web
services, and the SOAP/JMS protocol handler to invoke SOAP/JMS web services.

The web services connector is always called from a collaboration using TLOs. The
connector determines the SOAP Request business object from the TLO, and
invokes the SOAP data handler with this business object. The data handler returns
a request message which is sent on by the connector to the web service.

For synchronous web service execution, the connector utilizes the SOAP data
handler to convert SOAP response and fault messages into SOAP Response and
Fault business objects. To aid the data handler in determining which business
object to resolve for these SOAP response/faults to business object conversions, the
connector provides the data handler with specific meta information. Specifically,
the connector makes a list of all Response and Fault business objects that are
children of the invoking TLO. There should be only one response business object
and, optionally, many Fault business objects. There may also be one and only one
defaultfault business object. The connector attempts to match, and then map, the
SOAP BodyName and BodyNamespace to a business object name that appears in
the list of all Response business objects. In the case of SOAP Response business
objects, this pair is found using the SOAP Config MO properties of the SOAP
Response business object. In the case of SOAP Fault business objects, this pair is
found using the elem_name and elem_ns attribute-level ASI properties for the first
child of the detail element. For the defaultfault business object, the connector

Chapter 4. Web services connector 63

simply notifies the data handler of the name of the defaultfault business object.
The defaultfault business object should be resolved by the data handler as a last
resort if no other fault business objects are resolved for this transformation.

SOAP/HTTP(S) web services

Web services support the HTTP transport protocol. HTTP embodies a client-server
model in which an HTTP client opens a connection and sends a request message to
an HTTP server. The client request message is to invoke a web service. The HTTP
server dispatches the message containing the invocation and closes the connection.

The connector’s SOAP/HTTP and SOAP/HTTPS protocol listeners make use of the
HTTP client-server and the Request/Response models when handling client
requests to a collaboration exposed as a web service. However, the SOAP/HTTP
listener is not intended to function as an HTTP server— proxy, intermediary, or
otherwise. Rather the SOAP/HTTP listener functions as an endpoint for use within
an enterprise and behind a firewall. Accordingly, a separate web server or gateway
must be deployed in the firewall to route client requests to the listener. For further
information, see [Chapter 1, “Overview of the adapter,” on page 1/

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a
SOAP/HTTP(S) web service. The connector uses the SOAP/HTTP-HTTPS protocol
handler to invoke SOAP/HTTP(S) web services.

Synchronous SOAP/HTTP(S) web service

From the perspective of connector processing, a synchronous HTTP web service is
one that follows a Request/Response path. If the SOAP/HTTP or SOAP/HTTPS
protocol listener successfully processes an HTTP request message, the body will
contain the web service response and an HTTP status code of 200 OK. If a fault is
returned, then the body contains the fault message and a status code of 500.

Asynchronous SOAP/HTTP(S) web service

From the perspective of connector processing, an asynchronous HTTP web service
is one that follows a request-only path. If the SOAP/HTTP or SOAP/HTTPS
protocol listener successfully receives and processes a request-only web service
operation, an HTTP status code of 202 Accepted is generated. You can also
configure the connector to generate an HTTP status code of 200 0K —for further
information see the HTTPAsyncResponseCode property i If a fault
occurs, an HTTP status code of 500 is generated. There is no response, although a
fault body may be returned.

SOAP/JMS web services

JMS is a transport level API that enterprises can combine with web service
solutions for messaging, data persistence, and access to Java-based applications. A
SOAP/JMS web service is a web service that implements a J]MS queue-based
transport.

A web service solution may implement a JMS destination for a queue or a topic.
The connector’s SOAP/JMS protocol listener supports queue destinations only;
topics are not supported. JMS text messages only are supported.

During event processing, a SOAP/JMS web service client wraps a request message
with a JMS message and publishes it to the queue whose JMS destination is a
connector. The JMS destination retrieves the JMS message containing the web

64 Adapter for Web Services User Guide

service request and extracts the SOAP request message from the JMS message. It
then processes the SOAP request message.

Synchronous SOAP/JMS web service
For synchronous connector processing (Request/Response), a response message is
wrapped with a JMS message (like that of the request message). The JMS message
containing the web service response is then sent to the JMSReplyTo queue from the
incoming request. JMS headers in the response message are set to the values of the
headers in the JMS request message as follows:

* The JMSCorrelationID of the response message must be set to the value of
JMSMessagelD from the JMS request message

* The JMS DeliveryMode of the response message is set to the JMSDeliveryMode
of the request.

e The JMSPriority of the response message is set to the JMSPriority of the request.
* JMSExpiration of the request message is set to the JMSExpiration of the request

This processing is discussed in detail in [‘SOAP /JMS protocol listener processing”|

Asynchronous SOAP/JMS web service

From the perspective of connector processing, an asynchronous SOAP/JMS web
service is one that follows a request-only path. If the SOAP/JMS protocol listener
successfully receives and processes a request-only web service message, no JMS
message containing a response is returned to the client. If a ReplyToQueue is
configured and a fault occurs upon receipt of a JMS message, a fault message is
returned to the web service client. In addition, if an ErrorQueue is specified in the
SOAP/]JMS listener, the fault message is archived there.

Event processing

The first step in implementing an event processing capability is exposing a
business process -- a collaboration -- as a web service. You then publish this web
service, in a UDDI registry, for example, and configure the connector to respond to
web service clients that invoke the collaboration.

During event processing, the connector uses protocol listeners and the SOAP data
handler to convert SOAP request messages from web service clients to business
objects that can be manipulated by collaborations that have been exposed as web
services. Protocol listeners play a crucial role in event processing.

Protocol listeners

Web Service requests may come over variety of transports, including HTTP,
HTTPS, and JMS. The Web Services protocol listener monitors the arrival of such
requests on its transport channel. There are three protocol listeners and
corresponding channels:

* SOAP/HTTP protocol listener
¢ SOAP/HTTPS protocol listener
* SOAP/JMS protocol listener

Each of these consists of a thread that listens on its transport. When it receives a
SOAP request message from a client, the listener registers the event with the
protocol listener framework.

Chapter 4. Web services connector 65

The protocol listener framework manages the protocol listeners, scheduling
requests as resources are available. You configure the listeners and aspects of the
protocol listener framework when you set values to connector-specific properties.
Among the protocol listener framework properties you can configure are the
following:

* WorkerThreadCount Total number of threads available to the protocol listener
framework, which is the number of requests that it can process in parallel.

* RequestPoolSize Maximum number of requests that can be registered with the
protocol listener framework. If it receives more than this maximum requests, it
will no longer register new requests.

These two connector-specific properties control memory allocation in a way that
prevents protocol listeners from clogging the connector with infinite web service
events. The allocation algorithm is as follows: At any time, the connector can
receive a total number of events equal to WorkerThreadCount + RequestPoolSize.
It can process WorkerThreadCount number of requests in parallel.

You can plug additional protocol listeners into the protocol listener framework. For
further information, see [“Creating multiple protocol listeners” on page 106|
and]’Connector-specific configuration properties” on page 89

SOAP/HTTP and SOAP/HTTPS protocol listener processing

The SOAP/HTTP(S) protocol listener consists of a thread that continuously listens
for HTTP(S) requests from web service clients. The listener thread binds the host
and port that are specified in the Host and Port connector-specific configuration
(listener) properties. Another configuration
property—RequestWaitTimeout—defines the interval during which the listener
waits for a request before checking whether the connector has shut down.

illustrates SOAP/HTTP protocol listener processing for a synchronous

operation.
Connector HTTP or HTTPS
Request
| SOAP/HTTP| —
protocol 200 OK
v listener >
SOAP data Response
handler 4

(single connection)

Figure 24. SOAP/HTTP protocol listener: synchronous event processing

shows SOAP/HTTP protocol listener processing for an asynchronous
operation.

66 Adapter for Web Services User Guide

v

Connector HTTP or HTTPS
Request
| SOAP/HTTP
prOtOCO| 202 Accepted) N
A 4 listener g
SOAP data
handler

(single connection)

Figure 25. SOAP/HTTP protocol listener: asynchronous event processing

When a web services client initiates a SOAP/HTTP or SOAP/HTTPS request, it
posts a SOAP request message to the URL of the SOAP/HTTP or SOAP/HTTPS
listener. The client should use the HTTP POST method to invoke the protocol

listener URL.

When an HTTP(S) request arrives, the listener registers the request with protocol
listener framework, which schedules the event for processing as resources become
available. The listener then extracts the protocol headers and the payload from the

request.

summarizes the order of precedence of rules used by the listener to
determine the Charset, MmeType, ContentType and Content-Type header for
inbound messages.

Table 28. SOAP/HTTP(s) protocol listener processing rules for inbound message

Order of Charset MimeType ContentType Content-Type
Precedence header
1 Charset parameter value | URLsConfiguration connector | Incoming HTTP Incoming HTTP
from the incoming HTTP | property value for this message message
message Content-Type listener type/subtype value |Content-Type header
header value from the
Content-Type header
value
2 URLsConfiguration SOAPDHMimeType
property value for this connector property value
listener
3 If the type of the request | Default to ContentType

message ContentType is
text with any subtype
(for example, text/xml,
text/plain, etc.), default
to ISO-8859-1. Otherwise,
charset will not be used.

As shown in

¢ The protocol listener determines the Charset of the inbound message according
to the following rules:

1. The listener attempts to extract the Charset from the charset parameter of
HTTP message Content-Type header value.

67

Chapter 4. Web services connector

2. If no Charset value is obtained from the Content-Type header, then the
protocol listener attempts to read the URLsConfiguration property value for
this listener.

3. If a Charset value is not obtained using methods described in the previous
steps, and if type of the message ContentType is text with any subtype (for
example, text/xml, text/plain, etc.), the listener uses a default Charset value
of ISO-8859-1. Otherwise, Charset value is not used.

¢ The listener determines the MimeType for the response message according to
these rules:

1. If you have configured the TransformationRules for the URL used by the
incoming request message, and if the request ContentType matches the
ContentType of a TransformationRule, then the listener uses the
TransformationRule to extract the MimeType for conversion of the request
message into a SOAP Request business object. The listener attempts to find
the exact TransformationRule match based on the ContentType value (for
example, text/xm1) in the URLsConfiguration property for the requested
URL.

2. If that fails, the listener attempts to find a TransformationRule that applies to
more than one ContentType under the request URL (for example */%).

3. If there is no TransformationRule match for the MimeType, then the listener
uses the SOAPDHMimeType connector configuration property as the
MimeType value.

4. If all previous steps fail to determine the MimeType, the value of

ContentType will be used as the MimeType to invoke the SOAP data handler
and convert the request message into a SOAP Request business object.

* The listener determines the ContentType by extracting type/subtype from the
incoming HTTP message Content-Type header.

* The listener determines the Content-Type header from that of the incoming
HTTP message Content-Type header.

If the collaboration is invoked asynchronously, the listener delivers the request
business object to the integration broker and responds to the web services client
with the HTTP status code 202 Accepted. This concludes listener processing.

If it is a synchronous invocation, the listener invokes the collaboration
synchronously. The collaboration responds with a SOAP Response business object.

summarizes the order of precedence for rules used by the listener when
determining the Charset, MimeType, ContentType, and Content-Type header for
response messages.

Table 29. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message

the TLO

MimeType, but only if
the request and
response ContentType
match.

ContentType

Order of Charset MimeType ContentType Content-Type

Precedence header

1 Protocol ConfigMO MimeType property in | Protocol ConfigMO | Protocol ConfigMO
Content-Type Header the TLO Content-Type header | Content-Type header

2 The Charset property value in | The request message Request message Construct

Content-Type
Header using
ContentType and
Charset

68 Adapter for Web Services User Guide

Table 29. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message (continued)

3 The request message Charset, |SOAPDHMimeType
but only if the request and connector property
response ContentType match. |value

4 If the ContentType is text/+, |Use ContentType value

default to ISO-8859-1. as the MimeType
Otherwise, charset will not be

used.

As shown in [Table 29

* The listener determines the Charset for the response message according to these
rules:

1.

2

If Charset is specified in the Response business object Protocol Config MO,
its value is used.

. If there is no Charset value specified in the Response business object Protocol
Config MO header and if the Request and Response business object are
children of TLOs, the listener checks if Charset is specified in the TLO.

If there is no Charset specified in the TLO, or if the Response business object
is not a TLO, then if the response has the same ContentType as the request,
the Charset of the request will be used for the response.

If the previous steps fail to determine the response Charset value, and if the
type portion of the message ContentType is text with a subtype of anything
(for example, text/xml, text/plain, etc.), the listener uses a default Charset
value of ISO-8859-1. Otherwise, the Charset value is not used.

* The listener determines the MimeType for the response message according to
these rules:

1.
2.

4.

The TLO’s MimeType attribute

If the TLO MimeType attribute is missing, and if the request and response
ContentType match, the listener uses the request MimeType for the response
message.

If the previous steps fail, then the listener uses the value of the
SOAPDHMimeType connector property.

Otherwise the listener uses the ContentType value as the MimeType.

* The listener determines the ContentType for the response message according to
these rules:

1.

If the Content-Type header is specified in the Response business object
Protocol Config MO, the type/subtype portion of the Content-Type header
will used as the ContentType.

If the Content-Type header is not specified in the Response business object
Protocol Config MO, the listener constructs a Content-Type header using the
determined ContentType and Charset (if the Charset was determined for the
response message).

The listener processes the HTTP Protocol Config MO. It is the responsibility of

coll

aboration to ensure that the header values passed in the HTTP Protocol Config

MO are correct in the context of the request-response event. The listener populates
standard headers and custom properties according to the following rules:

1.

2.

The listener will investigate each item of the HTTP Protocol Config MO in
order to ignore special attributes (such as ObjectEventld).

Each non-empty header will be put on the outgoing message and additional
processing (for example, the Content-Type header) may take place.

Chapter 4. Web services connector 69

3. Please note that with the above approach, the listener may set non-standard
headers on the message, but will not check that the message is logically or
semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO
UserDefinedProperties attribute, the listener will add them in the Entity
Headers Section (the last headers section). For more on custom properties, see
[“User-defined properties for event processing” on page 37.|

Note: Specifying any of the following headers in the HTTP Protocol Config MO is
very likely to result in an incorrect HTTP message: Connection, Trailer,
Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,
Content-Range.

The listener then invokes the SOAP data handler to convert the Response business
object returned by the Collaboration into a SOAP response message.

The listener delivers the response message to the web service client and includes a
200 OK HTTP status code. If the collaboration returns a SOAP Fault business object,
it is converted to a Fault message. This fault message is delivered to the web
service client with a 500 Internal Server Error HTTP code.

The listener then closes the connection and the thread that processed the event
becomes available.

Unsupported SOAP/HTTP protocol listener processing
features
The SOAP/HTTP protocol listener does not support the following:

* Caching: The protocol listener does not perform any caching functions as
defined in HTTP specifications (RFC2616)

¢ Proxy: The protocol listener does not perform any proxy functions as defined in
HTTP specifications (RFC2616).

* Persistent Connection: The protocol listener does not support persistent
connections as defined in HTTP specifications (RFC2616). Instead, the protocol
listener assumes that the scope of each HTTP connection is a single client
request. and closes the connection when the service request is completed. The
protocol listener does not attempt to reuse the connection across the service
invocations.

* Redirections: The protocol listener does not support redirections.

* Large file transfer: The protocol listener cannot be used for large file transfers.
Alternatively, you may consider passing large files by reference instead.

* State management: The protocol listener does not support the HTTP state
management mechanism described by RFC2965.

* Cookies: The protocol listener does not support cookies.

SOAP/HTTPS listener processing using secure sockets

SOAP/HTTPS protocol listener processing is the same as that described in the
SOAP/HTTP protocol listener processing section except that HTTPS uses secure
sockets. For further information, see [‘SSL” on page 86

SOAP/JMS protocol listener processing

The SOAP/JMS protocol listener consists of a thread that continuously listens on
the InputQueue, which is the JMS destination for requests from web service clients.

70 Adapter for Web Services User Guide

The RequestWaitTimeout connector configuration property defines how long the
listener will wait for a request before checking whether the connector has shut
down.

shows SOAP/JMS protocol listener processing for a synchronous
operation. The figure does not show JMS provider information.

Connector —— Request
—| soapums [+ = =]
protocol InputQueu InputQueue
. |— =1 3
v listener = =T
SOAP data {} ReplyToQueue ReplyToQueue
handler Response ———

Optional JMS

Queues
Unsubscribed Archive Error

Queue Queue Queue

Figure 26. SOAP/JMS protocol listener: synchronous event processing

shows SOAP/JMS protocol listener processing for an asynchronous
operation.

v

Connector Request
1 soap/Ms [«+—=! | =]

protocol InputQueue InputQueue
listener

SOAP data {]/'

A

handler

Optional JMS
Queues

= = =

Unsubscribed Archive Error
Queue Queue Queue

Figure 27. SOAP/JMS protocol listener: asynchronous event processing

Note: If the LookupQueueUsing]NDI configuration property is set to true, the
SOAP/JMS protocol listener uses the JNDI to look up the queue. The JNDI
properties are specified in connector properties. For further information, see
“Connector and JMS” on page 84/ and the INDI-related properties in
“Connector-specific configuration properties” on page 89.
When a web service client initiates a SOAP/JMS request, it sends a SOAP request
message to the InputQueue on which the SOAP/JMS listener is listening. When it
receives the SOAP request message from the InputQueue, the SOAP/JMS protocol
listener registers the request with the protocol listener framework. The protocol
listener framework schedules the request as and when resources are available.

Chapter 4. Web services connector 71

Note: If the connector configuration property InDoubtEvents is set to Reprocess,
the protocol listener framework will schedule J]MS messages from the
InProgressQueue before scheduling messages from the InputQueue.

The listener then dispatches this message—the body as well as the required JMS
headers (JMSCorrelationID, JMSMessagelD, JMSPriority, JMSExpiration,
JMSDeliveryMode, JMSReplyTo, JMSTimeStamp, JMSType)— to the
InProgressQueue. The protocol listener framework then registers the event.

The listener then reads the JMS message from the InProgressQueue, extracting the
body of the message and the following headers:
* JMSDestination

* JMSRedelivered

* JMSCorrelationID

* JMSMessagelD

* JMSPriority

* JMSExpiration

* JMSDeliveryMode

e JMSReplyTo

e JMSTimeStamp

* JMSType

The JMSType can be in TextMessage or BytesMessage format. In TextMessage
format, the listener invokes the data handler through String APIs with the Web
Service Request message extracted as String. In the case of BytesMessage, the
listener invokes the data handler via Bytes Data Handler APIs with the Web
Service Request message extracted as a bytes array.

Using the SOAPDHMimeType connector configuration property, the listener
invokes the SOAP data handler to convert the request message into a SOAP
Request business object. If errors occur during conversion and the J]MSReplyTo JMS
header is specified, the listener responds with a SOAP fault message, setting the
faultcode to C1ient and the faultstring to Cannot Parse. The fault message
provides no other detail.

The listener uses the object-level cw_mo_jms ASI of the SOAP Request business
object returned by the data handler to determine the Protocol Config MO. Note
that both the ASI and the Protocol Config MO are optional for event processing. If
it finds a Protocol Config MO, the listener populates it with the JMS message
headers extracted earlier. shows the mapping between the attributes in the
Protocol Config MO and the JMS message headers.

Table 30. JMS header-Protocol Config MO attribute mapping

Protocol Config MO | JMS header name Description

attribute

CorrelationID JMSCorrelationID The JMSCorrelationID header from the
request message

Messageld JMSMessageld The JMSMessagelD header from the
request message

Priority JMSPriority The JMSPriority header from the request
message

72 Adapter for Web Services User Guide

Table 30. JMS header-Protocol Config MO attribute mapping (continued)

Expiration JMSExpiration The JMSExpiration header from the
request message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the
request message

ReplyTo JMSReplyTo The JMSReplyTo header from the request

message. The JMS API returns this
header as JMSDestination, but the
SOAP/JMS protocol listener returns the
queue name.

Timestamp JMSTimestamp The JMSTimestamp header from the
request message

Redelivered JMSRedelivered The JMSRedelivered header from the
request message

Type JMSType The JMSType header from the request
message

Destination JMSDestination The JMSDestination header from the

request message

If there are one or more custom properties in the SOAP/JMS Protocol Config MO
UserDefinedProperties attribute, the listener will try to extract their values from

the message and populate the UserDefinedProperties business object. For more on
custom properties, see |“User—defined properties for event processing” on page 37.|

If the TLO (in the case of a non-TLO SOAP Request business object) is not
subscribed by the integration broker, the listener logs an error. If the JMSReplyTo
header is specified in the request message, the listener creates a SOAP fault
message and places it on the JMSReplyTo queue. The faultcode is set to C1ient and
the faultString is set to Not subscribed to this message. No other detail is
provided in the fault message. If configured to do so, the listener also archives the
original JMS request message including its JMS headers to the UnsubscribedQueue.

If the collaboration is invoked asynchronously, the listener delivers the Request
business object to the integration broker. The listener then removes the message
from the InProgressQueue. If configured to do so, the listener also archives the
original JMS request message including its JMS headers to the ArchiveQueue.

If errors occur during asynchronous processing and JMSReplyTo is specified, the
listener responds with a fault message. Its faultcode is set to Server and its
faultstring is set to Internal Error. If configured to do so, the listener also
archives the original JMS request message, including its JMS headers, to
ErrorQueue.

If it is a synchronous invocation, the listener invokes the collaboration
synchronously. The collaboration responds with a SOAP Response business object.
The listener invokes the SOAP data handler to convert the Response business
object returned by the Collaboration into a SOAP/JMS response message. The
listener delivers the response message to the ReplyTo queue (this is provided by
the JMSReplyTo header on the original request message). The listener then sets the
response message returned by the data handler as a TextMessage, setting the

headers shown in [Table 31

Chapter 4. Web services connector 73

Table 31. Header values set by SOAP/JMS protocol listener in response message

JMS header name Value

JMSCorrelationId The JMSMessageld of the request message
JMSDeliveryMode The JMSDeliveryMode of the request message
JMSPriority The JMSPriority of the request message
JMSExpiration The JMSExpiration of the request message
JMSRedelivered The JMSRedelivered of the request message
JMSReplyTo The JMSReplyTo of the request message
JMSTimestamp The JMSTimestamp of the request message
JMSType The JMSType of the request message

The listener will set J]MS Custom Properties in the response message if they are
present in the Response or Fault business objects” JMS Protocol Config MO
UserDefinedProperties attribute.

If configured to do so, the listener then moves the original J]MS message (request
from the web service client), including its headers, from the InProgressQueue to
the ArchiveQueue.

If errors occur and JMSReplyTo is specified, the listener responds with a fault
message, and, if configured to do so, also archives the original JMS request
message to the ErrorQueue.

Event persistence and delivery

Event persistence is protocol contingent:

* SOAP/HTTP protocol listener no persistence and therefore no guaranteed
delivery

* SOAP/HTTPS protocol listener no persistence and therefore no guaranteed
delivery

* SOAP/JMS protocol listener JMS queue event persistence and at-least-once
guaranteed delivery. For more on the JMS queues, see [“Connector-specifid
[configuration properties” on page 89.|

Event sequencing

The connector may deliver events in any sequence.

Event triggering
The event triggering mechanism depends on how the protocol listener is
configured.
* SOAP/HTTP protocol listener Listening occurs over a ServerSocket for HTTP
connection requests
* SOAP/HTTPS protocol listener Listening occurs over a secure ServerSocket
layer for HTTPS connection requests

* SOAP/JMS protocol listener Listening occurs over the input queue for incoming
JMS messages carrying web service requests.For more on the JMS queues, see
[“Connector-specific configuration properties” on page 89

Note: Connector does not distinguish between Create or Update or Retrieve or
Delete. All such events follow the same approach.

74 Adapter for Web Services User Guide

Event detection

Event detection is performed by each protocol listener. The event detection
mechanism depends utterly on the transport and how you configure the
connector-specific properties for each listener. For more on these properties, see
[“Connector-specific configuration properties” on page 89|

Event status

Event status is managed by the protocol listener and depends on the transport and
also on how you configure the listener.

* SOAP/HTTP protocol listener HTTP is inherently non-persistent and
synchronous in nature. Accordingly, event status is not maintained.

* SOAP/HTTPS protocol listener HTTP is inherently non-persistent and
synchronous in nature. Accordingly, event status is not maintained.

¢ SOAP/JMS protocol listener JMS is a persistent transport. Event status is
maintained using queues. For more on the JMS queues, see [“Connector-specifid
[configuration properties” on page 89.|

Event retrieval

Event retrieval is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Events are retrieved by extracting HTTP requests
from the socket.

* SOAP/HTTPS protocol listener Events are retrieved by extracting HTTP
requests from the socket.

* SOAP/JMS protocol listener Events are retrieved using the J]MS APIL The JMS
protocol listener retrieves events from the JMS input queue and moves them to
the in-progress queue. For more on the JMS queues, see [“Connector-specific|
[configuration properties” on page 89.|

Event archiving

Event archiving is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Because of the non-persistent and synchronous
nature of the transport, archiving is not performed.

* SOAP/HTTPS protocol listener Because of the non-persistent and synchronous
nature of the transport, archiving is not performed.

* SOAP/JMS protocol listener You can configure the connector to archive events
into a JMS queues including those for unsubscribed events, successful events,
and failed events. For more on the JMS queues, see [“Connector-specifid
|configuration properties” on page 89.|

Event recovery

Event recovery is managed by the protocol listener and depends on the transport
and also on how you configure the listener.

* SOAP/HTTP protocol listener Because of the non-persistent nature of the
transport, event recovery is not performed.

* SOAP/HTTPS protocol listener Because of the non-persistent nature of the
transport, event recovery is not performed.

* SOAP/JMS protocol listener JMS is a persistent transport. If the connector shuts
down while events are being processed, they remain available in the

Chapter 4. Web services connector 75

InProgressQueue. You can configure the connector to process these events at
startup, thereby enabling event recovery. The InDoubtEvents connector
configuration property determines the event recovery mechanism.

Note: The SOAP/JMS listener assures at-least once delivery to the integration
broker. The listener cannot assure once and only once delivery. Also,
events received by the listener may be delivered in any order to the
integration broker.

At startup, the JMS protocol listener first attempts to retrieve events from the

InProgressQueue. What happens next is determined by the value you assign to

the InDoubtEvents configuration property. The recovery scenarios are illustrated

in table. For more on the JMS queues, see|“Connector-specific configuration|

[properties” on page 89|

Table 32. Header values set by SOAP/JMS protocol listener in response message

InDoubtEvents value Event recovery processing

FailOnStartup If it finds events in the InProgressQueue, the listener logs a
fatal error and immediately shuts down.

Reprocess If it finds events in the InProgressQueue, the listener processes
those events first. The listener can trace the number of
messages found in the InProgressQueue.

Ignore Events in the InProgressQueue are ignored. The listener can
trace the events found in the InProgressQueue and the ignoring
of those events by the listener.

LogError If it finds events in the InProgressQueue, the listener logs error
and continues processing.

Request processing

You use the request processing capability of the connector to enable a collaboration
to invoke a web service. The development tasks include using the WSDL ODA to
generate a web services top-level object (TLO) and configuring a collaboration to
deploy it. For further information, see [Chapter 6, “Enabling collaborations for|
frequest processing,” on page 143, You must also configure the connector and its
request processing components: the protocol handler framework and protocol
handlers.

At run time, the connector receives requests from the collaboration in the form of
business objects. The business objects— SOAP Request, and optionally SOAP
Response and SOAP Fault business objects— are contained by the TLO generated
by the WSDL ODA and issued by a collaboration that is configured to use web
services. The TLO and its child business objects contain attributes and ASI that
specify the processing mode (synchronous or asynchronous), the data handler
mime type, which protocol handler to use, as well as the address of the target web
service. The protocol handler uses this information to invoke an instance of the
SOAP data handler, convert the Request business object to a SOAP request
message, and invoke the target web service. If the mode is synchronous, the
protocol handler again invokes the data handler to convert the response message
into a SOAP Response business object and returns this to the collaboration.

In response to a SOAP request message, the connector can receive any of the
following from the remote trading partner:

* A SOAP response message that contains data
* A SOAP response message that contains fault information

76 Adapter for Web Services User Guide

Protocol handlers play a key role in request processing.

Protocol handlers

A collaboration can invoke a web service over HTTP, HTTPS, or JMS transports.
The connector has two protocol handlers and corresponding channels:

* A SOAP/HTTP-HTTPS protocol handler for invoking SOAP/HTTP and
SOAP/HTTPS web services

* A SOAP/]JMS protocol handler for invoking SOAP/JMS web services

The protocol handler framework manages the protocol handlers, loading them at
startup time. When the connector receives a Request business object, the request
thread (note that each collaboration request comes in a thread of its own) invokes
the protocol handler framework to process the request.

The protocol handler framework reads the TLOs Handler attribute ASI to
determine which protocol handler to use. Applying a series of rules (see
“SOAP/HTTP-HTTPS protocol handler processing”| and [“SOAP/JMS protocol|
handler processing” on page 81), the protocol handler invokes a data handler to
convert the Request business object into a SOAP request message. The protocol
handler packages the request message into the transport—HTTP(S) or JMS—
message. If it finds SOAPAction ASI in the Request business object, the protocol
handler adds this to the request message header.

The protocol handler then reads the Destination attribute of the Request business
object Protocol Config MO to determine the target address. The protocol handler
then invokes the target web service with the request message.

Reading the ws_mode TLO ASI, the protocol handler determines whether the
processing mode is synchronous or asynchronous. If this ASI is set to asynch, the
protocol handler processing is completed. Otherwise the protocol handler waits for
a response message. If a response message arrives, the protocol handler extracts
the protocol headers and the payload. It then invokes the data handler (indicated
by the MimeType TLO attribute) to convert the message into a Response or Fault
business object. Again using the Protocol Config MO, the protocol handler sets the
protocol headers in the business object. The protocol handler then returns the
Response or Fault business object to the collaboration.

Depending on connector configuration, there may be one or more protocol
handlers plugged into the connector. Connector-specific properties allow you to
configure protocol handlers.

SOAP/HTTP-HTTPS protocol handler processing
The SOAP/HTTP(S) protocol handler performs as described in [“Protocol handlers”|
with exceptions noted in this section. shows the SOAP/HTTP-HTTPS
protocol handler for a synchronous operation.

Chapter 4. Web services connector 77

Connector HTTP or HTTPS
Request
| SOAP/HTTP >
protocol) i
A handler 200 OK U
SOAP data Response
handler

(single connection)

Figure 28. SOAP/HTTP-HTTPS protocol handler: synchronous request processing

shows the SOAP/HTTP-HTTPS protocol handler for an asynchronous
request process

Connector
Request
| SOAP/HTTP| ”
brotocol HTTP or HTTPS %%
handler 202 Accepted
SOAP data
handler

Figure 29. SOAP/HTTP-HTTPS protocol handler: asynchronous request processing

Note: This section describes SOAP/HTTP protocol handling only.

The SOAP/HTTP-HTTPS protocol handler uses the object-level ASI (cw_mo_http) of
the SOAP Request business object to determine the Protocol Config MO. The
SOAP/HTTP-HTTPS protocol handler determines the URL of the target web
service by reading the Destination attribute in the HTTP Protocol Config MO. If
the URL is missing or is incomplete, the protocol handler fails the service call. For
further information on the HTTP Protocol Config MO and its attributes, see
[Protocol Config MO for request processing” on page 51.|

The SOAP/HTTP-HTTPS protocol handler invokes the web service using the
SOAP request message returned by the SOAP data handler. If HTTP Proxy
connector configuration properties are specified, the SOAP/HTTP(S) protocol
handler behaves accordingly. If a response is returned, the SOAP/HTTP(S) protocol
handler reads it.

summarizes the order of precedence of rules used by the
SOAP/HTTP-HTTPS protocol handler to determine the Charset, MimeType,
ContentType, and ContentType header for outgoing request messages.

Table 33. SOAP/HTTP-HTTPS protocol handler processing rules for outbound messages

Order of
Precedence

Charset

MimeType ContentType ContentType header

78 Adapter for Web Services User Guide

Table 33. SOAP/HTTP-HTTPS protocol handler processing rules for outbound messages (continued)

1

Protocol Config MO’s
Content-Type Header

MimeType property in
TLO attribute

Protocol Config MO’s
Content-Type Header

Protocol Config MO’s
Content-Type Header

Charset property in TLO
attribute

Default to ContentType

Default to text/xml

Construct Content-Type
header using
ContentType and
Charset

If the ContentType is
text/*, default to
1SO-8859-1. Otherwise,
charset will not be used.

As shown in [Table 33
* The SOAP/HTTP-HTTPS protocol handler determines the Charset for the
response message according to these rules:

1. If specified in the Request business object Protocol Config MO headers, the
Charset value is used.
2. If Charset is not determined by the previous step, the protocol handler

attempts to extract the Charset from the TLO attribute.

3. If the operation described in the previous step is unsuccessful, the table is
used to determine the Charset:

Table 34. Default request processing Charsets

ContentType Default Charset
text/* 1SO-8859-1
For further information, see RFC2616,
application/* No default
All others No default

4. If Charset was determined by the previous step, the Charset is set on the
data handler.

5. The data Handler is invoked with Stream or Byte array APIs, depending on

the data structure needed for writing out the request.

* The SOAP/HTTP-HTTPS protocol handler determines the MimeType for the
request according to these rules:
1. The TLO MimeType attribute.
2. If the TLO MimeType attribute is missing, the protocol handler uses the

ContentType to determine the MimeType.

* The SOAP/HTTP-HTTPS protocol handler determines the ContentType for the
request message according to these rules:
1. If the Content-Type header is specified in the Request business object

Protocol Config MO, the type/subtype of the header will be used as
ContentType.
2. Otherwise, the handler uses the default ContentType: text/xml.

e The SOAP/HTTP-HTTPS protocol handler determines the Content-Type header

for the request message according to these rules:

1. If the Content-Type header is specified in the Request business object
Protocol Config MO, its value is set on the outgoing message.

Chapter 4. Web services connector 79

2. If the Content-Type header is not specified in the Request business object
Protocol Config MO, the listener constructs a Content-Type header using the
ContentType and Charset parameter (if the Charset was determined for the
request message).

summarizes the order of precedence for rules used by the handler when
determining the Charset, MimeType, ContentType, and ContentType header for
response messages.

Table 35. SOAP/HTTP(s) protocol handler processing rules for inbound synchronous response message

Order of Charset MimeType ContentType ContentType header
Precedence
1 Charset parameter value |Message Incoming HTTP Incoming HTTP
from the incoming HTTP | TransformationMap message type/subtype |message Content-Type
message Content-Type child business object in | value from the header
header value the Request business Content-Type header
object’s Protocol Config | value
MO
2 Message The request message
TransformationMap child | MimeType, but only if
business object in the the request and
Request business object’s | response ContentType
Protocol Config MO match.
3 The request message MimeType property in
Charset, but only if the TLO
request and response
ContentType match.
4 Charset property in TLO. |Default to ContentType
5 If the Content-Type is

text/*, default to
1SO-8859-1. Otherwise,
Charset is not used.

As shown in [Table 35

* The protocol handler determines the Charset of the synchronous response

message according to the following rules:

1.

If the Charset parameter is set in the Content-Type header of the incoming
response message, the protocol handler uses the Charset value to set on the
data handler.

If there is no Charset value in the response message header, then the protocol
handler attempts to read the collaboration-defined Charset from the TLO
Request Protocol Config MO MessageTranformationMap.

If there is no Charset value specified in the TLO, or if there is no TLO, then
if the response has the same ContentType as the request, the Charset of the
request will be used for the response.

If the previous step fails to yield a Charset value, then the protocol handler
attempts to read the TLO Charset attribute.

If a Charset value is not obtained using methods described in the previous
steps, and if type of the message ContentType is text with any subtype (for
example, text/xml, text/plain, etc.),default ISO-8859-1. Otherwise, charset
value is not used.

¢ The protocol handler determines the MimeType of the synchronous response
message according to the following rules:

80 Adapter for Web Services User Guide

1. The protocol handler first attempts to extract the MimeType from the TLO
Request Protocol Config MO’s MessageTransformationMap. Specifically, the
protocol handler tries to find an exact ContentType match in the MTM to
extract MessageTransformationRule and then use the MimeType property
value from it. Otherwise, the protocol handler looks for a
MessageTransformationRule that applies to more than one ContentType
(ContentType is */*).

2. If the MimeType is not determined by using a MessageTransformationMap,
the protocol handler uses the request MimeType for that of the response if
and only if the request and response ContentTypes match.

3. If the MimeType cannot be extracted using the previous steps, the protocol
handler uses the MimeType attribute of the TLO. or the default MimeType, if
available to the protocol handler.

4. If all previous steps fail, the protocol handler uses the ContentType to set the
MimeType.

¢ The handler determines the ContentType by extracting type/subtype from the
incoming HTTP message Content-Type header.

The handler processes the HTTP Protocol Config MO. It is the responsibility of the
collaboration to ensure that the header values passed in the HTTP Protocol Config
MO are correct in the context of the request-response event. The handler populates
standard headers and custom properties according to the following rules:

1. The handler will investigate each item of the HTTP Protocol Config MO in
order to ignore special attributes (such as ObjectEventld).

2. Each non-empty header will be put on the outgoing message and additional
processing (for example, the Content-Type header) may take place.

3. DPlease note that with the above approach, the handler may set non-standard
headers on the message, but will not guarantee that the message is logically or
semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO
UserDefinedProperties attribute, the handler will add them in the Entity
Headers Section (the last headers section). For more on custom properties, see
[“User-defined properties for request processing” on page 52.|

Note: Specifying any of the following headers in the HTTP Protocol Config MO is
very likely to result in incorrect HTTP messages: Connection, Trailer,
Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,
Content-Range.

SOAP/JMS protocol handler processing
The SOAP/JMS protocol handler performs as described in [“Protocol handlers” on|
with exceptions noted in this section.

Note: If the LookupQueueUsing]NDI configuration property is set to true, the
SOAP/JMS protocol handler uses the JNDI to look up the destination queue.
The JNDI properties are specified in connector properties. For further
information, see [“Connector and JMS” on page 84| and the INDI-related
properties in |’Connector-specific configuration properties” on page 89/

The SOAP/JMS protocol handler creates a JMS transport message using the body
of the web service request message returned by the SOAP data handler and with
JMS headers set as shown in [Table 36}.

Chapter 4. Web services connector 81

Table 36. Header values set by SOAP/JMS protocol handler in request message

JMS header name Default value if not set in SOAP/JMS Protocol Config
MO

JMSPriority 4

JMSExpiration 0

JMSDeliveryMode PERSISTENT

JMSReply

JMSCorrelationld

JMSRedelivered

JMSTimestamp

JMSType

If the target web service is invoked asynchronously, the JMSReplyTo header is not
set. Otherwise (for synchronous processing), the SOAP/JMS protocol handler sets
the JMSReplyTo header. Using the ReplyToQueue configuration property, the
SOAP/JMS protocol handler obtains the JMSDestination—the return destination for
a response or fault from the target web service— and sets it on the J]MSReplyTo
header on the JMS transport message.

shows SOAP/JMS protocol handler processing for a synchronous request

operation.
Connector Request
~ soapms [—=! =,
protocol InputQueue InputQueue /E/
handler [—t=1 =]
SOAP data ReplyToQueue ReplyToQueue
handler +— Response

Figure 30. SOAP/JMS protocol handler: synchronous request processing

shows SOAP/JMS protocol handler processing for an asynchronous
request operation.

82 Adapter for Web Services User Guide

v

Connector Request ———

—| soapiums [— = =,
protocol InputQueue InputQueue /E/
handler

Figure 31. SOAP/JMS protocol handler: asynchronous request processing

A

SOAP data
handler

The SOAP/JMS protocol handler uses object-level ASI (cw_mo_jms) of the SOAP
Request business object to determine the Protocol Config MO. The Destination
attribute of the Protocol Config MO gives the queue name of the target web
service. If JNDI is enabled, the SOAP/JMS protocol handler obtains the
JMSDestination for the SOAP request message by looking up the JNDI object.
Otherwise it uses the Destination attribute in the SOAP Protocol Config MO.

If the response does not arrive in the interval specified in the
ResponseWaitTimeout property, the SOAP/JMS protocol handler fails the
collaboration request. On arrival of the SOAP response (or fault) message, the
SOAP/JMS protocol handler extracts the JMS headers and payload for conversion
by the SOAP data handler. The SOAP/JMS protocol handler then sets the SOAP
Response (or Fault) business object in the TLO, using the Protocol Config MO in
the Response (or Fault) business object to map the JMS headers. shows
this mapping.

Table 37. Protocol Config MO—JMS header attribute mapping for response during
synchronous request processing

Protocol Config MO JMS header name Description

attribute

Destination JMSDestination The JMSDestination header from the
response message.

Messageld JMSMessageld The JMSMessageld header from the
response message

Priority JMSPriority The JMSPriority header from the
response message

Expiration JMSExpiration The JMSExpiration header from the
response message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the
response message

ReplyTo JMSReplyTo The JMSReplyTo header from the

response message. The J]MS API returns
this header as J]MSDestination, but the
SOAP/JMS protocol listener returns the
queue name.

Correlationld JMSCorrelationld The JMSCorrelationld header from the
response message
Redelivered JMSRedelivered The JMSRedelivered header from the

response message

Chapter 4. Web services connector 83

Table 37. Protocol Config MO—JMS header attribute mapping for response during
synchronous request processing (continued)

TimeStamp JMSTimeStamp The JMSTimeStamp header from the
response message

Type JMSType The JMSType header from the response
message

The SOAP/JMS protocol handler then returns the TLO to the collaboration.

Connector and JMS

Note: This section assumes that you are familiar with J]MS and JNDI, especially
how JMS works. For further information, refer to your JMS and JNDI source
documentation.

The connector can expose collaborations as SOAP/JMS web services as well as
enable collaborations to invoke SOAP/JMS web services. The requirements for
using SOAP/JMS with the web services connector are as follows:

1. You have installed and configured your JMS service provider.
2. You have installed and configured your JNDI.

3. Your JMS provider supports JMS API version 1.0.2.

4

. All required jar files are in the classpath of the connector. (See your JMS
provider documentation to determine all required jar files.)

5. All required libraries are in the path of the connector. (See your JMS provider
documentation to determine all required libraries.)

JNDI

For SOAP/JMS, the connector uses JNDI to lookup the connection factory using
JNDI context. During initialization, the connector reads the JNDI connector-specific
property to connect to JNDI. If you do not configure this property, you will be
unable to use SOAP/JMS. You can specify following JNDI connector specific
properties:

* JNDIProviderURL

* InitialContextFactory

* JNDIConnectionFactoryName
* CTX_ObjectFactories

* CTX_ObjectFactories

e CTX_StateFactories

* CTX_URLPackagePrefixes

e CTX_DNS_URL

¢ CTX_Authoritative

* CTX_Batchsize

e CTX_Referral

* CTX_SecurityProtocol

* CTX_SecurityAuthentication
* CTX_SecurityPrincipal

* CTX_SecurityCredentials

* CTX_Language

84 Adapter for Web Services User Guide

* LookupQueuesUsing]NDI

Refer to your JNDI documentation for guidance in specifying these properties. To
use SOAP/JMS with the connector, the following JNDI connector-specific
properties are required:

e JNDIProviderURL Set this property to the URL of the JNDI Service provider.
For the value of this property, refer to your JNDI provider documentation.

* InitialContextFactory Set this property to the fully qualified class name of the
factory class that will create the JNDI initial context. For the value of this
property, refer to your JNDI provider documentation. Make sure that this class
and its dependencies are in the classpath of the connector.

¢ JNDIConnectionFactoryName Set this property to the JNDI name of the
Connection factory to lookup (using JNDI context). Make sure that this name
can be looked up using the JNDL

If you set LookupQueuesUsing]NDI to true, make sure all the queues used by the
connector can be looked up using JNDI.

Exposing collaborations as SOAP/JMS web services

To expose collaborations as SOAP/JMS web services, you must use the SOAP/JMS
protocol listener. Using the SOAP/JMS protocol listener requires that you specify
JNDI connector properties.

Your JMS provider configuration should reflect the requirements of the SOAP/JMS
protocol listener. Make sure all the queues required by the SOAP/JMS protocol
listener are defined by your JMS service provider. Be sure to check your JMS
provider documentation— the task of defining queues varies by provider. You
must define six queues for the SOAP/JMS protocol listener. You must set the
queue names in SOAP/JMS listener configuration properties and, if you have set
JNDI ” LookupQueuesUsing]NDI to true, you also must specify the JNDI names
of the queues in the SOAP/JMS listener configuration properties.

You should specify the queues names as the values of the following SOAP/JMS
Listener configuration properties:

e InputQueue

* InProgressQueue

* ArchiveQueue

* UnsubscribedQueue
* ErrorQueue

* ReplyToQueue

InputQueue and InProgressQueue are required properties. Make sure that you
have correctly configured these queues.

ArchiveQueue, UnsubscribedQueue and ErrorQueue are optional properties. These
queues are used to archive web service requests. If you plan to use any of these
properties, make sure you have configured the corresponding JMS queues
correctly. When defining these queues with your JMS provider, you should
carefully specify the capacity of these queues.

Collaborations invoking SOAP/JMS web services

To enable collaborations to invoke SOAP/JMS web services, you use the
SOAP/JMS protocol handler. The SOAP/JMS protocol handler requires that you

Chapter 4. Web services connector 85

specify JNDI connector properties. Work with your web service provider to
determine the JMS and JNDI requirements.

To invoke SOAP/JMS web services, the connector requires that the value of the
Destination attribute in the SOAP/JMS Protocol Config MO be set to the input
queue o f the target web service. If you have set JNDI ” LookupQueuesUsing]NDI
to true, you must specify the JNDI name of the input queue.

If you are invoking request-reply web services, you must work with your web
service provider to determine the requirements for the ReplyTo queue. Make sure
that the ReplyTo queue is defined. Also make sure that you have specified the
name of the ReplyTo queue in the ReplyToQueue configuration property of the
SOAP/JMS protocol handler. If JNDI ” LookupQueuesUsing]NDI is set to true, the
value of the ReplyToQueue configuration property should give the JNDI name of
this queue.

It is important to note that, unlike protocol listeners, protocol handlers are not
pluggable to the web services connector. As a result, the connector uses the same
ReplyTo queue for all the request-reply web services that the connector invokes.

SSL

JSSE

This section discusses the how the connector implements an SSL capability. For
background information, see your SSL documentation. This section assumes a
familiarity with SSL technology.

The connector can expose collaborations as SOAP/HTTPS web services and enable
collaborations to invoke SOAP/HTTPS web services. The connector uses JSSE to
provide support for HTTPS and SSL. IBM JSSE is shipped with the connector. To
enable this capability, make sure you have the following entry in the
java.security file that is among the files installed with the connector:

security.provider.5=com.ibm.jsse.IBMISSEProvider

Note that java.security is located in the $ProductDir\1ib\security directory of
your connector installation. The connector uses the value of the
JavaProtocolHandlerPackages connector property to set the system property
java.protocol.handler.pkgs. Note that for the IBM JSSE that is shipped with the
connector, the value of this property should be set to
com.ibm.net.ssl.internal.www.protocol.

The JavaProtocolHandlerPackages configuration property defaults to this value.

During initialization, the connector disables all anonymous cipher suites supported
by JSSE.

KeyStore and TrustStore

To use SSL with the connector, you must set up keystores and truststores. No tool
is provided to set up keystores, certificates, and key generation. You must use third
party software tools to complete these tasks.

SSL Properties

You can specify the following SSL connector-specific properties:
* SSLVersion

86 Adapter for Web Services User Guide

* SSLDebug

* KeyStore

* KeyStoreAlias

* KeyStorePassword

* TrustStore

¢ TrustStorePassword

Note that these properties apply to a connector instance. The same set of SSL
property values are used by all of the SOAP/HTTPS protocol listeners plugged
into the connector and by the SOAP/HTTP-HTTPS protocol handler for each

connector instance. For further information on HTTPS/SSL setup, see
[“Configuring HTTPS/SSL,” on page 211

Exposing collaborations as SOAP/HTTPS web services

When you expose collaborations as SOAP/HTTPS web services, you use the
SOAP/HTTPS protocol listener. To use the SOAP/HTTPS protocol listener, you
must specify SSL connector-specific properties. The values you assign to these
properties should reflect your SSL requirements:

* SSLVersion Make sure that the SSLVersion you want to use is supported by
JSSE.

* KeyStore Because the SOAP/HTTPS protocol listener acts as a server in SSL
communications, you must specify the keystore. The listener uses the keystore
specified in the SSL ” KeyStore configuration property. The value of this
property must be the complete path to your keystore file. Make sure that the
keystore has key pair (private key and public key) for the connector. The alias of
the private key should be specified as the SSL ” KeyStoreAlias property. You
must specify the password required to access the keystore as the SSL ”
KeyStorePassword property. Also make sure that the password required to
access keystore and the private key (in the keystore) are same. Finally, you must
distribute the digital certificate of the connector to your web service clients so
that they can authenticate the connector.

* TrustStore If you want the SOAP/HTTPS protocol listener to authenticate web
service clients, you must activate client authentication. You do this by setting the
SSL ” UseClientAuth property to true. You must also specify:

— the location of your truststore as the value of the SSL ” TrustStore
configuration property

— the password required to access the truststore as the value of the SSL ”
TrustStorePassword property

Make sure that your truststore contains the digital certificate of your web service
clients. Digital certificates used by your Web Service clients may be self-signed
or issued by CA. Note that if your truststore trusts the root certificate of the CA,
JSSE will authenticate all the digital certificates issued by that CA.

For further information on HTTPS/SSL setup, see [Appendix D, “Configuring]
[HTTPS/SSL,” on page 211

Collaborations invoking SOAP/HTTPS web services
To enable collaborations to invoke SOAP/HTTPS web services, you use the
SOAP/HTTP-HTTPS protocol handler. If you are using SSL with the
SOAP/HTTP-HTTPS protocol handler, you must specify SSL connector-specific
properties. The values you assign to these properties should reflect the HTTPS/SSL
requirements of your web services provider:

Chapter 4. Web services connector 87

* SSLVersion Make sure that the SSLVersion you want to use is supported by
your web service provider and by JSSE.

* TrustStore Because the SOAP/HTTP-HTTPS protocol handler acts as a client in
SSL communications, you must set up a truststore. The handler uses the
truststore specified in the SSL -> Truststore configuration property. The value of
this property must be the complete path to your truststore file. You must specify
the password required to access the truststore in the SSL -> TrustStorePassword
property. Make sure that your truststore contains the digital certificate of your
web service provider. Digital certificates used by your web service provider may
be self-signed or they may be issued by CA. Note that if your truststore trusts
the root certificate of the CA, JSSE will authenticate all the digital certificates
issued by that CA.

* KeyStore If your web service provider requires client authentication, you must
set up a keystore. The SOAP/HTTP-HTTPS protocol handler uses the keystore
specified in the SSL ” KeyStore configuration property. This value must be the
complete path to your keystore file. Make sure that keystore has a key pair
(private key and public key) configured for the connector. The alias of the
private key must be specified in the SSL ” KeyStoreAlias property. The password
required to access the keystore must be specified in the SSL ” KeyStorePassword
property. Finally, make sure that the password required to access the keystore
and the private key (in the keystore) are the same. You must distribute the
connector’s digital certificate to your web service provider for authentication.

For further information on HTTPS/SSL setup, see [Appendix D, “Configuring|
[HTTPS/SSL,” on page 211 |

Configuring the connector

After using the Installer to install the connector files to your system, you must set
the standard and application-specific connector configuration properties.

Setting configuration properties

Connectors have two types of configuration properties: standard configuration
properties and connector-specific configuration properties. You must set the values
of these properties using System Manager (SM) before running the connector.

Standard configuration properties

Standard configuration properties provide information that all connectors use. See
[Appendix A, “Standard configuration properties for connectors,” on page 169| for
documentation of these properties. The table below provides information specific
to this connector about configuration properties in the appendix.

Property Description
CharacterEncoding This connector does not use this property.
Locale Because this connector has not been internationalized, you

cannot change the value of this property. See release notes
for the connector to determine currently supported locales.

Because this connector supports only InterChange Server Express as the integration
broker, the only configuration properties relevant to it are for InterChange Server
Express.

You must set at least the following standard connector configuration properties:
* AgentTraceLevel

88 Adapter for Web Services User Guide

e ApplicationName
* ControllerTraceLevel
* DeliveryTransport

Connector-specific configuration properties

Connector-specific configuration properties provide information needed by the
connector agent at run time. Connector-specific properties also provide a way of
changing static information or logic within the connector agent without having to
recode and rebuild the agent.

lists the connector-specific configuration properties. See the sections that
follow for explanations of the properties. Note that some of the properties contain
other properties. The + character indicates the entry’s position in the property
hierarchy.

Note: If you do not intend to use the SOAP/JMS protocol listener or SOAP/JMS
protocol handler with the connector, be sure to delete SOAP /JMS-related
connector-specific properties or to leave them blank.

Table 38. Connector-specific configuration properties

Name Possible values Default value Required
[ConnectorType] Any valid connector type WebService Yes
[DataHandlerMetaObjectName| Data handler meta-object name MO_DataHandler_ Default Yes
avaProtocolHandlerPackages| Valid Java protocol handler packages ~ com.ibm.net.ss1. No
internal.www.protocol
[ProtocolHandlerFramework| This is a hierarchical property and has None No
no value
HProtocolHandlers| This is a hierarchical property and has No
no value
++SOAPHTTPHTTPSHandler| This is a hierarchical property. For Yes

information on its sub-properties, see
“SOAPHTTPHTTPSHandler” on|

page 91.|

++SOAPJMSHandler| This is a hierarchical property. For
information on its sub-properties, see
[“'SOAPJMSHandler” on page 92
[ProtocolListenerFramework] This is a hierarchical property and has No
no value.
+|WorkerThread Countf An integer greater than 1that gives 10 No
the number of available listener
threads.
Integer greater than 20 No
WorkerThreadCount that gives the
resource pool size.
ProtocolListener This is a hierarchical property and has
no value
++Listener Uniquely named protocol listener Yes
++{Protocoll soap/http, soap/https, soap/jms Yes
++4SOAPDHMimeType| Any valid mime type of a SOAP data xm1/soap
handler

++HListenerSpecific

roxyServer

Properties unique to or required by the
listener See|”ListenerSpecific” on|
Lt_)age 94.|

This is a hierarchical property and has No
no value
Host name for the HTTP proxy server No

Chapter 4. Web services connector 89

Table 38. Connector-specific configuration properties (continued)

Name

HHttpNonProxyHosts|

HttpsNonProxyHosts|
SocksProxiHosP
SocksProxyPort]
HttEProszsernameI
HttpProxyPasswor
HttpsProxyUsernamel
HttpsProxyPassword|

N R S

4+ o4 4

4+ -+

ySto
KeyStorePassword|

KeyStoreAlias
TrustStorel

TrustStorePassword|

UseClientAut
SCollaborations|

4+

4+t

£+

Collaboration]|

++CollaborationPortl|

+++4WebServiceOperation]|

i
zZ
&
3
o

+

+++Bo
++++HBodyNS

++++HBONam

£+

LookupQueuesUsing]NDI|

£+

JNDIProviderURL|
|InitialContextFactory]|

4INDIConnectionFactoryNamé

4CTX ObjectFactories|
+CTX_properties

Possible values Default value

Port number for the HTTP proxy 80
server

HTTP host(s) requiring direct

connection

Host name for the HTTPS proxy

server

Port number for the HTTPS proxy 443
server

HTTPS host(s) requiring direct

connection

Socks proxy server name

Socks proxy server port

Http proxy server username

Http proxy server password

Https proxy server username

Https proxy server password

This is a hierarchical property and has

no value

SSL, SSLv2, SSLv3, TLS, TLSv1 SSL
true, false false
Any valid keystore type JKS

Path to KeyStore file.

Password for private key in KeyStore
Alias for key pair in KeyStore

Path to TrustStore file

Password for TrustStore

true false false
This is a hierarchical property creating
by the WSDL Configuration Wizard
and has no value See
[“WSCollaborations” on page 103
This is a hierarchical property and has
no value

Name of the collaboration port

This is a hierarchical property and has
no value

Name of web service method; must be
valid XML element name

Namespace of web service method;
must be valid XML namespace

Name of Request business object for
operation

synch asynch asynch
This is a JMS-related hierarchical
property and has no value

true false false
Valid JNDI URL

Name of factory class for initial
context

Name of connection factory to look up
using JNDI context.

Properties specifying additional
information about security and object
lookup in the [NDI context

Required

Yes
Yes

Yes
Yes

Yes

90 Adapter for Web Services User Guide

ConnectorType: If this property is set to WebService, when binding the
collaboration port, System Manager displays the connector as a web services
connector. Otherwise it is displayed as a normal connector.

Default = WebService.

DataHandlerMetaObjectName: This is the name of the meta-object that the data
handler uses to set configuration properties.

Default = MO_DataHandler_Default.

JavaProtocolHandlerPackages: The value of this property gives the Java Protocol
Handler packages. The connector uses the value of this property to set the system
property java.protocol.handler.pkgs.

Default = com.ibm.net.ss1.internal.www.protocol.

ProtocolHandlerFramework: The Protocol Handler Framework uses this property
to load and configure its protocol handlers. This is a hierarchical property and has
no value.

Default = none.

ProtocolHandlers: This hierarchical property has no value. Its first-level children
represent discrete protocol handlers.

Default = none.

SOAPHTTPHTTPSHandler: The name of a SOAP/HTTP-HTTPS protocol
handler. Note that this is a hierarchical property. Unlike listeners, protocol handlers
may not be duplicated, and there can be only one handler for each protocol.

below shows the sub-properties for the SOAP/HTTP-HTTPS protocol
handler. The + character indicates the entry’s position in the property hierarchy.

Table 39. SOAP/HTTP-HTTPS protocol handler configuration properties

Name

Default
Possible values value Required

++SOAPHTTPHTTPSHandler This is a hierarchical property and has no value. Yes

+++Protocol

+++HTTPRead Timeout

The kind of protocol the handler is implementing. For Yes
SOAP/HTTP and SOAP/HTTPS, the value is

soap/http.

Note: If you do not specify a value for this

property, the connector will not initialize this

protocol handler.

A SOAP/HTTP-specific property that specifies the 0 No
timeout interval (in milliseconds) while reading from

the remote host (web service).If this property is not

specified or if set to 0, the SOAP/HTTP protocol

handler blocks indefinitely while reading from the

remote host.

shows the properties as displayed in Connector Configurator Express.

Chapter 4. Web services connector 91

Standard Properties | Application Config Properies | Supported Business Ohjects | Trace

Fropery Yalue Update Encrpt
1 DataHandlerbetaObjectiame MO _DataHandler_Defautt agent restart r
2 |ConnectorType WiehService agent restart r
3 H ProxyServer agent restart r
4 H S50 agert restart r
5 H ProtocolliztenerFramework agert restart r
& B ProtocolHandlerFrameseark agert restart r
7 B ProtocolHandlers agert restart r
g H SOAPHTTPHTTPSHandler agent restart r
9 Protocol zoaphttp agent restart r
10 HTTPResd Timeout a agent restart r
11 H SCaAPJMIHandler aert restart r
12 | @ Jnol agent restart r
13 | B WiCollabaorations aert restart r

Figure 32. SOAP/HTTP-HTTPS protocol handler properties

SOAPJMSHandler: The name of a SOAP/JMS protocol handler. Note that this is
a hierarchical property. Unlike listeners, protocol handlers may not be duplicated,
and there can be only one handler for each protocol. below shows the
sub-properties for the SOAP/JMS protocol handler. The + character indicates the
entry’s position in the property hierarchy.

Table 40. SOAP/JMS protocol handler configuration properties

Default
Name Possible values value Required
++SOAPJMSHandler This is a hierarchical property and has no value. Yes
+++Protocol The kind of protocol the handler is implementing. For Yes

SOAP/IMS, the value is soap/jms.
Note: If you do not specify a value for this
property, the connector will not initialize this
protocol handler.
+++ResponseWaitTimeout This is a [MS protocol handler-specific property that 0 No
specifies the timeout interval (in milliseconds) that the
protocol handler waits on ReplyToQueue for
synchronous request processing. If the response does
not arrive during this interval, the handler fails the
collaboration request. If this property is not specified or
if set to 0, the protocol handler waits on ReplyToQueie
indefinitely.
+++ReplyToQueue This is a required JMS protocol handler-specific none Yes
property that names the ReplyTo queue. For
synchronous request processing, the handler sets the
JMSReplyTo field to this JMS destination.
If LookupQueuesUsing]NDI = true, the SOAP/IMS
protocol handler looks up this queue using [NDI.

shows the properties as displayed in Connector Configurator Express.

92 Adapter for Web Services User Guide

Standard Properties | Application Config Froperties | Supported Business Objects | TraceiLog Files | D

Froperty Value Update Encrypt | Description
1 DataHandlerietaOhjectMame MO _DataHandler_Default agent restart r
2 | ConnectorType VWishService agent restart r
3 H ProxyServer agent restart r
4 H s5L agent restart r
5 B ProtocollistenerFramesneork agent restart r
£ B ProtocoHandlerFramesnork agent restart r
v B ProtocolHandlers agent restart r
8 H S0APHTTPHTTPSHander agent restart r
3 B SCAPIMEHandler agent restart r
10 Protocol soapims agent restart r
11 ResponzeWat Timeout] agent restart r
12 ReplyToQueus agent restart r
13 || B JMOi agent restart r
14 | B WSCollaborstions agent restart r

Figure 33. SOAP/JMS protocol handler properties

ProtocolListenerFramework: The protocol listener framework uses this property
to load protocol listeners. This is a hierarchical property and has no value.

WorkerThreadCount: This property, which must be an integer greater than 1,
establishes the number of protocol listener worker threads available to the protocol
listener framework. For further information, see [“Protocol listeners” on page]

@Default = 10.

RequestPoolSize: This property, which must be an integer greater than
WorkerThreadCount, sets the resource pool size of the protocol listener framework.
The framework can process a maximum of WorkerThreadCount + RequestPoolSize
requests concurrently.

Default = 20.

ProtocolListeners: This is a hierarchical property and has no value. Each
tirst-level child of this property represents a discrete protocol listener.

Listenerl: The name of a protocol listener. There may be multiple protocol
listeners. Note that this is a hierarchical property. You can create multiple instances
of this property and create additional, uniquely named listeners. When doing so,
you can change the listener-specific properties but not the protocol property. The
names of multiple listeners must be unique. Possible names (not values):
SOAPHTTPListenerl, SOAPHTTPSListenerl, SOAPJMSListenerl

Protocol: This property specifies the protocol this listener is implementing.
Possible values: soap/http, soap/https, soap/jms.

Note: If you do not specify a value for this property, the connector will not
initialize this protocol listener.

SOAPDHMimeType: The SOAP data handler mime type to use for the requests
received by this listener.

Default = xm1/soap

Chapter 4. Web services connector 93

ListenerSpecific: Listener specific properties are unique to, or required by, the
specified protocol listener. For example, the HTTP listener has a listener-specific
property Port, which represents the Port number on which Listener monitors
requests. summarizes the HTTP-HTTPS listener specific properties. The +
character indicates the entry’s position in the property hierarchy.

Table 41. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties

Name Possible values Default value Required

+++SOAPHTTPListenerl Unique name of an HTTP protocol listener. This is a Yes
child of the ProtocolListenerFramework ->
ProtocolListeners hierarchical property. There can be
multiple listeners: you may plug-in additional HTTP
listeners by creating another instance of this property
and its hierarchy.
++++Protocol soap/http if SOAP/HTTP protocol listener Yes
soap/https if SOAP/HTTPS protocol listener
Note: If you do not specify a value for this
property, the connector will not initialize this
protocol listener.

++++SOAPDHMimeType xml/soap xml/soap No
++++BOPrefix The value of this property is passed to the data handler. No
++++Host The listener will listen at the IP address specified by Tocalhost No

value of this property. If Host is not specified, it
defaults to localhost. Note that you may either specify a
host name (DNS name) or an IP address for the
machine on which the listener is running. A machine
may have multiple IP addresses or multiple names.
++++Port The port on which the listener listens for requests. If 80 for No
unspecified, the port defaults to 80 for SOAP/HTTP SOAP/HTTP
and 443 for SOAP/HTTPS.If you clone the listener listener
within a connector, then the combination of Host and 443 for
Port properties is unique or the listener may be unable SOAP/HTTPS
to bind to the port to accept requests. listener
++++SocketQueueLength Length of the queue (socket queue) for incoming 5 No
connection requests. Specifies how many incoming
connections can be stored at one time before the host
refuses connections. The maximum queue length is
operating system dependent.
++++RequestWaitTimeout The time interval in milli-seconds that the listener 60000 (ms) No
thread will block on the host and port while waiting for
web service requests to arrive. If it receives a web
service request before this interval, the listener will
process it. Otherwise the listener thread checks whether
the connector shutdown flag is set. If it is set, the
connector will terminate. Otherwise it will continue to
block for RequestWaitTimeout interval. If this property
is set to 0, it will block for ever. If unspecified, it
defaults to 60000ms.
++++HTTPReadTimeout The time interval in milli-seconds that the listener will 0 No
be blocked while reading a web service request from a
client. If this parameter is set to 0, the listener
indefinitely blocks until it receives the entire request

message.

++++Http AsyncResponseCode The HTTP response code for asynchronous requests to 202 No
the listener: (ACCEPTED)
200 (OK)

202 (ACCEPTED)

94 Adapter for Web Services User Guide

Table 41. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties (continued)

Name

++++URLsConfiguration

+++++URL1

++++++ContextPath

++++++Enabled
++++++TransformationRules
+++++++TransformationRulel

++++++++ContentType

++++++++MimeType

++++++++Charset

Possible values Default value Required

This is a hierarchical property and has no value. It ContextPath: / No
contains 1 or more configurations for URLs supported ~ Enabled: true
by this listener and, optionally, mime type and charset Data handler

values. Note that this is child property of MimeType:
ProtocolListenerFramework->ProtocolListeners- equal to the
>SOAPHTTPListenerl hierarchical property. If this ContentType of
property is not specified, the listener assumes default the request
values. Charset:
NONE. For
further
information,

This is a hierarchical property and has no value.
Its children provide the name of the URL supported
by this listener. There can be multiple supported URLs.
Note that you can plug in additional URLs by cloning
this property and its hierarchy.

The URI for the HTTP requests received by the listener. No
This value must be unique among ContextPath values

under the URLsConfiguration property. Otherwise the

connector will log an error and fail to start.

ContextPath is case sensitive. However it may contain

protocol, host name and port which are case-insensitive.

If protocol is specified in ContextPath, it should be

http. If host is specified, it should be equal to the value

of the Host listener property. If port is specified, it

should be equal to the value of Port listener property.

The value of this property determines if the parent URL True No
hierarchical property is enabled for the connector.

This is a hierarchical property and has no value. It

holds one or more transformation rules.

This is a hierarchical property and has no value. It No
holds the transformation rule.
The value of this property specifies the ContentType of No

the incoming request for which special handling (data
handler mime type or charset) should be applied. If
ContentType is not specified by the
TransformationRuleN hierarchical property, the
connector logs a warning message and ignores the
TransformationRuleN property.

Specifying the special value */* for this property
enables the protocol listeners to apply this rule to any
ContentType. Note that if a listener finds more than
one rule for the same context path that shares a
ContentType, the listener logs an error and fails to

initialize.

The mime type to use when calling a data handler to No
process requests of the specified ContentType.

Charset to use when transforming the request of the No

specified ContentType into a business object.

Chapter 4. Web services connector

95

shows the properties as displayed in Connector Configurator Express.

Standard Properies l Connector-Specific Properties I Supported Business Objects l
Property 5 Valug Encrypt | Update Method
1 ConnectorType WiehService [l agent restart
2 DataHandlzrietaObjecthame Mo _DataHandler_Default r agent restart
3 B Juol (Il agent restart
4 M ProtocolHandlerFramesneark [l agent restart
5 B ProtocollistenerFramesseark r anent restart
] Worker ThreadCount 10 (Il agent restart
v RequestPoolSize 20 [l agent restart
g B Protocollistenars r anent restart
9 B SOAPHTTFListener (Il agent restart
10 Protocol soaphttp [l agent restart
11 SOLPDHMImeTvpe wmlfzoap r agent restart
12 Hiost localhost (Il agent restart
13 Port 8050 [l agent restart
14 SocketQueusl ength 5 r agent restart
15 HTTPReadTimeout 0 (Il agent restart
16 ReqguestwaitTimeout 0000 [l agent restart
17 BOPrefix r agent restart
18 B URLsConfiguration (Il agent restart
19 B URL1 [~ |agent restart
20 ContextPath i r agent restart
21 Enabiled True (Il agent restart
22 B Transformationfules [~ |agent restart
23 B TranzformationFule r agent restart
24 CartentType s (Il agent restart
23 MirmeType xmlfsnap [l agent restart
26 Charzet UTF3 r agent restart
27 B SOAPHTTPSListener (Il agent restart
28 A S0&PMEListener [~ |agent restart
29 | @ ProwyServer r agent restart
30) B ssL (Il agent restart
31 |UseDetautts trie [anent restart

Figure 34. SOAP/HTTP protocol listener properties

summarizes the SOAP/JMS protocol listener-specific properties. The +

character indicates the entry’s position in the property hierarchy.

Table 42. SOAP/JMS protocol listener-specific configuration properties

Name

+++SOAPJMSListenerl

++++Protocol
++++SOAPDHMimeType
++++BOPrefix

Possible values

Default
value

Unique name of a JMS protocol listener. This is a child
of the ProtocolListenerFramework -> ProtocolListeners
hierarchical property. There can be multiple listeners:
you may plug-in additional [MS listeners by creating
another instance of this property and its hierarchy.

soap/jms
xml/soap

xml/soap

The value of this property is passed to the data handler
specified by SOAPDHMimeType property.

Required
Yes

Yes
No

96 Adapter for Web Services User Guide

Table 42. SOAP/JMS protocol listener-specific configuration properties (continued)

Name

++++RequestWaitTimeout

++++SessionPoolSize

++++InputQueue

++++InProgressQueue

++++ArchiveQueue

++++UnsubscribedQueue

++++ErrorQueue

Possible values

This property sets the time interval that the
SOAP/IMS listener thread blocks the InputQueue while
waiting for a web service request. If it receives a web
service request within this interval, the listener
processes it. If it does not receive the request within
this interval, the listener thread first checks if the
connector shutdown flag is set. If the connector
shutdown flag is set, the connector will terminate.
Otherwise it will continue to block for
RequestWaitTimeout interval. If this property is set to
0, it will block indefinitely.

Maximum number of sessions that can be allocated for
a given listener and its worker threads. The minimum
number of sessions (and default) is 2. For larger session
pool sizes, the connector requires more memory.

This property gives the name of the input queue that
the listener polls for inbound messages from web
services. If LookupQueuesUsing]NDI = true, the
listener looks up this queue using [NDI and the value
of the InputQueue property is set to the
jndiDestinationName attribute of the jms:address
element of the SOAP/IMS binding. The jms:address
element is specified in the wsdl:port section of the
WSDL document. If during WSDL generation you
select the SOAP/JMS listener, System Manager
automatically creates the jndiDestinationName attribute
using the value of this property. If
LookupQueueUsing]NDI = false, then System
Manager creates the jmsProviderDestinationName
attribute instead.

This property gives the name of the in-progress queue.
The listener sends copies of inbound messages from the
InputQueue to InProgressQueue. If
LookupQueuesUsing]NDI = true, the listener looks up
this queue using JNDI.

This property gives the name of the archival queue. The
listener sends copies of successfully processed messages
from the InProgressQueue to ArchiveQueue. If
LookupQueuesUsing]NDI = true, the listener looks up
this queue using JNDI.

This property gives the name of the unsubscribed
queue. The listener sends copies of unsubscribed
messages from the InProgressQueue to
UnsubscribedQueue. If LookupQueuelsing[NDI =
true, the listener looks up this queue using JNDI.
This property gives the name of the error queue. The
listener sends copies of failed messages to the
ErrorQueue. If LookupQueueUlsing[NDI = true, the
listener looks up this queue using [NDI.

Default

value Required
60000 No
milliseconds

2 No

Yes

Yes

Chapter 4. Web services connector

97

Table 42. SOAP/JMS protocol listener-specific configuration properties (continued)

Name

++++InDoubtEvents

++++ReplyToQueue

++++ JMSVendorURI

Default
Possible values value Required

This property specifies how to handle messages in the ~ Ignore No
InProgressQueue that are not fully processed due to

unexpected connector termination. It can take one of

the following values:

+ FailOnStartup Log an error and immediately
shutdown

* Reprocess Process the remaining messages in the
InProgressQueue

* Ignore Disregard any messages in the in-progress
queue

* LogError Log an error but do not shutdown

This property gives the name of the ReplyTo queue. The
WSDL Configuration Wizard reads this property and
writes it to the WSDL document. If this property is not
specified, the utility does not create a ReplyTo JMS
header in the SOAP/JMS binding in the WSDL
document. (The listener does not use this property.) If
JNDI properties are specified and
LookupQueuelsing]NDI = false, the WSDL
Generation Ultility still create [NDI specific attributes
in the WSDL document. Note that these [NDI-specific
attributes are required because the SOAP/JMS binding
does not provide any way to specify a ReplyTo attribute
without JNDI. Though JNDI lookup for the
InputQueue is not required, [NDI-specific properties
are required for the ReplyTo queue. If the WSDL utility
does not find [NDI-specific properties, the utility
cannot create a ReplyTo attribute in the SOAP/IMS
binding.

A string that uniquely identifies the [MS No
implementation and that corresponds to the
jmsVendorURI attribute of the jms:address element of
the SOAP/IMS binding. The jms:address element is
specified in wsdl:port section of the WSDL document.
The listener does not use this property.

shows the properties as displayed in Connector Configurator Express.

98 Adapter for Web Services User Guide

Standard Propetties | Application Config Properties | Supported Business Objects | Trace/Log Files | Dt

Froperhy Walua Update Encrpt | Description
1 DataHandlerhetaObjectMame MO _DataHandler _Detfaut agent restart r
2 ConnectorType WiehService agent restart r
3 H ProxyServer agent restart r
4 | H =5 agent restart r
5 B ProtocolliztenerFramesiork agent restart r
B WiorkerThreadCount 10 agent restart r
v RequestPoolzize 20 agent restart r
i B Protocollisteners agent restart r
9 H =OAPHTTPListener agent restart r
10 H =0APMEListener agent restart r
11 Pratacol soapims agent restart r
12 SOAPDHMImET v e wimliEoag agent restart r
13 InputEUELE agernt restart r
14 INProgressQueue agent restart r
13 ArchiveQueue agent restart r
16 UrsubscribedGueus agent restart r
17 Errorusus acent restart r
15 InDoubtEverts: agent restart r
19 Feply Toteus agjert restart r
20 JutSh endorURI agent restart r
21 Fequestvat Timeout E0aa0 agent restart r
22 BICOPrefix connector rest r Property Mam
23 B SOAPHTTPSListensat agert restart r
24 | A ProtocolHandisrFramesark agent restart r
25 | @ JMD aent restart r
26 | B wWsCollaborations agent restart r

Figure 35. SOAP/JMS protocol listener properties

Note: Make sure that queue names specified in following properties are unique:

* InputQueue

* InProgressQueue

e ArchiveQueue

* UnsubscribedQueue

e ErrorQueue
ProxyServer: Configure the values under this property when the network uses a
proxy server. This is a hierarchical property and has no value. The values specified
under this property are used by the SOAP/HTTP/HTTPS protocol handlers.

shows the ProxyServer properties as displayed in Connector
Configurator Express and discussed below.

Chapter 4. Web services connector 99

Etnnnectnr Configurator - [ICS - WebServicesConnector : Sample]
| File Edit

Wiew Window Help

=81 %]

==2= - M=

Standard Prop... l Connector-Spe. . I Supported Bu..] Associated Maps | Resources | Trace/Log Files | Messaging] Data Handler]

Praperty Yalue Encrypt | Update Method
1 ConnectorType WehService I agert restart
2 B ProtocolHandlerFramewark I agent restart
3 |DataHandlertetaObjectiame |(WMO_DataHandler_Detau I agert restart
4 B Juo I agent restart
5 H ProtocollistensrFramesark I agert restart
E B ProxyServer I agent restart
7 HittpProxyHost proxyHostHt R I agent restart
i HttpProsyPort a0 Il agent restart
9 HttpklonProxyHosts I agent restart
10 HttpaMonProxyHosts I agent restart
11 HitpeProxyHost proxyHostHt e I agert restart
12 Hitp=ProxyPort 443 I agent restart
13 SocksProxyHost Il agent restart
14 SocksProxyPort I agent restart
15 HttpProxyUsername hittpProxyUser I agent restart
16 HitpPr oy Pazsansard RaRERE ™ agert restart
17 Http=Proxyllzername hitpsProxyllzer I agent restart
18 HttpaProxyPassward FEARERE I agent restart
19 | @ =50 I agent restart
=l 5aving Supported Business Ohjects. .. -]

- Saving Associated Maps. ..

Saving Resource...

Saving Logging and Tracing. ..

Connector "WehServicesConnector' s saved successfully.

=l

B

[hom [4

Figure 36. ProxyServer properties

HttpProxyHost: The host name for the HTTP proxy server. Specify this property if
the network uses a proxy server for HTTP protocol.

Default = none

HttpProxyPort: The port number that the connector uses to connect to the HTTP
proxy server.

Default = 80

HttpNonProxyHosts: The value of this property gives one or more hosts (for
HTTP) that must be connected not through the proxy server but directly. The value
can be a list of hosts, each separated by a "|".

Default = none

HttpsProxyHost: The host name for the HTTPS proxy server.

Default = none

HttpsProxyPort: The port number that the connector uses to connect to the
HTTPS proxy server.

100 Adapter for Web Services User Guide

Default = 443

HttpsNonProxyHosts: The value of this property gives one or more hosts (for
HTTPS) that must be connected not through the proxy server but directly. The
value can be a list of hosts, each separated by a " |".

Default = none

SocksProxyHost: The host name for the Socks Proxy server. Specify this property
when the network uses a socks proxy.

Note: The underlying JDK must support socks.
Default = none

SocksProxyPort: The port number to connect to the Socks Proxy server. Specify
this property when the network uses a socks proxy.

Default = none

HttpProxyUsername: The username for the HTTP proxy server. If the destination
for the web service request is an HTTP URL and you specify ProxyServer
->HttpProxyUsername, the SOAP HTTP/HTTPS protocol handler creates a
Proxy-Authorization header when authenticating with the proxy. The handler uses
the CONNECT method for authentication.

The proxy-authentication header is base64 encoded and has the following
structure:

Proxy-Authorization: Basic

Base64EncodedString

The handler concatenates the username and the password property values,
separated by a colon (:), to create the base64 encoded string.

Default = none

HttpProxyPassword: The password for the HTTP proxy server. For more on how
this value is used, see |"HttpProxyUsername.”|

Default = none

HttpsProxyUsername: The username for the HTTPS proxy server. If the
destination for the web service request is an HTTPS URL and you specify
ProxyServer ->HttpsProxyUsername, the SOAP HTTP/HTTPS protocol handler
creates a Proxy-Authorization header for authentication with the proxy. The
handler concatenates the HttpsProxyUsername and HttpsProxyPassword
configuration property values, separated by colon (:), to create the base64 encoded
string.

Default = none

HttpsProxyPassword: The password for the HTTPS proxy server. For more on
how this value is used, see [“HttpsProxyUsername.”|

Default = none

Chapter 4. Web services connector 101

SSL: Specify values under this property to configure SSL for the connector. This is
a hierarchical property and has no value.

shows the SSL properties as displayed in Connector Configurator Express
and discussed below.

Standard Froperies | Application Config Properdies I Supported Business Ohjects] TraceiLog Files | Dn

Properhy Yalue Updatea Encrypt | Description
1 DataHandlertetaCbjectiame WO _DataHandier_Default agert restart r
2 | ConnectorType VWighService agent restart [
3 H ProxyServer agent restart [
4 |8 550 agent restart r
5 SELYersion 5L agent restart r
G SSLDebuy Falze agent restart [
7 KeyStoreType JES anert restart r
i Weystore anert restart r
El WeyStorePazsword agent restart |
10 KeyStoreslias agent restart [
" TrustStore agent restart r
12 TrustStorePazswior agent restart r
13 UseCliertiuth False agent restart ||
14 | B ProtocollistenerFramesork agent restart [
15 | A ProtocolHandlerFramewark agent restart r
16 | B JuCi agent restart r
17 | B wsCollaborstions agent restart [

Figure 37. SSL properties

SSLVersion: The SSL version to be used by the connector. For further information,
see IBM JSSE documentation for the supported SSL versions.

Default = SSL

SSLDebug: If value of this property is set to true, the connector sets the value of
thejavax.net.debug system property to true. IBM JSSE uses this property to turn
on the trace facility. For further information, refer to IBM JSSE documentation.

Default = false

KeyStoreType: The value of this property gives the type of the KeyStore and
TrustStore. For further information, see IBM JSSE documentation for valid keystore

types.

Default = JKS

KeyStore: This property gives the complete path to keystore file. If KeyStore
and/or KeyStoreAlias properties are not specified, KeyStorePassword,
KeyStoreAlias, TrustStore, TrustStorePassword properties are ignored. The
connector will fail to startup if it cannot load the keystore using the path specified
in this property. The path must be the complete path to the keystore file.

Default = None

102 Adapter for Web Services User Guide

KeyStorePassword: This property gives the password for the private key in the
Keystore.

Default = None

KeyStoreAlias: This property gives the alias for the key pair in the KeyStore.
SOAP/HTTPS listeners use this private key from the KeyStore. Also, the
SOAP/HTTP-HTTPS protocol handler uses this alias from the KeyStore when
invoking web services that require client authentication. The property must be set
to a valid JSSE alias.

Default = None

TrustStore: This property gives the complete path to the TrustStore. TrustStore is
used for storing the certificates that are trusted by the connector. TrustStore must
be of the same type as KeyStore. You must specify the complete path to the
TrustStore file.

Default = None
TrustStorePassword: This property gives the password for the Truststore.
Default = None

UseClientAuth: This property specifies whether SSL client authentication is used.
When it is set to true, SOAP/HTTPS listeners use client authentication.

Default = false

WSCollaborations: This property is created automatically when you expose a
collaboration object as a web services and is used for non-TLOs. This is a
hierarchical property and has no value. Each first-level child of this property
represents a collaboration exposed as a web service. For information on the tools
used to automatically create these properties, see [Chapter 7, “Exposing|
fcollaborations as web services,” on page 145

Note: If you delete a collaboration or its port in System Manager, the connector
will not automatically delete the properties representing the collaboration.
You must delete these properties using Connector Configurator Express.

shows WSCollaborations properties as displayed in Connector
Configurator Express and discussed below.

Chapter 4. Web services connector 103

Standard Properties | Application Caonfig Properties | Supported Business Objects | TracelLog Files | D

Froperhy Walue Update Encrypt | Description
1 DataHandliertetaObjectiame WO _DataHandier_Defaul agert restar r
2 |ConnectorType WiekhSeryvice agert restart r
3 H ProxyServer agent restart [
4 B s5L agent restart [
5 H ProtocolliztenerFramesark agent restart r
£ H ProtocolHandierFrameswork agent restart r
v B Jmi agent restart [
g B wWiCollaborations agent restart [
3 B Collsboration agent restart r
10 B ColisborationPort agent restart r
11 H wWebZerviceOperation] agent restart [
12 BodyMame agent restart [
13 Booy s agert restar r
14 BOrame agent restart r
15 B erh agent restart [
16 Synchronous agent restart [
Figure 38. WSCollaborations properties

Collaboration1: This property names the collaboration object that is exposed as
web service via this connector. This is a hierarchical property and has no value.
There can be multiple such properties, one for each of collaboration object that is
exposed as a web service. Each first-level child of this property represents a port of
this collaboration object.

CollaborationPortl: This property names the collaboration port. This is a
hierarchical property and has no value. There can be multiple such properties, one
for each of the ports of this collaboration that are bound to the connector. Each
first- level child of this property represents a web services operation.

WebServiceOperationl: This property represents a web services operation for the
collaboration object. This is a hierarchical property and has no value. There may be
one or more such properties, one for each of the web services operation defined by
the user at the time of WSDL document generation.

BodyName: This property gives the name of the web service method and must be
a valid XML element name.

Default = none

BodyNS: This property gives the namespace of the web service method and must
be a valid XML namespace.

Default = none

BOName: This property gives the name of the Request business object for this
operation.

Default = none

Mode: This property specifies the processing mode for the operation. It it is set to
synch, the connector synchronously invokes the collaboration. Otherwise and by
default, the connector asynchronously invokes the collaboration as a request only
operation.

104 Adapter for Web Services User Guide

Default = asynch

JNDI: The connector maintains one set of JNDI (Java Naming and Directory
Interface) provider properties that are used by the SOAP/JMS protocol handler
and JMS protocol listener when connecting to JNDL This is a hierarchical property
and has no value. The connector uses JNDI to lookup the JMS connection factory
object. Note that the WSDL Configuration Wizard uses this property when
generating SOAP/JMS bindings.

shows JNDI properties as displayed in Connector Configurator Express
and discussed below.

Standard Properies | Application Config Properies I Supported Business Objects] TracefLog Files | Dn

Froperty Walue Update Encrept | Description
1 DataHandlerbetaObjecttame mD_DataHandler_Default agent restart r
2 |ConnectorType WighService agert restart r
3 H ProxyServer agent restart r
4 H s5L agent restart r
5 H ProtocollistenerFrameswork agent restart r
] B ProtocolHandlerFramesork agent restart r
L I=e] agent restart r
d LookupAueueszing MO Falze agent restart r
4 InttialCartextFactary anert restart r
10 JMDIConnectionFactoryMame agent restart r
11 CTH_OhjectFactories agent restart r
12 CTH_StateFactories agert restart r
13 CTH_URLPackagePrefixes agent restart r
14 CT¥_DM=_LIRL agent restart r
13 CTH_Authoritative agent restart r
16 CT¥_Batchsize anert restart r
17 CTH_Referral agent restart r
13 CTH_SecurityProtocol agent restart r
19 CTH_Security Authertication agert restart r
20 CTH_SecurityPrincipal agent restart r
21 CT¥_SecurityCredertials anert restart r
22 CTH_Language agent restart r
23 | B wWsCollaborations agent restart r

Figure 39. JNDI properties

LookupQueuesUsingJNDI: If the value of this property is set to true, the
connector’s SOAP/JMS listeners and SOAP/JMS protocol handler will look up
queues using JNDI

Default = false

JNDIProviderURL: This property gives the URL of the JNDI service provider,
which corresponds to jndiProviderURL attribute of the jms:address element of the
SOAP/JMS binding. The jms:address element is specified in the wsdl:port section.
This is used as the default JNDI provider and must be a valid J]NDI URL. For
further information, see JNDI specifications.

Default = none

Chapter 4. Web services connector 105

InitialContextFactory: This property gives the fully qualified class name of the
factory class (for example, com.ibm.NamingFactory)that creates an initial context.
Note that this corresponds to the initialContextFactory attribute of the jms:address
element of the SOAP/JMS binding. The jms:address element is specified in the
wsdl:port section.

Default = none

JNDIConnectionFactoryName: This property gives the name of the connection
factory to look up using JNDI context. Note that this corresponds to the
jndiConnectionFactoryName attribute of the jms:address element of the SOAP/JMS
binding. The jms:address element is specified in the wsdl:port section.

Default = none

CTX_ODbjectFactories: Properties specifying additional information about security
and object lookup in the JNDI context. [[able 43| summarizes these properties. The +
character indicates the entry’s position in the property hierarchy.

Table 43. Java Naming and Directory Interface (JNDI) provider properties

Property Name Description

+CTX_StateFactories Properties specifying additional information about
+CTX_URLPackagePrefixes security and object lookup in the JNDI context. See
+CTX_DNS_URL J2EE documentation for more information. These
+CTX_Authoritative properties reflect those used by the Adapter for
+CTX_Batchsize JMS.

+CTX_Referral
+CTX_SecurityProtocol
+CTX_Secutiry Authentication
+CTX_SecurityPrincipal
+CTX_SecurityCredentials
+CTX_Language

Creating multiple protocol listeners

You can create multiple instances of protocol listeners. Protocol listeners are
configured as child properties of the ProtocolListenerFramework ->
ProtocolListeners connector property. Each child (of ProtocolListenerFramework ->
ProtocolListeners) identifies a distinct protocol listener for the connector.
Accordingly, you can create additional protocol listeners by configuring new child
properties under the ProtocolListeners property. Make sure that you specify all of
the child properties of the newly created listener property. Each listener must be
uniquely named. However, you do not change the listener Protocol property
(soap/http, soap/https, or soap/jms), which remains the same for multiple
instances of a listener.

Note: The Protocol property is very important because it serves as a switch. If you
do not want to use a listener or a handler, leave this property empty.

If you are creating multiple instances of a SOAP/HTTP or SOAP/HTTPS listener,
be sure to specify different Port and Host properties for each instance. If you are
specifying multiple SOAP/JMS listeners, be sure to use a different set of queues
for each instance.

You cannot create multiple instances of a handler. There can be only one handler
for each protocol.

106 Adapter for Web Services User Guide

Connector at startup

When you start the connector, the init() method reads the configuration
properties that were set using System Manager’s Connector Configurator Express.
For proper functioning, be sure not to disable connector polling (connector polling
is enabled by default). The sections below describe what occurs.

Proxy setup

If you specify the ProxyServer connector-specific property, the connector sets up
the proxy system properties. A proxy server is used with the SOAP/HTTP-HTTPS
protocol handler for request processing only. The connector also traces each of the
system properties it sets up. For more on the ProxyServer property, see
[“Connector-specific configuration properties” on page 89|

JNDI initialization

The connector-specific property JNDI specifies the JNDI to be used by the
connector. The connector uses JNDI to lookup the JMS Connection Factory object.
If JNDI ” LookupQueuesUsing]NDI is set to true, the connector looks up JMS
queue objects using JNDL

If you do not want to use SOAP/JMS (the SOAP/JMS protocol listener and
SOAP/JMS protocol handler), you need not specify JNDI properties. If you specify
JNDI properties and the connector cannot initialize JNDI, the connector terminates.
Note that the connector will not initialize JNDI unless all of the following
connector-specific JNDI properties are specified:

* JNDIProviderURL
¢ InitialContextFactory
* JNDIConnectionFactoryName

Note: JNDI implementation is not provided with the connector

Protocol listener framework initialization

During startup the connector instantiates the protocol listener framework and
initializes it. This framework reads the connector-specific property
ProtocolListenerFramework, The connector then reads the value of WorkerThreads
and RequestPoolSize connector properties. If the ProtocolListenerFramework
property is unspecified or missing, the connector cannot receive requests from web
service clients and logs a warning.

The connector next reads the ProtocolListenerFramework -> ProtocolListeners
property. All the first-level properties of the ProtocolListeners property represent
protocol listeners. The protocol listener framework attempts to load and initialize
each of the listeners and traces them. If persistent event capable, the listener
attempts an event recovery.

Protocol handler framework initialization

The connector reads the connector-specific property ProtocolHandlerFramework
and instantiates and initializes the protocol handler framework. If this property is
missing or not set properly, the connector cannot perform request processing and
logs a warning. Next the connector reads all the ProtocolHandlerFramework ”
ProtocolHandlers properties, which correspond to protocol handlers, and attempts
to load, initialize, and trace them. Note that the protocol handlers are loaded

Chapter 4. Web services connector 107

during connector initialization and are not instantiated when a collaboration makes
a service request. The protocol handlers are multi-thread safe.

Logging

The connector logs a warning when:

¢ the ProtocolListenerFramework property is not specified. The connector warns
that it cannot perform event notification. (Collaborations exposed as web
services cannot be invoked by the connector.)

* the ProtocolHandlerFramework property is not specified. The connector warns
that it cannot perform (collaboration) request processing.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow
connector behavior. Trace messages, by default, are written to STDOUT. See the
connector configuration properties for more on configuring trace messages.

Connector trace levels are as follows:

Level 0 This level is used for trace messages that identify the connector
version.
Level 1 Trace each time the pollForEvents method is called. Trace the TLO

name created by listeners for delivery to InterChange Server
Express. Trace the Request business object name and the
corresponding attribute name in the TLO.

Level 2 Use this level for trace messages that log each time a business
object is posted to InterChange Server Express, either from
gotApplEvent () or executeCollaboration(). Also, trace which
protocol handler is processing the request.

Level 3 Trace the ASI of the business object being processed. Trace
attributes of the business object being processed. Trace the TLO of
the SOAP Request business object during event notification. Trace
the business object returned by the data handler.

Level 4 Trace the transport headers associated with:

* a SOAP request message retrieved by the protocol listener from
the transport

* a response message sent to the client by the protocol listener.
Trace the spawning of threads, all ASI that is processed, and all
entries and exits of important functions.

Level 5 Trace the following:
* the entries and exits for each important method
* all of the configuration-specific properties
* the loading of each of the protocol listeners

* the request message retrieved by the protocol listener from the
transport

* the response message sent on the transport to the client by the
protocol listener

* the loading of each protocol handler
* the messages returned by the SOAP data handler

108 Adapter for Web Services User Guide

* business object dumps of the TLO sent to the collaboration
* dumps of the business objects returned by the data handler.

Chapter 4. Web services connector 109

110 Adapter for Web Services User Guide

Chapter 5. SOAP data handler
« |"Configuring the SOAP data handler”]
+ [“SOAP data handler processing” on page 117

* |“SOAP style and use guidelines” on page 14()

* ["XML limitations” on page 142|

The SOAP data handler is a data-conversion module whose primary roles are to
convert business objects into SOAP messages and SOAP messages into business
objects. The SOAP data handler performs the following functions:

* Request Processing
— SOAP request business object to SOAP request message
— SOAP response message to SOAP response business object
— SOAP fault message to SOAP fault business object

¢ Event Processing
— SOAP request message to SOAP request business object
— SOAP response business object to SOAP response message
— SOAP fault business object to SOAP fault message

This chapter describes how to configure the SOAP data handler, how the SOAP
data handler processes messages and objects, and how to customize the data
handler.

Configuring the SOAP data handler

The SOAP data handler is a pivotal component in the connector for web services.
The connector calls the SOAP data handler to transform business objects into web
services-compliant SOAP messages.

When collaborations are exposed as web services, the connector also calls the
SOAP data handler. The data handler then transforms SOAP messages sent from a
remote trading partner (or internal client) into business objects. The connector
passes the business objects to collaborations that have been configured for web
services.

The information in data handler meta-objects plays a crucial role in these
transformations. You configure this information after you install the product files,
but before startup. Unless you are adding a custom name handler, you can use the
default SOAP data handler configuration to save time. You must, however,
configure specific meta-object information for each data handler transformation.
Data handler meta-objects are discussed in the sections below.

Meta-object requirements

Meta-objects are business objects that contain configuration information. The
connector uses meta-objects at run time to configure the data handler and create
instances of it. The SOAP data handler also uses meta-objects to locate the body of
a SOAP message, to determine the business object and verb that the body
corresponds to, to encode a business object in a SOAP message, and to perform a
number of other tasks discussed in this chapter. This section describes
requirements for these meta-objects.

© Copyright IBM Corp. 2004 111

Meta-object hierarchy and terminology
shows the meta-object structure for the adapter for web services product.
The meta-objects are named in bold in the illustration and discussed below.

MO_DataHandler_Default

MO_DataHandler_DefaultSOAPConfig

ClassName

SOAPNameHandler

Figure 40. Meta-object structure

The following terminology is used throughout this document when discussing

meta-objects:

* MO_DataHandler_Default Data handler meta-object used by the connector agent
to determine which data handler to instantiate. This is specified in the
DataHandlerMetaObjectName property of the connector.

* MO_DataHandler_DefaultSOAPConfig Child data handler meta-object specifically
for the SOAP data handler.

* SOAP Configuration Meta-Object (SOAP Config MO) A meta-object specified as
child of each SOAP business object and that contains the configuration
information for a single transformation from business object to SOAP message or
vice-versa.

MO_DataHandler_Default

The MO_DataHandler_Default is the top-level meta-object for all data handlers
that are called from connectors. The MIME type contained in these meta-objects
determines which data handler to use. The connector agent uses this meta-object to
create instances of the SOAP data handler. Accordingly, the
MO_DataHandler_Default object must include an attribute named xm1_soap that is
of type MO_DataHandler_DefaultSOAPConfig.

You can configure the MO_DataHandler_Default object after installing it. You must
add xm1_soap of type MO_DataHandler_DefaultSOAPConfig.

MO_DataHandler_DefaultSOAPConfig

The connector agent uses this meta-object to create and configure the SOAP data
handler at run time. The MO_DataHandler_DefaultSOAPConfig has two attributes
of type string that designate:

¢ The class name for the SOAP data handler
¢ The SOAP name handler

These attributes are shown in [Table 44

Unless you wish to implement a custom name handler, which is discussed later in
this chapter, you can use the MO_DataHandler_DefaultSOAPConfig as delivered
and installed. No configuration is needed.

112 Adapter for Web Services User Guide

Table 44. Meta-object attributes for MO_DataHandler_DefaultSOAPConfig

Name Type Default value Description
ClassName String com.ibm.adapters Standard attribute used by the
.dataHandlers.xml. soap data handler base class to find

the class name based on a MIME

type passed into the

createHandler method.
SOAPName String Name of the SOAP name handler
Handler to use.

SOAP configuration meta-object: child of every SOAP business
object

A SOAP Config MO defines the data formatting behavior for one data handler
transformation — either a SOAP-message-to-business-object or
business-object-to-SOAP-message transformation. A SOAP Config MO is a child of
a SOAP business object. These child SOAP Config MOs are critical for default
business object resolution. When using default business object resolution, all child
SOAP Config MOs, whether for a request, response, or fault object, must have
unique entries for default values of BodyName and BodyNS. shows these
and other attributes of a SOAP Config MO.

Table 45. Attributes for SOAP Config MOs

Name Required Description

BodyNS Yes Namespace to be used for SOAP body.

BodyName Yes Name of the body of the SOAP message. For SOAP fault,
set the default value to soap:fault.

BOVerb Yes Verb of the business object that contains the SOAP Config
MO.

Typelnfo No True or false attribute that dictates whether type

information (xsi:type) is written to and read from a SOAP
element. Default = false

TypeCheck No This property is read only if Typelnfo is set to true.
Possible values are none and strict. If none, type
validation is skipped when reading SOAP messages into
this business object. If strict, the data handler will
strictly validate all SOAP type names and namespaces
against the business object’s application-specific
information. Default = none

Style No This property dictates the SOAP message style and has
implications for other attributes such as BodyName and
BodyNS. The possible values for this attribute are rpc and
document. Default = rpc

Use No This property dictates the SOAP message’s use and affects
how the SOAP body is constructed from a business object.
The possible values are Titeral and encoded. The default
is Titeral.

|Eiéure 41: shows the relationship between a SOAP business object and a SOAP
Config MO.

Chapter 5. SOAP data handler 113

SOAP Business Object

BO Level ASI
cw_mo_soap = SOAPCfgMO
cw_mo_jms = SOAPJMSCfgMO
Orderld string
OrderNum string
SOAPCfgMO SOAP Config MO

SOAPCfgMO

BodyName
BodyNS
BOVerb
Typelnfo
TypeCheck

Style
Use

Figure 41. SOAP configuration meta-object

shows a SOAP response business object and its child business object. The
child business object, SOAPCfgMO, is a SOAP Config MO that specifies the
behavior for the SOAP data handler for a transformation from a business object
response to a SOAP response message. The attribute indicating the child SOAP
Config MO must use the name-value pair beginning cw_mo_soap.

By convention, when reading business object level application-specific information
beginning with cw_mo_, the data handler recognizes that the child object specified
in the name-value pair contains transformation meta-object information and
therefore does not include this child as content in the body of the message it is
transforming. In the example, the child objects indicated by the name-value pairs
cw_mo_jms and cw_mo_soap are recognized as meta-objects and not written into the
SOAP response message. In addition, the SOAP data handler ignores all business
object level application-specific information beginning with cw_mo_ except for
cw_mo_soap. Accordingly, the SOAP data handler ignores the application-specific
information such as cw_mo_tpi. But the SOAP data handler reads and uses the
SOAP Config MO specified in cw_mo_soap to execute the SOAP response
transformation from business object to SOAP message.

All SOAP business objects must have child SOAP Config MOs and these must be
specified as application-specific information at the business object level. Much of
this is automated: when you use the WSDL ODA to generate business objects for
SOAP messages, the SOAP Config MOs are automatically generated for you.

Style and Use impact on SOAP messages
The SOAP Config MO optional properties, Style and Use, affect the way that SOAP
messages are created. The possible values for Style are rpc and document, and for

114 Adapter for Web Services User Guide

Use are Titeral and encoded. The sections below discuss how the Style and Use
combinations impact SOAP message creation.

rpc/literal: When the Style property is set to rpc and the Use property to Titeral,
the Body Name and Body Namespace for a SOAP Message are read from the
SOAP ConfigMO'’s BodyName and BodyNS properties, respectively.

The following is an example of an rpc/literal style message where the Body
Name and Body Namespace have been resolved to getOrderStatus and
OrderStatusNS respectively:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=Thttp://schemas.xmlsoap.org/soap/envelope/i
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<nsl:getOrderStatus xmlns:nsl="http://www.ibm.com/">
<Partl>
<ns2:Eleml xmlns:ns2="http://www.ibm.com/eleml">
<Child1>1</Childl>
<Chi1d2>2</Child2>
</ns2:Eleml>
<ns3:Eleml xmins:ns3="http://www.ibm.com/eleml">
<Child1>3</Childl>
<Child2>4</Child2>
</ns2:Eleml>
<Elem2>10</ETem2>
</Partl>
</nsl:getOrderStatus>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this rpc/Titeral message.

Mame Type Key |Card Default App Spec Info
= Part1 SOAP_Part] Type ¥ |1
B Elem SOAP_MaxType F | f?f::ffﬁ:;iﬂ:&ﬂfhﬂp
Chile1 String Ird
Chilei2 String -
ObjectEventld | String
Elzm2 String r
ObjectEvertld String
B SOAPCoNfigMO |SOAP Reg Cfg MO | [|1
BodyMame String I getOrderStatus
BodyNS String - hittp: S jbm.com
BOVerk String - Retrieve
Typelnfo String r falze
TypeCheck String I none
Style String I rpc
Use String r literal

Figure 42. rpc/literal SOAP Config MO

Note: You must configure these properties and business object attributes
appropriately so that a corresponding SOAP message is created.

rpc/encoded: When the Style property is set to rpc and Use is set to encoded, the
Body Name and Body Namespace for a SOAP Message are read from the Child

Chapter 5. SOAP data handler 115

ConfigMO’s BodyName and BodyNS properties respectively. Also, the
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" attribute
is added to the Body tag.

The following is an example of an rpc/encoded message where the Body Name
and Body Namespace have been resolved to getOrderStatus and OrderStatusNS
respectively.

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<nsl:getOrderStatus xmlns:nsl="http://www.ibm.com/">
<Partl xsi:type="ns1:SOAP_PartlType">
<ns2:Eleml SOAP-ENC:arrayType="ns2:SOAP_MaxType[2]"
xsi:type="SOAP-ENC:Array" xmlns:ns2="http://www.ibm.com/eleml">
<item>
<Childl xsi:type="xsd:string">1</Childl>
<Child2 xsi:type="xsd:string">2</Child2>
</item>
<item>
<Childl xsi:type="xsd:string">3</Childl>
<Child2 xsi:type="xsd:string">4</Child2>
</item>
</ns2:Eleml>
<Elem2 xsi:type="xsd:string">10</Elem2>
</Partl>
</nsl:getOrderStatus>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this rpc/encoded message.

Mame Type Key |Card Default App Spec Info |
B Part1 SOAP_Parti Type M |1
B Elemt SOAP_MaxType F | N E;”_’C—D”rﬁ;’::nffm e
Chile1 String I~
Chile2 String r
ObjectEventid | String
Elemz String -
ObjectEventid | String
H SOAPConfigMO | SCAP_Req_Cfg MO | [T | 1
BodyMame String v getOrderStatus
BodyN= String r hittp: e ibm.com
BOYerk String r Retrieve
Typelnfo String I true
TypeCheck String I none
Style String [rpc
Use String | encoded

Figure 43. rpc/encoded SOAP Config MO

document/literal: When the Style property is set to document and the Use
property is set to Titeral, an all encompassing Body Name tag will not exist. This
is an example of a document style SOAP message based on the above BO:

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

116 Adapter for Web Services User Guide

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<SOAP-ENV:Body>
<nsl:Eleml xmlns:nsl="http://www.ibm.com/eleml">
<Child1>1</Child1l>
<Child2>2</Child2>
</nsl:Eleml>
<ns2:Eleml xmins:ns2="http://www.ibm.com/eleml">
<Child1>3</Child1l>
<Child2>4</Child2>
</ns2:Eleml>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

shows the corresponding business object for this document/1iteral

message.
Mame Type Key |Card Default App Spec Info
5 Elemt SOAP_Elem F |1 maxoccqrs=3;elem_ns=hﬂp
Sy fam .comlelemt
Chilcht String I
Child2 String r
ObjectEventid String
B SOAPConfigMD |SOAP_Req_Cfg_ MO r 1
BodyMame String I getOrdersStatus
BodyNS String |l http: Moy ibmcom
BOVerh String |l Retrieve
Typelnfo String |l false
TypeCheck String | none
Style String | document
lse String |l literal

Figure 44. document/literal SOAP Config MO
Note that the encodingStyle attribute in the XML code fragment has not been set.

document/encoded: This Style/Use combination is not supported. The data
handler fails if it encounters a SOAP ConfigMO with Style set to document and Use
set to encoded.

SOAP data handler processing

The SOAP data handler performs transformations between SOAP messages and
business objects in the following ways:

* SOAP message to business object processing

— Request-message-to-SOAP-request-business-object data handling occurs at that
stage in event processing when web service clients make calls to
collaborations exposed as web services

— Response-message-to-SOAP-response-business-object data handling occurs
during request processing when a web service returns a SOAP response
message to a collaboration that had invoked it. Alternatively,
fault-message-to-SOAP-business-object data handling may occur at this phase.

For a detailed description of this processing, see [‘SOAP-body-message-to-|
[business-object processing” on page 118|later in this section.

* Business object to SOAP message processing

— Business-object-to-SOAP-response-message data handling occurs during event
processing when a response business object is returned by the collaboration

Chapter 5. SOAP data handler 117

that is exposed as a web service. Alternatively, fault business
object-to-SOAP-fault-message data handling may occur at this phase.

— Business-object-to-SOAP-request-message data handling occurs at that phase
of request processing when a collaboration makes a service call to the
connector to convert a business object to a SOAP request message.

For a detailed description of this processing, see [“Business-object-to-SOAP-|
[message-body processing” on page 120|later in this section.

SOAP-body-message-to-business-object processing

This section provides a step-by-step description of the SOAP-body-message-to-
business-object transformation.

1. The SOAP data handler receives a SOAP message.
2. Using Apache SOAP APIs, the data handler parses the SOAP message.

3. The data handler extracts the components of the SOAP message: envelope,
header, and body.

4. Header processing For more, see [“SOAP-header-message-to-business-object]
[processing” on page 119)
5. Body processing The data handler reads the first element of the SOAP body to

determine if it carries a fault or data. If the body content is not a fault, the data
handler does the following:

a. Performs business object resolution to determine which business object will
be used in the transformation. If you have configured a custom name
handler, the default business object resolution discussed below may not
apply. For more on specifying a pluggable name handler, see
[plugeable name handler” on page 140.|

b. The data handler also resolves the SOAP Config MO (a child of the SOAP
business object that the data handler is creating) that will be used for the
transformation. If an instance of the SOAP Config MO does not exist, the
data handler creates an instance and reads its default values. From the
ConfigMO attribute values, the data handler reads the business object verb.
The data handler instantiates the SOAP business object and sets the verb

accordingly. This is the business object into which the data handler will
attempt to write the SOAP message.

c. The data handler continues parsing the SOAP message one element at a
time. For rpc, the data handler expects the first element to be the parent.

d. The data handler expects that the attributes of the business object (or its
application-specific information: for further information, see [“ASI in|
[pusiness-object-to-SOAP-message transformations” on page 125) should
have the same name as the child elements. If the attribute is not found in
the business object, the data handler throws an exception. Child elements
may be of simple type or they may be of complex type. Complex elements
are those which have child elements.

e. Simple element If a child element is a simple element, by default, the data
handler expects a business object attribute with the same name (or ASI) as
that of a simple element. The data handler reads the value of the simple
element and sets it in the business object.

f. Complex element If a child element is of complex type, the data handler
expects the business object to have an attribute with the same name (or ASI)
and of type child business object. This attribute may be of single cardinality
or of multiple-cardinality depending on if there will be a complex SOAP
element or SOAP array. Next the data handler instantiates the child business
object (by default, the type of the attribute gives the name of the child

118 Adapter for Web Services User Guide

6.

business object) and reads all the child elements of this complex element,
setting their values in the child business object. The data handler sets this
child business object into the parent business object attribute after verifying
the cardinality of this attribute. If the attribute is cardinality n, the data
handler appends this business object to the container. The complex element
can have either simple or complex child elements. These are also handled in
the same way: if it is simple element, the data handler sets the value in the
child BO; if it is a complex element, the data handler instantiates a child
business object.

Fault processing The data handler reads the name of the first element of the
SOAP body to determine if it is a fault. If the name of the first element is
Fault, the data handler concludes that this is a fault message. Fault business
object resolution occurs to determine into which business object this fault
message should be transformed. The data handler then follows the same
processing as that for body processing. The data handler expects that the
business object specified in the child business object should have the following
attributes:

a. faultcode: Required. String attribute

b. faultstring: Required. String attribute
c. faultactor: Not required String attribute
d. detail: Not required. Child BO

If fault processing fails for any reason, the exception thrown will contain the
text from the faultcode, faultstring and faultactor elements in the SOAP fault
message

Note: According to SOAP specifications for fault messages, faultcode, faultstring,

and faultactor are simple elements whereas detail is a complex element (an
element with child elements). In addition, faultcode, faultstring, faultactor,
and detail belong to the SOAP envelope namespace, whereas detail child
elements may belong to user-defined namespaces.

SOAP-header-message-to-business-object processing

This section describes how the data handler converts the header of a SOAP
message into a business object.

1.

2.

3.

The SOAP data handler processes the body of a SOAP message. Body
processing creates a SOAP business object.

If the SOAP message has a SOAP header element, the SOAP data handler
expects a SOAP header attribute in the business object obtained from body
processing. The SOAPHeader attribute is the child attribute of a business object
and has soap_location=S0APHeader as its application-specific information. If
there is no such attribute, the SOAP data handler throws an error.

The SOAPHeader attribute must be of type SOAP Header Container business
object. The SOAP data handler creates an instance of this attribute in the SOAP
business object obtained in step 1.

For each immediate child of the SOAP-Env:Header element:

a. The data handler expects a child attribute in the SOAP Header Container
Business Object. The name of this attribute must be the same as that of the
header element and conform to the SOAP Header Child business object. If
the data handler cannot find such an attribute, it throws an error.
Additionally, the namespace of this element should be the same as specified
in the elem_ns application-specific information of this attribute. If it is not
the same, the data handler throws an error.

Chapter 5. SOAP data handler 119

b. The data handler creates an instance of the SOAP Header Child business
object and places it in the instance of SOAP Header Container business
object created in step 2.

c. If this header element has an actor attribute, the data handler expects an
actor attribute to exist in the child business object created above. If it
cannot find an actor attribute, the data handler throws an error.

Note: If you want to add an actor attribute, see [“Specifying SOAP|
lattributes” on page 128]

d. If this header element has a mustUnderstand attribute, the data handler
expects a mustUnderstand attribute to exist in the child business object
created above. If it cannot find a mustUnderstand attribute, the data handler
throws an error.

Note: If you want to add a mustUnderstand attribute, see ['Specifying SOAP|
fattributes” on page 128

e. For each child element of this header element, the data handler expects an
attribute in the child business object with the same name. These elements
will be processed in same way as the child elements of SOAP-Env:Body
element.

Business-object-to-SOAP-message-body processing

The following is a step-by-step description of the business-object-to

SOAP-body-message transformation. For special cases involving

application-specific-information, see [“ASI in business-object-to-SOAP-message

ftransformations” on page 125

1. The SOAP data handler looks for a SOAP ConfigMO that corresponds to the
SOAP business object it is transforming.

2. The data handler composes the envelope and header of the SOAP message.

3. The data handler resolves the SOAP ConfigMO. If an instance of the SOAP
ConfigMO does not exist, the data handler will create an instance and read
from the default values. By default, the data handler reads the value of the
BodyName attribute in the SOAP ConfigMO to determine whether it is
processing a fault business object. If it is set to soap:fault the business object is
considered a SOAP fault business object. If it is not a fault business object, the
data handler performs the processing described under composing body below,
else that described under composing fault.

4. Composing body The following steps detail the processing performed by the
data handler to compose the body of the SOAP message from a business object:

* The data handler obtains the BodyName and BodyNS from the SOAP
ConfigMO attributes and then composes the first (parent) element of the
body of the SOAP message. The name of first element is, by default, the
value for the BodyName. In this document, it is also referred to as the body
element. The namespace of the body element is, by default, the value
determined for BodyNS. If the Style attribute of the SOAP ConfigMO is set
to document, this step (creating the first body element) is skipped.

* The data handler then reads the attributes of the business object and
processes them by type. The processing for each type of attribute is described
below.

— Simple attributes If the attribute is of type simple, the data handler
creates a child element from the body element, with the same name as the

120 Adapter for Web Services User Guide

attribute (unless otherwise specified by special application-specific
information). The data handler sets the value of this element to the value
of the attribute in the business object.

— Cardinality 1 child business object attributes

If the attribute is a single cardinality child business object, the data
handler creates a child element of the body element. This is referred to as
a child business object element. The name of the child element created is
the same as that of the attribute (unless otherwise specified by special ASI
properties). The data handler then traverses the attributes of the child
business object, creating the child elements for the attributes in the same
way it processes the attributes of the incoming business object. However,
the child elements are made children not of the body element but of the
child business object element

— Cardinality n child business object attributes If an attribute is a
cardinality n child business object, the data handler creates a SOAP array.
Each attribute is handled the same way that a single cardinality child
business object is handled.

5. Composing fault The following section walks through the process by which
the data handler composes a fault message.
¢ The data handler expects the following attributes in the business object:
— faultcode: Required, String attribute
— faultstring: Required, String attribute
— faultactor: Not required. String attribute
— detail: Not required. Child BO attribute.

If any required attributes are missing, the data handler errors out.

¢ The data handler creates an element for faultcode. It sets the value given by
the faultcode attribute of the business object.

* The data handler creates an element for faultstring. It sets the value given
by the faultstring attribute of the business object.

* The data handler creates the faultactor. It sets the value given by the
faultactor attribute of the business object.

* If the detail attribute is present in the business object, the attribute should
be of child business object type. Otherwise the data handler errors out. It
handles the attributes of each detail business object as highlighted in the
section on Composing body above.

6. CxIgnore processing If the data handler finds out that the value of an attribute
is set to CxIgnore, the data handler does not create an element for this
attribute.

7. CxBlank processing If the data handler determines that the value of an

attribute is set to CxBlank, the data handler creates an element for this attribute
but does not set its value.

Business-object-to-SOAP-message-header processing

This section describes the processing of the SOAP header attribute only. All other
attributes are processed as described in [“Business-object-to-SOAP-message-body|
[processing” on page 120}
1. From the business object, the SOAP data handler obtains the SOAPHeader
attribute. This attribute has soap_location=S0APHeader as its application-specific
information. The SOAP data handler creates a SOAP-Env:Header element if and

Chapter 5. SOAP data handler 121

only if the value of this attribute is not null. If a business object contains more
than one SOAPHeader attribute, the first one is processed and the rest are treated
as part of the body.

2. The SOAP data handler expects that the SOAPHeader attribute is a single
cardinality child representing a SOAP Header Container business object. The
data handler processes the child attributes of the SOAP Header Container
business object that are of type SOAP Header Child business object.

3. For each attribute of the SOAP Header Container business object, the data

handler does the following;:

a. Checks the cardinality: if this attribute is NOT a 1 or n cardinality child
object, it is ignored.

b. Checks the value: if the value of this attribute is NULL, it will be ignored.

c. If the attribute is a 1 or n cardinality child object, the SOAP data handler
creates a header element that is the immediate child of the SOAP-Env:Header
element created in step 1. The name of this header element is same as that
of the attribute. The namespace of this element is given by the elem_ns
application-specific information of this attribute.

d. If the attribute is a SOAP Header Child business object, all of the attributes
of this business object are processed. This attribute may have an actor and
a mustUnderstand attribute.

Note: If you want to add a mustUnderstand or actor attribute, see
[‘Specifying SOAP attributes” on page 128
e. If a SOAP Header Child business object has a non-null actor attribute, the
data handler creates an actor attribute in the header element that was
created in step c.

f. If a SOAP Header Child business object has a non-null mustUnderstand
attribute, the data handler will create a mustUnderstand attribute in the
header element created in step c.

g. All other non-null attributes of the SOAP Header Child business object
become child elements of this header element. They are composed in the
same manner as the child elements of the SOAP-Env:Body element.

Header fault processing

The SOAP specification states that errors pertaining to headers must be returned in
headers. These headers are returned in the SOAP fault message. Just as message
headers are specified in the SOAPHeader attribute of request and response business
objects, fault headers are specified in the SOAPHeader attribute of fault business
objects.

Each of the possible headers of request or response business objects may cause an
error. Such errors are reported in the headers of the fault message.

WSDL documents have a SOAP binding header fault element that allows you to
specify the fault header. For more information, see the SOAP and WSDL
specifications listed in Chapter 1.

The application-specific information of headerfault allows you to specify header
faults for each of your headers. You may specify headerfault application-specific
information for each of the attributes of the SOAP Header Container business
object. The list of attributes in the SOAP Header Container business object for the
fault business object is as follows:

headerfault=attrl, attr2, attr3...

122 Adapter for Web Services User Guide

If the WSDL Configuration Wizard finds headerfault application-specific
information in the SOAP Header Child business objects of request or response
objects, the utility creates headerfault elements in the WSDL generated for these
headers. Note that WSDL allows you to specify multiple header faults for each of
your request (input) and response (output) headers. Therefore the value of this
application-specific information is a comma-delimited list of attributes.

Using application-specific information functionality

extend and enhance SOAP data handler functionality. [Table 46| shows these
attributes, which are discussed in the sections below. All of the entries in the table
are attribute-level ASI unless otherwise noted.

You can specify object- and attribute-level application-specific information (ASI) to

Table 46. SOAP object ASI summary

ASI Possible values Description

soap_location SOAPHeader Specifies this business object
attribute as the header
attribute

headerfault String Identifies the BO attribute

name of the corresponding
SOAP header in the fault BO

elem_name String Specifies the name for the
SOAP element corresponding
to this BO attribute

elem_ns String Specifies the namespace for
the SOAP element
corresponding to this BO
attribute

type_name String Specifies the type for the
SOAP element corresponding
to this BO attribute

type_ns String Specifies the type namespace
for the element
corresponding to this BO
attribute

xsdtype true Specifies xsd as the
namespace for the element
corresponding to this BO
attribute, overriding older
xsd versions (such as 1999,
2000, etc.) with the latest
version of xsd (for example,
2001).

attr_name String Specifies the name for the
SOAP attribute
corresponding to this BO
attribute

attr_ns String Specifies the namespace for
the SOAP attribute
corresponding to this BO
attribute

Chapter 5. SOAP data handler 123

Table 46. SOAP object ASI summary (continued)

ASI Possible values Description

arrayof String Specifies the name of the n
cardinality child business
object attribute that must be
used to create the array for
this element

dh_mimetype String Specifies the mimeType of
the data handler that will be
used to transform this
attribute of complex type

cw_mo_* String This business object level ASI
specifies the name of a child
config MO that is interpreted
as meta-data, not content, by
the SOAP data handler. Only
cw_mo_soap specifies a child
config MO that is processed
as meta-data; all other
cw_mo_* indicate a different
component and are therefore
excluded from SOAP data
handler processing. All other
cw_mo* is ignored.

CW_mo_soap String This business object level ASI
specifies the name of the
Child Config MO attribute
that should be used when
transforming this business
object

cw_mo_jms String This business-object level ASI
specifies the name of the JMS
Protocol Config MO to use

cw_mo_http String This business-object level ASI
specifies the name of the
HTTP Protocol Config MO to
use

wrapper true Specifies the attribute name
of the wrapper object within
this business object. Wrapper
objects are used for certain
schema indicators, and must
not be serialized

maxoccurs Integer Specifies this business object
attribute’s maximum
occurrence possibility.
Depending on the value of
maxoccurs, the business
object may or may not have
a wrapper.

minoccurs Integer Specifies this business object
attribute’s minimum
occurrence possibility.
Depending on the value of
minoccurs, the object may or
may not have a wrapper.

124 Adapter for Web Services User Guide

Table 46. SOAP object ASI summary (continued)

ASI Possible values Description

all

String Specifies the child attribute
that represents the all
indicator in the schema.

choice String Specifies the child attribute

that represents the choice
indicator in the schema.

ASI in business-object-to-SOAP-message transformations

The SOAP data handler uses a business object’s ASI to determine how to construct
a SOAP message. Unless otherwise stated, all ASI discussed in the sections below
refers to attribute level ASI and all string-based comparisons are performed
without regard to case.

elem_name and elem_ns processing
The examples discussed in this section assume that the attribute name is OrderId
and the SOAP element namespace prefix ns0.

1.

When neither elem_name nor elem_ns are specified, the elem_name defaults to
the attribute name, and the elem_ns defaults to the namespace of the element’s
parent.The ASI is not specified.

<OrderId>1</OrderId>

When the elem_name is specified and the elem_ns is not specified, the
elem_name will be set to the ASI elem_name value, and the elem_ns will be
defaulted to the namespace of the SOAP Body. The ASI is as follows:
elem_name=CustOrderld

<CustOrderId>2</CustOrderId>

When elem_ns is specified and elem_name is not, elem_name defaults to the
attribute name and elem_ns is set to the ASI elem_ns value. The xmlns attribute
is explicitly written if and only if the element namespace is not found
elsewhere in the scope of this element. If the element namespace is found, the
already defined namespace prefix is used. Otherwise (if the element namespace
is no found), a unique prefix for the elem_ns is generated. Consider the
following example, which presumes that a prefix is already defined in scope
(nsl represents a prefix corresponding to a namespace already defined in the
scope of this element). The ASI is as follows:

elem_ns= http://www.w3.0rg/2001/XMLSchema
<nsl:0rderId>3</nsl:0OrderId>

The following example presumes that prefix is not found (ns2 represents a
unique prefix). The ASI is as follows:

elem_ns=CustOrderIdNamespace

<ns2:0rderId xmlins:ns2="CustOrderIdNamespace">3</ns2:0rderld>

When both elem_name and elem_ns are specified, elem_name and elem_ns are
set to the ASI values. The same check that is performed in case 3 above
regarding already defined namespaces applies. Just as in case 3, if the

namespace is not already defined, a unique prefix for the elem_ns is generated.
The ASI is as follows:

elem name=CustOrderId;elem ns=CustOrderIdNamespace
<ns2:CustOrderId xmins:ns2="CustOrderIdNamespace">1</ns2:0rderld>

Chapter 5. SOAP data handler 125

type_name and type_ns processing for simple attributes
For the examples in this section, the attribute name is OrderId, the SOAP element
namespace prefix is ns@, and the attribute type is String.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
simple type and the type_ns defaults to the xml schema-defined namespace
(xsd). The ASI is not specified

<OrderlId xsi:type="xsd:string">1</OrderId>

2. When type_name is specified and type_ns is not, type_name is set to the ASI
type_name value and type_ns defaults to the namespace of the element. The
ASI is as follows:
type_name=CustString
<OrderId xsi:type="ns0:CustString">2</0OrderId>

3. When type_ns is specified and type_name is not, the type_ns defaults to the
simple type name and type_name is set to the ASI type_ns value. The prefix is
handled in a way that is comparable to elem_ns creation. A unique prefix for
the type namespace is generated unless the namespace already exists in the
element scope. The ASI is as follows:
type_ns=CustStringNamespace
<OrderId xmIns:ns2="CustStringNamespace" xsi:type=
"ns2:String">3</0rderld>

4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustString;type_ns=CustStringNamespace

<OrderId xmIns:ns2="CustStringNamespace" xsi:type=
"ns2:CustString">1</0OrderId>

type_name and type_ns processing for single cardinality
attributes

For the examples in this section, the attribute name is OrderStaus, the SOAP
element namespace prefix is ns0, and the attribute type is OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
business object name and the type namespace defaults to the namespace of the
element. The ASI is not specified:
<OrderStatus xsi:type="ns0:0rderStatus">1</OrderStatus>

2. When type_name is specified and type_ns is not, the type_name is set to the
assigned ASI value and type_ns defaults to the namespace of the element. The
ASI is as follows:
type_name=CustOrderStatus
<OrderStatus xsi:type="ns0:CustOrderStatus">1</0OrderStatus>

3. When type_ns is specified and type_name is not, type_name defaults to the
business object name and type_ns is set to the assigned type_ns value. A
unique prefix for the type namespace is generated. The ASI is as follows:
type_ns=CustTypeNS

<OrderStatus xsi:type="ns2:SOAP_OrderStatusLine
" xmins:ns2="CustTypeNS">1</OrderStatus>

126 Adapter for Web Services User Guide

4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustOrderStatus;type_ns=CustTypeNS

<OrderStatus
xsi:type="ns2:CustOrderStatus" xmlins:ns2="CustTypeNS">1</OrderStatus>

type_name and type_ns processing for multiple cardinality
attributes

For all the examples given in this section assume the attribute name to be
MultiLines and the SOAP element namespace prefix to be ns0. Assume the
attribute type to be OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO
attribute Typelnfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the
business object name and type_ns defaults to the namespace of the element.
The ASI is as follows:
<Multilines SOAP-ENC:arrayType="nsO:0rderStatus[2]"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

2. When type_name is specified and type_ns is not, type_name is set to the
assigned ASI type_name value and type_ns defaults to the namespace of the
element. The ASI is as follows:
type_name=CustOrderStatus
<MuTltilines SOAP-ENC:arrayType="ns0O:CustOrderStatus[2]"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

3. When type_ns is specified and type_name is not, type_name defaults to the
business object name, and the type_ns is set to the assigned ASI type_ns value.
A unique prefix for the type namespace is generated. The ASI is as follows:
type_ns=CustTypeNS
<MultilLines SOAP-ENC:arrayType="ns2:0rderStatus[2]"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/

" xmIns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

4. When both type_name and type_ns are specified, they are set to the assigned
ASI values. A unique prefix for the type namespace is generated. The ASI is as
follows:
type_name=CustOrderStatus;type _ns=CustTypeNS
<MultilLines SOAP-ENC:arrayType="ns2:CustOrderStatus[2

1" xmlins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

Note: The item element representing the parent for each Array element has the
same type and namespace as the arrayType.

xsdtype for simple, single, and multiple cardinality types

For simple, single. and multiple cardinality types, set the xsdtype ASI attribute to
true for the type name to adhere to the current XSD for the SOAP message. The
xsdtype property is read only when both the type_name and type_ns properties
are set. Given the type_name and type_ns, the SOAP data handler first attempts to
map the pair to a Java type using the SOAP API Then the data handler attempts
to convert the Java type back to a SOAP element type using the current XSD for
the SOAP Message. For example, if the current XSD is

http://www.w3.0rg/2001/XMLSchema

Chapter 5. SOAP data handler 127

and the following ASI:
type_name=timeInstant;type_ns=http://www.w3.0rg/1999/XMLSchema;xsdtype=true

The SOAP message type name is written as:
<OrderDate xsi:type="xsd:dateTime">

because dateTime is the 2001 XSD equivalent of the timeInstant in the 1999 XSD.

xsdtype and simple type arrays

For multiple cardinality objects, you can create a simple type array such as the
following:

<Multilines SOAP-ENC:arrayType="xsd:string[4]"

xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="SOAP-ENC:Array">

To achieve this, set the type_name property to the desired simple type (for
example, string) and set the type_ns property to the appropriate XSD
specification. Then, set the xsdtype property to true so that the type is converted
to the current XSD type. Finally, the arrayOf property should be set to the name of
the attribute in the container which should hold the simple type value. This is an
example of what the ASI would look like for a string array:
arrayof=size;type_name=string;type_ns=

http://www.w3.0rg/2001/XMLSchema;

xsdtype=true

ASI effects on fault processing
The faultcode, faultactor, faultstring, and detail elements adhere to the following
rules:
1. Any elem_name, elem_ns, type_name and type_ns ASI in these attributes is
ignored.

2. All children of the detail elements are written exactly as described in body
processing.

ASI effects on header processing

You can use all ASI properties (see[Table 46)) at the header child object level and
below.

Specifying SOAP attributes

attr_name processing for simple types
This is not supported. A business object attribute must be a complex (1 or n
cardinality) type for SOAP attributes to be created.

attr_name processing for single and multiple cardinality types
You can specify ASI that translates business object attributes into soap attributes
instead of into soap elements. The data handler supports adding SOAP attributes
to complex single and n-card types only. Consider the following sample:
<CustInfo City="4" State="5" Street="2" Zip="6">

<Name xsi:type="xsd:string">1</Name>

<Street2 xsi:type="xsd:string">3</Street2>
</CustInfo>

128 Adapter for Web Services User Guide

Given this business object definition structure (with the attribute level ASI

specified to the right of each attribute in [Figure 45)), the data handler follows these

processing steps:

Marme Type App Spec Info
B Custinfo Customerinfo

Mame String
Streett String attr_name=Street
Street2 String
City String attr_name=City
State String attr_name=State
Lip String attr_name=Zip

Figure 45. attr_name business object

1. When traversing a complex attribute, the data handler first generates a
corresponding tag for this complex business object attribute. In this example,
CustInfo represents the complex business object attribute.

2. The data handler iterates through the children of the complex business object.
Only simple type attributes are considered for attribute creation. If a simple
type has an ASI property named attr_name, the data handler writes this simple
type as an attribute to the SOAP element. In this example, the element
(CustInfo) will have four attributes; Street, City, State and Zip.

3. The rest of the attributes of the business object are written using standard
BODY processing. This means that all relevant ASI will also be evaluated for
the business object attributes that do not have attr_name ASL

The logic for processing multiple cardinality types is identical to that for
processing single cardinality types. Specifically, each <item> tag corresponds to
each business object instance in the multiple cardinality object, and will be
processed using ASI. For example, given this multiple cardinality business object
definition structure with corresponding ASI:

Mame Type Card App Spec Info
B Custinfo Custamerinfo il

Mame String
Streett String attr_name=Street
Strest? String
City String attr_name=City
State String attr_name="5State
Zip String attr_name=Zip

Figure 46. attr_name multiple cardinality business object

If the event sent to the data handler had two instances of this multiple cardinality
object, the SOAP message created may look like this:

<CustInfo>

<item City="Armonk" Street="Main Street">
<Name>IBM</Name>
<Street2>None</Street2>

</item>

<item City="Burlingame" State="Ca"

Chapter 5. SOAP data handler

129

Street="577 Airport Blvd" Zip="94010">
<Name>Burlingame Labs</Name>
<Street2>Suite 600</Street2>

</item>

</CustInfo>

Notice that the item tags are treated as the complex element type. Any attributes in
the BO definition will become SOAP attributes of the corresponding item tag.

arrayof processing

You use the arrayof ASI property to assign SOAP attributes to the array element
itself (not at the child tag). You add the arrayof property to the ASI of a single
cardinality complex type. The value of the arrayof property must be the name of
the multiple cardinality child that the SOAP message will represent. When the
SOAP message is created, the multiple cardinality child represents the child tags of
the array.

A business object definition with an arrayof element and corresponding ASI are
shown infigure 1]

Mame Type Card App Spec Infa
B Customer Customer 1 arrayof=Custinfo
CustiD String attr_name=ID
B Custinfa Customerinfo il

Mame String
Streett String attr_name=Strest
Street2 String
City String attr_name=City
State String attr_name=5State
Zip String attr_name=7Zip

Figure 47. arrayof business object

If the event sent to the data handler had two instances of this cardinality n object,
the SOAP message created may look like the following:
<Customer ID="12">
<CustInfo City="4" State="5" Street="2" Zip="6">
<Name>1</Name>
<Street2>3</Street2>
</CustInfo>
<CustInfo City="10" State="11" Street="8" Zip="12">
<Name>7</Name>
<Street2>9</Street2>
</CustInfo>
</Customer>

Notice that the arrayof property can be used to create array items with a name
other than item. In this example, the item tag is replaced with CustInfo tags. This
element name is derived from the name of the business object attribute that the
arrayof ASI property points to.

attr_name and attr_ns processing
You may need to provide a namespace that corresponds to the SOAP attribute
created. You do this by specifying the attr_ns ASI property for a simple type. The

130 Adapter for Web Services User Guide

data handler processes the attr_ns property if and only if attr_name exists in the
same attribute’s ASI. The following rules are followed with attr_name and attr_ns:

1. When neither attr_name nor attr_ns exist, the business object attribute is
translated to a SOAP element.

2. When only attr_name is set, the SOAP attribute’s namespace defaults to the
element’s namespace:

<CustInfo Street="577 Airport"></CustomerInfo>

3. When only attr_ns is set, the property is ignored and the business object
attribute is translated to a SOAP element.

4. When both attr_name and attr_ns exist, the SOAP attribute is created like the
following:

<CustInfo ns2:Street="577 Airport" xmlns:ns2=
"AttrNS"></CustomerInfo>

dh_mimetype: calling a data handler

The SOAP data handler can call another data handler to write business objects into
any format for which a data handler exists. You do this by adding encoded text to
a SOAP message when transferring a SOAP child business object into a SOAP
String.

An RNIF document is one of the formats in which a SOAP element’s value may be
encoded. To make use of this functionality, add an RNIF BO at any level of a
SOAP child business object. To signal the SOAP data handler to call another data
handler when transforming this RNIF business object to a string, add the
dh_mimetype property to the attribute’s ASI. The value of the dh_mimetype ASI
property must be a legal mimeType specified in the MO_DataHandler_Default
meta-object. The mimeType is used to determine which data handler is called to
process the business object.

shows a SOAP child business object in which CustomerInfo is a complex
child and RNET_Pip3A2PriceAndAvailabilityQuery is an RNIF business object:

Matne

Type

App Spec Info |

H Customerinfo

Customerinfo

Figure 48. RNIF business object

with dh_mimetype

Mame String
CustiD String
elem_name=RMIFexample; dh_mimetype=applicationf:_ros
B RMIFkizg RMET_Pip3a2FricesndtyvailabiltyQuery | ettanet_agent;type_name=baseg4Binary type_ns=http: it

sy 3 orgl2001 SMLSchemas, xedtype=true

The SOAP message created from this business object may look like this:

<CustomerInfo>

<Name>IBM Corporation</Name>
<CustID>95626</CustID>
<RNIFexample
xsi:type="xsd:base64Binary">1AWERYER238WI8EYR9238728374871892787ASRIK23423
JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRIK234
34JKAWERJ234AWERIJHIA23488RAHASF1AWERYER238WI8EYRI238728374871892787ASRIK2
4234JKAWERJ234AWERIJHI423488RAHASF1AWERYER238WI8EYR9238728374871892787ASRJ
234234JKAWERJ234AWERIJHIA23488R4HASFWR234

</RNIFexample>
</CustomerInfo>

Chapter 5. SOAP data handler

131

Note that the RNIF example element contains an RNIF encoded string that has
been base64 binary encoded as its element value. Also, note that elem_name,
elem_ns, type_name, type_ns, and xsdtype ASI properties remain relevant for this
business object attribute. In this example, the specified elem_name dictates the
name of the SOAP element upon message creation.

Note: If the element value returned by the called data handler is encoded text, the
type_name property must be set to base64Binary, the type_ns must
correspond to an xsd namespace, and xsdtype must be set to true.

xsd:base64Binary: When you set the type_name and type_ns to resolve to
xsd:base64Binary, the SOAP data handler encodes the value from the business
object before setting the value for the corresponding element. Using the Apache
API, the data handler queries the registry for a base64Binary serializer, serializes
the string returned from the called data handler, and sets the element’s value.

Schema complexType indicators
The following sections discuss the effects of schema complexType Indicators on
business objects. The indicators include:

¢ maxQOccurs
* minOccurs
e all

* sequence
* choice

maxOccurs and minOccurs indicators for simple types: The maxOccurs indicator
specifies the maximum number of times an element can occur within a complex
type. The minOccurs indicator specifies the minimum number of times an element
should occur within a complexType.

Consider this Schema:

<xs:element name="Address" type="Address">
<xs:complexType name="Address">
<xs:sequence>
<xs:element name="AddressLine" type="xsd:string" maxOccurs="10"/>
<xs:element name="SuiteNumber" type="xsd:string" minOccurs="3"
maxoccurs="unbounded" />
<xs:element name="City" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The example above indicates that the AddressLine element can occur at most ten
times in an Address element, while the SuiteNumber element must occur at least
three times. The business object that corresponds to this schema must have an N
cardinality wrapper object for each maxoccurs/minoccurs indicator that has the
following ASI:

maxOccurs=N;wrapper=true

or

minOccurs=3;wrapper=true;

The wrapper=true ASI indicates that this object is a wrapper, and therefore not
explicitly written to the SOAP message. Instead, there must be one child of simple
type in this wrapper object. At run time, for SOAP to business object
transformations, the data handler reads the N child objects of the wrapper and

132 Adapter for Web Services User Guide

creates a corresponding element for each one. When performing
business-object-to-SOAP-message transformations, the data handler creates child
objects in the N cardinality wrapper for every element it encounters.

The corresponding SOAP business object resembles that shown in

Piog Mame Tvpe ey | Card App Spec Info |
1 B &ddress Address W |1

14 B Addressline Addressline_wrap | [| N maceoccurs=1 0; wrapper=true
114 AddressLine String ™

11.2 OhbjectEventld String

1.2 B Suitetumber SuiteMumber_wrap | | M minocours=3 wrapper=true
121 Suiterumber String I~

1.22 OhjectEventld String

13 City String |l

1.4 OhjectEventld String

2 OhbjectEventid String

Figure 49. minOccurs and maxQOccurs of simple type ASI in a SOAP business object

The SOAP message that corresponds to the business object shown in is as
follows:

<Address xsi:type="ns0:Address">
<AddressLine xsi:type="xsd:string">Linel</AddressLine>
<AddressLine xsi:type="xsd:string">Line2</AddressLine>
<SuiteNumber xsi:type="xsd:string">600</SuiteNumber>
<SuiteNumber xsi:type="xsd:string">650</SuiteNumber>
<SuiteNumber xsi:type="xsd:string">700</SuiteNumber>
<City xsi:type="xsd:string">San Francisco</City>

</Address>

Note: The SOAP data handler processes maxOccurs and minOccurs indicators in
the same way, without validating the maximum or minimum occurrences of
elements. The data handler simply provides a container structure to hold
multiple instances of a particular element with the maxOccurs and
minQOccurs indicators. This applies to simple and complex types.

maxOccurs and minOccurs indicators for complex types: The <maxOccurs>
indicator specifies the maximum number of times an element can occur within a
complex type. The <minOccurs> indicator specifies the minimum number of times
an element should occur within a complexType. Consider the maxOccurs indicator
in the following schema:

<xs:element name="Address" type="Address">
<xs:complexType name="Address">
<xs:sequence>
<xs:element name="AddressInfo" type="AddressInfo" maxOccurs="3"/>
<xs:element name="City" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="AddressInfo">
<xs:sequence>

Chapter 5. SOAP data handler 133

<xs:element name="StreetLine" type="xsd:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

The example above indicates that the AddressInfo complex type element can occur
at most three times in an Address element. The corresponding business object for
this schema will not have a wrapper object, since the complexType AddressInfo
itself can be of N cardinality. The following ASI will be placed at the N cardinality
attribute: maxoccurs=3

shows the corresponding SOAP business object.

Pos Mame Type Key | Card | App Spec Info
1 B Address Address W |1

1.1 H Addressinfo Addressinfa I~ I MAXOCCUrE=3
111 Streetline String I~

11.2 OhjectEventd String

1.2 City String I

1.3 OhjectEventid String

2 OhjectEventld String

Figure 50. minOccurs and maxOccurs of complex type ASI in a SOAP business object

The SOAP message that corresponds to the business object shown in is as
follows:
<Address xsi:type="ns0:Address">
<AddressInfo xsi:type="ns0:AddressInfo">
<Streetline xsi:type="xsd:string">100 Market St.</ StreetlLine>
<StreetLine xsi:type="xsd:string">Apt 15</ StreetLine>
</AddressInfo>
<City xsi:type="xsd:string">San Francisco</City>
</Address>

all indicator: The all indicator specifies by default that the child elements for this
complexType can appear in any order and that each child element must occur zero
or one times. Consider the following Schema:
<complexType name="Item">
<all>
<element name="quantity" type="xsd:int"/>
<element name="product" type="xsd:string"/>
</all>
</complexType>

The example above indicates that the elements quantity and product, can occur in
any order in the SOAP message. The quantity element may occur first and the

product element second, or vice versa.

shows the business object that corresponds to this schema fragment.

134 Adapter for Web Services User Guide

Poz Mame Type Card | App Spec Info

1 H ltem tem 1 all=fem_wrapper
141 H tem_wrapper tem_wrapper M wrapper=true
111 guantity String

11.2 product String

11.3 OhbjectEventld String

1.2 OhbjectEventld String

2 ObjectEventld String

Figure 51. all indicator ASI in a SOAP business object

The corresponding SOAP message fragment is as follows:
<Item xsi:type="ns0O:Item">

<quantity xsi:type="xsd:string">12</quantity>

<product xsi:type="xsd:string">2</product>
</Item>

sequence indicator: The sequence indicator specifies that child elements must
appear in the order specified in the complexType.
<complexType name="Item">
<sequence>
<element name="quantity" type="int"/>
<element name="product" type="string"/>
</sequence>
</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this
indicator. By default, the data handler reads and writes SOAP elements in the
order specified in the business object.

choice indicator: The choice indicator specifies that one and only one of the
elements in a complexType can appear in the SOAP message. Consider the
following schema:
<complexType name="Item">
<choice>
<element name="quantity" type="int"/>
<element name="product" type="string"/>
</choice>
</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this
indicator. When converting a business object to a SOAP message, the data handler
defers to your choice of which elements should appear in the SOAP message.
When converting a SOAP message to a business object, the data handler reads the
existing element and populates the attribute to which it corresponds.

ASI in SOAP-to-business object transformations

The SOAP data handler uses a business object’s ASI to read and validate an

incoming SOAP message. The following rules apply to ASI validation by the SOAP

data handler:

* Header and body processing are the same.

* The SOAP ConfigMO property, TypeCheck, must be set to strict and Typelnfo
set to true for the data handler to perform the validation described in the
sections below.

Chapter 5. SOAP data handler 135

* type_name and type_ns validation are performed concurrently since type
validation is generally dependent on both properties.

Note: Unless otherwise stated, all ASI discussed in the following sections is
attribute-level ASI

elem_name validation
The following rules apply to validation for simple, cardinality 1 and cardinality n
attributes:

1. When encountering an element while parsing a SOAP message, the data
handler first searches all of the ASI at the business object level, attempting to
match the element’s name against the elem_name value.

2. If a match is not found, the data handler attempts to match the element’s
name against each of the attribute names at that business object level.

3. If neither search succeeds, the data handler fails.

elem_ns validation
The following cases apply to validation for simple, cardinality 1 and cardinality n
attributes:

1. When neither elem_ns ASI nor xmlns from the SOAP message for this element
exist, the element is properly validated.

2. When elem_ns ASI does not exist and the corresponding element from the
SOAP message does have an xmlins specified, the data handler defaults the
elem_ns to the last elem_ns read from the business object that was in the scope.
The data handler compares this value with the xmlns value from the SOAP
message. If there is no match, validation fails.

3. When elem_ns ASI does exist and the corresponding element from the SOAP
message does not have xmlns specified, the data handler verifies that the
elem_ns specified in ASI matches one of the namespaces in the current scope of
the SOAP message. If there is no match, validation fails.

type_name and type_ns validation
The sections below discuss type_name and type_ns validation.

Simple attributes: The following rules apply to type_name and type_ns
validation when xsdType is true:

* Both type_name and type_ns are specified Using the type_name and type_ns
pair, the data handler creates a corresponding java Class object. Using the
incoming SOAP message typename and typenamespace, another java Class
object is queried. It the two java Class objects match, validation succeeds.
Otherwise, validation fails.

* Neither type_name nor type_ns are specified The data handler maps the simple
business object attribute to a java Class object. Using the incoming SOAP
message typename and typenamespace, another java Class object is queried. If
the two java Class objects match, validation succeeds. Otherwise, validation fails.

* type_name only is specified Simple Type Validation fails. Both type_name and
type_ns or neither should be specified when xsdType is true.

* type_ns only is specified Simple Type Validation fails. Both type_name and
type_ns or neither should be specified when xsdType is true

The following rules apply to type_name and type_ns validation when xsdType is
false:

* Both type_name and type_ns are specified The data handler performs a direct
comparison between the SOAP message typename and typenamespace pair and

136 Adapter for Web Services User Guide

the type_name and type_ns values specified in ASIL If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

Neither type_name nor type_ns are specified The data handler maps the simple
business object attribute to a java Class object. Using the incoming SOAP
message typename and typenamespace, another java Class object is queried. If
the two java Class objects match, validation succeeds. Otherwise, validation fails.

type_name only is specified The type_ns value defaults to the element
namespace found in the business object ASI. Using this default type_ns and the
type_name specified in ASI, the data handler performs a direct comparison
between these values and the SOAP message typename and typenamespace. If
the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

type_ns only is specified The type_name value defaults to the business object
attribute type. Using this default type_name and the type_ns specified in ASI,
the data handler performs a direct comparison between these values and the
SOAP message typename and typenamespace. If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

Complex attributes (cardinality 1 and n): The following rules apply to
type_name and type_ns validation when xsdType is true:

Both type_name and type_ns are specified xsdType is ignored. The data
handler processes as if xsdType is false.

Neither type_name nor type_ns are specified xsdType is ignored. The data
handler processes as if xsdType is false.

type_name only is specified xsdType is ignored. The data handler processes as
if xsdType is false.

type_ns only is specified xsdType is ignored. The data handler processes as if
xsdType is false.

The following rules apply to type_name and type_ns validation when xsdType is
false:

Both type_name and type_ns are specified The data handler performs a direct
comparison between the SOAP message typename and typenamespace pair and
the type_name and type_ns values specified in ASL If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

Neither type_name nor type_ns are specified The type_name value defaults to
the business attribute type. The type_ns value defaults to the element namespace
found in the business object ASI. Using this default behavior, the data handler
performs a direct comparison between these values and the SOAP message
typename and typenamespace pair. If the pairs are exactly alike, validation
succeeds. Otherwise, validation fails.

type_name only is specified The type_ns value defaults to the element
namespace found in the business object ASI. Using this default type_ns and the
type_name specified in ASI, the data handler performs a direct comparison
between these values and the SOAP message typename and typenamespace. If
the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

type_ns only is specified The type_name value defaults to the business object
attribute type. Using this default type_name and the type_ns specified in ASI,
the data handler performs a direct comparison between these values and the
SOAP message typename and typenamespace. If the pairs are exactly alike,
validation succeeds. Otherwise, validation fails.

Chapter 5. SOAP data handler 137

attr_name and attr_ns validation
While reading SOAP message into a business object, each SOAP element is
searched for SOAP attributes. If found, these attributes are compared to the
attr_name property values from the corresponding BO. For example, consider this
SOAP message:
<CustInfo City="4" State="5" Street="2" Zip="6">

<Name xsi:type="xsd:string">1</Name>

<Street2 xsi:type="xsd:string">3</Street2>
</CustInfo>

Now consider the business object definition structure (with the attribute level ASI
specified to the right of each attribute) shown i

Mame Type Anp Spec Info
B Custinfo Customerinfo

Mame String

Streett String attr_name=Street
Street2 String

City String attr_name=City
State String attr_name==State
Zip String attr_name=7ip

Figure 52. attr_name and attr_ns validation

The data handler would follow these processing steps:
1. Read the element name CustInfo.
2. Resolve the business object attribute that corresponds to this element name.

3. Read the attributes of the SOAP element and attempt to match them against
the ASI of the child attributes. In this case, the SOAP message Street matches
the business object attribute Streetl, City matches the business object attribute
City and so on.

4. The child elements for CustInfo are read and processed in the same manner as
the rest of the body.

Note: attr_ns is not validated.

The data handler loops through the SOAP attributes for a given element. For each
attribute encountered, the data handler searches the business object for a
corresponding attribute. If found, the business object attribute is populated with
the value of the SOAP attribute. If a corresponding business object attribute is not
found, the data handler continues to the next SOAP attribute.

Calling a data handler from within the SOAP data handler

The SOAP data handler can read an encoded element value from a SOAP message
into a business object using another data handler. For example, an RNIF document
may be one of the formats in which a SOAP element value is encoded. To make
use of this functionality, an RNIF business object can be added at any level of a
SOAP Child business object. To signify to the SOAP data handler that another data
handler must be used when transforming this RNIF encoded String to an RNIF
business object, you must add the dh_mimetype property to the attribute’s ASIL. The
value of the dh_mimetype ASI should be a legal mimeType specified in the
MO_DataHandler_Default business object. The mimeType is used to determine

138 Adapter for Web Services User Guide

which data handler to use on the String. For example, given the following SOAP
message where RNIFExample is the SOAP element that contains an RNIF encoded
String:

<CustInfo>

<Name>IBM Corporation</Name>

<CustID>95626</CustID>

<RNIFexample xsi:type="xsd:base64Binary">
1AWERYER238W98EYR9238728374871892787ASRIK234234JKAWER
J234AWERTJHI423488RAHASF1AWERYER238WI8EYR923872837487
1892787ASRJIK234234JKAWERI234AWERTJHI423488R4HASF1AWER
YER238W98EYR9238728374871892787ASRIK234234JKANERIZ234A
WERIJHI423488R4HASF1AWERYER238WI8EYR92387283748718927
87ASRJIK234234JKAWERI234AWERTJHI423488R4AHASFWR234

</RNIFexample>

</CustomerInfo>

The SOAP business object would look like that shown in

Mame Type App Spec Info
B Custinfo Customerinfo

Mame String
Street String attr_name=Strest
Street2 String
City String attr_name=City
State String attr_name==State
Zip String attr_name=7ip

Figure 53. RNIFExample business object

Note that the RNIFExample element contains an RNIF encoded String as its
element value. Also, note that elem_name, elem_ns, type_name, type_ns and
xsdtype ASI properties still remain relevant for this business object attribute.

Note: If the element value returned by the called data handler is encoded text, the
type_name property must be set to base64Binary, the type_ns must
correspond to an xsd namespace, and xsdtype must be set to true.

Default business object resolution

For SOAP to business object transformations, the SOAP data handler and web
services connector adhere to a special contract of exchanging information to resolve
business object names. The connector provides the SOAP data handler with a list
of business object names mapped to BodyName and BodyNamespace pairs. In
addition, if there is a defaultfault business object set in the TLO, this information is
passed to the data handler. Given this information, the SOAP data handler
processes using the following steps:

1. The data handler receives a SOAP message

2. The data handler determines if this is a SOAP request, response or fault
message.

a. If a SOAP request or response message, the data handler reads the
BodyName and BodyNamespace from the first child element of the
SOAP-ENV:Body element.

b. If a SOAP fault message, the data handler reads the BodyName and
BodyNamespace from the first child element of the detail element in the
fault message. If there is no detail element in the fault message, the data
handler uses the defaultfault business object for this transformation

Chapter 5. SOAP data handler 139

3. If a defaultfault business object has not already been chosen, the data handler
attempts to match the BodyName and BodyNamespace found in step 2 to the
pairs found in the list provided by the connector. If a match is made, business
object resolution is successful. If no match is made, the data handler fails with
a meaningful error message.

Specifying a pluggable name handler

With default business object resolution, you can specify a pluggable name handler
to determine the business object to be used in SOAP-message-to-business-object
transformations. You do this by changing the
MO_DataHandler_DefaultSOAPConfig.

The MO_DataHandler_DefaultSOAPConfig has two attributes of type string that
designate:

* ClassName The class name for the SOAP data handler base class. You do not
change this attribute value when specifying a pluggable name handler.

¢ SOAPNameHandler The SOAPNameHandler attribute dictates which name
handler is called. The value of this property should be a class name. The
SOAPNameHandler class is an abstract class with the following signatures:

public static SOAPNameHandler createNameHandler(Object moProps)
public abstract String getBOName(Envelope msgEnv, SOAPProperty prop)

All name handlers written for the SOAP data handler must implement the
getBOName method. The object passed into the createNameHandler method sets
the meta-object properties for this name handler. The SOAPProperty passed into
the getBOName method sets the SOAPProperty passed by the connector call to the
data handler. Here is how the SOAP data handler will call the methods:

SOAPNameHandler nh = SOAPNameHandler.createNameHandler(moProps);
String boName = nh.getBOName(msgEnv, prop);

If the SOAPNameHandler attribute has a value, the SOAP data handler calls the
specified name handler. If the value does not exist, or if the specified name handler
fails to get a business object name, the SOAP data handler is called by default to
perform default business object resolution. Default business resolution describes a
process whereby the connector delivers to the data handler a list of
connector-supported business object containers with information such as Body
Name, Body Namespace, and business object name. The data handler uses this
information to create a business object from the SOAP message. If your name
handler fails, the default business object resolution occurs.

Limitations

The sections below discuss data handler limitations.

SOAP style and use guidelines

140 Adapter for Web Services User Guide

SOAP messages are created using a style and use defined by the web service. The
SOAP data handler provides the levels of support shown in [Table 4

Table 47. Style and use guidelines

Data handler
Style Use Parts defined using |support
document literal element full
document literal type limited (see below)

Table 47. Style and use guidelines (continued)

Data handler
Style Use Parts defined using |support
document encoded element none
document encoded type limited (see below)
rpc literal element none
rpc literal type full
rpc encoded element none
rpc encoded type full

Part and part element order

When the SOAP data handler is transforming a SOAP message into a business
object and the SOAP message follows either the document/literal/type or
document/encoded/type formats, the message parts must be in the order
described in the WSDL. For example, consider the following WSDL:

<operation name="GetQuote"

style="document" ...>
<input>
<soap:body parts="Partl Part2 Part3 Part4" use="literal">
</input>

</operation>

<definitions
xmins:stns="(SchemaTNS)"

xmins:wtns="(Wsd1TNS)"

targetNamespace="(Wsd1TNS) ">

<schema targetNamespace="(SchemaTNS)"
elementFormDefault="qualified">
<element name="SimpleElement" type="xsd:int"/>
<element name="CompositETement" type="stns:CompositeType"/>
<complexType name="CompositeType">
<all>
<element name='elem a' type="xsd:int"/>
<element name='elem b' type="xsd:string"/>
</all>
</complexType>
</schema>

<message...>
<part name='Partl' type="stns:CompositeType"/>

<part name='Part2' type="xsd:int"/>

<part name='Part3' element="stns:SimpleElement"/>
<part name='Part4' element="stns:CompositeElement"/>
</message>

0

</definitions>

The SOAP message must adhere to the order defined by the parts. In the SOAP
example below, notice that Partl elements precede Part2, Part3, and Part4 elements.
This order must be maintained for proper BO resolution.

<soapenv:body... xmlns:mns="(MessageNS)"
xmlns:stns="(SchemaTNS) ">
<stns:elem a>123</stns:elem_a>
<stns:elem_b>hello</stns:elem_b>
<soapenc:int>123</soapenc:int>123</soapenc:int>123</soapenc:int>
<stns:SimpleETement>123</stns:SimpleElement>
<stns:CompositeElement>

Chapter 5. SOAP data handler 141

<stns:elem a>123</stns:elem a>
<stns:elem_b>hello</stns:elem_b>
</stns:CompositeElement>
</soapenv:body>

When the SOAP message follows either the document/literal/type or
document/encoded/type formats, part elements must be in order, too. In Partl of
the example above, the elem_a tag must precede the elem_b tag. This limitation is
dictated by the data handler’s business object resolution process. Since default
business object resolution for document style makes use of the first element’s body
name and namespace, these must be the same element in all SOAP messages of
this particular request, response, or fault so that the same business object is
resolved in each case.

Note: When the SOAP message follows either the document/literal/type or
document/encoded/type formats, elements must not be optional.

XML limitations

The following XML structures, features, and notation are not supported:
* Multi-dimensional arrays

* Dartially transmitted arrays

* Sparse arrays

* Mixed content

* Sequence, group, and choice model group components with maxOccurs greater
than one

142 Adapter for Web Services User Guide

Chapter 6. Enabling collaborations for request processing

« |"Request processing collaboration checklist”]

This chapter describes the steps you must follow to enable collaborations for
request processing. Collaborations use the connector to invoke web services.

Request processing collaboration checklist

Using Business Object Designer Express to generate business objects is part of the
process of developing collaborations. You must perform the following tasks,
described in sections below, to generate business objects that a collaboration can
use to invoke web services:

1. Identify the WSDL document either from a URL, UDDI or a file system. You
use third-party tools for this task—the web services connector provides no tools
for this task.

2. Open Business Object Designer Express and launch the WSDL ODA. For
further information, see|“Starting the WSDL ODA” on page 157

3. Configure the ODA.
4. Confirm your selections.

5. Generate a top-level business object that includes Request and (for synchronous
requests) Response and Fault business objects as well as SOAP Config MOs,
Protocol Config MOs, header container and child objects and
application-specific information appropriate to each object and attribute. The
WSDL ODA automates this process.

After you generate business objects, you must perform tasks to enable a
collaboration to invoke a web service using the connector and the SOAP data
handler. For steps on developing a collaboration, including creating a collaboration
template and object and binding its ports, see IBM WebSphere Business Integration
Server Express and Express Plus Collaboration Development Guide. For further
information on creating maps between generic business objects and the
application-specific business objects generated by the WSDL ODA, see IBM
WebSphere Business Integration Server Express and Express Plus Map Development
Guide.

© Copyright IBM Corp. 2004 143

144 Adapter for Web Services User Guide

Chapter 7. Exposmg collaborations as web services

“Procedure checklist”|

+ [“Identifying or Developing Business Objects” on page 146|

+ |“Choosing or developing a collaboration template” on page 146|

» [“Binding the port of a new collaboration object” on page 146
* |”"WSDL Configuration Wizard” on page 148

* [“WSDL Configuration Wizard processing of business objects in TLO format” on|
page 150|

* [“Processing requirements and exceptions” on page 153|

This chapter describes the design-time procedure of exposing a collaboration as a
web service. This enables the connector to process events when a web service
client invokes a collaboration.

Integrated design tools simplify the task of exposing a collaboration as a web
service. After configuring the collaboration and business objects for web services,
you use the WSDL Configuration Wizard. The wizard creates a WSDL document
and XML schema that represent the collaboration as a web service. The WSDL
outputs not only describe the collaboration but form the basis for its invocation by
a web service client.

Procedure checklist

You must perform the following tasks, described in the sections below, to expose a
collaboration as a web service:

1. Identify or, as needed, develop the business objects for use as request and
optionally (for synchronous event processing) response and fault SOAP
messages. There are two ways to generate these objects: 1) manually, using
Business Object Designer Express, or 2) if a WSDL interface file exists for your
web service, you can use the WSDL ODA to generate the Request and other
(Response or Fault) business objects. If you are following the second approach:
a. Specify the name of the collaboration in the Collaboration WSDL ODA
configuration property. This value dictates the ws_collab ASI in the TLO.

b. Specify either a WSDL_URL or UDDI_InquiryAP
I_URL WSDL ODA configuration property for the WSDL interface file (you
can also specify a directory path to this file, if it resides on your network or
locally).

For further information, see [“Starting the WSDL ODA” on page 157 |

2. Develop a collaboration template or choose an existing one to use the business
objects.

3. Create the collaboration object and its ports for the web service.

You first must ensure that the collaboration object properly populates business
objects. For more information and a step-by-step procedure for creating a
collaboration object, see the Implementation Guide for WebSphere Business
Integration Server Express and Express Plus.

Note: The collaboration object must have its maps configured for the

appropriate transformations. Maps convert the business object received
in the SOAP request message to the business object used by the

© Copyright IBM Corp. 2004 145

collaboration. Maps also convert the business object returned by the
collaboration to the business object that is embedded in the SOAP
response message. For more information about mapping and mapping
procedures, see the Map Development Guide.
4. Use the WSDL Configuration Wizard to create the WSDL document. The utility
also configures the web services connector.

Note: The WSDL Configuration Wizard creates implementation, interface, and
one or more schema files. This document refers to these outputs
collectively as the WSDL document.

5. Publish the WSDL document as required.

Note: The connector provides neither tools nor support for publishing WSDL
documents.

Identifying or Developing Business Objects

You use Business Object Designer Express to create business objects and Connector
Configurator Express to configure the connector to support them.

For more information on Business Object Designer Express, see the Business Object
Designer Express. For detailed information on web services business objects, see
[Chapter 3, “Business object requirements,” on page 25)

Choosing or developing a collaboration template

The collaboration template you choose or develop must have one or more
scenarios to expose as a web service. For further information on collaboration
templates, see Collaboration Development Guide.

Binding the port of a new collaboration object

After you have configured the port of a collaboration template for a business object
type you must create the collaboration object and bind its port to an instance of a
web services connector.

To create a new collaboration object and bind its port to an instance of the web
services connector:

1. Right click the Collaboration Objects folder and select Create New
Collaboration Object. This displays the Create New Collaboration window,

which displays the list of templates (as shown in [Figure 54).

146 Adapter for Web Services User Guide

Create New Collaboration

Create Mew Collaboration Rl
Specify howy to bind ports to connectors and collaboration objects. ﬁ
Finet Fr
Template name | Description I

Cliert Collaboaration to invoke Order Veb Service asynch...
Client Caollaborstion to invoke OrderStatus Web Service ..

Order collaborstion will be exposed s Web Service for .
OrderStatus collaboration will be exposed as Web Servi...

CLIENT _ASYNCH_Order_Caollab_Template
CLIENT_S%MNCH_OrderStatus_Collab_Template
SERWICE_ASYMNCH_Ordder_Collab_Template
SERWICE_SYMNCH_Order Status_Collab_Templste
WiehServiceConnTemplate

Selected Collahoration template: I CLIEMT _SYMCH_OrderStatus_Collab_Template

Collaboration object name: I OrderSta‘tuSSynch[_Collab

= Hack I et = I Eimizk Cancel

Figure 54. Create New Collaboration window

2. Select a collaboration template from the Template Name and enter a name for
the collaboration object in Collaboration object name field. This displays the

Bind Ports window as shown in

select collaboration template

Bind ports
Specify how to bind ports to connectors and collaborstion objects.

Binclith |

Port Buziness Object Defintion Type
1 From CLIEMT_SYMCH_TLO_OrderStatus Wieb Service Mone ;I
2 Tao CLIEMT_SYMCH_TLO_OrderStatus |Connector Mone

Collaboration

A viCE

Figure 55. Bind Ports window

3. Select a port, click the Type arrow to display the pull down menu for the port
and choose WebSerivce (as shown in [Figure 55)
All instances of the web services connector have a ConnectorType
application-specific property. By default, this property is set to WebService. The

147

Chapter 7. Exposing collaborations as web services

Bind Collaborations Port window in System Manager uses the value of the
ConnectorType property to determine which connectors are web service
connectors.

4. Click the BindWith arrow to display a list of connector instances. System
Manager displays instances of connectors whose ConnectorType properties
have values set to WebService. Choose an instance of the web services
connector. (An example is shown in .

Select collaboration template

Bind ports L
Specify how to bind ports to connectors and collaboration objects. ﬁ
Port Buzinezz Object Definition Type I Binchith
1 From CLIEMT_SYMCH_TLO_OrderStatus Web Service ;I Mone -
2 To CLIEMT_SYMCH_TLO_OrderStatus — Connector rone

MiehServicesConnectar

Figure 56. Selecting an instance of the web services connector

5. Click Finish.

You are now ready to run the WSDL Configuration Wizard.

WSDL Configuration Wizard

After you have created the collaboration object and bound its triggering port to an
instance of a web services connector, you are ready to use the WSDL Configuration
Wizard. Using binding, port name, operation and other data you specified for the
collaboration, business object definition, and connector, the utility produces the a
WSDL implementation file (*.imp1.wsd1), a WSDL interface file (*.wsd1), and an
xml schema file (*.xsd). These files are a composite of the collaboration exposed as
a web service, and the utility allows you to specify whether to generate these as
separate files or as one file. The utility supports SOAP over HTTP, HTTPS, and
JMS protocols. Configuration information for the protocol listener framework is
retrieved from the connector-specific property ProtocolListenerFramework. This
property also makes the list of listeners available.

Running the wizard
To run the WSDL Configuration Wizard:

1. Right-click a collaboration object that you have configured for web services and
choose Expose as a web service in the popup menu. The WSDL Configuration
Wizard displays as shown in Eiéure 57

148 Adapter for Web Services User Guide

4]

~Ta User Projects e
[=-12# Integration Component Lit Web Services Configuration %

1= WehServicesSample wWSDL Configuration Wizard

[#]-{== Business Ohjects
== Collaboration Okji Service Mame I SERWICE_SYNCH_OrderStatus_Collab

[=-{= Connectors

[#]-{== Relationships

[#-{= Collaboration Tem

— o vk arvicer ann T ammlatary

Web Services Configurat

{22 Benchimatk

----- @ CLENT_ASY
----- @ CLIENT_S'ha
""" b oo CLIENT £ Target NameSpace I
----- @ OrderStatuss
----- @ SERVICE_AS
""" i SERVICE_SY | PorttConnector) | Operation Busziness Ohject | TLO |
""" { WebServicel | FromiebServi. oetOrderStatus | SERVICE_S¥M... TLO

Directary Mame I CADWEapphire'DevelopmentiitziWebServices J

Collahoration Ports

----- L Samplesapc
----- =JL SampleSiebel
----- L wiehServiced
----- L wiehServices
{7 Databaze Connet
(22 Maps

{72 Schedules

WebSphe

re Business Integration

4L InterChange Servers

SErVers

Serve

Status
Schema and YWSDL Callak fMode far fMon-TLo
tInstances .
f+ Same File {* Synchronous
€~ Differert File © Azynchronous

Einizh I Cancel

Figure 57. WSDL Configuration Wizard

As shown in the columns are as follows:

Port (Connector) The triggering port on the collaboration object that is
bound to a web services connector. The wizard gets this information from
the collaboration object.

Operation If the business object is a TLO, the wizard gets this information
from the Request business object’s SOAP Config Mo BodyName attribute. If
the business object is a non-TLO, then the wizard combines the business
object name and the port name.

Business Object Used to create the schema. The wizard gets this information
from the connector’s supported business objects for this triggering port.

2. Enter the following as needed:

Service Name By default, the name you used to describe the collaboration
object

Directory Name Where the adapter for web services and collaboration
templates and objects reside

Target NameSpace The URL for the collaboration being exposed as a web
service.

Collaboration Ports The information in these fields are as specified in the
Bind Ports window of the collaboration object configuration procedure.

Collaboration Mode for Non-TLO This does not apply if you are using
TLOs. Otherwise, if you using a non-TLO object as input, you must specify
synchronous or asynchronous.

Chapter 7. Exposing collaborations as web services 149

* Schema and WSDL Specify whether you want these outputs in a single file
or in separate files.

3. Click Finish. The utility generates outputs based on the inputs and
specifications you entered, all of which are summarized in the next section.

WSDL Configuration Wizard processing of business objects in
TLO format

The configuration wizard creates a WSDL operation for each triggering port of a
collaboration object that is bound to a web services connector. The creation of the
operation is based on the business objects that are associated with the invocation of
this collaboration.

The configuration wizard determines that a business object is in the TLO format by
reading the object-level ASI ws_eventtlo. If the ASI property is set to true, the
business object is a TLO. Using the TLO, the following WSDL properties are found:

* Operation Name and BodyNS When the wizard finds business objects in TLO
format, it creates an operation name using the BodyName property of the SOAP
Config MO within the SOAP Request business object of the TLO. Similarly, the
wizard determines the message namespace to be the BodyNS property in the
same SOAP Config MO

* Execution Mode By inspecting the ws_mode property from the business object
level ASI of the TLO, the wizard determines that the mode is either synchronous
or asynchronous, and creates a REQUEST_RESPONSE or ONE_WAY WSDL,

respectively.

To create WSDL operations based on TLOs, a collaboration can be configured in
two ways, with and without maps.

TLOs with maps: A collaboration is generally configured to accept Generic
Business Object (GBO) requests. That is, the collaboration template triggering ports
subscribe to GBOs. To use TLOs in this case, the collaboration must be bound to a
web services connector, and the connector must support the transformation of the

GBO to TLOs via maps. shows this scenario.

GBO TLO |:>

Collaboration Web services
connector

Figure 58. TLO with map

When the collaboration and connector are configured in this way, the wizard
determines that the TLO business object will be used to create the operations
described in the WSDL document. This determination is made by inspecting the
connector-supported business objects and associated maps. It is important for the
run-time processing of the web services connector that the configured maps always
transform the collaboration’s GBO to one and only one TLO. Also, it is important
that the source and destination business objects of the inbound map translate to
the destination and source business objects of the outbound map, respectively.

TLOs without maps: The wizard also supports processing TLOs without maps. In
this case, the collaboration template’s triggering ports subscribe to TLOs directly.

150 Adapter for Web Services User Guide

Because the web services connector supports the TLOs, maps are not required.

illustrates this scenario.

TLO |:>

Collaboration Web services
connector

Figure 59. TLO without map

When the collaboration and connector have been configured in this way, the
wizard uses the TLO business object found in the collaboration to create the
operations described in the WSDL document. The wizard determines that no maps
are configured for this port.

WSDL Configuration Wizard processing of business objects in
non-TLO format

Support for non-TLO business objects allows you to use pre-existing collaborations
and maps for exposing as web services. For this reason the wizard also supports
creating WSDL operations using business objects that are not in TLO format.

Similar to the TLO process, the wizard determines that a business object is in
non-TLO format by reading the object-level ASI ws_eventtlo. If the ASI property
does not exist or exists but is set to something other than true, this business object
is a non-TLO. A non-TLO is any business object that does not adhere to the web
services TLO structure. Using the non-TLO, the wizard discovers the following
properties:

* Operation Name and BodyNS When the wizard finds business objects in
non-TLO format, it creates an operation name using a combination of the
collaboration name, the business object name, and the port name. The Body
Namespace for the WSDL operation is configured using the Target Namespace
entry in the WSDL Configuration Wizard.

¢ WSCollaborations The wizard creates a hierarchy of properties in the web
services connector that includes a BO Name, a SOAP Body Name, a SOAP Body
Namespace, and a Mode for each WSDL operation in a port of a collaboration
that is exposed as a web service. |Ei§ure 60[shows a sample WSCollaborations

property:

Chapter 7. Exposing collaborations as web services 151

Etonnectur Configurator - [ICS - WebServicesGBONonTLO : QAProject] =131
| File Edit View ‘Window Help =1=]x
IEET- ICE IR

Standard Propetties 1 Connector-Specifi... I Supported Busine...] Ascociated Maps | Resources Tracel/Log Files | Messaging] Data Hand\er]
Property alue Encrypt | Update he
1 ConnectorType WiebhService [] agent restar
i | JrDl [agert restar
3 B ProtocolListenerFramework [anent restar
4 B WsCaollaborations [] agert restar
= B webhServicesFB0OMonTLOCollabOhject [agent restar
B B From [agert restar
7 B Cperstiond [agent restar
t=4 BOMatne CUSTOMERZ-GBO [] agent restar
te] Bodyhame WebServicesGBOMNonTLOCollak Chject CUSTOMER2-GBOFrom [agent restar
10 BodyM3 WebServicesGEONonTLOCollahOhject TargetNSiveb ServicesGBONon TLO CollabDbject [anent restar
11 Maile synch [] agert restar
1 | |

A

Figure 60. WSCollaborations

* Execution Mode The Execution mode for the WSDL operation is configured
using the Collab Mode for Non-TLO selection button in the WSDL
Configuration Wizard.

To create WSDL operations based on non-TLOs, a collaboration can be configured
in two ways, with and without maps.

Non-TLOs with maps: Collaborations are generally configured to accept Generic
Business Object (GBO) requests. At the same time, there may be pre-existing maps
that transform the GBO from the collaboration to a non-TLO business object.
shows this scenario.

GBO non-TLO |:>

Collaboration Web services
connector

Figure 61. Non-TLO with map

In this case, the wizard uses the non-TLO business object to create WSDL
operations described in the WSDL document. It is important for the run-time
processing of the web services connector that the configured maps always
transform the collaboration’s GBO to one and only one non-TLO. Also, it is
important that the source and destination business objects of the inbound map
translate exactly to the destination and source business objects of the outbound
map respectively.

Non-TLOs without maps: In highly specialized cases, collaborations may be
configured to accept requests from business objects other than GBOs. In this case,

152 Adapter for Web Services User Guide

the non-TLO is a direct business object for the collaboration, and no maps exist.

Figure 62| shows this scenario.

non-TLO |::>

Collaboration Web services
connector

Figure 62. Non-TLO without map

In this case, the wizard determines that no maps are configured for this port, so it
uses the non-TLO business object to create WSDL operations described in the
WSDL document.

Processing requirements and exceptions

The sections below discuss requirements of the WSDL Configuration Wizard that
apply to all types of objects (TLOs and non-TLOs) unless otherwise explicitly
mentioned. For further information on business object requirements for web
services TLOs, see [Chapter 3, “Business object requirements,” on page 25

Note: Among the business object ASI that the WSDL tool reads, only the following
can have internationalized characters:

* elem_name
* elem_ns

e attr_name
e attr_ns

¢ BodyName
* BodyNS

* type_name

* type_ns

Support for Use property in SOAP Config MO: The WSDL Configuration
Wizard supports the Use property in SOAP Config MOs, but throws an error if the
Use value in a SOAP Request BO and the corresponding SOAP Response BO are
different. You can set the Use value to literal or encoded to generate a WSDL
document. For more information on the Use property and its values, see
[Use impact on SOAP messages” on page 114

Support for Style in SOAP Config MO: Only rpc style is supported for exposing
collaborations as web services. If the Style is specified as document in the SOAP
Config MO, the wizard will throw an error.

Fault processing: The details attribute inside a SOAP Fault business object can
have one child attribute only. Otherwise, the utility generates an error.

The utility accepts Fault business objects. If it encounters multiple Fault business
objects, the utility processes the header container of the first or default fault
business object. Processing is as follows:

* No Namespace is specified for the soap:fault element inside the binding section.
 Fault is always specified using the document style and use literal.

Chapter 7. Exposing collaborations as web services 153

* Message parts are specified using the element attribute.

Header fault processing: A header fault is processed as soap:headerfault, a child
element of soap:header inside the WSDL document binding section. The header
fault is processed using the headerfault ASI specified in the header child business
object as follows:

* No Namespace is specified for the soap:headerfault element.
* A header fault is always specified using the document style and use literal.

* Message parts are specified using the element attribute instead of the type
attribute.

Header Processing: Multiple header attributes are specified as SOAP header child
business objects inside a SOAP header container business object. A Header
container business object is identified by its ASI: soap_Tocation=S0APHeader.
During utility processing, a soap:header element is created inside binding section
for each of the attributes inside the header container business object and the
following rules apply:

* The header is always specified using document style and use literal.

* Message parts are specified using the element attribute instead of the type
attribute.

* If no elem_ns is specified, headers are written to the Body Namespace.

Note: The header container business object can be a child of SOAP Request,
Response or Fault business objects. The namespace attribute is not specified
for the soap:header element.

elem_ns ASI processing: The utility ignores elem_ns ASI at the message part
level. Instead, elem_ns is used in second- and lower-level attributes. Second- level
business object attributes can be defined in a separate namespace if elem_ns is
specified.

JMS protocol processing: SOAP/JMS binding in the port section of the WSDL
document contains the jms:address element. The following is an example of
jms:address element. (Attributes suffixed with "?” are optional).
<jms:address
destinationStyle = "queue"

jmsVendorURI = "http://ibm.com/ns/mgseries"?
initialContextFactory = "com.ibm.NamingFactory"?
jndiProviderURL = "iiop://something:900/wherever"?

jndiConnectionFactoryName = "orange"

jndiDestinationName = "fred"

jmsProviderDestinationName="trash" />

If the LookupQueuesUsing]NDI connector property is set to true, the value of
InputQueue property corresponds to the jndiDestinationName attribute of the
jms:address element of the SOAP/JMS binding. The jms:address element is
specified in the wsdl:port section. If LookupQueueUsing]NDI is set to false, then
the jmsProviderDestinationName attribute is set to InputQueue. InputQueue is the
connector property available under the Listener_JMS hierarchical property. The
initialContextFactory, jndiProviderURL and jndiConnectionFactoryName properties
will be specified only for synchronous processing.

HTTP protocol processing: A sample port section from a WSDL document is
shown below:

154 Adapter for Web Services User Guide

<service name="StockQuoteWebService">

<port name="StockQuoteWebServicePort" binding=
"intf:StockQuoteBinding">

<soap:address location=
"http://Tocalhost:8080/wbia/webservices/stockquoteservice"/>
</port>

</service>

The WSDL Configuration Wizard uses the value of host name and the port from
the context path. If the context path contains only the relative path without the
host name and port, then the value of host name and port property located under
the Listener HTTP configuration property will be used to specify the location
attribute in soap:address xml element.

Chapter 7. Exposing collaborations as web services 155

156 Adapter for Web Services User Guide

Chapter 8. Usmg the WSDL ODA

* |“Starting the WSDL ODA”"]
* [“Running the WSDL ODA” on page 158|
* |“Configuring the agent” on page 158

» [“Specifying the WSDL document” on page 160

* |“Confirming selections” on page 162

* |“Generating the objects” on page 162]

+ [“Limitations” on page 163

Note: The Web Services Description Language (WSDL) Object Discovery Agent
(ODA) is used for generating business objects for request processing and,
when a WSDL Interface file is available, for event processing.

Collaborations use the connector to invoke web services. Or you can expose

collaborations as web services. Web services are described using WSDL (Web

Services Description Language). This chapter describes how to use the Web

Services Description Language (WSDL) Object Discovery Agent (ODA) to generate

business objects. The connector and SOAP data handler use these business objects

when collaborations invoke a web service and when exposing collaborations as
web services.

You use the WSDL ODA to generate business objects for two purposes:
1. The WSDL ODA can take a WSDL implementation file and generate business
objects for a collaboration to invoke an external web service.

2. The WSDL ODA can take a WSDL interface file and generate business objects
for a collaboration that is exposed as a web service.

You can launch the WSDL ODA when you use the Business Object Designer
Express. The WSDL ODA reads a WSDL document and creates the business objects
required by the connector and SOAP data handler. The WSDL ODA simplifies the
job of business object development.

Note: The WSDL ODA handles SOAP/HTTP and SOAP/JMS bindings in a WSDL.

Starting the WSDL ODA

You can start the WSDL ODA using one of the following scripts:
* On Windows:
— start WSDLODA bat

Note: You can also start the WSDL ODA using the shortcut that the Installer
automatically creates for Windows environments.
* On OS/400, use one of the following methods:

— From the Windows system where WBI SE Console for OS/400 is installed,
select Programs>IBM Websphere Business Integration Console >Console .
Then specify the OS/400 system name or IP address and a user profile and
password that has *JOBCTL special authority. Select the ODA from the list of
ODAs and select the Start ODA button.

— From the OS/400 command line, to start the ODA as a batch job, run CL
Command QSH and from the QSHELL environment run:

© Copyright IBM Corp. 2004 157

/QIBM/ProdData/WBIServer43/bin/submit_oda.sh pathToODAStartScript
JobDescriptionName

where pathToODAStartScript is the full path to the ODA start script and
JobDescriptionName is the name of the job description to use in the
QWBISVR4S3 library.

— From the OS/400 command line, to start the ODA as a non-batch job, run the
CL Command QSH and from the QSHELL command entry, run the ODA
startup script directly:
start_ODAName.sh

¢ On Linux:

— start WSDLODA .sh

You select, configure, and run the WSDL ODA using Business Object Designer
Express. Business Object Designer Express locates each ODA by the name specified
in the AGENTNAME variable of each script or batch file.

Running the WSDL ODA

An Object Discovery Agent (ODA) simplifies the work of building business objects
for request processing. Business Object Designer Express provides a graphical
interface to all available ODAs, and helps you find the agent you need. The WSDL
ODA is named, by default, WSDLODA. The name as it appears in the WSDL
Wizard depends on the value of the AGENTNAME variable in the start_WSDLODA.bat
file or start_WSDLODA.sh file. For more on ODAs and business object definitions
and how to configure, start and use ODAs, see the IBM WebSphere Business Object
Development Guide. You are encouraged to consult that document as needed while
following the procedures below.

After starting the Object Discovery Agent, follow these steps to launch the WSDL
ODA:

1. Open Business Object Designer Express.

2. From the File menu, select the New Using ODA... submenu. Business Object
Designer Express displays the Select Agent dialog box in the Business Object
Wizard.

3. Click the Find Agents button to display all running agents and select the WSDL
ODA.. If Business Object Designer Express does not locate your WSDL ODA,
check the setup of the ODA.

4. Select the WSDL ODA in the Located Agents pane list and click Next.

This displays the Configure Agent wizard window, which shows the
configuration properties you need to specify.

Configuring the agent

shows the Configure Agent window of the WSDL ODA Business Object
Wizard.

158 Adapter for Web Services User Guide

Business Object Wizard - Step 2 of 6 - Configure Agent 0] x|

 Profile

Current profile: Itest_local_rpc_literal vl

Save | Mew | Femove |
Property Value Description
1 WWSDL_URL CoTestingwysdlihy StockQuaote-implementation seesdl WSDL location URL or File
2 LIDD_Irncquiry AP1_URL UDD Inguiry URL
3 WiehServiceProvider Mame of the Web Service Provider
4 WehService Mame of the Weh Service inVWsDL file
5 MimeType The mime type for the DataHandler to inwvoke
E BOPrefix SOLAP Default prefix for the generated business ohbject
7 B erh Create Default verk
i TraceFiletame WWEODAtrace b Mame of the trace file.
9 Tracelewvel 5 Trace level for the sgent.
10 MessageFie WSODALgent txt Path to the message file
< Back I Hext > I Cancel

Figure 63. Configure Agent window

lists the properties you must configure for the WSDL ODA.

Note: The first time you use the WSDL ODA, you must specify values for each
configuration properties. After doing so, you can save the property values in
a profile by clicking the Save button. The next time you use the WSDL
ODA, you can select the saved profile from the “Select profile” box.

Table 48. WSDL ODA configuration properties

Property Type Required Default Description

WSDL_URL String Yes, when not None The URL of the WSDL
specifying a document. This value can
UDDI also be set to the absolute

path to a local WSDL file.
You can specify the URL
in a native language.

UDDI_InquiryAP String Yes for UDDI None The URL of the UDDI
I_URL inquiry APIL
WebServiceProvider |String | Yes for UDDI None The name of the target

web service provider. This
is normally the Business
name as published on the
UDDI registry. This entry
is case sensitive and
requires English
characters only.

WebService String Yes for UDDI The name of the web
service. This entry is case
sensitive and requires
English characters only.

Chapter 8. Using the WSDL ODA 159

Table 48. WSDL ODA configuration properties (continued)

Property

Type

Required

Default

Description

MimeType

String

No

xml/soap

The mime type of the
data handler that the
connector invokes. This is
set in the business object
TLO as the default value
and must be in English
characters only.

BOPrefix

String

No

SOAP_

This is appended to the
front of every business
object created. User
configurable (English
characters only) up to
eight characters.

BOVerb

String

Yes

Create

The verb set in the SOAP
Config MO of the
Request, and, optionally,
Response, and Fault
business objects.

Collaboration

String

None

This value dictates the
ws_collab ASI in the TLO
and is mandatory when
generating objects for
event processing.

The next section describes how to specify the WSDL document in the Configure

Agent window.

Specifying the WSDL document

Web service business objects are generated from WSDL documents. This section
shows you how to select and specify the source of a WSDL document in the
Configure Agent window of the ODA.

The WSDL document may reside on the local file system or at a URL location on
the web or in a UDDI registry—you specify where the WSDL document resides
and the WSDL ODA retrieves it. (A complete WSDL service description may
consist of more than one document.)

Getting a WSDL document from a URL location

As shown in above:

1. Specify the URL for the WSDL document in the configuration property

WSDL_URL

The ODA then retrieves the list of web services from the WSDL document,
resolving the URLs of imported documents. The WSDL_URL property also
allows you to specify the location of the WSDL file on the local file system
using URL syntax (for example: file://C:/test/wsdl) or an absolute path (for
example: C:\test\wsdl). You must ensure that the ODA has access to this
document and its dependencies (all the imported documents).

2. Click Next.

160 Adapter for Web Services User Guide

The ODA queries the URL for the web service provider and retrieves the list of
services defined in the WSDL at this URL location and then displays the list as

shown in|Figure 64

Note: The WSDL ODA displays the ports that have SOAP/JMS or
SOAP/HTTP bindings only and excludes other types of bindings.

Business Object Wizard - Step 3 of 6 - Select Source

™ il 1

From the tree below, select the source nodes from which the Designer will generate Business Objects.
Click "Mest" to continue,

| Use thiz object instead I

addEnlr;l

s InaddEnteRequest

MHame Drescription
=l SimpletddressBoak S ervice *wieh Service
= Demo Service Port
B sddressBock ServiceBinding _____________For Binding

P e
Binding Input Meszage

- voidR esponse

Binding O utput

tAddreszFromM ame

Binding Operation

- Ingetd ddressFromt ameR equest

Binding Input Meszage

- DutgetdddrezsFromt ameR ezponze

Einding Dutput

[+ getAllListings Binding Operation
[+ putListings Binding Dperation
[+ removeEntry Binding Operation
- removedll Binding Operation
- wWSBus Service Fort
< Back Mext = Cancel

Figure 64. Select Source window

3. Select one and only one of the operations from the list for the port (the
selectable operations are highlighted). You cannot select the service or port
nodes, which are for display purposes only. Note that WSDL operations may be
of several types: ONE_WAY, REQUEST_RESPONSE, SOLICIT_RESPONSE, and
NOTIFICATION. The WSDL ODA supports and displays only
REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to [‘Confirming selections” on page 162.|

Getting a WSDL document from a UDDI registry

The ODA can also retrieve a WSDL document from a UDDI registry instead of a
URL location. For this to occur:

1. Specify the following properties in the Configure Agent window for your
“search key”:

UDDI_InquiryAPI_URL (for example: https://uddi.ibm.com/ubr/inquiryapi)
WebServiceProvider (for example: IBM Corporation)

WebService (for example: StockQuoteService)

The WSDL ODA uses exact name match (findQualifier) for inquiry within
the UDDI registry. Ensure that you are entering the right values for the
parameters. You can use a regular UDDI browser to find services provided
by the service provider.

The WSDL ODA uses these properties, which are described in [Table 48} to
connect to the UDDI registry.

2. Click Next.

Chapter 8. Using the WSDL ODA 161

The ODA queries the UDDI registry for the web service provider and retrieves
the list of services matching the web service parameter you specified. The
WSDL ODA displays the list of services offered by the web service provider in
a window like that shown in When the UDDI query returns more
than one match, the WSDL ODA displays them appended with an underscore
(L) and a sequence number. For example: StockQuoteService_1,
StockQuoteService_2, and so on.

Note: The WSDL ODA displays the ports that have SOAP/JMS or
SOAP/HTTP bindings only.

3. Select one and only one of the operations from the list for the port. You cannot
select the service or port nodes, which are for display purposes only. Note that
WSDL operations may be of several types: ONE_WAY, REQUEST_RESPONSE,
SOLICIT_RESPONSE, and NOTIFICATION. The WSDL ODA supports and
displays only REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to|“Confirming selections”]

Note: The connector supports the UDDI Version 2 API only. Accordingly, you
cannot retrieve WSDL from UDDI registries that do not support UDDI
Version 2.

Confirming selections
After selecting a web service operation source, the WSDL ODA Business Object
Wizard displays a confirmation screen like that shown in
1. Confirm your selections.
2. Click Next and go to[‘Generating the objects.”|

Business Object Wizard - Step 4 of 6 - Confirm source nod. = | O] x|

Buzinezs objects are about to be generated using the zource nodes summarized below. Click "Mext' o
start generating the objects or click "Back' to change vour selection.

Mame D ezcription
=i AF Service Provider
= SimpleAddrezsB ook S ervice ‘wieb Service
=l Demo Service Fort
=l AddressBook_ServiceBinding Port Binding
“ addE ntip Binding Operation

< Back I Mest » I Cancel

Figure 65. Confirm window

Generating the objects

After you confirm your WSDL document sources, the WSDL ODA generates the
business objects and meta-objects for the web service you wish to invoke or for the
collaboration you want to expose as a web service.

162 Adapter for Web Services User Guide

Note: The WSDL ODA cannot automatically select a key attribute for the top-level
business object. For business objects at all other levels, the WSDL ODA sets
the first attribute as the key. Accordingly, when you save WSDL
ODA-generated objects in Business Object Designer Express, an error
message informs you that the top-level object is missing a key attribute.
Assign a key attribute that reflects your business data and business object
requirements, then re-save the objects. Use caution when selecting the key
attribute; it is used in event sequencing and may lead to performance issues
if not selected carefully.

1. Check Save business objects to a file, or check Open the business objects in
separate windows. The latter choice launches the Business Object Designer
Express and opens the business objects in that application.

2. Check Shutdown ODA and click Finish.

Business Object Wizard - Step 6 of b - Save business — |I:I| Xl

Buzness objects were successfully created. vou can zave their definition to the

zerver now of do it later if pou wizh to inzpect them first.

[T Save business objects to the seper
[Save business objects to a file

I Open the new BOs in separate windows

< Back I Finizh I Cancel

Figure 66. Save window

For request processing, the call to the web service must have a request and, if
synchronous, a response and fault messages. For event processing, the
collaboration exposed must have a request and, if synchronous, a response and
fault messages. The WSDL ODA generates business objects for each of these
including the application-specific information (ASI) at every level as well as SOAP
data handler, and protocol Config MOs. The SOAP bindings in WSDL document
determine the structure of SOAP message. For more on business object structure,
see [Chapter 3, “Business object requirements,” on page 25)

Limitations

describes WSDL ODA support for various combinations of attributes style,
use, and part definitions using type and element.

Table 49. WSDL ODA limitations

Style/Use/Parts defined using Description

rpc/encoded/type Supported

Chapter 8. Using the WSDL ODA 163

Table 49. WSDL ODA limitations (continued)

Style/Use/Parts defined using Description
rpc/encoded/element Supported
rpc/literal /type Supported
rpc/literal /element Supported
doc/encoded/type Not supported
doc/encoded/element Not supported
doc/literal/type Supported
doc/literal/element Supported

The WSDL ODA can retrieve WSDL files that are completely self-contained (in one
file) or are separated into an implementation file containing the service element, an
interface file containing all the other WSDL elements including types, messages,
portTypes, and bindings, and one or more files for the schemas. The WSDL ODA is
not able to successfully retrieve WSDL files that have more than one interface file,
for example, with messages and portTypes in one file and bindings in another file.

Schema in the WSDL document must be self-contained in terms of namespace
prefixes. You cannot use a namespace prefix that is defined in the
<definitions>/<types> element of the WSDL document in the <schema> element
that is a child of the <types> element. You need to re-define the namespace prefix
on the <schema> element if it is to be used in the sub-elements of the <schema>
element. The following is an example of a schema that is not self-contained:
<definitions xmins="http://schemas.xmlsoap.org/wsd1/" xmlns:NS="NS">
<types>
<schema xmIns="http://www.w3.0rg/1999/XMLSchema">
<element name="NSElem" type="NS:NSType"/>
</schema>
</types>
</definitions>

Namespace prefix NS is defined on the <definitions> element and is used without
re-definition on the <schema> element. Hence the WSDL ODA will throw an error.
To work around this limitation, re-define the namespace prefix NS on the <schema>
element as shown below:

<definitions xmIns="http://schemas.xmlsoap.org/wsd1/" xmlns:NS="NS">
<types>
<schema xmlins="http://www.w3.0rg/1999/XMLSchema" xmlns:NS="NS">
<element name="NSElem" type="NS:NSType"/>
</schema>
</types>
</definitions>

164 Adapter for Web Services User Guide

Chapter 9. Troubleshooting

The chapter describes problems that you may encounter when starting up or

running the connector.

Start-up problems

Problem

Algorithm Not Supported/Algorithm "SSL’ not available

Error loading keystore:Keystore file path:"<path>"
incorrectly specified:KeyStore not found

KeyManagementError: KeyStore is tampered with,

KeyManagement error

Error loading certificates from keystore

Error creating the server socket, terminating: error

KeyManagementError:UnrecoverableKeyException, Keys
could not be recovered

Potential solution / explanation

This error occurs when the SSL version specified in the
Connector Configurator Express is not supported by your
JSSE provider. Solution: check JSSE provider’s
documentation for the supported SSL versions. For IBM
JSSE make sure your java.security file in the
ProductDir/lib/security directory has the following entry

security.provider.<number>=com.ibm. jsse.
IBMJSSEProvider

where <number> is the preference order for loading the
security provider.

This error occurs if you specify an incorrect path for the
keystore and/or truststore files. Solution: check the
keystore file path specified in the SSL->KeyStore property
in the Connector Configurator Express. Also, if you are
using truststore, check the truststore file path specified in
SSL->TrustStore property in the Connector Configurator
Express.

This error occurs if your keystore and/or truststore have
been tampered with or otherwise corrupted. This error
may also occur if you have specified an incorrect value
for the password. Solution: ensure that the keystore has
not been tampered. Try recreating the keystore. Also
make sure you have entered a correct password in the
SSL->KeyStorePassword and SSL->TrustStorePassword
connector properties.

This error occurs if your certificates and/or keystore,
truststore have been tampered with. This error may also
occur if you have specified an incorrect value for the
password. Solution: check to see if the certificate, keystore
or truststore have been tampered with. Also, ensure that
you have specified a correct password in the
SSL->KeyStorePassword and SSL->TruststorePassword
connector properties.

This error occurs if the SOAP/HTTP or SOAP/HTTPS
protocol listener cannot bind to the port specified in
connector properties. Solution: check the ports specified
for all of the SOAP/HTTP and SOAP/HTTPS protocol
listeners. If the same port is specified for more than one
listener, only one of the listeners can start up.
Additionally, check if you have any other service running
on that port. If so, then you may want to choose a
different port for the protocol listeners.

This error occurs if the keystore or truststore cannot be
used. Solution: create a new keystore.

© Copyright IBM Corp. 2004

165

Problem
SSL Handshake Exception: Unknown CA

You notice excessive JSSE logging in your log file.

You have specified a protocol listener but the listener is
not getting initialized; you see the following warning
message in the connector:

Skipping Protocol Listener Property Set
"SOME_LISTENER_NAME" with protocol
property "":
unable to determine the protocol listener
class.]
You have specified a protocol handler, but it is not
getting initialized; you see following warning
message in the connector.

Unable to determine the type of the
handler; skipping initializing of current
handler. Handler property details:
Name: <Handler Name>;
Value:

Name: Protocol; Value:

Name: ResponseWaitTimeout; Value:

Name: ReplyToQueue; Value: .]
java.lang.NoClassDefFoundError:
Javax/jms/JMSException...
Fail to Tookup, queue: "InProgressQueue"
for specified queue name: "<queue name>"
queue using JNDI "<queue name>""
javax.naming.NameNotFoundException:
<queue name>

Error in initializing, JNDI Context is not initialized, user
can not use JMS protocol

Error in getting initial context

Potential solution / explanation

This occurs if you do not have a CA certificate in your
truststore. Solution: check whether the CA’s certificate, as
well as its self-signed certificates, reside in the truststore.
Also, ensure that the DN of the certificate has the host
name (preferably the IP address).

If you do not want to see all of the underlying JSSE
details on your console, set the value of SSL->SSLDebug
property in the Connector Configurator Express to false.
The connector was unable to extract a valid value for the
Protocol property of the protocol listener. Valid values are
soap/http, soap/https, or soap/jms. Solution: this is not
an error condition. However, if you want the connector to
use this listener, specify a valid Protocol property value.

The connector was unable to extract a valid value for the
Protocol property of the handler. Valid values are
soap/http, soap/https, or soap/jms. Solution: This is not
an error condition. However, if you want connector to
use this handler, specify a valid Protocol property value.

The connector cannot find jms.jar Solution: make sure
that jms.jar is in the connector classpath.

If you are using SOAP/JMS web services with the
connector, then this problem occurs when you do not
create queues. This error may also occur, if you have set
JNDI->LookupQueuesUsing]NDI to true and the
connector is not able to look up the queues using JNDI.
Solution: create the queues required by the connector. If
JNDI->LookupQueuesUsing]NDI is set to true, make sure
queues required by the connector can be looked up using
JNDL

If you have configured the connector to use a SOAP/JMS
protocol listener or SOAP/JMS protocol handler, you
must specify JNDI properties. Solution: make sure that
you have specified required JNDI connector-specific
properties. Refer to your JNDI provider documentation to
determine the libraries and jar files required to connect to
your JNDI provider. Make sure all of the required jar files
are in the classpath of the connector. Also, make sure all
of the required libraries are in the path of the connector.
If you have configured the connector to use a SOAP/JMS
protocol listener or a SOAP/JMS protocol handler, you
must specify JNDI properties. This error may also occur if
you have not specified JNDI properties correctly. Solution:
check the JNDI properties. Make sure your JNDI is
configured properly. Refer to your JNDI provider
documentation to determine the libraries and jar files
required to connect to your JNDI provider. Make sure all
of the required jar files are in the classpath of the
connector. Also, make sure all of the required libraries are
in the path of the connector.

166 Adapter for Web Services User Guide

Run-time errors

Problem

Error parsing HTTP response:Reached end of stream
while reading HTTP response header

Error in the url mentioned , unable to extract host
and port details ,destination is wrong <destination
URL>

Failure in sending event business object <BO Name> with

verb <Verb> to the broker. Received execution status "-1"

and error message:

MapException: Unable to find the map to map

business objects <BO Name> for the connector
controller WebServicesConnector

Failed to transform a soap request into a request business
object. Soap Fault:

Failure in generating request object -
no verb could be set on the request bo

Potential solution / explanation

This error occurs when the connector invokes a
SOAP/HTTP web service. It occurs because your target
web service sent an incorrect HTTP response. Solution:
make sure your target SOAP/HTTP web service end
point address is correct.

This error occurs when the connector invokes an
SOAP/HTTP Web Service. It occurs because you have
specified an incorrect end point address for the
SOAP/HTTP web service. Solution: make sure you have
specified the correct end point address for the web
service.

This error occurs when the integration broker fails to
process the event because the collaboration to which the
connector is sending the event synchronously either does
not exist or does not accept the business object verb.
Solution: if you are using a web services TLO for event
notification, examine the ws_collab object-level ASI of the
TLO. (The name of the TLO is given in the error
message.) Check the value of the ws_collab ASI. Make
sure this collaboration exists and is running. If ws_mode
BO level ASI is set to synch, ws_collab ASI is required.
Check the value of ws_verb object-level ASI. Make sure
the collaboration specified by the ws_collab ASI can be
triggered by the verb specified in the ws_verb ASI. If you
are using a non-TLO for event notification, examine the
WSCollaborations connector property. Find the
collaboration that will be invoked synchronously by this
business object. Make sure this collaboration exists and is
running.

This error occurs during event notification when the
connector is unable to determine the verb of the business
object that the connector is attempting to send to the
integration broker. Solution: if you are using a web
services TLO for event notification, make sure you have
specified ws_verb object-level ASI for this TLO. Specify
the verb as the value of this ASI. If you are using a
non-TLO for event notification, the SOAP message sent
by your web service client must contain the verb element.
The SOAP data handler sets the verb of the business
object using the value of the verb element in the SOAP
message.If the web service client does not send the verb
in the SOAP message, the SOAP data handler cannot set
the verb on the business object. In this case, the connector
cannot deliver the business object to the integration
broker. If you suspect that your web service clients may
not include a verb element in the SOAP message, you
may provide a DefaultVerb verb-level ASI for this
business object. If you do so, the connector sets this verb
on the business object before sending it to the integration
broker.

Chapter 9. Troubleshooting 167

168 Adapter for Web Services User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector
component of the adapters in WebSphere Business Integration Server Express,
running on WebSphere InterChange Server Express.

Not every connector makes use of all these standard properties. When you select
an integration broker from Connector Configurator Express, you will see a list of
the standard properties that you need to configure for your adapter.

For information about properties specific to the connector, see the relevant adapter
user guide.

Configuring standard connector properties

Adapter connectors have two types of configuration properties:
¢ Standard configuration properties
 Connector-specific configuration properties

This section describes the standard configuration properties. For information on
configuration properties specific to a connector, see its adapter user guide.

Using Connector Configurator Express

You configure connector properties from Connector Configurator Express, which
you access from System Manager. For more information on using Connector
Configurator Express, refer to the Connector Configurator Express appendix.

Setting and updating property values
The default length of a property field is 255 characters.

The connector uses the following order to determine a property’s value (where the
highest number overrides other values):

1. Default

2. Repository

3. Local configuration file
4. Command line

A connector obtains its configuration values at startup. If you change the value of
one or more connector properties during a run-time session, the property’s Update
Method determines how the change takes effect. There are four different update
methods for standard connector properties:
* Dynamic
The change takes effect immediately after it is saved in System Manager.
* Component restart
The change takes effect only after the connector is stopped and then restarted in
System Manager. You do not need to stop and restart the application-specific
component or the integration broker.

© Copyright IBM Corp. 2004 169

* Server restart
The change takes effect only after you stop and restart the application-specific
component and the integration broker.

* Agent restart
The change takes effect only after you stop and restart the application-specific
component.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator Express window, or see the Update Method

column in the Property Summary table below.

Summary of standard properties

provides a quick reference to the standard connector configuration
properties. Not all the connectors make use of all these properties, and property
settings may differ from integration broker to integration broker, as standard
property dependencies are based on RepositoryDirectory.

You must set the values of some of these properties before running the connector.
See the following section for an explanation of each property.

Table 50. Summary of standard configuration properties

Update
Property name Possible values Default value method Notes
IAdminIng gueugl Valid JMS queue name CONNECTORNAME /ADMININQUEUE Component | Delivery
restart Transport is
JMS
AdminOutQueue) Valid JMS queue name CONNECTORNAME/ADMINOUTQUEUE [Component | Delivery
restart Transport is
MS
1-4 1 Component | Delivery
restart Transport is
IDL
0-5 0 Dynamic
Application name Value specified for the Component
connector application name restart
BrokerType 1Cs ICS
|CharacterEncoding] ascii7, ascii8, SJIS, ascii7 Component
Cp949, GBK, Big5h, restart
Cp297, Cp273, Cp280,
Cp284, Cp037, Cp437
Note: This is a subset
of supported
values.
|ConcurrentEventTriggeredFlowsd 1 to 32,767 1 Component | Repository
restart directory
is
<REMOTE>
|ContainerManagedEvents| No value or JMS No value Component | Delivery
restart Transport is
MS
|ControllerStoreAndForwardModed | true or false truetrue Dynamic Repository
directory
is
<REMOTE>

170 Adapter for Web Services User Guide

Table 50. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
|ControllerTraceLevel| 0-5 0 Dynamic Repository
directory
is
<REMOTE>
CONNECTORNAME/DELIVERYQUEUE | Component |JMS transport
| restart only
|DelivervTranspora IDL or JMS DL Component
restart
|DuplicateEventElimination true or false false Component | JMS transport
restart only: Container
Managed Events
must be
<NONE>
|[EnableOidForFlowMonitoring] true or false false Component
restart
|Fault£ 2ueug| CONNECTORNAME / FAULTQUEUE Component | JMS
restart transport
only
hms.FactoryClassNamd CxCommon.Messaging.jms | CxCommon.Messaging. Component | JMS transport
. IBMMQSeriesFactory jms.IBMMQSeriesFactory restart only
or any Java class name
hms.MessageBrokerNamd crossworlds.queue. crossworlds.queue.manager Component | JMS transport
manager restart only
|jmslNumConcurrentRequestS| Positive integer 10 Component | JMS transport
restart only
Any valid password Component | JMS transport
restart only
Any valid name Component | JMS transport
restart only
[]vm MaxHeapSize| Heap size in megabytes 128m Component | Repository
restart directory
is
<REMOTE>
lvmMaxNativeStackSize| Size of stack in kilobytes | 128k Component | Repository
restart directory
is
<REMOTE>
lvmMinHeapSize| Heap size in megabytes Im Component | Repository
restart directory
is
<REMOTE>
ILocald] en_US, ja_JP, ko KR, en_US Component
zh_CN, zh_TW, fr_FR, restart
de_DE,
it_IT, es_ES, pt_BR
Note: This is a
subset of the
supported
locales.
|Log AtInterchangeEnd| true or false false Component
restart
[IMaxEventCapacity| 1-2147483647 2147483647 Dynamic Repository
Directory is
<REMOTE>
||MessageFileNamg| Path or filename InterchangeSystem.txt Component
restart

Appendix A. Standard configuration properties for connectors 171

Table 50. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
Any valid queue name | CONNECTORNAME/MONITORQUEUE | Component |JMS transport
restart only:
DuplicateEvent
Elimination
must be true
[OADAutoRestartAgent| true or false false Dynamic Repository
Directory is
<REMOTE>
|OADMaxNumRetry| A positive number 1000 Dynamic Repository
Directory is
<REMOTE>
|OADRetryTimelntervall A positive number in 10 Dynamic Repository
minutes Directory is
<REMOTE>
IPollEndTimgI HH:MM HH:MM Component
(HH is 0-23, MM is 0-59) restart
[PollFrequency] A positive integer in 10000 Dynamic
milliseconds
no (to disable polling)
key (to poll only when
the letter p is entered in
the connector’s
Command Prompt
window)
PollQuanti 1-500 1 Agent JMS transport
restart only:
Container
Managed
Events is
specified
PollStartTime HH:MM(HH is 0-23, MM is | HH:MM Component
0-59) restart
[RepositoryDirectory]| Location of metadata Agent Set to
repository restart <REMOTE>
Valid JMS queue name CONNECTORNAME /REQUESTQUEUE Component | Delivery
restart Transport is
JMS
Valid JMS queue name CONNECTORNAME /RESPONSEQUEUE Component | Delivery
restart Transport is
JMS:
[RestartRetryCount| 0-99 3 Dynamic
|RestartRetryIntervall A sensible positive 1 Dynamic
value in minutes:
1 - 2147483547
ISourceQueuel Valid JMS queue name | CONNECTORNAME/SOURCEQUEUE Agent Only if
restart Delivery
Transport is
JMS and
Container
Managed
Events is
specified
|SynchronousRequestQueue| Valid JMS queue name | CONNECTORNAME/ Component | Delivery
SYNCHRONOUSREQUESTQUEUE restart Transport is

TMS

172 Adapter for Web Services User Guide

Table 50. Summary of standard configuration properties (continued)

Update
Property name Possible values Default value method Notes
|SynchronousRequestTimeout| 0 - any number (millisecs) | 0 Component | Delivery
restart Transport is
JMS
|SynchronousResponseQueud Valid JMS queue name CONNECTORNAME/ Component | Delivery
SYNCHRONOUSRESPONSEQUEUE restart Transport is
JMS
CwBO CwBO Agent
restart

Standard configuration properties

This section lists and defines each of the standard connector configuration
properties.

AdmininQueue

The queue that is used by the integration broker to send administrative messages
to the connector.

The default value is CONNECTORNAME /ADMININQUEUE.

AdminOutQueue

The queue that is used by the connector to send administrative messages to the
integration broker.

The default value is CONNECTORNAME /ADMINOUTQUEUE.

AgentConnections

The AgentConnections property controls the number of ORB connections opened
by orb.init[].

By default, the value of this property is set to 1. There is no need to change this
default.

AgentTracelLevel

Level of trace messages for the application-specific component. The default is 0.
The connector delivers all trace messages applicable at the tracing level set or
lower.

ApplicationName

Name that uniquely identifies the connector’s application. This name is used by
the system administrator to monitor the WebSphere business integration system
environment. This property must have a value before you can run the connector.

BrokerType

Identifies the integration broker that you are using, which is ICS.

CharacterEncoding

Specifies the character code set used to map from a character (such as a letter of
the alphabet, a numeric representation, or a punctuation mark) to a numeric value.

Appendix A. Standard configuration properties for connectors 173

Note: Java-based connectors do not use this property. A C++ connector currently
uses the value ascii7 for this property.

By default, a subset of supported character encodings only is displayed in the drop
list. To add other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on using Connector Configurator Express in this guide.

ConcurrentEventTriggeredFlows

Determines how many business objects can be concurrently processed by the
connector for event delivery. Set the value of this attribute to the number of
business objects you want concurrently mapped and delivered. For example, set
the value of this property to 5 to cause five business objects to be concurrently
processed. The default value is 1.

Setting this property to a value greater than 1 allows a connector for a source
application to map multiple event business objects at the same time and deliver
them to multiple collaboration instances simultaneously. This speeds delivery of
business objects to the integration broker, particularly if the business objects use
complex maps. Increasing the arrival rate of business objects to collaborations can
improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application
to a destination application), you must:

* Configure the collaboration to use multiple threads by setting its Maximum number
of concurrent events property high enough to use multiple threads.

* Ensure that the destination application’s application-specific component can
process requests concurrently. That is, it must be multi-threaded, or be able to
use connector agent parallelism and be configured for multiple processes. Set the
Parallel Process Degree configuration property to a value greater than 1.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,
which is single-threaded and performed serially.

ContainerManagedEvents

This property allows a JMS-enabled connector with a JMS event store to provide
guaranteed event delivery, in which an event is removed from the source queue
and placed on the destination queue as a single JMS transaction.

This property only appears if the DeliveryTransport property is set to the value
JMS.

The default value is No value.

When ContainerManagedEvents is set to JMS, you must configure the following
properties to enable guaranteed event delivery:

* PollQuantity = 1 to 500
* SourceQueue = CONNECTORNAME/SOURCEQUEUE

You must also configure a data handler with the MimeType, DHClass, and
DataHandlerConfigMOName (optional) properties. To set those values, use the
Data Handler tab in Connector Configurator Express. The fields for the values
under the Data Handler tab will be displayed only if you have set
ContainerManagedEvents to JMS.

174 Adapter for Web Services User Guide

Note: When ContainerManagedEvents is set to JMS, the connector does not call its
pol1ForEvents() method, thereby disabling that method’s functionality.

ControllerStoreAndForwardMode

Sets the behavior of the connector controller after it detects that the destination
application-specific component is unavailable.

If this property is set to true and the destination application-specific component is
unavailable when an event reaches ICS, the connector controller blocks the request
to the application-specific component. When the application-specific component
becomes operational, the controller forwards the request to it.

However, if the destination application’s application-specific component becomes
unavailable after the connector controller forwards a service call request to it, the
connector controller fails the request.

If this property is set to false, the connector controller begins failing all service
call requests as soon as it detects that the destination application-specific
component is unavailable.

The default is true.

ControllerTraceLevel
Level of trace messages for the connector controller. The default is 0.

DeliveryQueue
Applicable only if DeliveryTransport is JMS.

The queue that is used by the connector to send business objects to the WebSphere
InterChange Server Express.

The default value is CONNECTORNAME/DELIVERYQUEUE.

DeliveryTransport

Specifies the transport mechanism for the delivery of events. Possible values are
IDL for CORBA IIOP or JMS for Java Messaging Service. The default is IDL.

The connector sends service call requests and administrative messages over
CORBA IIOP if the value configured for the DeliveryTransport property is IDL.

JMS

Enables communication between the connector and client connector framework
using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as
Jjms .MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName,
appear in Connector Configurator Express. The first two of these properties are
required for this transport.

Important: There may be a memory limitation if you use the JMS transport

mechanism for a connector running on WebSphere InterChange Server
Express.

Appendix A. Standard configuration properties for connectors 175

In this environment, you may experience difficulty starting both the connector
controller (on the server side) and the connector (on the client side) due to memory
use within the WebSphere MQ client.

DuplicateEventElimination

When you set this property to true, a JMS-enabled connector can ensure that
duplicate events are not delivered to the delivery queue. To use this feature, the
connector must have a unique event identifier set as the business object’s
ObjectEventld attribute in the application-specific code. This is done during
connector development.

This property can also be set to false.

Note: When DuplicateEventElimination is set to true, you must also configure
the MonitorQueue property to enable guaranteed event delivery.

EnableOidForFlowMonitoring

When you set this property to true, the adapter framework will mark the
incoming ObjectEventld as a foreign key for the purpose of flow monitoring.

The default is false.

FaultQueue

If the connector experiences an error while processing a message then the
connector moves the message to the queue specified in this property, along with a
status indicator and a description of the problem.

The default value is CONNECTORNAME/FAULTQUEUE.

JvmMaxHeapSize
The maximum heap size for the agent (in megabytes).

The default value is 128m.

JvmMaxNativeStackSize

The maximum native stack size for the agent (in kilobytes).

The default value is 128k.

JvmMinHeapSize

The minimum heap size for the agent (in megabytes).

The default value is 1m.

jms.FactoryClassName

Specifies the class name to instantiate for a JMS provider. You must set this
connector property when you choose JMS as your delivery transport mechanism
(DeliveryTransport).

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

176 Adapter for Web Services User Guide

jms.MessageBrokerName

Specifies the broker name to use for the JMS provider. You must set this connector
property when you choose JMS as your delivery transport mechanism (see
DeliveryTransport).

The default is crossworlds.queue.manager.

jms.NumConcurrentRequests

Specifies the maximum number of concurrent service call requests that can be sent
to a connector at the same time. Once that maximum is reached, new service calls
block and wait for another request to complete before proceeding.

The default value is 10.

jms.Password
Specifies the password for the JMS provider. A value for this property is optional.

There is no default.

jms.UserName
Specifies the user name for the JMS provider. A value for this property is optional.

There is no default.

Locale

Specifies the language code, country or territory, and, optionally, the associated
character code set. The value of this property determines such cultural conventions
as collation and sort order of data, date and time formats, and the symbols used in
monetary specifications.

A locale name has the following format:
Ul _TT.codeset

where:

ll a two-character language code (usually in lower
case)

T a two-letter country or territory code (usually in
upper case)

codeset the name of the associated character code set; this

portion of the name is often optional.

By default, only a subset of supported locales appears in the drop list. To add
other supported values to the drop list, you must manually modify the
\Data\Std\stdConnProps.xml file in the product directory. For more information,
see the appendix on using Connector Configurator Express in this guide.

The default value is en_US. If the connector has not been globalized, the only valid
value for this property is en_US. To determine whether a specific connector has

been globalized, see the connector version list on these websites:

http:/ /www.ibm.com/software/websphere/wbiadapters/infocenter, or
http:/ /www.ibm.com /websphere/integration/wicserver/infocenter

Appendix A. Standard configuration properties for connectors 177

LogAtinterchangeEnd

Specifies whether to log errors to the integration broker’s log destination. Logging
to the broker’s log destination also turns on e-mail notification, which generates
e-mail messages for the MESSAGE_RECIPIENT specified in the InterchangeSystem.cfg
file when errors or fatal errors occur.

For example, when a connector loses its connection to its application, if
LogAtInterChangeEnd is set to true, an e-mail message is sent to the specified
message recipient. The default is false.

MaxEventCapacity

The maximum number of events in the controller buffer. This property is used by
flow control.

The value can be a positive integer between 1 and 2147483647. The default value is
2147483647.

MessageFileName

The name of the connector message file. The standard location for the message file
is \connectors\messages. Specify the message filename in an absolute path if the
message file is not located in the standard location.

If a connector message file does not exist, the connector uses
InterchangeSystem.txt as the message file. This file is located in the product
directory.

Note: To determine whether a specific connector has its own message file, see the
individual adapter user guide.

MonitorQueue

The logical queue that the connector uses to monitor duplicate events. It is used
only if the DeliveryTransport property value is J]MS and
DupTicateEventETimination is set to TRUE.

The default value is CONNECTORNAME /MONITORQUEUE

OADAutoRestartAgent

Specifies whether the connector uses the automatic and remote restart feature. This
feature uses the MQ-triggered Object Activation Daemon (OAD) to restart the
connector after an abnormal shutdown, or to start a remote connector from System
Monitor.

This property must be set to true to enable the automatic and remote restart
feature. For information on how to configure the MQ-triggered OAD feature, see
the Installation Guide for Windows.

The default value is false.

OADMaxNumRetry

Specifies the maximum number of times that the MQ-triggered OAD automatically
attempts to restart the connector after an abnormal shutdown. The
OADAutoRestartAgent property must be set to true for this property to take effect.

178 Adapter for Web Services User Guide

The default value is 1000.

OADRetryTimelnterval

Specifies the number of minutes in the retry-time interval for the MQ-triggered
OAD. If the connector agent does not restart within this retry-time interval, the
connector controller asks the OAD to restart the connector agent again. The OAD
repeats this retry process as many times as specified by the OADMaxNumRetry
property. The OADAutoRestartAgent property must be set to true for this property
to take effect.

The default is 10.

PollIEndTime

Time to stop polling the event queue. The format is HH:MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

PollFrequency

The amount of time between polling actions. Set Po11Frequency to one of the
following values:

* The number of milliseconds between polling actions.

* The word key, which causes the connector to poll only when you type the letter
p in the connector’'s Command Prompt window. Enter the word in lowercase.

* The word no, which causes the connector not to poll. Enter the word in
lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. To
determine whether a specific connector does, see the installing and
configuring chapter of its adapter guide.

PollQuantity

Designates the number of items from the application that the connector should poll
for. If the adapter has a connector-specific property for setting the poll quantity, the
value set in the connector-specific property will override the standard property
value.

PollStartTime

The time to start polling the event queue. The format is HH: MM, where HH represents
0-23 hours, and MM represents 0-59 seconds.

You must provide a valid value for this property. The default value is HH:MM, but
must be changed.

RequestQueue

The queue that is used by WebSphere InterChange Server Express to send business
objects to the connector.

The default value is CONNECTOR/REQUESTQUEUE.

Appendix A. Standard configuration properties for connectors 179

RepositoryDirectory

The location of the repository from which the connector reads the XML schema
documents that store the meta-data for business object definitions.

This value must be set to <REMOTE> because the connector obtains this
information from the InterChange Server Express repository.

ResponseQueue
Applicable only if DeTiveryTransport is JMS.

Designates the JMS response queue, which delivers a response message from the
connector framework to the integration broker. WebSphere InterChange Server
Express sends the request and waits for a response message in the JMS response
queue.

RestartRetryCount

Specifies the number of times the connector attempts to restart itself. When used
for a parallel connector, specifies the number of times the master connector
application-specific component attempts to restart the slave connector
application-specific component.

The default is 3.

RestartRetryinterval

Specifies the interval in minutes at which the connector attempts to restart itself.
When used for a parallel connector, specifies the interval at which the master
connector application-specific component attempts to restart the slave connector
application-specific component. Possible values ranges from 1 to 2147483647.

The default is 1.

SourceQueue

Applicable only if DeliveryTransport is JMS and ContainerManagedEvents is
specified.

Designates the JMS source queue for the connector framework in support of
guaranteed event delivery for JMS-enabled connectors that use a JMS event store.
For further information, see [‘ContainerManagedEvents” on page 174/

The default value is CONNECTOR/SOURCEQUEUE.

SynchronousRequestQueue
Applicable only if DeliveryTransport is JMS.

Delivers request messages that require a synchronous response from the connector
framework to the broker. This queue is necessary only if the connector uses
synchronous execution. With synchronous execution, the connector framework
sends a message to the SynchronousRequestQueue and waits for a response back
from the broker on the SynchronousResponseQueue. The response message sent to
the connector bears a correlation ID that matches the ID of the original message.

The default is CONNECTORNAME/SYNCHRONOUSREQUESTQUEUE

180 Adapter for Web Services User Guide

SynchronousResponseQueue
Applicable only if DeliveryTransport is JMS.

Delivers response messages sent in reply to a synchronous request from the broker
to the connector framework. This queue is necessary only if the connector uses
synchronous execution.

The default is CONNECTORNAME/SYNCHRONOUSRESPONSEQUEUE

SynchronousRequestTimeout
Applicable only if DeTiveryTransport is JMS.
Specifies the time in minutes that the connector waits for a response to a
synchronous request. If the response is not received within the specified time, then
the connector moves the original synchronous request message into the fault queue

along with an error message.

The default value is 0.

WireFormat

This is the message format on the transport. The setting isCwBO0.

Appendix A. Standard configuration properties for connectors 181

182 Adapter for Web Services User Guide

Appendix B. Connector Configurator Express

This appendix describes how to use Connector Configurator Express to set
configuration property values for your adapter.

The topics covered in this appendix are:

» |“Overview of Connector Configurator Express” on page 183|

* |“Starting Connector Configurator Express” on page 184

* [“Creating a connector-specific property template” on page 184

* [“Creating a new configuration file” on page 187

* |[“Setting the configuration file properties” on page 189|

+ [“Using Connector Configurator Express in a globalized environment” on page|

194

Overview of Connector Configurator Express

Connector Configurator Express allows you to configure the connector component
of your adapter for use with WebSphere InterChange Server Express.

You use Connector Configurator Express to:
* Create a connector-specific property template for configuring your connector.

* Create a connector configuration file; you must create one configuration file for
each connector you install.

* Set properties in a configuration file.
You may need to modify the default values that are set for properties in the
connector templates. You must also designate supported business object
definitions and maps for use with collaborations as well as specify messaging,
logging and tracing, and data handler parameters, as required.

Connector configuration properties include both standard configuration properties
(the properties that all connectors have) and connector-specific properties
(properties that are needed by the connector for a specific application or
technology).

Because standard properties are used by all connectors, you do not need to define
those properties from scratch; Connector Configurator Express incorporates them
into your configuration file as soon as you create the file. However, you do need to
set the value of each standard property in Connector Configurator Express.

The range of standard properties may not be the same for all brokers and all
configurations. Some properties are available only if other properties are given a
specific value. The Standard Properties window in Connector Configurator Express
will show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties
and then set their values. You do this by creating a connector-specific property
template for your particular adapter. There may already be a template set up in
your system, in which case, you simply use that. If not, follow the steps in
[“Creating a new template” on page 185|to set up a new one.

© Copyright IBM Corp. 2004 183

Note: Connector Configurator Express runs only in a Windows environment. If
you are running the connector in another environment, use Connector
Configurator Express in Windows to modify the configuration file and then
copy the file to the other environment.

Starting Connector Configurator Express

You can start and run Connector Configurator Express in either of two modes:
* Independently, in stand-alone mode
e From System Manager

Running Configurator Express in stand-alone mode

You can run Connector Configurator Express independently and work with
connector configuration files, irrespective of your broker.

To do so:

* From Start>Programs, click IBM WebSphere Business Integration Server
Express> Toolset Express>Development>Connector Configurator Express.

* Select File>New>Configuration File.

You may choose to run Connector Configurator Express independently to generate
the file, and then connect to System Manager to save it in a System Manager
project (see[“Completing a configuration file” on page 189])

Running Configurator Express from System Manager

You can run Connector Configurator Express from System Manager.

To run Connector Configurator Express:
1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries
icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator
Express. The Connector Configurator Express window opens and displays a
New Connector dialog box.

To edit an existing configuration file:

1. In the System Manager window, select any of the configuration files listed in
the Connector folder and right-click on it.

2. Click the Standard Properties tab to see which properties are included in this
configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific
property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your
connector, or you can use an existing file as the template.

+ To create a new template, see [‘Creating a new template” on page 185|

* To use an existing file, simply modify an existing template and save it under the
new name.

184 Adapter for Web Services User Guide

Creating a new template

This section describes how you create properties in the template, define general
characteristics and values for those properties, and specify any dependencies
between the properties. Then you save the template and use it as the base for
creating a new connector configuration file.

To create a template:

1.
2.

Click File>New>Connector-Specific Property Template.

The Connector-Specific Property Template dialog box appears, with the
following fields:

Template, and Name

Enter a unique name that identifies the connector, or type of connector, for
which this template will be used. You will see this name again when you
open the dialog box for creating a new configuration file from a template.

Old Template, and Select the Existing Template to Modify

The names of all currently available templates are displayed in the Template
Name display.

To see the connector-specific property definitions in any template, select that
template’s name in the Template Name display. A list of the property
definitions contained in that template will appear in the Template Preview
display. You can use an existing template whose property definitions are
similar to those required by your connector as a starting point for your
template.

Select a template from the Template Name display, enter that template name in
the Find Name field (or highlight your selection in Template Name), and click
Next.

If you do not see any template that displays the connector-specific properties used
by your connector, you will need to create one.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific
Property Template dialog box appears. The dialog box has tabs for General
characteristics of the defined properties and for Value restrictions. The General
display has the following fields:

* General:
Property Type
Updated Method
Description

* Flags
Standard flags

* Custom Flag
Flag

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple
values, a default value, or a value range for the property. It also allows editable
values. To do so:

1.

Click the Value tab. The display panel for Value replaces the display panel for
General.

Appendix B. Connector Configurator Express 185

n

Select the name of the property in the Edit properties display.

In the fields for Max Length and Max Multiple Values, make any changes. The
changes will not be accepted unless you also open the Property Value dialog
box for the property, described in the next step.

Right-click the box in the top left-hand corner of the value table and click Add.
A Property Value dialog box appears. Depending on the property type, the
dialog box allows you to enter either a value, or both a value and range. Enter
the appropriate value or range, and click OK.

The Value panel refreshes to display any changes you made in Max Length
and Max Multiple Values. It displays a table with three columns:

The Value column shows the value that you entered in the Property Value
dialog box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the
default.

The Value Range shows the range that you entered in the Property Value
dialog box.

After a value has been created and appears in the grid, it can be edited from
within the table display. To make a change in an existing value in the table,
select an entire row by clicking on the row number. Then right-click in the
Value field and click Edit Value.

Setting dependencies
When you have made your changes to the General and Value tabs, click Next. The
Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in
the configuration file only if the value of another property meets a specific
condition. For example, Po11Quantity appears in the template only if JMS is the
transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it
depends, do this:

1.

In the Available Properties display, select the property that will be made
dependent.

In the Select Property field, use the drop-down menu to select the property
that will hold the conditional value.

In the Condition Operator field, select one of the following:
== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

In the Conditional Value field, enter the value that is required in order for the
dependent property to be included in the template.

With the dependent property highlighted in the Available Properties display,
click an arrow to move it to the Dependent Property display.

Click Finish. Connector Configurator Express stores the information you have
entered as an XML document, under \data\app in the\bin directory where you
have installed Connector Configurator Express.

186 Adapter for Web Services User Guide

Creating a new configuration file

You create a connector configuration file from a connector-specific template or by
modifying an existing configuration file.

Creating a configuration file from a connector-specific
template

Once a connector-specific template has been created, you can use it to create a
configuration file:

1. Click File>New>Connector Configuration.
2. The New Connector dialog box appears, with the following fields:
* Name

Enter the name of the connector. Names are case-sensitive. The name you
enter must be unique, and must be consistent with the file name for a
connector that is installed on the system.

Important: Connector Configurator Express does not check the spelling of
the name that you enter. You must ensure that the name is
correct.

* System Connectivity
The default broker is ICS. You cannot change this value.
* Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.
The available templates are shown in the Template Name display. When you
select a name in the Template Name display, the Property Template Preview
display shows the connector-specific properties that have been defined in
that template.

Select the template you want to use and click OK.

3. A configuration screen appears for the connector that you are configuring. The
title bar shows the integration broker and connector names. You can fill in all
the field values to complete the definition now, or you can save the file and
complete the fields later.

4. To save the file, click File>Save>To File or File>Save>To Project. To save to a
project, System Manager must be running.
If you save as a file, the Save File Connector dialog box appears. Choose *.cfg
as the file type, verify in the File Name field that the name is spelled correctly
and has the correct case, navigate to the directory where you want to locate the
file, and click Save. The status display in the message panel of Connector
Configurator Express indicates that the configuration file was successfully
created.

Important: The directory path and name that you establish here must match
the connector configuration file path and name that you supply in
the startup file for the connector.

5. To complete the connector definition, enter values in the fields for each of the
tabs of the Connector Configurator Express window, as described later in this
chapter.

Appendix B. Connector Configurator Express 187

Using an existing file

To use an existing file to configure a connector, you must open the file in
Connector Configurator Express, revise the configuration, and then save the file as
a configuration file (*.cfg).

You may have an existing file available in one or more of the following formats:

* A connector definition file.
This is a text file that lists properties and applicable default values for a specific
connector. Some connectors include such a file in a \repository directory in
their delivery package (the file typically has the extension .txt; for example,
CN_XML.txt for the XML connector).

* An InterChange Server Express repository file.
Definitions used in a previous InterChange Server Express implementation of
the connector may be available to you in a repository file that was used in the
configuration of that connector. Such a file typically has the extension .in or
.out.

* A previous configuration file for the connector.
Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific
properties for your connector, the connector configuration file will not be complete
until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in
Connector Configurator Express, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *x.cfg or *.in file from a directory:
1. In Connector Configurator Express, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to
see the available files:

* Configuration (x.cfg)
* InterChange Server Express Repository (*.1in, *.out)

Choose this option if a repository file was used to configure the connector. A
repository file may include multiple connector definitions, all of which will
appear when you open the file.

o All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for
the connector, or if a definition file is available under another extension.

3. In the directory display, navigate to the appropriate connector definition file,
select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System
Manager only if System Manager has been started.

2. Start Connector Configurator Express.

3. Click File>Open>From Project.

188 Adapter for Web Services User Guide

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector
Configurator Express window displays the configuration screen, with the current
attributes and values.

Connector Configurator Express requires values for properties described in the
following sections:

* [“Setting standard connector properties”|

+ [“Setting application-specific configuration properties” on page 190

* |“Specifying supported business object definitions” on page 191]

* [“Associated maps” on page 192

* |“Setting trace/log file values” on page 193

Note: For connectors that use JMS messaging, an additional category may display,
for special configuration of data handlers that convert the data to business
objects. For further information, see [“Data handlers” on page 194

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open
an existing connector configuration file, Connector Configurator Express displays a
configuration screen with tabs for the categories of required configuration values.

Standard properties differ from connector-specific properties as follows:

 Standard properties of a connector are shared by both the application-specific
component of a connector and its broker component. All connectors have the
same set of standard properties. These properties are described in Appendix A of
each adapter guide. You can change some but not all of these values.

* Application-specific properties apply only to the application-specific component
of a connector, that is, the component that interacts directly with the application.
Each connector has application-specific properties that are unique to its
application. Some of these properties provide default values and some do not;
you can modify some of the default values. The installation and configuration
chapters of each adapter guide describe the application-specific properties and
the recommended values.

The fields for Standard Properties and Connector-Specific Properties are
color-coded to show which are configurable:

A field with a grey background indicates a standard property. You can change
the value but cannot change the name or remove the property.

A field with a white background indicates an application-specific property. These
properties vary according to the specific needs of the application or connector.
You can change the value and delete these properties.

* You can configure Value fields.

e The Update Method displayed for each property indicates whether a component
or agent restart is necessary to activate changed values.

Setting standard connector properties
To change the value of a standard property:
1. Click in the field whose value you want to set.
2. Either enter a value, or select one from the drop-down menu if it appears.

Appendix B. Connector Configurator Express 189

3. After entering all the values for the standard properties, you can do one of the
following;:

* To discard the changes, preserve the original values, and exit Connector
Configurator Express, click File>Exit (or close the window), and click No
when prompted to save changes.

* To enter values for other categories in Connector Configurator Express, select
the tab for the category. The values you enter for Standard Properties (or
any other category) are retained when you move to the next category. When
you close the window, you are prompted to either save or discard the values
that you entered in all the categories as a whole.

* To save the revised values, click File>Exit (or close the window) and click
Yes when prompted to save changes. Alternatively, click Save>To File from
either the File menu or the toolbar.

Setting application-specific configuration properties
For application-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default
property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.
Click Add to add a property. To add a child property, right-click on the parent
row number and click Add child.

2. Enter a value for the property or child property.
3. To encrypt a property, select the Encrypt box.

4. Choose to save or discard changes, as described for [“Setting standard connector]
[properties” on page 189)

The Update Method displayed for each property indicates whether a component or
agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may
cause a connector to fail. Certain property names may be needed by
the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check
box in the Edit Property window. To decrypt a value, click to clear the Encrypt
check box, enter the correct value in the Verification dialog box, and click OK. If
the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each
property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first
value of the property. When you select Encrypt, all values of the property will be
encrypted. To decrypt multiple values of a property, click to clear the Encrypt
check box for the first value of the property, and then enter the new value in the
Verification dialog box. If the input value is a match, all multiple values will
decrypt.

Update method

Refer to the descriptions of update methods found in the Standard configuration
properties for connectors appendix, under [’Setting and updating property values” on|

190 Adapter for Web Services User Guide

Connector properties are almost all static and the Update Method is Component
restart. For changes to take effect, you must restart the connector after saving the
revised connector configuration file.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator Express to
specify the business objects that the connector will use. You must specify both
generic business objects and application-specific business objects, and you must
specify associations for the maps between the business objects.

For you to specify a supported business object, the business objects and their maps
must exist in the system. Business object definitions, including those for data
handler meta-objects, and map definitions should be saved into Integration
Component Library (ICL) projects. For more information on ICL projects, see the
User Guide for WebSphere Business Integration Server Express.

Note: Some connectors require that certain business objects be specified as
supported in order to perform event notification or additional configuration
(using meta-objects) with their applications. For more information, see the
chapter on business objects in this guide as well as the Business Object
Development Guide.

To specify that a business object definition is supported by the connector, or to
change the support settings for an existing business object definition, click the
Supported Business Objects tab and use the following fields.

Business object name

To designate that a business object definition is supported by the connector, with
System Manager running:

1. Click an empty field in the Business Object Name list. A drop-down list
displays, showing all the business object definitions that exist in the System
Manager project.

2. Click on a business object to add it.

w

Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator Express window, click Save to
Project. The revised connector definition, including designated support for the
added business object definition, is saved to the project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business
object.

2. From the Edit menu of the Connector Configurator Express window, click
Delete Row. The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition
and makes the deleted business object unavailable for use in this implementation
of this connector. It does not affect the connector code, nor does it remove the
business object definition itself from System Manager.

Agent support

If a business object has Agent Support, the system will attempt to use that business
object for delivering data to an application via the connector agent.

Appendix B. Connector Configurator Express 191

Typically, application-specific business objects for a connector are supported by
that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the
Agent Support box. The Connector Configurator Express window does not
validate your Agent Support selections.

Maximum transaction level

The maximum transaction level for a connector is the highest transaction level that
the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

Associated maps

Each connector supports a list of business object definitions and their associated
maps that are currently active in InterChange Server Express. This list appears
when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which
the agent supports and the corresponding generic object that the controller sends
to the subscribing collaboration. The association of a map determines which map
will be used to transform the application-specific business object to the generic
business object or the generic business object to the application-specific business
object.

If you are using maps that are uniquely defined for specific source and destination
business objects, the maps will already be associated with their appropriate
business objects when you open the display, and you will not need (or be able) to
change them.

If more than one map is available for use by a supported business object, you will
need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

* Business Object Name
These are the business objects supported by this connector, as designated in the
Supported Business Objects tab. If you designate additional business objects
under the Supported Business Objects tab, they will be reflected in this list after
you save the changes by choosing Save to Project from the File menu of the
Connector Configurator Express window.

* Associated Maps

The display shows all the maps that have been installed to the system for use
with the supported business objects of the connector. The source business object
for each map is shown to the left of the map name, in the Business Object
Name display.

* Explicit
In some cases, you may need to explicitly bind an associated map.
Explicit binding is required only when more than one map exists for a particular
supported business object. When InterChange Server Express boots, it tries to
automatically bind a map to each supported business object for each connector.

192 Adapter for Web Services User Guide

If more than one map takes as its input the same business object, the server
attempts to locate and bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to
bind the business object to a single map, and you will need to set the binding
explicitly.

To explicitly bind a map:

1.

In the Explicit column, place a check in the check box for the map you want
to bind.

2. Select the map that you intend to associate with the business object.
3. In the File menu of the Connector Configurator Express window, click Save
to Project.
4. Deploy the project to InterChange Server Express.
5. Reboot the server for the changes to take effect.
Resources

The Resource tab allows you to set a value that determines whether and to what
extent the connector agent will handle multiple processes concurrently, using
connector agent parallelism.

Not all connectors support this feature. If you are running a connector agent that
was designed in Java to be multi-threaded, you are advised not to use this feature,
since it is usually more efficient to use multiple threads than multiple processes.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,
Connector Configurator Express uses the logging and tracing values of that file as
default values. You can change those values in Connector Configurator Express.

To change the logging and tracing values:
1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both
of the following:

* To console (STDOUT):

Writes logging or tracing messages to the STDOUT display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for
connectors running on the Windows platform.

To File:

Writes logging or tracing messages to a file that you specify. To specify the
file, click the directory button (ellipsis), navigate to the preferred location,
provide a file name, and click Save. (If your connector is not running on the
Windows platform on which you have installed Connector Configurator
Express, you must first map a drive to a location on the system where you
want the file.) Logging or tracing message are written to the file and
location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file
extension that you prefer when you set their file names. For tracing
files, however, it is advisable to use the extension .trace rather than
.trc, to avoid confusion with other files that might reside on the
system. For logging files, .10og and .txt are typical file extensions.

Appendix B. Connector Configurator Express 193

Data handlers

The data handlers section is available for configuration only if you have designated
a value of JMS for DeliveryTransport and a value of JMS for
ContainerManagedEvents. Adapters that make use of the guaranteed event
delivery enable this tab.

See the descriptions under ContainerManagedEvents in the Standard Properties
appendix for values to use for these properties.

Saving your configuration file

After you have created the configuration file and set its properties, you need to
deploy it to the correct location for your connector. Save the configuration in an
ICL project, and use System Manager to load the file into InterChange Server
Express.

The file is saved as an XML document. You can save the XML document in three

ways:

* From System Manager, as a file with a *.con extension in an Integration
Component Library, or

* In a directory that you specify.

¢ In stand-alone mode, as a file with a *.cfg extension in a directory folder.

For details about using projects in System Manager, and for further information
about deployment, see the User Guide for IBM WebSphere Business Integration Server
Express.

Completing the configuration

After you have created a configuration file for a connector and modified it, make
sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location
and file name used for the connector configuration file match exactly the name you
have given the file and the directory or path where you have placed it.

Using Connector Configurator Express in a globalized environment

Connector Configurator Express is globalized and can handle character conversion
between the configuration file and the integration broker. Connector Configurator
Express uses native encoding. When it writes to the configuration file, it uses
UTF-8 encoding.

Connector Configurator Express supports non-English characters in:

* All value fields

* Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration
properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the
product directory.

194 Adapter for Web Services User Guide

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"
isRequired="true"

updateMethod="component restart">
<ValidType>String</ValidType>

<ValidValues>

<DefaultValue>en US</DefaultValue>

</ValidValues>
</Property>

<Value>ja_JP</Value>
<Value>ko_KR</Value>
<Value>zh_CN</Value>
<Value>zh_TW</Value>
<Value>fr_FR</Value>
<Value>de DE</Value>
<Value>it_IT</Value>
<Value>es_ES</Value>
<Value>pt_BR</Value>
<Value>en_US</Value>
<Value>en_GB</Value>

Appendix B. Connector Configurator Express

195

196 Adapter for Web Services User Guide

Appendix C. Adapter for Web Services tutorial
« |”About the tutorial”|
* |“Before you start” on page 198|

* |“Installing and configuring” on page 199|

* [“Running the asynchronous scenario” on page 204

+ [“Running the synchronous scenario” on page 207

This appendix contains step-by-step procedures that:

* demonstrate asynchronous and synchronous event transmission for both request
and event processing

* illustrate how to configure the web services connector for a SOAP/HTTPS
sample

e illustrate how to configure the web services connector for a SOAP/HTTP sample

¢ illustrate how to configure the web services connector for a SOAP/JMS sample

About the tutorial

This tutorial is intended to demonstrate asynchronous and synchronous event
transmission for both the request and event processing facets of the Adapter for
Web Services with each of the supported protocols: SOAP/HTTP, SOAP/HTTPS
and SOAP/JMS. In each scenario, the adapters act as:

* a web service client for collaborations that invoke a web service

* a proxy that exposes a WebSphere Business Integration Server Express and
Express Plus collaboration as a web service

The tutorial is designed to show the basic functionality of the adapter in sample
scenarios:

* An asynchronous scenario that illustrates an asynchronous (request-only) web
service and its client with the connector. There are two samples in this
scenario—for configuration simplicity, the same Web Services connector is used
to expose a collaboration as a Web Service and invoke a Web Service as a client.

— A collaboration that is exposed as a web service In this sample, the web
service is simply a collaboration SERVICE_ASYNCH_Order_Collab within
WebSphere Business Integration Server Express and Express Plus that is being
exposed as a web service by the connector. The web service is referred to as
Asynch Order Service. If the connector is properly configured, this Web
Service can be invoked using any (one) of the Web Services protocols:
SOAP/HTTP, SOAP/HTTPS or SOAP/JMS. SERVICE_ASYNCH_Order_Collab is
a simple pass-through collaboration that takes SERVICE_ASYNCH_TLO_Order. The
triggering port (From) of this collaboration is bound to the Web Services
connector. The service port (To) is bound to SampleSiebelConnector.

— A collaboration that is invoked by a web services client In this sample, the
web service client is another collaboration CLIENT_ASYNCH_Order_Collab
within WebSphere Business Integration Server Express and Express Plus that
will invoke the Web Service Asynch Order Service using the Web Services
connector. If the connector is configured properly, this web service client can
invoke the Web Service over any (one) of the Web Services protocols:
SOAP/HTTP, SOAP/HTTPS or SOAP/JMS. CLIENT_ASYNCH_Order_Collab is a
simple pass-through collaboration which takes CLIENT_ASYNCH_TLO_Order. The

© Copyright IBM Corp. 2004 197

triggering port (From) of this collaboration is bound to SampleSAPConnector.
The service port (To) is bound to the Web Services connector.

Both samples in the asynchronous scenario involve two applications:
— SampleSiebel: Creates an order for its clients.
— SampleSAP: Creates an order

* A synchronous scenario that illustrates a synchronous (request-response) web
service and its client with the connector. There are two samples in this
scenario—for configuration simplicity, the same Web Services connector is used
to expose a collaboration as a Web Service and invoke a Web Service as a client.

— A collaboration that is exposed as a web service In this sample, the Web
Service is simply a collaboration SERVICE_SYNCH_OrderStatus_Collab within
WebSphere Business Integration Server Express and Express Plus that is being
exposed as a web service by the connector. In this sample, this web service is
referred to as Synch OrderStatus Service. If the connector is properly
configured, the web service can be invoked using any of the web services
protocols: SOAP/HTTP, SOAP/HTTPS or SOAP/JMS.
SERVICE_SYNCH_OrderStatus_Collab is a simple pass-through collaboration
which takes SERVICE_SYNCH_TLO_OrderStatus. The triggering port (From) of
this collaboration is bound to the Web Services connector. The service port
(To) is bound to SampleSiebelConnector.

— A collaboration that is invoked by a web services client In this sample, the
web service client is another collaboration CLIENT _SYNCH OrderStatus Collab
within WebSphere Business Integration Server Express and Express Plus that
will invoke the web service Synch OrderStatus Service using the Web Services
connector. If the connector is properly configured, this web service client can
invoke the web service over any of the web services protocols: SOAP/HTTP,
SOAP/HTTPS or SOAP/JMS. CLIENT_SYNCH_OrderStatus_Collab is a simple
pass-through collaboration which takes CLIENT_SYNCH_TLO_OrderStatus. The
triggering port (From) of this collaboration is bound to SampleSAPConnector.
The service port (To) is bound to the Web Services connector.

Both samples in the synchronous scenario involve two applications:
— SampleSiebel: Retrieves the status of orders for its clients.
— SampleSAP: Requests the status of the order

Both scenarios involve simulating the SampleSiebelConnector and
SampleSAPConnector using two Test Connectors.

Before you start

Before you start the tutorial, be sure that:

* You have installed, and are experienced with, WebSphere Business Integration
Server Express and Express Plus 4.2.x or later.

* You have installed the WebSphere Business Integration Adapter For Web
Services in the WebSphere Business Integration Server Express and Express Plus
home directory.

* You are experienced with Web Services technology.
* You are experienced with SOAP technology.

198 Adapter for Web Services User Guide

Installing and configuring

In the sections that follow, WBI_folder refers to the folder containing your current
WebSphere Business Integration Server Express and Express Plus installation. All
environment variables and file separators are specified in the Windows NT /2000
format.

Start server and tool

1. Start WebSphere Business Integration Server Express and Express Plus from the
shortcut.

2. Start the WebSphere Business Integration System Manager and open the
Component Navigator Perspective.

3. Register and connect your server as a Server Instance in the Business
Integration Server Express and Express Plus view.

Load the sample content
From the Component Navigator Perspective:
1. Create a new Integration Component Library.

2. Import the repos file named WebServicesSample.jar located in:
WBI_folder\connectors\WebServices\samples\WebSphereICS\

Compile the collaboration templates
Using WebSphere Business Integration System Manager:

¢ Compile All of the Collaboration Templates that were imported from the
WebServicesSample.jar repos file.

Configure the connector
1. If you have not done so already, configure the connector as described in this
guide and according to your system.
2. Using WebSphere Business Integration System Manager, open
WebServicesConnector in Connector Configurator Express.
3. You must also configure WebServicesConnector for the protocol you want to
use with the sample:
« If you want to use SOAP/HTTP, see [‘Configuring for the SOAP/HTTP)
[protocol scenario”|to configure the connector for SOAP/HTTP.
« If you want to use SOAP/HTTPS, see [’Configuring for the SOAP/HTTPS|
[protocol scenario” on page 200| to configure the connector for SOAP/HTTPS.

« If you want to use SOAP/JMS, see|”Configuring for the SOAP /JMS protocoll
[scenario” on page 202 to configure the connector for SOAP/JMS.

Configuring for the SOAP/HTTP protocol scenario

This section shows you how to configure the connector for the SOAP/HTTP
sample scenario. As described in the body of this document, the connector includes
a SOAP/HTTP protocol listener and SOAP/HTTP-HTTPS protocol handler. The
sample scenario exposes SERVICE_ASYNCH_Order_Collab and
SERVICE_SYNCH_OrderStatus_Collab collaborations as SOAP/HTTP web services. To
expose a collaboration as a SOAP/HTTP web service, the connector uses the
SOAP/HTTP protocol listener. The sample scenario comes with the
CLIENT_ASYNCH_Order_Collab and CLIENT_SYNCH_ OrderStatus_Collab collaborations,

Appendix C. Adapter for Web Services tutorial 199

which are SOAP/HTTP clients of SOAP/HTTP web services. To invoke a
SOAP/HTTP web service, the connector uses SOAP/HTTPHTTPS Protocol
Handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a
hierarchical property, and B is child property of A.

To configure the SOAP/HTTP protocol listener for this sample:

1. In Connector Configurator Express, click on Connector-Specific Properties for
the WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the
SOAPHTTPListener1 child property.

4. Check the value of SOAPHTTPListenerl1”Host and SOAPHTTPListener1”Port
property. Make sure there is no other process running on your host and
listening on this TCP/IP port. Optionally, you may want to set the value of
SOAHTTPListenerl”Host to the machine name on which you will run the
connector.

You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Configuring for the SOAP/HTTPS protocol scenario

This section shows you how to configure the connector for the SOAP/HTTPS
sample scenario. The connector includes a SOAP/HTTPS protocol listener and
SOAP/HTTP-HTTPS protocol handler. The sample scenario exposes the
SERVICE_ASYNCH_Order_Collab and SERVICE_SYNCH OrderStatus_Collab
collaborations as SOAP/HTTPS web services. To expose a collaboration as a
SOAP/HTTPS web service, the connector uses the SOAP/HTTPS protocol listener.
The sample scenario comes with the CLIENT_ASYNCH_Order_Collab and
CLIENT_SYNCH_ OrderStatus_Collab collaborations, which are SOAP/HTTPS clients
of SOAP/HTTPS web services. To invoke a SOAP/HTTPS web service, the
connector uses the SOAP/HTTPHTTPS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a
hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above ir{“Before you start” on page]
you should also have created and tested your keystore and truststore
using your Key and Certificate management software.

Configure SSL connector-specific properties: For SOAP/HTTPS, the connector
requires that you configure the SSL connector-specific hierarchical property.

1. In Connector Configurator Express, click on the Connector-Specific Properties
tab for the WebServicesConnector.

2. Expand the SSL hierarchical property to view all of its children properties.
Additionally, check or change the following child properties of the hierarchical
SSL connector-specific property.

* SSL” KeyStore Set to the complete path to your keystore file, which you
must create using your Key and Certificate management software.

¢ SSL”KeyStorePassword Set to the password required to access your
KeyStore.

200 Adapter for Web Services User Guide

¢ SSL”KeyStoreAlias Set to the alias of the private key in your KeyStore.

* SSL”TrustStore Set to the complete path of your truststore file which you
have created using your Key and Certificate management software.

¢ SSL"TrustStorePassword Set to the password required to access your
TrustStore.

Note: Do not forget to save the changes in Connector Configurator Express.

Configure the SOAP/HTTPS protocol listener:

1. In Connector Configurator Express, click on Connector-Specific Properties for
the WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the
SOAPHTTPSListenerl child property. Check the value of the

SOAPHTTPSListener1”Host and SOAPHTTPSListenerl”Port properties. Make
sure no other processes are running on your host and listening on this TCP/IP
port. Optionally, you may want to set the value of SOAHTTPSListener1”Host

to the machine name on which you are running the connector.
You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Setting up KeyStore and TrustStore: You can quickly set up KeyStore and
TrustStore to use with the sample scenario. For production systems, you must use
third-party software for to set up and manage keystores as well as certificate and
key generation. No tool is provided as part of the Adapter for Web Services to set
up and manage these resources.

This section assumes that Java Virtual Machine is installed on your system and

that you are familiar with the keytool shipped with your JVM (Java Virtual
Machine). For more information or for troubleshooting problems with the keytool,
please see the documentation that accompanies your JVM.

To set up KeyStore:

1. You create KeyStore using keytool. You must create a key pair in the KeyStore.
To do so, enter the following at the command line:
keytool -genkey -alias wsadapter -keystore c:\security\keystore

2. keytool immediately prompts for a password. Specify the password that you

entered for the value of SSL”KeyStorePassword connector property.
Note that in the above example if you specified -keystore
c:\security\keystore in the command line, you would enter
c:\security\keystore as the value of the SSL”"KeyStore property. Also, if you
specified -alias wsadapter in the command line, you would enter wsadapter as
the value of the SSL”KeyStoreAlias connector property. keytool would then
prompt you for the details of the certificate. The following illustrates what you
may enter at each of the prompts, but is an example only: always refer, and
defer, to keytool documentation.
What is your first and last name?

[Unknown]: HostName
What is the name of your organizational unit?

[Unknown]: myunit
What is the name of your organization?

[Unknown]: myorganization
What is the name of your City or Locality?

[Unknown]: mycity

Appendix C. Adapter for Web Services tutorial 201

What is the name of your State or Province?
[Unknown]: mystate
What is the two-letter country code for this unit?
[Unknown]: mycountryls <CN=HostName, OU=myunit, O=myorganization,
L=mycity, ST=mystate, C=mycountry> correct?
[no]: yes
3. Note that for What is your first and last name?, you should enter the name
of the machine on which you are running the connector. keytool then prompts
you:
Enter key password for <wsadapter> (RETURN if same as keystore password):

4. Press Return to use the same password. If you want to use a self-signed
certificate, you may want to export the certificate created above. To do so, enter
following on the command line:

C:\security>keytool -export -alias wsadapter -keystore
c:\security\keystore -file c:\security\wsadapter.cer

5. keytool now prompts for the keystore password. Enter the password that you
entered above

To set up TrustStore:

1. To import the trusted certificates into the TrustStore, enter the following
command:
keytool -import -alias trustedl -keystore c:\security\truststore
-file c:\security\wsadapter.cer

2. keytool now prompts for the keystore password. If you entered -keystore
c:\security\truststore, make sure that SSL”TrustStore property is set to
c:\security\truststore. Also, set the value of the SSL”TrustStorePassword
property to the password you entered above.

Configuring for the SOAP/JMS protocol scenario

This section shows you how to configure the connector for the SOAP/JMS sample
scenario. The sample scenario exposes the SERVICE_ASYNCH_Order_Collab and
SERVICE_SYNCH_OrderStatus_Collab collaborations as SOAP/JMS web services. To
expose a collaboration as a SOAP/JMS web service, the connector uses the
SOAP/JMS protocol listener. The sample scenario comes with the

CLIENT _ASYNCH Order Collab and CLIENT SYNCH OrderStatus_Collab collaborations,
which are SOAP/JMS clients of SOAP/JMS web services. To invoke a SOAP/JMS
web service, the connector uses the SOAP/JMS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration
properties are represented with the ” symbol. For example, A” B implies A is a
hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above ir{*Before you start” on page|
you should also have installed a JMS service provider and installed and
configured your JNDI.

Configuring JNDI properties: For SOAP/JMS, you must configure JNDI
connector configuration properties:

1. In Connector Configurator Express, click Connector-Specific Properties for the
WebServicesConnector.

2. Expand the JNDI hierarchical property to display its child properties. Then
check or change the child properties to match the values listed below.

* JNDI”JNDIProviderURL Set this property to the URL of the JNDI Service
provider. Refer to your JNDI provider documentation.

202 Adapter for Web Services User Guide

¢ JNDI”InitialContextFactory Set this property to fully qualified class name of
the factory class that will create the JNDI initial context. Refer to your JNDI
provider documentation.

* JNDI”JNDIConnectionFactoryName Set this property to the JNDI name of
the connection factory to lookup using JNDI context. Make sure that this
name can be looked up using the JNDI.

* Refer to your]NDI documentation to see if any of the following properties
are required by your JNDI provider:

— JNDI”CTX_ObjectFactories
— JNDI”CTX_ObjectFactories
— JNDI”CTX_StateFactories
— JNDI”CTX_URLPackagePrefixes
- JNDI”CTX_DNS_URL
— JNDI”CTX_Authoritative
— JND”CTX_Batchsize
— JNDI”CTX_Referral
— JNDI”CTX_SecurityProtocol
— JND”CTX_SecurityAuthentication
— JNDI”CTX_SecurityPrincipal
— JNDI”CTX_SecurityCredentials
— JNDI”CTX_Language
3. Save the changes in Connector Configurator Express.

Configure the JMS queues and SOAP/JMS protocol listener: The scenario
requires that six queues be defined with your JMS service provider. Before doing
so, check your JMS provider documentation; defining queues varies between
providers.

1. Define (or make available via JNDI lookup) the following queues:
* ORDER_INPUT
* ORDER_INPROGRESS
* ORDER_ERROR
* ORDER_ARCHIVE
* ORDER_UNSUBSCRIBED
* ORDER_REPLYTO

2. From CSM open WebServicesConnector in Connector Configurator Express. If
you have not done so already, configure the connector as described in the
Installation Guide for your system.

3. Click Application Config Properties in Connector Configurator Express.

4. Expand the ProtocolListenerFramework property to display the
ProtocolListeners child property.

5. Expand ProtocolListeners property to display the SOAPJMSListenerl child
property.

6. Check or change the values of the SOAPJMSListnerl1 child properties to
match those listed below:

* SOAPJMSListener”Protocol Set to soap/jms

¢ SOAPJMSListenerl”Protocol Set to soap/jms

* SOAPJMSListenerl”InputQueue Set to ORDER_INPUT

* SOAPJMSListenerl”InProgressQueue Set to ORDER_INPROGRESS

Appendix C. Adapter for Web Services tutorial 203

7.

* SOAPJMSListenerl” ArchiveQueue Set to ORDER_ARCHIVE

* SOAPJMSListenerl”UnsubscribedQueue Set to ORDER_UNSUBSCRIBED
* SOAPJMSListenerl”ErrorQueue Set to ORDER_ERROR

* SOAPJMSListenerl”ReplyToQueue Set to ORDER_REPLYTO

Save the changes in Connector Configurator Express.

Configure the SOAP/JMS protocol handler:

1.

5.

From System Manager open WebServicesConnector in Connector Configurator
Express. If you have not done so already, configure the connector as described
in the Installation Guide for your system.

Click Connector-Config Properties in Connector Configurator Express.

Expand the ProtocolHandlerFramework property to display the
ProtocolHandlers child property.

Expand the ProtocolHandlers child property to display the SOAPJMSHandler
child property. Check or change the values of SOAPJMSHandler child
properties to match the those below:

* SOAPJMSHandler”Protocol Set to soap/jms
* SOAPJMSHandler”ReplyToQueue Set to value ORDER_REPLYTO

Save the changes in Connector Configurator Express.

Create user project

Using WebSphere Business Integration System Manager, create a new User
Project. Select all of the components from the Integration Component Library
that was created in[“Load the sample content” on page 199/

Add and deploy the project

1.

2.

From the Server Instance view, add the User Project created in
o WebSphere Business Integration Server Express and Express Plus

Deploy all of the components from this User Project to the Business Integration
Server Express and Express Plus.

Reboot Business Integration Server Express and Express Plus

1.

2.

Reboot Business Integration Server Express and Express Plus to ensure that all
changes take effect.

Use the System Monitor tool to ensure that all of the collaboration objects,
connector controllers, and maps are in a green state.

Running the asynchronous scenario

This scenario invokes the Asynch Order Service web service. Before running the
scenario, review this step-by-step synopsis of its data flow.

1.

A CLIENT_ASYNCH_TLO_Order.Create event originates in the application
Samp1eSAP running in one instance of the Test Connector.

The event is sent from Samp1eSAP to the collaboration
CLIENT_ASYNCH_Order_Collab.

The event is then sent from the collaboration to the Web Services connector.

The Web Services connector finds the CLIENT_ASYNCH_Order object that is a child
of the CLIENT_ASYNCH_TLO_Order object.

The Request business object is converted into a SOAP message using the SOAP
data handler.

204 Adapter for Web Services User Guide

6.

The Web Services connector sends the SOAP Message to the end-point
(Destination) of the web service Asynch Order Service. The end-point is
provided by the Destination attribute of the Protocol Config Meta-Object (MO).
The Protocol Config MO used by the connector depends on the value of the
Handler attribute of CLIENT _ASYNCH_TLO Order. If it is set to soap/http or
soap/https, the Destination attribute of CLIENT_ASYNCH_Order SOAP_HTTP_CfgMO
will give the end-point as the URL of the web service. Otherwise if the Handler
attribute is set to soap/jms, the Destination attribute of
CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO gives the end-point as a destination
queue name.

The Asynch Order Service web service receives the SOAP request. As
mentioned earlier, the Web Services connector is the end-point for this web
service. The connector’s protocol listener, listening on the end-point (to which
the request was sent), receives the SOAP message.

The connector converts the SOAP message into SERVICE_ASYNCH_Order and
then creates a SERVICE_TLO_Order object. The SERVICE_ASYNCH_Order object is set
as a child of the SERVICE_TLO_Order object.

The Web Services connector now asynchronously posts the SERVICE_TLO_Order
object to Business Integration Server Express and Express Plus. This completes
the asynchronous web service invocation.

Because this is an asynchronous web service (request-only), no response is sent
back to the web service client. When SERVICE_ASYNCH Order Collab receives this
object, the collaboration then sends the business object to the application
namedSampleSiebel, which is running as the second instance of Test Connector.
The object is displayed in the Test Connector. When Reply Success is selected from
theSampTleSiebel application, the event will be sent back to
SERVICE_ASYNCH_Order_Col1lab.

To run the asynchronous scenario:

1.

Start your InterChange Server Express integration broker, if it is not already
running.

Start the Web Services connector.

Start two instances of the Test Connector.

Using the Test Connector, define a profile for the SampleSAPConnector and the
SampleSiebelConnector.

Select FILE”"CONNECT AGENT from each Test Connector menu to begin
simulating agents.

While simulating the SampleSAPConnector using the Test Connector, select
EDIT”LOAD BO from the menu. Load the following file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus
\CLIENT_ASYNCH_TLO_Order.bo

The Test Connector should show that the CLIENT_ASYNCH_TLO Order is loaded.
Verify the web services end-point address:
* For SOAP/HTTP web service If you want to use SOAP/HTTP:
a. Make sure you have configured the Web Services connector for
SOAP/HTTP. In your Test Connector, make sure that the value of the

Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set
to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

Appendix C. Adapter for Web Services tutorial 205

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH_Order SOAP_HTTP_CfgMO is set to
http://localhost:8080/wbia/webservices/samples. No quotes are
allowed in this value.

¢ For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for
SOAP/HTTPS. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set
to soap/http. No quotes are allowed in this value. Make sure the
Destination attribute in the CLIENT_ASYNCH_Order_ SOAP_HTTP_CfgMO has a
secure URL, that is, a URL starting with https.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH Order SOAP_HTTP_CfgMO is set to
https://localhost:8443/wbia/webservices/samples. No quotes are
allowed in this value.

* For SOAP/JMS web service If you want to use SOAP/JMS:

a. Make sure you have configured the Web Services connector for
SOAP/JMS. In your Test Connector, make sure that the value of the
Handler attribute of the CLIENT_ASYNCH_TLO_Order business object is set
to soap/jms. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute
is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPJMSCfgMO attribute of CLIENT_ASYNCH_Order. This
attribute is of type CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO.

d. Make sure the value of the Destination attribute of
CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO is set to ORDER_INPUT. No quotes
are allowed in this value.

8. While simulating the SampTleSAPConnector with the Test Connector, click on the
loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step
synopsis earlier in this section for more details regarding the flow of the
event.

9. While simulating the SampleSiebelConnector with the Test Connector, select
REQUEST”ACCEPT REQUEST. An Event Labeled
SERVICE_ASYNCH_TLO_Order.Create is displayed in the right panel of the Test
Connector.

10. Double-click the business object. The business object opens up in a window.

11. Expand the Request attribute of the business object. The Request attribute is of
type SERVICE_ASYNCH_Order. Inspect the Orderld, Customarily and other
attributes of SERVICE_ASYNCH_Order to verify the Order received. This
completes the execution of asynchronous scenario.

12. Once you have inspected the business object, close the window. Select
REQUEST "REPLY” SUCCESS.

206 Adapter for Web Services User Guide

Running the synchronous scenario

This scenario invokes the Synch OrderStatus Service web service. Before running
the scenario, review this step-by-step synopsis of its data flow.

1.

10.

11.

12.

13.

A CLIENT_SYNCH_TLO_OrderStatus.Retrieve event originates in the application
Samp1eSAP running in one instance of the Test Connector.

The event is sent from Samp1eSAP to the collaboration named
CLIENT_SYNCH_ OrderStatus_Collab.

The event is then sent from the collaboration to the Web Services connector.

The Web Services connector finds the CLIENT _SYNCH OrderStatus Request
object, which is a child of the CLIENT_SYNCH_TLO_OrderStatus object.

The Web Services connector invokes the SOAP data handler to convert the
CLIENT_SYNCH_OrderStatus_Request business object into a SOAP message.

The Web Services connector sends the SOAP message to the end-point
(Destination) of the web service Synch OrderStatus Service. The end-point is
provided by the Destination attribute of the Protocol Config MO. The Protocol
Config MO used by the connector depends on the value of the Handler
attribute of CLIENT _SYNCH_TLO OrderStatus. If it is set to soap/http or
soap/https, the Destination attribute of
CLIENT_SYNCH_OrderStatus_Request_SOAP_HTTP_CfgMO will give the end-point
as the URL of a web service. Otherwise, if the Handler attribute is set to
soap/jms, the Destination attribute of
CLIENT_SYNCH_OrderStatus_Request_SOAP_JMS_CfgMO will give the end-point as
the destination queue name of the web service).

The Web Service Synch OrderStatus Service receives the SOAP request. As
mentioned earlier, the Web Services connector is the target end-point. The
connector’s protocol listener, listening on the end-point (to which request was
sent), receive the SOAP message.

The connector invokes the SOAP data handler with the SOAP message. The
SOAP message is converted into a SERVICE_SYNCH_OrderStatus_Request object
by the SOAP data handler. The Web Services connector then creates a
SERVICE_TLO_OrderStatus object. The SERVICE_SYNCH_OrderStatus_Request
object is set as the child of the SERVICE_TLO_OrderStatus object.

The Web Services connector now synchronously posts the
SERVICE_TLO_OrderStatus object to the SERVICE_SYNCH_OrderStatus_Collab
collaboration running in WebSphere Business Integration Server Express and
Express Plus. Since this is a synchronous execution, the Web Services
connector remains blocked until the collaboration executes and returns the
response.

SERVICE_SYNCH_OrderStatus_Collab receives the SERVICE_TLO OrderStatus

object. The collaboration then sends the business object to the application
SampTleSiebel, which is running as the second instance of the Test Connector.

When you select Reply Success from the SampleSiebel application, the event is
sent back to the SERVICE_SYNCH_OrderStatus_Collab collaboration.

SERVICE_SYNCH OrderStatus Collab receives the SERVICE TLO OrderStatus
object. The collaboration then sends the business object to Web Services
connector.

The Web Services connector finds the SERVICE_SYNCH OrderStatus_Response
business object (or SERVICE_SYNCH_OrderStatus_Fault, if it is populated) that
is a child of the SERVICE_SYNCH_OrderStatus_TLO. This business object will be
converted into a SOAP response message (or SOAP fault message) by the
SOAP data handler.

Appendix C. Adapter for Web Services tutorial 207

14.

15.

16.

The Web Services connector returns the SOAP response message (or SOAP
fault message) to the web service client.

The web service client, which in this case is the connector, receives the
response. The connector invokes the SOAP data handler with the response
message.

The SOAP data handler converts the response message into either a
CLIENT_SYNCH_ OrderStatus_Response or CLIENT_SYNCH_OrderStatus_Fault
business object, depending on what was returned by the Order Synch Service.
The Web Services connector sets this object as the child of

CLIENT SYNCH OrderStatus TLO. CLIENT SYNCH OrderStatus_TLO is returned to
the CLIENT_SYNCH_OrderStatus_Collab collaboration.

17) CLIENT_SYNCH OrderStatus_Collab then sends CLIENT _SYNCH OrderStatus_TLO
to the Samp1eSAP application, which is running as the first instance of the Test
Connector. The Test Connector displays this object.

To run the synchronous scenario:

1.

Start your InterChange Server Express integration broker, if it is not already
running.

Start the Web Services connector.
Start two instances of the Test Connector.

Using the Test Connector, define a profile for the SampleSAPConnector and the
SampTleSiebelConnector.

Select FILE”"CONNECT AGENT from each Test Connector menu to begin
simulating agents.

While simulating the SampleSAPConnector using the Test Connector, select
EDIT”LOAD BO from the menu. Load the following file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus
\CLIENT_SYNCH_TLO OrderStatus.bo

The Test Connector should show that the CLIENT_SYNCH_TLO_OrderStatus is
loaded.

Verify the web services end-point address:
* For SOAP/HTTP web service If you want to use SOAP/HTTP:

a. Make sure you have configured the Web Services connector for
SOAP/HTTP. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.
d. Make sure the value of the Destination attribute of
CLIENT_SYNCH OrderStatus SOAP_HTTP CfgMO is set to
http://localhost:8080/wbhia/webservices/samples. No quotes are
allowed in this value.
* For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for
SOAP/HTTPS. In your Test Connector, make sure that the value of the
Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/http. No quotes are allowed in this value.

208 Adapter for Web Services User Guide

b.

Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.

Expand the SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

Make sure value of Destination attribute of

CLIENT_SYNCH_ OrderStatus_SOAP_HTTP_CfgMO is set to
https://Tocalhost:8443/wbia/webservices/samples. No quotes are
allowed in this value.

* For SOAP/JMS web service If you want to use SOAP/JMS:

a.

Make sure you have configured the Web Services connector for
SOAP/JMS. In your Test Connector, make sure that the value of the
Handler attribute of the CLIENT_SYNCH_TLO_OrderStatus business object
is set to soap/jms. No quotes are allowed in this value.

Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This
attribute is of type CLIENT_SYNCH_OrderStatus business object.
Expand the SOAPJMSCfgMO attribute of CLIENT_SYNCH_OrderStatus.
This attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO.

Make sure the value of the Destination attribute of
CLIENT_SYNCH_ OrderStatus_SOAP_JMS CfgMO is set to ORDER_INPUT. No
quotes are allowed in this value.

8. While simulating the SampleSAPConnector with the Test Connector, click on the
loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step

10.

synopsis earlier in this section for more details regarding the data flow.

An event labeled SERVICE_SYNCH_TLO OrderStatus.Retrieve is displayed in
the right panel of the Test Connector instance that is simulating
SampTleSiebelConnector. Double-click the business object to display it in a
window.

Expand the Request attribute of the business object. The Request attribute is of
type SERVICE_SYNCH_OrderStatus_Request. Inspect the Orderld, attribute of
SERVICE_ASYNCH_Order to verify that this is the order for which status is
required.

* If you know the status of the order:

a.

Click the Response attribute of SERVICE_SYNCH_TLO OrderStatus. The
Response attribute is of type CLIENT_SYNCH_OrderStatus_Response.

b. Right-click the Response attribute.

c. Click the Add Instance option. A new instance for the

CLIENT_SYNCH_OrderStatus_Response business object is created.

Enter values for Orderld, Customerld and all other details you know
about this order. Once you have entered all the details for this order,
close this window.

* If you do not know the status of the order:

a.

Click the Fault attribute of SERVICE_SYNCH_TLO_OrderStatus. The Fault
attribute is of type CLIENT_SYNCH_OrderStatus_Fault.

b. Right-click the Fault attribute.

c. Click the Add Instance option. A new instance of
CLIENT_SYNCH OrderStatus Fault is created.
d. Enter values for faultcode, faultstring and all other details you want to

send in the SOAP fault message. Once you have entered all the values
for this fault, close this window.

Appendix C. Adapter for Web Services tutorial 209

11. Select REQUEST”REPLY”SUCCESS.An event labeled
SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in the right panel of
the Test Connector that is simulating SampTeSAPConnector.

12. Double-click the SERVICE_SYNCH_TLO_OrderStatus.Retrieve business object,
which is then displayed in a window.

* If your SampleSiebelConnector returned an order status, you should see the
Response attribute of the business object populated. Expand the Response
attribute to verify the order status.

* If your SampleSiebelConnector returned a fault, you should see the Fault
attribute of the business object populated. Expand the Fault attribute to
determine the fault.

13. Once you have inspected the business object, close the window. Select
REQUEST”REPLY”SUCCESS.

This completes the execution of synchronous scenario.

210 Adapter for Web Services User Guide

Appendix D. Configuring HTTPS/SSL

“Keystore setup”]

* [“TrustStore setup” on page 212|

* |“Generating a certificate signing request (CSR) for public key certificates” on|

[page 212|

If you are planning to use SSL, you must use third-party software to manage your
keystores, certificates, and key generation. The web services connector does not

come with tooling for these tasks. However, you may choose to use keytool, which
ships with IBM JRE, to create self-signed certificates and to manage your keystores.

A key and certificate management utility, keytool enables you to administer your
own public/private key pairs and associated certificates. These are intended for
use in self-authentication (where you authenticate yourself to other users or
services) or data integrity and authentication services that use digital signatures.
The keytool utility also allows you to store the public keys (in the form of
certificates) of peers with whom you communicate.

This appendix describes how to set up keystores using keytool. Note that this
appendix is intended for illustration purposes only; it is not intended as a
substitute for documentation for keytool or related products. Always refer to
source documentation for the tools you use to set up keystores. For further
information on keytool, see:

* http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

Keystore setup

To create KeyStore using keytool, you first must create a key pair in the KeyStore.
For example, if you enter the following command line:

keytool -genkey -alias wsadapter -keystore c:\security\keystore

keytool immediately prompts you for a password. You may enter the password of
your choice (within keytool parameters), but you should specify the password
entered in keytool as the value of the SSL ” KeyStorePassword connector property.
For further information, see ["KeyStorePassword” on page 103

The sample command creates the keystore named keystore in the
c:\security\keystore directory. Accordingly, you would enter
c:\security\keystore as the value of the SSL ” KeyStore connector hierarchical
property. Also from the command line example above, you would enter -alias
wsadapter as the value of the SSL ” KeyStoreAlias connector hierarchical property.
The keytool utility then prompts you for the details of the certificate. The following
illustrates what you may enter for each of the prompts. (Refer to keytool
documentation.)
What is your first and Tast name?

[Unknown]: HostName
What is the name of your organizational unit?

[Unknown] : wbi
What is the name of your organization?

[Unknown]: IBM
What is the name of your City or Locality?

[Unknown]: Burlingame
What is the name of your State or Province?

© Copyright IBM Corp. 2004 211

[Unknown]: CA
What is the two-letter country code for this unit?
[Unknown]: US
Is <CN=HostName, OU=wbi, 0=IBM, L=Burlingame,
ST=CA, C=US> correct?
[no]: yes

keytool then prompts you for a password:
Enter key password for <wsadapter> (RETURN if same as keystore password):

Press Return to use the same password. If you want to use a self-signed certificate,
you may want to export the certificate created above. In that case, enter following
on the command line:

keytool -export -alias wsadapter -keystore c:\security\keystore -file
wsadapter.cer

keytool now prompts you for the keystore password. Enter the password that you
entered above.

TrustStore setup

You may want to set up TrustStore for the following: If you want the
SOAP/HTTPS protocol listener to authenticate the web service client, set the SSL ”
UseClientAuth connector configuration property to true . In this case, the
SOAP/HTTPS protocol listener expect s TrustStore to contain certificates for all
trusted web service clients. Note that the connector uses the JSSE default
mechanism to trust clients. If you are invoking SOAP/HTTPS web services, the
SOAP/HTTP-HTTPS protocol handler requires that TrustStore trust the web
service. This means that TrustStore must contain the certificates of all trusted web
services. Note that the connector uses the JSSE default mechanism to trust clients.
To import the trusted certificates into the TrustStore, enter a command such as the
following;:

keytool -import -alias trustedl -keystore c:\security\truststore -file
c:\security\trustedl.cer

keytool now prompts for the keystore password. If you enter -keystore
c:\security\truststore, make sure that the SSL ” TrustStore hierarchical property
is set to c:\security\truststore. Also you must set the value of the SSL ”
TrustStorePassword hierarchical property to the password you entered previously.

Generating a certificate signing request (CSR) for public key

certificates

If the SSL data exchange is among already trusted partners who trust your identity,
self-signed certificates may be adequate. However, a certificate is more likely to be
trusted by others when it is signed by a certifying authority (CA).

To get a certificate signed by the CA using the keytool utility, you first must
generate a Certificate Signing Request (CSR), then give the CSR to a CA. The CA
then signs the certificate and returns it to you.

You generate a CSR by entering the following command:

keytool -certreq -alias wsadapter -file wsadapter.csr
-keystore c:\security\keystore

212 Adapter for Web Services User Guide

In the command, alias is the keystore alias that you created for the private key.
The keytool utility generates the CSR file, which you provide to your CA. Your CA
then provides you with the signed certificate. You will have to import this
certificate into your keystore. To do so, you would enter the following command:

keytool -import -alias wsadapter -keystore
c:\security\keystore -trustcacerts
-file casignedcertificate.cer

Once you import, the self-signed certificate in keystore is replaced by the
CA-signed certificate.

Appendix D. Configuring HTTPS/SSL 213

214 Adapter for Web Services User Guide

Notices

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY
10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Burlingame Laboratory Director IBM Burlingame Laboratory 577 Airport
Blvd., Suite 800 Burlingame, CA 94010 U.S.A

© Copyright IBM Corp. 2004 215

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not necessarily tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Programming interface information

Programming interface information, if provided, is intended to help you create
application software using this program

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

216 Adapter for Web Services User Guide

Note: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States or other countries, or both:

IBM

the IBM logo
AIX
CrossWorlds
DB2

DB2 Universal Database
Domino

Lotus

Lotus Notes
MQIntegrator
MQSeries
Tivoli
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks of
others.

This product includes software developed by the Eclipse Project
(http:/ / www.eclipse.org).

JAVA

WebSphere Business Integration Server Express V4.3.1 and WebSphere Business
Integration Server Express Plus V4.3.1.

Notices 217

http://www.eclipse.org

218 Adapter for Web Services User Guide

Printed in USA

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 4.3.1
	Release 4.3

	Chapter 1. Overview of the adapter
	Adapter for Web Services environment
	Software prerequisites
	Adapter platforms
	Standards and APIs
	Locale-dependent data

	Terminology
	Components of connector for web services
	Web services connector
	SOAP data handler
	Web services configuration tools
	Deploying the connector

	Architecture of connector for web services
	Install, configure, and design checklist
	Installing the adapter
	Configuring connector properties
	Enabling collaborations for web services
	Configuring the SOAP data handler

	Limitations

	Chapter 2. Installation and startup
	Overview of installation tasks
	Install Business Integration Server Express and Express Plus
	Install the connector and related files

	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	OS/400 connector file structure
	Linux connector file structure

	Overview of configuration tasks
	Configure the connector
	Configure business objects
	Configure the data handler
	Configure collaborations

	Running multiple instances of the adapter
	Create a new directory

	Starting the connector
	Invoking the startup script on Windows
	Invoking the startup script on OS/400
	Invoking the startup script on Linux

	Chapter 3. Business object requirements
	Business object meta-data
	Connector business object structure
	Synchronous event processing TLOs
	Asynchronous event processing TLOs
	Event processing non-TLOs
	Synchronous request processing TLOs
	Asynchronous request processing TLOs

	Developing business objects

	Chapter 4. Web services connector
	Connector processing
	Event processing overview
	Request processing overview

	SOAP/HTTP(S) web services
	Synchronous SOAP/HTTP(S) web service
	Asynchronous SOAP/HTTP(S) web service

	SOAP/JMS web services
	Synchronous SOAP/JMS web service
	Asynchronous SOAP/JMS web service

	Event processing
	Protocol listeners
	SOAP/HTTP and SOAP/HTTPS protocol listener processing
	Unsupported SOAP/HTTP protocol listener processing features
	SOAP/HTTPS listener processing using secure sockets
	SOAP/JMS protocol listener processing
	Event persistence and delivery
	Event sequencing
	Event triggering
	Event detection
	Event status
	Event retrieval
	Event archiving
	Event recovery

	Request processing
	Protocol handlers

	Connector and JMS
	JNDI
	Exposing collaborations as SOAP/JMS web services
	Collaborations invoking SOAP/JMS web services

	SSL
	JSSE
	KeyStore and TrustStore
	SSL Properties
	Exposing collaborations as SOAP/HTTPS web services
	Collaborations invoking SOAP/HTTPS web services

	Configuring the connector
	Setting configuration properties
	Creating multiple protocol listeners

	Connector at startup
	Proxy setup
	JNDI initialization
	Protocol listener framework initialization
	Protocol handler framework initialization

	Logging
	Tracing

	Chapter 5. SOAP data handler
	Configuring the SOAP data handler
	Meta-object requirements

	SOAP data handler processing
	SOAP-body-message-to-business-object processing
	SOAP-header-message-to-business-object processing
	Business-object-to-SOAP-message-body processing
	Business-object-to-SOAP-message-header processing
	Header fault processing

	Using application-specific information functionality
	ASI in business-object-to-SOAP-message transformations
	ASI effects on fault processing
	ASI effects on header processing
	Specifying SOAP attributes
	ASI in SOAP-to-business object transformations

	Specifying a pluggable name handler
	Limitations
	SOAP style and use guidelines

	Chapter 6. Enabling collaborations for request processing
	Request processing collaboration checklist

	Chapter 7. Exposing collaborations as web services
	Procedure checklist
	Identifying or Developing Business Objects
	Choosing or developing a collaboration template
	Binding the port of a new collaboration object
	WSDL Configuration Wizard
	Running the wizard

	Chapter 8. Using the WSDL ODA
	Starting the WSDL ODA
	Running the WSDL ODA
	Configuring the agent
	Specifying the WSDL document
	Getting a WSDL document from a URL location
	Getting a WSDL document from a UDDI registry

	Confirming selections
	Generating the objects
	Limitations

	Chapter 9. Troubleshooting
	Start-up problems
	Run-time errors

	Appendix A. Standard configuration properties for connectors
	Configuring standard connector properties
	Using Connector Configurator Express
	Setting and updating property values

	Summary of standard properties
	Standard configuration properties
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	jms.FactoryClassName
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.UserName
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RequestQueue
	RepositoryDirectory
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	SourceQueue
	SynchronousRequestQueue
	SynchronousResponseQueue
	SynchronousRequestTimeout
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Starting Connector Configurator Express
	Running Configurator Express in stand-alone mode

	Running Configurator Express from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting application-specific configuration properties
	Specifying supported business object definitions
	Business object name
	Agent support
	Maximum transaction level
	Associated maps
	Resources
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Completing the configuration
	Using Connector Configurator Express in a globalized environment

	Appendix C. Adapter for Web Services tutorial
	About the tutorial
	Before you start
	Installing and configuring
	Start server and tool
	Load the sample content
	Compile the collaboration templates
	Configure the connector
	Create user project
	Add and deploy the project
	Reboot Business Integration Server Express and Express Plus

	Running the asynchronous scenario
	Running the synchronous scenario

	Appendix D. Configuring HTTPS/SSL
	Keystore setup
	TrustStore setup
	Generating a certificate signing request (CSR) for public key certificates

	Notices
	Notices

