
IBM WebSphere

Business Integration Server Express and Express Plus

Business Object Development Guide

version 4.4

���

IBM WebSphere

Business Integration Server Express and Express Plus

Business Object Development Guide

version 4.4

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 279.

22April2005

This edition of this document applies to IBM WebSphere Business Integration Server Express version 4.4, IBM

WebSphere Business Integration Server Express Plus version 4.4, Toolset Express version 4.4, and to all subsequent

releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, e-mail doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . ix

Audience . ix

Related documents . ix

Typographic conventions . x

New in this release . xi

New in release 4.4 . xi

New in release 4.3.1 . xi

New in release 4.3 . xi

Part 1. Designing and developing business objects 1

Chapter 1. Business objects . 3

Business objects in the WebSphere Business integration Server Express system 3

Business object definitions . 4

Business object instances . 11

Business object structure . 12

Flat business objects . 12

Hierarchical business objects . 12

Overview of the development process . 14

Setting up the development environment . 14

Stages of business object development . 14

Chapter 2. Business object design . 17

Determining business object structure . 17

Representing one entity . 17

Representing multiple entities . 18

Design considerations for multiple entities . 25

Enabling business objects for bidirectional scripts . 29

Designing application-specific business objects . 31

Contents of application-specific business object definitions 32

Designing for an existing connector or data handler . 39

Designing generic business objects (InterChange Server Express only) 39

Generic business object design standards . 41

Designing for event isolation . 41

Attributes in a generic business object . 42

Evaluating existing generic business objects . 43

Determining mapping requirements for business objects (InterChange Server Express only) 43

Chapter 3. Using Business Object Designer Express 45

Working with projects . 45

If Business Object Designer Express is running without System Manager 45

If Business Object Designer Express is running from System Manager 46

Starting Business Object Designer Express . 48

Opening a business object definition from Business Object Designer Express 49

Opening a business object definition from a project . 49

Opening a definition from a file . 50

Preventing duplicate definition names . 50

Working with business object definitions . 52

Opening a business object definition and its contained child 52

Business Object Designer Express functionality . 53

File menu . 54

Edit menu . 55

View menu . 56

© Copyright IBM Corp. 2004, 2005 iii

Tools menu . 56

Window menu . 56

Chapter 4. Developing business object definitions 57

Creating a business object definition . 57

Creating a flat business object definition manually . 57

Creating a hierarchical business object definition manually 63

Deleting a business object definition . 63

Deleting a definition using Business Object Designer Express 64

Deleting a definition using System Manager . 65

Using an Object Discovery Agent to create a business object definition 66

Before using an ODA . 66

Using the sample ODA . 68

Entering values and saving a profile . 77

Setting up logging and tracing . 77

Moving through the source-node hierarchy . 80

Providing additional information . 84

Using multiple ODAs simultaneously . 85

Working with error and trace message files . 85

Part 2. Developing an Object Discovery Agent 87

Chapter 5. Developing an Object Discovery Agent 89

Running an ODA . 89

Selecting the ODA . 91

Obtaining ODA configuration properties . 91

Selecting and confirming source data . 93

Generating content . 93

Saving content . 97

Overview of the ODA development process . 97

Tools for ODA development . 97

ODA development process . 100

Extending the ODA base class . 101

Starting the ODA . 103

Obtaining configuration properties . 103

Initializing ODA metadata . 105

Initializing the ODA start . 107

Determining the ODA generated content . 109

Choosing the ODA content type . 109

Choosing the ODA content protocol . 110

Generating business object definitions as content . 112

Generating source nodes . 113

Generating business object definitions . 120

Providing access to generated business object definitions 133

Generating binary files as content . 135

Using files . 135

Generating files . 137

Providing access to generated files . 141

Working with agent properties . 142

Defining the agent property . 143

Defining the property value . 144

Setting conditions on the property value . 147

Shutting down the ODA . 152

Handling trace and error messages . 152

Indicating a log destination . 152

Sending a message to the trace file . 153

Message files . 155

Handling exceptions . 159

What is an ODK exception? . 159

Exceptions from the ODK API library . 159

iv Business Object Development Guide

Chapter 6. Adding an Object Discovery Agent to the business integration system . . . 161

Naming the ODA . 161

Compiling the ODA . 161

Starting up a new ODA . 162

Preparing the ODA run-time directory . 162

Creating startup scripts . 163

Part 3. ODK class reference . 165

Chapter 7. Overview of the ODK API . 167

Classes and interfaces . 167

Chapter 8. AgentMetaData class . 169

Member variables . 169

agentVersion . 169

searchableNodes . 169

searchPatternDesc . 170

supportedContent . 170

Methods . 171

AgentMetaData() . 172

toXml() . 173

Chapter 9. AgentProperty class . 175

Property-type constants . 175

Member variables . 175

allDefaultValues . 176

allDependencies . 176

allValidValues . 176

allValues . 177

cardinality . 177

description . 178

isHidden . 178

isMultiple . 179

isReadOnly . 179

isRequired . 180

propName . 180

type . 181

Methods . 181

AgentProperty() . 181

copy() . 182

Chapter 10. BusObjAttr class . 185

Attribute constants . 185

Methods . 185

BusObjAttr() . 187

getAppText() . 187

getAttrType() . 188

getAttrTypeName() . 189

getBOVersion() . 189

getCardinality() . 189

getComments() . 190

getDefault() . 190

getMaxLength() . 190

getName() . 191

getRelationType() . 191

isForeignKey() . 191

isKey() . 191

isRequiredKey() . 192

isRequiredServerBound() . 192

Contents v

isSimpleType() . 192

setAppText() . 193

setAttrType() . 193

setBOVersion() . 194

setCardinality() . 194

setComments() . 195

setDefault() . 195

setIsForeignKey() . 195

setIsKey() . 196

setIsRequiredKey() . 196

setMaxLength() . 196

setName() . 197

setRelationType() . 197

Chapter 11. BusObjAttrType interface . 199

Attribute-type constants . 199

Static member variable . 199

Chapter 12. BusObjDef class . 201

BusObjDef() . 201

addDefaultVerbs() . 202

getAppInfo() . 202

getAttrCount() . 203

getAttribute() . 203

getAttributeIndex() . 204

getAttributeList() . 204

getName() . 205

getVerb() . 205

getVerbCount() . 206

getVerbList() . 206

getVersion() . 206

insertAttribute() . 207

insertVerb() . 207

removeAttribute() . 208

removeVerb() . 209

setAppInfo() . 209

setAttributeList() . 210

setVerbList() . 210

Chapter 13. BusObjVerb class . 213

BusObjVerb() . 213

clone() . 213

getAppInfo() . 214

getName() . 214

setAppInfo() . 214

setName() . 215

Chapter 14. CompleteCondition class . 217

Operator constants . 217

Member variables . 217

allDependentConditions . 218

allInputConditions . 218

Methods . 218

CompleteCondition() . 218

copy() . 219

Chapter 15. ContentMetaData class . 221

Member variables . 221

contentType . 221

count . 222

vi Business Object Development Guide

length . 222

Methods . 222

ContentMetaData() . 223

badContent() . 223

contentNotReady() . 223

contentUnavailable() . 224

Chapter 16. ContentType class . 225

Member variables . 225

BinaryFile . 225

BusinessObject . 225

Methods . 226

ContentType() . 226

equals() . 226

from_int() . 227

toString() . 227

value() . 227

xmlObject() . 227

Chapter 17. CxBiDiEngine class . 229

BiDiBOTransformation() . 229

BiDiBusObjTransformation() . 230

BiDiStringTransformation() . 231

Chapter 18. DependentCondition class . 233

Member variables . 233

isDynamic . 233

operatorType . 233

propertyName . 234

specificValue . 234

typeOfSpecificValue . 234

Methods . 235

DependentCondition() . 235

copy() . 236

Chapter 19. IGeneratesBinFiles interface . 237

generateBinFiles() . 237

getBinFile() . 238

getContentProtocol() . 239

Chapter 20. IGeneratesBoDefs interface . 241

generateBoDefs() . 241

getBoDefs() . 242

getContentProtocol() . 243

getTreeNodes() . 244

Chapter 21. InputCondition class . 247

Member variables . 247

isDynamic . 247

operatorType . 247

specificValue . 248

typeOfSpecificValue . 248

Methods . 249

InputCondition() . 249

copy() . 249

Chapter 22. ODKAgentBase2 class . 251

getAgentProperties() . 251

getMetaData() . 252

Contents vii

getVersion() . 253

init() . 253

terminate() . 253

Deprecated Methods . 254

Chapter 23. ODKConstant interface . 255

String-value constants . 255

User-response-dialog constants . 255

Cardinality constants . 256

Trace-level constants . 257

Message-type constants . 257

Node-nature constants . 257

Content-protocol constants . 258

Content-index constant . 258

Chapter 24. ODKException class . 259

Methods . 259

ODKException() . 259

getMsg() . 259

Exception subclasses . 260

Chapter 25. ODKUtility class . 261

contentComplete() . 261

getAgentProperty() . 262

getAllAgentProperties() . 263

getAllBOSpecificProperties() . 263

getBOSpecificProperty() . 264

getBOSpecificProps() . 264

getClientFile() . 265

getMsg() . 266

getODKUtility() . 267

sendMsg() . 268

sendStatusMsg() . 270

trace() . 270

Deprecated Methods . 272

Chapter 26. TreeNode class . 275

Member variables . 275

description . 275

isExpandable . 276

isGeneratable . 276

name . 276

nodes . 276

polymorphicNature . 277

Method . 277

TreeNode() . 278

Notices . 279

Programming interface information . 280

Trademarks and service marks . 281

Index . 283

viii Business Object Development Guide

About this document

The products IBM(R) WebSphere(R) Business Integration Server Express and IBM(R)

WebSphere(R) Business Integration Server Express Plus include the following

components: Interchange Server Express, the associated Toolset Express,

CollaborationFoundation, and a set of software integration adapters. The tools in

Toolset Express help you to create, modify, and manage business processes. You

can choose from among the prepackaged adapters for your business processes that

span applications. The standard processes template, CollaborationFoundation,

allows you to quickly create customized processes.

This document describes how to use Business Object Designer Express to create

business object definitions, both manually and using an Object Discovery Agent

(ODA). Object Discovery Agents are designed to “discover” business object

requirements specific to a data source and to generate definitions from those

requirements. Business Object Designer Express provides a graphical user interface

(GUI) to the available Object Discovery Agents, and helps manage the discovery

and definition generation processes. This document also explains how to use the

Object Discovery Agent Development Kit (ODK) to create Object Discovery Agents.

Except where noted, all the information in this guide applies to both IBM

WebSphere Business Integration Server Express and IBM WebSphere Business

Integration Server Express Plus. The term ″WebSphere Business Integration Server

Express″ and its variants refer to both products.

Audience

This document is for IBM customers, consultants, or resellers who create or modify

business objects. Before you start, you should be familiar with all the concepts

explained in the IBM WebSphere Business Integration Server Express System

Implementation Guide.

Related documents

The complete set of documentation describes the features and components

common to all WebSphere Business Integration Server Express and WebSphere

Business Integration Server Express Plus installations, and includes reference

material on specific components.

You can download, install, and view the documentation at the following site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site, http://www.ibm.com/software/integration/websphere/support/.

Select the component area of interest and browse the Technotes and Flashes

sections.

© Copyright IBM Corp. 2004, 2005 ix

http://www.ibm.com/websphere/wbiserverexpress/infocenter
http://www.ibm.com/software/integration/websphere/support

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, file

name, information that you type, or information that the

system prints on the screen.

italic, italic Indicates a new term the first time that it appears, a variable

name, or a cross-reference.

bold Indicates a GUI element.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For Linux® installations, substitute

slashes (/) for backslashes. All IBM product path names are

relative to the directory where the IBM product is installed

on your system.

ProductDir Represents the directory where the product is installed.

Linux

Sections wrapped with such statements indicate notes listing operating system

differences.

%text% and $text Text within percent (%) signs indicates the value of the

Windows® text system variable or user variable. The

equivalent notation in a Linux environment is $text,

indicating the value of the text Linux environment variable.

x Business Object Development Guide

New in this release

This section provides a synopsis of the new and changed features of IBM

WebSphere Business Integration Server Express and IBM WebSphere Business

Integration Server Express Plus and their associated tools for business object

development. These features and tools are covered in detail throughout this guide.

New in release 4.4

This release provides the following new functionality:

v Support for the input and display of bidirectional scripts in the Business Object

Designer Express.

v The Object Discovery Agents support bidirectional text or meta data passed from

an external application.

New in release 4.3.1

This guide was not changed in the 4.3.1 release.

New in release 4.3

This is the first release of this guide.

© Copyright IBM Corp. 2004, 2005 xi

xii Business Object Development Guide

Part 1. Designing and developing business objects

© Copyright IBM Corp. 2004, 2005 1

2 Business Object Development Guide

Chapter 1. Business objects

A business integration system uses business objects to carry data and processing

instructions between an integration broker and connectors or an access client.

InterChange Server Express is the integration broker in WebSphere Business

Integration Server Express. Business objects represent a request from InterChange

Server Express, an event in an application or Web server, or a call from an external

site. This manual presents information on developing and designing business

objects, as well as developing your own object discovery agent. The main topics in

this chapter are:

v “Business objects in the WebSphere Business integration Server Express system”

v “Business object structure” on page 12

v “Overview of the development process” on page 14

This chapter assumes that you have a basic understanding of InterChange Server

Express:

 Table 1. Prerequisite documents

Integration broker Prerequisite documents

InterChange Server Express v WebSphere Business Integration Server

Express Installation Guide for Windows or for

Linux

v System Implementation Guide

Business objects in the WebSphere Business integration Server

Express system

The WebSphere Business Integration Server Express system consists of the

following components:

v A set of adapters

An adapter is a set of software modules that communicate with Interchange

Server Express and with applications or technologies to perform tasks such as

running application logic and exchanging data.

v An integration broker

InterChange Server Express is the integration broker for the WebSphere Business

Integration Server Express system. The task of InterChange Server Express is to

integrate data among heterogeneous applications.

In the WebSphere Business Integration Server Express system, information sent or

received between components is packaged in the form of a business object, as

follows:

v For data that is transferred between an adapter and an integration broker, you

design application-specific business objects that model the appropriate application

entities.

v For data that is processed within the business logic of the InterChange Server

Express collaboration object, you design generic business objects that contain a

superset of information for the application entities that need to communicate.

Maps transform data between generic business objects and application-specific

© Copyright IBM Corp. 2004, 2005 3

business objects so that adapters can communicate with their applications using

application-specific entities, while collaboration objects can apply business logic

in an application-independent way.

Both application-specific business objects and generic objects are modeled during

design-time as business object definitions, which are stored in the business

integration system. At run time, data is populated in a business object instance (often

called a “business object”), which is based on the appropriate definition. The

business object moves through the business integration system as dictated by its

routing and business logic rules.

Business object definitions

A business object definition represents a template for data that can be treated as a

collective unit. It contains a business object header, which specifies the name and

version of the business object definition. In addition, the business object definition

contains the following information:

v “Business object attributes and attribute properties”

v “Business object verbs” on page 7

v “Business object application-specific information” on page 8

Figure 1 shows the parts of a business object definition.

Business object attributes and attribute properties

A business object contains attributes, each attribute representing one entity of data.

In the business object definition, you define the name of each attribute as well as

other attribute properties. The business object instance holds a value for each

attribute (or indicates that the attribute does not have a value).

Business object name

Verb1

Attribute1

Business object
header

Business object
attributes

Supported
verbs

Type
AppSpecificInfo=
...

AppSpecificInfo=

Verbn

Attribute2
Type
AppSpecificInfo=
...

Attributen
Type
AppSpecificInfo=
...

AppSpecificInfo=

Version
AppSpecificInfo

Figure 1. Business object definition parts

4 Business Object Development Guide

Note: You can specify default values and string data within a business object in a

bidirectional script. Any attribute names you define must only use

characters in the US English character set.

Business object definitions include various properties that apply to attributes.

These properties provide the connector, data handler, and other components with

information on the types, sizes, and default values of attributes. The attribute

properties are discussed in the sections that follow.

Name property: Each business object attribute must have a unique name within

the business object definition. The name should describe the data that the attribute

contains. The name can be up to 80 characters but cannot start with a numeric

character. The name can contain alphanumeric characters and underscores but

cannot contain spaces, punctuation, or special characters such as:

v @

v ~

v $

v %

v ^

v &

v (

v)

v |

v ?

v ,

v ’

v ’

v ;

v {

v [

v]

v }

Notes:

1. When designing an application-specific business object, check its adapter user

guide or the Data Handler Guide for specific naming requirements and

recommendations.

2. This attribute name must use only characters defined in the code set associated

with the U.S. English locale (en_US).

Type property: The Type property defines the data type of the attribute:

v For a simple attribute, the supported types are Boolean, Integer, Float, Double,

String, Date, and LongText.

v For a complex attribute, the type is a business object definition:

– If the attribute represents a child business object, specify its type as the name

of the child business object definition and specify the cardinality as 1 (single

cardinality).

– If the attribute represents an array of child business objects, specify the type

as the name of the child business object definition and specify the cardinality

as n (multiple cardinality).

Chapter 1. Business objects 5

Note: All attributes that represent child business objects also have a

ContainedObjectVersion property (which specifies the version number of the

child object’s business object definition) and a Relationship property (which

specifies the value Containment).

Cardinality property: Each simple attribute has single cardinality (cardinality 1).

Each complex attribute, which represents a child business object or array of child

business objects, has single cardinality or multiple cardinality (cardinality n),

respectively. For more information on cardinality, see “Hierarchical business

objects” on page 12.

Note: When specified for a required attribute, single cardinality indicates that a

child business object must exist, and multiple cardinality indicates zero to

many instances of a child business object.

Key property: At least one attribute in each business object must be specified as

the key. The key attribute contains a value that uniquely identifies the business

object. To define an attribute as a key, set its Key property to true.

Note: A key value in a business object is often referred to as its primary key.

When you specify as key a complex attribute:

v If the attribute represents a child business object, the key is the concatenation of

the keys in the child business object.

v If the attribute represents an array of child business objects, the key is the

concatenation of the keys in the child business object at location 0 in the array.

Foreign key property: The Foreign Key property is typically used in

application-specific business objects to specify that the value of an attribute holds

the primary key of another business object, which links business objects. The

attribute that holds the primary key of another business object is called a foreign

key. Define the Foreign Key property as true for each attribute that represents a

foreign key.

You can also use the Foreign Key property for other processing instructions. For

example, this property can be used to specify what kind of foreign key lookup the

connector performs. In this case, you might set Foreign Key to true to instruct the

connector to check for the existence of the entity in the database and create the

relationship only if the record for the entity exists.

Required property: The Required property specifies whether an attribute must

contain a value. If a particular attribute in the business object must contain a value

to be able to process the business object data, set the Required property for the

attribute to true.

AppSpecificInfo: The AppSpecificInfo property can contain a String of up to

1000 characters that is specified primarily for an application-specific business

object. For information on this property, see “Business object application-specific

information” on page 8.

Notes:

1. Application-specific information is not available in the mapping process.

2. You can specify this data in a bidirectional script, if required.

Max Length property: The Max Length property is set to the number of bytes

that a String-type attribute can contain. Although this value is not enforced by the

6 Business Object Development Guide

WebSphere Business Integration Server Express system, specific connectors or data

handlers might use this value. Check the guide for the specific adapter or the

guide for the data handler that processes the business object to determine

minimum and maximum allowed lengths.

Important: The Max Length property is very important when you use a

fixed-width data handler.

Note: Attribute length is not available in the mapping process.

Default value property: The Default Value property can specify a default value

for an attribute.

If this property is specified for an application-specific business object, and the

UseDefaults connector configuration property is set to true, the connector can use

the default values specified in the business object definition to provide values for

attributes that have no values at run time.

Notes:

1. The attribute’s default value can use any characters defined in the code set

associated with the current locale.

2. For an attribute whose type is String, you can specify a blank character as a

default value.

Comments property: The Comments property allows you to specify a comment

for an attribute. Unlike the AppSpecificInfo property, which is used to process a

business object, the Comments property provides only documentation information,

which may assist other developers in understanding your design decisions.

Note: The attribute’s comments can use any characters defined in the code set

associated with the current locale including bidirectional characters.

However, the newline character is invalid.

ObjectEventId attribute: The ObjectEventId attribute is not only required, but it

must be the last attribute in every business object. The WebSphere Business

Integration Server Express system uses this attribute to identify and track an event

flow in the system.

The ObjectEventId attribute stores a unique value that identifies each event in the

WebSphere Business Integration Server Express system.The connector framework

generates values for this attribute in the parent business object and in each child.

Important: Do not map the ObjectEventId attribute or have a connector or data

handler populate it. The business integration system handles the value

of this attribute.

Business object verbs

The business object definition includes a list of the verbs that the business object

can support. These verbs correspond to operations that are valid on the data

within the business object. At run time, a business object contains one active verb,

which describes the operation to perform on the data in that particular business

object.

Chapter 1. Business objects 7

Table 2 lists the basic verbs that a business object definition can support.

 Table 2. Basic verbs

Verb Function

Create Make a new entity in the application.

Retrieve Using key values, return a complete business object.

Update Change the value in one or more fields in the application entity.

Delete Remove the entity from the application. This operation must be

a true physical delete.

In addition to the basic verbs in Table 2, a business object definition might also

need to support one or more of the following verbs:

v RetrieveByContent—Using non-key values, return a complete business object.

v Exist—Check for the existence of a specified entity but do not retrieve it.

v Custom—Perform an application-specific operation.

Business object application-specific information

A business object definition can provide application-specific information, whose

content provides metadata to the component that processes the business object. A

common use of application-specific information is to provide a connector or data

handler with application-dependent instructions on how to process the business

object. The application-specific information is a string that is entered during

business object design and read at run time by a connector or data handler.

Note: Connectors that are designed to use the application-specific information in

definitions of their application-specific business objects are called

metadata-driven connectors. Because the processing information is

configurable, rather than hard-coded, a metadata-driven connector is more

flexible and easier to maintain than one that is not metadata-driven.

Within a business object definition, you can provide application-specific

information at one of three levels:

v The business object definition

v An attribute within the business object definition

v The business object verb

Application-specific information is stored in a field in the business object definition

called the AppSpecificInfo property. The value of the AppSpecificInfo property is a

text string that can include any information about the business object or

application. Figure 2 illustrates the major elements of a business object definition

and the application-specific property for each element.

Note: The string can contain bidirectional characters, if required for your locale.

8 Business Object Development Guide

This section covers the following topics:

v Application-specific information for a business object

v Application-specific information for an attribute

v Application-specific information for a verb

Application-specific information for a business object: The application-specific

information at the business object level provides information that the connector or

data handler uses to process the data. Business object-level application-specific

information is used whenever processing instructions are relevant for an entire

business object hierarchy. For example, the object-level application-specific

information might do one or more of the following:

v Define the scope of business object transaction processing

v For applications that require object processing in an application extension,

contain the name of the function to call to handle the business object

v Specify the name of the table or form in which the record belongs

v Specify the name of an attribute within the business object that represents a

logical or “soft” delete

Figure 3 illustrates application-specific information that identifies a form or table

name in an application. The connector can get the table or form name from the

AppSpecificInfo property and use it in an API call to retrieve data from the

application.

Business object name
Version
AppSpecificInfo =

Attribute
AppSpecificInfo =

Attribute

Verb
AppSpecificInfo =

AppSpecificInfo =

Business object
header

Attribute
AppSpecificInfo =

Business object
attributes

Business object
verb

Figure 2. Business object definition showing the application-specific property for each

element

Chapter 1. Business objects 9

Application-specific information for an attribute: Each attribute of a business

object definition can have application-specific information associated with it.

Attribute-level application-specific information is used whenever processing

instructions are relevant for the single attribute. For example, this information can

specify a field on a form, a column in a table, or whatever the connector needs to

locate or work with the attribute. If certain attributes of a business object are

located on a particular subform in the application, the AppSpecificInfo property is

a good candidate for a place to encode this information.

Figure 4 illustrates the AppSpecificInfo property for an attribute. In this example,

the application-specific information specifies the name of a subform and field.

Figure 5 illustrates the relationship of form, subform, and field name as provided

in the object-level and attribute-level application-specific information. This example

assumes that a billing application is based on forms, and that the way to interact

with invoices in this application is through the Invoice form, which is a subform of

a main CustAccount form. The Invoice subform has the following fields:

CustName, CustAddr, InvNum, DollarAmount, and Terms.

Figure 3. Application-specific information for a business object

Figure 4. Application-specific information for an attribute.

10 Business Object Development Guide

Figure 5 uses the attribute-level AppSpecificInfo property to store the name of the

Invoice subform and the attribute’s corresponding field name. The example uses

name-value pairs to specify the information.

Application-specific information for a verb: Each verb definition can include

application-specific information that provides the connector or data handler with

instructions on how to process the business object when that verb is active.

Note: The business object handler, which is the part of a connector that handles

requests sent from the integration broker to the connector, can be designed

to use the application-specific information in the verbs of their

application-specific business object definitions. Such business object handlers

are called metadata-driven business object handlers. Because the processing

information is configurable, rather than hard-coded, a metadata-driven

business object handler is more flexible and easier to maintain than one that

is not metadata-driven.

For example, if the connector is using an API to handle updates to the application

database, the application-specific information can provide the connector with

information to run an API.

The verb application-specific information can also specify the name of a function to

call in the application to handle the processing of a business object.

Business object instances

While the business object definition represents the template for a collection of data,

a business object instance (often just called a “business object”) is the run-time entity

that contains the actual data. The business object is what is passed between

components of the business integration system.

The business object contains the following information:

v Attributes, each of which contains the data for the associated business object.

One of the attributes is usually a key attribute, which contains a value that

uniquely identifies this business object among all business objects of the same

definition.

v An active verb, which should be one of the supported verbs for the business

object definition

Application-specific
business object definition
for an invoice

BillingApp_Invoice

CustName

InvoiceNumber Name
Address
Phone
Invoice

CustName
CustAddr
InvNum
DollarAmount
TermsAppSpecificInfo =

FM=Invoice;FL=InvNum
.
.

.

.

AppSpecificInfo=FM=CustAccount Application form

Version = 1.0.0

CustAccount

Invoice

Application subform

Figure 5. Using business object definition application-specific information

Chapter 1. Business objects 11

Figure 6 shows the Customer business object definition and a corresponding

business object instance for this definition.

Business object structure

The structure of a business object can be either of the following:

v Flat business objects

v Hierarchical business objects

The following sections show examples of flat and hierarchical business object

structures, and provide information on how the business object structure affects

connector logic.

Flat business objects

A business object definition for a flat business object contains one or more simple

attributes and a list of supported verbs. A simple attribute represents one value,

such as a String or Integer or Date. All simple attributes have single cardinality.

The Customer business object in Figure 6 is an example of a flat business object.

For more information, see “Business object attributes and attribute properties” on

page 4.

Hierarchical business objects

Hierarchical business object definitions define the structure of multiple related entities,

encapsulating not only each individual entity but also aspects of the relationship

between entities. In addition to containing at least one simple attribute, a

hierarchical business object has one or more attributes that are complex; that is, the

attribute itself contains one or more business objects, called child business objects.

The business object that contains the complex attribute is called the parent business

object.

There are two types of relationships between parent and child business objects:

v Single cardinality—When an attribute in a parent business object represents a

single child business object. The type of the attribute is set to the name of the

child business object, and the cardinality is set to 1.

v Multiple cardinality—When an attribute in the parent business object represents

an array of child business objects. The type of the attribute is set to the name of

the child business object, and the cardinality is set to n.

Business object definition

CustomerId

CustomerName

CustomerStatus

CustomerRegion

ObjectEventId

Customer

Business object

8776

Trievers Inc

Active

NE

1027111552889_1

Customer

Create

Retrieve

Update

Delete

Create

Figure 6. Business object definition and sample business object.

12 Business Object Development Guide

In turn, each child business object can contain attributes that contain a child

business object or an array of business objects, and so on. The business object at

the top of the hierarchy, which itself does not have a parent, is called the top-level

business object. Any single business object, independent of its child business objects

it might contain (or that might contain it) is called an individual business object.

In a typical business object hierarchy, a top-level business object definition contains

one or more simple attributes, one or more attributes that represent a child or

array of child business objects, and a list of supported verbs. Figure 7 shows a

typical hierarchical business object. The top-level business object, Customer, has

both single-cardinality attributes and multiple-cardinality attributes with child

business objects:

v Its Address attribute is a complex attribute with multiple cardinality. Customer

is the parent business object for each of the Address child business objects.

v Its CustProfile attribute is a complex attribute with single cardinality. Customer

is the parent business object for the single CustProfile child business object.

In Figure 7, the Customer and CustProfile business objects, as well as each of the

Address business objects is an individual business object.

Note: When a top-level business object contains information used to process its

child business objects, it is called a wrapper business object. For example,

the XML connector requires a wrapper business object to contain

information that determines the format of its child data business objects and

routes the children.

When designing the structure of a hierarchical application-specific business object,

you need to determine:

v How entity data is represented in the business object

v How the primary application entity relates to child entities

CustomerId

ObjectEventId

CustomerStatus

CustomerName

AppSpecificInfo = cust_key

AppSpecificInfo = cust_name

AppSpecificInfo = cust_status

Address

Place holder

CustProfile

Type = Address
Relationship = Containment
Cardinality = n

Type = CustProfile
Relationship = Containment
Cardinality = 1

AddressId

ObjectEventId

AddressInfo

CustomerId

AppSpecificInfo = addr_key

AppSpecificInfo = cust_key

AppSpecificInfo = address

CustProfileId

ObjectEventId

CustomerId

AppSpecificInfo = profile_key

AppSpecificInfo = cust_key

Cardinality 1

Cardinality n
arrayCustomer Address

AppSpecificInfo = address

CustProfile
AppSpecificInfo = profile

Figure 7. Example of a hierarchical business object definition

Chapter 1. Business objects 13

v If an application entity includes data from different entities, you must decide:

– Whether the application-specific business object needs to include related data

– How to define the relationship between the related data

For more information, see “Design considerations for multiple entities” on page 25.

Overview of the development process

This section provides an overview of the business object development process.

Setting up the development environment

Before you start the development process, the following must be true:

v The WebSphere Business Integration Server Express system is installed on a

computer that you can access.

For information on how to install and start up the WebSphere Business

Integration Server Express system, refer to the appropriate WebSphere Business

Integration Server Express installation guide.

v InterChange Server Express and its repository’s database server are running.

This step is required only when you are ready to save the definition to the

repository or to delete a definition from the repository. For development only,

you can run Business Object Designer Express locally, without connecting to

InterChange Server Express.

v If you plan to generate a business object definition using an Object Discovery

Agent, you must have started the Object Activation Daemon (OAD) before you

use this ODA to generate business object definitions. For more information, see

“Before using an ODA” on page 66.

Stages of business object development

The stages of business object development are as follows:

1. Understand the data requirements that are critical to the business process

integration.

v If creating an application-specific business object, understand the relationship

among the connector, the data handler, and the supported

application-specific business objects.

v If creating a generic business object for use with InterChange Server Express,

understand the relationship between the collaboration object and the

business object.
2. Develop the business object definitions in one of two ways:

a. Generation from a data source—the WebSphere Business Integration Server

Express system provides tools that facilitate generation of a business object

definition for some connectors. Such tools are Object Discovery Agents or

command line tools that are designed to connect to an application and

“discover” business object requirements specific to a business entity and to

generate definitions from those requirements. Business Object Designer

Express presents a graphical user interface to Object Discovery Agents, and

helps manage the discovery and definition generation processes. Check the

user guides for the adapter and data handler you will be using to determine

if they have an available tool or utility. You can also check the Connector

Feature Checklist, which is available on the main documentation page

under the Connectors category. If a custom adapter is being developed to

communicate with an application, you can use the Object Discovery Agent

Development Kit to create a custom Object Discovery Agent for the adapter.

14 Business Object Development Guide

b. Manual—Business Object Designer Express is a graphical user interface that

facilitates the manual creation of business object definitions. This interface is

most useful for developing generic business objects to use with InterChange

Server Express, as there is no application in which object discovery can be

performed.
3. If you used a tool to automatically generate the business object definition from

a data source, verify that the generated structure and application-specific

information conforms to requirements. Reference the adapter user guide for the

connector that uses the business object definition determine any special

configuring that you must do manually.

4. Test and debug the business object by running it through the system; edit it as

necessary.

Table 3 is a visual overview of the business object development process and

provides a quick reference to chapters where you can find information on specific

topics.

 Table 3. Business object development process

Tasks: Steps: Refer to:

Designing business

objects

 Identify data requirements

 Understanding the relationship among

connector, data handler and

application-specific business object

 If using InterChange Server Express ,

understanding the relationship between

the collaboration and the generic business

object

Chapter 2

Understanding

Business Object

Designer Express

 Launching Business Object Designer

Express

 Using Business Object Designer Express

 Working locally or connected to

InterChange Server Express

Chapter 3

Working with

business object

definitions

 Creating a business object manually

 Creating a business object definition

using an Object Discovery Agent (ODA)

 Deleting a business object definition

Chapter 4

Creating an Object

Discovery Agent

 Understanding the appliation and its

requiremetns

 Learning about the structure of an ODA

 Understanding the relationship between

the ODA and Business Object Designer

Express

 Learning about ODK classes

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 1. Business objects 15

16 Business Object Development Guide

Chapter 2. Business object design

The key to the design of business objects is to develop a business object definition

that models as closely (and efficiently) as possible the data that needs to be

transmitted between components of the business integration system:

v For data that is transferred between a connector and InterChange Server

Express, you design application-specific business objects that model the appropriate

application entities. These entities might correspond to data structures or

technology standards used by a particular application, or to specific technology

standards used by a Web server.

v For data that is processed within the business logic of an InterChange Server

Express collaboration object, you design generic business objects that contain a

superset of information for the application entities that need to communicate.

When the collaboration object exchanges information with an application, maps

convert the data between the generic business object and application-specific

business object structures.

This chapter presents information on the structure of business objects for the

WebSphere Business Integration Server Express system, and makes

recommendations for designing both application-specific and generic business

objects. The material presented here assumes that you understand the basic object

concepts described in the System Implementation Guide:

The main topics of this chapter are:

v “Determining business object structure”

v “Designing application-specific business objects” on page 31

v “Designing generic business objects (InterChange Server Express only)” on page

39

v “Determining mapping requirements for business objects (InterChange Server

Express only)” on page 43

Determining business object structure

The purpose of a business object is to transport data between components of a

business integration system and the applications that it integrates. Therefore, the

business object should model the data that needs to be transported. This data is

usually associated with an entity in an application or technology that the business

integration system integrates. The structure of a business object can be either of the

following:

v “Representing one entity”

v “Representing multiple entities” on page 18

In addition, this section provides “Design considerations for multiple entities” on

page 25.

Representing one entity

The simplest business object design is a flat business object that represents one

entity. All the attributes of a flat business object are simple (that is, each attribute

represents one value, such as a String or Integer or Date). For more information,

see “Flat business objects” on page 12.

© Copyright IBM Corp. 2004, 2005 17

In the case of an application-specific business object, a flat business object can

represent one entity in an application or in a technology standard. For example,

assume an application has a database table that describes a record. Assume further

that this table has five columns named ObjectID, UserName, TimeStamp, Detail,

and Status (see Figure 8). The ObjectID is the primary key for each row, and its

value is generated by the application. This table has no relationships to other

tables.

As Figure 8 shows, the Record business object you design to represent the table

might have five attributes, one for each column, with the key attribute

corresponding to the ObjectID column.

Use of flat business objects can simplify corresponding connector design in the

following ways:

v On a Create operation, the connector might cycle through the attributes,

extracting the non-key attribute values from the business object instance and

extracting processing instructions from the business object definition. When it

has assembled the information it needs to process the business object, the

connector might start an application function call or SQL statement to create a

new row for the record in the table. The connector then returns a value for the

key to the business integration system.

v On a Retrieve operation, the connector might extract the primary key from the

business object request, use the key value to retrieve the current set of data for

the row, and return a business object with the complete set of values.

This type of business object is straightforward in its design and in the connector

logic required to process it. Typically, however, application entities are more

complex and include information that is stored in other objects.

Representing multiple entities

A business object can represent application entities that include data from other

entities in one of the ways shown in Table 4.

 Table 4. Representing multiple entities.

Structure of business object

Type of data

organization

Type of parent/child

relationship

Parent business object can have one or more

child business objects that represent the

other entities.

One-to-one

One-to-many

Structural

Application table Business object definition

ObjectID

UserName

UserName TimeStampObjectID

DetailText

TimeStamp

ObjectEventId

RecordStatus

Status

Detail

Figure 8. Flat business object representing one entity

18 Business Object Development Guide

Table 4. Representing multiple entities. (continued)

Structure of business object

Type of data

organization

Type of parent/child

relationship

Parent business object can have one or more

foreign-key attributes that reference other

top-level business objects that represent the

other entities.

One-to-one

One-to-many

Many-to-many

Many-to-one

Semantic

If the application and its interface permit, a

flat business object can include attributes

that directly reference other entities.

One-to-one None

When deciding how to structure business objects that represent multiple entities,

consider these guidelines:

v If the relationship between entities is a one-to-many relationship, represent the

data in the subordinate entities as child business objects. For example:

– When working with database tables, if an entity row is related to one or more

rows in another entity and is the only entity that relates to the subordinate

entity, create a separate child business object for each related row.

– When working with a DTD, if an XML element has an attribute with a

cardinality of *, create a separate child business object for each related

element attribute.
v If the relationship between entities is a many-to-many relationship, represent the

data in the related entities as top-level business objects that are referenced by the

parent rather than contained by the parent.

v If a business object definition for an entity includes many attributes from

another entity and the attributes from the second entity form a logical grouping,

you may want to create a child business object definition for the second entity

rather than locate all the attributes for both entities in the same business object

definition.

v If an existing business object already contains other child business objects,

creating one or more child business objects that represent new entities makes the

business object structure consistent.

The following sections describe each of these representations in more detail.

Structural relationships

In a structural relationship, the parent business object physically contains the child

business object. Such a business object is a hierarchical business object: at least one

of its attributes is complex (that is, it contains either a child business object or an

array of child business objects). The Relationship attribute property for this

attribute is containment, to indicate a containment relationship. The type of this

attribute is the type of the child business object (or objects) it represents. For more

information, see “Hierarchical business objects” on page 12.

The following hierarchical business objects represent structural relationships:

v Because an order is composed of line items, an Order business object contains an

array of LineItem business objects. The containment relationship has

multiple-cardinality because each order can contain multiple line items. This

structure represents a one-to-many relationship.

v Because an employee is associated with one home address, an Employee

business object contains one Address business object. The containment

Chapter 2. Business object design 19

relationship has single-cardinality because each employee can be associated with

only one home address. This structure represents a one-to-one relationship.

In both cases, because the parent business object contains the child or array of

children, the relationship is defined structurally.

A structural relationship assumes that the parent business object owns the data

within the child object. Thus, when a new employee is created, a new row is

inserted into the address table to hold that employee’s address. Similarly, when an

employee is deleted, the employee’s address is also deleted from the address table.

Semantic relationships

In a semantic relationship, either the parent business object references the child, or

the child references the parent. When one business object references another, it

stores a value that uniquely identifies the other, but it does not contain the other.

In this case, the component that processes the business object derives the

relationship semantically.

A semantic relationship is typically defined by a simple attribute that serves as a

foreign key. The foreign key attribute is located in one business object and contains

the unique identifier (called the primary key) of the other. In other words, both

business objects have a primary key attribute that holds its unique identifier. In

addition, one of the business objects also has a foreign key attribute that holds the

primary key value of the other. The foreign key establishes the link semantically

between parent and child.

Semantic relationships are important when there is a many-to-many or

many-to-one relationship between entities, in other words, when more than one

parent has a relationship to the same child. Relating the entities semantically rather

than structurally isolates the child’s data, which is important to maintain data

consistency.

Because the parent does not contain the child in a semantically defined

relationship, the connector that handles requests for the parent and child receives

them in separate operations. In other words, the requests are sent separately to the

connector, which handles the parent and child in separate operations. For more

information, see “Data ownership in relationships” on page 25 and “Choosing

between a semantic and a structural relationship” on page 27.

Consider the design options in Table 5 for specifying a semantic relationship.

 Table 5. Design options for semantic relationships.

Design option Type of relationship

“Storing the foreign key in the parent object” One-to-one

Many-to-one

“Storing the foreign key in the child object”

on page 21

One-to-many

“Storing foreign keys in an array of child

objects” on page 22

One-to-many

Many-to-many

“Storing the foreign key in a business-object

tree” on page 23

One-to-one

Storing the foreign key in the parent object: In the simplest use of foreign keys,

the foreign key that establishes the relationship is stored in the parent. In this case,

a parent can contain a reference to only one child of a given type. The relationship

20 Business Object Development Guide

between parent and child is clearly defined in the parent. Therefore, this structure

represents a one-to-one relationship. However, multiple parent business objects can

reference the same child business object to implement a many-to-one relationship.

Note: When the foreign key that establishes the relationship is stored in the parent,

a parent can contain multiple attributes that each contain a reference to a

child, but each of these attributes typically references a different type of

child.

In Figure 9, the Customer business object has two attributes (AddressId and

CustInfo) each of which contain a reference to a child business object. The foreign

key attributes in Customer readily identify the parent’s relationship to the two

children.

Note: In Figure 9, the acronym “PK” is used to indicate a primary key and “FK” is

used to indicate a foreign key. In addition, these business objects follow the

naming convention for generic business objects by naming their primary key

attribute ObjectId. In an application-specific business object, it is usually

best to name the attribute after the name of its equivalent field or column in

the application.

Using InterChange Server Express, you can examine the delivered generic Order

business object for an example of a parent object that stores a foreign key reference

to another object. It contains the CustomerId attribute, which references the

top-level generic Customer business object. See Figure 11 for an illustration of the

Order business object.

Storing the foreign key in the child object: Alternatively, the foreign key that

establishes the relationship can be stored in the child. This case represents a

one-to-many relationship; that is, multiple children can reference the same parent.

However, because the relationship between parent and child is defined in the child,

the relationship is invisible when you examine only the parent. Therefore, if the

parent business object triggers an integration flow, those children cannot be

retrieved—there is no reference to them in the parent business object that is

traveling through the system.

In Figure 10, the foreign key attribute is stored in each child business object rather

than in the parent. This structure allows multiple children to be semantically

related to the same parent. In this case, however, because the parent business

ObjectId (PK)

ObjectId (PK)CustomerName
City

Address business object

Customer business object

State
AddressId (FK)

Customer

Address

ObjectId (PK)

CustomerProfileData

Customer information business object

CustomerAccountData

CustomerInformation

CustInfo (FK)

Figure 9. One-to-one: Multiple foreign key attributes stored in the parent business object

Chapter 2. Business object design 21

object has no attributes that contain a reference to a child business object, there is

no way to identify the parent’s relationship to its children or, given the parent, to

retrieve all of its related children.

Note: In Figure 10, the acronym “PK” is used to indicate a primary key and “FK”

is used to indicate a foreign key.

Storing foreign keys in an array of child objects: To represent a one-to-many

relationship, the foreign key that actually establishes the relationship is stored in a

simple attribute in a child business object. The parent business object structurally

contains an array of these children. In other words, the parent contains an array of

child business objects, each one of which contains a foreign-key reference to

another top-level business object. In addition, multiple parent business objects can

reference the same child business object in their child business object arrays to

implement a many-to-many relationship.

Note: With InterChange Server Express, there are several business objects you may

examine for an example of a parent-child relationship of this type. The

generic Order and ContactRef business objects provide an example of this

option. Order contains the OrderContactRef attribute, which contains an

array of generic ContactRef business objects. Each ContactRef business object

contains the ContactId attribute, which holds a reference to the top-level

generic Contact business object.

In Figure 11, the Order business object contains a reference to one Customer

business object and structurally contains an array of ContactRef business objects.

Each ContactRef business object contains a reference to one Contact business

object.

ObjectId (PK)

parentID

Attribute2

ChildBO

ObjectId (PK)

Attribute1

Attribute2

ParentBO

AttributeN ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

ObjectId (PK)

parentID (FK)

Attribute2

ChildBO

AttributeN

Figure 10. Many-to-one: Foreign key stored in multiple child business objects

22 Business Object Development Guide

Note: In Figure 11, the acronym “PK” is used to indicate a primary key and “FK”

is used to indicate a foreign key.

Storing the foreign key in a business-object tree: In this design, the foreign key

that establishes the relationship is stored in a “child” business object whose parent

is another business of the same type as itself. With InterChange Server Express,

you can examine the generic InstalledProduct business object for an example of

this design. This business object contains the ParentId attribute, which can contain

a reference to another InstalledProduct business object, which is the direct parent

of the current business object.

In Figure 12, the ParentId attribute of one InstalledProduct business object contains

a reference to the primary key (ObjectId) attribute of its immediate parent

InstalledProduct business object. The head of the hierarchy is the business object

whose ParentId attribute does not contain a value.

ObjectId (PK)

ObjectId (PK)...

Customer business object

Order business object

CustomerId (FK)

Order

Customer

ContactRef business objects

OrderContactRef(n)
...

...

ObjectId (PK)

ContactId (FK)

ContactRef

Contact business objects

ObjectId (PK)

Contact

...

...

Figure 11. Business object containing a child business object that stores foreign keys

Chapter 2. Business object design 23

Note: In Figure 12, the acronym “PK” is used to indicate a primary key and “FK”

is used to indicate a foreign key.

Because an InstalledProduct business object can contain a reference to its parent

business object, the business integration system can synchronize installed products

that are part of a large hierarchy. The business integration system can manage the

components of a complex installed product hierarchy as individual

InstalledProduct business objects. With InterChange Server Express, you can see

the InstalledProductSync collaboration template documentation for more

information.

Flat business object representing related entities

If the application interface provides the capability of joining multiple application

entities in one business object, you may be able to define a flat business object that

contains attributes referring to a primary entity and to related entities. If the

relationship between the entities is a one-to-one relationship, where one instance of

the primary entity can be associated with one instance of each related entity,

attributes from multiple entities can be included in one business object.

When designing an application-specific business object of this type, you may need

to use application-specific information to specify the location of attribute data in

the application so that the connector can find and process the data correctly.

Figure 13 provides an example of a flat WebSphere Business Integration Server

Express system business object that represents data in two entities, one a table

containing address data and the other a table containing lookup data for

state/province and country abbreviations.

ObjectId (PK)

Attribute2

InstalledProduct

AttributeN

Attribute2

AttributeN

ObjectId (PK)

ParentID (FK)

Attribute2

InstalledProduct

AttributeN

ParentID (FK)

ObjectId (PK)

Attribute2

InstalledProduct

AttributeN

Attribute2

AttributeN

ObjectId (PK)

ParentID (FK)

Attribute2

InstalledProduct

AttributeN

ParentID (FK)

Figure 12. Business object storing a foreign key in its parent of the same type

24 Business Object Development Guide

This example uses application-specific information to establish a foreign key

relationship between the entities. In this case, the connector performs a lookup

from a value in an attribute that represents one table to provide a value for an

attribute that represents another table. To retrieve this data, the connector performs

two table reads.

Although flat business objects can encapsulate information from or included in

multiple application entities, cross-application integration problems often require

more complex integration logic and more complicated data structures than flat

business objects can represent. To handle more complexity in application entities

and integration requirements, the WebSphere Business Integration Server Express

system provides hierarchical business objects.

Design considerations for multiple entities

This section provides the following considerations when you design business

objects for multiple entities:

v “Data ownership in relationships”

v “Choosing between a semantic and a structural relationship” on page 27

Data ownership in relationships

The way you design your business objects to represent multiple entities has an

effect on the ownership of the data:

v A structural relationship assumes that the parent business object owns the child

data.

v A semantic relationship does not assume that the parent business object owns

the data within the child object.

This distinction is significant when considering the data consistency of an entity

that is shared by multiple business objects.

For example, assume that a customer and a contact share an address. If the

Customer and Contact business objects contain a reference to the Address business

object (a semantic relationship) instead of containing the business object (a

structural relationship), changes to the Address can be made independently of

changes to the Customer or Contact.

However, if the Customer and Contact business objects each contain the Address

business object, changes to the Address made by Customer might overwrite

changes made by Contact. In this case, two different collaboration objects

(CustomerSync and ContactSync) might update the same address data at the same

time, causing data inconsistency.

Address

Retrieve

address_id

.

.

city=Burlingame
state=CA
country=USA

fk_state
fk_country

state_description

Figure 13. Flat business object that represents two entities

Chapter 2. Business object design 25

If Customer and Contact have a semantic rather than structural relationship to the

Address business object, you can limit modification of Address data to a third

interface. For instance, you might have one interface for each of the Contact and

Customer business objects. Then both of those interfaces could delegate

management of Address business objects to a third interface. With InterChange

Server Express this is done by having the CustomerSync and ContactSync

collaboration objects call AddressSync through a wrapper collaboration object

rather than directly making the changes themselves. For more information on

designing business objects to maintain data consistency for InterChange Server

Express integration scenarios, see “Designing for Parallel Execution” in the

Collaboration Development Guide.

Figure 14 illustrates the difference between semantically and structurally defining

the relationship to a child business object.

The figure above illustrates two kinds of relationships to child data:

v Semantic—The child Address business object, which is semantically linked to

both Customer and Contact, contains the value of its parent’s primary key in a

simple foreign-key attribute. In this case, the name of the primary key attribute

in both parents is the same, which simplifies the link from child to parent.

v Structural—The two business objects that structurally link to Address have an

attribute that represents an instance of the child. In this case, the data in the

child is related only to the parent that contains it and is not shared.

ObjectId (PK)

ObjectId (PK)

CustomerName

City

Address business object

Customer business object

State

Customer

Address

ObjectId (PK)

CustomerName

Contact business object

...

Contact

Semantically shared data

ObjectId (PK)

ObjectId (PK)

CustomerName

City

Address business object

Customer business object

State

Address (1)

Customer

Address

ObjectId (PK)

CustomerName

Contact business object

Address (1)

Contact

Structurally related data

parentID (FK)

...

...

ObjectId (PK)
City

Address business object

State

Address

Figure 14. Comparing semantic and structural relationships

26 Business Object Development Guide

Choosing between a semantic and a structural relationship

As Table 4 on page 18 shows, both the one-to-one and one-to-many relationships

can be represented by a structural or semantic relationship. Table 6 summarizes

these structural and semantic representations.

 Table 6. Representations for one-to-one and one-to-many relationships

Type of relationship Structural representation Semantic representation

One-to-one (single

cardinality)

An attribute in a parent

business object represents one

child business object.

An attribute in a parent

business object is simple and

contains the foreign key to

reference one child business

object.

One-to-many

(multiple-cardinality)

An attribute in a parent

business object represents an

array of child business

objects.

Multiple child business

objects each contain a foreign

key attribute that stores the

parent’s primary key.

Figure 9 and Figure 10 illustrate business objects whose single- and

multiple-cardinality relationships are defined semantically. The business objects in

the example might represent data stored in a database. Relationships between

business objects that represent such data can be defined both semantically and

structurally. For such data, the relationship between a parent and child can be

defined both semantically and structurally in the same two business objects.

Choosing a semantic relationship: To implement a semantic relationship, the

underlying application should be able to support foreign keys. For example, when

a business object represents database data, it can establish the relationship between

entities both semantically and structurally. Such business objects are designed

redundantly. In other words, the component that processes them can locate the

child through the parent and the parent through each child.

For example, assume an application has a table that represents purchase orders.

This table is related by foreign keys to a table that contains line items for a

purchase order. Multiple rows in the line items table reference one row in the

purchase orders table. Figure 15 illustrates these tables.

PO ID

Purchase orders table

PO date

87

Line item ID PO ID

Line items table

Item desc

2404
... ...

12 87 1 nail"

13 87

PO status

Active
...

Price

$0.12
$0.141 ½ nail"

14 87 2 nail" $0.17

...

...

Quantity

50
22
225

...

...

...

Figure 15. Example application tables with a one-to-many semantic relationship.

Chapter 2. Business object design 27

Figure 16 illustrates business objects that might correspond to these tables. This

figure shows a top-level PurchaseOrder business object and three child LineItem

business objects.

The illustrated PurchaseOrder business object has both a semantic and structural

relationship to its LineItem children. The PurchaseOrderId attribute in each child

creates the foreign-key semantic link to the parent from the child. The LineItem

attribute in the parent, which is defined with cardinality n, creates the structural

link to the child from the parent.

Note: IBM does not deliver any business objects that have the foreign key stored

in the child. This document presents the above example only to illustrate

different ways to link parent and child data.

Choosing a structural relationship: If the underlying application does not

support foreign keys, you probably need to implement a structural relationship.

For example, a DTD, which represents one XML document does not support

foreign-key information. Therefore, any one-to-one or one-to-many relationships

must be defined structurally. The following Order DTD, which contains elements

that correspond to an application Order entity, illustrates single- and

multiple-cardinality relationships:

<!-- Order -->

<!-- Element Declarations -->

<!ELEMENT Order (Unit+)>

<!ELEMENT Unit (PartNumber?, Quantity, Price, Accessory*)>

<!ELEMENT PartNumber (#PCDATA)>

<!ELEMENT Quantity (#PCDATA)>

<!ELEMENT Price (#PCDATA)>

<!ELEMENT Accessory (Quantity, Type)>

<!ATTLIST Accessory Name CDATA >

<!ELEMENT Type (#PCDATA)>

Figure 17 illustrates a business object that represents the Order DTD. The top-level

business object contains the Order business object with one-cardinality relationship,

and Order contains the child Unit business objects with a multiple-cardinality

LineItemId (12)

PurchaseOrderId (87)

Child business objects
Parent business object

PurchaseOrderId (FK=87)

PurchaseOrderDate

PurchaseOrderStatus

LineItem (n)

PurchaseOrder
LineItem

LineItemId (13)

PurchaseOrderId (FK=87)

LineItem

LineItemId(14)

Description

Price

PurchaseOrderId (FK=87)

Quantity

LineItem

Multiple
cardinality
semantic
relationship

Multiple
cardinality
structural
relationship

Type = LineItem

Figure 16. Sample business objects with multiple-cardinality semantic and structural

relationships

28 Business Object Development Guide

relationship. In turn, Unit contains the Accessory business objects with a

multiple-cardinality relationship.

The relationship of business objects illustrated in Figure 17 is defined structurally;

that is, each parent business object contains an attribute whose type is the same as

the child’s and whose relationship is specified as containment.

Important: The XML data handler has specific requirements of the top-level

business object that represents a DTD. For information about these

requirements, see the Data Handler Guide.

Enabling business objects for bidirectional scripts

If required, your business objects can support bidirectional scripts as values for

string attributs or as part of the object’s metadata. Use the methods described in

Chapter 17, “CxBiDiEngine class,” on page 229 to transform strings or business

objects.

Support for bidirectional scripts occurs both on the business object template and on

each instance of a business object.

Bidirectional script support on the business object template is automatic; you do

not have to perform any additional configuration. The support on the template

allows the correct typing and displaying of characters in bidirectional languagues.

To enable bidirectional script support for business object instances, you must

configure the connections as described in “Enabling connectors for bidirectional

scripts”.

Enabling connectors for bidirectional scripts

To enable a connector to support a bidirectional script:

1. Set the BiDiTransformation property to true on the Standard tab of Connector

Configurator Express. (See Figure 18). Setting the value to true allows the

XML Declaration

ObjectId

DocType

Unit (n)

Order (1)

Top-level bus obj

Order

PartNumber

Price

Accessory (n)

Quantity

Unit

Multiple-
cardinality
relationship

Name

Type

Quantity

Accessory

Multiple-
cardinality
relationship

Single-
cardinality
relationship

Figure 17. Single- and multiple-cardinality structural relationships

Chapter 2. Business object design 29

connector designer to display the other parameters that support bidirectional

scripts for the connector.

2. Specify the bidirectional options for the following:

v BiDi.Application

v BiDi.Broker

v BiDi.MetaData

Each property displays a dialog (see Figure 19) in which you choose the

bidirectional parameters to support. See Table 7 for a description of the

parameters.

Figure 18. The BiDiTransformation property in the Connector Configurator Express

30 Business Object Development Guide

Table 7. Values for bidirectional format strings

Letter position Purpose Values Description Default

1 Type I Implicit (Logical) I

V Visual

2 Direction L Left to Right L

R Right to Left

3 Symmetric

Swapping

Y Symmetric swapping is on Y

N Symmetric swapping is off

4 Shaping Y Text is shaped N

N Text is not shaped

5 Numeric

Shaping

H Hindi N

C Contextual

N Nominal

3. Deploy the connector. (See the System Implementation Guide for more

information about deploying connectors.)

Designing application-specific business objects

An application-specific business object contains data, actions to be performed on

the data (verbs), and information about the data (application-specific information).

Many connector methods pass an application-specific business object as an

argument. For example:

Figure 19. bidirectional script parameter input dialog

Chapter 2. Business object design 31

v When an application event occurs, some connectors invoke a data handler to

convert the data’s format into a business object, which the connector sends to

the InterChange Server Express.

v When InterChange Server Express sends a request to a connector, the connector

framework sends the business object as an argument to the connector’s business

object handler. In this case, some connectors invoke the data handler to convert

the information in the business object to the format used by the application,

which enables the connector to perform operations in the application.

Designing the relationship among the connector, the data handler, and their

supported application-specific business objects is one of the tasks in connector and

data handler development. Because application-specific business object design can

generate requirements for connector and data handler programming logic that

must be integrated into the connector development process, the developers of the

connector, data handler, and application-specific business objects must work

together to develop specifications for those components. The layout and design of

an application-specific business object should be determined by the connector or

data handler that processes it.

Note: For best performance with InterChange Server Express, application-specific

business objects should be smaller than 1 MB when possible and should

never exceed 5 MB. Larger business objects cause performance problems due

to limitations to the Java Virtua™l Machine upon which the InterChange

Server Express runs.

This section covers the following topics:

v “Contents of application-specific business object definitions”

v “Designing for an existing connector or data handler” on page 39

Contents of application-specific business object definitions

A business object definition includes the following information:

 Table 8. Contents of a business object definition.

Contents of business

object definition Description For more information

Business object structure The structure of an

application-specific business object is

typically designed to correspond

closely to the application entity (data

structure) at the level that the

connector or data handler interacts

with the application (such as at the

table level, the API level, or at

different levels within an API).

“Structure of

application-specific business

objects” on page 33

Attribute properties Attributes contain individual pieces

of data within an application entity.

They also have properties that

provide information such as the

data’s type, cardinality, and default

value. Attribute properties also

specify whether the attribute is

required or key.

“Attributes in an

application-specific business

object” on page 34

32 Business Object Development Guide

Table 8. Contents of a business object definition. (continued)

Contents of business

object definition Description For more information

Application-specific

information

An application-specific business

object definition often includes text

strings that tell the connector how

the business object is represented in

the application or how to process it.

“Business object

application-specific

information” on page 34

Structure of application-specific business objects

The way a connector or data handler processes business objects is determined in

part by the structure of the business objects that it supports. As you design the

structure of an application-specific business object, you need to determine what

structure best represents a particular application entity and how this structure

affects the design of connector and data handler logic or how the structure is

processed by an existing connector or data handler.

While a goal of connector and data handler design is to code a connector or data

handler so that it can handle new and changed business objects without

modification, it is difficult to create a connector or data handler that can handle

any possible business object.

Typically, a connector or data handler is designed to make assumptions about the

structure of its business objects, the relationships between parent and child

business objects, and the possible application representation of business objects. If

designing for an existing connector or data handler, your task is to understand

these assumptions and design business objects accordingly.

A beginning set of questions to consider about the structure of an

application-specific business object is:

v What is the organization or database schema for the application entity that will

be encapsulated in the business object. Does the application entity represent

hierarchical data or one-to-many relationships?

v Does a business object represent one application entity or more than one

application entity? In other words, can attribute values in an individual business

object be stored in different application entities?

v What kind of relationships between business objects does the connector or data

handler handle? How are the relationships modelled in the business objects or

how are they processed by the connector or data handler?

For more information about the business object structures that can represent single

or multiple application entities, see “Determining business object structure” on

page 17.

Note: Certain connectors may require the top-level business object to contain

specific information. For example, the XML connector requires its top-level

business object to contain simple attributes for a URL, MIME type, and

business object prefix, as well as complex attributes to contain a request

business object and a response business object. If you are designing a

business object for an existing connector, refer to its adapter user guide for

specific structure requirements. For more information, see “Designing for an

existing connector or data handler” on page 39.

Chapter 2. Business object design 33

Attributes in an application-specific business object

The attributes hold the individual pieces of data in an application entity. When

defining attributes for an application-specific business object, consider these

questions:

v What piece of data in the application entity will each attribute represent? For a

business object representing a database entity, will each attribute represent a

field, such as a table column? For a business object representing an XML

document, will each attribute represent an element?

v Is it necessary to create an attribute for every single field in the application

entity? Some pieces of data in one application entity may not be significant to

the other applications in the integration; by leaving them out of the business

object definition you can reduce the complexity of the design and prevent the

transfer of unnecessary data from decreasing performance.

v Will the application-specific business object have fewer simple attributes than the

application entity? For example, do you need an attribute for every database

table column?

v How will the connector operate when the individual business object has more

simple attributes than the corresponding database table has columns or the

corresponding DTD has tags? In other words, some attributes in the business

object are not represented in the database or the DTD. In most cases, these

attributes convey information about specific access mechanisms or are used to

separate attributes that represent child business objects. The connector or map

may employ special logic that requires connector-specific attributes to handle

certain application-specific business objects.

As a rule, keep the structure of the business object the same as the structure of the

corresponding application entity (such as database tables or DTDs). If the business

object is large (contains many attributes), define only the attributes that are used in

the business process for which you are designing the business object. However, if

the business object is small, define all of the attributes to be available for future

use. The number of attributes you define depends on the size of the business

objects and the complexity of the relationships between them.

In addition to identifying which application entities must exist as attributes in the

business object, you should also examine the business process to determine if any

additional attributes are required. As part of the analysis of the business process,

identify the business object’s requirements. Stepping through a business process

reveals how a business object is handled and how the required attributes are used.

Variations in the business process and the handling of exceptions might identify

additional attributes that are required to process the business object. These

additional attributes might not correspond to data that is retrieved or updated in

the application.

For example, you may need attributes that:

v serve as a priority indicator whose value is derived during processing according

to the value of an attribute value

v serve as lookup that contains routing information based on one or more attribute

values

Business object application-specific information

After you have defined the structure of an application-specific business object

definition and defined the set of attributes that the business object definition

contains, you can determine whether the connector or data handler needs

additional information about how to process the business object to enable it to

34 Business Object Development Guide

handle the requests it receives from InterChange Server Express. The business

object definition can include this additional information in application-specific

information.

Application-specific information provides the connector or data handler with

application-dependent instructions on how to process business objects. The

recommended approach to designing the relationship between business objects and

connectors is to store information in the business object definition that helps a

connector interact with an application or data source. Such information, called

metadata, can be specified in the application-specific information of each business

object, business object attribute, and business object verb.

The application-specific information is a string that is entered during business

object design and read at run time by a connector or data handler. The connector

or data handler uses the metadata in the business object definition to process

business object instances. Because the connector or data handler has access to its

supported business object definitions at run time, it can dynamically determine

how to process a particular business object.

Consider the following advantages and limitations of application-specific

information when designing a business object:

v Application-specific information enables a business object to be self-contained

with all the information required to process it.

The application-specific information in the business object definition can include

table and column names, processing instructions, names of functions that the

connector calls, or other information about how to process the data in the

application.

Because an application-specific business object contains all the information

needed to process it, the connector can handle new or modified business objects

without requiring modifications to the connector source code. The connector can

be written in a generic manner, with one business object handler that does not

contain hard-coded logic for processing specific business objects.

v A metadata-driven connector can build application function calls or SQL

statements from the values in a business object instance and the

application-specific information in the business object definition.

The function calls or SQL statements perform the required changes in the

application database for the business object and verb the connector is processing.

v The application that a business object represents determines how much

application-specific information the business object definition can contain.

Depending on the application and its programming interface, a connector and its

business objects might be designed so that the connector is almost entirely

driven by the application-specific information in its business objects. In this case,

the connector may require only one business object handler to transform

business objects into requests for application operations.

For some applications, however, the application interface may have constraints

that force entirely different processing logic for different business objects and,

therefore, the implementation of multiple business object handlers. For these

applications, only a partially metadata-driven implementation or no data-driven

implementation is possible.

Depending on the application, business objects vary in how much

application-specific information they contain. Most application-specific business

objects, however, can be designed to contain some information that assists the

connector or data handler with business object processing.

Chapter 2. Business object design 35

Suggested format of application-specific information: It is recommended that

you use name-value pair syntax when you define application-specific information.

This syntax specifies the name of the property and its associated value, separated

by a equals sign (=), as the following syntax shows:

name1=value1;name2=value2

For example, the following name-value pair defines a “table name” property:

TN=TableName

Name-value pairs allow values to be specified in random order. The connector

evaluates the name of each parameter before interpreting the value. It is

recommended that you separate name-value pairs with a delimiter that:

v defaults to a semicolon (;)

v is configurable

Note: If you are creating a business object for an existing connector, check its

adapter user guide to determine the syntax that it requires. Not all

connectors may default to use a semicolon as a delimiter, or be configurable

in that respect.

Table 9 provides examples of parameters that can be included in an attribute’s

application-specific information. These parameters are relevant only to a business

object that represents data in a database table.

 Table 9. Example name-value parameters for attribute application-specific information.

Parameter Description

TN=TableName The name of the database table.

CN=col_name The name of the database column for this attribute.

FK=[..]fk_attributeName] The value of the Foreign Key property defines a

parent/child relationship.

UID=AUTO This parameter notifies the connector to generate the

unique ID for the business object and load the value in this

attribute.

CA=set_attr_name The Copy Attribute property instructs the connector to

copy the value of one attribute into another. If

set_attr_name is set to the name of another attribute

within the current individual business object, the connector

uses the value of the specified attribute to set the value of

this attribute before it adds the business object to the

database during a Create operation.

OB=[ASC|DESC] If a value is specified for the Order By parameter and the

attribute is in a child business object, the connector uses

the value of the attribute in the ORDER BY clause of retrieval

queries to determine whether to retrieve the child business

object in ascending order or descending order.

UNVL=value Specifies the value the connector uses to represent a null

when it retrieves a business object with null-valued

attributes.

One attribute’s application-specific information might combine several of the

example parameters listed above. This example uses semicolon (;) delimiters to

separate the parameters:

TN=LineItems;CN=POid;FK=..PO_ID

36 Business Object Development Guide

The application-specific information in this example specifies the name of the table,

the name of the column, and that the current attribute is a foreign key that links

the child business object to its parent.

Content of application-specific information: The content of application-specific

information can vary considerably in complexity. Some examples are:

v The application-specific information in a business object definition can encode

the name of the table that the business object corresponds to, and, for each

attribute, it can encode the name of the column that the attribute corresponds to.

This is a relatively simple implementation of application-specific information,

but it may be all that a connector needs.

v A more complex implementation of application-specific information might

contain a set of parameters that specify how the connector handles various

business object operations.

v At its most complex, application-specific information might include conditions,

direct connector transaction processing, specify methods of data retrieval, and

provide preprocessing capabilities.

If the business object definition includes application-specific information and the

connector has been designed to make use of it, the connector can extract the

content of the application-specific information from the business object definition

and use it for processing.

Example: How a connector processes application-specific information: As an

example of how a connector processes application-specific information, assume

that your application is based on tables and that you want to work with an

application table called CURRENTCUST, which stores information on customers.

This table has two columns: CSTName and CSTCity.

In the AppSpecificInfo property of the business object header, you can store the

table name. In the AppSpecificInfo property of each attribute, you can store the

column names. In addition, because the connector for this application uses SQL

statements to interact with the database, you can design the verb

application-specific information to hold SQL verbs and keywords. Figure 20

illustrates how this Customer business object definition might look.

CURRENTCUST table

Application-specific
business object definition

Customer

Name

City

AppSpecificInfo = CSTName""

AppSpecificInfo = CURRENTCUST

AppSpecificInfo = CSTCity""

Create
AppSpecificInfo = INSERT INTO

Update
AppSpecificInfo = UPDATE WHERE

Delete
AppSpecificInfo = DELETE FROM

Version = 1.0

Attributes

Verbs

Header CSTName CSTCity

Figure 20. Application-specific information in a business object definition.

Chapter 2. Business object design 37

When a metadata-driven connector receives an instance of this business object from

InterChange Server Express, it extracts the table name and column names from the

application-specific information properties in the business object definition, and

then extracts the attribute and verb values from the business object instance. Using

the table and column names, the attribute values, and the SQL keywords in the

verb application-specific information, the connector can build an SQL statement.

Figure 21 shows an example of this type of processing. The connector extracts the

verb processing instructions and the table and column names from the business

object definition. It then gets the attribute values from the business object instance.

Using this information, the connector builds an SQL INSERT statement to update

the CURRENTCUST table with the new information.

As mentioned above, a business object definition can include AppSpecificInfo text

for the business object as a whole, and for its attributes and verbs. The following

sections provide more information on the use of application-specific information in

these components of a business object.

Important

The length of application-specific information is restricted to 1000 characters.

 Figure 5 uses the attribute-level AppSpecificInfo property to store the name of the

Invoice subform and the attribute’s corresponding field name. The example uses

name-value pairs to specify the information.

Tips on designing application-specific information: When designing business

objects to maximize the metadata-driven behavior of a connector, follow these

general recommendations for storing application-specific information in the

business object definition:

v Store entity names, such as table or form names, in the business object-level

AppSpecificInfo property of a top-level business object. Store subform names or

table names in the business object-level AppSpecificInfo property of a child

business object.

v Store field names, column names, and other information related to business

object attributes in the attribute AppSpecificInfo property.

v Store verb processing instructions in the verb AppSpecificInfo property.

The careful use of the AppSpecificInfo property enables a connector to handle a

variety of business objects in the same way. If an application is consistent in how it

handles data operations, and if for all operations the connector performs consistent

tasks, the business object can be designed to enable a completely metadata-driven

connector.

Name = Fred Smith

City = New York

Verb = Create

INSERT INTO
CURRENTCUST (CSTName, CSTCity)
VALUES (Fred Smith , New York)" " " "

CURRENTCUST table

John Jones

Fred Smith

Chicago

New York

CSTName CSTCity

Business object

SQL statement
Customer

Figure 21. Using application-specific information to build an SQL statement for a Create operation

38 Business Object Development Guide

Designing for an existing connector or data handler

If you are designing an application-specific business object for an existing

connector or data handler, your first step is to consult its adapter user guide for its

requirements on specifying application-specific information and using business

object handlers. Keep the following points in mind when designing business

objects for an existing connector or data handler:

v To determine if there is an available Object Discovery Agent, check the adapter

user guide for the connector and the documentation for the data handler that

will process your business object. Using the Object Discovery Agent can greatly

facilitate the business object design effort, particularly when the entity involved

is large.

v Determine whether there is an existing business object available that models the

application entity, such as a sample. Determine whether the effort to customize

the existing business object is less than creating an entirely new one and if so

then consider using the sample business object.

Important

IBM does not support sample business objects, but they can be very useful

as a starting point for business object design.

v If there are no existing business objects for the entities you need to model and

an Object Discovery Agent does not already exist for the application, you can

develop a new Object Discovery Agent for the application. This might not be an

efficient approach if there are very few business objects that are required for the

application or if the entities are very small. For more information, see Chapter 5,

“Developing an Object Discovery Agent,” on page 89.

v Whether you use an Object Discovery Agent or an existing business object, it is

still important to examine and confirm all the data definition requirements, such

as the object key, foreign keys, child business objects, default values, data types,

and size limitations. The following factors result in this requirement:

– Object Discovery Agents can facilitate the design effort, but cannot discovery

all of the requirements surrounding an application entity.

– With existing business objects, the threat is that applications can be installed

and configured different ways to accommodate customer-specific needs. A

business object that accurately models an entity in one application installation

may not accurately model that entity in another installation of that

application.

While designing the application-specific business object, keep in mind that its

primary role is to model the entity in the data source. It is also important to

identify how its associated connector or data handler handles its processing, and

what are the requirements of the business process in which it participates.

Designing generic business objects (InterChange Server Express only)

A generic business object reflects a superset of information that represents entities

used by multiple diverse applications or programmatic entities. InterChange Server

Express collaboration objects use generic business objects so they can provide

information for a variety of diverse applications. Therefore, designing generic

business objects is part of the task of collaboration object development. When

designing a generic business object, take into account the following:

v Understand the data requirements that are critical to the business process

integration.

Chapter 2. Business object design 39

v Study the business logic that the business object participates in, and all

requirements based on that logic.

The following two considerations illustrate the complexity of business logic

analysis:

– Processing prerequisite data

Sometimes the application that triggers the collaboration object does not

provide all the data required to process the triggering business object. The

additional data may reside in other applications, including the destination

application.

For example, a Sales Force Automation (SFA) application (such as Siebel) may

generate a quote that needs to be logged as an Order in an order

management system (such as SAP). However, before the Quote can become

an Order, it may require additional information not available in the SFA

application. For example, an Order may require such additional data as

customer credit status (from a financial system), contact information (from a

customer support system), or Availability To Promise information (from a

warehousing system).

When you design the generic Order business object, you may have to include

attributes and design a structure that supports data which is not present in

the source application necessarily, but may be present in other applications

involved in the interface.

– Cross-referencing between individual application entities

Determine how and whether individual application entities correspond to

each other or are cross-referenced to each other generically in the business

process.

For example, a customer in Oracle is represented as a Customer whose

address is represented as an Address. A customer in SAP is represented as a

“SoldTo” entity whose address is represented as a “ship-to” entity. A

customer in Clarify is represented as a “Business Organization” whose

address is represented as a “Site”.

Study the functionality and relationships between an application’s entities to

determine the business objects and processes involved in integrating data

between applications.
v Understand what required data is common or shared across all applications

participating in the business process and is critical to the integration of that

process. The attributes and their relationships should determine at a minimum

the mandatory attributes (the lowest common denominator of attributes) and the

transformations that the business integration system must perform between

these application-specific business objects.

Consider the following integration possibilities:

– The business process integrates data from an Enterprise Resource

Management (ERP) system to a Customer Relationship Management (CRM)

system. In this case, the business object probably does not need to be very

complex because most CRM systems do not accommodate most of the data

stored in an ERP system.

– The business process integrates data between two ERP systems. In this case, it

is likely that the business object will be highly complex.

– The business process integrates data from a CRM system to an ERP system.

In this case, your design must reflect how much of the data actually

originates in the CRM system (and thus must be represented by attributes in

40 Business Object Development Guide

the generic business object) and how much of it can be defaulted in the

destination application itself (and thus provided as default values in the

application-specific business object).
v If they exist, study the application-specific business objects to which the generic

business object will map. Analyze the structure and the attributes of all business

objects to derive a generic business object that is suitable to all applications.

v Consider whether there is a standard for the type of business object you are

designing. For example, there might be an appropriate model for the entity

provided by the Electronic Data Interchange (EDI), Open Applications Group

(OAG), or Object Management Group (OMG) initiatives.

Generic business object design standards

To be consistent with IBM-delivered generic business objects, use the following

standards when designing a generic business object:

v The first attribute of every object should be its key and should be named

ObjectId.

v If an attribute represents a foreign key, its name should concatenate the name of

the foreign business object and Id; for example: CustomerId, ItemId, and

OrderId.

v Be consistent. If you use an abbreviation in an attribute name, use the same

abbreviation in parent and child business objects. If possible, use the same

abbreviation for all relevant attribute names. For example, if you abbreviate

Number to Num, do so consistently.

Designing for event isolation

When designing a generic business object, it is recommended that you consider the

needs of event isolation, as explained in the Collaboration Development Guide (in the

section entitled “Designing for Parallel Execution”).

To prevent more than one collaboration object from updating the same data at the

same time, each business object should be modified by only one type of

collaboration object. In other words, a Customer business object should be

modified only by a CustomerSync collaboration object.

If a collaboration object modifies a business object that contains a child business

object, and the child business object is also contained by a different top-level

business object that has its own modifying collaboration object, design the top-level

business objects to contain the child semantically rather than structurally. Develop

a third collaboration object to modify the shared child. The collaboration objects

that own the two top-level business objects should then delegate processing of the

shared child to the third collaboration object.

For example, if both Customer and Contact business objects contain the same

address data, design the Address business object as a top-level business object that

is referenced by Customer and Contact, but not contained by them. Then develop a

separate Address collaboration object to modify address data.

In another example, however, if the Order business object is the only business

object that modifies OrderLineItem data, you can design Order to contain the

OrderLineItem child business objects rather than merely reference them.

In other words, design the Customer and Contact business objects so that they

contain a foreign-key attribute that references the Address business object, that is,

that contains only the key value for Address. Do not design them to contain an

Chapter 2. Business object design 41

attribute that represents a full-valued Address business object. But design the

Order business object to contain an attribute that represents a full-valued

OrderLineItem business object.

Note: Designing shared business objects as referenced rather than contained can

simplify business object distribution. If the same child business object is

defined in multiple business object definitions, the repos_copy utility

attempts to load the same business object twice during installation, causing

rollback. For information on repos_copy flags that change this default

behavior, see the System Administration Guide.

Attributes in a generic business object

When defining attributes for a generic business object, study the attributes of the

application-specific business objects to which the generic business object will map.

Consider these guidelines:

v Note the similarities between entities in the application-specific business

objects’s attributes. Define attributes for the generic business object that most

simply match those in the application-specific business objects.

v Note the differences between entities in the application-specific business objects’

attributes. If one application-specific business object splits data into multiple

fields while another combines the same data into one field, determine which

design best simplifies mapping between the two application entities. For more

information, see “Designing for an existing connector or data handler” on page

39.

v Consider requirements generated by the processing performed by the

collaboration object. For example, if the collaboration object processes

prerequisites as described in “Designing generic business objects (InterChange

Server Express only)” on page 39, ensure that the generic business object

contains all attributes required to store the prerequisite data.

v Develop the generic business object and interface to accommodate the largest

number of applications involved in the interface. For instance, if there are four

applications involved in an interface and three of them encapsulate data in a

child object but the fourth contains that data at the parent-level object, then

design the generic business object so that it encapsulates the data in a child

object as well—this results in mapping and other related tasks being that much

easier.

v Take future development efforts into account; you may want to design a generic

business object to accommodate data structures that will be required at a later

point to minimize the effort and change impact at that time. Do not, however,

significantly increase the scope of development for a future project that may

never come to be.

In general, a generic business object definition should include attributes that

capture all the data elements that are to be transformed among all the

application-specific business objects to which the generic business object will map.

Names of the attributes should be as intuitive as possible. For example, if several

applications refer to an entity as a Customer and one application refers to the same

entity as a Business Organization, use the more common terminology to name the

generic attributes.

Note: The name of an attribute can contain only alphanumeric characters and

underscore (_).

42 Business Object Development Guide

Evaluating existing generic business objects

You may be able to facilitate development of a generic business object by copying

and customizing an existing one.

To evaluate a generic business object, examine the data involved in the interface. A

guideline is that if 80% or more of the data exists in a delivered generic business

object, customize the existing object.

When performing this analysis, it is more important to look at the business object

structure than the attributes. Attributes are relatively easy to add and remove,

whereas structural or hierarchical changes can require much more effort.

If you decide to customize an existing generic business object, examine the

business object definition to determine whether it is missing one or more desired

attributes. Missing attributes become more apparent during mapping design. If the

generic business object requires one or more additional attributes, create a child

business object that contains the additional attributes. Isolating custom attributes in

child business objects facilitates future upgrade of IBM-delivered business objects.

If you embed custom attributes in an IBM-delivered business object, upgrading to

a new version of the business object requires re-embedding those attributes in the

new business object. Isolating the custom attributes in their own business object

allows you to add one attribute to the new IBM business object—the attribute that

creates the relationship between the parent and the custom child business object. If

you are customizing a hierarchical business object that requires additional

attributes in both the parent and the child, create separate child business objects

for each.

It is recommended that you name custom attributes and business objects in a way

that readily identifies them. A simple convention is to add an _x suffix to each

custom name. For example, if you create a custom child business object that adds

attributes to the generic Order business object, name the child Order_x. Doing so

allows alphabetic listing to keep related names together. If it is more important to

identify custom business objects or attributes than to alphabetize the custom object

with its generic object, add an x_ prefix to each custom name.

Determining mapping requirements for business objects (InterChange

Server Express only)

When an application-specific business object has been designed to match an

application entity, it may not match its corresponding generic business object.

Therefore, you must create maps between the application-specific business object

and the generic business object so that the application data can be transported

across the WebSphere® Business Integration Server Express system.

An application-specific business object may not need to include all the fields or

columns or elements in an application entity. Use the functional requirements of

the application and the business processes in which it participates to identify

which attributes belong in the application-specific business object.

You can also examine the correspondence between the generic business object and

the application entity. You may choose to include fields in the application-specific

business object that correspond those in the generic, which allows these data

elements to participate in the business process.

Chapter 2. Business object design 43

When designing the business object, note the differences between the application

entity and the generic business object. These differences define what kind of data

transformation needs to take place. You may need to design mapping to:

v Combine multiple fields in the application entity to fill one attribute in the

generic business object

v Split a field in the application entity to fill multiple attributes in the generic

business object

v Ignore a field that is present in the generic business object but that is not

relevant to the application entity

v Handle differences in semantic or structural relationships between an

application-specific business object and a generic business object

v Handle foreign key relationships and other types of relationships between

application entities

v Establish associations between data, for example:

– Establish a lookup association between data in non-key attributes, such as an

association that transforms code values (for example, marital status or

currency code) between applications.

– Establish an identity association between data in business objects, such as an

association that transforms the key attributes (for example, unique identifiers

and product codes) between applications.

To assist with mapping and design concepts, the relationship among fields in a

table, attributes in an application-specific business object, and attributes in a

generic business object is shown in a highly simplified way in Figure 22. The

differences between the application-specific business object and the generic

business object are handled in mapping. If the business object has attributes that

do not have a representation in the database, the connector can provide a default

value for the attribute.

For information on creating maps, see the Map Development Guide.

Generic business
object definitionCustomer table

Application-specific
business object definition

CustomerNameLastName

Credit_Limit

SalesRep

PricingGroup

Name Credit_Limit SalesRepID

CustomerType

SalesRep

CustId CustomerID

Customer Customer

FirstName

Figure 22. High-level view of field/attribute relationships.

44 Business Object Development Guide

Chapter 3. Using Business Object Designer Express

The Business Object Designer Express tool is used to create, edit, and delete

business object definitions. This chapter provides an overview of how to start and

use Business Object Designer Express. The main topics of this chapter are:

v “Working with projects”

v “Starting Business Object Designer Express” on page 48

v “Opening a business object definition from Business Object Designer Express”

on page 49

v “Working with business object definitions” on page 52

v “Business Object Designer Express functionality” on page 53

Working with projects

Business Object Designer Express uses the concept of a project to define a virtual

work area in which business object definitions are created, modified, or deleted.

Depending on your environment, the “project” to which Business Object Designer

Express refers in its dialog boxes can be either of the following:

 Table 10. Projects in Business Object Designer Express.

Business Object Designer Express

environment Project

You are not running Business Object Designer

Express from System Manager.

A virtual work area into which you have

imported business object definitions from

a local directory to work with during your

current Business Object Designer Express

session. Also called a local project.

You are running Business Object Designer

Express from System Manager.

An Integration Component Library (ICL)

on the Windows machine where Business

Object Designer Express and System

Manager are running. Also called an

ICL-based project.

The use of each type of project is explained in more detail below.

If Business Object Designer Express is running without

System Manager

If you are not running Business Object Designer Express from System Manager,

Business Object Designer Express uses a local project as “the project”. A local

project is a virtual work area into which you can import business object definitions

you want to work with.

How Business Object Designer Express works with a local

project

Listed below is a high-level summary of how Business Object Designer Express

functions operate on a local project. More detailed information about performing

these tasks is provided in the topics starting with “Starting Business Object

Designer Express” on page 48.

© Copyright IBM Corp. 2004, 2005 45

v Editing existing Business object definitions: To edit an existing business object

definition, click File > Open From File. This menu item imports the business

object definition from a local directory into your project and optionally opens it

for editing.

To edit an existing business object definition that has already been imported into

your project but that is now closed, click File > Open.

v Creating a new business object definition: To create a new business object

definition, click File > New or File > New Using ODA.

v Saving a business object definition: To save a new or modified business object

definition, click Save on the menu bar. You are prompted to save it to a local

directory. To save a business object definition under a different name or

directory, click Save As.

v Deleting business object definitions: To delete a business object definition from

the Windows directory where it resides, use the tools provided by Windows.

You cannot use the Delete function in Business Object Designer Express to do

this. To delete a business object definition from a local project, select File >

Delete. You are prompted to select a business object definition to delete from

your project.

If Business Object Designer Express is running from System

Manager

When you run Business Object Designer Express from System Manager, you have

access to additional, more sophisticated, functionality for developing and

managing business object definitions. In System Manager, business object

definitions, along with other business integration components such as

collaborations and maps, are stored in Integration Component Libraries (ICLs). ICLs

are repositories of business integration components, which you can use as building

blocks to construct business integration solutions. Each ICL contains a collection of

folders, one for each type of integration component, as shown in Figure 23.

The methodology for developing and deploying business object definitions is as

follows. You develop a business object definition in Business Object Designer

Express and save it to the business objects folder in an ICL. When you want to use

that business object definition in a business integration solution, you associate the

definition with one or more user projects. Each user project includes all the business

Figure 23. Integration Component Libraries in System Manager.

46 Business Object Development Guide

integration components needed to implement a particular business integration

solution. For example, in a user project that contains the components needed for

the implementation of the PeopleSoft adapter, the business objects folder contains

all the business object definitions needed by that adapter.

Like an ICL, each user project contains a collection of business integration

component folders. However, a user project contains only virtual copies of ICL

components. When you change a business object definition, you modify the

instance in the ICL. The changes you make are automatically propagated to every

user project that includes the business object definition (see Figure 24). In other

words, if a particular business object definition is included in two user projects,

and a change is made to that definition in the Integration Component Library, the

change is automatically reflected in the virtual copies residing in the user projects.

This linkage between business object definitions in an ICL and their virtual copies

in the user projects allows you to modify and maintain business object definitions

in one central location while deploying them in multiple business integration

solutions.

For more information about developing business integration components using

Integration Component Libraries, see the implementation guide for your system.

How Business Object Designer Express works with an ICL-based

project

When you are running Business Object Designer Express from System Manager, it

uses as “the project” the Integration Component Library you have selected. Listed

below is a high-level summary of how the Business Object Designer Express

functions operate on an ICL-based project. More detailed information about

performing these tasks is provided in the topics starting with “Starting Business

Object Designer Express” on page 48

v Editing existing Business object definitions: To edit a business object definition

stored in a project, click File > Open.

v Creating new business object definitions: To create a new business object

definition, click File > New or File > New Using ODA.

v Saving business object definitions: To save a new or modified business object

definition, click File > Save. The business object is saved to the business objects

folder in the project. To save a new or modified business object definition using

a different name, click File > Save As.

User project for Retek adapter

User project for Siebel adapter

Integration
component
library Business

Object
Designer

Customer
BO Definition

Customer
BO Definition

Customer
BO Definition

Customer
BO Definition

Figure 24. Changes to business object definitions in an ICL propagate automatically to virtual copies in user projects.

Chapter 3. Using Business Object Designer Express 47

v Deleting business object definitions: To delete a business object definition,

select Delete from the menu bar. You are prompted to select a business object

definition to delete from your project.

When you run Business Object Designer Express without System Manager, you do

not have access to the Integration Component Libraries. In this environment,

Business Object Designer Express uses a local project as described in “If Business

Object Designer Express is running without System Manager” on page 45.

Starting Business Object Designer Express

You can open Business Object Designer Express in any of the ways listed in

Table 11. After opening Business Object Designer Express, you can create a business

object definition manually or use an Object Discovery Agent to generate a

definition for an application-specific business object. For more information, see

Chapter 4, “Developing business object definitions,” on page 57.

 Table 11. Ways to open Business Object Designer Express.

From System Manager v Select the business objects folder in an Integration

Component Library, then do either of the following:

– Click Business Object Designer Express from the

Tools menu.

– Click the Business Object Designer Express tool bar

icon.

v Right-click the business objects folder in an Integration

Component Library.

v Double-click a business object definition.

Using a Windows shortcut

(InterChange Server Express)

Click Programs > IBM WebSphere Business Integration

Server Express > Toolset Express > Development >

Business Object Designer Express.

From another development

tool (InterChange Server

Express only)

Do either of the following:

v On the Tools menu, click Business Object Designer

Express.

v From the tool bar, double-click the Business Object

Designer Express icon.

When you open Business Object Designer Express directly from System Manager,

without first selecting a business object definition, the New Business Object dialog

box opens automatically. If System Manager is not running, Business Object

Designer Express opens but the New Business Object dialog box does not open.

48 Business Object Development Guide

When you open Business Object Designer Express by double-clicking a business

object definition, the selected definition is displayed in the Business Object

Designer Express work area.

Opening a business object definition from Business Object Designer

Express

Once you open Business Object Designer Express, you can open object definitions

stored in a file. If Business Object Designer Express is running from System

Manager, you can also open business object definitions stored in an Integration

Component Library.

This section describes:

v “Opening a business object definition from a project”

v “Preventing duplicate definition names” on page 50

v “Opening a definition from a file” on page 50

Opening a business object definition from a project

If Business Object Designer Express is already open, you can do the following to

open a business object definition from a project.

Note: If Business Object Designer Express is running from System Manager, the

project is an ICL-based project. Otherwise, the project is a local project,

which contains only business object definitions you have imported into it.

See “Working with projects” on page 45 for more information about projects

in Business Object Designer Express.

1. From the list of business object definitions in the project, highlight the name of

the definition you want to open.

2. To select multiple business object definitions in the project, do one of the

following:

v When selecting consecutive names, select the first name and, while pressing

the Shift key, click the last name.

Figure 25. New Business Object dialog box

Chapter 3. Using Business Object Designer Express 49

v When selecting non-consecutive names, press the Ctrl key and click as you

select each name.
3. After selecting the definitions to be opened, right-click and then click Open.

Business Object Designer Express displays a window for each selected

definition.

Opening a definition from a file

To open a business object definition that is stored in a local directory, do the

following:

1. Click File > Open From File.

The Import dialog box opens. The dialog box defaults to filter files of type

XML Schema Definition (with a .xsd extension). You can also select a different

file type from the Files of type list, or you can select all file types.

2. In the Import dialog box, browse until you locate the file, select it, and click

Open. Figure 26 illustrates this dialog box.

Note: If Business Object Designer Express is not running from System

Manager, the To Project list, which lets you specify the ICL-based project

to receive the imported business object definition, is omitted from the

dialog box. Instead, the business object definition is imported into your

local project.

If the Open the imported business objects check box is selected then Business

Object Designer Express also opens the business object definition for editing.

Otherwise, the business object definition is imported into the project but not

opened for editing. For more information, see “Working with business object

definitions” on page 52.

Preventing duplicate definition names

Business Object Designer Express does not allow you to have two business objects

with the same name in the same project, which might occur in either of the

following situations:

v You attempt to open a definition from file that is identical to one you already

have in your project.

Figure 26. Import Business Objects dialog box

50 Business Object Development Guide

v You attempt to create a new definition that is identical to one that already exists

in your project.

In this case, Business Object Designer Express displays an error message with

the text: Business object with this name already exists.

If you attempt to open a definition from a file and your local or ICL-based project

already contains a definition with the same name, Business Object Designer

Express displays the Import Results dialog box illustrated in Figure 27.

In the Import Results dialog box, do the following for each business object

definition listed as having a duplicate name:

1. Click Action and select an action from the list. An explanation of each action is

provided below.

2. If you selected Keep Import/Rename Local or Keep Local/Rename Import,

type the new name for the business object definition in the Name column as

shown in Figure 27.

Alternatively, you can use Select All BO Action as to specify either of two actions

for every business object definition listed as a duplicate name. To overwrite all the

business object definitions in your project with the definitions you are importing,

select Overwrite Local. To refrain from importing the business object definitions

that have duplicate names, select Don’t Import.

The Actions list in the Import Results dialog box provides the following options:

v Keep Import\Rename Local—Allows you to change the name of the definition

in your project and leave unchanged the name of the definition in the file.

To make this change, enter the new name in the New Name column as shown

in Figure 27.

v Keep Local\Rename Import—Allows you to change the name of the definition

in the file and leave unchanged the name of the definition in your project.

To make this change, enter the new name in the New Name column as shown

in Figure 27.

Figure 27. Preventing duplicate names: Keep Local or Import

Chapter 3. Using Business Object Designer Express 51

v Overwrite Local—Overwrites the definition currently stored your project with

the definition stored in the file.

v Don’t Import—Cancels the action to import the definition stored in the file.

Working with business object definitions

Business Object Designer Express provides a tabbed dialog box with two screens

for creating and editing a definition:

v General tab — specify or change application-specific information and verbs at

the business object-level.

v Attributes tab — specify or change attribute properties.

When you first create or open a definition, the Attributes tab opens.

Figure 28 illustrates the environment for defining and editing attributes.

For information on using the General and Attributes tabs, see “Creating a business

object definition” on page 57.

Opening a business object definition and its contained child

Business Object Designer Express allows you to open separate windows to edit

definitions for a parent business object definition and its contained child.

Figure 29 illustrates the separate windows for editing parent and child business

objects.

Figure 28. Defining and editing attributes

52 Business Object Development Guide

Notice that the Address attribute in the Contact business object is collapsed in

Figure 29. You can expand the attribute so that the Contact window displays all

attributes of the Address business object, which enables you to edit the child

directly from the parent. To prevent you from changing the same definition in two

places, however, the tool automatically closes a child business object’s window

whenever you expand a child business object within its parent business object.

Figure 30 illustrates the tool after Contact’s Address attribute has been expanded

and the Address window has been closed.

Business Object Designer Express functionality

You can access Business Object Designer Express functions in either of the

following ways:

v From the menu bar

v Using toolbar icons.

Address business
object
definition

Contact business
object
definition

Contained Address
business object
definition

Figure 29. Separate windows for parent and child business objects

Expanded
Address
attribute

Figure 30. Expanding a parent business object’s attribute that represents the child business object

Chapter 3. Using Business Object Designer Express 53

The following sections provide an overview of the various Business Object

Designer Express menus and menu options.

File menu

The File menu contains the following items:

v New BO — Creates a business object definition manually. For more information,

see “Creating a business object definition” on page 57.

v New Using ODA — Presents the Business Object Wizard, which allows you to

create a business object definition from an Object Discovery Agent. For more

information, see “Using an Object Discovery Agent to create a business object

definition” on page 66.

v Open — Opens a business object definition located in the project. If Business

Object Designer Express is running from System Manager, the project is an

ICL-based project. Otherwise, the project is a local project. See “Working with

projects” on page 45 for more information about projects.

v Open From File — Imports and optionally opens a business object definition

from a local directory.

v Save — Saves the business object definition as follows to the project.

If you modified an existing business object definition:

– If the project is ICL-based, the business object definition is saved in the

project where it originated.

– If the project is local, the business object definition is saved to its existing file.

If you created a new business object definition:

– If Business Object Designer Express is running from System manager, you are

prompted to select the ICL in which you want to save the business object

definition.

– Otherwise, you are prompted to specify the local destination directory and

file name for the business object definition.
The business object definition can be saved as a file of type:

.xsd XML Schema Definition. This is the default file type.

.in or .txt InterChange Server Express

.xls Spreadsheet
v Save As — Saves the business object definition with a new name. The name of

the file containing the business object definition must be unique within the

destination project.

If you modified an existing business object definition:

– If Business Object Designer Express is running from System Manager, the

business object definition is saved to the ICL-based project.

– If the business object definition was opened from a file, the modified business

object definition is saved to that file.

If you created a new business object definition:

– If Business Object Designer Express is running from System Manager, you are

prompted to select the ICL where the business object definition is to be saved.

– Otherwise, you are prompted to specify a local destination directory and file

name for the business object definition.

The business object definition can be saved as a file of type:

.xsd XML Schema Definition. This is the default file type.

.in or .txt InterChange Server Express

54 Business Object Development Guide

.xls Spreadsheet
v Save All—Saves all open business object definitions as described under the Save

menu item on 54.

v Save Copy to File—Exports a copy of the business object definition to a separate

file.

v Copy All to One File—Exports all business object definitions in a project as one

file in repos-copy format.

v Close—Closes the selected definition. This menu item is not available if no

definitions are open.

v Close All—Closes all open definitions. This menu item is not available if no

definitions are open.

v Delete — Allows you to delete a business object definition from a project.

Note: Business Object Designer Express only lets you delete business object

definitions from the project. If your project is ICL-based, the business

object definitions you delete are removed from the specified ICL. If your

project is local, the business object definitions you delete are removed

from the local project but the files that contain business object definitions

in local directories are not affected. To delete local files, use the tools

provided by Windows.

v Print Setup — Allows you to specify the printer and printing properties.

v Print Preview — Displays a preview of the definition to be printed. This menu

item is not available if no definitions are open.

v Print — Allows you to print the selected definition. This menu item is not

available if no definitions are open.

v Exit — Allows you to exit Business Object Designer Express.

Edit menu

All options of the Edit menu are not available if no definitions are open. The Edit

menu contains the following items:

v Cut — Deletes an attribute from the definition or text from a column. This menu

item is not available if no text has been selected in a column or no attribute has

been selected (by clicking in the left-most column). See Figure 28 on page 52 for

an illustration of the window for editing attributes.

v Copy — Copies an attribute in the definition or text in a column. This menu

item is not available if no text has been selected in a column or no attribute has

been selected (by clicking in the left-most column). See Figure 28 on page 52 for

an illustration of the window for editing attributes.

v Paste — Pastes a cut or copied attribute into the definition, or cut or copied text

into the selected column. By default, the tool pastes a buffered attribute at the

bottom of the definition. However, if you insert an empty row at a specific

location, you can paste the buffered attribute into the empty row.

v Delete Row — Deletes an attribute from the definition. This menu item is not

available if no attribute has been selected (by clicking in the left-most column).

See Figure 28 on page 52 for an illustration of the screen for editing attributes.

v Select All — Selects all attributes in the definition.

v Insert Above — Inserts an empty row above the selected attribute.

v Insert Below — Inserts an empty row below the selected attribute.

v Move Up — Moves the selected attribute up one row. This menu item is not

available if no attribute has been selected.

Chapter 3. Using Business Object Designer Express 55

v Move Down — Moves the selected attribute down one row. This menu item is

not available if no attribute has been selected.

Note: You can access the Insert Above, Insert Below, Cut, Copy, Paste, and Delete

menu items by right-clicking in the left-most column of an attribute.

View menu

The View menu operations are valid when Business Object Designer Express first

opens and when the working area pertains to the visual appearance of activity

diagrams. Many of these operations can be toggled on or off.

The View menu displays the following options:

v Expand All — Displays all attributes in all child business objects. This menu

item is not available if no definitions are open.

v Collapse All — Closes display of all attributes in all child business objects. This

menu item is not available if no definitions are open.

v Preferences — Opens the Business Object Preferences dialog box, which allows

you to turn off confirmation of business object deletion.

v Toolbars — Contains a submenu with items that control display of the two

toolbars of the Business Object Designer Express. Menu options include:

– Standard — When you click this menu item, Business Object Designer

Express displays the buttons for the Standard toolbar.

– Programs — When you click this menu item, Business Object Designer

Express displays the buttons for accessing other Toolset Express programs.
v Status Bar — When you click this menu item, Business Object Designer Express

displays a one-line status message at the bottom of its main window.

Note: You can access the Expand, Collapse, and Open In Window items when

right-clicking in the left-most column of an attribute that represents a child

business object or an array of child business objects.

Tools menu

The Tools menu contains the following items:

v Log Viewer — Opens Log Viewer.

v Connector Configurator Express — Opens Connector Configurator Express.

v System Manager — Opens System Manager.

Window menu

The Window menu operates as it does in a standard Windows environment. Use

the menu options to control display features such as tiling, cascading, and

activating open windows.

56 Business Object Development Guide

Chapter 4. Developing business object definitions

This chapter walks you through the basic steps for creating and deleting a business

object definition. After you complete this chapter, you will be familiar with the

steps for creating a definition both manually and by using an Object Discovery

Agent (ODA). Each ODA generates definitions for a specific application.

Although this chapter presents the mechanics for creating business object

definitions, you should understand the design concepts before you actually create

one. For more information, see Chapter 2, “Business object design,” on page 17. For

information on how to create an Object Discovery Agent, see Chapter 5,

“Developing an Object Discovery Agent,” on page 89.

The main topics of this chapter are:

v “Creating a business object definition”

v “Deleting a business object definition” on page 63

v “Using an Object Discovery Agent to create a business object definition” on page

66

Creating a business object definition

There are two ways to create a business object definition:

v Manually—Useful when creating a generic business object or a simple business

object, or when modifying a definition generated by an Object Discovery Agent.

Business Object

v Express provides a graphic interface for the manual creation of a business object

definition. This section provides a tutorial that explains:

– “Creating a flat business object definition manually”

– “Creating a hierarchical business object definition manually” on page 63
v Using an Object Discovery Agent—Useful when creating an application-specific

business object. The Object Discovery Agent examines specified entities in the

application, “discovers” the elements of those objects that correspond to business

object attributes and the properties of each attribute, and generates the business

object definition. For more information, see “Using an Object Discovery Agent to

create a business object definition” on page 66.

Creating a flat business object definition manually

This section describes the manual creation of a business object definition named

Hello. In InterChange Server Express, this business object is used by the

SampleHello collaboration, whose creation is described in the tutorial chapter of the

Collaboration Development Guide.

Figure 31 illustrates the Hello business object definition that you can create and

shows the values that Interchange Server Express might expect from its

triggering-event business object.

© Copyright IBM Corp. 2004, 2005 57

To create a business object definition manually:

1. Start Business Object Designer Express; for more information, see “Starting

Business Object Designer Express” on page 48.

2. Click File > New.

Business Object Designer Express displays the New Business Object dialog box.

Figure 32 shows the version of the New Business Object dialog box you see if

you are running Business Object Designer Express from System Manager. If you

are not running Business Object Designer Express from System Manager, the

Create in Project list is omitted from the dialog box.

3. Enter the name Hello for the new business object definition.

Names are generally case-sensitive, so type the name exactly as shown here.

Note: The name of a business object definition can contain only alphanumeric

characters and underscore (_). This name must use only characters

defined in the code set associated with the U.S. English locale (en_US).

4. Leave the Application Specific Information box empty and click OK.

Business Object Designer Express displays the business object definition dialog

box, as illustrated in Figure 33..

Name

Greeting

Recipient

SpecialMessage

Attributes:

Business object definition

Hello

"Hello"

"Connector"

"How_are_you"

Attributes:

Business object

Figure 31. Hello business object

Figure 32. New Business Object dialog box

58 Business Object Development Guide

Note: There may be minor differences in the Business Object Designer Express

interface. However. the basic functionality of the tool is the same.

Adding attributes

Each piece of information in the business object is represented by an attribute in the

Hello business object definition. You must provide the attribute definitions for the

Hello business object. As illustrated in Figure 33,, Business Object Designer Express

automatically adds an entry for the required end-of-object marker, ObjectEventId.

Important

Do not delete, change, or move the ObjectEventId attribute. This attribute is

reserved for the WebSphere Business Integration Server Express system’s

internal use. Business Object Designer Express automatically moves this

attribute when you save the definition.

 The row for each attribute defines the attribute’s properties. For information on the

attribute properties, see “Business object attributes and attribute properties” on

page 4.

As Figure 31 on page 58 shows, the Hello business object definition has the

following attributes: Greeting, Recipient, and SpecialMessage. Define the

attributes and their properties, one at a time.

Adding the Greeting attribute: To add the Greeting attribute:

1. Type the attribute name Greeting in the Name column of the first available

empty row, which is 2 for the first attribute.

Note: This attribute name must use only characters defined in the code set

associated with the U.S. English locale (en_US).

2. Click the Type column and select String for the attribute type. The type of an

attribute is its data type.

Figure 33. Initial display of a new business object definition

Chapter 4. Developing business object definitions 59

Tip:

If you have other business objects opened in Business Object Designer

Express, their names appear in the Type list. Displaying existing business

objects among the choices for Type allows you to create a hierarchical

business object with an attribute whose type is another business object.

When InterChange Server Express and System Manager are running, then

every business object definition in the Integration Component Library you

are working from is automatically displayed in this list.

If you are using InterChange Server Express but System Manager is not

running, then the only way to add a business object definition as a child

to another business object definition is to import that business object

definition first into Business Object Designer Express by clicking File >

Open From File.

3. Skip the Key, Foreign, Reqd (or Required), and Card columns.

These columns specify whether the current attribute is the business object’s

primary or foreign key, whether the attribute’s value is required, and whether

the attribute represents a child business object or objects. For an explanation of

these properties, see Chapter 2, “Business object design,” on page 17.

4. In the Max Length box, leave the default value of 255.

This box specifies the maximum number of bytes available for this attribute’s

value.

5. In the Default box, type Hello.

This specifies the value to use if no other value is supplied for the attribute at

run time.

You have now defined the following properties for the Greeting attribute:

 Name: Greeting

Type: String

Maximum length: 255

Default value: Hello

6. Ignore all other columns and click the Name column of the third row.

Adding the Recipient attribute: The second attribute, Recipient, is a string.

In InterChange Server Express, the SampleHello collaboration object uses this

attribute as follows:

v The connector sets the value to Collaboration when it sends a message to the

collaboration.

v The collaboration sets the value to Connector when it sends a message to the

connector.

At least one attribute in each business object definition must be a key attribute. A

key attribute contains a value by which the WebSphere Business Integration Server

Express system uniquely identifies instances of the business object. Make the

Recipient attribute the key attribute.

To add the Recipient attribute, type the text Recipient in the Name column, and

follow the steps for adding the Greeting attribute, using the following properties:

60 Business Object Development Guide

Name: Recipient

Type: String

Maximum length: 255

Default value: Collaboration

Key: Yes

(A check mark appears in the Key column)

Leave the other columns blank and click theName column of the fourth row.

Adding the SpecialMessage attribute: The third attribute, SpecialMessage, is a

string.

In InterChange Server Express, the SampleHello collaboration expects the value of

this attribute to be entered by the system administrator or another person with

access to the collaboration configuration properties after the collaboration object

has been created. The collaboration dynamically obtains the value of the

configuration property and appends it to the message.

To add the SpecialMessage attribute, type the text SpecialMessage in the Name

column, and follow the steps for adding the Greeting attribute, using the following

properties

 Name: SpecialMessage

Type: String

Maximum length: 255

Leave the other columns blank.

The Attributes tab now displays three user-defined attributes: Greeting, Recipient,

and SpecialMessage. Figure 34 illustrates the Hello business object’s attributes.

Figure 34. New business object definition with attributes

Chapter 4. Developing business object definitions 61

Changing attribute order

You can graphically change the sequence order of attributes in the business object

definition. For example, to place the key attribute, Recipient, above the Greeting

attribute, click the first (leftmost) column and drag the cursor up one row.

Specifying the supported verbs

You must now specify the verbs that this Hello business object supports. These

verbs represent the triggering events that the business object sends to InterChange

Server Express. Click the General tab of the Hello business object definition dialog

box to display the screen in which you specify the verbs. Figure 35 illustrates this

tab.

The business object supports the four default verbs—Create, Delete, Retrieve, and

Update; they appear on the General tab by default. For the purposes of this

tutorial, only one triggering event is supported: Create. Therefore, change the

business object definition to support only this verb.

Important: You must specify at least one verb for each business object definition.

Note: The name of a verb can contain only alphanumeric characters and

underscore (_). This name must use only characters defined in the code set

associated with the U.S. English locale (en_US).

To indicate that the Hello business object supports only the Create verb, you can

either delete the remaining verbs simultaneously or individually.

Deleting multiple verbs: To delete the Delete, Retrieve, and Update verbs:

1. Select the Delete verb and, while pressing the Shift key, click the Update verb.

2. Press the Delete key.

Deleting individual verbs: To delete each verb individually:

1. Click the number to the left of the Delete line in the Supported Verbs table.

The row is selected.

2. Press the Delete key.

Figure 35. General editing tab

62 Business Object Development Guide

3. Repeat steps 1 and 2 for the Retrieve and Updateverbs in the Supported Verbs

table.

4. Leave the Application Specific Info box blank for the Create verb.

You have finished the definition for the Hello business object. This is a good time

to save your changes by clicking File > Save. If you are using an ICL-based

project, the definition is saved to the ICL. If you are using a local project, you will

be prompted to specify a file name and local directory in which to save the

definition.

Creating a hierarchical business object definition manually

This section describes how to create a hierarchical business object definition by

defining an attribute that represents a child business object or an array of child

business objects.

Because the previous section explains how to define a simple attribute and

supported verbs, this section explains only the definition of an attribute that

represents a child business object. This example creates a business object named

HierarchicalBO that has two attributes:

v An attribute named Key that serves as the required business object key.

v An attribute named Addr that represents the Address business object with

cardinality 1.

To manually create a hierarchical business object definition:

1. Open Business Object Designer Express.

2. Click File > New.

Business Object Designer Express displays the New Business Object dialog box,

as illustrated in Figure 32 on page 58.

3. Type the name HierarchicalBO for the new business object definition.

4. Leave the Application Specific Information column empty and click OK.

Business Object Designer Express displays the business object definition dialog

box, as illustrated in Figure 33 on page 59.

5. Create a key attribute in the first available empty row, which is 2 for the first

attribute. Name it Key, specify any simple data type, and click the Key column.

6. Create the next attribute in the next available empty row, which is 3. Name it

Addr.

7. Click the Type list and select Address for the attribute type.

Note: If the child business object does not exist in the list, you can create it

now by selecting New business object in the Type list. You must save

the new child business object before you can complete this step.

8. Skip the Key, Foreign, and Reqd (or Required) columns. Click the Card list

and select 1.

9. Ignore all other columns. Define supported verbs, and save the definition.

Deleting a business object definition

You can delete a business object definition using Business Object Designer Express

or System Manager in InterChange Server Express. This section describes:

v “Deleting a definition using Business Object Designer Express” on page 64

v “Deleting a definition using System Manager” on page 65

Chapter 4. Developing business object definitions 63

Important

You can delete business object definitions from an integration component

library through System Manager (if you are using ICS and System Manager is

running) or from a project in Business Object Designer Express. You cannot

use the Delete function in Business Object Designer Express or in System

Manager to delete local files that contain business object definitions. To delete

local files, use the tools provided by Windows.

Deleting a definition using Business Object Designer Express

To delete a business object definition from a project using Business Object Designer

Express, do the following:

1. Open Business Object Designer Express.

2. From the list of business object definitions in the project, select the name of the

definition you want to delete.

3. To select multiple names, do one of the following:

v To select consecutive names, click the first name and, while pressing the

Shift key, click the last name.

v To select non-consecutive names, press the Ctrl key and click each name.
4. After selecting the definitions to be deleted, right-click and then click Delete.

v Business Object Designer Express displays the Deleting business object

confirmation message. Click Yes to delete the business object definition you

selected in Step 2 or to delete all the business object definitions you selected

in Step 3.

v If the business object definition has dependencies with other business objects,

Business Object Designer Express displays a collapse delete confirmation

message.

5. If dependencies exist, click the Show dependencies link. All dependencies with

other business objects are listed for the business object definition that you want

to delete.

64 Business Object Development Guide

6. Do one of the following:

v Click Collapse to delete the business object definition that you selected in

Step 2 and all of the business objects that depend on it.

v If you selected multiple business objects in Step 3, click Collapse All to

delete the business objects that you selected and all of the business objects

that depend on each of those business objects.

v Click Cancel to cancel deleting the business object definition and its

dependencies.

Deleting a definition using System Manager

To delete a business object definition using System Manager, do the following:

1. Start System Manager.

2. Expand Integration Component Libraries and then expand the integration

component library from which you want to delete a business object definition.

3. Open the business objects folder and select the name of the business object

definition to delete.

4. Delete the business object definition by doing either of the following:

v Click the Delete toolbar icon.

v Right-click the business object definition and select Delete.
5. When prompted whether you want to delete, click Yes.

6. If the business object definition has dependencies with other business objects,

System Manager notifies you with an error message. You must use Business

Object Designer Express to remove these dependencies before you can delete

the business object definition with System Manager.

Chapter 4. Developing business object definitions 65

Using an Object Discovery Agent to create a business object definition

This section describes how to use an Object Discovery Agent (ODA) to generate

business object definitions for application-specific business objects. An ODA is an

optional component of an adapter. When you install a pre-defined adapter that has

an ODA, its ODA is installed automatically. If you are developing a custom

adapter and you want to use an ODA to create business object definitions, you can

use the Object Discovery Agent Development Kit (ODK) to develop one. For more

information about developing a custom ODA, see Chapter 5, “Developing an

Object Discovery Agent,” on page 89.

To configure and run the ODA, use the Business Object Wizard in Business Object

Designer Express. Business Object Wizard is a graphical user interface to ODAs

that manages the discovery and content-generation process. This section provides

the following information:

v “Before using an ODA”

v “Using the ODA to create business object definitions” on page 69

v “Entering values and saving a profile” on page 77

v “Setting up logging and tracing” on page 77

v “Moving through the source-node hierarchy” on page 80

v “Providing additional information” on page 84

v “Using multiple ODAs simultaneously” on page 85

Before using an ODA

Before you run an ODA, verify that the following steps have occurred:

v System startup files are available and correct.

v The ODA has been started.

v Business Object Designer Express has been started.

System startup files

For the ODA to start, you need to verify that your system has the required files for

the ODA. When you install a pre-defined adapter that has an ODA, these ODA

system startup files should be installed automatically. If you are developing a

custom adapter with a custom ODA, these ODA system startup files should be

created as part of the ODA development process. However, IBM recommends that

you confirm that the startup script exists and is correct for your ODA:

Each ODA requires a startup script, which begins execution of the ODA. Before you

start an ODA for the first time, you must make sure that the variables are correctly

set within the startup script. Open for editing the shell (start_ODAname.sh) or batch

(start_ODAname.bat) file and confirm that the values described in Table 12 are

correct.

 Table 12. ODA shell and batch file configuration variables

Variable Explanation Example

set AGENTNAME Name of the ODA set AGENTNAME=ODAname

set AGENT Name of the ODA’s jar file Linux: set AGENT = ${ProductDir}/ODA/srcDataName/ODAname.jar

WINDOWS: set AGENT =

%ProductDir%\ODA\srcDataName\ODAname.jar

set AGENTCLASS Name of the ODA’s Java

class

set AGENTCLASS=com.ibm.oda.srcDataName.ODAname

66 Business Object Development Guide

For information on the ODA name (ODAname) and its source-data name

(srcDataName), see “Naming the ODA” on page 161.

Starting the ODA

You can start an ODA with the startup script appropriate for your operating

system.

Linux

start_srcDataNameODA.sh

Windows

start_srcDataNameODA.bat

 You configure and run the ODA using the Business Object Wizard in Business

Object Designer Express. Business Object Wizard locates each ODA by the name

specified in the AGENTNAME variable of each script or batch file.

Note: For information on how to start multiple instances of the ODA, see “Using

multiple ODAs simultaneously” on page 85.

Starting Business Object Designer Express

Once you start the ODA, you must open Business Object Designer Express to

configure and run it. For information on the ways to open Business Object

Designer Express, see “Starting Business Object Designer Express” on page 48. To

run an ODA, Business Object Designer Express provides Business Object Wizard,

which guides you through each step.

To start Business Object Wizard, do the following:

1. Open Business Object Designer Express using one of the methods listed in

Table 11 on page 48.

2. Click File > New Using ODA.

Business Object Wizard begins displays the first dialog box in the wizard, Select

Agent. Table 13 summarizes the steps of Business Object Wizard.

 Table 13. Steps of Business Object Wizard

Task Step in Business Object Wizard

1. Select the desired ODA Step 1: Select Agent

2. Obtain the configuration properties,

including those that describe the data source

to open.

Step 2: Configure Agent

3. Obtain the source data for which the ODA

generates the content.

Step 3: Select Source

4. Confirm that the selected source nodes are

those desired for content generation.

Step 4: Confirm Source Nodes

5. Initiate the content-generation process. Step 5: Generating Business Objects

Business Object Properties

6. Save the business object definitions in a

user-specified format.

Step 6: Save Business Objects

Chapter 4. Developing business object definitions 67

For an example of how Business Object Wizard runs an ODA, see “Using the

sample ODA.”

Using the sample ODA

IBM provides a sample Object Discovery Agent that converts Roman-army soldiers

(in XML format) to business object definitions. To familiarize you with using an

ODA, the following step-by-step description of generating business object

definitions uses this sample ODA.

Note: For information on the location and files of this sample ODA, see

“Development support for ODAs” on page 99.

This section includes the following tasks:

v “Starting the sample ODA”

v “Using the ODA to create business object definitions” on page 69

Starting the sample ODA

If you have installed the Adapter Development Kit (ADK), the sample ODA and

the file to run it are located in the DevelopmentKits\Odk\Samples directory in the

product directory. The file to run the sample ODA depends on your

operating-system environment, as Table 14 shows.

 Table 14. Startup script for a sample Roman Army ODA

Operating system Startup script

Windows start_Agent4.bat

Note: The sample Roman Army ODA provides five versions to illustrate various

features of an ODA. This section runs the fourth version of this sample

ODA, which uses the start_Agent4 startup script and the ArmyAgent4 class

file.

Because the sample Roman Army ODA provides five versions of itself, all startup

scripts call one common startup script called start_AgentX, passing it the name of

the ODA class (which is assigned to the AGENTCLASS configuration variable in

start_AgentX). Therefore, the start_Agent4 startup script should contain a call to

start_AgentX, passing it the following path as the name of the ODA class:

com.ibm.btools.ODK2.RomanArmy.ArmyAgent4

To verify configuration variables for this sample ODA, check the start_AgentX

batch or script file to confirm that your confirmation variables match those in

Table 15. If you move any of the files that version 4 of the sample Roman Army

ODA uses, make sure you change the corresponding configuration variable.

 Table 15. Configuration variables for the sample Roman Army ODA

Variable Value for sample Roman Army ODA

AGENTNAME set AGENTNAME=Roman

AGENT Linux: set AGENT =

${ProductDir}/DevelopmentKits/Odk/Samples/RomanArmy/ArmyODA.jar

WINDOWS: set AGENT =

%ProductDir%\DevelopmentKits\Odk\Samples\RomanArmy\ArmyODA.jar

68 Business Object Development Guide

Table 15. Configuration variables for the sample Roman Army ODA (continued)

Variable Value for sample Roman Army ODA

FILE_LOCATION Linux: set FILE_LOCATION =

${ProductDir}/DevelopmentKits/Samples/Odk/RomanArmy/RomanArmy.xml

WINDOWS: set FILE_LOCATION =

%ProductDir%\DevelopmentKits\Samples\Odk\RomanArmy\RomanArmy.xml

Important

You must start the sample ODA before you try to connect to it through

Business Object Wizard. Business Object Wizard can only locate those ODAs

that have been started.

Using the ODA to create business object definitions

To start Business Object Wizard, do the following:

 1. Open Business Object Designer Express using a method listed in Table 11 on

page 48.

 2. Click File > New Using ODA.

Business Object Wizard displays the first dialog box, Select Agent, shown in

Figure 36..

 3. To select the ODA to which Business Object Wizard connects:

a. Click the Find Agents button to display ODAs that are currently running

(those that have been started with their startup scripts) in the Located

agents list.

Note: If Business Object Wizard does not locate your desired ODA, check

the startup of the ODA.

Figure 36. Select Agent dialog box

Chapter 4. Developing business object definitions 69

Business Object Wizard identifies each running ODA by the name

specified for the AGENTNAME variable of its startup script or batch file. This

sample ODA is named Roman.

b. Select the desired ODA from the Located agents list. Business Object

Wizard displays your selection as Agent’s name. Alternatively, you can

find the ODA by specifying its host name and port number.
 4. Click Next. Business Object Wizard attempts to connect to the specified ODA.

If the ODA has been started, Business Object Wizard displays a status window

as it connects to the ODA, as Figure 37 shows.

 5. After Business Object Wizard is connected to the ODA, it displays the second

wizard dialog box, Configure Agent, which is shown in Figure 38. This dialog

box displays the ODA configuration properties required to access the data

source and initialize the ODA.

Figure 37. Connecting to an ODA.

70 Business Object Development Guide

6. Specify ODA configuration values or select a profile to display previously

saved values. One of the required configuration areas for the ODA is to set up

the logging and tracing. For more information, see “Setting up logging and

tracing” on page 77.

The first time you use a particular ODA, you specify values for each of its

configuration properties. After doing so, you can save the property values in a

named profile by clicking the Save button. The next time you use the same

ODA, you can select the saved profile from the Select profile box. For more

information, see “Entering values and saving a profile” on page 77.

 7. Click Next. Business Object Wizard displays the third wizard dialog box,

Select Source, which is shown in Figure 39. The Select Source dialog box

displays the source-node hierarchy, which is a tree structure with the top-level

objects at the top and child objects underneath. In the initial display, the Select

Source dialog box usually displays only the top-level source nodes.

Important

If the ODA is unable to proceed when you click Next, verify that the

ODA message file you have specified for the MessageFile configuration

property exists in the ProgramDir\ODA\messages directory. For this sample

ODA, the default name of this message file is RomanAgent.txt. For more

information, see “Specifying the ODA message file” on page 79.

Figure 38. Configure Agent dialog box

Chapter 4. Developing business object definitions 71

The nodes of the source-node hierarchy can be table names, business object

names, schema, or functions, depending on the ODA’s data source. This

sample ODA generates nodes from objects within an XML file called

RomanArmy.xml. Figure 39 shows the single top-level source node for the

Roman general specified for the Army general configuration property (see

Figure 38 on page 71).

 8. Select objects in the source-code hierarchy for which you want the ODA to

generate business object definitions. To select one source node, click on the

node name. To select additional nodes, use the Ctrl key. In Figure 40, several

source nodes have been expanded and three source nodes (which correspond

to XML objects) have been selected.

Figure 39. Initial Select Source dialog box

72 Business Object Development Guide

To expand a source node to display its child nodes, do either of the following:

v Click the + symbol to the left of the node name.

v Right-click the node name. Business Object Wizard displays the pop-up

menu shown in Figure 41.. To expand the selected node, click Retrieve all

items. Business Object Wizard displays the next level of source nodes: the

child nodes for the expanded parent node. To open lower levels, repeat this

process.

Figure 40. Select Source dialog box with source nodes expanded and selected

Figure 41. Right-clicking a node

Chapter 4. Developing business object definitions 73

Note: Business Object Wizard provides several other mechanisms to move

through the nodes of the source-node hierarchy. For more information,

see “Moving through the source-node hierarchy” on page 80.

 9. After you select the source nodes for which business object definitions are to

be generated, click Next. Business Object Wizard displays the fourth wizard

dialog box, Confirm Source, which is shown in Figure 42. This dialog box

allows you to confirm your selection of source nodes. Selected source nodes

are displayed in a bold font. In Figure 42, the source nodes for Cordius,

Cicero, and Vulso are selected.

If your selection is not correct, click Back to return to the previous dialog box

and make the necessary changes.

10. When your selection is correct, click Next. Business Object Wizard displays the

wizard’s fifth screen, Generating Business Objects, which is shown in

Figure 43. This screen informs you that the ODA is generating the business

object definitions.

Figure 42. Confirming the objects for which to generate business object definitions

74 Business Object Development Guide

If the ODA needs additional information, Business Object Wizard prompts you

for this information by displaying the BO Properties dialog box. However, this

sample ODA does not require additional information. For more information

about the BO Properties dialog box, see “Providing additional information” on

page 84.

11. After the ODA completes the generation of business object definitions,

Business Object Wizard displays the final dialog box in the wizard, Save

Business Objects, shown in Figure 44. This dialog box offers the following

options to save the business object definitions that the ODA has generated:

v Save the business object definitions to an ICL-based project if Business

Object Designer Express is running from System Manager.

v Save the business object definitions to a file (for InterChange Server

Express).

v Open the business object definitions for editing in Business Object Designer

Express.

v Shut down the ODA.

Figure 43. Generating the definitions

Chapter 4. Developing business object definitions 75

Important

If the ODA generates a business object definition from a data-source

object that does not identify a key element, this business object definition

will not have a key attribute. Every business object must have at least one

key. If the ODA might have generated business object definitions that do

not include keys, you might want to choose the “Open the new BOs in

separate windows” option instead of saving the business object

definitions. Within Business Object Designer Express, you can verify that

each business object definition has a key attribute, adding one if none

exists. Business Object Designer Express does not allow you to save any

business object definition that does not include a key.

Click Finish to save the business object definitions or Cancel to exit without

saving these definitions. In either case, Business Object Wizard disconnects

from the ODA. This dialog box also provides the option to have Business

Object Wizard shut down the ODA after it disconnects. If you no longer need

to use the ODA, select this option.

After you click Finish, if you have selected the option to save the business

object definitions to a file, a browse window opens and allows you to specify

the name of this file, where to save it, and what format to use (text file or

InterChange Server Express-specific format).

You have now successfully created business object definitions using an Object

Discovery Agent.

Figure 44. Saving the business object definition

76 Business Object Development Guide

Entering values and saving a profile

You can save a particular set of ODA configuration values in a profile so that they

can be available for future uses of the ODA. To save a profile:

1. On the Step 2, Configure Agent dialog box of the Business Object Wizard, click

the New button under Profiles.

Note: To base a profile on an existing one, locate the desired profile in the

profile drop-down list. Do not click the New button.

2. Enter a name for the profile in the Current list (see Figure 38 on page 71 for an

illustration).

Note: If you are basing a profile on an existing one, overwrite the name of the

existing profile in the profile drop-down list.

3. Enter the desired configuration values in the Configure Agent table.

4. Click the Save button.

Business Object Wizard saves the profile under the following directory:

C:\Documents and Settings\All Users\Application Data\CrossWorlds\

 BusObjDesigner\profiles.bod

Setting up logging and tracing

As part of the configuration of the ODA, you must set up the logging and tracing.

You specify the logging and tracing information for an ODA in the Configure

Agent dialog box of Business Object Wizard. Business Object Wizard always

provides the standard configuration properties (shown in Table 16) for an ODA.

 Table 16. Standard ODA configuration properties.

Property name

Property

type Description

TraceFileName String Specifies the file into which the ODA writes trace

information. For more information, see “Specifying the

trace file and trace level” on page 77.

TraceLevel Integer Trace level enabled for the ODA. For more information, see

“Specifying the trace file and trace level” on page 77.

MessageFile String Name of the ODA’s error and message file. Use this

property to verify or specify an existing file. For more

information, see “Specifying the ODA message file” on

page 79.

Note: The default values displayed in Business Object Designer Express for these

properties come from the ODA deployment descriptor file. See “Working

with error and trace message files” on page 85 for more information.

This section provides the following information:

v “Specifying the trace file and trace level”

v “Specifying the ODA message file” on page 79

Specifying the trace file and trace level

Figure 45 shows the Configure Agent dialog box in Business Object Wizard, in

which you specify the name of the trace file and the trace level.

Chapter 4. Developing business object definitions 77

Specifying a trace file: The TraceFileName configuration property specifies the

name of the ODA’s trace file. This file is the destination for all trace and error

messages that the ODA logs. By default, the ODA run time names the trace file

according to the following naming convention:

ODAnametrace.txt

In the preceding line, ODAname is the name that uniquely identifies the ODA. For

more information, see “Naming the ODA” on page 161. For example, if the ODA is

named HTMLODA, it generates a trace file named HTMLODAtrace.txt.

Note: Because the ODK API provides one method to log both trace and error

messages, an ODA has only one file to hold both these kinds of messages.

Therefore, although this file is called a trace file, it also contains any error

messages that the ODA generates.

If the specified trace file does not exist, the ODA creates it in the ODA’s run-time

directory, which is the ODA\srcDataName subdirectory of the product directory. If the

specified trace file already exists, the ODA appends to it. When configuring the

ODA, you can use specify a different name for the trace file by resetting the

TraceFileName property.

Setting the trace level: The TraceLevel configuration property specifies the

ODA’s system trace level. The ODA’s trace method sends the specified message to

the trace file when the message’s trace level is less than or equal to this system

trace level. Therefore, the system trace level determines the level of detail that the

trace messages provide. Table 17 lists trace levels and their associated behavior.

 Table 17. Trace levels

Level Behavior

0 Writes error messages to the specified trace file.

1 Traces whenever a method is entered—useful for status messages and key

information for each business object definition.

Specify trace level
Specify trace file name

Figure 45. Specifying tracing information

78 Business Object Development Guide

Table 17. Trace levels (continued)

Level Behavior

2 Traces the agent properties and the values received.

3 v Traces the names of the business object.

v Traces the business object properties and the values received.

4 v Traces the spawning of all threads.

v Traces a message whenever a method is entered and exited.

5 v Indicates the initialization of the Object Discovery Agent and log the values

retrieved for all the Object Discovery Agent properties.

v Traces detailed status of each thread spawned by the Object Discovery Agent.

v Traces the business object definition dump.

For information on how to generate trace messages within the ODA, see

“Handling trace and error messages” on page 152.

Specifying the ODA message file

The MessageFile configuration property specifies the name of the ODA’s message

file. An ODA can store its error and trace messages in this ODA message file. It can

then retrieve these messages by message number, instead of creating the message

text itself. Isolating messages into the message file provides an easy way for ODA

messages to be translated into the languages of the different locales the ODA can

run in.

By default, the ODA run time names this message file according to the following

naming convention:

ODAnameAgent.txt

In the preceding line, ODAname is the name that uniquely identifies the ODA. For

more information, see “Naming the ODA” on page 161. For example, if the ODA is

named HTMLODA, the value of the MessageFile property defaults to

HTMLODAAgent.txt. The message file must reside in the following message-file

directory:

ProductDir\ODA\messages

Important

If the specified message file does not exist or does not exist in the

message-file directory, the ODA generates a runtime exception. You must

ensure that the message file (which MessageFile specifies) exists before you

continue with the execution of the ODA.

 If the ODA uses a different message file, set the MessageFile property to specify a

different name for the trace file.

If you are using a non-US English locale, Business Object Wizard automatically

looks for an ODA message file that includes the name of the locale in the file

name, as follows:

ODAnameAgent_locale.txt

where locale has the format “ll_TT”, with ll as the two-character language name

(in lowercase) and TT as the two-character country or territory name (in

Chapter 4. Developing business object definitions 79

uppercase). For example, if the ODA named HTMLODA has its message file localized

to the Japanese locale, its message file would have the name:

HTMLODAAgent_ja_JP.txt

Note: When you are logged into a non-US English locale, you do not have to

specify the non-US English name in the MessageFile property. For example,

if you are using the HTML ODA, you set MessageFile to the US English file

name (HTMLODAAgent.txt). If you are logged into a Japanese local, Business

Object Wizard locates the correct message file for the Japanese locale:

HTMLODAAgent_ja_JP.txt.

If you create multiple instances of the ODA script or batch file and provide a

unique name for each represented ODA, you can have a message file for each ODA

instance. For more information, see “Using multiple ODAs simultaneously” on

page 85.

Moving through the source-node hierarchy

The Business Select Source dialog box in Business Object Wizard provides the

following mechanisms for moving through the nodes of the source-node hierarchy:

v “Limiting display of child nodes”

v “Specifying an object path” on page 82

v “Associating an operating-system file” on page 82

Limiting display of child nodes

The ways to expand a source node given in step 8 on page 72 describe how to

display all child nodes of an expandable node. To limit which objects are

displayed, you can use either of the following menu items when right-clicking a

node name (see Figure 41 on page 73):

v Apply filter

v Search for items

Using a filter: The Apply Filter menu item allows you to specify a filter, which

can limit which of the currently selected source nodes opens. When you click this

menu item, Business Object Wizard displays the Apply filter to node dialog box, as

shown in Figure 46.

In the filter text, you can use the asterisk (*) character as a wildcard (to represent

zero or more matching characters). This wildcard character can appear in any

position and in as many positions as required. For example, SAP*, *SAP, *SAP*, or

*S*AP*.

Figure 46. Specifying a filter to limit results

80 Business Object Development Guide

When you click OK, Business Object Wizard searches the currently retrieved child

nodes of the parent node for those whose names match the filter text. When it

expands this parent node, it displays only those child nodes whose names match

this text.

Important: When Business Object Wizard receives a filter, it searches for matching

child nodes of the parent node in the currently retrieved source node;

that is, it does not search the data source for matching child nodes. To

have Business Object Wizard search the data source, you can specify a

search pattern. For more information, see “Specifying a search pattern.”

For example, in the sample Roman ODA, the Uulius node has four child nodes:

Ares, Cronus, Atlas, and Metis. If you apply the filter in Figure 46 to the Uulius

node (“A*”), Business Object Wizard displays this node as shown in Figure 47

when you expand the node.

If you specify a filter at the top of a node and then expand the node, you can

apply the same filter to child objects by right-clicking on the node and clicking

Apply parent’s filter. If you click Retrieve all items menu item, the parent node

filter is applied to all elements.

Specifying a search pattern: The Search for items menu item allows you to

specify a search pattern, which can limit which source nodes Business Object Wizard

selects from the data source. When you click Search for items, Business Object

Wizard displays the Enter a Search Pattern dialog box. Figure 48 on page 82

illustrates this dialog box.

Note: An ODA must support the search-pattern feature for the Search for items

menu item to be enabled. If this menu item is not available, the ODA does

not support search patterns.

Figure 47. Filtered node after expansion

Chapter 4. Developing business object definitions 81

The Enter a Search Pattern dialog box provides a description of the search criteria

that your search pattern can use. In Figure 48, the text in this dialog box specifies

that the search pattern can consist of one letter. The ODA provides a customized

description of the search criteria. Make sure that the search pattern you enter

follows the described search criteria. Otherwise, the ODA throws an exception.

When you click OK, Business Object Wizard searches the data source for child

nodes of the parent node whose names match the search pattern. When it expands

this parent node, it displays only those child nodes whose names match this

pattern.

Important: When Business Object Wizard receives a search pattern, it searches for

matching child nodes of the parent node in the data source; that is, it

retrieves a new tree node from the data source. It does not simply

search the currently retrieved tree node for matching child nodes. To

have Business Object Wizard search the currently retrieved tree node,

you can specify a filter. For more information, see “Using a filter” on

page 80.

Specifying an object path

Instead of moving through the source-node hierarchy, you can specify an exact

path for the desired object. To do so, click Use this object instead, at the upper

right of the Select Source dialog box. Business Object Wizard displays the Object

Path dialog box, shown in Figure 49, in which you specify the path.

 You specify the object path as the fully qualified path of the source node (from the

top-level parent node down to the desired node). Node names within this path are

separated with a colon (:).

Associating an operating-system file

To associate an operating-system file with the current node of the source-node

hierarchy, right-click on a node and click Associate files (see Figure 50). When you

associate a file with a source node, the ODA uses the file as the source for that

source node’s data (instead of using the ODA’s data source).

Figure 48. Specifying a search pattern to limit retrieval results

Figure 49. Specifying an object’s path.

82 Business Object Development Guide

Note: An ODA must support the associate-files feature for the Associate files

menu item to be enabled. If this menu item is not available, the ODA does

not support associating files with the current source node.

 When you click the Associate files menu item, Business Object Wizard displays

the Open window shown in Figure 51. From this window, you can browse the file

structure and choose the file to associate with the current node.

 After you have selected the file to associate with the source node, click Open.

When Business Object Wizard returns control to the Select Source dialog box, the

file you selected is displayed under the source node with which it is associated, as

Figure 52 shows.

Figure 50. Associating a file with a source node

Figure 51. Open window for selecting the file to associate

Chapter 4. Developing business object definitions 83

Providing additional information

In Step 5, Generating Business Objects, if the ODA needs additional information,

the BO Properties dialog box opens, as shown in Figure 53..

Note: If a cell in the BO Properties dialog box has multiple values, it appears to be

empty when the dialog box first opens. Click the cell for a list of its values.

After you provide all required information in the BO Properties dialog box, click

OK. The ODA continues with its generation of business object definitions.

Figure 52. File associated with a source node

Figure 53. Providing additional information.

84 Business Object Development Guide

Using multiple ODAs simultaneously

You can run multiple instances of an ODA either on the local host machine or a

remote host machine. Each instance runs on a unique port. You can specify this

port number when you start each ODA from within Business Object Wizard.

To run multiple Object Discovery Agents simultaneously in Business Object

Designer Express, do the following:

1. Start each Object Discovery Agent by running its start_ODAname.bat or

start_ODAname.sh files.

2. Open Business Object Designer Express.

3. Click File > New Using ODA.

The first dialog box in the Business Object Wizard, Select Agent, opens (see

Figure 36 on page 69).

4. Click the Find Agents button to display currently running ODAs in the

Located agents list. You can also find the ODA using its host name and port

number.

5. Select the first ODA from the displayed list. Your selection is listed as Agent’s

name.

6. Click File > New Using ODA again.

7. Click the Find Agents button to display currently running ODAs in the

Located agents list, or find the ODA using its host name and port number.

8. Select the second ODA from the displayed list.

9. Proceed with the configuration of each ODA as described in step 4 of “Using

the ODA to create business object definitions” on page 69.

If you create multiple instances of the ODA script or batch file and provide a

unique name for each represented ODA, you can have a message file for each ODA

instance. Alternatively, you can have differently named ODAs use the same

message file. There are two ways to specify a valid message file:

v If you change the name of an ODA and do not create a message file for it, you

must change the name of the message file in Business Object Wizard as part of

ODA configuration. Business Object Wizard provides a name for the message file

but does not actually create the file. If the file displayed as part of ODA

configuration does not exist, change the value to point to an existing file.

v You can copy the existing message file for a specific ODA, and modify it as

required. Business Object Wizard assumes you name each file according to the

naming convention. For example, if the AGENTNAME variable (within the ODA

startup script) specifies HTMLODA, the tool assumes that the name of the associated

message file is HTMLODAAgent.txt. Therefore, when Business Object Wizard

displays the file name for verification as part of ODA configuration, the file

name is based on the ODA name. Verify that the default message file is named

correctly, and correct it as necessary.

Working with error and trace message files

By default, error and trace message files are located in the \ODA\messages,

subdirectory under the product directory. These files use the following naming

convention:

AgentNameAgent.txt

Where AgentName is the ODA to which the file belongs.

Chapter 4. Developing business object definitions 85

If you create multiple instances of the ODA script or batch file and provide a

unique name for each represented ODA, you can have those instances use the

same message file. Alternatively, you can specify different message files for each

ODA instance by specifying file names in odk.dd.AgentName, which is the ODA

deployment descriptor file installed with the ODA.

WBI Adapters contain a master ODA deployment descriptor located in

\ODA\odk.dd.xml, that specifies the default message and trace file values. To

specify different message files for different ODA instances, you can copy the

master ODA deployment descriptor file to the ODA’s directory and rename it to

oda.dd.xml (for example, \ODA\XMLODA\oda.dd.xml). Edit this file to change

the messagefile, tracefile, and tracelevel values accordingly. The master ODA

deployment descriptor has the following format and default values:

<odk>

 <startup>

 <messagefile usestandard="true"></messagefile>

 </startup>

 <diagnostics>

 <tracefile usestandard="true"></tracefile>

 <tracelevel canoverride="true">1</tracelevel>

 </diagnostics>

</odk>

Business Object Designer Express assumes you name each file according to the

naming convention. For example, if the AGENTNAME variable specifies

XMLODA1, the tool assumes that the name of the associated message file is

XMLODA1Agent.txt. Therefore, when Business Object Designer Express provides

the file name for verification as part of ODA configuration, the file name is based

on the ODA name. Verify that the default message file is named correctly, and

correct it as necessary.

Important: Failing to correctly specify the message file’s name when you configure

the ODA causes it to run without messages. For more information on

specifying the message file name, see “Specifying the ODA message

file” on page 79.

During the configuration process you specify:

v The name of the file into which the ODA writes error and trace information

v The level of tracing, which ranges from 0 to 5. See Table 17 on page 78 for a

description of these values.

86 Business Object Development Guide

Part 2. Developing an Object Discovery Agent

© Copyright IBM Corp. 2004, 2005 87

88 Business Object Development Guide

Chapter 5. Developing an Object Discovery Agent

This chapter presents information on how to use classes defined in the Object

Discovery Agent Development Kit (ODK) API to develop an Object Discovery

Agent (ODA). An ODA works with the Business Object Designer Express Business

Object Wizard to develop business object definitions for a specific connector or

data handler that works with a specific application, database, or filesystem.

The main topics of this chapter are:

v “Running an ODA”

v “Overview of the ODA development process” on page 97

v “Extending the ODA base class” on page 101

v “Determining the ODA generated content” on page 109

v “Starting the ODA” on page 103

v “Generating business object definitions as content” on page 112

v “Generating binary files as content” on page 135

v “Shutting down the ODA” on page 152

v “Handling trace and error messages” on page 152

v “Handling exceptions” on page 159

Running an ODA

At run time, running an ODA involves the following components:

v Business Object Designer Express provides a graphical interface in the form of a

wizard to interact with the ODA: Business Object Wizard. The wizard displays a

series of dialog boxes to obtain information that the ODA needs to generate the

content.

v The ODA run time is the intermediary component between Business Object

Wizard and the ODA. It uses the classes of the ODK API and the ODK

infrastructure to communicate with the ODA. It is the ODA run time that you

start with the ODA startup script.

v The ODA is the component that “discovers” source nodes in the data source and

generates the content. The ODA receives information in the dialog boxes of

Business Object Wizard from the ODA run time. It then sends information (such

as the generated content) to the ODA run time, which sends it to Business

Object Wizard.

Figure 54 shows the components of the ODA run-time architecture.

© Copyright IBM Corp. 2004, 2005 89

To generate the business object definitions, the ODA must take the following steps:

1. Obtain values for the ODA configuration properties (such as user name and

database type) that the ODA requires to connect to the data source (such as an

application, database, or file system).

2. Use these configuration properties to connect to the data source.

3. Obtain the list of source nodes for which business object definitions are to be

created.

4. Discover the requirements for the data-source entity underlying the source

node (as defined by an application, database table, filesystem, or DTD).

5. Generate business object definitions that meet the requirements of the

WebSphere Business Integration Server Express system and the component that

processes the business object, and return the business object definitions to

users.

Note: In addition to business object definitions, an ODA can also generate files as

content. For more information, see “Generating content” on page 93.

Table 18 summarizes the steps in the running of an ODA and the steps in Business

Object Wizard that initiate them.

 Table 18. Running the Object Discovery Agent

Task Step in Business Object Wizard For more information

1. Select the desired ODA to start Step 1: Select Agent “Selecting the ODA” on page 91

Figure 54. Object Discovery Agent Architecture

90 Business Object Development Guide

Table 18. Running the Object Discovery Agent (continued)

Task Step in Business Object Wizard For more information

2. Obtain the ODA configuration

properties, including those that

describe the data source to open.

Step 2: Configure Agent “Obtaining ODA configuration

properties”

3. Obtain the source data for which to

generate the ODA content.

Step 3: Select Source “Selecting and confirming source

data” on page 93

4. Confirm the source data that you

have selected.

Step 4: Confirm Source Nodes “Selecting and confirming source

data” on page 93

5. Generate the business object

definitions.

Step 5: Generating Business

Objects

“Generating content” on page 93

Business Object Properties “Obtaining business-object

properties” on page 95

6. Save the business object definitions. Step 6: Save Business Objects “Saving content” on page 97

Selecting the ODA

When users choose the File > New Using ODA Business Object Designer Express

invokes Business Object Wizard to run the ODA. Step 1 of Business Object Wizard

displays the Select Agent dialog box, which provides graphical access to all

available Object Discovery Agents. From this dialog box, users select the ODA to

run.

Business Object Wizard connects to this ODA with the following steps:

v Instantiates an ODA object, which is an object of the ODA class. The ODA class

is the extension of the ODA base class, ODKAgentBase2. It defines the behavior of

the ODA.

v Obtains a handle to the ODA object, which can be used to access this object

when started.

Note: An ODA must already be started for Business Object Wizard to list it as an

ODA available to run. For more information, see “Before using an ODA” on

page 66.

For more information on how to create the ODA class, see “Extending the ODA

base class” on page 101.

Obtaining ODA configuration properties

Step 2 of Business Object Wizard displays the Configure Agent dialog box, which

shows the ODA’s configuration properties. Configuration properties are those

properties that the ODA needs to be able to begin running. The ODK API

represents a configuration property as an agent-property (AgentProperty) object. In

this step, the wizard displays the configuration properties, allows you to update

them, and then writes the user-initialized properties into the ODA run-time

memory.

Chapter 5. Developing an Object Discovery Agent 91

As Figure 55 shows, Business Object Wizard takes the following actions:

1. Obtains the configuration properties from the selected ODA and displays them

in the Configure Agent dialog box.

To obtain the configuration properties from the ODA, the wizard calls the

getAgentProperties() method, which is defined in the ODA base class,

ODKAgentBase2. This method is an abstract method that the ODA developer

must implement as part of the ODA class. It returns the ODA’s configuration

properties to Business Object Wizard as an array of AgentProperty objects.

These configuration properties can include the names, types, any valid values,

descriptions, input restrictions, and any default values.

In addition to the configuration properties that getAgentProperties() provides,

Business Object Wizard always provides a set of standard configuration

properties, which are common to all ODAs:

v MessageFile

v TraceLevel

v TraceFileName

For more information, see “Obtaining configuration properties” on page 103.

2. From the Configure Agent dialog box, accepts entered values or changes for the

configuration properties. The wizard sends the user-initialized configuration

properties to the ODA.

Business Object Wizard saves these properties in the ODA run-time memory.

Within the ODA, you can access these properties through an instance of the

ODKUtility class, which provides the getAgentProperty() and

getAllAgentProperties() methods for this purpose.

3. Initializes the ODA’s metadata, which provides information about the ODA and

its capabilities.

After it calls getAgentProperties(), Business Object Wizard calls the

getMetaData() method of the ODA base class, ODKAgentBase2. This method is

an abstract method that the ODA developer must implement as part of the

ODA class. It returns an initialized AgentMetaData object that contains the ODA

metadata.

4. Initializes the ODA based on the user-initialized startup properties.

To initialize the ODA, the wizard calls the init() method of the ODA base

class, ODKAgentBase2. This method is an abstract method that the ODA

developer must implement as part of the ODA class. It performs initialization

tasks such as resource allocation and creating a connection to the data source.

Object Discovery Agent

getAgentProperties()

Send initialized
configuration-property array

Retrieve with
getAgentProperty() or
getAllAgentProperties()

init()

Display Configure Agent
dialog

Business Object Wizard

Write user-initialized
configuration properties

into ODA-runtime memory

Begin Step 2

Initialize ODA

3

4

1

2

Figure 55. Configure Agent (Step 2) of Business Object Wizard

92 Business Object Development Guide

This chapter provides the following information on how to implement the methods

involved in the initialization of an ODA:

 Initialization method For more information

getAgentProperties() “Obtaining configuration properties” on page 103

getMetaData() “Initializing ODA metadata” on page 105

init() “Initializing the ODA start” on page 107

Selecting and confirming source data

Step 3 of Business Object Wizard displays the Select Source dialog box, which

displays the source nodes of the data source. The source nodes are arranged in the

source-node hierarchy. Each source node is the name of an object that the ODA has

“discovered” in the data source. It can either be expanded to display other child

nodes or selected for generation into content. Users can expand this source-node

hierarchy to choose objects in the data source for conversion to content. For

information, see “Moving through the source-node hierarchy” on page 80..

In Step 3, the wizard takes the following actions:

1. Obtains the source-node hierarchy from the selected ODA and displays it top

level in the Select Source dialog box.

To obtain the source-node hierarchy, the wizard calls the getTreeNodes()

method of the IGeneratesBoDefs interface. The ODA developer must

implement this method as part of the ODA class’s implementation of the

IGeneratesBoDefs interface. It searches the data source to “discover” source

nodes and returns these source nodes to Business Object Wizard as an array of

TreeNode objects. When users expand a node for the first time, the wizard calls

getTreeNodes() to display that particular level in the source-node hierarchy.

Users can traverse this hierarchy to select the level of detail. For more

information, see “Moving through the source-node hierarchy” on page 80.

2. From the Select Source dialog box, keeps track of the names of the source

nodes in the hierarchy that you select for content generation. The wizard

generates an array that contains the names of the selected source nodes.

Step 4 of Business Object Wizard displays the Confirm Source Nodes dialog box,

which displays the selected source nodes. Users can either confirm the selections or

go back to the Select Source dialog box to reselect source nodes. When the Next

button is clicked, the wizard begins the content generation.

For information on how to implement the getTreeNodes() method, see “Generating

source nodes” on page 113.

Generating content

You can write an ODA to generate one or both of the content types listed in

Table 19. The content type determines the structure of the data that the ODA

generates. For an ODA to support a particular content, it must implement the

appropriate content-generation interface for the ODA. Table 19 lists the content types

that an ODA can support as well as the associated content-generation interface the

ODA must implement.

Chapter 5. Developing an Object Discovery Agent 93

Table 19. Content types for an ODA

Content type Description

Content-generation

interface

Business object

definitions

The ODA generates business object

definitions to represent the objects in

the data source.

IGeneratesBoDefs

Binary files The ODA generates file objects to hold

information about the generated

content.

IGeneratesBinFiles

Note: With this release, an ODA must support the generation of business object

definitions as its content. Therefore, it must implement the IGeneratesBoDefs

interface. Additionally, the ODA can support the generation of files as its

content by implementing the IGeneratesBinFiles interface.

After source nodes are selected and confirmed, Business Object Wizard enters Step

5 of the content generation. It displays the Generating Business Objects screen and

passes the array of user-selected source nodes (from Step 4) to the ODA by calling

the content-generation method for business object definitions, generateBoDefs().

This method generates the corresponding business object definitions for the

selected source nodes. Because an ODA must support the generation of business

object definitions in the on-request content protocol, Business Object Wizard always

calls the generateBoDefs() method. Therefore, the ODA developer must implement

this method as part of the ODA’s implementation of the IGeneratesBoDefs

interface.

Whether the ODA generates file content depends on whether it implements the

IGeneratesBinFiles interface. If the ODA class implements this interface, the

method that actually provides the generated content depends on the content

protocol that the ODA uses for the file content type, as follows:

v If the ODA uses the on-request content protocol to generate content, Business

Object Wizard initiates content generation as part of Step 5 by calling the

content-generation method, generatesBinFiles(). It passes to this method the

array of user-selected source nodes. Therefore, for the ODA to support file

content, the ODA developer must implement this method as part of the ODA’s

implementation of the IGeneratesBinFiles interface.

v If the ODA uses the callback content protocol to generate content, the ODA (or

some external process) initiates content generation by calling a user-defined

method. The ODA developer must implement a mechanism to generate the files.

Therefore, whether Business Object Wizard calls the content-generation method for

files, generateBinFiles(), depends on the following:

v Whether the ODA implements that IGeneratesBinFiles interface

v If it implements IGeneratesBinFiles, which content protocol the ODA uses to

generate files

Note: For more information on content protocols, see “Choosing the ODA content

protocol” on page 110.

Regardless of the content protocol uses, the generation of content involves the

following steps:

1. Optionally, obtaining any additional information, such as verb values, as

business-object properties.

94 Business Object Development Guide

2. Generating the requested content and saving it in the generated-content

structure in ODA memory.

The following sections summarize these steps. For a more detailed overview of the

content-generation process, Table 20 shows where to find more information for

each of the supported content types.

 Table 20. Content-generation process

Content type For more information

Business object definitions “Generating business object definitions” on page 120

Binary files “Generating files” on page 137

Obtaining business-object properties

Often the ODA needs additional information before it can generate the business

object definitions. The ODA can request this additional information by defining

business-object properties. The ODK API represents a business-object property as an

agent-property (AgentProperty) object. To collect business-object properties, the

ODA can have Business Object Wizard display the BO Properties dialog box. In

this dialog box, the wizard displays the business-object properties, allows updates,

and writes the user-initialized properties into the ODA run-time memory, as

Figure 53 on page 84 shows.

To display the BO Properties dialog box, the content-generation method of the

ODA calls the getBOSpecificProps() method (defined in the ODKUtility class).

 As Figure 56 shows, the getBOSpecificProps() method takes the following steps:

1. Sends the business-object properties to Business Object Wizard, which displays

them in the BO Properties dialog box.

To send the business-object properties, the getBOSpecificProps() method sends

as an argument the initialized array of agent-property (AgentProperty) objects,

one object for each business-object property to display.

2. From the BO Properties dialog box, values can be added or changed. After the

Next button is clicked, the wizard sends the user-initialized business-object

properties back to the getBOSpecificProps() method in the ODA.

You can access these business-object properties within the ODA through the

Java Hashtable object that getBOSpecificProps() returns. Alternatively, you can

Object Discovery Agent

getBoSpecificProps()
(send initialized
business-property array)

Retrieve directly through
Hashtable object, or with
getBOSpecificProperty() or
getAllBOSpecificProperties()

Business Object Wizard

Write user-initialized
business-object properties
into ODA-runtime memory

Display BO Properties
dialog

2

1

Figure 56. Obtaining business-object properties

Chapter 5. Developing an Object Discovery Agent 95

access these properties through an instance of the ODKUtility class, which

provides the getBOSpecificProperty() and getAllBOSpecificProperties()

methods.

The ODA can call getBOSpecificProps() repeatedly to obtain different sets of

business-object properties. For more information on how to use the

getBOSpecificProps() method, see “Requesting business-object properties” on

page 121.

Providing generated content

The ODA provides its generated content to Business Object Wizard in two parts:

v The content metadata

A content-metadata (ContentMetaData) object contains information about the

ODA’s generated content. Business Object Wizard uses this information to

determine which content-retrieval method to use to retrieve the generated

content.

v The content itself

The ODA writes the generated content to a generated-content structure,

somewhere that is accessible by the methods of the ODA class. For example, it

could write the content to an array that is a member variable of the ODA class.

The method that provides the generated content depends on the content protocol

that the ODA uses for a particular content type, as follows:

v If the ODA uses the on-request content protocol to generate content, it is the

content-generation method that populates the generated-content structure and

returns a content-metadata object to Business Object Wizard. Business Object

Wizard invokes the content-generation method based on the content type, as

follows:

– For business object definitions, generateBoDefs() in the IGeneratesBoDefs

interface

– For files, generateBinFiles() in the IGenerateBinFiles interface
v If the ODA uses the callback content protocol to generate content, it is a

user-defined method that populates the generated-content structure and sends a

content-metadata object to Business Object Wizard.

Note: For more information on content protocols, see “Choosing the ODA content

protocol” on page 110.

The following table shows where to find more information on how to provide

generated content:

 Content type For more information

Business object definitions “Providing generated business object definitions” on

page 132

Binary files “Providing generated files” on page 140

To retrieve the generated content, Business Object Wizard calls the appropriate

content-retrieval method as Table 21 shows.

96 Business Object Development Guide

Table 21. Content-retrieval methods

Content type Content-retrieval method For more information

Business object definitions IGeneratesBoDefs.getBoDefs() “Providing access to generated business

object definitions” on page 133

Binary files IGeneratesBinFiles.getBinFile() “Providing access to generated files” on

page 141

The content-retrieval method accesses the generated-content structure within the

ODA object and returns specified content in an array to Business Object Wizard.

Business Object Wizard must have access to the generated content before it can

process the request to save the content in Step 6. For more information, see

“Saving content.”

Saving content

Step 6 of Business Object Wizard displays the Save Business Objects dialog box,

which provides options for saving the generated business object definitions. As

Figure 44 on page 76 shows, Business Object Wizard provides the ability to save

generated content to an ICL project or a file, or to open each business object

definition in Business Object Designer Express. To save the generated business

object definitions in the specified format, Business Object Wizard must access the

generated content. It has retrieved this content in the previous step (Step 5), using

the ODA’s content-retrieval method listed in Table 21.

Overview of the ODA development process

This section provides the following information about the process to develop an

ODA:

v “Tools for ODA development”

v “ODA development process” on page 100

Tools for ODA development

An ODA is one of the possible components of a WebSphere Business Integration

Server Express adapter. An adapter includes run-time components to support

communication between InterChange Server Express and applications or

technologies. One of these run-time components is the ODA, which creates the

business object definitions for the connector to use at run time. The connector is the

run-time component that handles communication between an application (or

technology) and InterChange Server Express. The adapter also includes an adapter

framework, which includes components for the configuration, run time, and

development of custom adapters in cases where a prebuilt adapter for a particular

legacy or specialized application is not currently available as part of the

WebSphere Business Integration Server Express product.

For development of an ODA, the adapter framework includes the development

support listed in Table 22.

 Table 22. Adapter framework support for the development of an ODA

Adapter component Configuration tool API

Business object definition Business Object Designer

Express

Not applicable

Object Discovery Agent (ODA) Business Object Designer

Express

Object Discovery Agent

Development Kit (ODK)

Chapter 5. Developing an Object Discovery Agent 97

Note: The adapter framework also provides support for the development of

connectors.

In addition to the adapter framework, the Adapter Development Kit (ADK) is a

toolkit that provides code samples of ODAs and connectors. For more information,

see “Adapter Development Kit.”

Adapter Development Kit

The Adapter Development Kit (ADK) provides files and samples to assist in the

development of an adapter. It provides samples for many of the adapter

components, including an Object Discovery Agent (ODA), a connector, and a data

handler. The ADK provides these samples in the DevelopmentKits subdirectory of

the product directory.

Note: The ADK is part of the WebSphere Business Integration Adapters product

and requires a separate installation. Therefore, to have access to the

development samples in the ADK, you must have access to the WebSphere

Business Integration Adapters product and install the ADK. Please note that

the ADK is available only for Windows systems.

Table 23 lists the samples that the ADK provides for the development of an ODA

as well as the subdirectory of the DevelopmentKits directory in which they reside.

 Table 23. ADK Samples for ODA Development

Adapter Development Kit component Description

DevelopmentKits

subdirectory

Object Discovery Agent Development

Kit (ODK)

Provides ODA samples Odk

Twineball adapter sample Provides a sample adapter, which includes an

ODA

Twineball_sample

As Table 23 shows, the Adapter Development Kit includes samples of Object

Discovery Agents (ODAs). These samples reside in the following directory:

DevelopmentKits\Odk

For more information, see “Development support for ODAs” on page 99.

Note: As Table 23 shows, the ADK also provides support for the development of

connectors, another adapter component.

Development support for business object definitions

Table 24 shows the tool that the WebSphere Business Integration Server Express

product provides to assist in the development of business object definitions.

 Table 24. Tool for development of business object definitions

Development tool Description

Business Object Designer

Express

Graphical tool that assists in the creation of business object

definitions, either manually or through an ODA.

For a brief introduction to business object definitions, see “Business object

definitions” on page 4.

98 Business Object Development Guide

Development support for ODAs

Table 25 shows the tools that the WebSphere Business Integration Server Express

product provides to assist in the development of an ODA.

 Table 25. Tools for development of ODAs

Development tool Description

Business Object Designer

Express

Graphical tool that assists in the creation of business object

definitions, either manually or through an ODA.

Object Discovery Agent

Development Kit (ODK)

Contains:

v ODK API: a set of Java classes with which you can create a

custom ODA. For an overview of these classes, see Chapter 7,

“Overview of the ODK API,” on page 167.

v ODA run time: a set of Java classes that the ODA run time

uses to handle communication between the ODA and

Business Object Designer Express

v ODA samples: installed as part of the Adapter Development

Kit (ADK). For more information, see “Adapter Development

Kit” on page 98.

As Table 25 shows, the ODK provides for the ODA developer both the ODK API

(which is the library of methods to use in the ODA) and sample ODAs, which

reside in the following product subdirectory:

DevelopmentKits\Odk\Samples

The ODK includes the following sample ODAs

 Table 26. Sample ODAs

ODA sample Description

Subdirectory of

DevelopmentKits\Odk

Roman Army

ODA

Converts the names of Roman generals

and soldiers from an XML file to

business object definitions and provides

some binary files that describe the

conversion. This ODA uses the ODK

API, as described in this chapter.

For startup scripts: Samples

For external files and .jar file:

RomanArmy

For Java source:

com\ibm\btools\ODK2\RomanArmy

JDBC ODA Converts JDBC data (tables and

schemas) to business object definitions.

For this sample ODA to run, it must

have access to a JDBC database. This

sample is based on a previous version

of the ODK API, which handles

generation of business object definitions

only, not generation of file content.

Note: If you are developing a new

ODA, use this sample only as an

example of more complex

business-object-definition creation. Use

the Roman Army ODA sample as an

example of how your new ODA should

be structured.

For startup scripts: Samples

For Java source:

com\crossworlds\JDBC

For a brief introduction to ODAs, see “Using an Object Discovery Agent to create a

business object definition” on page 66. For instructions on how to run the sample

Roman Army ODA, see “Using the sample ODA” on page 68.

Chapter 5. Developing an Object Discovery Agent 99

ODA development process

This section provides an overview of the ODA development process, which

includes the following high-level steps:

1. Install and set up the WebSphere Business Integration Server Express software

and install the Java Development Kit (JDK).

2. Design and implement the ODA.

Setting up the development environment

Before you start the development process, the following must be true:

v The WebSphere Business Integration Server Express software is installed on a

machine that you can access.

For an ODA to run, it must be able to access the ODA library, CwODA.jar.

Therefore, this ODA library must be installed. For more information, see your

product installation information.

WebSphere Business Integration Server Express

If your business integration system uses InterChange Server Express, the

CwODA.jar file is installed as part of the InterChange Server Express

software. Refer to your WebSphere Business Integration Server Express

Installation Guide for information on how to install and start up the

InterChange Server Express system.

v The Java Development Kit (JDK) or a JDK-compliant development product is

installed on the development machine.

For the required version of the JDK and how to install it, refer to your product

installation information. Make sure to update the PATH environment variable to

include the installed Java directory. Restart InterChange Server Express after you

have updated the path.

v The development environment must be able to access the directory that contains

the ODA library file, CwODA.jar:

ProductDir\lib

To compile the ODA, the compiler must be able to access this directory ODA.

For information on how to compile an ODA, see “Compiling the ODA” on page

161.

Note: To create an ODA and test its generated content, you do not need to have

InterChange Server Express or a connector running. However, at some point,

the connector must be running to test that the ODA’s generated content

correctly describes the connector’s business objects. To test the entire

WebSphere Business Integration Server Express system, InterChange Server

Express and the connector must be able to communicate.

Stages of ODA development

To develop an ODA, you must take the steps listed in Table 27.

 Table 27. Steps in the development of an ODA

ODA development step For more information

1. Extend the ODA base class, ODKAgentBase2, to

create your ODA class.

“Extending the ODA base class” on

page 101

2. Implement the methods of the ODA class,

which provide the means of starting the

ODA.

“Starting the ODA” on page 103

100 Business Object Development Guide

Table 27. Steps in the development of an ODA (continued)

ODA development step For more information

3. Design and implement the ODA content:

v Which content types the ODA supports:

– Business object definitions: implement

the IGeneratesBoDefs interface

(required)

– Binary files: implement the

IGeneratesBinFiles interface (optional)

v Which content protocols the ODA uses:

– on request (required for business object

definitions)

– callback

“Determining the ODA generated

content” on page 109

4. Implement error and message handling for

all ODA methods. Implement trace messages

at the appropriate trace levels.

“Handling exceptions” on page 159

and “Handling trace and error

messages” on page 152

5. Create any classes needed to handle

data-source interactions, such as:

v Connection management

v Content analysis and definition

IBM recommends that you modularize

the Object Discovery Agent into

component classes that handle its

separate significant processes. Details

depend on your data source.

6. Build the ODA. “Compiling the ODA” on page 161

7. Create a startup script for the new ODA. “Starting up a new ODA” on page 162

8. Test and debug the ODA, recoding as

necessary.

Writing ODA code is only one part of the overall task for developing business

objects. Before beginning to write the Object Discovery Agent code, you should

clearly understand business object design issues, the application whose entities the

business objects will represent, and the connector and data handler that will

process the business objects. You should also be familiar with the steps users

follow in Business Object Designer Express to create a business object definition

using an Object Discovery Agent.

Note: For information on business object design, refer to Chapter 2, “Business

object design,” on page 17. For information on using an Object Discovery

Agent in Business Object Designer Express, see “Using an Object Discovery

Agent to create a business object definition” on page 66.

Extending the ODA base class

To create an ODA, you extend the ODA base class, ODKAgentBase2, to create your

own ODA class. The ODKAgentBase2 class includes methods for initialization, setup,

and termination of the ODA. To implement your own ODA, you must extend this

ODA base class to create your ODA class.

To derive an ODA class, follow these steps:

1. Create an ODA class that extends the ODKAgentBase2 class. A suggested name

for this ODA class is:

 ODAname.java

where ODAname uniquely identifies the ODA and has the format of the ODA’s

source data with the ODA extension (srcDataNameODA). For information about

Chapter 5. Developing an Object Discovery Agent 101

source-data names, see “Naming the ODA” on page 161. For example, to create

an ODA for HTML objects, you create an ODA-class file called HTMLODA.java.

2. In the ODA-class file, define a package name to contain your ODA. By

convention, an ODA package name has the following format:

com.ibm.oda.srcDataName.ODAname

In the format above, ODAname is the same as defined in step 1 and

srcDataName is the same as in step 1 except that it is in lowercase letters. For

example, the package name of an ODA for HTML objects could be defined in

the ODA class as follows:

package com.ibm.oda.html.HTMLODA;

3. Ensure that the ODA-class file imports the classes of the com.crossworlds.ODK

package:

 import com.crossworlds.ODK.*;

To access the methods of the ODK API, the ODA class must import the ODK

package, which is contained in the CwODK.jar file in the lib subdirectory of the

product directory. If you create several files to hold the ODA-class code, you

must import the classes of the ODK package into every source file.

4. Define the ODA class and include in the definition any content-generation

interfaces that the ODA uses. An ODA must implement the IGeneratesBoDefs

content-generation interface to generate business-object-definition content.

Optionally, it can also implement the IGeneratesBinFiles content-generation

interface to generate binary-file content.

For example, suppose that the ODA for HTML implements only the required

the IGeneratesBoDefs interface. Its definition would be as follows:

public class HTMLODA extends ODKAgentBase2 implements IGeneratesBoDefs {

For more information about content-generation interfaces, see “Determining the

ODA generated content” on page 109.

5. Implement the abstract methods of the ODKAgentBase2 class for your ODA class.

Table 28 provides an overview of these methods, listing them in the order in

which Business Object Wizard calls them. For more information on how to

implement these abstract methods, see Table 28.

 Table 28. Extending abstract methods of the ODKAgentBase2 class

Abstract ODKAgentBase2

method Description For more information

getAgentProperties() This method performs the following tasks:

v Define the configuration properties needed

to initialize the ODA, including information

the ODA needs to connect to the data

source.

v Send the configuration properties in an

array to Business Object Wizard.

“Obtaining configuration

properties” on page 103

getMetaData() Instantiate the AgentMetaData object that

contains the ODA’s metadata, including its

ability to generate content.

“Initializing ODA metadata” on

page 105

init() Initialize the ODA, including allocation of

resources and connection to the data source.

“Initializing the ODA start” on

page 107

terminate() Perform cleanup, including disconnecting from

the data source and releasing any resources

that the ODA uses.

“Shutting down the ODA” on page

152

6. Implement the methods of the appropriate content-generation interface (or

interfaces) in your ODA class. Table 28 lists the methods of the

102 Business Object Development Guide

content-generation interfaces and indicates where to find more information on

how to create these methods.

 Table 29. Defining methods of the content-generation interface

Content-generation

interface Description For more information

IGeneratesBoDefs getContentProtocol() “Determining the ODA generated

content” on page 109

getTreeNodes()

generateBoDefs()

getBoDefs()

“Generating business object

definitions as content” on page 112

IGeneratesBinFiles getContentProtocol() “Determining the ODA generated

content” on page 109

generateBinFiles()

getBinFile()

“Generating binary files as content”

on page 135

Starting the ODA

When the ODA is started, the ODA run time instantiates the associated ODA class

(an extension of ODKAgentBase2) and then calls the class methods in Table 30.

 Table 30. Starting the ODA

Initialization task ODKAgentBase2 method For more information

1. Obtain the configuration properties,

including those that describe the data

source to open.

getAgentProperties() “Obtaining configuration properties”

2. Initialize the ODA metadata so that

Business Object Wizard can obtain

information about the ODA (especially its

supported content).

getMetaData() “Initializing ODA metadata” on page

105

3. Initialize the ODA to perform any

necessary startup steps, such as opening a

connection to the data source.

init() “Initializing the ODA start” on page

107

The following sections describe each of the steps in Table 30.

Obtaining configuration properties

To begin ODA initialization, Business Object Wizard calls the

getAgentProperties() method of the ODA class. The getAgentProperties()

method is part of the low-level ODA base class, ODKAgentBase. It is inherited by the

ODA base class, ODKAgentBase2, then inherited in turn by your ODA class.

Important: As part of the implementation of your ODA class, you must implement

an getAgentProperties() method.

The getAgentProperties() method performs the following tasks:

v “Obtaining the handle to the ODKUtility object”

v “Initializing the configuration-property array” on page 104

Obtaining the handle to the ODKUtility object

Because getAgentProperties() is the first ODA method that Business Object

Wizard calls, it is a good place to instantiate the ODKUtility object, which provides

the ODA code with access to the following:

Chapter 5. Developing an Object Discovery Agent 103

v Objects in the memory of the ODA run time, such as configuration properties

and business-object properties

v Utility methods that provide tracing and display user-response dialog boxes

To obtain access to an ODKUtility object, use the getODKUtility() method. This

method, defined in the ODKUtility class, returns a handle to the ODKUtility object.

odkUtil = ODKUtility.getODKUtility()

If you declare the handle to the ODKUtility object as global to the entire ODA

class, all methods within this class can access the utility methods.

Note: Instead of instantiating the ODKUtility object in its getAgentProperties()

method, the sample Roman Army ODA provides a member variable named

m_utility in its ODA class and initializes it as follows:

final ODKUtility m_utility = ODKUtility.getODKUtility();

Initializing the configuration-property array

As “Obtaining ODA configuration properties” on page 91 describes, Business

Object Wizard uses the configuration-property array that getAgentProperties()

returns to initialize the Configure Agent dialog box (Step 2). This dialog box

displays all ODA configuration properties and allows users to enter or change their

values. The configuration-property array is an array of AgentProperty objects. The

AgentProperty class provides support for the configuration property to have the

following features:

v A default value

v Hold only one value or more than one value

v A list of valid values for the user to choose from

v Conditions that restrict the value the user can enter

Note: For more information, see “Working with agent properties” on page 142.

The purpose of getAgentProperties() is to send to Business Object Wizard an

array of AgentProperty objects that describe the ODA configuration properties. To

initialize the configuration-property array in getAgentProperties(), take the

following steps:

1. Instantiate an AgentProperty object for a configuration property, initializing it

with the appropriate property information.

The implementation of the getAgentProperties() method must instantiate

agent-property objects for each configuration property that the Business Object

Wizard is to display to users. When you instantiate the agent-property object,

you initialize some or all of its member variables (shown in Table 51 on page

143).

2. Store the initialized AgentProperty object in the configuration-property array.

3. Return the initialized configuration-property array from the

getAgentProperties() method.

Figure 57 shows the implementation of the getAgentProperties() method (defined

in the ArmyAgent2 class of the sample Roman Army ODA).

104 Business Object Development Guide

Figure 57 initializes the five ODA configuration properties for the sample Roman

Army ODA. The actual properties you define depend on the specific data source

your ODA is accessing.

After values are specified for the configuration properties, Business Object Wizard

saves these properties in the memory of the ODA run time. The ODA can access

these properties through methods such as the getAgentProperty() method in the

ODKUtility class. For more information, see “Retrieving ODA configuration

properties” on page 107.

Initializing ODA metadata

After Business Object Wizard calls the ODA’s getAgentProperties() method, it

calls the getMetaData() method to initialize the ODA metadata. The getMetaData()

method is defined in the ODA base class, ODKAgentBase2, then inherited by your

ODA class. It returns an AgentMetaData object, which contains the ODA’s metadata,

including the generated content it supports.

Important: The getMetaData() method is an abstract method. As part of the

implementation of your ODA class, you must implement a

getMetaData() method.

The AgentMetaData object provides the information in Table 31 to the ODA run

time when it needs to obtain metadata for the ODA.

public AgentProperties[] getAgentProperties()

 throws com.crossworlds.ODK.ODKException

{

 AgentProperty general = new AgentProperty("Army general",

 AgentProperty.TYPE_STRING, true, false, false,

 "A general is a soldier at least 45 years old", true,

 ODKConstant.SINGLE_CARD, m_generals.toArray(), null);

 AgentProperty recAdop = new AgentProperty("Allow adoption",

 AgentProperty.TYPE_BOOLEAN, true, false, false,

 "Select \"yes\" if adopted children can be business objects", true,

 ODKConstant.SINGLE_CARD, new Object[]{"true", "false"}, null);

 AgentProperty minAge = new AgentProperty("Minimum age for drafting",

 AgentProperty.TYPE_INTEGER, true, false, false,

 "Drafted soldiers will be generable nodes", false,

 ODKConstant.SINGLE_CARD, null, new Object[] {"15"});

 AgentProperty maxAge = new AgentProperty("Maximum age for drafting",

 AgentProperty.TYPE_INTEGER, true, false, false,

 "Drafted soldiers will be generable nodes", false,

 ODKConstant.SINGLE_CARD, null, new Object[] {"55"});

 AgentProperty minAdo = new AgentProperty("Minimum age for adopting",

 AgentProperty.TYPE_INTEGER, true, false, true,

 "Drafted soldiers will be generable nodes", false,

 ODKConstant.SINGLE_CARD, null, new Object[] {"" + m_minAdoptionAge});

 AgentProperty[] props = new AgentProperty[]

 {general, minAge, maxAge, recAdop, minAdo});

 return props;

}

Figure 57. Initializing the configuration-property array

Chapter 5. Developing an Object Discovery Agent 105

Table 31. Contents of an AgentMetaData object

Member variable Description

agentVersion The version of the ODA

searchableNodes,

searchPatternDesc

Information to specify the ODA search pattern, which the

user can specify to reduce the number of tree nodes from

the data source that are displayed

supportedContent A description of the generated content that the ODA can

support

To initialize the ODA metadata, you implement the getMetaData() method, which

involves the following steps:

v Create an instance of the AgentMetaData class, passing in a reference to the ODA

itself and an optional ODA version.

Use either of the forms of the AgentMetaData() constructor. Both forms require

that you pass in a this reference to the ODA object (an instance of your ODA

class). The constructor queries the ODA object to obtain information about the

content-generation interface (or interfaces) that the ODA implements. It then

uses this information to initialize the supportedContent member variable with

the content protocols that the ODA supports for each of its supported content

types. For more information on the ODA’s supported content, see “Determining

the ODA generated content” on page 109.

Optionally, you can also provide the ODA version as an argument to the

constructor to initialize the agentVersion member variable.

v Initialize other member variables as appropriate for your ODA.

For your ODA to support the search-pattern feature, you must explicitly

initialize the searchableNodes and searchPatternDesc member variables after the

AgentMetaData object is instantiated. For more information, see “Implementing

the search-pattern feature” on page 115.

v Return the initialized AgentMetaData object from the getMetaData() method.

Figure 58 shows the implementation of the getMetaData() method (defined in the

ArmyAgent2 class from the sample Roman Army ODA).

 Because the getMetaData() method in Figure 58 is inherited by the ArmyAgent3

class (which implements the IGeneratesBoDefs interface), the call to the

AgentMetaData() constructor in this code fragment initializes the content type and

its associated content protocol for the ODA. After getMetaData() starts in

ArmyAgent3, the ODA’s content type is initialized to ContentType.BusinessObject

and its content protocol to “on request”. For more information, see “Determining

the ODA generated content” on page 109.

public AgentMetaData getMetaData(){

 odkUtil.trace(TRACELEVEL1, XRD_TRACE, "Entering getMetaData()...");

 AgentMetaData amdObj = new AgentMetaData(this, "Sample ODA v1.0.0");

 //Initialize search-pattern feature for tree nodes

 amd.searchableNodes = true;

 amd.searchPatternDesc = "Enter the first letter to search by. " +

 "For example, "\"A\", \"k\", "\Z\". Only names that start " +

 "with this letter will be returned."

 return amd;

}

Figure 58. Initializing ODA metadata

106 Business Object Development Guide

This getMetaData() method also provides support for the search-pattern feature by

initializing the searchableNodes and searchPatternDesc member variables. The

searchPatternDesc variable contains the text that displays in the Enter the Search

Pattern dialog box (see Figure 48 on page 82).

Initializing the ODA start

After Business Object Wizard calls the ODA’s getMetaData() method, it calls the

init() method to begin initialization of the ODAstart. The init() method is part

of the low-level ODA base class, ODKAgentBase. It is inherited by the ODA base

class, ODKAgentBase2, then inherited in turn by your ODA class. This method

performs initialization steps for the ODA.

Important: The init() method is an abstract method. As part of the

implementation of your ODA class, you must implement an init()

method.

The main tasks of the init() method include:

v “Retrieving ODA configuration properties”

v “Establishing a connection” on page 108

v “Checking the ODA version” on page 109

Retrieving ODA configuration properties

The init() method can retrieve any of the user-initialized configuration properties

it needs to complete the initialization of the ODA. The ODA initializes its

configuration properties in its getAgentProperties() method. Users can update

these properties as needed in the Configure Agent dialog box of Business Object

Wizard. After configuration properties are updated, Business Object Wizard writes

them to the memory of the ODA run time.

The ODK API provides the methods in Table 32 for retrieving the value of an ODA

configuration property from the ODA run-time memory.

 Table 32. Methods to retrieve the value of an ODA configuration property

ODK library method Description

getAgentProperty() Retrieves the value of a specified ODA

configuration property

getAllAgentProperties() Retrieves the values of all ODA

configuration properties as a Java

Hashtable object

All methods in Table 32 are defined in the ODKUtility class. Therefore, you must

obtain a handle to the singleton object of this class before you can access any

configuration properties. For more information, see “Obtaining the handle to the

ODKUtility object” on page 103.

Figure 59 shows the implementation of the init() method (defined in the

ArmyAgent3 class from the sample Roman Army ODA).

Chapter 5. Developing an Object Discovery Agent 107

In Figure 59, the init() method uses the following to obtain configuration-
property values:

v The getAllAgentProperties() method, defined in the ODKUtility class, to

retrieve all configuration properties into a Java Hashtable object.

v The get() method, defined in the Java Hashtable class, to retrieve an element

from the hashtable by its name.

v The allValues member variable, defined in the AgentProperty class, to get the

value that the user has specified for each configuration property.

The configuration properties that this init() method obtains are all

single-cardinality properties. Therefore, the allValues member variable contains

only one value. For an example of using multiple-cardinality properties, see

“Creating the business-property array” on page 122. This init() method also

initializes the ODA’s generated-content structure, a vector called m_generatedBOs.

This vector will hold the generated business object definitions.

Establishing a connection

The main task of the init() initialization method is usually to establish a

connection to the data source. The ODA searches the data source to “discover”

objects for potential conversion to business object definitions. To establish the

connection, the init() method can perform the following tasks:

v Obtain any ODA configuration properties that provide connection information

and use them to connect to the data source. If a required configuration property

is empty, your init() method can provide a default value or it can throw the

ODKInvalidPropException exception.

You can use the getAgentProperty() method to obtain the value of an ODA

configuration property. For more information, see “Retrieving ODA

configuration properties” on page 107.

v Obtain any required connections or files. For example, the init() method

usually establishes a connection with the data source. If the ODA cannot open a

connection, the init() method must throw an ODKException exception (or one of

its subclasses) to indicate the cause of the failure.

The init() method runs successfully if the ODA succeeds in opening a connection

and the ODA is ready to begin processing data in the data source. If the ODA

public void init() throws com.crossworlds.ODK.ODKException

{

 Hashtable h = m_utility.getAllAgentProperties();

// Obtain values of ODA configuration properties

 AgentProperty property = (AgentProperty) h.get("Army general");

 m_general = property.allValues[0].toString();

 property = (AgentProperty) h.get("Minimum age for drafting");

 m_minAge = Integer.parseInt(property.allValues[0].toString());

 property = (AgentProperty) h.get("Maximum age for drafting");

 m_maxAge = Integer.parseInt(property.allValues[0].toString());

 property = (AgentProperty) h.get("Allow adoption");

 m_allowAdoption = new Boolean(

 property.allValues[0].toString()).booleanValue();

// Clear the generated-content structure

 m_generatedBOs.clear();

}

Figure 59. Initializing the ODA

108 Business Object Development Guide

cannot open a connection, the init() method should throw an ODKException

exception to indicate the cause of the failure.

Checking the ODA version

The getVersion() method returns the version of the ODA run time. This method is

part of the low-level ODA base class, ODKAgentBase. It is inherited by the ODA

base class, ODKAgentBase2, then inherited by your ODA class. It is called in both of

the following contexts:

v The init() method should call getVersion() to check the ODA run-time

version.

v The ODA run time calls the getVersion() method when it needs to get its

version.

Note: The getVersion() method returns the version of the ODA run time, not the

version of the ODA (which is stored as part of the ODA’s metadata).

Determining the ODA generated content

This section provides the following information on the issues you need to consider

when determining the content that your ODA can generate:

v “Choosing the ODA content type”

v “Choosing the ODA content protocol” on page 110

Choosing the ODA content type

The ODK API identifies the valid content types that an ODA can support with the

ContentType class. This class contains static member variables for each of the

supported content types, as Table 33 shows.

 Table 33. How content types are represented

Content type ContentType member variable

Business object definitions BusinessObject

Binary files BinaryFile

The ContentType class simulates an enumerated list of the supported ODA content

types. For example, a content-type object that represents business object definitions

would use only the BusinessObject member variable, as follows:

ContentType.BusinessObject

To provide support for generation of a particular content type, an ODA must

implement the appropriate content-generation interface, as listed in Table 19 on

page 94. Every ODA must support generation of business object definitions. It can

optionally also support generation of binary files as its content. The

content-generation interfaces contain the kinds of methods listed in Table 34. As

part of the implementation of the content-generation interface, you must

implement these methods.

 Table 34. Methods in a content-generation interface

Method Method purpose IGeneratesBoDefs IGeneratesBinFiles

Source-node-generation

method

Business Object Wizard calls this

method to obtain the source-node

hierarchy that it displays to the user

(Step 3: Select Source).

getTreeNodes() None

Chapter 5. Developing an Object Discovery Agent 109

Table 34. Methods in a content-generation interface (continued)

Method Method purpose IGeneratesBoDefs IGeneratesBinFiles

Content-generation

method

Business Object Wizard calls this

method to initiate generation of the

specified content for the source data

(Step 5: Generating Business Objects).

generateBoDefs() generateBinFiles()

Content-retrieval method Business Object Wizard calls this

method to retrieve the generated

content from ODA memory (Step 5:

Generating Business Objects).

getBoDefs() getBinFile()

To determine which content-generation interface’s method to call, Business Object

Wizard checks the ODA’s metadata. One of the components of this metadata is the

supportedContent member variable, which is initialized by the AgentMetaData()

constructor, called within the ODA’s getMetaData() method. For more information,

see “Initializing ODA metadata” on page 105.

Table 35 shows the information that this chapter provides on how to implement

methods in a content-generation interface.

 Table 35. How to develop a content-generation interface

Content-generation interface For more information

IGeneratesBoDefs “Generating business object definitions as

content” on page 112

IGeneratesBinFiles “Generating binary files as content” on page

135

Choosing the ODA content protocol

An ODA can generate a particular content type using either of the content protocols

listed in Table 36. The content protocol determines how the ODA interacts with

Business Object Wizard to generate the supported content; that is, it determines

whether Business Object Wizard can explicitly initiate content generation from the

ODA.

 Table 36. Content protocols for an ODA

Content

protocol Description Content-protocol constant

On request Business Object Wizard explicitly

requests the ODA to generate content

by calling the content-generation

method. Once this method completes,

on-request content is ready. Business

Object Wizard can retrieve this content

at its convenience with a call to the

content-retrieval method.

CONTENT_PROTOCOL_ONREQUEST

Callback The ODA generates the content in

some fashion and notifies Business

Object Wizard when its content is

ready. Once notified, Business Object

Wizard retrieves this content with a

call to the content-retrieval method.

CONTENT_PROTOCOL_CALLBACK

110 Business Object Development Guide

Note: An ODA must support the generation of business-object-definition content

with the on-request content protocol. Additionally, the ODA can support the

generation of file content in either content protocol.

To support content protocols, your ODA must take the following steps:

v “Indicating the implemented content protocols”

v “Implementing the content-generation method”

Indicating the implemented content protocols

Both the IGeneratesBoDefs and IGeneratesBinFiles interfaces are extensions of the

IGeneratesContent interface. Therefore, they both inherit the single method that

IGeneratesContent defines, getContentProtocol(). As part of the implementation

of the ODA’s content-generation interface, you must implement the

getContentProtocol() method to indicate which of the content protocols your

ODA will use for its supported content types.

Note: An ODA can support one content protocol for a given content type.

The getContentProtocol() method accepts as an argument a ContentType object,

which identifies a content type that the ODA supports. The getContentProtocol()

method returns the content protocol that the ODA supports for this specified

content type. It returns the supported content protocol as one of the

content-protocol constants (shown in Table 36). These constants are defined in the

ODKConstant interface.

Note: In this release, an ODA must generate business object definitions on request.

Therefore, it must implement the getContentProtocol() method to return

the CONTENT_PROTOCOL_ONREQUEST constant for a content type of

ContentType.BusinessObject. Additionally, the ODA can support the

generation of files in either protocol and return the appropriate

content-protocol constant for a content type of ContentType.BinaryFile.

Figure 60 shows an implementation of getContentProtocol() that indicates the

ODA supports the callback protocol for the generation of files and the on-request

protocol for the generation of business object definitions.

Implementing the content-generation method

The implementation of the content-generation method depends on the content

protocol that the content type supports, as Table 37 shows.

public long getContentProtocol(ContentType contentType)

{

 if (contentType == ContentType.BinaryFile)

 return ODKConstant.CONTENT_PROTOCOL_CALLBACK;

 else

 return ODKConstant.CONTENT_PROTOCOL_ONREQUEST;

}

Figure 60. Indicating supported content protocols

Chapter 5. Developing an Object Discovery Agent 111

Table 37. Content protocols and the content-generation method

Content protocol

How to call the

content-generation method

Implementation of

content-generation method

On request Business Object Wizard explicitly

calls the content-generation

method to initiate content

generation (business object

definitions or files).

Method must generate content for

the source nodes passed in its

argument and return the

appropriate content metadata to

Business Object Wizard.

Callback Business Object Wizard never

explicitly calls the

content-generation method

because content generation (files

only) is initiated by the ODA for

this content protocol.

Method should throw an

exception because it should never

be called directly. Actual

generation of content is performed

external to the content-generation

method, in a different method,

class, or even process.

Table 38 shows the information that this chapter provides on how to implement the

content-generation methods.

 Table 38. How to develop a content-generation method

Content-generation method For more information

IGeneratesBoDefs.generateBODefs() “Defining the generateBoDefs() method” on

page 120

IGeneratesBinFiles.generateBinFiles() “Defining the generateBinFiles() method” on

page 138

Generating business object definitions as content

As discussed in “Business object definitions” on page 4, a business object definition

represents a template for data that can be treated as a collective unit. The purpose

of an ODA is to generate business object definitions for objects in a data source.

For an ODA to generate business-object-definition content, its ODA class must

implement the IGeneratesBoDefs interface.

Note: Because an ODA must support generation of business object definitions, its

ODA class must implement the IGeneratesBoDefs interface.

Table 39 lists the methods that the ODA class must define to implement the

IGeneratesBoDefs interface.

 Table 39. Methods in the IGeneratesBoDefs interface

Method

IGeneratesBoDefs

method Description

Source-node-
generation method

getTreeNodes() Iteratively performs the following:

v Discover source nodes for objects within

the data source.

v Construct an array of tree nodes that

represents the source-node hierarchy.

v Return an array of tree nodes to Business

Object Wizard, which displays them to

users in the Select Source dialog box.

112 Business Object Development Guide

Table 39. Methods in the IGeneratesBoDefs interface (continued)

Method

IGeneratesBoDefs

method Description

Content-generation

method

generateBoDefs() Generates the business object definitions for

the user-selected source data, writing them

to ODA memory

Content-retrieval

method

getBoDefs() Retrieves either a specified business object

definition or all business object definitions

from ODA memory

Note: In addition to the methods in Table 39, IGeneratesBoDefs also includes the

getContentProtocol() method to specify the content protocol that the ODA

supports for business-object-definition generation. For more information, see

“Choosing the ODA content protocol” on page 110.

With the IGeneratesBoDefs interface implemented, Business Object Wizard invokes

the methods shown in Table 40 to obtain source nodes, as well as generate and

retrieve content.

 Table 40. Business Object Wizard and IGeneratesBoDefs methods

Step in Business Object

Wizard IGeneratesBoDefs method For more information

Step 3: Select Source getTreeNodes() “Generating source nodes”

Step 5: Generating Business

Objects

generateBoDefs() “Generating business object

definitions” on page 120

Step 5: Generating Business

Objects

getBoDefs() “Providing access to generated

business object definitions” on

page 133

The following sections discuss the implementation of each of the methods in

Table 40.

Generating source nodes

Business Object Wizard calls the getTreeNodes() method to discover the source

nodes in the ODA’s data source and create the source-node hierarchy, which

Business Object Wizard displays in its Select Source dialog box (Step 3). The

getTreeNodes() method is part of the IGeneratesBoDefs interface, which the ODA

class must implement to support generation of business object definitions.

Important: As part of the implementation of the IGeneratesBoDefs interface, you

must implement a getTreeNodes() method for your ODA.

As “Selecting and confirming source data” on page 93 describes, Business Object

Wizard uses the tree-node array that getTreeNodes() returns to initialize the Select

Source dialog box. This dialog box displays the source-node hierarchy, which

allows users to move through the source nodes obtained from the data source and

to select those for which the ODA generates business object definitions. Each time

a source node is expanded, Business Object Wizard calls the getTreeNodes()

method, which returns a tree-node array with the contents of the expanded source

node.

Chapter 5. Developing an Object Discovery Agent 113

For example, the getTreeNodes() method in the sample Roman Army ODA

initializes the Select Source dialog box with the top-level army general, which it

has obtained from the sample’s data source, the RomanArmy.xml file. When a

particular node is expanded, getTreeNodes() obtains the sons of that node’s army

general from the XML file and puts them into a tree-node array. Business Object

Wizard uses this tree-node array to display the expanded source node.

Therefore, the purpose of getTreeNodes() is to discover source nodes in the data

source, then construct and return an array of tree nodes. To do this,

getTreeNodes() performs the following tasks:

v “Determining the parent-node path”

v “Implementing the search-pattern feature” on page 115

v “Querying the data source” on page 116

v “Constructing the tree nodes” on page 117

Determining the parent-node path

When Business Object Wizard calls the getTreeNodes() method, it passes to this

method the value of the parent-node path. This path identifies the user-selected node

that getTreeNodes() will expand. It is a String that contains the fully qualified

path of the node, from the top-level parent down to the user-selected node. Node

names within this path are separated with a colon (:).

For example, Figure 61 shows a Select Source dialog box that displays a view of

the source-node hierarchy for the sample Roman Army ODA.

 In Figure 61, the parent-node path for the Uulius source node is:

Apollo:Tellus:Uulius

Users can specify a parent node to expand by one of the following ways:

v Clicking the + symbol to the left of parent node’s name.

Figure 61. Sample source-node hierarchy

114 Business Object Development Guide

Business Object Wizard constructs the parent-node path for the selected source

node and passes this path to getTreeNodes().

v Selecting Use this object instead at the top of the Select Source dialog box and

specifying an explicit parent-node path in the Object Path dialog box.

You must specify the parent-node path with the same syntax that

getTreeNodes() expects for its parent-node path. For more information, see

“Specifying an object path” on page 82.

The getTreeNode() method uses the parent-node path to determine the level of the

source-node hierarchy to return in its tree-node array. This tree-node array will

contain all child nodes of the node that the parent-node path identifies. To tell

getTreeNodes() to return the top-level of the source-node hierarchy, Business

Object Wizard passes in an “empty” parent node path. Therefore, the

getTreeNodes() method should check for an empty node path as its first step, as

the following code fragment shows:

if (parentNodePath = null || parentNodePath.length() == 0)

 //return the top-level of the source-node hierarchy

If the parent-node path is not empty, getTreeNodes() should build the tree nodes

for the children of the specified parent-node path, returning the appropriate array

of TreeNode objects to Business Object Wizard.

Figure 62 shows the implementation of the getTreeNodes() method (defined in the

ArmyAgent3 class of the sample Roman Army ODA).

 Figure 62 shows an important concept in the implementation of the getTreeNodes()

method. This method is often modularized, putting the actual search of the data

source into a separate method or even into a separate class. This getTreeNodes()

method calls the getNodes() method to actually generate the tree-node array for

the selected data-source data. If the parent-node path is empty, getTreeNodes()

sends to getNodes() the entire contents of the XML file (in the m_army variable).

Otherwise, getTreeNodes() sends to getNodes() the results of the findSon()

method, which performs the actual query of the data source.

Implementing the search-pattern feature

A search pattern allows you to specify criteria that child nodes must meet to be

displayed when the parent node is expanded. You initiate the search-pattern

feature by right-clicking and then clicking Search for items. The Enter a Search

Pattern dialog box opens, where you can specify the search criteria.

Note: For more information on how to use the search-pattern feature, see

“Specifying a search pattern” on page 81.

When Business Object Wizard receives a search pattern, it calls getTreeNode()

again to retrieve a new tree-node array from the data source. Business Object

Wizard passes the search pattern as an argument to getTreeNodes(). The search

public TreeNode[] getTreeNodes(String parentNodePath, String searchPattern)

 throws ODKException

{

 if (parentNodePath == null || parentNodePath.length() == 0)

 return getNodes(m_army, searchPattern);

 return getNodes(findSon(parentNodePath, searchPattern));

}

Figure 62. Generating the tree-node array

Chapter 5. Developing an Object Discovery Agent 115

pattern contains wildcards and other symbols that the underlying data source

recognizes. For example, if the data source is a database, valid search criteria could

include SQL search symbols such as a percent (%) or question mark (?).

The getTreeNodes() method searches the data source for child nodes that match

the search pattern and puts the resulting child nodes in the tree-node array that it

returns to Business Object Wizard. In this way, you can dynamically specify new

conditions for source nodes to meet.

Note: Unlike a filter, a search pattern causes Business Object Wizard to call the

getTreeNodes() method again. A filter just causes Business Object Wizard to

search the child nodes of the parent node that is currently displaying; that

is, Business Object Wizard looks for child nodes already in the current

source-node hierarchy. It does not call getTreeNodes() to search the data

source for new matching child nodes.

To implement the search-pattern feature for your ODA, take the following steps:

v Enable the search-pattern feature in the ODA’s metadata (AgentMetaData) by

setting the searchableNodes member variable to true.

You should also initialize the searchPatternDesc member variable to a string

that describes to the user the valid search criteria. Business Object Wizard

displays this string as the text for the Enter the Search Pattern dialog box. You

initialize the ODA’s metadata in the getMetaData() method. For more

information, see “Initializing ODA metadata” on page 105.

v Implement your getTreeNodes() method to use the value of the searchPattern

argument in the queries it makes of the data source.

For example, if the data source is a database, you can include the search pattern

in SQL statements that query the database tables.

In the sample Roman Army ODA, the search pattern allows the user to enter one

letter as search criteria. The getTreeNodes() method calls the getNodes() method to

handle the actual generation of tree nodes. The following code fragment from this

getNodes() method (defined in ArmyAgent3) shows how the method uses the search

pattern in its search of the data source:

TreeNode[] getNodes(Son parent, String searchPattern)

{

 Vector nodes = new Vector();

 if (searchPattern == null || searchPattern.length() == 0)

 searchPattern = "";

 else

 searchPattern = new String(new char[] {searchPattern.charAt(0)});

When the getNodes() method later compares the name of the object in the XML

file (the data source) with the current name in the parent-node path, it checks if

the object name begins with the specified search pattern, as follows:

if (currSon.name.getValue().startsWith(searchPattern))

For the context of this use of the search pattern, see Figure 63 on page 119.

Querying the data source

The main purpose of the getTreeNodes() method is to query the data source to

discover source nodes, which are objects for which the ODA can generate content.

The mechanism to query the data source depends on the kind of data source with

which the ODA works. For example, the XML ODA (a prebuilt ODA that is part of

the WebSphere Business Integration Adapters product) queries XML files to present

the names of objects within these files for possible content generation. As another

116 Business Object Development Guide

example, the JDBC ODA (another prebuilt ODA part of WebSphere Business

Integration Adapters) queries a JDBC database to present the names of tables

within the database for possible content generation.

As suggested in Table 27 on page 100, if the logic necessary to query your data

source is reasonably complex, you should develop special Java classes to handle

this interaction. The getTreeNodes() method can then instantiate and access these

classes as needed. Make sure you include these classes in the ODA library file. For

more information, see “Compiling the ODA” on page 161.

For the sample Roman Army ODA, the findSon() method (defined in the

ArmyAgent3 class) performs the task of querying the data source. It finds a

particular soldier (identified by its parent-node path) in the Roman-Army XML file.

It returns the information for the specified name as a Son object. The sample

defines the Son class to read an object in the XML file.

Constructing the tree nodes

As the ODA queries the data source for source nodes, it must generate the

associated tree node to represent each source node it discovers. The ODK API

represents a tree node as an object of the TreeNode class, which contains the

information shown in Table 41.

 Table 41. Contents of a tree node

Member variable Description

metadata

name The name of this tree node, which displays in the Name

column of the Select Source dialog box

description A description of this tree node, which displays in the

Description column of the Select Source dialog box

polymorphicNature Whether the tree node’s nature is “normal” (it is either

expandable or a leaf node) or “file” (it can be associated

with a file)

isExpandable Whether this tree node is expandable; that is, whether the

tree node contains child nodes or is a leaf (terminating)

node

isGeneratable Whether content can be generated for this tree node

Data

nodes An array of child nodes, if this tree node is expandable

To create a tree node, use one of the forms of the TreeNode() constructor. For a list

of these forms, see “TreeNode()” on page 278.

Normal-nature nodes: When a node has a “normal” nature, it can have one of the

following structures:

v An expandable node

Business Object Wizard displays an expandable node with a plus (+) sign to the

left of the node name (to indicate that the user can expand the node) or a minus

(-) sign (to indicate that the user can contract the node). The following table

shows the initialization that the TreeNode object requires for it to display as an

expandable node:

 TreeNode member variable Value

isExpandable true

Chapter 5. Developing an Object Discovery Agent 117

TreeNode member variable Value

nodes An array of the child nodes

isGeneratable false (usually)

For information about how to move through the source-node hierarchy, see

“Moving through the source-node hierarchy” on page 80

v A leaf node

Business Object Wizard displays a leaf (terminating) node as just the node name.

The following table shows the initialization that the TreeNode object requires for

it to display as a leaf node:

 Tree-node member variable Value

isExpandable false

nodes null

isGeneratable true (usually)

Both the leaf and expandable node are normal-nature nodes. Therefore, they both

have the polymorphicNature member variable set to the NODE_NATURE_NORMAL

node-nature constant. This constant is defined in the ODKConstant interface (which

the TreeNode class implements). The first two forms of the TreeNode() constructor

do not specify the polymorphicNature member variable. Therefore, this member

variable defaults to NODE_NATURE_NORMAL.

Suppose the ODA generates the source-node hierarchy shown in Figure 61 on page

114. If the user expands the Uulius node, the getTreeNodes() method must

generate a tree-node array that contains the child nodes for Uulius. Because the

parent-node path is not empty (it is Apollo:Tellus:Uulius), the getTreeNodes()

method makes the following call to the getNodes() method (see Figure 62 on page

115):

getNodes(findSon(parentNodePath), searchPattern))

This call to getNodes() uses the findSon() method to query the data source for the

Uulius node and return a Son object that contains the information from the XML

file. One of the member variables in this Son object is a vector of XML objects

(XmlObjectVector) with the information on the children of Uulius. Figure 63 shows

a code fragment from the getNodes() method that loops through this XML-object

vector and creates a TreeNode object for each of the children:

118 Business Object Development Guide

The code fragment in Figure 63 initializes a new TreeNode object for each child

soldier node with the soldier’s name, whether this node is generatable (based on

whether the soldier is of recruitable age), and whether this node is expandable

(based on the number of children the soldier has). This call to the TreeNode()

constructor does not initialize the tree node with a description (““), nor does it

provide any child nodes. Once each new TreeNode object is instantiated, the code

adds it to a Java Vector (nodes). When getNodes() has generated TreeNode objects

for all child nodes, it copies the contents of this vector into a tree-node array with

the following code:

TreeNode[] tn = new TreeNode[nodes.size()];

System.arraycopy(nodes.toArray(), 0, tn, 0, nodes.size());

The getNodes() method returns this tree-node array to getTreeNodes(), which in

turn returns this array to its calling program, Business Object Wizard. Business

Object Wizard uses this new tree-node array to display the expanded contents of

the Uulius node, as Figure 64 shows.

File-nature nodes: When a node has a “file” nature, the user can associate an

operating system file with the node. Business Object Wizard indicates that a node

has a file nature by activating the Associate files menu item when the user

right-clicks the node name. For information about how to use this menu item, see

“Associating an operating-system file” on page 82.

for (int i=0; i<sons.size(); i++)

 {

 Son currSon = (Son) sons.getAt(i);

 if (currSon.name.getValues().startsWith(searchPattern))

 {

 int age = currSon.age.getIntValue();

 int children = currSon.Son == null ? 0 : currSon.Son.size();

 int nature = TreeNode.NODE_NATURE_NORMAL;

 TreeNode tn = new TreeNode(currSon.name.getValue(), " ",

 canRecruit(currSon), children > 0, null, nature);

 nodes.add(tn);

 }

 }

Figure 63. Constructing tree nodes

Figure 64. Expanding the Uulius source node

Chapter 5. Developing an Object Discovery Agent 119

A file-nature node has its polymorphicNature member variable set to the

NODE_NATURE_FILE node-nature constant. This constant is defined in the

ODKConstant interface (which the TreeNode class implements). The following table

shows the initialization that the TreeNode object requires for it to function as a

file-nature node:

 TreeNode member variable Value

polymorphicNature NODE_NATURE_FILE

isExpandable false

nodes null

isGeneratable false (usually)

In the sample Roman Army ODA, the ArmyAgent4 class implements a getNode()

method that supports file-nature nodes. This sample allows the user to associate a

file with a source node for any node that represents a soldier that is at least 28

years old (the default minimum age) and has no children of his own. The code for

this version of getNode() is almost identical to the code in Figure 63 on page 119.

The only difference is in the assignment of the value to the polymorphicNature

member variable. Instead of assigning the NODE_NATURE_NORMAL constant to all

nodes, the ArmyAgent4 version of getNode() uses the following code line to set the

node nature to NODE_NATURE_FILE if the node represents a soldiers at least 28 years

old and having no children:

int nature = m_allowAdoption && canAdopt(currSon) ?

 TreeNode.NODE_NATURE_FILE : TreeNode.NODE_NATURE_NORMAL;

Generating business object definitions

After users have selected the source nodes in the Select Nodes dialog box (Step 3),

the ODA is ready to begin content generation. Business Object Wizard calls the

generateBoDefs() content-generation method to generate business object

definitions for the user-selected source nodes. To the ODA, Business Object Wizard

sends the list of source nodes (selected in Step 3). The goal of the

business-object-definition generation process is to create a business object definition

for each selected source node. While the generateBoDefs() method runs, Business

Object Wizard displays its Generating Business Objects screen (Step 5).

Note: Because the ODA generates business object definitions “on request”,

Business Object Wizard explicitly calls the generateBoDefs() method to

initiate generation of the business object definitions. Therefore, you must

implement generateBoDefs() so that it handles generating the business

object definitions (BusObjDef objects), storing them in the generated-content

structure, and returning of content metadata to Business Object Wizard.

This section describes the following steps that the generateBoDefs() method

should take to generate business object definitions:

1. “Defining the generateBoDefs() method”

2. “Requesting business-object properties” on page 121

3. “Creating the business object definitions” on page 125

4. “Providing generated business object definitions” on page 132

Defining the generateBoDefs() method

To provide generation of business object definitions, your ODA class (derived from

ODKAgentBase2) must implement the generateBoDefs() method, is defined in the

IGeneratesBoDefs interface. The generateBoDefs() method receives these

120 Business Object Development Guide

user-selected source nodes as an argument, an array of source-node paths (String

objects). The method must generate a business object definition for each source

node in this array. It can use its path to locate the source node in the data source.

As its last step, generateBoDefs() returns a content-metadata (ContentMetaData)

object to describe the business object definitions it has generated.

The sample Roman Army ODA supports the on-request content protocol for the

generation of business object definitions (see Figure 60 on page 111). The

implementation of this method generateBoDefs() in the ArmyAgent3 class includes

the code fragment in Figure 65, which declares the variable for the

generated-content structure (m_generatedBOs) and defines the generateBoDefs()

method itself.

Requesting business-object properties

If, during the content-generation process, the ODA requires additional information,

it can display the BO Properties dialog box and request values for business-object

properties. For an introduction to business-object properties, see “Obtaining

business-object properties” on page 95.

Figure 66 illustrates a sample BO Properties dialog box that displays two

business-object properties:

v The Verbs business-object property allows users to specify which verbs the

business object definitions support. This property provides a drop-down list of

valid verbs, from which users can choose one or more values.

v The Prefix business-object property allows users to enter the prefix (such as

JDBC, SAP, LegacyApp) to add to the names of all generated business object

definitions. This property just provides an empty field in which users specify the

string prefix.

final Vector m_generatedBOs = new Vector();

public ContentMetaData generateBoDefs(String[] nodes)

 throws ODKException

{

Figure 65. Defining the generateBoDefs() method

Chapter 5. Developing an Object Discovery Agent 121

To provide the user with the properties illustrated in Figure 66, the

generateBoDefs() method takes the following steps:

1. Creates the business-property array for the Verbs and Prefix properties.

2. Calls the getBOSpecificProps() method to display the business-object

properties.

3. Obtains user-initialized values for the business-object properties.

Creating the business-property array: The getBOSpecificProps() method requires

an array of agent-property objects as an argument. This argument is the

business-object-property array and contains one agent-property object for each

business-object property to display in the BO Properties dialog box. Before

generateBoDefs() calls getBOSpecificProps(), it must take the necessary steps to

create the array that defines the business-object properties, initialize the

business-object properties, and save these properties into the array.

The first step is to define a business-object-property array to hold the Verbs and

Prefix properties. The next step is to initialize the business-object properties, using

the AgentProperty() constructor. With this constructor, you specify values for the

various metadata that the AgentProperty class supports. The AgentProperty class

provides support for the business-object property to have the following features:

v A default value

v The ability to restrict values to only one value or to more than one value

v A list of valid values for the user to choose from

v Conditions that restrict the value the user can enter

Note: For more information, see “Working with agent properties” on page 142.

To initialize the Verbs and Prefix properties, you provide the AgentProperty()

constructor with the following information:

v The Verbs property is a multiple-cardinality property that provides multiple

values for the user to choose from. It also has default values.

Figure 66. Additional property information needed.

122 Business Object Development Guide

Therefore, this property requires the following metadata in the AgentProperty()

constructor:

metadata

AgentProperty

member variable Value

Multiple cardinality cardinality ODKConstant.MULTIPLE_CARD

Allows user to choose from

multiple values

isMultiple true

allValidValues validValues array (which contains

the valid values to display)

Provides default values allDefaultValues defaultValues array (which contains

the default values to display)

User is not required to enter a

value

isRequired false

Before the call to the AgentProperty() constructor, the code in Figure 67 on page

124 first creates and initializes the validValues and defaultValues arrays so they

are available for the constructor.

v The Prefix property is a single-cardinality property that does not display

multiple values for the user to choose from. It does not have a default value.

Therefore, this property requires the following metadata in the AgentProperty()

constructor:

metadata

AgentProperty

member variable Value

Single cardinality cardinality ODKConstant.SINGLE_CARD

Does not allow user to choose

from multiple values

isMultiple false

allValidValues null

Does not provide default

values

allDefaultValues null

User is not required to enter a

value

isRequired false

The code fragment in Figure 67 creates and initializes the business-object-properties

array:

Chapter 5. Developing an Object Discovery Agent 123

For more information on the metadata of business-object properties, see “Working

with agent properties” on page 142.

Displaying the BO Properties dialog box: Once the business-object-property

array is initialized, the ODA can call the getBOSpecificProps() method to pass this

array to Business Object Wizard for display to the user in the BO Properties dialog

box. This method is defined in the ODKUtility class, and therefore must access an

ODKUtility object. Usually, you instantiate this object as part of the ODA

initialization. For more information, see “Obtaining the handle to the ODKUtility

object” on page 103.

Note: If any property values are invalid, getBOSpecificProps() throws the

ODKInvalidPropException exception.

The call to getBOSpecificProps() in Figure 68 sends the AgtProps array (initialized

in Figure 67) to Business Object Wizard for display in the BO Properties dialog box.

Retrieving the user-specified values: Once users have specified values for the

business-object properties in the BO Properties dialog box and clicked Next,

Business Object Wizard sends the user-specified values back to the ODA. The ODA

can retrieve these values in either of the following ways:

v Business Object Wizard saves the user-specified values in a Java Hashtable object

and sends this object as the return value for getBOSpecificProps(). Each

property is keyed on its name in this Hashtable object. The ODA can access

these properties with the Hashtable methods. The user-specified values for the

property are in the allValues member variable of its agent-property

(AgentProperty) object.

// Create the business-object-property array

 AgentProperty AgtProps[] = new AgentProperty[2];

 // Provide list of valid values for Verbs property

 Object[] validValues = new Object[4];

 validValues[0] = new String("Create");

 validValues[1] = new String("Retrieve");

 validValues[2] = new String("Delete");

 validValues[3] = new String("Update");

 // Provide list of default values for Verbs property

 Object[] defaultValues = new Object[4];

 defaultValues[0] = new String("Create");

 defaultValues[1] = new String("Retrieve");

 defaultValues[2] = new String("Delete");

 defaultValues[3] = new String("Update");

// Instantiate the Verbs property

 AgtProps[0] = new AgentProperty("Verbs", AgentProperty.TYPE_STRING,

 "Verbs that are applicable to all the selected objects",

 false, true, ODKConstant.MULTIPLE_CARD, validValues,

 defaultValues);

// Instantiate the Prefix property

 AgtProps[1] = new AgentProperty("Prefix", AgentProperty.TYPE_STRING,

 "Prefix that should be applied to each business object name",

 false, false, ODKConstant.SINGLE_CARD, null, null);

Figure 67. Creating the business-object array

// Display BO Properties dialog box, initializing it with AgtProps

 Util.getBOSpecificProps(AgtProps, "For all the Tables selected");

Figure 68. Displaying the BO Properties dialog box

124 Business Object Development Guide

v Business Object Wizard writes the user-specified values into the ODA run-time

memory. The ODA can access these values with the getBOSpecificProperty() or

getAllBOSpecificProperties() methods in the ODKUtility class.

The getBOSpecificProps() call in Figure 68 did not save the Hashtable object that

Business Object Wizard creates. Therefore, this code fragment uses the

getBOSpecificProperty() method to get the value of the properties specified for

the verbs and each business object prefix:

// Get the value of the Verbs and the Prefix properties

AgentProperty propVerb =

 Util.getBOSpecificProperty("Verbs");

AgentProperty propPrefix =

 Util.getBOSpecificProperty("Prefix");

Creating the business object definitions

The generateBoDefs() method must generate a business object definition for each

source node in the array it receives as an argument from Business Object Wizard.

To generate a business object definition, generateBoDefs() takes the following

steps:

1. Use the source node’s path, from the array that generateBoDefs() receives from

Business Object Wizard, to locate the associated object in the data source.

2. Obtain any information needed to populate the business object definition from

the associated object in the data source.

3. Create a business-object-definition object to represent the source node.

4. Populate this business-object-definition object with the information obtained

from the associated object in the data source (step 2).

The ODK API represents a business object definition as a business-object-definition

(BusObjDef) object. You can use the BusObjDef() constructor to instantiate the new

business object definition and provide it with a name. You can then provide the

business object definition with the information shown in Table 42.

 Table 42. Contents of a business object definition

Business-object-definition

information Description Accessor method

metadata

Name The name of the business object

definition

getName()

Application-specific

information

The business-object-level

application-specific information,

which contains information

applicable to the entire business

object definition

getAppInfo(),

setAppInfo()

Data

Attribute list A list of the attributes in the

business object definition; each

attribute is a BusObjAttr object.

getAttributeList(),

setAttributeList(),

insertAttribute(),

removeAttribute()

Verb list A list of supported verbs in the

business object definition; each

verb is a BusObjVerb object.

getVerbList(),

setVerbList(),

insertVerb(),

removeVerb()

Chapter 5. Developing an Object Discovery Agent 125

As Table 42 shows, a business object definition contains both metadata and data.

The following sections describe how to access these parts of the business object

definition:

v “Defining the metadata for the business object definition”

v “Generating attributes” on page 127

v “Supplying supported verbs” on page 131

Defining the metadata for the business object definition: As Table 42 shows, the

metadata of a business object definition consists of the following information:

v Name of the business object definition

v Application-specific information (at the business-object-definition level)

Naming the business object definition: The generateBoDefs() method receives the list

of user-selected source nodes as an argument. This list is an array of String objects

that contains the node paths for the user-selected source nodes. (For information

on node paths, see “Determining the parent-node path” on page 114.) With this

array, the ODA must create the appropriate name for the business object definition

associated with each source node. Usually, the assumption that the ODA makes is

that the name of the business object definition matches (or is based on) the name

of the data-source object that the source node represents. The ODA must parse the

source-node path to obtain the name of the source node, use this source-node

name to locate the associated data-source object, then obtain the name from the

data-source object.

For example, in the Roman Army sample, the names of the data-source objects and

business object definitions match. Therefore, the sample code calls the findSon()

method (defined in the ArmyAgent3 and ArmyAgent4 classes) to obtain the

data-source object that the source node represents using the source node’s node

path from the input array of source nodes (nodes), as follows:

for (int i=0; i<nodes.length; i++)

 {

 Son sonNode = findSon(nodes[i]);

 BusObjDef sonBo = new BusObjDef(sonNode.name.getValue());

 ...

Note: All forms of the BusObjDef() constructor specify the name of the business

object definition.

The findSon() method parses the source-node path to obtain the name of the last

node in the path.

As another example, suppose the data source is a database and its source nodes

represent tables. If the source-node paths include the schema names (schema:table),

your ODA needs to parse the source-node paths to assign just a table name to the

corresponding business object definitions. If your ODA supports a user-specified

prefix for business object definitions (with a configuration variable), the ODA must

prepend this prefix before it calls BusObjDef() constructor to create the

business-object-definition object, as the following code fragment shows:

AgentProperty propPrefix = getBOSpecificProperty("Prefix");

for (int i=0; i<names.length; i++)

 {

 strToken = new StringTokenizer(names[i], ":");

 schemaName = strToken.nextToken();

 tableName = strToken.nextToken()

126 Business Object Development Guide

if (propPrefix.allValues != null && propPrefix.allValues[0] != null)

 boDef = new BusObjDef(propPrefix.allValues[0] + tableName);

 else

 boDef = new BusObjDef(tableName);

 ...

If your data-source objects do not have the exact names you want to assign to your

business object definitions, the ODA must parse or in some way format these

names as needed.

Generating business-object application-specific information: As “Business object

application-specific information” on page 8 describes, application-specific

information is a powerful way to put application-specific processing information

within the business object definition. By moving this information from the

processing program (such as a connector), the processing program can be

metadata-driven; that is, it can be written in a more generic fashion and obtain its

application-specific processing instructions from the business object definition.

Therefore, if your business object definitions are to be used with metadata-driven

processing programs, it is important that they include the correctly formatted

application-specific information at the business-object, attribute, and verb levels.

Note: For information on attribute application-specific information, see

“Generating attributes.” For information on verb application-specific

information, see “Supplying supported verbs” on page 131.

The business object definitions that the Roman Army sample generates do not

provide application-specific information. However, suppose the data source was a

database with tables as its source nodes. The ODA would generate business object

definitions for each user-selected table. In this business object definitions, you

might include the name of the table as business-object-level application-specific

information. The following code fragment uses the setAppInfo() method, defined

in the BusObjDef class, to create the appropriate name-value pairs for this

business-object-level application-specific information:

boDef.setAppInfo("TN=" + tableName + ";SCN=" + schemaName +";");

This code creates the TN and SCH name-value pairs to represent the table and

schema names, respectively. It concatenates the table name and schema name with

the tag used to name the element. It then uses the setAppInfo() method to assign

this entire string as the business-object-level application-specific information.

Generating attributes: A business object definition contains attributes, which

describe the object that the business object definition represents. The business

object definition holds the attributes in its attribute list. The ODK API represents an

attribute as an attribute (BusObjAttr) object. To instantiate an attribute object, use

the BusObjAttr() constructor.

Table 43 summarizes the properties in an attribute object. These properties

correspond to the attribute metadata.

 Table 43. Properties of an attribute

Attribute property Description Accessor method

Name The name of the attribute getName(), setName()

Application-specific

information

The attribute-level

application-specific information,

which contains information

applicable to the attribute

getAppText(), setAppText()

Chapter 5. Developing an Object Discovery Agent 127

Table 43. Properties of an attribute (continued)

Attribute property Description Accessor method

Type The data type of the attribute’s

value

getAttrType(),

getAttrTypeName(),

setAttrType()

Cardinality The cardinality of the attribute,

which identifies the number of

values the attribute holds

getCardinality(),

setCardinality()

Default value The value to assign to the attribute

before the user enters a value

getDefault(), setDefault()

Maxlength The maximum length of the

attribute’s value

getMaxLength(),

setMaxLength()

Comments Optional comments to describe the

purpose of the attribute

getComments(),

setComments()

Relationship type A string to identify the type of

relationship in which the attribute

participates

getRelationType(),

setRelationType()

Primary key Whether the attribute is part of a

primary key

isKey(), setIsKey()

Foreign key Whether the attribute is part of a

foreign key

isForeignKey(),

setIsForeignKey()

Required key Whether the attribute is required isRequiredKey(),

setIsRequiredKey()

Important

The business-object-definition generation process automatically creates the

ObjectEventId attribute. If Business Object Wizard saves the business object

definition to a file, it automatically adds the repository version to the top of

this file. The repository version is necessary InterChange Server Express.

 In the sample Roman Army ODA, each business object definition represents a

Roman soldier. The generatesBoDefs() method creates the following attributes for

business object definition:

v The Age attribute holds the roman soldier’s age.

v The ChildNo attribute holds the number of children the soldier has (adopted or

not).

Figure 69 contains a code fragment that creates these attribute objects for the

business object definition.

128 Business Object Development Guide

To create the Age attribute, the code fragment in Figure 69 takes the following

steps:

1. Use the BusObjAttr() constructor to create the Age attribute object (attr). It

uses the form of this constructor that initializes the attribute object with its

name, type, and type name.

To initialize the type, the code specifies the attribute-type constant for Integer

(BusObjAttrType.INTEGER). To initialize the type name, it uses the AttrTypes

member variable in the BusObjAttrType interface. This static member variable

provides the type names for all supported attribute types and can be indexed

by the attribute-type constants. In this way, you can assign the type name

without hardcoding the type-name string.

2. Use the setIsKey() method to explicitly set the primary-key property to true.

Because this form of the BusObjAttr() constructor specifies only three attribute

properties, all other attribute properties default to “undefined”. Therefore, after

the BusObjAttr() call, the primary-key attribute property is false. To indicate

that the Age attribute is the key attribute, the code sample calls setIsKey().

3. Use the insertAttribute(), defined in the BusObjDef class, to add the Age

attribute to the business object definition’s attribute list.

The code fragment in Figure 69 repeats these basic steps to generate the ChildNo

attribute. The main difference is that because ChildNo is not the key attribute, no

call to setIsKey() is needed. However, the code fragment does provide a default

value for this attribute by calling the setDefault() method.

The business object definitions that the Roman Army sample generates are very

simple. Only two attributes exist in the business object definition and their names

are known at compile time. In addition, only a few attribute properties must be

set. For a more complex example, suppose the data source was a database, with

tables as its source nodes and as the names of its business object definitions. In this

case, the database columns would correspond to the attributes of the business

object definition. Many more of the attribute properties would need to be set for

these attributes.

The following code fragment creates attributes for the columns in a database table:

Vector Attributes;

// 1. Retrieve columns from database table into ’rst’ result set

try{

 ResultSet rst = null;

// 1. Create an attribute object for Age attribute

 BusObjAttr attr = new BusObjAttr("Age", BusObjAttrType.INTEGER,

 BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]);

// Set the Age attribute as the business object definition’s key

 attr.setIsKey(true);

// Add the attribute to the business object definition’s attribute list

 sonBo.insertAttribute(attr);

// 2. Create an attribute object for ChildNo attribute

 attr = new BusObjAttr("ChildNo", BusObjAttrType.INTEGER,

 BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]);

// Set the default value to number of children

 attr.setDefault(sonNode.Son == null ? "0" : "" + sonNode.Son.size());

// Add the attribute to the business object definition’s attribute list

 boDef.insertAttribute(attr);

Figure 69. Generating attributes

Chapter 5. Developing an Object Discovery Agent 129

// Retrieve columns from database

 rst = db.dbmd.getColumns(null, schemaName, tableName, "%");

 String colName = null;

 String colType = null;

 int cType = 0;

 int colSize = 0;

 // Obtain next column from result set

 rst.next();

 do{

 // Get column name & type

 colName = rst.getString(4);

 colType = rst.getString("DATA_TYPE");

 // Convert database types to supported types.

 // Load converted types into the cType variable

 // (steps not shown)

// 2. Create an attribute object for each column in the result set.

 Attributes = new Vector(1, 10);

 try

 {

 // Create attribute object for column

 BusObjAttr attrib = new BusObjAttr(colName, cType);

 // Set the cardinality and maxLength attribute properties

 attrib.setCardinality(BusObjAttr.CARD_SINGLE);

 colSize = rst.getInt("COLUMN_SIZE");

 attrib.setMaxLength(colSize);

 // Determine whether it is a primary key in the table: compare

 // column name against earlier retrieve of table’s primary keys

 // (stored in pKeys -- code not included here)

 if (pKeys.contains(colName))== true {

 attrib.setIsKey(true);

 }else

 attrib.setIsKey(false);

 // Determine whether it is a foreign key in the table: compare

 // column name against earlier retrieve of table’s primary keys

 // (stored in fKeys -- code not included here)

 if (fKeys.contains(colName))== true {

 attrib.setIsForeignKey(true);

 }else

 attrib.setIsForeignKey(false);

 // Set the isRequired property

 if ((rst.getString("IS_NULLABLE").equals("NO")) &&

 (attrib.isKey() != true)){

 attrib.setIsRequiredKey(true);

 }

 // Create attribute application-specific information:

 // CN tag provides column name

 String asi = "CN="+colName;

 attrib.setAppText(asi);

 attrib.setDefault("");

 // Add attribute object to Attributes vector

 Attributes.add(attrib);

 ...

// 3. Save the attribute vector as the business object

 // definition’s attribute list

 boDef.setAttributeList(Attributes);

The steps in this process are as follows:

1. Use the BusObjAttr() constructor to create a simple business object attribute

from the column information. This form of the constructor specifies only the

attribute name and type.

130 Business Object Development Guide

2. Set the cardinality and maxLength attribute properties, based on these values

from the column in the database.

Note: To create an attribute that represents a child business object or an array

of child business objects, specify the name of the child business object as

the type, and set the cardinality to 1 or n, as appropriate. For example, to

create an attribute named LineItems that represents an array of

OrderLineItems business objects, use the following code:

BusObjAttr attrib = new BusObjAttr(LineItems, OrderLineItems);

attrib.setCardinality(BusObjAttr.CARD_MULTIPLE);

3. Get primary-key and foreign-key information to set any attributes that

represent primary or foreign keys. The code fragment compares the current

column name with names in existing arrays that contain primary-key columns

(pKey) and foreign-key columns (fKey) selected from the database. Code that

selects the primary- and foreign-key columns is not shown here.

4. Set the “is required key” attribute property, based on whether the attribute is

the primary key.

5. Set the attribute-level application-specific information.

For business object definitions generated for database tables, you might include

the name of the column as attribute-level application-specific information for

each attribute in the business object definition. This code fragment uses the

setAppText() method, defined in the BusObjAttr class, to create the CN

name-value pair for the attribute-level application-specific information. The

code concatenates the column name with the CN tag. It then uses the

setAppText() method to assign this entire string as the attribute’s

application-specific information.

6. Use the setAttributeList() method, defined in the BusObjDef class, to assign

the generated attributes vector (Attributes) as the attribute list of the business

object definition.

Supplying supported verbs: A business object definition contains supported

verbs, which describe the operations that can be performed on business objects of

that business object definition. The business object definition holds its supported

verbs in its verb list. The ODK API represents a verb as a business-object-verb

(BusObjVerb) object. To instantiate a verb object, use the BusObjVerb() constructor.

Table 44 summarizes the metadata in a verb object.

 Table 44. metadata for a verb

Verb metadata Description Accessor method

Name The name of the supported verb

(such as Create, Retrieve, Update, or

Delete)

getName(), setName()

Application-specific

information

The verb-level application-specific

information, which contains

information applicable only to the

verb

getAppInfo(), setAppInfo()

In the Roman Army sample, the generatesBoDefs() method assigns to each

business object definition one supported verb of Create. The following code

fragment uses the insertVerb() method, defined in the BusObjDef class, to add the

Create verb to the business object definition’s verb list:

sonBo.insertVerb("Create", null);

Chapter 5. Developing an Object Discovery Agent 131

The business object definitions that the Roman Army sample generates do not

provide application-specific information. Therefore, the second argument to this

insertVerb() call, which provides verb application-specific information, is null.

The ODA can use the BO Properties dialog box to obtain verb support for the

generated business object definitions. By defining a business-object property called

Verbs and allowing users to select the supported verbs, the ODA can obtain more

customized verb support. For more information on the use of the BO Properties

dialog box, see “Requesting business-object properties” on page 121.

The following code fragment assumes that the ODA has obtained user-specified

values for a business-object property called Verbs and uses this property to obtain

the verbs to the business object definition’s verb list.

Vector Verbs;

AgentProperty propVerbs = getBOSpecificProperty("Verbs");

if (propVerbs.allValues[0] != null)

 {

 int len = propVerbs.allValues.length;

 BusObjVerb verb;

 for(int i=0; i<len; i++)

 {

 if(propVerbs.allValues[i] != null)

 {

 try {

 verb = new BusObjVerb(propVerbs.allValues[i].toString(), "");

 Verbs.add(verb);

 }

 }

 }

...

boDef.setVerbList(Verbs);

This code fragment uses the BusObjVerb() constructor to copy a verb into the verb

variable of type BusObjVerb. It then loads a String version of that verb object into

the Verbs vector. The code does not specify verb application-specific information.

Finally, the code fragment uses the setVerbList() method, defined in the

BusObjDef class, to assign the generated verbs vector (Verbs) as the verb list of the

business object definition.

Providing generated business object definitions

As discussed in “Providing generated content” on page 96, the ODA must return

the generated content to Business Object Wizard in two parts. Therefore, if the

ODA generates business object definitions as content, it must return the following:

v A generated-content structure, which contains the generated business object

definitions

v A content-metadata (ContentMetaData) object that describes the business object

definitions in the generated-content structure

Because the ODA must generate business object definitions “on request”, the

generateBoDefs() method provides this content information, as follows:

v It populates the generated-content structure. This structure must in some way be

to global to the ODA class so that both generateBoDefs() and getBoDefs() can

access it.

v It returns a content-metadata (ContentMetaData) object that describes the

generated business objects to its caller, Business Object Wizard.

132 Business Object Development Guide

Once Business Object Wizard receives this content-metadata object, it can access

the generated business object definitions (within the generated-content structure)

as needed with the getBoDefs() method.

Note: For more information on getBoDefs(), see “Providing access to generated

business object definitions.”

The code sample in Figure 70 shows the last part of the generateBoDefs() method

for the sample Roman Army ODA.

 Figure 70 handles the generated content as follows:

v The generatedBoDefs() method saves the generated business object definition in

its generated-content structure, m_generatedBOs.

As shown in Figure 65 on page 121, the Roman Army sample uses a Java vector

called m_generatedBOs as its generated-content structure. This structure is global

to the methods of the Roman Army ODA class. To save the business object

definition it has generated, generateBoDefs() saves it in the m_generatedBOs

vector. This step is within a loop that terminates when the ODA has generated

business object definitions for all source nodes that users selected. When

Business Object Wizard needs to access the generated-content structure, it calls

the content-retrieval method, getBoDefs().

v As its last step, generateBoDefs() returns the content-metadata object that

describes the generated content.

The generateBoDefs() method instantiates a ContentMetaData object and into

this constructor passes the information shown in Table 45.

 Table 45. Initializing the content metadata for business-object-definition generation

ContentMetaData

information Code Description

Content type ContentType.BusinessObject Indicates that the content type is

business object definitions

Size of the generated

content

-1 Indicates that total size is not

required. The length value is not

needed in the current

implementation of a

ContentMetaData object.

Count of the generated

content

m_generatedBOs.size() The size() method returns the

number of elements currently in

the vector.

Providing access to generated business object definitions

The generateBoDefs() method does not return the actual generated business object

definitions. For Business Object Wizard to be able to access the generated content,

the ODA class must implement the content-retrieval method for business object

definitions. Business Object Wizard uses the information in the content-metadata

 m_generatedBOs.add(sonBo);

 } // this for loop terminates when all bus obj defs are generated

 return new ContentMetaData(ContentType.BusinessObject, -1,

 m_generatedBOs.size());

} // end of generateBoDefs()

Figure 70. Providing generated business object definitions

Chapter 5. Developing an Object Discovery Agent 133

object (which generateBoDefs() does return) to determine whether to call the

appropriate content-retrieval method. If generateBoDefs() has successfully

generated business objects, Business Object Wizard calls the getBoDefs() method to

retrieve the generated business object definitions.

Note: In this release, Business Object Wizard always calls the generateBoDefs()

method to initiate generation of business object definitions because the ODA

must support the on-request content protocol. The ODA should not support

the callback content protocol for generation of business object definitions.

For more information on content protocols, see “Choosing the ODA content

protocol” on page 110.

To provide access to generated business object definitions, the ODA class must

implement the getBoDefs() method. This method is defined as part of the

IGeneratesBoDefs interface. The method accepts as an argument an index, which

identifies the number of business object definitions to return. It access these

business object definitions in the generated-content structure and returns an array

of the retrieved business-object-definition (BusObjDef) objects. The number of

business object definitions in this array depends on the value of the index

argument, as Table 46 shows.

 Table 46. Retrieving business object definitions

Value of index Description

Number of elements in

array that getBoDefs()

returns

In the range 0 to count - 1,

where count is the total number

of business object definitions in

the generated-content structure

Specifies the index position

into the generated-content

structure of the business

object definition to retrieve

One business object

definition

ODKConstant.GET_ALL_OBJECTS Special constant to indicate

the return of all business

object definitions in the

generated-content structure

All business object

definitions in the

generated-content structure

(count)

For the sample Roman Army ODA, the generateBoDefs() method (defined in the

ArmyAgent3 class) populates the m_generatedBOs vector with its generated business

object definitions. Therefore, the getBoDefs() method (also defined in ArmyAgent3)

retrieves the specified number of business object definitions from this vector and

copies them into its return array. The following code shows the getBoDefs()

method for the sample Roman Army ODA:

public BusObjDef[] getBoDefs(long index) throws ODKException

{

 BusObjDef[] bos = null;

 if (index == ODKConstant.GET_ALL_OBJECTS)

 {

 bos = new BusObjDef[m_generatedBOs.size()]

 System.arraycopy(m_generatedBOs.toArray(), 0, bos, 0,

 m_generatedBOs.size());

 }

 else

 bos = new BusObjDef[] {(BusObjDef)m_generatedBOs.get((int)index)};

 return bos;

}

134 Business Object Development Guide

Generating binary files as content

A binary file is an operating-system file, which is represented as a Java File object.

For an ODA to generate binary-file content, its ODA class must implement the

IGeneratesBinFiles interface. Table 47 lists the methods that the ODA class must

define to implement the IGeneratesBinFiles interface.

 Table 47. Methods in the IGeneratesBinFiles interface

Method

IGeneratesBinFiles

method Description

Source-node-
generation method

None Generation of source nodes must be

performed by the getTreeNodes() method of

the IGeneratesBoDefs interface. For more

information, see “Using files.”

Content-generation

method

generateBinFiles() Generates the binary files, writing them to

ODA memory

Content-retrieval

method

getBinFile() Retrieves either a specified binary file or all

binary files from ODA memory

Note: In addition to the methods in Table 47, IGeneratesBinFiles also includes the

getContentProtocol() method to specify the content protocol that the ODA

supports for file generation. For more information, see “Choosing the ODA

content protocol” on page 110.

Business Object Wizard generates and retrieves content while it displays the

Generating Business Objects (Step 5) dialog box. With the IGeneratesBinFiles

interface implemented, Business Object Wizard invokes the methods shown in

Table 48 to generate and retrieve content.

 Table 48. Business Object Wizard and IGeneratesBinFiles methods

Use of method IGeneratesBinFiles method For more information

Generate files as content generateBinFiles() “Generating files” on page 137

Retrieve the generated files getBinFile() “Providing access to generated

files” on page 141

The following sections discuss the implementation of each of the methods in

Table 48.

Using files

When an ODA that implements the IGeneratesBinFiles interface, it can support

the use of operating-system files in the following contexts:

v The ODA can create new files to support generation of file content.

v The ODA can read existing files to support the association of files with source

nodes.

Creating files for file content

When an ODA implements the IGeneratesBinFiles interface, it supports creation

of files as content. The files that the ODA creates hold the information that the

ODA collects from the business-object-definition generation process and elsewhere.

If the file-generation process needs the array of user-selected source nodes (which

Business Object Wizard creates as a result of Step 3, Select Source), the ODA can

Chapter 5. Developing an Object Discovery Agent 135

receive this array from Business Object Wizard. For information on how to

implement the method that generates the files, see “Generating files” on page 137.

However, the IGeneratesBinFiles interface does not define a source-node-
generation method, which discovers source nodes and generates the array of tree

nodes for Business Object Wizard to display in the Select Source dialog box.

Instead, if the ODA supports generation of file content and this file generation

requires an array of user-selected source nodes, the ODA must use the

source-node-generation method in the IGeneratesBoDefs interface, getTreeNodes().

This method queries the data source for the child nodes of the specified parent

node and constructs the associated tree nodes, as described in “Generating source

nodes” on page 113.

Note: In this release, every ODA is required to support generation of business

object definitions. Therefore, it must implement the IGeneratesBoDefs

interface and all its methods (including the getTreeNodes() method).

If an ODA supports only creation of new files (file generation), it can use the

getTreeNodes() method as defined in IGeneratesBoDefs. This method queries the

data source for the child nodes of the specified parent node and constructs the

associated tree nodes, as described in “Generating source nodes” on page 113.

Reading files for source data

When an ODA implements the IGeneratesBinFiles interface, it can support

reading operating system files that you associate with source nodes (For

information on how to associate a file with a node, see “Associating an

operating-system file” on page 82.). The files that the ODA reads hold source data,

which the ODA must search for objects that are represented as source nodes. To

support the association of files with nodes, an ODA must take the following steps:

v Set the node nature of any tree node that can have a file associated with it to

“file” (its polymorphicNature member variable set to

ODKConstant.NODE_NATURE_FILE). For more information, see “File-nature nodes”

on page 119.

v Implement any methods that need to access objects represented by source nodes

so that they query not just the ODA’s data source, but any file associated with a

source node. To retrieve the contents of an operating-system file specified by its

source-node path, use the getClientFile() method, defined in the ODKUtility

class.

Important

An ODA must implement the IGeneratesBinFiles interface for the

getClientFile() method to successfully retrieve a specified operating-system

file. If the ODA implements only the IGeneratesBoDefs interface,

getClientFile() throws the UnsupportedContentException exception.

 The getClientFile() method expects as an argument the source-node path of the

file to retrieve. This source-node path has the following format:

fileNodePath:filePath

where fileNodePath is the node path (node names separated by colon (:)) of the

node that has an associated file and filePath is the operating-system path of the

associated file. When users expand or select a node that is an associated file,

Business Object Wizard creates this path for the node.

136 Business Object Development Guide

For example, the ArmyAgent5 class of the sample Roman Army ODA supports both

the IGeneratesBinFiles interface and the association of files with nodes. Suppose

you associate the Flavius.xml file (in the directory C:\IBM\XMLFiles) to the Vulso

source node, as shown in Figure 51 on page 83.. If you select the Flavius.xml node

(see Figure 52 on page 84) from the source-node hierarchy, Business Object Wizard

puts the following node path into the array of source nodes:

Apollo:Vulso:Flavius.xml:C:\IBM\XMLFiles\Flavius.xml

This ODA provides the findSon() method to parse a source-node path and locate

the associated object that the source node represents. The version of findSon() in

the ArmyAgent3 class queries only the ODA’s data source (an XML file called

RomanArmy.xml) for the object associated with the specified source node. A revised

version in the ArmyAgent4 class adds the ability to query an associated file by

providing the remoteSon() method, which uses getClientFile() to obtain the

contents of the specified file and return this content as a Son object.

Note: The ArmyAgent4 class, which implements the remoteSon() method, does not

support the IGeneratesBinFiles interface. Therefore, the remoteSon()

method catches the UnsupportedContentException exception that

getClientFile() throws and creates a “dummy” Son object (see Figure 78

on page 160). The ArmyAgent5 class, which extends ArmyAgent4, does

implement IGeneratesBinFiles. Therefore, this version of the ODA can fully

support access to files associated with source nodes with getClientFile().

If a source node can have a file associated with it, then the ability to interpret the

file’s source-node path and to read the contents of this file is needed during

content generation, the method that generates content must be able to access

information in nodes that are in a file. Implement the method that generates

content so that it uses getClientFile() to retrieve an operating-system file that is

associated with a node. The method that provides this support is as follows:

v The generateBoDefs() method generates business object definitions. The

getClientFile() method provides the contents of the specified file so that

generateBoDefs() can obtain the information it needs to create a business object

definition. If the generateBoDefs() method has already been implemented to

obtain source-node information from the ODA’s data source, it must be

enhanced so that it can obtain information from an associated file as well.

Note: The getClientFile() method cannot retrieve a specified file’s contents

when called from within generateBoDefs() unless the ODA also

implements the IGeneratesBinFiles interface.

v The method that generates files depends on the content protocol that the ODA

supports. For on-request generation, the generateBinFiles() method generates

the files. For callback generation, a user-defined method generates the files. In

either case, the getClientFile() method provides the contents of the specified

file so that the method can obtain the information it needs to create a file.

For more information on how to generate file content, see “Generating files.”

Generating files

After users have selected the source nodes in the Select Nodes dialog box, the

ODA is ready to begin content generation. The goal of the file generation process is

to create a file (or files) that the ODA or other process requires. The step that

initiates the generation of files depends on the content protocol associated with the

file content type (ContentType.BinaryFile), as follows:

Chapter 5. Developing an Object Discovery Agent 137

v If files are to be generated on request, Business Object Wizard initiates content

generation by calling the content-generation method, generateBinFiles(). This

method is part of the IGeneratesBinFiles interface.

v If files are to be generated through callbacks, the ODA initiates content

generation in a user-defined way. Business Object Wizard does not call

generateBinFiles() but waits for a “content generation is complete” signal from

the ODA before it accesses the generated content.

This section describes the following steps that the generateBinFiles() method

should take to generate files:

1. “Defining the generateBinFiles() method”

2. “Requesting properties for file information” on page 139

3. “Creating the files” on page 139

4. “Providing generated files” on page 140

Defining the generateBinFiles() method

The generateBinFiles() method is defined in the IGeneratesBinFiles interface.

Therefore, your ODA class (derived from ODKAgentBase2) must implement this

method when it implements the IGeneratesBinFiles interface. The purpose of the

generateBinFiles() method depends on the content protocol that the ODA uses

for generation of file (ContentType.BinaryFile) content, as follows:

v If the ODA generates files “on request”, Business Object Wizard explicitly calls

the generateBinFiles() method to generate the files.

v If the ODA generates files through callbacks, Business Object Wizard never

explicitly calls the generateBinFiles() method. Instead, the ODA uses some

other way to generate the files, which Business Object Wizard can then access.

Generating files on request: If the ODA generates files “on request”, Business

Object Wizard explicitly calls the generateBinFiles() method to initiate generation

of the files. Therefore, you must implement generateBinFiles() so that it handles

generating the file objects, storing them in the generated-content structure, and

returning of content metadata to Business Object Wizard.

While the generateBinFiles() method runs, Business Object Wizard displays its

Generating Business Objects screen (Step 5). As its last step, generateBinFiles()

returns a content-metadata (ContentMetaData) object, which describes the generated

files it has generated (though it does not contain the actual generated files).

Generating files through callbacks: If the ODA generates files through callbacks,

Business Object Wizard never explicitly calls the generateBinFiles() method.

Instead, the ODA uses some other way to “spontaneously” generate the files. You

must develop a method to handle generating the files, storing them in the

generated-content structure, and notifying Business Object Wizard that content

generation is complete. However, the IGeneratesBinFiles interface requires that

you define the generateBinFiles() method. Therefore, you must implement

generateBinFiles() so that it warns the caller that it should never be called.

The sample Roman Army ODA supports the callback content protocol for the

generation of files (see Figure 60 on page 111). It defines the generateBinDefs()

method in the ArmyAgent5 class. This implementation of the method includes the

code in Figure 71, which defines the generateBinFiles() method so that it throws

an exception if it is ever called.

138 Business Object Development Guide

As an alternative to throwing an exception, the generateBinFiles() method can

use the contentUnavailable() method (defined in ContentMetaData) to return its

content metadata to Business Object Wizard, as follows:

return (ContentMetaData.contentUnavailable(ContentType.BinaryFile));

Requesting properties for file information

If, during the process of generating the files, the ODA requires additional

information, it opens the BO Properties dialog box where users can provide values

for business-object properties. Even though these properties are called

business-object properties, you can use the getBOSpecificProps() method to

display information that the file-generation process might require. For more

information on how to use the BO Properties dialog box, see “Requesting

business-object properties” on page 121.

Creating the files

The ODK API does not provide a special class to represent a binary file because

Java already provides the File class in its java.io package. This package contains

many input/output classes that can be useful in the generation and access of files.

For each file that the ODA generates, it must take the following steps:

v Create a new File object with the appropriate file name.

v Write the contents to this file, closing the file when writing is complete.

The actual file generation that your ODA performs depends on the design of the

ODA. Implement the file generation as best fits the requirements of your ODA and

any components that require the files.

The ArmyAgent5 class of the sample Roman Army ODA defines a separate class,

FileCreator, to handle the actual generation of the files. To simulate

“spontaneous” file generation, the sample calls the FileCreator() constructor from

the generateBoDefs() method, as the following code fragment shows:

public ContentMetaData generateBoDefs(String[] nodes) throws ODKException

{

 ContentMetaData cmd = super.generateBoDefs(nodes);

 new FileCreator(this, nodes).start();

 return cmd;

}

The FileCreator() constructor spawns a thread to generate the files. It receives as

an argument a reference to the current ODA object (this) and the array with the

node paths of the selected source nodes. It then creates the following files:

v The stats.zip file, which contains the number of business object definitions that

the ODA has generated

v The adopted.txt file, if any user-selected source nodes are adopted children

public ContentMetaData generateBinFiles(String[] nodes)

 throws ODKException

{

 throw new ODKException(

 "Files are produced as callbacks. Do not call for file generation.");

}

Figure 71. Defining the generateBinFiles() method

Chapter 5. Developing an Object Discovery Agent 139

Providing generated files

As discussed in “Providing generated content” on page 96, the ODA must return

the generated content to Business Object Wizard in two parts. Therefore, if the

ODA generates files as content, it must return the following:

v A generated-content structure, which contains the generated files.

v A content-metadata (ContentMetaData) object that describes the files in the

generated-content structure.

The method that provides this information depends on the content protocol that

the ODA uses to generate files, as follows:

v If the ODA generates files “on request”, the generateBinFiles() method

provides this content information.

v If the ODA generates files through callbacks, a user-defined method must

provide this content information.

Providing content for on-request files: If the ODA generates files “on request”,

Business Object Wizard invokes the generateBinFiles() method to handle file

generation. Therefore, generateBinFiles() provides the generated content as

follows:

v It populates the generated-content structure. This structure must in some way be

visible to both generateBinFiles() and getBinFile(), so that both can access it.

v It returns a content-metadata (ContentMetaData) object that describes the

generated files to its caller, Business Object Wizard.

Once Business Object Wizard receives this content-metadata object, it can access

the generated files (within the generated-content structure) as needed with the

getBinFile() method.

For more information on getBinFile() , see “Providing access to generated files”

on page 141.

Providing content for callback-generated files: If the ODA generates files

through callbacks, Business Object Wizard does not invoke the generateBinFiles()

method to handle file generation. Instead, the ODA uses some user-defined

method to “spontaneously” generate files. This method could be part of the ODA

class or in a class within the ODA’s package. However, it must provide the

generated content as follows:

v It populates the generated-content structure. This structure must in some way be

visible to the user-defined method that generates the files and to getBinFile()

(which the ODA class implements), so that both methods can access it.

v It sends a content-metadata (ContentMetaData) object that describes the

generated files to Business Object Wizard.

The user-defined method that generates files cannot return the content metadata

directly to Business Object Wizard because Business Object Wizard has not

invoked this method. Instead, the method must send a “content generation is

complete” signal to Business Object Wizard by calling the contentComplete()

method (defined in the ODKUtility class). This method accepts a

content-metadata object as an argument. See Table 49 on page 141 for the

information that this content-metadata object should contain. It sends this

content metadata to Business Object Wizard. Once Business Object Wizard

receives the content-metadata object, it can use the getBinFile() method to

access the generated files (within the generated-content structure).

140 Business Object Development Guide

Note: For more information on getBinFiles(), see “Providing access to generated

files.”

In the ArmyAgent5 class of the sample Roman Army ODA, the generated-content

structure is defined an array of File objects called m_files, as follows:

File[] m_files = null;

The code fragment in Figure 72 shows the last part of the FileCreator.run()

method (defined in the ArmyAgent5.java file):

 Figure 72 handles the generated content as follows:

v The FileCreator.run() method saves the generated files in the

generated-content structure, m_files.

The Roman Army sample ODA uses the m_files array as its generated-content

structure. To save the files it has generated, run() saves them in this m_files

array. This step occurs after run() has generated all files. Business Object Wizard

can access the m_files array through a call to the content-retrieval method,

getBinFile().

v As its last step, FileCreator.run() sends the content-metadata object that

describes the generated content to Business Object Wizard.

The run() method calls the contentComplete() method, passing it a new

ContentMetaData object. Into this ContentMetaData() constructor, run() passes

the information shown in Table 49.

 Table 49. Initializing the content metadata for file generation

ContentMetaData

information Code Description

Content type ContentType.BinaryFile Indicates that the content type is

files

Size of the generated

content

0 Indicates that total size is not

required. The length value is not

needed in the current

implementation of a

ContentMetaData object.

Count of the generated

content

m_files.length The length member variable

contains the number of elements

currently in the array.

Providing access to generated files

The generateBinFiles() method does not return the actual generated business

object definitions. For Business Object Wizard to be able to access the generated

content, the ODA class must implement the content-retrieval method for files.

Business Object Wizard uses the information in the content-metadata object (which

generateBinFiles() does return) to determine which content-retrieval method to

 for (int i=0; i<fileV.size(); i++)

 m_agent.m_files[i] = (File) fileV.get(i);

 }

 ODKUtility.getODKUtility.contentComplete(

 new ContentMetaData(ContentType.BinaryFile, 0,

 m_agent.m_files.length);

} // end of run() in FileCreator class

Figure 72. Providing file content

Chapter 5. Developing an Object Discovery Agent 141

call. For file content, Business Object Wizard calls the getBinFile() method to

retrieve the generated business object definitions.

Note: Business Object Wizard calls the generateBinFile() method for generation

of files if the ODA supports the on-request content protocol. If the ODA

supports the callback content protocol for generation of files, a user-defined

method actually generates the files. However, this method does not return

the actual generated content either. Therefore, Business Object Wizard still

requires the getBinFile() method to access the generated files.

Regardless of the content protocol your ODA supports for generation of files, the

ODA class must implement the getBinFile() method. This method is defined as

part of the IGeneratesBinFiles interface. The method accepts as an argument an

index, which identifies the number of files to return. It accesses these files in the

generated-content structure and returns an array of the retrieved file (File) objects.

The number of files in this array depends on the value of the index argument, as

Table 50 shows.

 Table 50. Retrieving files

Value of index Description

Number of elements in

array that getBinFile()

returns

In the range 0 to count - 1,

where count is the total number

of files in the generated-content

structure

Specifies the index position

into the generated-content

structure of the file to

retrieve

One file object

ODKConstant.GET_ALL_OBJECTS Special constant to indicate

the return of all files in the

generated-content structure

All file objects in the

generated-content structure

(count)

For the sample Roman Army ODA, the FileCreator.run() method (defined in the

ArmyAgent5 class) populates the m_files array with the generated files. Therefore,

the getBinFile() method (also defined in ArmyAgent5) retrieves the specified

number of files from this array. The following code shows the getBinFile()

method for the sample Roman Army ODA:

public File[] getBinFile(long index) throws ODKException

{

 if (index == ODKConstant.GET_ALL_OBJECTS)

 return m_files;

 else

 return new File[] {m_files[(int)index]};

}

Working with agent properties

There are two situations in which an ODA provides agent properties to Business

Object Wizard:

v To provide initialized ODA configuration properties (in the Configure Agent

dialog box)

v To provide initialized business-object properties (in the BO Properties dialog

box)

To represent an agent property, the ODK API defines an agent-property object,

which is an instantiation of the AgentProperty class. When you instantiate the

agent-property object, you initialize some or all of its member variables, shown in

142 Business Object Development Guide

Table 51.

 Table 51. Contents of an agent-property object

Member variable Description

propName The name of the agent property

description A text string that describes the purpose of the agent property

type The data type of the agent property, as represented by a

property-type constant

cardinality The cardinality of the agent property; that is, whether the

property can have one or multiple values

isHidden Determines whether Business Object Wizard displays the

property value as normal text or in an encrypted format.

isMultiple Determines whether Business Object Wizard displays a

drop-down list of valid values for the agent property, for users

to choose from

isReadOnly Determines whether the agent property’s value is read-only;

that is, whether users can change the displayed value

isRequired Determines whether the agent property’s value is required; that

is whether users are required to specify a value

allDefaultValues An array of default values for the agent property

allDependencies An array of conditions for the agent property

allValidValues An array of valid values for the agent property

allValues An array of user-initialized values for the agent property

To instantiate an agent-property object, use one of the forms of the

AgentProperty() constructor:

v The first form defines a new agent-property object and initializes it with only a

property name.

v The second form defines a new agent-property object and initializes it with all

member variables.

v The third form defines a new agent-property object and initializes it with all

member variables except isHidden and isReadOnly.

Defining the agent property

Table 52 shows the basic information about an agent property that the

agent-property object contains.

 Table 52. Basic information for an agent property

Basic property

information

AgentProperty member

variable Description

Name propName Identifies the agent property.

Business Object Wizard displays this value

in the Property column of the Configure

Agent (configuration property) or BO

Properties (business-object property) dialog

box. You can initialize the agent property’s

name with any of the forms of the

AgentProperty() constructor.

Chapter 5. Developing an Object Discovery Agent 143

Table 52. Basic information for an agent property (continued)

Basic property

information

AgentProperty member

variable Description

Description

(optional)

description Provides additional information to describe

the purpose of the agent property.

Business Object Wizard displays this value

in the Description column of the Configure

Agent (configuration property) or BO

Properties (business-object property) dialog

box. You must use either the second or

third form of the AgentProperty()

constructor to initialize the agent property’s

description.

Data type type Defines the data type of the values that the

agent property holds.

Business Object Wizard displays this value

in the Type column of the Configure Agent

(configuration property) or BO Properties

(business-object property) dialog box. If

you use the first form of the

AgentProperty() constructor to initialize

the agent property (which specifies only the

property name), the agent property’s type

defaults to String. To specify a type, use the

second or third form of the

AgentProperty() constructor to initialize

the agent property. Represent the agent

property’s type with one of the

property-type constants shown in Table 69

on page 175.

Defining the property value

Business Object Wizard displays the agent-property value in the Value column of

the Configure Agent (configuration property) or BO Properties dialog box. As part

of the process of initializing an agent property, you must address the following

tasks:

v “Choosing the type of display control”

v “Specifying default values” on page 146

v “Initializing a single-cardinality property” on page 147

v “Initializing a multiple-cardinality property” on page 147

Choosing the type of display control

Business Object Wizard uses the following AgentProperty metadata to determine

the type of control for displaying the property value:

v The isMultiple parameter determines whether the control for the property’s

value displays multiple values in a drop-down list. To initialize the drop-down

list with values, you can specify the values in the allValidValues array.

v The cardinality parameter determines whether the control allows users to

specify one or multiple values for the property:

144 Business Object Development Guide

Cardinality Description Cardinality constant

Single The property can hold only one

value. Therefore, users can specify

only one value for the property.

ODKConstant.SINGLE_CARD

Multiple (n) The property can hold one or more

values. Therefore, users can specify

multiple values for the property.

ODKConstant.MULTIPLE_CARD

Table 53 illustrates the possible combinations for displaying the property-value

control.

 Table 53. Possible property-value control types.

Cardinality

Displays

multiple values

(isMultiple)

Are valid values

(all ValidValues)

provided? Explanation

1 false No The property value displays as a plain edit control; that is, a

simple box in which users can enter and edit one value.

1 true Yes The property value displays as a drop-down list that displays

the specified valid values (see Figure 73 on page 146). From

this list, users can choose only one value.

n true Yes The property value displays as a drop-down list that contains

the specified valid values. Each value in this list displays

with a check box that, if selected, allows the value to be

included in the property’s value set (see Figure 73 on page

146).

n true No The property value displays as a grid control that contains no

displaying values. Initially, this grid displays a sub-grid with

one empty row. If users enter text in that row, Business

Object Wizard inserts another empty row. This process

continues until users finish entering new rows. To delete a

value, users delete the value’s text. Business Object Wizard

includes only non-empty rows in the property’s value set.

When Business Object Wizard displays a single-cardinality property that does not

have valid values, it just leaves the property’s Value field empty. You can, however,

define a default value for the property. In this case, Business Object Wizard

displays the default value in the Value field. For more information, see “Specifying

default values” on page 146.

Figure 73 illustrates two controls that display multiple values (isMultiple = true)

in Business Object Wizard.

Chapter 5. Developing an Object Discovery Agent 145

Figure 73 shows single- and multiple-cardinality controls, both of which display

multiple values in a drop-down list:

v The single-cardinality control (on the left in Figure 73) displays multiple trace

levels in a drop-down list, but allows users to select only one value (cardinality

= ODKConstant.SINGLE_CARD) from this list.

v The multiple-cardinality control (on the right in Figure 73) displays multiple

verbs in a drop-down list and allows users to select any number of them

(cardinality = ODKConstant.MULTIPLE_CARD) from this list.

Specifying default values

To specify a default value for an agent property, you provide its default value (or

values) in the its allDefaultValues member variable. This member variable is an

array of Object values. The number of elements in this array must correspond to

the cardinality of the property, as follows:

v For a single-cardinality property, the allDefaultValues array must contain only

one element.

v For a multiple-cardinality property, the allDefaultValues array can contain one

or more elements.

Business Object Wizard assigns the default value to the property before it displays

the property. If users do not override this default by specifying a property value,

this default value remains as the property value.

Note: Any valid values specified for the property are not automatically its default

values. You must explicitly specify default values.

Table 54 summarizes the behavior of default values.

 Table 54. Default values for agent properties

Cardinality

Contents of

allDefaultValues Display

Single One element With valid values (isMultiple=true):

default value displays as a “checked” item in

the drop-down list of valid values.

With no valid values (isMultiple=false):

default value displays in the property’s

Value field.

Multiple-cardinality controlSingle-cardinality control

Figure 73. Single- and multiple-cardinality controls for properties with multiple values.

146 Business Object Development Guide

Table 54. Default values for agent properties (continued)

Cardinality

Contents of

allDefaultValues Display

Multiple One or more elements Default values display as “checked” items in

the drop-down list of valid values.

Initializing a single-cardinality property

To initialize a single-cardinality agent property, take the following steps:

v Restrict the number of values that users can specify to one. Set the property’s

cardinality member variable to ODKConstant.SINGLE_CARD.

v Determine whether to provide a list of valid values from which users can choose

the property’s single value. If you provide a list of valid values:

– Set the isMultiple variable to true.

– Initialize the valid-values (allValidValues) array with the list of valid values.

If you do not provide a list of valid values, set the isMultiple variable as false

and do not pass in a valid-value array.

v Optionally, initialize the allDefaultValues array to contain an Object with the

single default value.

The following code fragment initializes a single-cardinality agent property that

does not provide a list of values to choose from, and has a default value of 256:

defaultVal[0] = 256;

AgentProperty("Property1", AgentProperty.TYPE_INTEGER,

"Description of property", false, false,

ODKConstant.SINGLE_CARD, null, defaultVal);

Initializing a multiple-cardinality property

To initialize a multiple-cardinality agent property, take the following steps:

v Indicate that users can specify a number of values for the property. Set the

property’s cardinality member variable to ODKConstant.MULTIPLE_CARD.

v Indicate that Business Object Wizard needs to handle entry of multiple values

for the property. Set the property’s isMultiple member variable to true.

v Determine whether to provide a list of valid values from which users can

choose. If you provide a list of values, initialize the list of valid values in the

allValidValues array. These values initialize the property’s drop-down list.

If you do not provide a list of valid values, Business Object Wizard provides a

sub-grid for users to specify each property value.

v Optionally, initialize the allDefaultValues array to contain an Object for each

default value.

The code fragment in Figure 67 on page 124 initializes a multiple-cardinality agent

property named Verbs, which has a list of valid values and default values.

Setting conditions on the property value

The AgentProperty class provides the ability to define conditions on an agent

property. A condition can restrict the values of one agent property, called a

dependent property, based on the value of another agent property. A condition has

two parts, each part a particular kind of subcondition, as Table 55 shows.

Chapter 5. Developing an Object Discovery Agent 147

Table 55. Parts of an agent-property condition

Subcondition Description ODK API class

Input condition Defines a condition on the current agent

property’s value

InputCondition

Dependent

condition

Defines a condition that must be met on the

dependent property when the associated

input condition evaluates to true

DependentCondition

Defining the complete condition

To represent a condition, the ODK API defines a complete-condition object, which

is an instantiation of the CompleteCondition class. Table 56 shows the member

variables that a complete-condition object contains.

 Table 56. Contents of a complete-condition object

Member variable Description

allInputConditions An array of input-condition (InputCondition) objects, each

object defining one condition on the value of the agent

property

allDependentConditions An array of dependent-condition (DependentCondition) objects,

each object defining one restriction on the value of a dependent

property. This restriction applies to the dependent property’s

value when the associated input conditions (in the

allInputConditions array) evaluate to true.

A complete-condition object contains the information that describes a single

condition on an agent property. An agent property can have many conditions

defined on it. Each condition’s complete-condition object is stored in the

allDependencies member variable of the agent property’s AgentProperty object.

To create one condition on an agent property, take the following steps:

1. Instantiate a CompleteCondition object to hold the condition information.

2. Instantiate the appropriate InputCondition objects to describe input conditions

for the agent property. Save each InputCondition object in the input-conditions

array (allInputConditions member variable) of the complete-condition object.

For more information about input conditions, see “Defining input conditions.”

3. Instantiate the appropriate DependentCondition objects to describe dependent

conditions for the agent property. Save each DependentCondition object in the

dependent-conditions array (allDependentConditions member variable) of the

complete-condition object. For more information, see “Defining dependent

conditions” on page 149.

4. Save the complete-condition object in the agent property’s condition array. The

allDependencies member variable of the agent-property object contains this

condition array.

Defining input conditions

The InputCondition class represents an input condition, which describes a condition

on the current agent property’s value. When an input condition evaluates to true,

the associated dependent conditions are applied to the dependent agent property.

Table 57 shows the information needed to define an input condition.

148 Business Object Development Guide

Table 57. Information for an input condition

Input-condition

information Description

InputCondition

member variable

Operator The kind of comparison to make on

the agent-property value. A

comparison is indicated as a relational

operator and is specified as one of the

operator constants in the

CompleteCondition class.

operatorType

Specific value The value with which to compare the

agent property’s value. This value can

be a constant or the name of another

agent property.

specificValue,

typeOfSpecificValue

Whether the comparison

of the agent property’s

value is performed

dynamically

A boolean value to indicate whether to

compare the current agent property’s

value with another property’s value

dynamically. Comparisons that involve

constants do not require dynamic

comparisons.

isDynamic

To create an input condition, use one of the forms of the InputCondition()

constructor. The code fragment in Figure 76 on page 151 creates input conditions

that compare the agent-property value with two constant string values, “optionA”

and “optionB”. You can also compare the agent-property value with some other

property’s value. The code fragment in Figure 74 creates an input condition to

compare an agent property’s value with the value currently in the Property2 agent

property.

 In Figure 74, the isDynamic member variable is set to true so that Business Object

Wizard knows to first obtain the current value of the Property2 property before

comparing the user-specified value with this value. In addition, the specificValue

is set to “Property2“, the name of the property against which the comparison is

made. As a result of this input condition, the dependent conditions for the

property apply only if this property’s value is not the same as Property2’s value.

Defining dependent conditions

The DependentCondition class represents a dependent condition, which describes a

restriction on the value a particular dependent property. A dependent property is a

property whose value in some way depends on the current property’s value. When

the associated input condition (or conditions) evaluates to true, the dependent

property’s value must meet the restriction that the dependent condition specifies.

Table 58 shows the information needed to define a dependent condition.

// Instantiate a complete-condition object

condition1 = new CompleteCondition();

// Input condition to compare property value with

 // Property2’s value

condition1.allInputConditions[0] = new InputCondition(

 CompleteCondition.OP_NOT_EQUAL, true,

 AgentProperty.TYPE_INTEGER, "Property2");

Figure 74. Input condition to compare a property value with another property’s value

Chapter 5. Developing an Object Discovery Agent 149

Table 58. Information for a dependent condition

Dependent-condition

information Description

DependentCondition

member variable

Name The name of the dependent property to

which the dependent condition applies

if the associated input condition (or

conditions) evaluates to true.

propertyName

Operator The kind of comparison to make on

the dependent-property value. A

comparison is indicated as a relational

operator and is specified as one of the

operator constants in the

CompleteCondition class.

operatorType

Specific value The value with which to compare the

dependent-property value. This value

can be a constant or the name of

another agent property.

specificValue,

typeOfSpecificValue

Whether the comparison

of the user-specified value

is performed dynamically

A boolean value to indicate whether to

compare the dependent property’s

value with another property’s value

dynamically. Comparisons that involve

constants do not require dynamic

comparisons.

isDynamic

To create a dependent condition, use one of the forms of the DependentCondition()

constructor. The code fragment in Figure 76 on page 151 creates the following

dependent conditions:

v Four dependent conditions for the “optionA“ input condition specify four

possible values for the DepProperty1 dependent property when the current

property has a value of “optionA“.

v Two dependent conditions for the “optionB“ input condition specify a range of

possible values for the DepProperty2 dependent property when the current

property has a value of “optionB“.

You can also compare the dependent-property value with some other property’s

value. The code fragment in Figure 75 creates a dependent condition to compare a

dependent property’s value with the value currently in the Property2 agent

property.

 In Figure 75, the isDynamic member variable is set to true so that Business Object

Wizard knows to first obtain the current value of the Property2 property before

comparing the dependent property’s value with this value. In addition, the

specificValue is set to “Property2“, the name of the property against which the

comparison is made.

// Dependent condition to compare property value

// with Property2’s value

condition1.allDependentConditions[0] = new DependentCondition(

 CompleteCondition.OP_EQUAL, true,

 AgentProperty.TYPE_INTEGER, "Property2");

Figure 75. Dependent condition to compare a property value with another property’s value

150 Business Object Development Guide

Defining a sample condition

Suppose that you want to define conditions on an agent property (Property1) that

specifies restrictions on two dependent properties, based on values of Property1, as

follows:

v The first condition restricts the value of the DepProperty1 dependent property to

one of four integer values (0, 1, 256, or 512) if Property1 has the value of

“optionA“.

v The second condition restricts the value of the DepProperty2 dependent property

to be in the range from 1 to 5 (inclusive) if Property1 has the value of

“optionB“.

Figure 76 shows the code that implements these two conditions.

// 1. Instantiate the complete-condition object

condition1 = new CompleteCondition();

// 2. Create the condition on the "optionA" value

// a) Instantiate the input condition on "optionA"

 condition1.allInputConditions[0] = new InputCondition(

 CompleteCondition.OP_EQUAL, false, AgentProperty.TYPE_STRING,

 "optionA");

// b) Instantiate the dependent conditions for DepProperty1

 condition1.allDependentConditions[0] = new DependentCondition(

 "DepProperty1", CompleteCondition.OP_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "0");

 condition1.allDependentConditions[1] = new DependentCondition(

 "DepProperty1", CompleteCondition.OP_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "1");

 condition1.allDependentConditions[2] = new DependentCondition(

 "DepProperty1", CompleteCondition.OP_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "256");

 condition1.allDependentConditions[3] = new DependentCondition(

 "DepProperty1", CompleteCondition.OP_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "512");

// 3. Instantiate the next complete-condition object

condition2 = new CompleteCondition();

// 4. Create the condition on the "optionB" value

// a) Instantiate the input condition on "optionB"

 condition2.allInputConditions[0] = new InputCondition(

 CompleteCondition.OP_EQUAL, false, AgentProperty.TYPE_STRING,

 "optionB");

// b) Instantiate the dependent conditions for DepProperty2

 condition2.allDependentConditions[0] = new DependentCondition(

 "DepProperty2", CompleteCondition.OP_GREATER_THAN_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "1");

 condition2.allDependentConditions[1] = new DependentCondition(

 "DepProperty2", CompleteCondition.OP_LESS_THAN_EQUAL, false,

 AgentProperty.TYPE_INTEGER, "5");

// Save conditions in the agent-property object

agentProp.allDependencies[0] = condition1;

agentProp.allDependencies[1] = condition2;

Figure 76. Defining two agent-property conditions

Chapter 5. Developing an Object Discovery Agent 151

Shutting down the ODA

After the ODA generates the appropriate content, Business Object Wizard displays

Step 6, Save Business Objects dialog box (Step 6). This dialog box allows users to

specify how to save the generated content. As part of this step, Business Object

Wizard terminates the ODA. The ODA run time calls the terminate() method to

perform clean-up tasks and to release resources for the ODA. For example, if your

ODA has connected to a data source in its init() method, it should disconnect

from this source in its terminate() method. In the ODK API, the terminate()

method for an ODA is part of the low-level ODA base class, ODKAgentBase. It is

inherited by the ODA base class, ODKAgentBase2, and in turn by your ODA class.

Figure 77 shows a sample terminate() method for an ODA that closes a database

connection and performs clean-up on objects that accessed the database.

Handling trace and error messages

A message is a string of information that the ODA can send to an external ODA log,

where it can be reviewed by the system administrator or the developer to provide

information about the run-time state of the ODA. There are two different categories

of messages that an ODA can send to the ODA log:

v Error or informational messages

v Trace messages

Messages can be generated within the ODA code or obtained from a message file.

The ODK API provides the trace() method, defined in the ODKUtility class, to log

trace and error messages. This section provides the following information:

v “Indicating a log destination”

v “Sending a message to the trace file” on page 153

v “Message files” on page 155

Indicating a log destination

An ODA sends its messages into its log destination. The log is an external

destination that is available for viewing by those needing to review the start state

of the ODA. The log destination is defined at ODA configuration time by the

configuration property TraceFileName as the absolute path name of an external file,

which must reside on the same machine as the ODA’s process.

Note: Because the ODK API provides one method to log both trace and error

messages, an ODA has only one file to hold both these kinds of messages.

Therefore, although this file is called a trace file, it also contains any error

messages that the ODA generates.

public void terminate()

{

 specList = null;

 //close connection

 if(db != null)

 db.disconnect();

 if(dbAnalizer != null)

 dbAnalizer.cleanup();

 }

Figure 77. A sample ODA terminate() method

152 Business Object Development Guide

For information on the format of the trace-file name, see “Specifying a trace file”

on page 78.

Sending a message to the trace file

The ODK API provides the trace() method, defined in the ODKUtility class, to log

trace and error messages. The type of message that the ODA tracing mechanism

sends depends on the message’s trace level, as follows:

 Table 59. Trace level and message type

Message trace level Description

zero (0) The ODA tracing mechanism allows you to log error

messages to the trace file.

Any level between 1 and 5 The ODA tracing mechanism allows you to log trace

messages to the trace file. Trace messages are for

information such as status messages, property values,

and business object names.

Note: The ODA run time handles the ODA tracing mechanism implicitly. This

mechanism does not take effect until the trace file is set in the Configure

Agent dialog box of Business Object Wizard. For more information, see

“Starting the ODA” on page 103.

In the call to trace(), you specify the trace level as an argument. The ODK API

provides the trace-level constants for this purpose. For more information on how

to generate a message, see “Generating a message string” on page 157. For

information on setting the trace level, see “Specifying the trace file and trace level”

on page 77.

The ODA tracing mechanism generates files in the same format as those in the

Connector Development Kit and InterChange Server Express.

Error and informational messages

When the trace level is zero (0), an ODA can send information about its state to a

log destination. Creating a record of errors and status is often called logging. The

following types of information are recommended for logging:

v Errors and fatal errors from your code to a log file.

v Warnings require a system administrator’s attention, from your code to a log

file.

v Informational messages such as:

– ODA startup and termination messages

– Important messages from the application

Although an ODA can send informational or error messages, this logging process

is referred to as error logging.

Important: It is recommended that for every exception, you both throw the

exception so that it displays in Business Object Wizard, and write an

error message that describes the exception to the trace file. By logging

all exceptions to the trace file, you can still locate them should the

ODA or Business Object Designer Express fail.

Error logging is turned on when the trace level is zero (0). By default, logging on

an ODA is turned off because the default trace level is 5. You set the trace level

Chapter 5. Developing an Object Discovery Agent 153

with the TraceLevel ODA configuration property. You can set TraceLevel to a

value of 0 to indicate that a message is an error message.

To send an error message to the log, use the trace() method. Table 60 summarizes

the trace information for trace() to send an error message.

 Table 60. Trace information for error messages

Trace information Description ODKConstant constant

Trace level 0 TRACELEVEL0

Message type Errors XRD_FATAL, XRD_ERROR

Warnings XRD_URGENTWARNING,

XRD_WARNING

Informational XRD_INFO

In addition to the information in Table 60, the trace() method also requires the

content of the error message. You can obtain the message content as message text

in one of the following ways:

v A message string (a String value)

Util.trace(ODKConstant.TRACELEVEL0, ODKConstant.XRD_ERROR,

 "Invalid property value");

You can also retrieve the message string from an exception with the getMsg()

method of the ODKException class, as follows:

try

 {

 boDef.setAttributeList(Attributes);

 boDef.setVerbList(Verbs);

 defList[i] = boDef;

 }

catch(BusObjInvalidAttrException e)

 {

 Util.trace(ODKConstant.TRACELEVEL0,

 ODKConstant.XRD_ERROR, e.getMsg());

 }

v A message that is retrieved from a message file

Util.trace(ODKConstant.TRACELEVEL0, ODKConstant.XRD_WARNING, 1009);

For more information on the use of message files, see “Message files” on page

155.

Trace messages

Tracing is an optional troubleshooting and debugging feature that can be turned on

for ODAs. When tracing is turned on, system administrators can follow generation

of content as the ODA performs its tasks. Tracing allows you and other users of

your ODA code to monitor the behavior of the ODA. Tracing can also track when

specific ODA methods are called.

Tracing is turned on when the trace level is between 1 and 5. By default, tracing on

an ODA is turned on because the default trace level is 5. You set the trace level

with the TraceLevel ODA configuration property. You can set TraceLevel to a

value from 1 to 5 to obtain the appropriate level of detail. Level 5 tracing logs the

trace messages of all lower trace levels. You are responsible for defining what kind

of information your ODA returns at each trace level. Table 17 on page 78 shows the

recommended content for ODA trace messages. For more information, see “Setting

the trace level” on page 78.

154 Business Object Development Guide

To send a trace message to the trace file, use the trace() method. Table 60

summarizes the trace information for to the trace() to send a trace message.

 Table 61. Trace information for trace messages

Trace information Description ODKConstant constant

Trace level 1 TRACELEVEL1

2 TRACELEVEL2

3 TRACELEVEL3

4 TRACELEVEL4

5 TRACELEVEL5

Message type Trace XRD_TRACE

In addition to the information in Table 61, the trace() method also requires the

content of the trace message. You can obtain the message content in one of the

following ways:

v As message text:

– A message string (a String value)

Util.trace(ODKConstant.TRACELEVEL1, ODKConstant.XRD_TRACE,

 "Entering method getProperties");

– A message that is retrieved from a message file

Util.trace(ODKConstant.TRACELEVEL1, ODKConstant.XRD_TRACE, 1009);

For more information on the use of message files, see “Message files.”
v As a business object definition (a BusObjDef object)

In this case, trace() formats the contents of the specified business object

definition.

BusObjDef boDef = new BusObjDef();

// code that populates business object definition

...

// write out the business object definition

ODKUtility.getODKUtility().trace(ODKConstant.TRACELEVEL5,

 ODKConstant.XRD_TRACE, boDef);

v As an array of agent properties (AgentProperty objects)

In this case, trace() formats the list of agent properties, preceding it with a

string that you can specify.

AgentProperties[] propArray;

// code that populates agent-property array

...

// write out the agent-property array

ODKUtility.getODKUtility().trace(ODKConstant.TRACELEVEL2,

 ODKConstant.XRD_TRACE, propArray,

 "List of configuration properties:");

Message files

In both an error or trace, message, you can provide the message content as a

hardcoded string or as a string retrieved from a message file. A message file is a text

file that contains message numbers and associated message text. The message text

can contain positional parameters for passing run-time data out of your ODA. You

can provide a message file by creating a file and defining the messages you need.

This section provides the following information about message files:

v “Message format” on page 156

v “Name and location of a message file” on page 156

Chapter 5. Developing an Object Discovery Agent 155

v “Generating a message string” on page 157

v “Maintaining the message file” on page 158

Message format

Within a message file, messages have the following format:

MessageNum

Message

[EXPL]

Explanation

The MessageNum is an integer that uniquely identifies the message. This message

number must appear on one line. The Message text can span multiple lines, which

a carriage return terminating each line. The Explanation text is a more detailed

explanation of the condition that causes the message to occur. Do not insert a

blank line after the last line of the explanation text. The number of the next

message should appear on the line immediately after the explanation. Edit the

message file with any text editor, such as Notepad.

For example, message number 1005 might look like the following:

1005

ODA content generation is complete.

[EXPL]

This is a log message that indicates successful completion of the ODA.

Messages can contain parameters whose values are replaced at run time by values

from the program. These parameters are positional and are indicated in the

message by a number in braces. For example the following message has three

parameters to specify agent-property names:

1003

The agent configuration properties are {1}, {2}, {3}.

[EXPL]

This is a trace message that provides startup properties.

For more information on how to provide message parameters, see “Using

parameter values” on page 158.

Name and location of a message file

An ODA can obtain its messages from one of two message files:

v An ODA message file is named

ODAnameAgent.txt

where ODAname is the name that uniquely identifies the ODA. For more

information, see “Naming the ODA” on page 161. Put messages that are specific

to your ODA in this message file. For example, if you create an ODA named

LegacyApp, name its message file LegacyAppAgent.txt.

Note: Business Object Wizard automatically includes MessageFile in the list of

configuration properties with the message-file name in the form

ODAnameAgent.txt. When configuring the ODA, you can change this

message-file name to point to an existing file. The specified message file

must exist for the ODA to continue running. For information on how to

specify the message file, see “Specifying the ODA message file” on page

79.

v The global ODA message file is named useragentmessages.txt.

If you create messages that are global to all Object Discovery Agents, add those

messages to the global message file.

156 Business Object Development Guide

Both these message files must be located in the following subdirectory of the

product directory:

ProductDir\ODA\messages

Generating a message string

The methods in retrieve a predefined message from a message file.

 Table 62. Methods that generate a message string

Message method Description

getMsg() Generates a message of the specified severity

from a message file.

trace() Generates a message of the specified severity

from a message file and sends it to the trace

file.

The message-generation methods in Table 62 are defined in the ODKUtility class.

These methods require the following information:

v “Specifying a message number”

v “Specifying a message type”

v “Using parameter values” on page 158

Specifying a message number: The message-generation methods in Table 62

require a message number as an argument. This argument specifies the number of

the message to obtain from the message file. As described in “Message format” on

page 156, each message in a message file must have a unique integer message

number associated with it. These message-generation methods search the message

file for the specified message number and extract the associated message text.

These methods search the ODA message files for the message number in the

following order:

1. The ODA-specific message file, whose default name is ODAnameAgent.txt

2. The global ODK message file, useragentmessages.txt

Specifying a message type: The message-generation methods in Table 62 also

require a message type as an argument. This argument indicates the severity of a

message. Table 63 lists the valid message types and their associated message-type

constants.

 Table 63. Message types

Message-type constant Severity level Description

XRD_FATAL Fatal error Indicates an error that stops program

running

XRD_ERROR Error Indicates an error that should be

investigated

XRD_URGENTWARNING Urgent warning Indicates a condition that probably

represents a problem and should probably

not be ignored

XRD_WARNING Warning Indicates a condition that might represent a

problem but that can be ignored

XRD_INFO Informational Information message only; no action

required

XRD_TRACE ---- Use for trace messages

Chapter 5. Developing an Object Discovery Agent 157

To specify a message type to associate with a message, use one of the

message-type constants in Table 63, as follows:

v For an error message, use a message-type constant that indicates the message

severity (in decreasing order of severity): XRD_FATAL, XRD_ERROR,

XRD_URGENTWARNING, XRD_WARNING, or XRD_INFO.

v For a trace message, use the XRD_TRACE constant.

Message-type constants are defined in the ODKConstant class.

Using parameter values: It is not necessary to write separate messages for each

possible situation. Instead, use parameters to represent values that change at run

time. The use of parameters allows each message to serve multiple situations and

helps to keep the message file small.

A parameter always appears as a number surrounded by curly braces: {number}.

For each parameter you want to add to the message, insert the number within

curly braces into the text of the message, as follows:

message text {number} more message text.

With the message-generation methods in Table 62 on page 157, you can specify an

optional number of values for message parameters. The number of parameter

values in the method call must match the number of parameters defined in the

message text. The message-generation method must supply a value for each

parameter. For example, consider message 1003 again:

1003

The agent configuration properties are {1}, {2}, {3}.

[EXPL]

This is a trace message that provides startup properties.

In the code that sends this message, the following lines might appear:

Vector params = new Vector(3);

for(int i=0; i<3; i++)

 params.add(agtProperties[i].propName);

Util.trace(ODKConstant.TRACELEVEL2, 1003, ODKConstant.XRD_TRACE,

 params);

The trace() method combines these parameter values with the message text in the

message file and forms the message. Before writing the message to the trace file,

trace() replaces the message parameters with the values of the params variable.

Message 1003 might appear in the trace file as follows:

The agent configuration properties are Username, Password, Url.

Because the message text uses parameters to specify the specific property types,

rather than including them as hard-coded strings, you can use the same message

for any set of missing properties.

Maintaining the message file

At a user site, an administrator might set up a procedure for filtering ODA

messages and using e-mail or e-mail pager to notify someone who can resolve

problems. Because of this, it is important that the error numbers and the meanings

associated with the numbers remain the same after the first release of an Object

Discovery Agent. You can change the text associated with an error number, but

you should not change the meaning of the text or reassign error numbers.

158 Business Object Development Guide

However, if you do change the meanings associated with error numbers, make

sure you document the change and notify users of the Object Discovery Agent.

You can change an Object Discovery Agent’s message file while the Object

Discovery Agent is running. However, the changes do not take effect until the next

time the Object Discovery Agent’s is started and the message file is read into

memory. If InterChange Server Express fails while an Object Discovery Agent is

running, the server automatically reads into memory the message files for all

Object Discovery Agents that were previously running.

Handling exceptions

The methods of the ODK API can throw exceptions to indicate certain predefined

conditions. This section provides the following information about how to handle

exceptions in a Java connector:

v “What is an ODK exception?”

v “Exceptions from the ODK API library”

Note: You can also use error logging and message logging to handle error

conditions and messages in your connector. For more information, see

“Handling trace and error messages” on page 152.

What is an ODK exception?

When a method of the ODK API throws an exception, this exception object is of the

ODKException class or one of its subclasses, which is an extension of the Java

Exception class. To create an ODK exception, use the ODKException() constructor.

Table 64 shows the accessor methods that the ODKException class provides to obtain

information in the exception object.

 Table 64. Information in the exception object

Member Accessor method

Message text getMsg()

Note: For more information on the methods in the ODKException class, see

Chapter 24, “ODKException class,” on page 259.

The ODKException class provides some subclasses to indicate specific error

conditions, as Table 108 on page 260 shows.

Exceptions from the ODK API library

When you write code for an ODA, you can include Java try and catch statements

to handle specific exceptions thrown by the methods of the ODK API. The

reference description for most ODK API methods has a section entitled Exceptions,

which lists the exceptions thrown by that method.

Figure 78 shows a code fragment from sample Roman Army ODA (in the

ArmyAgent4 class) that catches the exceptions that the getClientFile() method

throws.

Chapter 5. Developing an Object Discovery Agent 159

When an ODK API method throws an exception, it does not usually provide

message and status information in the exception object. However, you can choose

to fill the exception object with a message as needed.

try

 {

 remotefile = ODKUtility.getODKUtility().getClientFile(filePath, this);

 }

catch (IOException ex) //file was not found

 {

 return null;

 }

//agent doesn’t implement IGeneratesBinFiles, so "getClientFile" failed.

catch (UnsupportedContentException ex)

 { //We’ll return a random Son instance for now.

 return new Son("X" + ("" + new Date().hashCode()).substring(1),

 new Date().hashCode() % 10 + 2);

 }

Figure 78. Catching exceptions from getClientFile()

160 Business Object Development Guide

Chapter 6. Adding an Object Discovery Agent to the business

integration system

For the WebSphere Business Integration Server Express system to be able to access

an Object Discovery Agent (ODA) that you have developed, you must take the

following steps:

1. Establish the ODA name and its naming conventions.

2. Compile the ODA class into a jar file.

3. Create the ODA’s startup script.

Naming the ODA

This chapter provides suggested naming conventions for the files and directories

used in ODA development. Naming conventions provide a way to make your

ODA’s code more easy to locate and identify. Table 65 summarizes the suggested

naming conventions for an ODA.

 Table 65. Suggested naming conventions for an ODA

ODA name

ODA package and

class name ODA startup script ODA library file

ODA run-time

directory

srcDataNameODA com.ibm.oda.

srcDataName.
ODAname

start_ODAname ODAname.jar ODA\srcDataName

Each ODA should have a name that uniquely identifies it within the WebSphere

Business Integration Server Express system. By convention, an ODA name

(ODAname) takes the following form:

srcDataNameODA

where srcDataName is a unique string that identifies the source data that the ODA

converts. For example, if an ODA converts HTML objects to business object

definitions, its source data is in the HTML format. Therefore, its ODA name is

HTMLODA. Alternatively, this ODA name can identify the adapter with which the

ODA is associated. For example, the ODA that generates business object definitions

for the Adapter for PeopleSoft has an ODA name of PeopleSoftODA.

Compiling the ODA

To compile an ODA, take the following steps:

v Use a JDK development environment. For information on how to install the JDK,

see “Setting up the development environment” on page 100.

v Ensure that the library files for the Object Discovery Agent Development Kit

(ODK) API are in the lib subdirectory of the product directory. The main ODK

API library file is named:

CwODK.jar

Additional ODK library files are:

xrmi.jar, xerces.jar

v Compile the ODA source (.java) files into class (.class) files with the Java

compiler.

© Copyright IBM Corp. 2004, 2005 161

These files include the source for your ODA class (which is an extension of the

ODAAgentBase2 class) as well as any other classes your ODA uses. For

information on naming the ODK class file, see “Extending the ODA base class”

on page 101.

v Create the ODA’s library file, which is a Java archive (jar) file that contains the

compiled Java code.

By convention, the jar file’s name takes the following form:

srcDataNameODA.jar

where srcDataName uniquely identifies the source data (or adapter) for the ODA.

For more information about the ODA name, see “Naming the ODA” on page

161.

For example, for an ODA that works with HTML, its ODA name could be HTMLODA.

Therefore, you could name its jar file as:

HTMLODA.jar

Starting up a new ODA

To start the ODA, you run an ODA startup script. This startup script starts the ODA

run time. This startup script is a batch file that starts the ODA run time. By

convention, a startup script’s name takes the following form:

start_ODAName.bat

where ODAname is the unique name of the ODA (its source-data name) with the

string “ODA“ appended. For example, if an ODA has its source data in HTML

format, its ODA name could be HTMLODA. Therefore, you could name its startup

script as follows:

start_HTMLODA.bat

Before you can start up an ODA that you have developed, you need to ensure that

a startup script exists to support your new ODA. To enable a startup script to start

your own ODA, you must take the following steps:

1. Prepare an ODA run-time directory for your ODA.

2. Create the startup script for your ODA. For systems, also create a shortcut for

your ODA startup.

3. Set up the startup script as a service (optional).

The following sections describe each of these steps.

Preparing the ODA run-time directory

The ODA run-time directory contains the run-time files for your ODA. To prepare

the ODA run-time directory, take the following steps:

1. Create an ODA run-time directory for your new ODA under the ODA

subdirectory of the product directory:

ProductDir\ODA\srcDataName

By convention, the directory name matches the ODA’s source-data name

(srcDataName). The source-data name is a string that uniquely identifies the

source data (or adapter) with which the ODA works. For more information, see

“Naming the ODA” on page 161.

2. Move your ODA’s library file to this ODA run-time directory.

The ODA’s library file is a Java archive (jar) file. You created this jar file when

you compiled the ODA. For more information, see “Compiling the ODA” on

page 161.

162 Business Object Development Guide

Creating startup scripts

As “System startup files” on page 66 describes, an ODA requires an ODA startup

script for it to be able to start. An ODA requires a startup script for the system

administrator to start the ODA run-time process. When the WebSphere Business

Integration Adapters Installer installs adapters on a Windows system, it takes the

following steps for ODAs:

v Install the start_ODAname.bat startup script in the ODA\srcDataName subdirectory

of the product directory.

v Create menu options for each ODA under the Programs > IBM WebSphere

Business Integration Adapters > Adapters > Object Discovery Agents menu.

Each menu item is a shortcut that invokes the Windows startup script,

start_ODAname.bat, for each ODA.

To provide the ability to start up your own ODA, you must generate its startup

script and provide the shortcuts that invoke this startup script.

Creating the startup script

In this start_ODAname.bat file, make sure you take the following steps:

v Set the following variables within the startup script:

 Variable name Value

PATH Add the path of the ODA’s run-time directory to the front of

the PATH variable (so that run-time can locate the ODA’s

JRE):

PATH="%CROSSWORLDS%"\ODA\ODAruntimeDir;%PATH%

where ODAruntimeDir is the ODA’s run-time directory, which

has the form srcDataName. For more information, see

“Preparing the ODA run-time directory” on page 162.

AGENTNAME Specify the ODA name for your ODA (ODAname), which has

the following form:

srcDataNameODA

where srcDataName is the name of the source data. For more

information, see “Naming the ODA” on page 161.

AGENT Specify the full path name for your ODA’s library file, the jar

file that contains the ODA class. This path name has the

following form:

"%CROSSWORLDS%"\ODA\ODAruntimeDir\ODAlibrary.jar

where:

v ODAruntimeDir is the ODA’s run-time directory, which has

the form srcDataName. For more information, see

“Preparing the ODA run-time directory” on page 162.

v ODAlibrary is the ODA’s library file, which has the form

ODAname.jar. For more information, see “Compiling the

ODA” on page 161.

Chapter 6. Adding an Object Discovery Agent to the business integration system 163

Variable name Value

AGENTCLASS Specify the name for your ODA package and class, which has

the following form:

com.ibm.oda.srcDataName.ODAname

where:

v srcDataName is the name of the ODA’s source data, in all

lowercase. For more information, see “Naming the ODA”

on page 161.

v ODAname is the name of the ODA’s class (its extension of

the ODA base class, ODKAgentBase2)

JCLASSES Add any ODA-specific jar files to this variable. Jar files are

separated with a semicolon (;). At a minimum, this variable

should be set to include the following classes:

v The ODK library files: CwODK.jar, xrmi.jar, xerces.jar

v The ODA library file, which is stored in the AGENT

variable (see above)

v Define and set any additional ODA-specific variables that your startup script

needs.

Define variables for information that can change from release to release. You can

then set the variable to a value appropriate for this release and then include the

variable in the appropriate command line of the startup script. If the information

changes in the future, you only have to change the variable’s value. You do not

have to locate all command lines that use this information.

v Include the appropriate startup parameters on the line that invokes the ODA run

time (the last line of the startup script), including:

– All required startup parameters: -l and -c

– Any optional startup parameters that apply to all invocations of your ODA:

-v: follow this parameter with the version of the ODA
v The line that invokes the ODA run time should have the following format:

"%CROSSWORLDS%\bin\java" -Duser.home="%CROSSWORLDS%" -mx128m

-classpath %JCLASSES% com.crossworlds.ODKInfrastructure.XRmiAgent

-l%AGENTNAME% -c%AGENTCLASS%

Note: Make sure that the line to invoke the ODA run time is all on one line in

your startup script; that is, no carriage returns should exist at the line

breaks shown in the sample startup line.

Creating the shortcut

A shortcut enables an ODA to be started from a menu item within Programs > IBM

WebSphere Business Integration Adapters > Adapters > Object Discovery

Agents. An easy way to create a shortcut to start an ODA running on Windows is

to copy an existing ODA’s shortcut and edit the shortcut properties to change the

connector name or add any other startup parameters.

164 Business Object Development Guide

Part 3. ODK class reference

© Copyright IBM Corp. 2004, 2005 165

166 Business Object Development Guide

Chapter 7. Overview of the ODK API

The Object Discovery Agent Development Kit (ODK) Application Programming

Interface (API) includes class libraries that you need to use when developing an

Object Discovery Agent (ODA). This ODK API contains predefined classes for

ODAs. You use these class libraries to derive ODA classes and methods. The ODK

API also provides utilities, such as methods to implement tracing and logging

services.

IBM provides a Java jar file (Java archive file), CwODK.jar, that contains the

predefined classes and interfaces of the ODK API. This jar file resides in the lib

subdirectory of the product directory.

Note: For instructions on building an ODA to run on Windows 2003, see

“Compiling the ODA” on page 161.

Classes and interfaces

The classes and interfaces of the ODK API belong to the following package:

com.crossworlds.ODK

Table 66 lists the classes and interfaces in the ODK API.

 Table 66. Classes and interfaces in the ODK API

Class or interface Description Page

AgentMetaData Represents an agent-property object, which can

represent either a startup property or a

business-object property

169

AgentProperty Defines the attribute-type constants 175

BusObjAttr Represents an attribute within the business

object definition

185

BusObjAttrType Interface that defines the attribute-type

constants

BusObjDef Represents a business object definition, which

describes the business object

201

BusObjVerb Represents a business object verb, which

describes an action or operation that is valid on

the business object

213

CompleteCondition 217

ContentMetaData Represents the content metadata of the ODA,

which describes the content that the ODA has

generated

221

ContentType Represents the content type that the ODA

supports

225

DependentCondition 233

IGeneratesBinFiles Interface to implement by the ODA to provide

support for the generation of binary files from

the source data

237

IGeneratesBoDefs Interface to implement by the ODA to provide

support for the generation of business object

definitions from the source data

241

© Copyright IBM Corp. 2004, 2005 167

Table 66. Classes and interfaces in the ODK API (continued)

Class or interface Description Page

IGeneratesContent Is the base class for the two content-generation

interfaces, IGeneratesBinFiles and

IGeneratesBoDefs. It defines the

getContentProtocol() method.

Note: This manual does not provide a separate

chapter for this interface. For information on

getContentProtocol(), see the description of the

IGeneratesBinFiles or IGeneratesBoDefs

interface

None

InputCondition 247

ODKAgentBase Is the base class for the ODA base class,

ODKAgentBase2. It defines several methods that

ODKAgentBase2 inherits.

Note: This manual does not provide a separate

chapter for this class. For information, see the

description of the ODKAgentBase2 class.

None

ODKAgentBase2 Represents the base class for an ODA. You

extend this class to define your ODA class and

implement the required methods

251

ODKConstant Interface that defines constants for use with the

ODK API:

v outcome-status constants

v verb constants

255

ODKException Represents an exception object for the ODK API 259

ODKUtility Provides miscellaneous utility methods for use

in an ODA; These utility methods fall into the

following general categories:

v Static methods for generating and logging

messages

v Static methods for creating business objects

v Static methods for obtaining connector

configuration properties

v Methods for obtaining locale information

261

TreeNode 275

168 Business Object Development Guide

Chapter 8. AgentMetaData class

The Object Discovery Agent Development Kit (ODK) API provides the

AgentMetaData class to contain the metadata for the Object Discovery Agent (ODA).

Member variables of this class represent the ODA metadata. Business Object

Wizard can access the ODA’s metadata by calling the getMetaData() method in the

ODA’s class.

The AgentMetaData class defines the following:

v “Member variables”

v “Methods” on page 171

The AgentMetaData class implements the ODKConstant interface. Therefore, all

constants defined in ODKConstant are available to an AgentMetaData object. For a

list of constants the ODKConstant interface defines, see Chapter 23, “ODKConstant

interface,” on page 255.

Member variables

Table 67 summarizes the member variables of the AgentMetaData class.

 Table 67. Member variables of the AgentMetaData class.

Member variable Description Page

agentVersion Specifies the version for the ODA. 176

searchableNodes Determines whether the children of the

expandable nodes (in the tree node) can be

searched by a user-specified pattern.

176

searchPatternDesc Specifies the description to display to users to

explain valid search pattern criteria.

176

supportedContent Stores a description of the content protocol that

the ODA supports for each of its supported

content types.

177

agentVersion

Specifies the version for the ODA.

Type

public String agentVersion

Notes

The second form of the AgentMetaData() constructor can initialize the agentVersion

member variable. If you do not initialize agentVersion, it defaults to an empty

string. An ODA should initialize its ODA version as part of the getMetaData()

method, which initializes the ODA’s metadata.

searchableNodes

Indicates whether the children of the expandable nodes (in a tree node) can be

searched by a user-specified search pattern.

© Copyright IBM Corp. 2004, 2005 169

Type

public boolean searchableNodes

Notes

The searchableNodes member variable contains a boolean value that determines

whether the user is allowed to search the children of an expandable node in the

tree node (in the Select Source dialog box of Business Object Wizard):

v If this variable is true, Business Object Wizard enables the Search for items

menu item when the user right-clicks on the name of an expandable node. The

user can click this menu item to display the Enter a Search Pattern dialog box. In

it, the user can specify a search pattern.

Business Object Wizard calls the getTreeNodes() method to search the parent

node, passing in the user-specified search pattern. The getTreeNodes() method

searches the data source for children whose names match this search pattern,

returning only those that do match. Business Object Wizard displays these

children to the user when it displays the expanded parent node.

v If this variable is false, the Search for items menu item is not available when

the user right-clicks on the name of an expandable node. In this case, the

getTreeNodes() method does not need to handle a user-specified search pattern.

The AgentMetaData() constructor does not initialize the searchableNodes member

variable. If you do not initialize searchableNodes, it defaults to a value of false. If

the ODA supports the search-pattern feature, it should initialize the

searchableNodes member variable as part of the getMetaData() method in the

ODA class. For more information, see “Implementing the search-pattern feature”

on page 115.

searchPatternDesc

Specifies the description to display to users that explains the valid search pattern

criteria.

Type

public String searchPatternDesc

Notes

The searchPatternDesc member variable stores the search-pattern description,

which displays on the Enter a Search Pattern dialog box. Business Object Wizard

displays this dialog box when the user right-clicks a source node and clicks Search

for items. This description provides information about semantics that the user

should use to specify search criteria; that is, it describes what search criteria the

ODA implements. This member variable contains a valid value only when the

searchableNodes member variable is true. If the ODA supports the search-pattern

feature, it should initialize the searchPatternDesc member variable as part of the

getMetaData() method in the ODA class. For more information, see “Implementing

the search-pattern feature” on page 115.

supportedContent

Contains a vector that describes which content protocol the ODA supports for each

of its supported content types.

Type

public Vector supportedContent

170 Business Object Development Guide

Notes

The supportedContent member variable stores a Java java.util.Vector of

ContentProtocol objects that describe what generated content the ODA supports.

Each ContentProtocol object contains the following information:

 Content-generation information Description

Content type A ContentType object, which lists one of the supported

content types:

v BusinessObject

v BinaryFile

Content protocol A mask of the content-protocol constants to indicate

the content protocols supported for the specified

content type:

v CONTENT_PROTOCOL_ONREQUEST

v CONTENT_PROTOCOL_CALLBACK

Content-protocol constants are defined in the

ODKConstant interface.

Note: The ContentProtocol class is part of the ODAInfrastructure package, which

contains the classes that the ODA runtime and Business Object Wizard use.

This package is not surfaced to ODA developers. All access to

ContentProtocol objects is handled by the ODA runtime or Business Object

Wizard. An ODA does not access objects of this class directly.

The AgentMetaData() constructor initializes the supportedContent member variable

by querying the ODA object that it receives as an argument. You do not have to

explicitly initialize this member variable.

Methods

Table 68 summarizes the methods of the AgentMetaData class.

 Table 68. Member methods of the AgentMetaData class

Member method Description Page

AgentMetaData() Creates an agent-metadata object. 172

toXml() Copies the specified property into the current

AgentProperty object.

173

Chapter 8. AgentMetaData class 171

AgentMetaData()

Creates an agent-metadata object.

Syntax

public AgentMetaData(ODKAgentBase2 ODAobject);

public AgentProperty(ODKAgentBase2 ODAobject, String version);

Parameters

ODAobject Is a reference to the ODA object that represents the ODA. The

constructor queries this object to initialize the supportedContent

member variable of the AgentMetaData object (“supportedContent”

on page 170).

version Specifies the version of the ODA; the value of this parameter

initializes the agentVersion member variable of the AgentMetaData

object (“agentVersion” on page 169).

Return values

A newly instantiated AgentMetaData object.

Notes

The AgentMetaData() method queries the ODAobject ODA for its supported

content. This constructor provides the following forms for instantiating a new

AgentMetaData object:

v The first form defines a new AgentMetaData object and only initializes its

supported content. This form assumes that the ODA does not have a version.

v The second form defines a new AgentMetaData object and initializes it with both

its supported content and version.

Both of these forms of the constructor use the ODAobject reference to query the

ODA for its supported content. Using this information, the constructor initialize the

supportedContent member variable.

Note: The AgentMetaData() constructor does not initialize the member variables

that support the search-pattern feature. For your ODA to support search

patterns, you must explicitly initialize the searchableNodes and

searchPatternDesc member variables after the AgentMetaData object is

instantiated. If you do not initialize searchableNodes, it defaults to a value

of false.

172 Business Object Development Guide

toXml()

Converts the ODA metadata into an XML format.

Syntax

public String toXml();

Parameters

None.

Return values

A String that contains the XML format for the current AgentMetaData object.

Chapter 8. AgentMetaData class 173

174 Business Object Development Guide

Chapter 9. AgentProperty class

The Object Discovery Agent Development Kit (ODK) API provides the

AgentProperty class to represent an agent-property object. Each agent-property object

contains information about the properties required for the Object Discovery Agent

(ODA), such as:

v Configuration properties, which provide values that the ODA needs for

initialization.

v Business-object properties, which provide additional information that the ODA

needs for generation of business object definitions.

The AgentProperty class defines the following:

v “Property-type constants”

v “Member variables”

v “Methods” on page 181

Property-type constants

The AgentProperty class defines static member variables to represent property-type

constants. Table 69 summarizes these property-type constants, which represent

valid values for an agent property’s data type. All property-type constants are of

type integer (int).

 Table 69. Property-type constants of the AgentProperty Class

Property-type constant Description

TYPE_BOOLEAN Indicates that the type of the property is Boolean.

TYPE_DOUBLE Indicates that the type of the property is Double.

TYPE_FLOAT Indicates that the type of the property is Float.

TYPE_INTEGER Indicates that the type of the property is Integer.

TYPE_STRING Indicates that the type of the property is String.

Member variables

Table 70 summarizes the member variables of the AgentProperty class.

 Table 70. Member variables of the AgentProperty class.

Member variable Description Page

allDefaultValues Specifies the default values to display for the

agent property.

176

allDependencies Specifies the conditions that describe the

dependencies between this agent property and

other dependent properties.

176

allValidValues Specifies the value values to display for the

agent property.

176

allValues Stores the values that the user selects for the

agent property.

177

cardinality Specifies whether the agent property can hold

one or multiple values.

177

© Copyright IBM Corp. 2004, 2005 175

Table 70. Member variables of the AgentProperty class. (continued)

Member variable Description Page

description Provides a textual explanation of the agent

property and can hold other relevant

information.

178

isHidden Determines whether the value of the agent

property must display as encrypted.

178

isMultiple Determines whether Business Object Wizard

provides a mechanism for user entry of multiple

values for the agent-property value.

179

isReadOnly Determines whether a user can specify a value

for the agent property or can only view the

property value.

179

isRequired Determines whether a value must always be

specified for the agent property.

180

propName Specifies the name of the agent property. 180

type Specifies the data type of the agent property. 181

allDefaultValues

Specifies the default values to display for the agent property.

Type

public java.lang.Object[] allDefaultValues

Notes

The allDefaultValues member variable contains an array of default values for the

agent property. The number of Object elements in this array must correspond to

the cardinality of the property, as follows:

v For a single-cardinality property (ODKConstant.SINGLE_CARD), the

allDefaultValues array must contain only one element.

v For a multiple-cardinality property (ODKConstant.MULTI_CARD), the

allDefaultValues array can contain one or more elements.

For more information, see “Specifying default values” on page 146.

allDependencies

Specifies a list of conditions that describe the dependencies between this agent

property and other dependent properties.

Type

public CompleteCondition[] allDependencies

Notes

The allDependencies member variable contains a list of conditions in the condition

array, which is an array of CompleteCondition objects. Each CompleteCondition

object contains one condition on the agent property’s value. A condition contains

input and dependency conditions. For more information, see “Setting conditions on

the property value” on page 147.

allValidValues

Specifies the valid values to display for the agent property.

176 Business Object Development Guide

Type

public java.lang.Object[] allValidValues

Notes

The allValidValues member variable contains a list of values with which to

initialize the drop-down list of an agent property. From this drop-down list, the

user can choose one (single cardinality) or more (multiple cardinality) values for

the property.

If allValidValues specifies a list of values, Business Object Wizard displays these

values in the drop-down list for any agent property whose isMultiple member

variable is true. If isHidden is true and allValidValues is null, Business Object

Wizard displays a sub-grid for users to specify values.

Note: If the isMultiple member variable is false, the allValidValues member

variable should be null.

For more information, see “Choosing the type of display control” on page 144.

allValues

Stores the values that the user provides for the agent property.

Type

public java.lang.Object[] allValues

Notes

The allValues member variable is an output variable; that is, it is populated by

Business Object Wizard after user entry is complete. It contains the values that the

user selects from the Value column in the Configure Agent step of Business Object

Wizard. This variable is the only member variable that does not require

initialization before the agent property displays to the user.

The number of values in the allValues array is determined by the agent property’s

cardinality:

v If the agent property has single cardinality (its cardinality variable is

ODKConstant.SINGLE_CARD), the allValues array contains one value.

v If the agent property has multiple cardinality (its cardinality variable is

ODKConstant.MULTI_CARD), the allValues array contains multiple values, one for

each value the user has specified.

cardinality

Specifies whether the agent property can hold one or multiple values.

Type

public java.lang.String cardinality

Notes

The cardinality member variable determines whether an agent property’s value

consists of one value or multiple values. Therefore, it determines how many values

the user can specify for the property.

Chapter 9. AgentProperty class 177

Cardinality

Number of agent-property

values the user can specify

Value of cardinality member

variable

Single One ODKConstant.SINGLE_CARD

Multiple Many ODKConstant.MULTIPLE_CARD

The property’s cardinality has an effect on the type of control that Business Object

Wizard displays for the property. For more information, see “Choosing the type of

display control” on page 144.

To initialize an agent property’s cardinality, the following call to the third form of

the AgentProperty() constructor specifies a string description value as the sixth

argument:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, false,

 ODKConstant.SINGLE_CARD, null, null);

Note: You can also specify a value for the agent property’s cardinality with the

second form of the AgentProperty() constructor, using its eighth argument.

description

Provides a textual explanation of the agent property and may hold other relevant

information.

Type

public java.lang.String description;

Notes

The description member variable displays in the Description column in the

Configure Agent step of Business Object Wizard. To initialize an agent property’s

description, the following call to the third form of the AgentProperty() constructor

specifies a string description value as the third argument:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, false,

 ODKConstant.SINGLE_CARD, null, null);

Note: You can also specify a value for the agent property’s description with the

second form of the AgentProperty() constructor, using its sixth argument.

isHidden

Determines whether the value of the agent property should display as encrypted.

Type

public boolean isHidden;

Notes

The isHidden member variable is a boolean value that determines whether an

agent property’s value displays in Business Object Wizard. If isHidden is true, the

agent property’s value is encrypted when it displays; that is, the value appears as a

178 Business Object Development Guide

string of asterisk (*) characters. To indicate whether an agent property’s value is

encrypted, specify a boolean value as the fourth argument in the second form of

the AgentProperty() constructor:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING, true, false, true,

 "User Id for logging into the database", true,

 ODKConstant.SINGLE_CARD, null, null);

isMultiple

Determines whether Business Object Wizard provides a means to enter multiple

values for an agent property.

Type

public boolean isMultiple;

Notes

The isMultiple member variable is a boolean value that determines whether

Business Object Wizard should provide a mechanism for allowing user entry of

multiple values for an agent property:

v If isMultiple is true, Business Object Wizard displays a drop-down list with the

list of values that the allValidValues member variable contains. From this list,

the user clicks on the value to assign to the agent property. The value of the

cardinality member variable determines how many of these values the user can

choose from the drop-down list. If no allValidValues array is provided,

Business Object Wizard provides a sub-grid of rows for the user to enter each

value.

v If isMultiple is false, Business Object Wizard does not allow user entry of

multiple values. Instead, it displays an empty field or the default value (if one is

specified). In this field, the user enters the agent-property value. The value of

the cardinality member variable should be ODKConstant.SINGLE_CARD.

Note: For more information, see “Choosing the type of display control” on page

144.

To initialize an agent property with a list of multiple values for the user to choose

from, the following call to the third form of the AgentProperty() constructor

specifies a boolean value of true as the fourth argument (the value of the

isMultiple variable):

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, true,

 ODKConstant.SINGLE_CARD, null, null);

Note: You can also specify a value for isMultiple with the second form of the

AgentProperty() constructor, using its seventh argument.

isReadOnly

Determines whether the user can specify a value in the agent property or can only

view the value.

Type

public boolean isReadOnly;

Chapter 9. AgentProperty class 179

Notes

The isReadOnly member variable is a boolean value that determines whether an

agent property’s value can be modified by the user when the property displays in

Business Object Wizard. To indicate whether an agent property’s value is required,

specify a boolean value as the fifth argument in the second form of the

AgentProperty() constructor:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING, true, false, true,

 "User Id for logging into the database", true,

 ODKConstant.SINGLE_CARD, null, null);

isRequired

Determines whether a value is required for the agent property.

Type

public boolean isRequired;

Notes

The isRequired member variable is a boolean value that determines whether a

value must always be specified for the agent property or whether the user can

leave the property’s value empty. If isRequired is true, the user must provide a

value for this property. To indicate that an agent property’s value is required, the

following call to the third form of the AgentProperty() constructor specifies a

boolean value of true as the fourth argument:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, false,

 ODKConstant.SINGLE_CARD, null, null);

Note: You can also specify a value for isRequired with the second form of the

AgentProperty() constructor, using its third argument.

propName

Specifies the name of the agent property.

Type

public java.lang.String propName;

Notes

The propName member variable contains a string with the name of the agent

property—for example: Username, Password, DatabaseUrl. The value of the

propName member variable displays in the Property column in the Configure Agent

step of Business Object Wizard. To initialize an agent property’s name, the

following call to the third form of the AgentProperty() constructor specifies a

name as the first argument:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, false,

 ODKConstant.SINGLE_CARD, null, null);

Note: All forms of the AgentProperty() constructor require that you specify a

property name to initialize the propName member variable.

180 Business Object Development Guide

type

Specifies the type of the agent property.

Type

public int type;

Notes

The type member variable contains an integer value that represents the data type

of the agent property. Table 69 on page 175 lists the property-type constants to use

to represent valid property types. A string representation of the type member

variable’s value displays in the Type column in the Configure Agent step of

Business Object Wizard. To initialize an agent property’s data type, specify a

property-type constant as the second argument in the AgentProperty() constructor:

AgentProperty agt = new AgentProperty("Username",

 AgentProperty.TYPE_STRING,

 "User Id for logging into the database", true, false,

 ODKConstant.SINGLE_CARD, null, null);

Methods

Table 71 summarizes the methods of the AgentProperty class.

 Table 71. Member methods of the AgentProperty class

Member method Description Page

AgentProperty() Creates an agent-property object. 181

copy() Copies the specified property into the current

AgentProperty object.

182

AgentProperty()

Creates an agent-property object.

Syntax

public AgentProperty(String name);

public AgentProperty(String name, int type, boolean isReqd, boolean isHid,

 boolean isRdOnly, String desc, boolean isMult, String cardinality,

 Object[] validValues, Object[] defaultValues);

public AgentProperty(String name, int type, String desc, boolean isReqd,

 boolean isMult, String cardinality, Object[] validValues,

 Object[] defaultValues);

Parameters

cardinality Specifies whether the property can hold multiple values; the value

of this parameter initializes the cardinality member variable of

the agent-property object (“cardinality” on page 177).

defaultValues Specifies default values for the property; the value of this

parameter initializes the allDefaultValues member variable of the

agent-property object (“allDefaultValues” on page 176).

desc Provides a description of the property; the value of this parameter

initializes the description member variable of the agent-property

object (“description” on page 178).

isHid Specifies whether the value of the property must be encrypted; the

Chapter 9. AgentProperty class 181

value of this parameter initializes the isHidden member variable of

the agent-property object (“isHidden” on page 178).

isMult Specifies whether the property can provide multiple values from

which the user can choose; the value of this parameter initializes

the isMultiple member variable of the agent-property object

(“isMultiple” on page 179).

isRdOnly Specifies whether a user can enter or can only view the value for

the property; the value of this parameter initializes the isReadOnly

member variable of the agent-property object (“isReadOnly” on

page 179).

isReqd Specifies whether a value is required for the property; the value of

this parameter initializes the isRequired member variable of the

agent-property object (“isRequired” on page 180).

name Specifies the name of the property; the value of this parameter

initializes the propName member variable of the agent-property

object (“propName” on page 180).

type Specifies the type of the property; the value of this parameter

initializes the type member variable of the agent-property object

(“type” on page 181).

validValues Specifies the valid values for the property; the value of this

parameter initializes the allValidValues member variable of the

agent-property object (“allValidValues” on page 176).

Return values

A newly instantiated AgentProperty object.

Exceptions

IllegalArgumentException

Thrown if the value of the name parameter is null or if the type parameter

is not a valid property-type constant (see Table 69 on page 175).

Notes

The AgentProperty() method provides the following forms for instantiating a new

agent-property object:

v The first form defines a new agent-property object and initializes it with only a

property name. The type of this agent property defaults to String. The property

is a single-cardinality property that does not display multiple values to the user.

v The second form defines a new agent-property object and initializes it with all

member variables. You can customize the property’s metadata by specifying the

appropriate values for its member variables.

v The third form defines a new agent-property object and initializes it with all

member variables except isHidden and isReadOnly. In this case, the isHidden and

isReadOnly variables default to false.

copy()

Copies the specified property into the current AgentProperty object.

Syntax

public void copy(AgentProperty prop);

182 Business Object Development Guide

Parameters

prop Specifies the name of the property to be copied.

Chapter 9. AgentProperty class 183

184 Business Object Development Guide

Chapter 10. BusObjAttr class

The Object Discovery Agent Development Kit (ODK) API provides the BusObjAttr

class to represent the attributes in a business object definition. A BusObjAttr

instance represents an attribute object. This class defines the following:

v “Attribute constants”

v “Methods”

Note: A business object definition (BusObjDef object) automatically defines an

attribute object for the ObjectEventId attribute. This attribute is

automatically marked with the BusObjAttr.OBJECT_EVENT_ID constant to

indicate its special purpose.

Attribute constants

The BusObjAttr class defines static member variables to represent attribute

constants.Table 72 summarizes the attribute constants. All attribute constants are of

type integer (int).

 Table 72. Attribute constants of the BusObjAttr class.

Attribute constant Description

Cardinality constants

CARD_MULTIPLE Indicates that the attribute represents an array of

child business objects; that is, the attribute has

multiple cardinality.

CARD_SINGLE Indicates that the attribute represents one value or

one child business object; that is, the attribute has

single cardinality.

ObjectEventId constant

OBJECT_EVENT_ID Indicates that the attribute is the ObjectEventId.

Methods

Table 73 summarizes the member methods of the BusObjAttr class.

 Table 73. Member methods of the BusObjAttr class

Member method Description Page

BusObjAttr() Creates a business-object-attribute object. 187

getAppText() Retrieves the application-specific information of

an attribute.

187

getAttrType() Retrieves the type of a simple attribute. 188

getAttrTypeName() Retrieves the type of the child business object as

the type of an attribute, for an attribute that

represents a child business object or an array of

child business objects.

189

getBOVersion() Retrieves the version number of the business

object definition, for an attribute that represents

a child business object or an array of child

business objects.

189

© Copyright IBM Corp. 2004, 2005 185

Table 73. Member methods of the BusObjAttr class (continued)

Member method Description Page

getCardinality() Retrieves the cardinality of the attribute, for an

attribute that represents a child business object

or an array of child business objects.

189

getComments() Retrieves the comments associated with the

attribute.

190

getDefault() Retrieves the default value for an attribute. 190

getMaxLength() Retrieves the maximum length for this attribute. 190

getName() Retrieves the name of an attribute. 191

getRelationType() Retrieves the attribute’s relationship type, which

is containment for an attribute that represents a

child business object or an array of child

business objects.

191

isForeignKey() Determines whether this attribute is part of the

business object’s foreign key.

191

isKey() Determines whether this attribute is part of the

business object’s key.

191

isRequiredKey() Determines whether this attribute is part of the

business object’s required key.

192

isRequiredServerBound() Determines whether an attribute is required

when the business object represents a triggering

event.

192

isSimpleType() Determines whether an attribute is of a simple

type (such as String, Integer, or Float) or

whether it represents a child business object or

an array of child business objects.

192

setAppText() Sets the application-specific information of an

attribute.

193

setAttrType() Sets the type of the attribute. 193

setBOVersion() Sets the version of the child business object or

objects that is represented by an attribute, for an

attribute that represents a child business object

or an array of child business objects.

194

setCardinality() Sets the cardinality of the attribute, for an

attribute that represents a child business object

or an array of child business objects.

194

setComments() Sets the comments associated with the attribute. 195

setDefault() Sets the default value for an attribute. 195

setIsForeignKey() Sets the attribute to a boolean value that

indicates whether the attribute is part of a

foreign key.

195

setIsKey() Sets the attribute to a boolean value that

indicates whether the attribute is part of a key.

196

setIsRequiredKey() Sets the attribute to a boolean value that

indicates whether the attribute is part of the

business object’s required key.

196

setMaxLength() Sets the maximum length for an attribute. 196

setName() Sets the name of an attribute. 197

setRelationType() Sets the relationship type of an attribute to

containment, for an attribute that represents a

child business object or an array of child

business objects.

197

186 Business Object Development Guide

BusObjAttr()

Creates a new business-object-attribute object.

Syntax

public BusObjAttr(String name, int type);

public BusObjAttr(String name, int type, String typeName);

public BusObjAttr(String name, int type,

 String typeName, boolean isKey, boolean isForeignKey,

 boolean isReqd, String appSpecInfo, int maxLen,

 String defaultValue, String BOversion,

 String cardinality, String relType,

 boolean isReqdServerBound, String comments);

Parameters

appSpecInfo Specifies the application-specific information for the attribute.

BOversion Specifies the version of the child business object or objects, for an

attribute that represents a child business object or an array of child

business objects.

cardinality Specifies the cardinality of the attribute, for an attribute that

represents a child business object or an array of child business

objects.

comments Specifies the optional comments to associate with the attribute.

defaultValue Specifies a default value for the attribute.

isForeignKey Specifies whether the attribute is part of the business object’s

foreign key.

isKey Specifies whether the attribute is part of the business object’s key.

isReqd Specifies whether a value is required for the attribute.

isReqdServerBound

Specifies whether a value is required for the attribute when the

business object represents a triggering event.

maxLen Specifies the maximum length of the attribute’s value.

name Specifies the name of the attribute.

relType Specifies that the relationship type is containment, for an attribute

that represents a child business object or an array of child business

objects.

type Specifies the type of the attribute.

typeName Specifies type of the child business object as the type of the

attribute, for an attribute that represents a child business object or

an array of child business objects.

Return values

The newly instantiated BusObjAttr object.

getAppText()

Retrieves the application-specific information of an attribute.

Chapter 10. BusObjAttr class 187

Syntax

public String getAppText();

Parameters

None.

Return values

A String that contains the application-specific information of an attribute.

See also

setAppText()

getAttrType()

Retrieves the type of an attribute.

Syntax

public int getAttrType();

Parameters

None.

Return values

An integer that represents the type of the attribute. Compare this integer value

with the one of the attribute-type constants:

BusObjAttrType.BOOLEAN

The attribute has the Boolean data type.

BusObjAttrType.CIPHERTEXT

The attribute has the Cipher Text data type.

BusObjAttrType.DATE

The attribute has the Date data type.

BusObjAttrType.DOUBLE

The attribute has the Double data type.

BusObjAttrType.FLOAT

The attribute has the Float data type.

BusObjAttrType.INTEGER

The attribute has the Integer data type.

BusObjAttrType.INVALID_TYPE

The attribute has an invalid data type.

BusObjAttrType.LONGTEXT

The attribute has the Long Text data type.

BusObjAttrType.OBJECT

The attribute has the Object data type (it contains another business

object).

BusObjAttrType.STRING

The attribute has the String data type.

See also

getAttrTypeName(), setAttrType()

188 Business Object Development Guide

getAttrTypeName()

Retrieves the name of the attribute’s data type.

Syntax

public String getAttrTypeName();

Parameters

None.

Return values

A String that contains the name of the business object definition that is the type of

the child business object (when the attribute contains a child business object).

Notes

The getAttrTypeName() method retrieves the name of the attribute type for a child

business object. When an attribute represents a child business object (or an array of

child business objects), its attribute type isBusObjAttrType.OBJECT and its attribute

type name is the name of the business object definition for the child business

object.

See also

getAttrType(), setAttrType()

getBOVersion()

Retrieves the version number of the business object definition, for an attribute that

represents a child business object or an array of child business objects.

Syntax

public String getBOVersion();

Parameters

None.

Return values

A String that contains the version number of the child business object definition

represented by the attribute.

See also

setBOVersion()

getCardinality()

Retrieves the cardinality of the attribute, for an attribute that represents a child

business object or an array of child business objects.

Syntax

public String getCardinality();

Parameters

None.

Return values

A String that contains the cardinality of an attribute that represents a child

business object or array of child business objects. Compare this string value with

the following cardinality constants:

Chapter 10. BusObjAttr class 189

BusObjAttr.CARD_SINGLE

The attribute has single cardinality.

BusObjAttr.CARD_MULTIPLE

The attribute has multiple cardinality.

See also

setCardinality()

getComments()

Retrieves the comments associated with the attribute.

Syntax

public String getComments();

Parameters

None.

Return values

A String that contains the comments for an attribute.

getDefault()

Retrieves the default value for an attribute.

Syntax

public String getDefault();

Parameters

None.

Return values

A String that contains the default value for an attribute.

See also

setDefault()

getMaxLength()

Retrieves the maximum length for this attribute.

Syntax

public int getMaxLength();

Parameters

None.

Return values

An integer that represents the maximum length of an attribute’s value.

See also

setMaxLength()

190 Business Object Development Guide

getName()

Retrieves the name of an attribute.

Syntax

public String getName();

Parameters

None.

Return values

A String that contains the name of an attribute.

See also

setName()

getRelationType()

Retrieves the attribute’s relationship type, which is containment for an attribute

that represents a child business object or an array of child business objects.

Syntax

public String getRelationType();

Parameters

None.

Return values

A String that contains the relationship type (″containment″) of an attribute that

represents a child business object or an array of child business objects.

See also

setRelationType()

isForeignKey()

Determines whether this attribute is part of the business object’s foreign key.

Syntax

public boolean isForeignKey();

Parameters

None.

Return values

Returns true, if the attribute is a foreign key or part of the foreign key; otherwise,

returns false.

See also

setIsForeignKey()

isKey()

Determines whether this attribute is part of the business object’s primary key.

Chapter 10. BusObjAttr class 191

Syntax

public boolean isKey();

Parameters

None.

Return values

Returns true, if the attribute is a key or part of the key; otherwise, returns false.

See also

setIsKey()

isRequiredKey()

Determines whether this attribute is part of the business object’s required key.

Syntax

public boolean isRequiredKey();

Parameters

None.

Return values

Returns true, if the attribute is a required key or part of a required key; otherwise,

returns false.

See also

setIsRequiredKey()

isRequiredServerBound()

Determines whether an attribute is required when the business object represents a

triggering event.

Syntax

public boolean isRequiredServerBound();

Parameters

None.

Return values

Returns true, if the attribute is required when the business object represents a

collaboration object request; otherwise, returns false.

isSimpleType()

Determines whether an attribute is of a simple type (such as String, Integer, or

Float) or whether it represents a child business object or an array of child business

objects.

Syntax

public boolean isSimpleType();

Parameters

None.

192 Business Object Development Guide

Return values

Returns true, if the attribute is of a simple type; otherwise, returns false.

See also

getAttrType(), setAttrType()

setAppText()

Sets the application-specific information of an attribute.

Syntax

public void setAppText(String appInfo);

Parameters

appInfo Is the application-specific information to assign to the attribute.

Return values

None.

See also

getAppText()

setAttrType()

Sets the type of the attribute.

Syntax

public void setAttrType(int type);

public void setAttrType(int type, String typeName);

Parameters

type Is the type of the attribute, represented as one of the attribute-type

constants:

BusObjAttrType.BOOLEAN

BusObjAttrType.CIPHERTEXT

BusObjAttrType.DATE

BusObjAttrType.DOUBLE

BusObjAttrType.FLOAT

BusObjAttrType.INTEGER

BusObjAttrType.LONGTEXT

BusObjAttrType.OBJECT

BusObjAttrType.STRING

typeName Is the name of the business object for an attribute that represents a

child business object or array of child business objects; in this case,

the type of the attribute is the same as the type of the child

business object and the type value is OBJECT.

Return values

None.

Exceptions

BusObjInvalidAttrException

 Thrown if the type is invalid; that is, it is not one of the values represented

by the attribute-type constants.

Chapter 10. BusObjAttr class 193

Notes

The setAttrType() method provides the following forms:

v The first form allows you to set the attribute type for a simple attribute,

specified as an attribute-type constant that is defined in the BusObjAttrType

class.

v The second form allows you to set the attribute type for a child business object

or an array of child business objects. This form allows you to specify the

attribute type (as the attribute-type constant BusObjAttrType.OBJECT) and the

name of the business object definition for the child business object.

See also

getAttrType(), getAttrTypeName()

For related reference information, see Chapter 11, “BusObjAttrType interface,” on

page 199 and Chapter 24, “ODKException class,” on page 259.

setBOVersion()

Sets the version number of the business object definition, for an attribute that

represents a child business object or an array of child business objects.

Syntax

public void setBOVersion(String version);

Parameters

version Is the version of the business object definition for the child

business object or objects that this attribute represents.

Return values

None.

See also

getBOVersion()

setCardinality()

Sets the cardinality of the attribute, for an attribute that represents a child business

object or an array of child business objects.

Syntax

public void setCardinality(String cardinality);

Parameters

cardinality Is the cardinality to assign to this attribute. Cardinality is

represented by one of the following cardinality constants:

BusObjAttr.CARD_SINGLE

BusObjAttr.CARD_MULTIPLE

Return values

None.

Exceptions

BusObjInvalidAttrException

194 Business Object Development Guide

Thrown if the cardinality is not a valid; that is, it does not contain a valid

cardinality constant.

See also

getCardinality()

setComments()

Sets the comments associated with an attribute.

Syntax

public void setComments(String comment);

Parameters

comment Is the comment string to provide additional information for the

attribute.

Return values

None.

See also

getComments()

setDefault()

Sets the default value for an attribute.

Syntax

public void setDefault(String defaultValue);

Parameters

defaultValue Is the default value to assign to the attribute.

Return values

None.

See also

getDefault()

setIsForeignKey()

Sets the attribute property that indicates whether the attribute is part of a foreign

key.

Syntax

public void setIsForeignKey(boolean fKey);

Parameters

fKey Indicates whether this attribute is part of a foreign key.

Return values

None.

See also

isForeignKey()

Chapter 10. BusObjAttr class 195

setIsKey()

Sets an attribute property that indicates whether the attribute is part of a primary

key.

Syntax

public void setIsKey(boolean key);

Parameters

key Indicates whether this attribute is part of a key.

Return values

None.

See also

isKey()

setIsRequiredKey()

Sets the attribute to a boolean value that indicates whether the attribute is part of

the business object’s required key.

Syntax

public void setIsRequiredKey(boolean isReqd);

Parameters

isReqd Indicates whether this attribute is a required key.

Return values

None.

See also

isRequiredKey()

setMaxLength()

Sets the maximum length for an attribute.

Syntax

public void setMaxLength(int maxLength);

Parameters

maxLength Is the maximum length to assign to the attribute.

Return values

None.

Exceptions

BusObjInvalidAttrException

 Thrown if the maximum length is maxLength < 0 or maxLength > 2^31-1

See also

getMaxLength()

196 Business Object Development Guide

setName()

Sets the name of an attribute.

Syntax

public void setName(String name);

Parameters

name Is the name to assign to the attribute.

Return values

None.

See also

getName()

setRelationType()

Sets the relationship type of an attribute to containment, for an attribute that

represents a child business object or an array of child business objects.

Syntax

public void setRelationType(String relType);

Parameters

relType Is the relationship type to assign to this attribute.

Return values

None.

See also

getRelationType()

Chapter 10. BusObjAttr class 197

198 Business Object Development Guide

Chapter 11. BusObjAttrType interface

The Object Discovery Agent Development Kit (ODK) API provides the

BusObjAttrType class to represent the valid data types for attributes in a business

object definition. Any class that implements the BusObjAttrType interface can

access its defined constants directly. For example, if the ODKAgentBase2 class

implements the BusObjAttrType interface, its methods can access the BOOLEAN

constant as follows:

int bool_type = BOOLEAN;

The BusObjAttrType class defines the following:

v “Attribute-type constants”

v “Static member variable”

Attribute-type constants

The BusObjAttrType class defines static member variables to represent

attribute-type constants. Table 74 summarizes these attribute-type constants. All

property-type constants are of type integer (int).

 Table 74. Attribute-type constants of the BusObjAttrType class.

Attribute-type constant Description

BOOLEAN Represents an attribute type of Boolean.

CIPHERTEXT Represents an attribute type of CipherText.

DATE Represents an attribute type of Date.

DOUBLE Represents an attribute type of Double.

FLOAT Represents an attribute type of Float.

INTEGER Represents an attribute type of Integer.

INVALID_TYPE Represents an invalid attribute type.

LONGTEXT Represents an attribute type of Long Text.

OBJECT Represents an attribute of type of Object.

STRING Represents an attribute type of String.

Static member variable

In addition to the attribute-type constants (which are defined as static member

variables), the BusObjAttrType class defines the static member variable in Table 75.

 Table 75. Static member variable of the BusObjAttrType class.

Static member variable Description

AttrTypes A String array that contains the names for the different attribute

types. This array can be indexed by the attribute type; for

example, the following code retrieves the type name for the

Integer attribute type:

BusObjAttrType.AttrTypes[BusObjAttrType.INTEGER]

© Copyright IBM Corp. 2004, 2005 199

200 Business Object Development Guide

Chapter 12. BusObjDef class

The Object Discovery Agent Development Kit (ODK) API provides the

BusObjDefclass to represent a business object definition that the Object Discovery

Agent (ODA) generates. Table 76 summarizes the methods in the BusObjDef class.

 Table 76. Member methods of the BusObjDef class.

Member method Description Page

BusObjDef() Creates a business-object-definition object. 201

addDefaultVerbs() Adds the default verbs (Create, Retrieve,

Update, and Delete) to the list of supported

verbs.

202

getAppInfo() Retrieves the application-specific information

for the business object definition.

202

getAttrCount() Retrieves the number of attributes, including

ObjectEventId, in the attribute list of the

business object definition.

203

getAttribute() Retrieves the attribute by its name or by its

specified position in the business object

definition.

203

getAttributeIndex() Retrieves the ordinal position of the attribute

in the business object definition, given its

attribute name.

204

getAttributeList() Retrieves a vector that contains the list of

attributes in the business object definition.

204

getName() Retrieves the name of the business object

definition.

205

getVerb() Retrieves the verb object for the specified verb

name.

205

getVerbCount() Retrieves the number of verbs in the verb list. 206

getVerbList() Retrieves a vector that contains the list of verbs

in the business object definition.

206

getVersion() Retrieves the version of the business object

definition.

206

insertAttribute() Inserts the specified attribute in the business

object’s attribute list.

207

insertVerb() Inserts the specified verb into the business

object’s verb list.

207

removeAttribute() Removes the attribute at the specified position

in the attribute list.

208

removeVerb() Removes the verb with the specified name in

the verb list.

209

setAppInfo() Sets the application-specific information for the

business object definition.

209

setAttributeList() Sets the list of attributes for the business object

definition.

210

setVerbList() Sets the list of verbs for the business object

definition.

210

BusObjDef()

Creates a business-object-definition object.

© Copyright IBM Corp. 2004, 2005 201

Syntax

public BusObjDef(String name);

public BusObjDef(String name, Vector attrList, String[] verbNames,

 String appSpecInfo);

public BusObjDef(String name, Vector attrList, Vector verbList,

 String appSpecInfo);

Parameters

appSpecInfo Specifies the business-object-level application-specific information.

attrList Specifies a Java Vector obtain that contains the business object

definition’s attribute list.

name Specifies the name of the business object definition.

verbList Specifies a vector of the business object’s verbs.

verbNames Specifies a String array of the business object’s verb names.

Return values

A newly instantiated BusObjDef object.

Exceptions

BusObjInvalidDefException

Definition

BusObjInvalidVerbException

Definition

addDefaultVerbs()

Adds the default verbs (Create, Retrieve, Update, and Delete) to the business object

definition’s verb list.

Syntax

public void addDefaultVerbs();

Parameters

None.

Return values

None.

getAppInfo()

Retrieves the application-specific information for the business object definition.

Syntax

public String getAppInfo();

Parameters

None.

202 Business Object Development Guide

Return values

A String that contains the business-object-level application-specific information.

See also

setAppInfo()

getAttrCount()

Retrieves the number of attributes in the attribute list of the business object

definition.

Syntax

public int getAttrCount();

Parameters

None.

Return values

The number of attributes in the business object definition (including the

ObjectEventId attribute).

getAttribute()

Retrieves the attribute by its name or by its specified position in the business

object definition’s attribute list.

Syntax

public BusObjAttr getAttribute(String attrName);

public BusObjAttr getAttribute(int pos);

Parameters

attrName Is the name of the attribute to retrieve from the business object

definition’s attribute list.

pos Is an integer that specifies the ordinal position of the attribute in

the business object definition’s attribute list.

Return values

The attribute (BusObjAttr) object for the specified attribute in the business object

definition.

Exceptions

BusObjNoSuchAttrException

Thrown if the specified attribute does not exist or the position within the

attribute list is not valid.

Chapter 12. BusObjDef class 203

Notes

The getAttribute() method retrieves an attribute from the business object

definition’s attribute list. It returns this attribute as an attribute object (BusObjAttr).

You can use methods of the BusObjAttr class to obtain information about the

attribute.

See also

getAttributeIndex(), getAttributeList()

getAttributeIndex()

Retrieves the ordinal position of the attribute in the business object definition,

given its attribute name.

Syntax

public int getAttributeIndex(String attrName);

Parameters

attrName Is the name of the attribute whose ordinal position is retrieved.

Return values

The integer position of the attribute in the attribute list of the business object

definition

Exceptions

BusObjNoSuchAttrException

Thrown if the specified attribute does not exist in the business object

definition.

See also

getAttribute()

getAttributeList()

Retrieves the list of attributes in the business object definition.

Syntax

public Vector getAttributeList();

Parameters

None.

Return values

A java.util.Vector object that contains one attribute (BusObjAttr) object for each

attribute in the business object definition.

204 Business Object Development Guide

Notes

The getAttributeList() method returns the business object definition’s attribute

list as a Java Vector of attribute objects. You can use methods of the

java.util.Vector class to retrieve attribute objects from this Vector object. You can

use methods of the BusObjAttr class to obtain information from the attribute object.

See also

setAttributeList()

getName()

Retrieves the name of the business object definition.

Syntax

public String getName();

Parameters

None.

Return values

A String that contains the name of the business object definition

getVerb()

Retrieves the specified verb from the business object definition’s verb list.

Syntax

public BusObjVerb getVerb(String verb);

Parameters

verb Is the name of the verb to retrieve from the business object

definition’s verb list.

Return values

The verb (BusObjVerb) object for the specified verb in the business object

definition’s verb list.

Exceptions

BusObjNoSuchVerbException

Thrown if the specified verb does not exist.

Notes

The getVerb() method retrieves a verb from the business object definition’s verb

list. It returns this verb as a verb object (BusObjVerb). You can use methods of the

BusObjVerb class to obtain information about the verb.

See also

getVerbCount(), getVerbList()

Chapter 12. BusObjDef class 205

getVerbCount()

Retrieves the number of verbs in the business object definition’s verb list.

Syntax

public int getVerbCount();

Parameters

None.

Return values

The integer number of verbs in the business object definition’s verb list.

See also

getVerb()

getVerbList()

Retrieves the list of verbs in the business object definition.

Syntax

public Vector getVerbList();

Parameters

None.

Return values

A java.util.Vector object that contains one verb (BusObjVerb) object for each

supported verb in the business object definition.

Notes

The getVerbList() method returns the business object definition’s verb list as a

Java Vector of verb objects. You can use methods of the java.util.Vector class to

retrieve verb objects from this Vector object. You can use methods of the

BusObjVerb class to obtain information from the verb object.

See also

setVerbList()

getVersion()

Retrieves the version of the business object definition.

Syntax

public String getVersion();

Parameters

None.

206 Business Object Development Guide

Return values

A String that contains the version of the business object definition.

insertAttribute()

Inserts the specified attribute in the business object definition’s attribute list.

Syntax

public void insertAttribute(BusObjAttr attrObj);

public void insertAttribute(BusObjAttr attrObj, int pos);

Parameters

attrObj Is the attribute object be added to the attribute list of the business

object definition.

pos Is the ordinal position at which the attribute is to be added to the

attribute list.

Return values

None.

Exceptions

BusObjInvalidAttrException

Thrown if the attribute that an attribute object describes is invalid.

Notes

The insertAttribute() method provides the following forms:

v The first form specifies the attribute to add by its attribute name. When you use

this form, insertAttribute() inserts the specified attribute at the position

immediately above the ObjectEventId attribute in the business object’s attribute

list.

v The second form specifies the attribute to add and the ordinal position within

the attribute list at which to add this attribute. When you specify an ordinal

position, insertAttribute() inserts the specified attribute at the specified pos

position in the business object definition’s attribute list, and moves down by one

position every attribute that follows in the list.

Important: If you specify an ordinal position, make sure that the specified position

is above the ObjectEventId attribute.

See also

removeAttribute()

insertVerb()

Inserts the specified verb into the business object definition’s verb list.

Syntax

public void insertVerb(BusObjVerb verbObj);

public void insertVerb(String verbStrng, String appSpecInfo);

Chapter 12. BusObjDef class 207

Parameters

appSpecInfo Is the application-specific information for the verb to be added to

the verb list.

verbObj Is the verb object to be added to the verb list.

verbStrng Is the name of the verb to be added to the verb list.

Exceptions

BusObjInvalidVerbException

Thrown if the verb that the verb object describes is a duplicate.

Notes

The insertVerb() method provides the following forms to insert a verb object into

the verb list of the business object definition in either of the following ways:

v The first form specifies the verb to add as an initialized verb object (a

BusObjVerb instance). You can use methods of the BusObjVerb class to initialize

the verb object.

v The second form specifies the verb information, including the name and

application-specific information for the verb.

See also

removeVerb()

removeAttribute()

Removes a specified attribute from the business object definition’s attribute list.

Syntax

public BusObjAttr removeAttribute(int pos);

public BusObjAttr removeAttribute(String attrName);

Parameters

attrName Is the name of attribute to remove from the business object

definition’s attribute list.

pos Is the ordinal position at which to remove the attribute.

Return values

An attribute (BusObjAttr) object that contains the removed attribute.

Exceptions

BusObjNoSuchAttrException

Thrown if the specified attribute does not exist.

BusObjInvalidAttrException

Thrown if the attribute to be removed is one that cannot be removed, such

as the ObjectEventId attribute.

Notes

The removeAttribute() method provides the following forms:

208 Business Object Development Guide

v The first form specifies the attribute to remove by its ordinal position within the

business object definition’s attribute list.

v The second form specifies the attribute to remove by its attribute name and the

ordinal position within the attribute list at which to add this attribute.

Important: If you specify an ordinal position, make sure that the specified position

is not the ObjectEventId attribute.

See also

insertAttribute()

removeVerb()

Removes the specified verb from the business object definition’s verb list.

Syntax

public BusObjVerb removeVerb(String verb);

Parameters

verb Is the name of the verb whose verb object is to be removed from

the business object definition’s verb list.

Return values

A verb (BusObjVerb) object that contains the removed verb.

Exceptions

BusObjNoSuchVerbException

Thrown if the specified verb does not exist.

See also

insertVerb()

setAppInfo()

Sets the application-specific information for the business object definition.

Syntax

public void setAppInfo(String appSpecInfo);

Parameters

appSpecInfo Is the business-object-level application-specific information.

Return values

None.

See also

getAppInfo()

Chapter 12. BusObjDef class 209

setAttributeList()

Sets the list of attributes for the business object definition.

Syntax

public void setAttributeList(Vector attrList);

Parameters

attrList Is a java.util.Vector object that contains attribute objects to store

in the business object definition’s attribute list.

Exceptions

BusObjInvalidAttrException

Thrown if an attribute object in attrList contains an attribute that is

duplicate or is null.

Notes

The setAttributeList() method passes the attrList attribute list as a Java Vector of

attribute objects. You can use methods of the BusObjAttr class to store information

in the attribute object. You can use methods of the java.util.Vector class to store

attribute objects in this Vector object.

See also

getAttributeList()

setVerbList()

Sets the list of verbs for the business object definition.

Syntax

public void setVerbList(Vector verbList);

Parameters

verbList Is a java.util.Vector object that contains verb objects to store in

the business object definition’s verb list.

Return values

None.

Exceptions

BusObjInvalidVerbException

Thrown if a verb object in verbList contains a verb that is duplicate or is

null.

Notes

The setVerbList() method passes the verbList verb list as a Java Vector of verb

objects. You can use methods of the BusObjVerb class to store information in the

verb object. You can use methods of the java.util.Vector class to store verb

objects in this Vector object.

210 Business Object Development Guide

See also

getVerbList()

Chapter 12. BusObjDef class 211

212 Business Object Development Guide

Chapter 13. BusObjVerb class

The Object Discovery Agent Development Kit (ODK) API provides the BusObjVerb

class to represent the verbs in a business object definition. A BusObjVerb instance

represents a verb object. Table 77 summarizes the methods of the BusObjVerb class.

 Table 77. Member methods of the BusObjVerb class.

Member method Description Page

BusObjVerb() Creates a business-object-verb object. 213

clone() Clones a verb object. 213

getAppInfo() Retrieves the application-specific information

of the verb.

214

getName() Retrieves the name of the verb. 214

setAppInfo() Sets the application-specific information of the

verb.

214

setName() Sets the name of the verb. 215

BusObjVerb()

Creates a business-object-verb object.

Syntax

public BusObjVerb(String verb, String appSpecInfo);

Parameters

appSpecInfo Specifies the application-specific information for the verb.

verb Specifies a verb that is supported by the business object definition.

Return values

The newly instantiated BusObjVerb object.

Exceptions

BusObjInvalidVerbException

Thrown if the specified verb is not valid.

clone()

Clones a verb object.

Syntax

public Object clone();

Parameters

None.

© Copyright IBM Corp. 2004, 2005 213

Return values

None.

Notes

This clone() method overrides the clone() method in the java.lang.Object class.

getAppInfo()

Retrieves the application-specific information of the verb.

Syntax

public String getAppInfo();

Parameters

None.

Return values

A String that contains the application-specific information of the verb

See also

setAppInfo()

getName()

Retrieves the name of the verb.

Syntax

public String getName();

Parameters

None.

Return values

A String that contains the name of the verb.

See also

setName()

setAppInfo()

Sets the application-specific information of the verb.

Syntax

public void setAppInfo(String appSpecInfo);

Parameters

appSpecInfo

Is the verb-level application-specific information to store in the verb object.

214 Business Object Development Guide

Return values

None.

See also

getAppInfo()

setName()

Sets the name of the verb.

Syntax

public void setName(String verb);

Parameters

verb Is the name of the verb to store in the verb object.

Return values

None.

Exceptions

BusObjInvalidVerbException

Thrown if the specified verb is not valid.

See also

getName()

Chapter 13. BusObjVerb class 215

216 Business Object Development Guide

Chapter 14. CompleteCondition class

The Object Discovery Agent Development Kit (ODK) API provides the

CompleteCondition class to represent a conditions on the value of an agent

property (represented by an AgentProperty object). A condition consists of two

kinds of subconditions, input conditions and dependent conditions. An agent

property stores all its conditions in its allDependencies member variable.

Note: For information on input conditions, see Chapter 21, “InputCondition class,”

on page 247. For information on dependent conditions, see Chapter 18,

“DependentCondition class,” on page 233.

The CompleteCondition class defines the following:

v “Operator constants”

v “Member variables”

v “Methods” on page 218

Operator constants

The CompleteCondition class defines static member variables to represent operator

constants. Table 78 summarizes these operator constants, which represent valid

operators to use in conditions. All operator constants are of type String.

 Table 78. Operator constants of the CompleteCondition class.

Operator constant Description

OP_EQUAL Contains a String that represents the Equals (=)

operator.

OP_EXISTS Contains a String that represents the Exists operator.

OP_GREATER_THAN Contains a String that represents the Greater Than (>)

operator.

OP_GREATER_THAN_EQUAL Contains a String that represents the Greater Than or

Equal To (>=) operator.

OP_LESS_THAN Contains a String that represents the Less Than (<)

operator.

OP_LESS_THAN_EQUAL Contains a String that represents the Less Than or

Equal To (<=) operator.

OP_NOT_EQUAL Contains a String that represents the Not Equal (!=)

operator.

Member variables

Table 79 summarizes the member variables in the CompleteCondition class.

 Table 79. Member variables of the CompleteCondition class.

Member variable Description Page

allDependentConditions Specifies all dependent conditions for the

property.

218

allInputConditions Specifies all input conditions for the property. 218

© Copyright IBM Corp. 2004, 2005 217

allDependentConditions

Specifies an array of all dependent conditions in the current complete condition.

Type

public DependentCondition[] allDependentConditions

Notes

The allDependentConditions member variable contains a list of dependent

conditions in the dependent-condition array, which is an array of

DependentCondition objects. Each DependentCondition object contains one

dependent condition, which restricts the value of the dependent property when the

associated input conditions evaluate to true. For more information, see “Setting

conditions on the property value” on page 147.

allInputConditions

Specifies an array of all input conditions in the current complete condition.

Type

public InputCondition[] allInputConditions

Notes

The allInputConditions member variable contains a list of conditions in the

input-condition array, which is an array of InputCondition objects. Each

InputCondition object contains one input condition, which specifies a comparison

to make on the current agent property’s value. For more information, see “Setting

conditions on the property value” on page 147.

Methods

Table 80 summarizes the methods in the CompleteCondition class.

 Table 80. Member methods of the CompleteCondition class.

Member method Description Page

CompleteCondition() Creates a complete-condition object. 218

copy() Copies the current complete condition into

the specified complete-condition object.

219

CompleteCondition()

Creates a complete-condition object.

Syntax

public CompleteCondition();

public CompleteCondition(InputCondition[] allInputConds,

 DependentCondition[] allDepConds);

Parameters

allDepConds Specifies an array of dependent conditions; the value of this

parameter initializes the allDependentConditions member variable

(“allDependentConditions”).

allInputConds Specifies an array of input conditions; the value of this parameter

initializes the allInputConditions member variable

(“allInputConditions”).

218 Business Object Development Guide

Return values

A newly instantiated CompleteCondition object.

copy()

Copies the current complete condition into a specified complete-condition object.

Syntax

public void copy(CompleteCondition completeCond);

Parameters

completeCond Specifies the name of the complete-condition object into which the

current complete condition is copied.

Return values

None.

Chapter 14. CompleteCondition class 219

220 Business Object Development Guide

Chapter 15. ContentMetaData class

The Object Discovery Agent Development Kit (ODK) API provides the

ContentMetaData class to contain the metadata for the generated content of the

Object Discovery Agent (ODA). Member variables of this class represent the ODA’s

content metadata. When the ODA generates its content, it must return a

content-metadata object to describe the generated content. The method that returns

the content metadata depends on the content protocol that the ODA supports, as

follows:

v If the ODA supports an on-request protocol for a particular content type

(business object definitions or files), the appropriate content-generation method

returns the content metadata to Business Object Wizard.

v If the ODA supports a callback protocol (for file content only), a user-defined

method returns the content metadata to Business Object Wizard through the

ODKUtility.contentComplete() method.

Note: For more information, see “Providing generated content” on page 96.

Business Object Designer Express uses the content-metadata object to obtain

information about the generated content for each of the content types that the

ODA supports. To determine the supported generation protocols, Business Object

Designer Express calls the ODA’s getContentProtocol() method (from its

IGeneratesContent class).

The ContentMetaData class defines the following:

v “Member variables”

v “Methods” on page 222

Member variables

Table 81 summarizes the member variables of the ContentMetaData class.

 Table 81. Member variables of the ContentMetaData class.

Member variable Description Page

contentType Indicates the content type for the generated

content.

221

count Specifies the total number of content elements in

the requested content.

222

length Specifies the total length, in bytes, of the

requested content.

222

contentType

Indicates the content type of the generated content.

Type

public ContentType contentType

© Copyright IBM Corp. 2004, 2005 221

Notes

The contentType member variable is a ContentType object that indicates the content

type of the generated content that this content metadata describes. It must be set to

the content type appropriate for the generated content, as Table 82 shows.

 Table 82. Content-type values

Content type Value of contentType member variable

Business object definitions ContentType.BusinessObject

Binary files ContentType.BinaryFile

For example, when an ODA completes content generation, it must return a

content-metadata object whose contentType member variable corresponds to the

type of content generated.

count

Specifies the total number of content elements in the requested content. This count

value must be greater than zero (0).

Type

public long count

length

Specifies the total size of the requested content, in bytes. If the content’s length is

unknown, assign a length of zero (0).

Important

Business Object Wizard does not currently use the length member variable.

Therefore, this member variable should be initialized to a “null” value, such

as zero (0) or -1.

Type

public long length

Methods

Table 83 summarizes the methods of the ContentMetaData class.

 Table 83. Member methods of the ContentMetaData class

Member method Description Page

ContentMetaData() Creates a content-metadata object. 223

badContent() Returns a content-metadata object that indicates

the ODA is unable to generate the specified

content type.

223

contentNotReady() Returns a content-metadata object that indicates

the ODA is not yet finished with the content

generation.

223

contentUnavailable() Returns a content-metadata object that indicates

the ODA is not generating the specified content,

even though it implements the corresponding

interface.

224

222 Business Object Development Guide

ContentMetaData()

Creates a content-metadata object.

Syntax

public ContentMetaData(ContentType contentType, long length, long count);

Parameters

contentType Is a ContentType object that indicates the content type of the

generated content that the content-metadata object describes; the

value of this parameter initializes the contentType member variable

of the content-metadata object (“contentType” on page 221).

count Specifies number of content elements in the requested content; the

value of this parameter initializes the count member variable in the

content-metadata object (“count” on page 222).

length Specifies the total size of the requested content, in bytes; the value

of this parameter initializes the length member variable in the

content-metadata object (“length” on page 222). Business Object

Wizard does not currently use the length member variable.

Return values

A newly instantiated ContentMetaData object.

badContent()

Notifies Business Object Wizard that the content that the ODA has generated is

incomplete or in some other way has an error.

Syntax

public static ContentMetaData badContent(ContentType contentType);

Parameters

contentType Is the ContentType object that identifies the content type of the bad

generated content.

Return values

A ContentMetaData object that describes the unsuccessfully generated content.

contentNotReady()

Notifies Business Object Wizard that the ODA is not yet finished generating the

specified content.

Syntax

public static ContentMetaData contentNotReady(ContentType contentType);

Parameters

contentType Is the ContentType object that identifies the content type of the

incomplete generated content.

Return values

A ContentMetaData object that describes the incompletely generated content.

Chapter 15. ContentMetaData class 223

contentUnavailable()

Notifies Business Object Wizard that the ODA does not support generation of the

specified content, even though it implements the corresponding interface.

Syntax

public static ContentMetaData contentUnavailable(ContentType contentType);

Parameters

contentType Is the ContentType object that identifies the content type of the

unavailable generated content.

Return values

A ContentMetaData object that describes the unavailable generated content.

Notes

The contentUnavailable() method indicates that the ODA does not generate

content of the contentType content type. For example, if an ODA supports only a

callback content protocol for a particular content type, Business Object Wizard

never calls its content-generation method (generateBoDefs() for

business-object-definition content or generateBinFiles() for binary-file content).

Therefore, the content-generation method can call contentUnavailable() as its

return value to Business Object Wizard.

224 Business Object Development Guide

Chapter 16. ContentType class

The Object Discovery Agent Development Kit (ODK) API provides the ContentType

class to represent the valid content types that an Object Discovery Agent (ODA)

can generate. The ContentType class defines the following:

v “Member variables”

v “Methods” on page 226

Member variables

Table 84 summarizes the member variables of the ContentType class.

 Table 84. Member variables of the ContentType class.

Member variable Description Page

BinaryFile Indicates that the ODA generates binary files as

its content.

225

BusinessObject Indicates that the ODA generates business object

definitions as its content.

225

BinaryFile

Indicates that the ODA generates binary files as its content.

Type

public static final ContentType BinaryFile

Notes

The contentType member variable indicates that the ODA supports generation of

binary files as content. Therefore, the ODA implements the IGeneratesBinFiles

interface. File content can be generated using either of the content protocols:

v The on-request content protocol requires that the ODA implement the

generateBinFiles() method to handle generation of the files.

v The callback content protocol requires that the ODA implement some

user-defined method to handle generation of the files.

For more information, see “Generating binary files as content” on page 135.

BusinessObject

Indicates that the ODA generates business object definitions as its content.

Type

public static final ContentType BusinessObject

Notes

The contentType member variable indicates that the ODA supports generation of

business object definitions as content. Therefore, the ODA implements the

IGeneratesBoDefs interface. Business-object-definition content must be generated

using the on-request content protocol, which requires that the ODA implement the

© Copyright IBM Corp. 2004, 2005 225

generateBoDefs() method to handle generation of the business object definitions.

For more information, see “Generating business object definitions as content” on

page 112.

Methods

Table 85 summarizes the methods of the ContentType class.

 Table 85. Member methods of the ContentType class

Member method Description Page

ContentType() Creates a content-type object. 226

equals() Compares two content-type objects. 226

from_int() Generates a content-type object for a specified

ordinal value.

227

toString() Returns a literal representation of the current

content-type object.

227

value() Returns an ordinal value for the current content

type.

227

xmlObject() Generates an XML object that represents the

current content-type object.

227

ContentType()

Creates a content-type object.

Syntax

public ContentType(int contTypeOrdValue);

Parameters

contTypeOrdValue

Is the ordinal value that represents the content type.

Return values

A newly instantiated ContentType object.

equals()

Compares two content-type objects.

Syntax

public boolean equals(Object contentTypeObj);

Parameters

contentTypeObj

Is a reference to the ContentType object to compare with the

current ContentType object.

Return values

A boolean value that indicates whether the two content-type objects are equal.

Notes

The equals() method overrides the equals() method in the java.lang.Object

class.

226 Business Object Development Guide

from_int()

Generates a content-type object for the specified ordinal value.

Syntax

public static ContentMetaData from_int(int contTypeOrdValue);

Parameters

contTypeOrdValue

Is the ordinal value that represents the current content type.

Return values

A ContentMetaData object that represents the content type of the specified ordinal

value.

See also

value()

toString()

Returns a literal representation of the current content-type object.

Syntax

public String toString();

Parameters

None.

Return values

A String object that contains the literal representation of the current content-type

object.

Notes

The toString() method overrides the toString() method in the java.lang.Object

class.

value()

Returns an ordinal value for the current content type.

Syntax

public int value();

Parameters

None.

Return values

An integer ordinal value that represents the current content type.

See also

from_int()

xmlObject()

Generates an XML object that represents the current content-type object.

Syntax

public XMLObject xmlObject();

Chapter 16. ContentType class 227

Parameters

None.

Return values

An com.crossworlds.ODK.XMLObject object that represents the current content-type

object.

228 Business Object Development Guide

Chapter 17. CxBiDiEngine class

The CxBidiEngine class provides methods for transforming business objects and

strings from one bidirectional format to the other.

Table 86 summarizes the methods in the CxBidiEngine class.

 Table 86. CwBidiEngine method summary

Method Description Page

BiDiBOTransformation() Transforms BusinessObject type business objects from

one bidirectional format to the other format.

229

BiDiBusObjTransformation() Transforms BusObj type business objects from one

bidirectional format to the other format.

230

BiDiStringTransformation() Transforms strings from one bidirectional format to the

other.

231

BiDiBOTransformation()

The BiDiTransformation() method transforms BusinessObject type business objects

from one bidirectional format to the other format. Use this method when you

develop controllers, connectors and maps.

Syntax

BusinessObject BiDiBOTransformation(BusinessObject boIn, String formatIn,

 String formatOut, boolean replace)

Parameters

boIn The business object to transform. The object must be of the

BusinessObject type.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 87 on page 230 for the valid

values of this string. If this parameter is null, the method defaults

to the standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 87 on page 230 for the valid

values of this string. If this parameter is null, the method defaults

to the standard Windows bidirectional format.

replace A value that specifies whether the input business object is to be

replaced. The valid value is either true or false.

Return values

The return value is a transformed business object. If the method is unsuccessful, it

returns a null value.

Exceptions

None.

© Copyright IBM Corp. 2004, 2005 229

Examples

See the example in “BiDiStringTransformation()” on page 231.

BiDiBusObjTransformation()

The BiDiBusObjTransformation() method transforms BusObj type business objects

from one bidirectional format to the other. Use this method within collaborations.

Syntax

BusObj BiDiBusObjTransformation(BusObj busObjIn, String formatIn,

 String formatOut, boolean replace)

Parameters

busObjIn The business object to transform. The object must be of the BusObj

type.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 87 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 87 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

replace A value that specifies whether the input business object is to be

replaced. The valid value is either true or false.

 Table 87. Values for format strings

Letter position Purpose Values Description Default

1 Type I Implicit (Logical) I

V Visual

2 Direction L Left to Right L

R Right to Left

3 Symmetric

swapping

Y Symmetric swapping is on Y

N Symmetric swapping is off

4 Shaping Y Text is shaped N

N Text is not shaped

5 Numeric

shaping

H Hindi N

C Contextual

N Nominal

Return values

The return value is a transformed business object. If the method is unsuccessful, it

returns a null value.

Exceptions

None.

230 Business Object Development Guide

Examples

This example transforms InputBOBusObj from the standard Windows bidirectional

format to the visual bidirectional format.

BusObj dummyBusObj = null;

dummyBusObj = CwBidiEngine.BiDiBusObjTransformation(

 InputBOBusObj,

 "ILYNN",

 "VLYNN",true);

BiDiStringTransformation()

The BiDiStringTransformation() method transforms strings from one bidirectional

format to the other.

Syntax

BiDiStringTransformation(String strIn, String formatIn, String formatOut

Parameters

strIn The string to transform.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 88 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 88 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format

 Table 88. Values for format strings

Letter position Purpose Values Description Default

1 Type I Implicit (Logical) I

V Visual

2 Direction L Left to Right L

R Right to Left

3 Symmetric

swapping

Y Symmetric swapping is on Y

N Symmetric swapping is off

4 Shaping Y Text is shaped N

N Text is not shaped

5 Numeric

shaping

H Hindi N

C Contextual

N Nominal

Return values

The return value is a transformed string.

Exceptions

None.

Chapter 17. CxBiDiEngine class 231

Examples

The following example applies the BiDiStringTransformation() methodto the

attribute values of a business object.

for (int i = 0; i < bo.getAttrCount();i++) {

 intAttrType = bo.getAttributeType(i);

 Object attrValue = bo.getAttrValue(i);

 String attrName = bo.getAttrName(i);

 if (attrValue != null {

 // We handle only String or Long Text Attribute and not

 // the ObjectEventId attribute

 if (((attrType == CxObjectAttrType.STRING)

 || (attrType == CxObjectAttrType.LONGTEXT))

 && (!(attrName.equals(OBJECT_EVENT_ID)))) {

 String strOut = BidiStringTransformation(attrValue.toString(),

 bo.setAttrValue(i, strOut);

 } else if (attrType == CxObjectAttrType.OBJECT) {

 CxObjectAttr attrDesc = bo.getAttrDesc(i);

 if (attrDesc.getCardinality().equals(CxObjectAttr.CARD_Single)) {

 BiDiTransformation((BusinessObject) attrValue, "ILYNN",

 "VLYNN",

 true);

 } else {

 // multiple cardinality

 CxObjectContainer cont = (CxObjectContainer) attrValue;

 int objCount = cont.getObjectCount();

 for (int j = 0; j < objCount; j++) {

 BiDiBOTransformation((BusinessObject) (cont.getObject(j)),

 "ILYNN",

 "VLYNN",

 true);

 }

 }

 }

232 Business Object Development Guide

Chapter 18. DependentCondition class

The Object Discovery Agent Development Kit (ODK) API uses the

DependentCondition class to represent dependent conditions, which define

conditions that restrict the value of a dependent agent property. When the

associated input condition evaluates to true, the dependent condition is applied to

the dependent property. Dependent conditions and their associated input condition

(or conditions) are stored in a complete-condition (CompleteCondition) object.

Note: For information on complete conditions, see Chapter 14,

“CompleteCondition class,” on page 217.

The DependentCondition class defines the following:

v “Member variables”

v “Methods” on page 235

Member variables

Table 89 summarizes the member variables in the DependentCondition class.

 Table 89. Member variables of the DependentCondition class.

Member variable Description Page

isDynamic Specifies whether Business Object Wizard should

check the value of the specific-value property

before it makes the dependent condition’s

comparison

233

operatorType Specifies the operator type for the dependent

condition.

233

propertyName Specifies the name of the dependent property to

be displayed.

234

specificValue Specifies the value to compare with the

dependent property’s value.

234

typeOfSpecificValue Specifies the data type of the dependent

condition’s specific value.

234

isDynamic

Specifies whether Business Object Wizard should check the value of the

specific-value property before making the dependent condition’s comparison.

Type

public boolean isDynamic

Notes

When the isDynamic member variable is true, Business Object Wizard obtains the

value of the property that the specificValue member variable specifies before it

performs the comparison with the dependent property’s value. If specificValue

contains a constant, isDynamic should be set to false.

operatorType

Specifies the operator type for the dependent condition.

© Copyright IBM Corp. 2004, 2005 233

Type

public String operatorType

Notes

The operatorType specifies the kind of comparison that Business Object Wizard

makes between the value of the dependent property (which the propertyName

member variable specifies) and the specificValue. Valid values for the

operatorType variable are the operator constants, which are defined in the

CompleteCondition class. For more information, see Table 78 on page 217.

propertyName

Specifies the name of the dependent property.

Type

public String propertyName

Notes

The propertyName member variable contains the name of the dependent property.

It is the value of the dependent property that the dependent condition restricts

(when the associated input conditions evaluate to true).

specificValue

Specifies the value to compare with the dependent property’s value.

Type

public String specificValue

Notes

The specificValue holds the dependent condition’s value, which Business Object

Wizard compares with the value of the dependent property (which the

propertyName member variable specifies). The kind of comparison is determined by

the operatorType variable. The specific value can be either of the following:

v A constant (of the same type as the dependent property)

For example, if a dependent condition specifies the Less Than operator

(CompleteCondition.OP_LESS_THAN) as its operatorType and specifies a value of 5

as its specificValue, the dependent property’s value must be less than 5 when

the associated input conditions evaluate to true.

v The name of another agent property

For example, if a dependent condition specifies the Greater Than operator

(CompleteCondition.OP_GREATER_THAN) as its operatorType and specifies the

name of the “Property1“ property as its specificValue, the dependent

property’s value must be greater than the value of Property1 agent property

when the associated input conditions evaluate to true.

The specificValue variable is declared of type String so that it can hold any kind

of value. However, to make comparisons properly, Business Object Wizard needs to

know the actual data type of the specific value, which the typeOfSpecificValue

member variable contains.

typeOfSpecificValue

Specifies the data type of the dependent condition’s specific value.

Type

public int typeOfSpecificValue

234 Business Object Development Guide

Notes

The typeOfSpecificValue holds the data type for the dependent condition’s

specific value. The specificValue variable is declared of type String so that it can

hold any kind of value. However, to make comparisons properly, Business Object

Wizard needs to know the actual data type of the specific value. Valid values for

the typeOfSpecificValue variable are the property-type constants, which are

defined in the AgentProperty class. For more information, see Table 69 on page 175.

For example, if the dependent condition’s specific value is an integer constant of 5:

v The specificValue variable holds the string “5”.

v The typeOfSpecificValue variable holds the AgentProperty.TYPE_INTEGER

property-type constant.

Methods

Table 90 summarizes the methods in the DependentCondition class.

 Table 90. Member methods of the DependentCondition class.

Member Method Description Page

DependentCondition() Creates a dependent-condition object. 235

copy() Copies the current dependent condition

into the specified DependentCondition

object.

236

DependentCondition()

Creates a dependent-condition object.

Syntax

public DependentCondition();

public DependentCondition(String name, String op,

 boolean isDyn, int type, String specificVal);

Parameters

isDyn Indicates whether to obtain the value of the specific-value property

dynamically; the value of this parameter initializes the isDynamic

member variable (“isDynamic” on page 233).

name is the name of the dependent property; the value of this parameter

initializes the propertyName member variable (“propertyName” on

page 234)

op Is the operator that specifies the kind of comparison to make; the

value of this parameter initializes the operatorType member

variable (“operatorType” on page 233).

specificVal Specifies the specific value of the dependent condition; the value of

this parameter initializes the specificValue member variable

(“specificValue” on page 234).

type Specifies the data type of the specific value; the value of this

parameter initializes the typeOfSpecificValue member variable

(“typeOfSpecificValue” on page 234).

Return values

A newly instantiated DependentCondition object.

Chapter 18. DependentCondition class 235

copy()

Copies the current dependent condition into a specified dependent-condition

object.

Syntax

public void copy(DependentCondition depCond);

Parameters

depCond Is a reference to the dependent-condition object into which the

current dependent condition is copied.

Return values

None.

236 Business Object Development Guide

Chapter 19. IGeneratesBinFiles interface

The Object Discovery Agent Development Kit (ODK) API uses the

IGeneratesBinFiles interface to define the functionality required by the Object

Discovery Agent (ODA) for the generation of binary files as its content. This

interface defines the set of methods that the ODA developer must implement to

enable the ODA to generate binary files. Business Object Wizard calls the methods

of the IGeneratesBinFiles interface to generate and access content that is file

objects. A file object is a Java File object, which represents a binary

operating-system file.

Note: An ODA must also support the generation of business object definitions as

its content. To enable an ODA to generate business object definitions from

source data, you must implement the IGeneratesBoDefs interface. For more

information, see Chapter 20, “IGeneratesBoDefs interface,” on page 241.

To provide the ODA with the ability to generate file objects, the ODA developer

must take the following steps:

v In the definition of the ODA class (which is an extension of the ODKAgentBase2

class), include IGeneratesBinFiles as an interface that the ODA implements.

v Within the ODA class, implement the methods of the IGeneratesBinFiles

interface. Because IGeneratesBinFiles is an interface, ODA developers must

implement all methods in Table 91..

 Table 91. Member methods of the IGeneratesBinFiles interface

Member method Description Page

generateBinFiles() Generates file objects for the source nodes

chosen from the data source.

237

getBinFile() Retrieves generated file objects. 238

getContentProtocol() Indicates the content protocol supported for

this binary-file content type.

239

generateBinFiles()

Generates files objects.

Syntax

public ContentMetaData generateBinDefs(String[] strNames);

Parameters

strNames [] Is an array of String objects. This argument is not currently used.

Return values

A ContentMetaData object, which describes the generated file objects.

Exceptions

ODKException Thrown if the generation of the binary files fails.

© Copyright IBM Corp. 2004, 2005 237

Notes

The purpose of the generateBinFiles() method depends on the content protocol

that the ODA uses for generation of file (ContentType.BinaryFile) content, as

follows:

v If the ODA generates files ″on request″, Business Object Wizard explicitly calls

the generateBinFiles() method to generate the files.

v If the ODA generates files through callbacks, Business Object Wizard never

explicitly calls the generateBinFiles() method. Instead, the ODA uses some

other way to generate the files, which Business Object Wizard can then access.

If the ODA generates files ″on request″, the generateBinFiles() method is the

content-generation method for the IGeneratesBinFiles interface. It can create file

objects that contain information about the business-object-definition-generation

process. Business Object Wizard calls the generateBinFiles() method to generate

content (if the ODA supports generation of file content). It calls this method in

Step 5, Generating Business Objects, of its start.

For the on-request protocol, this method does not actually return the generated

content. Instead, it returns a content-metadata (ContentMetaData) object, which

contains information that describes the generated content. From this returned

content-metadata object, Business Object Wizard can determine whether the

content-generation process is complete. When generation is complete, Business

Object Wizard obtains the generated file objects with the getBinFiles() method.

For more information on how to implement generateBinFiles(), see “Generating

files” on page 137..

See also

generateBoDefs(), getBinFile()

getBinFile()

Retrieves the generated file objects from the generated-content structure.

Syntax

public File[] getBinFile(long index);

Parameters

index Specifies the file object to retrieve from the generated-content

structure.

Exceptions

ODKException Thrown if Business Object Wizard encounters a problem getting

the generated file objects from the generated-content structure.

Notes

The getBinFile() method is the content-retrieval method for the

IGeneratesBinFiles interface. It retrieves generated file objects from the ODA’s

generated-content structure, which is the structure that the ODA populated with

the generated file objects. The method that populated the generated-content

structure depends on the content protocol that the ODA supports for file

generation, as follows:

238 Business Object Development Guide

v If the ODA generates files ″on request″, the generateBinFiles() method has

populates the generated-content structure.

v If the ODA generates files through callbacks, some user-defined method

populates the generated-content structure.

The value of the index argument determines whether to getBinFile() returns one

or all generated file objects, as Table 92 shows.

 Table 92. Specifying the file objects to return

Value of index argument Action of getBinFile()

In the range 0 to count

(where count is the member variable in the

content-metadata object that specifies the

number of file objects in the

generated-content structure)

Return an array that contains one file (Java

File) object, the File object at the specified

index position in the generated-content

structure.

ODKConstant.GET_ALL_OBJECTS Return an array of all generated file objects

in the generated-content structure.

For more information on how to implement getBinFile(), see “Providing access to

generated files” on page 141.

See also

generateBinFiles(), getBoDefs()

getContentProtocol()

Indicates the content protocol that the ODA supports for a specified content type.

Syntax

public long getContentProtocol(ContentType contentType);

Parameters

contentType Indicates the content type for which the method obtains the

supported content protocol.

Return values

A long-integer (long) value that indicates the content protocol that the ODA

implements. Compare this long value with the following content-protocol

constants:

ODKConstant.CONTENT_PROTOCOL_CALLBACK

Indicates that the ODA supports a callback protocol; that is the ODK

initiates generation of the specified content and notifies Business Object

Wizard when generation is complete.

ODKConstant.CONTENT_PROTOCOL_ONREQUEST

Indicates that the ODA supports an on-demand protocol; that is, Business

Object Wizard initiates generation of the specified content type.

Notes

The getContentProtocol() method is the single method defined in the

IGeneratesContent interface, which the IGeneratesBoDefs interface extends.

Chapter 19. IGeneratesBinFiles interface 239

Business Object Wizard calls getContentProtocol() to determine the content

protocol that the ODA supports fort the contentType content type. For more

information, see “Indicating the implemented content protocols” on page 111.

240 Business Object Development Guide

Chapter 20. IGeneratesBoDefs interface

The Object Discovery Agent Development Kit (ODK) API uses the

IGeneratesBoDefs interface to define the functionality required by the Object

Discovery Agent (ODA) for the generation of business object definitions as its

content. This interface defines the set of methods that the ODA developer must

implement to enable the ODA to generate business object definitions from source

data. Business Object Wizard calls the methods of the IGeneratesBoDefs interface

to obtain source nodes, as well as generate and access content that is business

object definitions.

Note: An ODA can also support the generation of file objects as its content. To

enable an ODA to generate binary files from source data, you must

implement the IGeneratesBinFiles interface. For more information, see

Chapter 19, “IGeneratesBinFiles interface,” on page 237.

To provide the ODA with the ability to generate business object definitions objects

from source data, the ODA developer must take the following steps:

v In the definition of the ODA class (which is an extension of the ODKAgentBase2

class), include IGeneratesBoDefs as an interface that the ODA implements.

v Within the ODA class, implement the methods of the IGeneratesBoDefs

interface. Because IGeneratesBoDefs is an interface, ODA developers must

implement all methods in Table 93..

 Table 93. Member methods of the IGeneratesBoDefs interface

Member method Description Page

generateBoDefs() Generates business object definitions for the

specified source nodes from the data source.

241

getBoDefs() Retrieves generated business object

definitions.

242

getContentProtocol() Indicates the content protocol supported for

this business-object-definition content type.

243

getTreeNodes() Constructs an array of tree nodes that

represent the hierarchy of source nodes.

244

generateBoDefs()

Generates business object definitions for the specified source nodes.

Syntax

public ContentMetaData generateBoDefs(String[] srcNodeNames);

Parameters

srcNodeNames []

Is an array that contains the names of source nodes that the user

has selected.

© Copyright IBM Corp. 2004, 2005 241

Return values

A ContentMetaData object, which describes the generated business object definitions

for the source nodes named in the srcNodeNames argument.

Exceptions

ODKException Thrown if the generation of business object definitions fails.

Notes

The generateBoDefs() method is the content-generation method for the

IGeneratesBoDefs interface. It creates business object definitions for each of the

source nodes named in the srcNodeNames array. The user has selected these source

nodes in the Select Source dialog box of Business Object Wizard. Once the user has

finished selecting source nodes, Business Object Wizard calls the

generateBinFiles() method to generate content. It calls this method in Step 5,

Generating Business Objects, of its start.

Note: Business Object Wizard always calls generateBoDefs() because the ODA

must support an on-request content protocol for generation of business

object definitions. For more information on content protocols, see “Choosing

the ODA content protocol” on page 110.

The goal of the generateBoDefs() method is to generate a business object

definition (BusObjDef object) for each user-selected source node, store it in the

generated-content structure, and return a content-metadata (ContentMetaData)

object that describes the generated content. This method does not actually return

the generated content to Business Object Wizard. From this returned

content-metadata object, Business Object Wizard can determine whether the

content-generation process is complete. When generation is complete, Business

Object Wizard obtains the generated business object definitions with the

getBoDefs() method. For more information on how to implement

generateBoDefs(), see “Generating business object definitions” on page 120.

See also

generateBinFiles(), getBoDefs()

getBoDefs()

Retrieves the generated business object definitions.

Syntax

public BusObjDef[] getBoDefs(long index);

Parameters

index Specifies the business object definition to retrieve from the

generated-content structure.

Exceptions

ODKException Thrown if Business Object Wizard encounters a problem getting

the generated business object definitions from the

generated-content structure.

242 Business Object Development Guide

Notes

The getBoDefs() method is the content-retrieval method for the IGeneratesBoDefs

interface. It retrieves generated business object definitions from the ODA’s

generated-content structure, which is the structure that the generateBoDefs()

method populated with the generated business object definitions. The value of the

index argument determines whether to getBoDefs() returns one or all generated

business object definitions, as Table 94 shows.

 Table 94. Specifying the business object definitions to return

Value of index argument Action of getBoDefs()

In the range: 0 to count

(where count is the member variable in the

content-metadata object that specifies the

number of business object definitions in the

generated-content structure)

Return an array that contains one

business-object-definition (BusObjDef) object,

the BusObjDef object at the specified index

position in the generated-content structure.

ODKConstant.GET_ALL_OBJECTS Return an array of all generated business

object definitions in the generated-content

structure.

For more information on how to implement getBoDefs(), see “Providing access to

generated business object definitions” on page 133.

See also

generateBoDefs(), getBinFile()

getContentProtocol()

Indicates the content protocol that the ODA supports for a specified content type.

Syntax

public long getContentProtocol(ContentType contentType);

Parameters

contentType Indicates the content type for which the method determines the

supported content protocol.

Return values

A long-integer (long) value that indicates the content protocol that the ODA

implements. Compare this long value with the following content-protocol

constants:

ODKConstant.CONTENT_PROTOCOL_CALLBACK

Indicates that the ODA supports a callback protocol; that is the ODK

initiates generation of the specified content and notifies Business Object

Wizard when generation is complete.

ODKConstant.CONTENT_PROTOCOL_ONREQUEST

Indicates that the ODA supports an on-demand protocol; that is, Business

Object Wizard initiates generation of the specified content type.

Chapter 20. IGeneratesBoDefs interface 243

Notes

The getContentProtocol() method is the single method defined in the

IGeneratesContent interface, which the IGeneratesBoDefs interface extends.

Business Object Wizard calls getContentProtocol() to determine the content

protocol that the ODA supports fort the contentType content type. For more

information, see “Indicating the implemented content protocols” on page 111.

getTreeNodes()

Constructs an array of tree nodes that represents one level in the hierarchy of

source nodes.

Syntax

public TreeNode[] getTreeNodes(String parentNodePath, String searchPattern);

Parameters

parentNodePath

Is a fully qualified path from the top-level node to the source node

whose children are to be returned to Business Object Wizard; each

node in the path is separated by a colon (:).

searchPattern Is the user-specified search pattern for the child nodes in the

expandable parentNodePath node.

Return values

An array of TreeNode objects, which tree-node object is a child node in the

hierarchy of specified objects.

Exceptions

ODKException Thrown if the Object Discovery Agent encounters a problem

getting the tree nodes.

Notes

The getTreeNodes() method is the source-node-generation method for the

IGeneratesBoDefs interface. Business Object Wizard invokes getTreeNodes() to

obtain the array of tree nodes that initializes its Select Source (Step 3) dialog box.

From this dialog box, the user selects specific source nodes for

business-object-definition generation. Within the getTreeNodes() method, you must

construct tree nodes to represent the hierarchy of source nodes in the data source.

The getTreeNode() method returns this source-node hierarchy as an array of

TreeNode objects to its caller, Business Object Wizard.

The tree-node array that getTreeNodes() returns provides the source nodes at one

particular level of the source-node hierarchy. At any given level, some source

nodes might be expandable (have child nodes) and some might be leaf

(terminating) nodes. The user can traverse the hierarchy by expanding any source

node that displays a plus (+) sign to its left. When the user expands a node,

Business Object Wizard calls getTreeNodes() again, providing as its parentNodePath

argument the name of the node the user wants to expand. This node name consists

of the names of each of the nodes in the path, separated by a colon (:).

244 Business Object Development Guide

Note: An ODA uses the colon rather than a slash or backslash to keep the path

operating-system-independent.

The getTreeNodes() method performs the following basic tasks to generate the

source nodes:

1. Parse the parentNodePath to identify the parent object to search for in the data

source.

2. Discover the child objects for the specified data-source parent object.

If Business Object Wizard provides a searchPattern argument to getTreeNodes(),

the user has specified search criteria. Therefore, getTreeNodes() must return

only those child nodes of the parentNodePath node that match searchPattern

search criteria. The ability to apply a search pattern to source nodes requires

that the following conditions are true:

v The user-specified searchPattern must match the search criteria that the ODA

supports.

The searchPatternDesc member variable in the ODA’s metadata

(AgentMetaData) object provides a description to the user of the supported

search criteria. However, the getTreeNodes() method must parse the

user-specified searchPattern to ensure that it matches the supported search

criteria.

v The ODA supports search patterns.

The searchableNodes member variable in the ODA’s metadata

(AgentMetaData) object is true. If searchableNodes is false, the Search for

items menu item (which initiates the user’s entry of search criteria) is not

available. Therefore, the user cannot enter search criteria.
3. Construct tree nodes for the child objects and put these nodes into the

tree-node array.

For more information on how to implement getTreeNodes(), see “Generating

source nodes” on page 113.

See also

For related reference information, see Chapter 26, “TreeNode class,” on page 275.

Chapter 20. IGeneratesBoDefs interface 245

246 Business Object Development Guide

Chapter 21. InputCondition class

The Object Discovery Agent Development Kit (ODK) API provides the

InputCondition class to represent input conditions, which specify conditions on the

value of an agent property. When an input condition evaluates to true, the

associated dependent condition is applied to the dependent property. An input

condition and its associated dependent condition (or conditions) are stored in a

complete-condition (CompleteCondition) object.

Note: For information on complete conditions, see Chapter 14,

“CompleteCondition class,” on page 217.

The InputCondition class defines the following:

v “Member variables”

v “Methods” on page 249

Member variables

Table 95 summarizes the member variables in the InputCondition class.

 Table 95. Member variables of the InputCondition class.

Member variable Description Page

isDynamic Specifies whether Business Object Wizard should

check the value of the specific-value property

before it makes the input condition’s

comparison.

247

operatorType Specifies the operator type for the input

condition.

247

specificValue Specifies the value to compare with the agent

property’s value.

248

typeOfSpecificValue Specifies the data type of the input condition’s

specific value.

248

isDynamic

Specifies whether Business Object Wizard should check the value of the

specific-value property before making the input condition’s comparison.

Type

public boolean isDynamic

Notes

When the isDynamic member variable is true, Business Object Wizard obtains the

value of the property that the specificValue member variable specifies before it

performs the comparison with the agent property’s value. If specificValue

contains a constant, isDynamic should be set to false.

operatorType

Specifies the operator type for the input condition.

© Copyright IBM Corp. 2004, 2005 247

Type

public String operatorType

Notes

The operatorType specifies the kind of comparison that Business Object Wizard

makes between the agent property’s value and the specificValue. Valid values for

the operatorType variable are the operator constants, which are defined in the

CompleteCondition class. For more information, see Table 78 on page 217.

specificValue

Specifies the value to compare with the agent property value.

Type

public String specificValue

Notes

The specificValue holds the input condition’s value, which Business Object

Wizard compares with the agent property’s value. The kind of comparison is

determined by the operatorType variable. The specific value can be either of the

following:

v A constant (of the same type as the agent property)

For example, if an input condition specifies the Less Than operator

(CompleteCondition.OP_LESS_THAN) as its operatorType and specifies a value of 5

as its specificValue, the associated dependent conditions apply when the agent

property’s value is less than 5.

v The name of another agent property

For example, if an input condition specifies the Greater Than operator

(CompleteCondition.OP_GREATER_THAN) as its operatorType and specifies the

name of the “Property1“ property as its specificValue, the associated

dependent conditions apply when the agent property’s value is greater than the

value of Property1 agent property.

The specificValue variable is declared of type String so that it can hold any kind

of value. However, to make comparisons properly, Business Object Wizard needs to

know the actual data type of the specific value, which the typeOfSpecificValue

member variable contains.

typeOfSpecificValue

Specifies the data type of the input condition’s specific value.

Type

public int typeOfSpecificValue

Notes

The typeOfSpecificValue holds the data type for the input condition’s specific

value. The specificValue variable is declared of type String so that it can hold

any kind of value. However, to make comparisons properly, Business Object

Wizard needs to know the actual data type of the specific value. Valid values for

the typeOfSpecificValue variable are the property-type constants, which are

defined in the AgentProperty class. For more information, see Table 69 on page 175.

For example, if the input condition’s specific value is an integer constant of 5:

v The specificValue variable holds the string “5”.

248 Business Object Development Guide

v The typeOfSpecificValue variable holds the AgentProperty.TYPE_INTEGER

property-type constant.

Methods

Table 96 summarizes the methods in the InputCondition class.

 Table 96. Member methods of the InputCondition class.

Member method Description Page

InputCondition() Creates an input-condition object. 249

copy() Copies the current input condition into the

specified input-condition object.

249

InputCondition()

Creates an input-condition object.

Syntax

public InputCondition();

public InputCondition(String operator, boolean isDyn, int type,

 String specificVal);

Parameters

isDyn Indicates whether to obtain the value of the specific-value property

dynamically; the value of this parameter initializes the isDynamic

member variable (“isDynamic” on page 247).

operator Is the operator that specifies the kind of comparison to make; the

value of this parameter initializes the operatorType member

variable (“operatorType” on page 233).

specificVal Is the specific value of the input condition; the value of this

parameter initializes the specificValue member variable

(“specificValue” on page 248).

type Specifies the data type of the specific value; the value of this

parameter initializes the typeOfSpecificValue member variable

(“typeOfSpecificValue” on page 248).

Return values

A newly instantiated InputCondition object.

copy()

Copies the current input condition into the specified input-condition object.

Syntax

public void copy(InputCondition inputCond);

Parameters

inputCond is a reference to the InputCondition object into which the current

input condition is copied.

Return values

None.

Chapter 21. InputCondition class 249

250 Business Object Development Guide

Chapter 22. ODKAgentBase2 class

The Object Discovery Agent Development Kit (ODK) API provides the

ODKAgentBase2 class as the base class for an Object Discovery Agent (ODA). From

this class, an ODA developer must derive an ODA class and implement the abstract

methods for the ODA.

Note: The ODKAgentBase2 class extends the ODKAgentBase class of the low-level

ODA library. It inherits the getAgentProperties(), getVersion(), init(),

and terminate() methods of this class. It also “disables” the getTreeNodes()

and generateDefs() methods of this class because they are now replaced

with functionality defined in the getTreeNodes() and generateBoDefs()

methods of the IGeneratesBoDefs interface.

Important

All ODAs must extend this ODA base class and provide implementations for

all its methods except getVersion().

 Table 97 summarizes the methods of the ODKAgentBase2 class.

 Table 97. Member methods of the ODKAgentBase2 class

Member method Description Page

getAgentProperties() Sends an array of ODA configuration

properties to Business Object Wizard.

251

getMetaData() Sends the ODA metadata to Business Object

Wizard.

252

getVersion() Retrieves the version of the ODA. 253

init() Initializes the ODA. 253

terminate() Terminates the ODA, performing any required

clean-up tasks.

253

getAgentProperties()

Sends an array of ODA configuration properties to Business Object Wizard.

Syntax

public abstract AgentProperty[] getAgentProperties();

Parameters

None.

Return values

An array of AgentProperty objects, one object for each ODA configuration property.

Exceptions

ODKException Thrown if the ODA fails to get the configuration properties.

© Copyright IBM Corp. 2004, 2005 251

Notes

Business Object Wizard invokes the getAgentProperties() method to get the array

of ODA configuration properties that initializes its Configure Agent (Step 2) dialog

box. From this dialog box, you can enter or change these property values.

Important: The getAgentProperties() method is an abstract method that has no

default implementation.Therefore, the ODA class must implement this

method.

Within the getAgentProperties() method, you must instantiate and initialize

agent-property (AgentProperty) objects for each ODA configuration property and

store each property in the configuration-property array. The getAgentProperties()

method returns this configuration-property array to its caller, Business Object

Wizard. Once the user has set the configuration properties from the Configure

Agent dialog box, Business Object Wizard reads these user-initialized properties in

the ODA-runtime memory. You can obtain the user-initialized property with either

the getAgentProperty() or getAllAgentProperties() method in the ODKUtility

class. For more information on how to implement getAgentProperties(), see

“Obtaining configuration properties” on page 103.

See also

getAgentProperty(), getAllAgentProperties()

getMetaData()

Sends the ODA metadata to Business Object Wizard.

Syntax

public abstract AgentMetaData getMetaData();

Parameters

None.

Return values

An AgentMetaData object that contains the metadata for the ODA.

Notes

Business Object Wizard invokes the getMetaData() method to get the ODA’s

metadata. It calls getMetaData() after its call to the getAgentProperties() method

completes. The getMetaData() method returns the AgentMetaData object for the

ODA. This AgentMetaData object contains metadata for the ODA, such as the

version and the generated content it supports. Within this method, call the

AgentMetaData() constructor and return the instantiated metadata object.

Important: The getMetaData() method is an abstract method that has no default

implementation.Therefore, the ODA class must implement this method.

For more information on how to implement getMetaData(), see “Initializing ODA

metadata” on page 105.

252 Business Object Development Guide

getVersion()

Retrieves the version of the ODA runtime.

Syntax

public String getVersion();

Parameters

None.

Return values

An String that contains the version of the ODA runtime.

init()

Performs the ODA initialization tasks.

Syntax

public abstract void init();

Parameters

None.

Return values

None.

Exceptions

ODKException Thrown if the ODA initialization fails.

Notes

Business Object Designer Express invokes the init() method to initialize the

Object Discovery Agent. It calls init() after its calls to the getAgentProperties()

and getMetaData() methods complete. Typically, ODA initialization includes

obtaining values for the ODA’s configuration properties, establishing a connection

to the data source, (which could be an application, database, XML file, or other

business object source), and allocating any resources that the ODA requires.

Important: The init() method is an abstract method that has no default

implementation.Therefore, the ODA class must implement this method.

For more information on how to implement init(), see “Initializing the ODA

start” on page 107.

terminate()

Terminates the ODA, performing any required clean-up tasks.

Syntax

public abstract void terminate();

Chapter 22. ODKAgentBase2 class 253

Parameters

None.

Return values

None.

Notes

Business Object Designer Express calls the terminate() method when it shuts

down the ODA. In your implementation of this method, it is good practice to free

all the memory and disconnect from the data source.

Important: The terminate() method is an abstract method that has no default

implementation. Therefore, the ODA class must implement this method.

Deprecated Methods

Some methods in the ODKAgentBase2 class were supported in earlier versions but

are no longer supported. These deprecated methods will not generate errors, but IBM

recommends that you avoid their use and migrate existing code to the new

methods. The deprecated methods might be removed in a future release.

lists the deprecated methods for the ODKAgentBase2 class. If you are writing a new

ODA (not modifying an existing ODA), you can ignore this section.

 Table 98. Deprecated methods of the ODKAgentBase2 class

Deprecated method Replacement

getTreeNodes()

(inherited from ODKAgentBase)

getTreeNodes() in the IGeneratesBoDefs

interface

generateDefs()

(inherited from ODKAgentBase)

generateBoDefs() in the IGeneratesBoDefs

interface (to generate business object

definitions)

Note: You can also generate files with the

generateBinFiles() method in the

IGeneratesBinFiles interface.

254 Business Object Development Guide

Chapter 23. ODKConstant interface

The Object Discovery Agent Development Kit (ODK) API uses the ODKConstant

interface to provide general constants to the Object Discovery Agent (ODA). Any

class that implements the ODKConstant interface can access its defined constants

directly. For example, if the TreeNode class implements the ODKConstant interface,

its methods can access the MSG_QUESTION constant as follows:

int message_icon = MSG_QUESTION;

The ODKConstant interface defines static member variables to represent the

following kinds of constants:

v “String-value constants”

v “User-response-dialog constants”

v “Cardinality constants” on page 256

v “Trace-level constants” on page 257

v “Message-type constants” on page 257

v “Node-nature constants” on page 257

v “Content-protocol constants” on page 258

v “Content-index constant” on page 258

String-value constants

Table 99 summarizes the string-value constants in the ODKConstant interface. These

constants represent special attribute values of Blank and Ignore. All string-value

constants are of type String.

 Table 99. String-value constants of the ODKConstant interface.

String-value constant Description

CW_EMPTY_STRING Specifies the defined constant for an empty String ("")

CW_NULL_STRING Specifies the defined constant for a null value

User-response-dialog constants

The sendMsg() method, defined in the ODKUtility class, provides the ODA

developer with a means to display a user-response dialog box. To provide support

for sendMsg(), the ODKConstant interface provides the user-response-dialog

constants listed in Table 100. All user-response-dialog constants are of type integer

(int).

 Table 100. User-response-dialog constants of the ODKConstant interface.

User-response-dialog constant Description

dialog-button constants

MSG_OK Specifies the display of the OK button on the

user-response dialog box

MSG_OKCANCEL Specifies the display of the OK and Cancel buttons on

the user-response dialog box

MSG_RETRYCANCEL Specifies the display of the Retry and Cancel buttons

on the user-response dialog box

© Copyright IBM Corp. 2004, 2005 255

Table 100. User-response-dialog constants of the ODKConstant interface. (continued)

User-response-dialog constant Description

MSG_ABORTRETRYIGNORE Specifies the display of the Retry, Ignore, and Abort

buttons on the user-response dialog box

MSG_YESNO Specifies the display of the Yes and No buttons on the

user-response dialog box

MSG_YESNOCANCEL Specifies the display of the Yes, No, and Cancel

buttons on the user-response dialog box

dialog-icon constants

MSG_ERROR Specifies that the user-response dialog box displays

the error icon

MSG_CRITIALERROR Specifies that the user-response dialog box displays

the critical-error icon

MSG_WARNING Specifies that the user-response dialog box displays

the warning icon

MSG_INFORMATION Specifies that the user-response dialog box displays

the information icon

MSG_QUESTION Specifies that the user-response dialog box displays

the question-mark icon

User-response constants

ODK_OK Specifies the OK button on the user-response dialog

box

ODK_CANCEL Specifies the Cancel button on the user-response

dialog box

ODK_RETRY Specifies the Retry button on the user-response dialog

box

ODK_IGNORE Specifies the Ignore button on the user-response

dialog box

ODK_ABORT Specifies the Abort button on the user-response dialog

box

ODK_YES Specifies the Yes button on the user-response dialog

box

ODK_NO Specifies the No button on the user-response dialog

box

ODK_CLOSE Specifies the Close button on the user-response dialog

box

ODK_HELP Specifies the Help button on the user-response dialog

box

Cardinality constants

Table 101 summarizes the cardinality constants in the ODKConstant interface. These

constants represent valid values for the cardinality of an agent property. All

cardinality constants are of type String.

 Table 101. Cardinality constants of the ODKConstant interface.

Cardinality constant Description

MULTIPLE_CARD Specifies that an agent property can have more than one value;

that is, the user can specify more than one value for the

property.

SINGLE_CARD Specifies that an agent property can have only one value; that

is, the user can only specify one value for the property.

256 Business Object Development Guide

Trace-level constants

Table 102 summarizes the trace-level constants in the ODKConstant interface. These

constants represent valid trace levels for the tracing method, trace() (defined in

the ODKUtility class). All trace-level constants are of type integer (int).

 Table 102. Trace-level constants of the ODKConstant interface.

Trace-level constant Description

TRACELEVEL0 Represents a trace level 0 (error logging on; tracing off)

TRACELEVEL1 Represents a trace level 1

TRACELEVEL2 Represents a trace level 2

TRACELEVEL3 Represents a trace level 3

TRACELEVEL4 Represents a trace level 4

TRACELEVEL5 Represents a trace level 5

For a description of the expected content at each trace level, see Table 17 on page

78.

Message-type constants

Table 103 summarizes the message-type constants in the ODKConstant interface.

These constants indicate the severity level for a message that the trace() method

(defined in the ODKUtility class) outputs. All message-type constants are of type

integer (int).

 Table 103. Message-type constants of the ODKConstant interface.

Message-type constant Description

XRD_FATAL Represents a fatal error

XRD_ERROR Represents an error

XRD_URGENTWARNING Represents an urgent warning

XRD_WARNING Represents an warning

XRD_INFO Represents an informational message

XRD_TRACE Represents a trace message

Important: The ODKConstant interface also provides message-type constants of the

form XRD_INT_messageType. In addition, it defines the XRD_UNKNOWN

constant to represent an undefined message type. These message-type

constants are for internal use only. Do not use these message-type

constants in your ODA.

Node-nature constants

Table 104 summarizes the node-nature constants in the ODKConstant interface.

These constants indicate the actions that the user can take on a tree node when it

displays within the Select Source dialog box of Business Object Wizard. All

node-nature constants are of type integer (int).

 Table 104. Node-nature constants of the ODKConstant interface.

Node-nature constant Description

NODE_NATURE_NORMAL Specifies that the tree node is “normal”; that is, the user can

either expand the node or select the node (if it is a leaf node).

Chapter 23. ODKConstant interface 257

Table 104. Node-nature constants of the ODKConstant interface. (continued)

Node-nature constant Description

NODE_NATURE_FILE Specifies that the tree node can be associated with a file; that

is, Business Object Wizard enables the Associate File menu

item on the context-menu of the node name to allow the user

to locate the file to associate with the node.

Content-protocol constants

Table 105 summarizes the content-protocol constants in the ODKConstant interface.

These constants represent the content protocol for the ODA. All content-protocol

constants are of type byte.

 Table 105. Content-protocol constants of the ODKConstant interface.

Content-protocol constant Description

CONTENT_PROTOCOL_ONREQUEST Specifies that the ODA generates its content “on request”;

that is, Business Object Wizard explicitly request content

generation by the ODA. When such content is ready, the

ODA runtime notifies Business Object Wizard, which can

then retrieve the content at its convenience.

CONTENT_PROTOCOL_CALLBACK Specifies that the ODA generates its content

“spontaneously”; that is, it cannot predict or guarantee

when its content will be generated. When such content is

ready, the ODA must notify Business Object Wizard,

which can then retrieve the content at its convenience.

Content-index constant

Table 106 summarizes the content-index constant in the ODKConstant interface. This

constant represents a special value to the content-retrieval methods that indicates

to return all generated content. The content-index constant is of type long.

 Table 106. Content-index constant of the ODKConstant interface.

Content-index constant Description

GET_ALL_OBJECTS Passed as an argument to the content-retrieval method of

the ODA. It specifies that the content-retrieval method

should return all generated content.

For more information, see “Providing access to generated business object

definitions” on page 133 and “Providing access to generated files” on page 141.

258 Business Object Development Guide

Chapter 24. ODKException class

The ODKException class is the base class for exceptions in the Object Discovery

Agent Development Kit (ODK) API. The ODK API extends the Java Exception

class to create its own exception class called:

com.crossworlds.ODK.ODKException

This class represents an exception object, which methods of the ODK API can throw.

Note: The reference description for each ODK API method lists the exceptions

thrown by that method.

The ODKException class defines the following:

v “Methods”

v “Exception subclasses” on page 260

Methods

Table 107 summarizes the methods in the ODKException class.

 Table 107. Member methods of the ODKException class.

Member method Description Page

ODKException() Creates an ODK exception object. 259

getMsg() Retrieves the exception message from the

exception object.

259

ODKException()

Creates an exception object.

Syntax

public ODKException(String msg);

Parameters

msg is the exception message for the exception object.

Return values

A newly instantiated ODKException exception object.

getMsg()

Retrieves the exception message from the exception object.

Syntax

public String getMsg();

Parameters

None.

© Copyright IBM Corp. 2004, 2005 259

Return values

A String that contains the exception message.

Exception subclasses

Within this ODKException class are subclasses that identify particular exceptions

possible in the methods of the ODK API. Table 108 lists the subclassed exceptions.

 Table 108. ODKException subclasses.

Exception subclass Definition

BusObjInvalidAttrException Thrown when an attribute is invalid.

BusObjInvalidDefException Thrown when a business object definition

is invalid.

BusObjInvalidVerbException Thrown when a verb is invalid.

BusObjNoSuchAttrException Thrown when the attribute does not exist

in the business object definition.

BusObjNoSuchVerbException Thrown when the verb is not supported

by the business object definition.

ODKInvalidNodeException Thrown to indicate a tree-node exception.

ODKInvalidPropException Thrown to indicate exceptions caused by

an invalid property.

UnsupportedContentException Thrown if the ODA cannot supported the

requested generated content.

260 Business Object Development Guide

Chapter 25. ODKUtility class

The Object Discovery Agent Development Kit (ODK) API provides the ODKUtility

class to provide an Object Discovery Agent (ODA) with various utility methods. By

obtaining a handle to the singleton ODKUtility object, the ODA can access the

following functionality:

v Information in the memory of the ODA run time:

– User-specified values for the ODA configuration properties

– User-specified values for the business-object properties
v Utility methods that provide the following features:

– Ability to send messages that require user input

– Ability to send non-blocking status messages

– Ability to perform tracing

Note: Use the getODKUtility() method in this class to obtain a handle to the

ODKUtility object.

Table 109 summarizes the methods in the ODKUtility class.

 Table 109. Member methods of the ODKUtility class.

Member method Description Page

contentComplete() Notifies Business Object Wizard that the

ODA has completed content generation

when using the callback protocol.

261

getAgentProperty() Retrieves the specified ODA configuration

property.

262

getAllAgentProperties() Retrieves all ODA configuration

properties.

263

getAllBOSpecificProperties() Retrieves all business-object properties. 263

getBOSpecificProperty() Retrieves the specified business-object

property.

264

getBOSpecificProps() Sends the specified business-object

properties to the BO Properties dialog box

for user input.

264

getClientFile() Requests that Business Object Wizard

retrieve a specified file.

265

getMsg() Returns a message from the ODA

message file.

266

getODKUtility() Returns a handle to an ODKUtility object. 267

sendMsg() Displays a user-response dialog box,

which includes a message and button,

and requires a response from the user.

268

sendStatusMsg() Displays a message to the user. 270

trace() Writes a message to the trace file. 270

contentComplete()

Notifies Business Object Wizard that the ODA has completed its generation of

content for the callback content protocol.

© Copyright IBM Corp. 2004, 2005 261

Syntax

public void contentComplete(ContentMetaData contentMetaData);

Parameters

contentMetaData

Is a content-metadata object that describes the current state of the

generated content.

Return values

None.

Notes

The contentComplete() method indicates that the ODA has completed generation

of its content. In the callback protocol, Business Object Wizard does not initiate

content generation by calling the appropriate content-generation method. Instead,

the ODA initiates content generation and Business Object Wizard waits for the

ODA to notify it when this content generation is complete. The ODA performs this

notification by calling contentComplete(). Once Business Object Wizard is notified,

it calls the appropriate content-retrieval method to obtain the generated content.

Important

If the ODA uses the callback protocol for a particular content generation, it

must call the contentComplete() method to notify Business Object Wizard that

the content is available. Otherwise, Business Object Wizard does not know

that the generated content is available for retrieval.

 The contentMetaData object must indicate the type of generated content as well as

the number of items in the generated content.

getAgentProperty()

Retrieves the specified ODA configuration property.

Syntax

public AgentProperty getAgentProperty(String propName);

Parameters

propName Is the name of the configuration property to retrieve.

Return values

An AgentProperty object that contains the specified configuration property, or null

if no configuration property exists of that name exists.

Notes

The getAgentProperty() method retrieves the propName configuration property

from the ODA run-time memory. Business Object Wizard reads configuration

properties into the ODA run-time memory after the user specifies

configuration-property values in the Configure Agent dialog box. This method

262 Business Object Development Guide

returns the specified configuration property as an AgentProperty object. You can

obtain information about the property by accessing the object’s member variables.

See also

getAgentProperties(), getAllAgentProperties()

getAllAgentProperties()

Retrieves all ODA configuration properties.

Syntax

public Hashtable getAllAgentProperties();

Parameters

None.

Return values

A reference to the java.util.Hashtable object that contains the ODA configuration

properties (represented as AgentProperty objects), keyed on the property name.

Notes

The getAllAgentProperties() method retrieves all ODA configuration properties

from the ODA run-ime memory. Business Object Wizard reads configuration

properties into ODA run-time memory after the user specifies

configuration-property values in the Configure Agent dialog box. This method

retrieves the configuration properties as a Hashtable object, which maps keys to

values. The keys are the names of the properties and values are the associated

property values. Use methods of the Hashtable class (such as keys() and

elements()) to obtain the information from this structure.

See also

getAgentProperties(), getAgentProperty()

getAllBOSpecificProperties()

Retrieves all business-object properties from the BO Properties dialog box.

Syntax

public Hashtable getAllBOSpecificProperties();

Parameters

None.

Return values

A reference to a java.util.Hashtable object that contains the business-object

properties (represented as AgentProperty objects), keyed on the property name.

Notes

The getAllBOSpecificProperties() method retrieves all business-object properties

from the ODA run-time memory. Business Object Wizard saves these properties

Chapter 25. ODKUtility class 263

into memory after the user specifies their values in the BO Properties dialog box

(part of Step 5). This method returns the business-object properties as a Hashtable

object, which maps keys to values. The keys are the names of the business-object

properties and values are the associated property values. Use methods of the

Hashtable class (such as keys() and elements()) to obtain the information from

this structure.

See also

getBOSpecificProperty(), getBOSpecificProps()

getBOSpecificProperty()

Retrieves the specified business-object property.

Syntax

public AgentProperty getBOSpecificProperty(String propName);

Parameters

propName Is the name of the business-object property to retrieve.

Return values

An AgentProperty object that contains the specified business-object property, or

null if no business-object property of that name exists.

Notes

The getBOSpecificProperty() method retrieves the propName business-object

property from the ODA run-time memory. Business Object Wizard saves these

properties into memory after the user specifies their values in the BO Properties

dialog box (part of Step 5). This method returns the specified business-object

property as an AgentProperty object. You can obtain information about the

property by accessing the object’s member variables.

See also

getAllBOSpecificProperties(), getBOSpecificProps()

getBOSpecificProps()

Sends the specified business-object properties to the BO Properties dialog box for

user input.

Syntax

public Hashtable getBOSpecificProps(AgentProperty[] properties,

 String titleBarText);

public Hashtable getBOSpecificProps(AgentProperty[] properties,

 String titleBarText, String propGridText);

Parameters

properties Is an array of business-object properties, each property in an

AgentProperty object.

titleBarText Is text to display in the title bar of the BO Properties dialog box.

264 Business Object Development Guide

propGridText Is text to display in a text area above the property grid of the BO

Properties dialog box.

Return values

A Java Hashtable object of business-object properties (as AgentProperty objects)

keyed on the property name.

Exceptions

ODKInvalidPropException

Thrown if the property is invalid—for example, if it does not have

a name.

XMLException Thrown if the XML conversion of the properties failed.

Notes

The getBOSpecificProps() method sends the properties array of business-object

properties to Business Object Wizard, who displays them in the BO Properties

dialog box. From this dialog box, the user can enter or change these property

values. Before calling the getBOSpecificProps() method, you must instantiate and

initialize agent-property (AgentProperty) objects for each business-object property

and store each property in the properties business-object-property array. The

getBOSpecificProps() method passes this business-object-property array to its

caller, Business Object Wizard.

Once the user has set the business-object properties from the BO Properties dialog

box, Business Object Wizard saves these user-specified properties in a

java.util.Hashtable object and the ODA run-time memory. Within the ODA, you

can obtain the user-initialized properties in either of the following ways:

v From ODA run-time memory

Use the getBOSpecificProperty() or getAllBOSpecificProperties() method in

the ODKUtility class. The user-initialized values for the property are in the

allValues member variable of its agent-property (AgentProperty) object.

v From the Hashtable object that getBOSpecificProps() returns

Use the methods of the Hashtable object to obtain the agent properties.

For more information on how to use getBOSpecificProps(), see “Requesting

business-object properties” on page 121.

See also

getAllBOSpecificProperties(), getBOSpecificProperty()

getClientFile()

Requests that Business Object Wizard retrieve a specified file.

Syntax

public byte[] getClientFile(String srcNodePath, ODKAgentBase2 ODAobj);

Parameters

srcNodePath Is the source-node path of the file to request from Business Object

Wizard.

Chapter 25. ODKUtility class 265

ODAobj Is the ODA (ODKAgentBase2) object, which is used to verify that the

ODA is authorized to perform the operation; that is, that the ODA

generates file content.

Return values

The contents of the specified operating-system file, as a byte array.

Exceptions

UnsupportedContentException

Thrown if the ODA does not support generation of file content;

that is, it does not implement the IGeneratesBinFiles interface.

Java.io.IOException

Thrown if an error occurs during file retrieval, for example the file

was not found.

Notes

The getClientFile() method requests that Business Object Wizard return the

contents of the operating-system file that srcNodePath identifies. This srcNodePath

path takes the following form:

fileNodePath:fileLocation

where:

v fileNodePath is the colon (:) separated list of source-node names for the node that

is associated with the file. For example, Apollo:Vulso:Flavius.xml

v fileLocation is the full operating-system path to the file. For example,

C:\temp\XMLFiles\Flavius.xml

Use the getClientFile() method to access an associated file for objects that source

nodes represent. If a source node can have a file associated with it, then the ability

to interpret the file’s source-node path and to read the contents of this file is

needed at both of the following points:

v During source-node generation, the getTreeNodes() method must be able to

“discover” a child node that is in a file.

v During content generation, the method that generates content must be able to

access information in nodes that are in a file.

For more information, see “Reading files for source data” on page 136.

getMsg()

Retrieves a message from the ODA message file.

Syntax

public String getMsg(int msgNum, int msgType);

public String getMsg(int msgNum, int msgType, msgParameters);

public String getMsg(int msgNum, int msgType, Vector paramArray);

Parameters

msgNum Specifies the message number from the message file.

msgParameters Is an optional list of up to three String parameter values, each

corresponding to a parameter in the message list.

266 Business Object Development Guide

msgType Is the type of message, specified as one of the following

message-type constants:

ODKConstant.XRD_FATAL

ODKConstant.XRD_ERROR

ODKConstant.XRD_URGENTWARNING

ODKConstant.XRD_WARNING

ODKConstant.XRD_INFO

paramArray Is an optional list of parameters, as a Java Vector, to be inserted in

the message’s parameters.

Exceptions

IllegalArgumentException

Thrown if the msgType argument is not valid.

Return values

A String that contains the text associated with the specified message number. If

message parameters have been provided, these values have been inserted as

appropriate into the message. If msgNum is not valid, the method returns null.

Notes

The getMsg() method retrieves a message from a message file. It identifies the

name of this file from the MessageFile startup property, which the ODK

automatically includes with the ODA startup properties. The getMsg() method

provides the following forms:

v The first form retrieves a message with the specified message number (msgNum)

from the ODA message file.

v The second form also retrieves the message with the specified message number

(msgNum) from the ODA message file. It also provides the ability to specify up

to three String message parameters (msgParameters) to be inserted in the

message before retrieving it.

v The third form also sends a message from the ODA message file and provides

message parameters. However, with this form you can send the message

parameters as elements in a Java Vector, paramArray.

For information on ODA message files, see “Message files” on page 155. For

information on message parameters, see “Using parameter values” on page 158.

See also

trace()

getODKUtility()

Returns a handle to the singleton ODKUtility object.

Syntax

public static ODKUtility getODKUtility();

Parameters

None.

Chapter 25. ODKUtility class 267

Return values

A handle to an ODKUtility object.

Notes

The getODKUtility() method provides access within the ODA code to the utilities

in the ODKUtility class. You must use getODKUtility() to obtain a handle to the

singleton object of this class before you access the ODKUtility methods.

Note: The call to getODKUtility() is often performed in the getAgentProperties()

method. For more information, see “Obtaining the handle to the ODKUtility

object” on page 103.

See also

getAgentProperties()

sendMsg()

Displays a user-response dialog box, which includes a message and requires a

response from the user.

Syntax

public int sendMsg(String msg, int dialogFlags);

Parameters

msg Is the message to display in the user-response dialog box.

dialogFlags Is a set of flags to indicate the buttons and icons to display as part

of the user-response dialog box. Indicate these buttons and icons as

a mask of the user-response-dialog constants shown in Table 110.

Return values

An integer that indicates the button that the user has clicked to terminate the

user-response dialog box. Compare this integer value with the following

user-response constants:

ODKConstant.ODK_OK

The user selected the OK button.

ODKConstant.ODK_CANCEL

The user selected the Cancel button.

ODKConstant.ODK_RETRY

The user selected the Retry button.

ODKConstant.ODK_IGNORE

The user selected the Ignore button.

ODKConstant.ODK_ABORT

The user selected the Abort button.

ODKConstant.ODK_YES

The user selected the Yes button.

ODKConstant.ODK_NO

The user selected the No button.

268 Business Object Development Guide

ODKConstant.ODK_CLOSE

The user selected the Close button.

ODKConstant.ODK_HELP

The user selected the Help button.

Notes

The sendMsg() method sends a request to Business Object Wizard to display a

user-response dialog box to the user. You specify the following components of this

user-response dialog box:

v The msg string contains text to indicate the condition, question, or information

you need the user to see.

v A dialogFlags mask contains features that describe the appearance of the

user-response dialog box, as follows:

– The buttons to display

The user clicks one of these buttons to terminate the user-response dialog box.

You specify these buttons with the dialog-button constants, in the “Buttons to

display” section of Table 110.

– The icon to display

The icon determines the type of user-response dialog box to display. You

specify the dialog box type with one of the dialog-icon constants, in the

“dialog box icon to display” section of Table 110.

 Table 110. Display appearance of the user-response dialog box

Appearance of user-response dialog box

ODKConstant user-response-dialog

constant

Buttons to display:

OK MSG_OK

OK, CANCEL MSG_OKCANCEL

RETRY, CANCEL MSG_RETRYCANCEL

RETRY, IGNORE, ABORT MSG_ABORTRETRYIGNORE

YES, NO MSG_YESNO

YES, NO, CANCEL MSG_YESNOCANCEL

dialog box icon to display:

Error icon MSG_ERROR

Critical-error icon MSG_CRITICALERROR

Warning icon MSG_WARNING

Information icon MSG_INFORMATION

Question-mark icon MSG_QUESTION

Note: All user-response-dialog constants in Table 110 are defined in the

ODKConstant interface.

To specify the dialogFlags argument, create a mask of the user-response-dialog

constants that describe the appearance of your user-response dialog box. For

example, the following call to sendMsg() creates a user-response dialog box that

displays an error icon as well as the buttons Retry and Cancel:

String msg = new String(bdkUtil.getMsg(

 1002, ODKConstant.XRD_ERROR, params));

bdkUtil.sendMsg(msg,

 ODKConstant.MSG_RETRYCANCEL | ODKConstant.MSG_ERROR);

Chapter 25. ODKUtility class 269

See also

sendStatusMsg()

sendStatusMsg()

Displays a message to the user.

Syntax

public void sendStatusMsg(String msg);

Parameters

msg Is the message to send to the user.

Return values

None.

See also

sendMsg()

trace()

Writes a message to the trace file.

Syntax

public void trace(int level, int msgType, String message);

public void trace(int level, int msgNum, int msgType);

public void trace(int level, int msgNum, int msgType, msgParameters);

public void trace(int level, int msgNum, int msgType, Vector paramArray);

public void trace(int level, int msgType, BusObjDef boDef);

public void trace(int level, int msgType, AgentProperty[] properties,

 String foreword);

Parameters

boDef Is the business object definition to be written to the trace file.

foreword Is a String that clarifies the message before the properties

property array—for example, “These are the properties for the

Object Discovery Agent”.

level Is the trace level, specified as one of the following trace-level

constants:

ODKConstant.TRACELEVEL0

ODKConstant.TRACELEVEL1

ODKConstant.TRACELEVEL2

ODKConstant.TRACELEVEL3

ODKConstant.TRACELEVEL4

ODKConstant.TRACELEVEL5

message Is the String message to be written to the trace file.

msgNum Specifies the message number in the message file.

msgParameters Is an optional list of up to three String parameter values, each

corresponding to a parameter in the message list.

270 Business Object Development Guide

msgType Is the type of message, specified as one of the following

message-type constants:

ODKConstant.XRD_FATAL

ODKConstant.XRD_ERROR

ODKConstant.XRD_URGENTWARNING

ODKConstant.XRD_WARNING

ODKConstant.XRD_INFO

ODKConstant.XRD_TRACE

paramArray A vector of parameters to be inserted in the message.

properties Is an array of agent-property (AgentProperty) objects to be written

to the trace file.

Return values

None.

Exceptions

IllegalArgumentException

Thrown if the properties argument is null or the msgType argument

is invalid.

Notes

The trace() method sends the specified information to the trace file when the

trace level is less than or equal to the system trace level. The system trace level is

set through the TraceLevel configuration property, which Business Object Wizard

automatically includes in the ODA configuration properties. A trace level of zero (0)

activates error logging; that is, trace() sends an error message to the trace file. The

non-zero trace levels, shown in Table 111, activate tracing; that is, trace() sends a

trace message to the trace file.

 Table 111. Trace levels for an ODA

Trace level Description Trace-level constant

0 Log an error message. TRACELEVEL0

1 Trace whenever a method is entered. Usually

provides status messages and key information

for each business object definition.

TRACELEVEL1

2 Trace the agent properties and the values

received.

TRACELEVEL2

3 Trace the name of the business object definition.

Usually provides the business-object properties

and the values received.

TRACELEVEL3

4 Trace a message whenever a method is entered

and exited. Record the spawning of all threads.

TRACELEVEL4

5 Indicate the ODA initialization. Provide the

values for all agent properties retrieved, a

detailed status of each thread that the ODA has

spawned, and a dump of the business object

definition.

TRACELEVEL5

The user establishes the name of the ODA’s trace destination through the

TraceFileName configuration property, which the ODK automatically includes in

the ODA startup properties. Therefore, tracing cannot begin until after the init()

method (which receives initialized startup properties) starts.

Chapter 25. ODKUtility class 271

The trace() method provides the following forms:

v The first four forms send a text message to the trace file:

– The first form sends the specified text message to the trace file.

– The second form sends the message with the specified message number

(msgNum) from the ODA message file.

– The third form also sends the message with the specified message number

(msgNum) from the ODA message file. It also provides the ability to send up

to three String message parameters (msgParameters) to be inserted in the

message before sending the message to the trace destination.

– The fourth form also sends a message from the ODA message file and

provides message parameters. However, with this form you can send the

message parameters as elements in a Java Vector, paramArray.

For information on ODA message files, see “Message files” on page 155. For

information on message parameters, see “Using parameter values” on page 158.

v The fifth form sends a dump of a business object definition to the trace file. This

dump is formatted in the format of the repos_copy utility and has the following

basic format:

[BusinessObjectDefinition]

Name=busObjName

AppSpecificInfo=business-object-level application-specific information

[Attribute]

Name=attribute1

Type=attribute type

Cardinality=n or 1

AppSpecificInfo=attribute-level application-specific information

other attribute properties

[End]

...

v The sixth form sends a dump of the specified agent properties to the trace file.

This dump. The forward argument provides introductory text that clarifies the

message.

See also

getMsg()

Deprecated Methods

Some methods in the ODKUtility class were supported in earlier versions but are

no longer supported. These deprecated methods will not generate errors, but IBM

recommends that you avoid their use and migrate existing code to the new

methods. The deprecated methods might be removed in a future release.

Table 112 lists the deprecated methods for the ODKUtility class. If you are writing a

new ODA (not modifying an existing ODA), you can ignore this section.

272 Business Object Development Guide

Table 112. Deprecated methods of the ODKUtility class

Deprecated method Replacement

All methods that support filtering:

v filterData()

v getFilter()

v setFilter()

An ODA still supports filtering at the user

level, but not at the programmatic level. For

more information, see “Using a filter” on

page 80. At the programmatic level, the

search-pattern feature provides the ability to

reduce the number of child nodes for a

particular parent node. For more

information, see “Implementing the

search-pattern feature” on page 115.

Chapter 25. ODKUtility class 273

274 Business Object Development Guide

Chapter 26. TreeNode class

The Object Discovery Agent Development Kit (ODK) API provides the TreeNode

class to represent tree nodes. The Object Discovery Agent (ODA) generates an

array of tree nodes so that Business Object Wizard can display a hierarchy of

source nodes to the user. The user navigates the nodes of this source-node

hierarchy to select the objects whose business object definition the ODA is to

generate.

The TreeNode class defines the following:

v “Member variables”

v “Method” on page 277

The TreeNode class implements the ODKConstant interface. Therefore, all constants

defined in ODKConstant are available to a TreeNode object. For a list of constants the

ODKConstant interface defines, see Chapter 23, “ODKConstant interface,” on page

255.

Member variables

Table 113 summarizes the member variables of the TreeNode class.

 Table 113. Member variables of the TreeNode class.

Member variable Description Page

description Contains a description of the tree node. 275

isExpandable Specifies whether the tree node is expandable;

that is, whether there are elements below the

current level.

276

isGeneratable Specifies whether the tree node is generatable;

that is, whether the node can be converted to a

business object definition.

276

name Contains the name of the tree node. 276

nodes Contains the expanded hierarchy of tree nodes. 276

polymorphicNature Defines the node’s nature; that is whether it is

“normal” (expandable or a leaf) or “file”.

277

description

Contains a description of the tree node.

Type

public String description

Notes

The description member variable displays in the Description column of the Select

Source dialog box.

© Copyright IBM Corp. 2004, 2005 275

isExpandable

Specifies whether the tree node is expandable; that is, whether there are nodes

below the current level.

Type

public boolean isExpandable

Notes

The isExpandable member variable indicates whether a node is expandable, as

Table 114 shows.

 Table 114. Types of nodes

Type of node Description Value of isExpandable

Expandable Node has child nodes true

Leaf (terminating) Node does not have child

nodes but is the terminating

point of a branch of the

source-node hierarchy

false

Only normal-nature nodes (nodes with their polymorphicNature member variable

set to NODE_NATURE_NORMAL) can have isExpandable set to true.

isGeneratable

Specifies whether the tree node is generatable; that is, whether the user can select

this node as one for which the ODA generates content.

Type

public boolean isGeneratable

name

Contains the name of the tree node.

Type

public String name

Notes

The name member variable displays in the Name column of the Select Source

dialog box.

nodes

Contains the expanded hierarchy of child tree nodes.

Type

public TreeNode[] nodes

Notes

The nodes member variable contains an array of TreeNode objects, one object for

each of this parent node’s children. A child node can, in turn, contain child nodes

(grandchildren of this parent node). This member variable is only used if the node

is expandable (not a leaf); that is, if the isExpandable member variable is true.

276 Business Object Development Guide

polymorphicNature

Indicates the valid actions the user can take on the tree node.

Type

public int polymorphicNature

Notes

The polymorphicNature member variable determines what actions the user can take

on the node when it displays in the Select Source dialog box of Business Object

Wizard. This variable contains an integer node-nature constant to indicate the

nature of the tree node. These node-nature constants are defined in the

ODKConstant interface, as Table 115 shows.

 Table 115. Nature of tree nodes

Nature of

tree node Description Node-nature constant

Normal The user can take either of the following actions:

v The user can select the node, if the node is a

leaf (terminating) node. Only leaf nodes can

be selected for generation into content.

v The user can expand the node to see more

nodes. Business Object Wizard displays a plus

(+) to the left of an expandable node name.

NODE_NATURE_NORMAL

File The user can associate a file from the local file

system with the node. Business Object Wizard

activates the Associate files menu item in the

pop-up menu that displays when the user

right-clicks on the node name. This menu item

opens a window for browsing system files. From

this window, the user can select which file to

associate with the node.

For a tree node that has a file node nature, the

ODA can use the getClientFile() method

(defined in the ODKUtility class) to obtain the

user-selected file’s contents.

NODE_NATURE_FILE

Note: Because the TreeNode class implements the ODKConstant interface, the

node-nature constants are available to the polymorphicNature member

variable without being qualified with the ODKConstant name.

For more information on node natures, see “Constructing the tree nodes” on page

117.

Method

Table 116 summarizes the method of the TreeNode class.

 Table 116. Member method of the TreeNode class.

Member method Description Page

TreeNode() Creates a tree-node object. page 275

Chapter 26. TreeNode class 277

TreeNode()

Creates a tree-node object.

Syntax

public TreeNode(String name, String desc, boolean isGen, boolean isExp);

public TreeNode(String name, String desc, boolean isGen, boolean isExp,

 TreeNode[] treeNodes);

public TreeNode(String name, String desc, boolean isGen, boolean isExp,

 TreeNode[] treeNodes, int nodeNature);

Parameters

desc Specifies the description of the node; the value of this parameter

initializes the description member variable (“description” on page

275).

isGen Specifies whether the node is “generatable” (that is, whether the

node can be converted to a business object definition); the value of

this parameter initializes the isGeneratable member variable

(“isGeneratable” on page 276).

isExp Specifies whether the node is expandable (that is, whether the

node is or is not a leaf); the value of this parameter initializes the

isExpandable member variable (“isExpandable” on page 276).

name Specifies the name of the node; the value of this parameter

initializes the name member variable (“name” on page 276).

nodeNature Indicates the nature of the node, as one of the following

node-nature constants:

ODKConstant.NODE_NATURE_FILE

ODKConstant.NODE_NATURE_NORMAL

treeNodes Specifies the fully expanded hierarchy of nodes; the value of this

parameter initializes the nodes member variable (“nodes” on page

276).

Return values

A newly instantiated TreeNode object.

Notes

The TreeNode() method provides the following forms to instantiate a tree node:

v The first form of the constructor allows you to specify the name and description

of the tree node, as well as whether it is generatable or expandable. In this form,

the child-nodes array (the nodes member variable) is initialized to null and the

node nature (the polymorphicNature member variable) is initialized to “normal”.

Use this form to initialize a leaf node.

v The second form of the constructor allows you to specify the child-nodes array

(in addition to the values that the first form specifies). In this form, the node

nature is initialized to “normal”. Use this form to initialize an expandable node.

v The third form of the constructor allows you to specify the node nature (in

addition to the values that the first and second forms specify). Use this form to

initialize a file-nature node.

For more information, see “Constructing the tree nodes” on page 117.

278 Business Object Development Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2004, 2005 279

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

280 Business Object Development Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

 WebSphere Business Integration Server Express and Express Plus include software

developed by the Eclipse Project (http://www.eclipse.org/).

WebSphere Business Integration Server Express, Version 4.4, and WebSphere

Business Integration Server Express Plus, Version 4.4

Notices 281

282 Business Object Development Guide

Index

A
Adapter 3, 66

Adapter Development Kit (ADK) 98

Adapter framework 97

addDefaultVerbs() method 202

Agent property 142, 152

array of 122

cardinality 143, 144, 177

class for 175

conditions 176

conditions on 143, 147, 217

contents of 143

creating 143, 181

default value 143, 146, 176

dependent 148, 233

dependent condition 148, 149, 233

description 143, 144, 178

determining if value is required 143, 180

encrypted 143, 178

hidden 143, 178

input condition 148, 247

multiple values 143, 177, 179

name 143, 180

read-only 143, 179

single value 147

type 143, 144, 175, 181

AgentMetaData class 105, 167, 169, 175

agentVersion 169

constructor 172

member variables 169

method summary 171

searchableNodes 169

searchPatternDesc 170

supportedContent 170

toXml() 173

AgentMetaData() constructor 106, 252

AgentMetaData() method 172

AgentProperty class 142, 167, 175, 185

allDefaultValues 176

allDependencies 176

allValidValues 176

allValues 177

cardinality 177

constructor 122, 181

copy() 182

description 178

isHidden 178

isMultiple 179

isReadOnly 179

isRequired 180

member variables 175

method summary 181

property-type constants 175

propName 180

type 181

TYPE_BOOLEAN 175

TYPE_DOUBLE 175

TYPE_FLOAT 175

TYPE_INTEGER 175

TYPE_STRING 175

AgentProperty() method 122, 143, 181

agentVersion member variable (AgentMetaData) 106, 169

allDefaultValues member variable (AgentProperty) 123, 143,

176

allDependencies member variable (AgentProperty) 143, 148,

176

allDependentConditions member variable

(CompleteCondition) 148, 218

allInputConditions member variable

(CompleteCondition) 148, 218

allValidValues member variable (AgentProperty) 123, 143,

144, 176

allValues member variable (AgentProperty) 108, 143, 177

Application-specific business object 3, 17, 38

application-specific information 34

attributes in 34

comparing to generic business objects 43

default values in 7

designing 31, 39, 43

foreign key 6

generating definitions for 66

structure 33

Application-specific information 8, 11, 34

example of processing 37

for a business object 9, 33, 127, 202, 209

for a verb 11, 214

for an attribute 10, 127, 131

metadata and 8, 35

storage of 8

suggested format 36

Attribute 4, 34

adding 59, 127, 207

application-specific information 10, 127, 131, 187, 193

as part of foreign key 6, 128, 191, 195

as part of primary key 6, 128, 191, 192, 196

cardinality 6, 128, 189, 194

changing order of 62

class for 127, 185

comment for 7, 128, 190, 195

creating 127, 187

default value 7, 60, 128, 190, 195

defining 127

determining number of 203

maximum length 6, 60, 128, 190, 196

name of 5, 59, 127, 191, 197

ordinal position of 204

properties 4, 32

relationship type 128, 191, 197

removing from attribute list 208

required 6

required in triggering event 192

retrieving 203, 204

type 5, 59, 128, 188, 189, 192, 193, 199

AttrTypes member variable (BusObjAttrTypes) 129, 199

B
badContent() method 223

BiDiBOTransformation() 229

BiDiBusObjTransformation() 230

bidirectional language
enabling 29

© Copyright IBM Corp. 2004, 2005 283

Bidirectional language parameter input dialog 31

bidirectional languages, Enabling connectors for 29

BiDiStringTransformation() 231

BiDiTransformation parameter in the Connector Configurator,

The 30

BinaryFile member variable (ContentType) 109, 138, 222, 225,

238

BOOLEAN attribute-type constant 188, 193, 199

Business object 3

child 12

designing 17, 44

flat 12, 17, 57

generic 3, 17, 39, 42, 43

hierarchical 12, 13, 19, 63

introduction to 3

mapping 43

parent 12

semantic relationship 20

structural relationship 19

structure 12, 17, 33

top-level 13

wrapper 13

Business object definition 4

adapter framework support for 97

application-specific information 9, 33, 125, 127, 202, 209

attribute list 125, 204, 207, 208, 210

class for 125, 201

content type of 109, 225

content-generation interface 241

contents of 4, 32, 125

creating 52, 57, 63, 66, 85, 125, 201

deleting 63

developing 57, 87

development process of 14

development support 98

editing 52

generating 94, 120, 241

name of 58, 125, 126, 205

number of attributes in 203

opening 49, 52

retrieving 133, 242

saving 75, 97

verb list 125, 202, 205, 206, 207, 209, 210

version of 189, 194, 206

Business Object Designer Express
Attributes window 52

business object definition window 58

creating business object definition 57

Edit menu 55

File menu 54

functionality of 53

General window 52

Import dialog box 50

Import Results dialog box 51

New Business Object dialog box 58

Open Business Object dialog box 45

opening business object definition 49

Preferences dialog box 56

Standard toolbar 56

starting 48, 67

status bar 56

toolbars 56

Tools menu 56

View menu 56

Window menu 56

Business Object Wizard 67, 89

Apply filter to node dialog box 80

Business Object Wizard (continued)
BO Properties dialog box 75, 84, 95, 139, 142, 264

Configure Agent dialog box 70, 91, 104, 142, 252

Confirm Source Nodes dialog box 74, 93

Enter a Search Pattern box 115

Enter a Search Pattern dialog box 81

Generating Business Objects screen 74, 94, 242

Object Path dialog box 82, 115

retrieving file for ODA 136, 265

Save Business Objects dialog box 75, 97

Select Agent dialog box 67, 69, 85, 91

Select Source dialog box 71, 80, 93, 113, 244, 257, 277

sending business-object properties to 95

sending configuration properties to 92

starting 67, 69

Business-object property 95, 121, 175

class for 95

initializing 122, 265

retrieving 124, 263, 264

sending to Business Object Designer Express 95

BusinessObject member variable (ContentType) 109, 222, 225

BusObjAttr class 167, 185, 197

attribute constants 185

CARD_MULTIPLE 185

CARD_SINGLE 185

constructor 129, 130, 187

getAppText() 187

getAttrType() 188

getAttrTypeName() 189

getBOVersion() 189

getCardinality() 189

getComments() 190

getDefault() 190

getMaxLength() 190

getName() 191

getRelationType() 191

isForeignKey() 191

isKey() 191

isRequiredKey() 192

isRequiredServerBound() 192

isSimpleType() 192

method summary 185

OBJECT_EVENT_ID 185

setAppText() 193

setAttrType() 193

setBOVersion() 194

setCardinality() 194

setComments() 195

setDefault() 195

setIsForeignKey() 195

setIsKey() 196

setIsRequiredKey() 196

setMaxLength() 196

setName() 197

setRelationType() 197

BusObjAttr() method 129, 130, 187

BusObjAttrType interface 167, 199, 201

attribute-type constants 199

AttrTypes 199

BOOLEAN 199

CIPHERTEXT 199

DATE 199

DOUBLE 199

FLOAT 199

INTEGER 199

INVALID_TYPE 199

LONGTEXT 199

284 Business Object Development Guide

BusObjAttrType interface (continued)
OBJECT 199

static member variable 199

STRING 199

BusObjDef class 167, 201, 211

addDefaultVerbs() 202

clone() 213

constructor 125, 126, 201

getAppInfo() 202

getAttrCount() 203

getAttribute() 203

getAttributeIndex() 204

getAttributeList() 204

getName() 205

getVerb() 205

getVerbCount() 206

getVerbList() 206

getVersion() 206

insertAttribute() 207

insertVerb() 207

method summary 201

removeAttribute() 208

removeVerb() 209

setAppInfo() 209

setAttributeList() 210

setVerbList() 210

BusObjDef() method 125, 126, 201

BusObjInvalidAttrException exception 260

BusObjInvalidDefException exception 260

BusObjInvalidVerbException exception 260

BusObjNoSuchAttrException exception 260

BusObjNoSuchVerbException exception 260

BusObjVerb class 167, 213, 215

constructor 132, 213

getAppInfo() 214

getName() 214, 215

method summary 213

setAppInfo() 214

BusObjVerb() method 132, 213

C
Callback content protocol 94, 110

constant for 110, 258

generating files 112, 138

providing access to content 134, 142

providing content 96, 140

CARD_MULTIPLE cardinality constant 185, 190, 194

CARD_SINGLE cardinality constant 185, 190, 194

Cardinality
constants 185, 256

for an agent property 143, 144

for an attribute 128

multiple 12, 27, 190

property 6

single 12, 27, 190

cardinality member variable (AgentProperty) 123, 143, 144,

177

Child business object 12

cardinality 189, 194

name of business object definition 189

relationship type 191, 197

version of business object definition 189, 194

CIPHERTEXT attribute-type constant 188, 193, 199

clone() method 213

CompleteCondition class 148, 167, 217, 219

allDependentConditions 218

CompleteCondition class (continued)
allInputConditions 218

constructor 218

copy() 219

member variables 217

method summary 218

OP_EQUAL 217

OP_EXISTS 217

OP_GREATER_THAN 217

OP_GREATER_THAN_EQUAL 217

OP_LESS_THAN 217

OP_LESS_THAN_EQUAL 217

OP_NOT_EQUAL 217

operator constants 217

CompleteCondition() method 218

Complex attribute 12

as a key 6

cardinality 6

type 5

Configurator, The BiDiTransformation parameter in the

Connector 30

Connector 97, 127

Connector configuration property
UseDefaults 7

Connector Configurator, The BiDiTransformation parameter in

the 30

connectors for bidirectional languages, Enabling 29

Constant
attribute 185

attribute-type 199

cardinality 185, 256

content-index 258

content-protocol 258

dialog-button 255, 269

dialog-icon 256, 269

message-type 157, 257, 271

node-nature 257

operator 217

property-type 175, 255

string-value 255

trace-level 257, 270

user-response 256, 268

user-response-dialog 255

CONTENT_PROTOCOL_CALLBACK content-protocol

constant 110, 239, 243, 258

CONTENT_PROTOCOL_ONREQUEST content-protocol

constant 110, 239, 243, 258

contentComplete() method 140, 261

ContentMetaData class 96, 167, 221, 224

badContent() 223

constructor 223

contentNotReady() 223

contentType 221

contentUnavailable() 224

count 222

length 222

member variables 221

method summary 222

ContentMetaData() method 223

contentNotReady() method 223

ContentType class 109, 167, 225, 228

BinaryFile 225

BusinessObject 225

constructor 226

equals() 226

from_int() 227

member variables 225

Index 285

ContentType class (continued)
method summary 226

toString() 227

value() 227

xmlObject() 227

contentType member variable (ContentMetaData) 221

ContentType() method 226

contentUnavailable() method 139, 224

copy() method (AgentProperty) 182

copy() method (CompleteCondition) 219

copy() method (DependentCondition) 236

copy() method (InputCondition) 249

count member variable (ContentMetaData) 222

CW_EMPTY_STRING string-value constant 255

CW_NULL_STRING string-value constant 255

CwBidiEngine class 229

CwBidiEngine method summary 229

CwODK.jar file 100, 102, 161, 167

D
Data source

connecting to 108

disconnecting from 152

querying 116

DATE attribute-type constant 188, 193, 199

DependentCondition class 148, 149, 167, 233, 236

constructor 235

copy() 236

isDynamic 233

member variables 233

method summary 235

operatorType 233

propertyName 234

specificValue 234

typeOfSpecificValue 234

DependentCondition() method 235

Deprecated methods
ODKAgentBase2 254

ODKUtility 272

description member variable (AgentProperty) 143, 144, 178

description member variable (TreeNode) 117, 275

Development process
business object definition 14

dialog, Bidirectional language parameter input 31

DOUBLE attribute-type constant 188, 193, 199

E
Enabling connectors for bidirectional languages 29

equals() method 226

Error handling 159

Error logging 153

Error message 153, 257

Event
description 143

Event isolation 41

Exception 159, 160, 259, 261

class for 259, 260

creating 159, 259

exception object 259

Exception object 159, 259

class for 259

contents of 159

message 159, 259

Exception subclass
BusObjInvalidAttrException 260

BusObjInvalidDefException 260

BusObjInvalidVerbException 260

BusObjNoSuchAttrException 260

BusObjNoSuchVerbException 260

ODKInvalidNodeException 260

ODKInvalidPropException 260

UnsupportedContentException 260

F
File 135

associating with a node 136

associating with tree node 82, 119, 277

creating 135

reading 136

retrieving 265

File (generated)
class for 135, 139

content type of 109, 225

content-generation interface 237

creating 139

generating 94, 135, 137, 237

retrieving 141, 238

FLOAT attribute-type constant 188, 193, 199

Foreign key attribute 6, 20, 24, 131

from_int() method 227

G
generateBinFiles() method 94, 137, 138, 237

generateBoDefs() method 94, 120, 137, 241

GET_ALL_OBJECTS content-index constant 134, 142, 239,

243, 258

getAgentProperties() method 92, 103, 251

getAgentProperty() method 107, 262

getAllAgentProperties() method 107, 263

getAllBOSpecificProperties() method 96, 125, 263

getAppInfo() method (BusObjDef) 125, 202

getAppInfo() method (BusObjVerb) 131, 214

getAppText() method 127, 187

getAttrCount() method 203

getAttribute() method 203

getAttributeIndex() method 204

getAttributeList() method 125, 204

getAttrType() method 128, 188

getAttrTypeName() method 128, 189

getBinFile() method 97, 142, 238

getBoDefs() method 97, 134, 242

getBOSpecificProperty() method 96, 125, 264

getBOSpecificProps() method 95, 124, 139, 264

getBOVersion() method 189

getCardinality() method 128, 189

getClientFile() method 136, 265, 277

getComments() method 128, 190

getContentProtocol() method 111, 239, 243

getDefault() method 128, 190

getMaxLength() method 128, 190

getMetaData() method 92, 105, 110, 252

getMsg() method (ODKException) 159, 259

getMsg() method (ODKUtility) 157, 266

getName() method (BusObjAttr) 127, 191

getName() method (BusObjDef) 125, 205

getName() method (BusObjVerb) 131, 214

getODKUtility() method 104, 267

286 Business Object Development Guide

getRelationType() method 128, 191

getTreeNodes() method 93, 113, 136, 244

getVerb() method 205

getVerbCount() method 206

getVerbList() method 125, 206

getVersion() method 109, 206, 253

H
Hierarchical business object 12

I
IGeneratesBinFiles interface 94, 109, 135, 167, 237, 240

generateBinFiles() 94, 138, 237

getBinFile() 97, 138, 142, 238

getContentProtocol() 111, 239

method summary 109, 237

IGeneratesBoDefs interface 94, 112, 167, 241, 245

generateBoDefs() 94, 120, 241

getBoDefs() 97, 134, 242

getContentProtocol() 111, 243

getTreeNodes() 93, 113

getTreeNotes() 244

method summary 109, 241

IGeneratesContent interface 111, 168

Informational message 153, 257

init() method 92, 107, 253

input dialog, Bidirectional language parameter 31

InputCondition class 148, 168, 247, 249

constructor 249

copy() 249

isDynamic 247

member variables 247

method summary 249

operatorType 247

specificValue 248

typeOfSpecificValue 248

InputCondition() method 249

insertAttribute() method 125, 129, 207

insertVerb() method 125, 131, 207

INTEGER attribute-type constant 129, 188, 193, 199

INVALID_TYPE attribute-type constant 188, 199

isDynamic member variable (DependentCondition) 150, 233

isDynamic member variable (InputCondition) 149, 247

isExpandable member variable (TreeNode) 117, 118, 276

isForeignKey() method 128, 191

isGeneratable member variable (TreeNode) 117, 118, 276

isHidden member variable (AgentProperty) 143, 178

isKey() method 128, 191

isMultiple member variable (AgentProperty) 123, 143, 144,

179

isReadOnly member variable (AgentProperty) 143, 179

isRequired member variable (AgentProperty) 123, 143, 180

isRequiredKey() method 128, 192

isRequiredServerBound() method 192

isSimpleType() method 192

J
Java Development Kit (JDK) 100

K
Key attribute 6, 60, 129, 131

L
language parameter input dialog, Bidirectional 31

languages, Enabling connectors for bidirectional 29

length member variable (ContentMetaData) 222

Log destination 152

Logging 153

sending a message 153

LONGTEXT attribute-type constant 188, 193, 199

M
Message 152

number 156, 157

parameters in 158

type 157

Message file 79, 155, 159

format 156

locales 79

location 156

maintaining 158

name 79, 156

retrieving message from 266

Message logging 233

MessageFile ODA configuration property 77, 79, 92, 156

Metadata 8, 35

method summary, CwBidiEngine 229

MSG_ABORTRETRYIGNORE dialog-button constant 256, 269

MSG_CRITICALERROR dialog-icon constant 256, 269

MSG_ERROR dialog-icon constant 256, 269

MSG_INFORMATION dialog-icon constant 256, 269

MSG_OK dialog-button constant 255, 269

MSG_OKCANCEL dialog-button constant 255, 269

MSG_QUESTION dialog-icon constant 256, 269

MSG_RETRYCANCEL dialog-button constant 255, 269

MSG_WARNING dialog-icon constant 256, 269

MSG_YESNO dialog-button constant 256, 269

MSG_YESNOCANCEL dialog-button constant 256, 269

MULTIPLE_CARD cardinality constant 145, 178, 256

N
name member variable (TreeNode) 117, 276

NODE_NATURE_FILE node-nature constant 258, 277

NODE_NATURE_NORMAL node-nature constant 257, 277

nodes member variable (TreeNode) 117, 118, 276

O
OBJECT attribute-type constant 188, 193, 199

Object Discovery Agent (ODA) 57, 66, 89

adapter framework support for 97

base class 101, 164, 251

Business Object Designer Express and 66

class for 91, 101, 162, 251

compiling 161

configuration properties 103

connecting to 70, 91

content metadata 96, 132, 140, 221

content protocol 110, 239, 243, 258

content type 93, 109, 221, 225

content-generation interface 93, 109

creating business object definition 66

developing 89, 160, 161, 164

development environment 100

development process of 97

Index 287

Object Discovery Agent (ODA) (continued)
development support 99

development tools for 97

generated-content structure 96, 108, 132, 140

generating business object definitions 112

generating files 135

initializing 107, 253

library file 162, 163

log destination 152

metadata 92, 105, 169, 252

monitoring 154

name of 161

package name 102, 161

profile 71, 77

providing content 96, 132, 140

running 90

running multiple 85

runtime directory 162, 163

sample 68, 99

search pattern 81, 106, 115

selecting 70, 91

shutting down 75, 152, 253

starting 67, 68, 103, 162

startup script 66, 67, 162

supported content 93, 106, 109, 112, 170

terminating 75, 152, 253

trace file 77

trace level 77

version 106, 109, 164, 169, 172

Object Discovery Agent Development Kit (ODK) 66, 99

Object Discovery Agent Development Kit (ODK) API 89, 99

AgentMetaData 169

AgentProperty 175

BusObjAttr 185

BusObjAttrType 199

BusObjDef 201

BusObjVerb 213

CompleteCondition 217

ContentMetaData 221

ContentType 225

DependentCondition 233

exceptions 159, 259

IGeneratesBinFiles 237

IGeneratesBoDefs 241

IGeneratesContent 111

InputCondition 247

ODKAgentBase 251

ODKAgentBase2 251

ODKConstant 255

ODKException 259

ODKUtility 261

overview 167, 169

package for 102, 167

TreeNode 275

OBJECT_EVENT_ID constant 185

ObjectEventId attribute 7, 59, 128, 185, 203

ODA configuration property 91, 175

class for 91

initializing 104, 252

MessageFile 77, 79, 92, 156, 267

obtaining 91

retrieving 107, 262, 263

saving in profile 71

sending to Business Object Designer 104, 251

setting 71

standard 77, 92

TraceFileName 77, 78, 92, 152, 271

ODA configuration property (continued)
TraceLevel 77, 78, 92, 154, 271

ODA runtime 89, 99, 109, 162, 253

ODK_ABORT user-response constant 256, 268

ODK_CANCEL user-response constant 256, 268

ODK_CLOSE user-response constant 256, 269

ODK_HELP user-response constant 256, 269

ODK_IGNORE user-response constant 256, 268

ODK_NO user-response constant 256, 268

ODK_OK user-response constant 256, 268

ODK_RETRY user-response constant 256, 268

ODK_YES user-response constant 256, 268

ODKAgentBase class 168, 251

ODKAgentBase2 class 101, 168, 251, 255

deprecated methods 254

extending 101, 164

generateDefs() 254

getAgentProperties() 92, 103, 251

getMetaData() 92, 105, 252

getTreeNodes() 254

getVersion() 109, 253

init() 92, 107, 253

method summary 251

terminate() 152, 253

ODKConstant interface 168, 255, 258

cardinality constants 256

content-index constant 258

content-protocol constants 258

CW_EMPTY_STRING 255

CW_NULL_STRING 255

GET_ALL_OBJECTS 258

message-type constants 257

MSG_ABORTRETRYIGNORE 256

MSG_CRITICALERROR 256

MSG_ERROR 256

MSG_INFORMATION 256

MSG_OK 255

MSG_OKCANCEL 255

MSG_QUESTION 256

MSG_RETRYCANCEL 255

MSG_WARNING 256

MSG_YESNO 256

MSG_YESNOCANCEL 256

MULTIPLE_CARD 256

NODE_NATURE_FILE 258

NODE_NATURE_NORMAL 257

node-nature constants 257

ODK_ABORT 256

ODK_CANCEL 256

ODK_CLOSE 256

ODK_HELP 256

ODK_IGNORE 256

ODK_NO 256

ODK_OK 256

ODK_RETRY 256

ODK_YES 256

SINGLE_CARD 256

string-value constants 255

trace-level constants 257

TRACELEVEL0 257

TRACELEVEL1 257

TRACELEVEL2 257

TRACELEVEL3 257

TRACELEVEL4 257

TRACELEVEL5 257

user-response-dialog constants 255

XRD_ERROR 257

288 Business Object Development Guide

ODKConstant interface (continued)
XRD_FATAL 257

XRD_INFO 257

XRD_TRACE 257

XRD_UNKNOWN 257

XRD_URGENTWARNING 257

XRD_WARNING 257

ODKException class 159, 168, 259, 261

constructor 259

getMsg() 259

method summary 259

subclasses 260

ODKException() method 259

ODKInvalidNodeException exception 260

ODKInvalidPropException exception 260

ODKUtility class 168, 261, 275

contentComplete() 140, 261

deprecated methods 272

filterData() 273

getAgentProperty() 262

getAllAgentProperties() 263

getAllBOSpecificProperties() 125, 263

getBOSpecificProperty() 125, 264

getBOSpecificProps() 95, 124, 264

getClientFile() 136, 265

getFilter() 273

getMsg() 266

getODKUtility() 104, 267

method summary 261

obtaining handle to 103, 261, 267

sendMsg() 268

sendStatusMsg() 270

setFilter() 273

trace() 270

On-request content protocol 94, 110

constant for 110, 258

generating business object definitions 112, 120

generating files 112, 138

providing access to content 134, 142

providing content 96, 132, 140

OP_EQUAL operator constant 217

OP_EXISTS operator constant 217

OP_GREATER_THAN operator constant 217

OP_GREATER_THAN_EQUAL operator constant 217

OP_LESS_THAN operator constant 217

OP_LESS_THAN_EQUAL operator constant 217

OP_NOT_EQUAL operator constant 217

operatorType member variable (DependentCondition) 150,

233

operatorType member variable (InputCondition) 149, 247

P
parameter in the Connector Configurator, The

BiDiTransformation 30

parameter input dialog, Bidirectional language 31

PATH environment variable 100

polymorphicName member variable (TreeNode) 117

polymorphicNature member variable (TreeNode) 118, 120,

136, 277

Primary key 20

Project 45, 48, 49

local 45

propertyName member variable (DependentCondition) 150,

234

propName member variable (AgentProperty) 143, 180

R
removeAttribute() method 125, 208

removeVerb() method 125, 209

Repository 14, 128

Required attribute 6

S
searchableNodes member variable (AgentMetaData) 106, 116,

169

searchPatternDesc member variable (AgentMetaData) 106,

116, 170

sendMsg() method 255, 268

sendStatusMsg() method 270

setAppInfo() method (BusObjDef) 125, 127, 209

setAppInfo() method (BusObjVerb) 131, 214

setAppText() method 127, 131, 193

setAttributeList() method 125, 131, 210

setAttrType() method 128, 193

setBOVersion() method 194

setCardinality() method 128, 194

setComments() method 128, 195

setDefault() method 128, 129, 195

setIsForeignKey() method 128, 195

setIsKey() method 128, 129, 196

setIsRequiredKey() method 128, 196

setMaxLength() method 128, 196

setName() method (BusObjAttr) 127, 197

setName() method (BusObjVerb) 131, 215

setRelationType() method 128, 197

setVerbList() method 125, 132, 210

Simple attribute 12

cardinality 6, 12

type 5

SINGLE_CARD cardinality constant 145, 178, 256

specificValue member variable (DependentCondition) 150,

234

specificValue member variable (InputCondition) 149, 248

STRING attribute-type constant 188, 193, 199

summary, CwBidiEngine method 229

supportedContent member variable (AgentMetaData) 106,

170

System Manager 46, 65

T
terminate() method 152, 253

The BiDiTransformation parameter in the Connector

Configurator 30

toString() method 227

toXml() method 173

Trace file 78, 152

Trace message 154, 257

trace() method 152, 153, 157, 257, 270

TraceFileName ODA configuration property 77, 78, 92, 152

TraceLevel ODA configuration property 77, 78, 92, 154

TRACELEVEL0 trace-level constant 154, 257, 270, 271

TRACELEVEL1 trace-level constant 155, 257, 270, 271

TRACELEVEL2 trace-level constant 155, 257, 270, 271

TRACELEVEL3 trace-level constant 155, 257, 270, 271

TRACELEVEL4 trace-level constant 155, 257, 270, 271

TRACELEVEL5 trace-level constant 155, 257, 270, 271

Tracing 77, 79, 152, 159, 257

trace levels 77, 78, 153, 154, 257, 271

Tree node
associating file with 82, 119, 136, 277

Index 289

Tree node (continued)
class for 117, 275

constructing 114, 117, 244

contents of 117

creating 117, 278

description 117, 275

expandable 73, 114, 117, 276, 277

generatable 117, 276

hierarchy of 276

leaf 118, 277

name of 117, 276

node nature 117, 257, 277

search pattern 106, 169, 170

valid user actions on 257, 277

TreeNode class 117, 168, 275, 278

constructor 117, 278

description 275

isExpandable 276

isGeneratable 276

member variables 275

method summary 277

name 276

nodes 276

polymorphicNature 277

TreeNode() method 117, 278

Triggering event 62

type member variable (AgentProperty) 143, 144, 181

TYPE_BOOLEAN property-type constant 175

TYPE_DOUBLE property-type constant 175

TYPE_FLOAT property-type constant 175

TYPE_INTEGER property-type constant 175

TYPE_STRING property-type constant 175

typeOfSpecificValue member variable

(DependentCondition) 150, 234

typeOfSpecificValue member variable (InputCondition) 149,

248

U
UnsupportedContentException exception 260

UseDefaults connector configuration property 7

V
value() method 227

Verb 4, 7, 131

adding 62, 131, 207

application-specific information 11, 131, 214

class for 131, 213

creating 131, 213

default 62, 202

deleting 62, 209

determining number of 206

name of 62, 131, 214, 215

retrieving 205, 206

W
Warnings 153, 257

X
XML format

converting content type to 227

converting ODA metadata to 173

xmlObject() method 227

XRD_ERROR message-type constant 154, 157, 257, 267, 271

XRD_FATAL message-type constant 154, 157, 257, 267, 271

XRD_INFO message-type constant 154, 157, 257, 267, 271

XRD_TRACE message-type constant 155, 157, 257, 271

XRD_UNKNOWN message-type constant 257

XRD_URGENTWARNING message-type constant 154, 157,

257, 267, 271

XRD_WARNING message-type constant 154, 157, 257, 267,

271

290 Business Object Development Guide

����

Printed in USA

	Contents
	About this document
	Audience
	Related documents
	Typographic conventions

	New in this release
	New in release 4.4
	New in release 4.3.1
	New in release 4.3

	Part 1. Designing and developing business objects
	Chapter 1. Business objects
	Business objects in the WebSphere Business integration Server Express system
	Business object definitions
	Business object attributes and attribute properties
	Business object verbs
	Business object application-specific information

	Business object instances

	Business object structure
	Flat business objects
	Hierarchical business objects

	Overview of the development process
	Setting up the development environment
	Stages of business object development

	Chapter 2. Business object design
	Determining business object structure
	Representing one entity
	Representing multiple entities
	Structural relationships
	Semantic relationships
	Flat business object representing related entities

	Design considerations for multiple entities
	Data ownership in relationships
	Choosing between a semantic and a structural relationship

	Enabling business objects for bidirectional scripts
	Enabling connectors for bidirectional scripts

	Designing application-specific business objects
	Contents of application-specific business object definitions
	Structure of application-specific business objects
	Attributes in an application-specific business object
	Business object application-specific information

	Designing for an existing connector or data handler

	Designing generic business objects (InterChange Server Express only)
	Generic business object design standards
	Designing for event isolation
	Attributes in a generic business object
	Evaluating existing generic business objects

	Determining mapping requirements for business objects (InterChange Server Express only)

	Chapter 3. Using Business Object Designer Express
	Working with projects
	If Business Object Designer Express is running without System Manager
	How Business Object Designer Express works with a local project

	If Business Object Designer Express is running from System Manager
	How Business Object Designer Express works with an ICL-based project

	Starting Business Object Designer Express
	Opening a business object definition from Business Object Designer Express
	Opening a business object definition from a project
	Opening a definition from a file
	Preventing duplicate definition names

	Working with business object definitions
	Opening a business object definition and its contained child

	Business Object Designer Express functionality
	File menu
	Edit menu
	View menu
	Tools menu
	Window menu

	Chapter 4. Developing business object definitions
	Creating a business object definition
	Creating a flat business object definition manually
	Adding attributes
	Changing attribute order
	Specifying the supported verbs

	Creating a hierarchical business object definition manually

	Deleting a business object definition
	Deleting a definition using Business Object Designer Express
	Deleting a definition using System Manager

	Using an Object Discovery Agent to create a business object definition
	Before using an ODA
	System startup files
	Starting the ODA
	Starting Business Object Designer Express

	Using the sample ODA
	Starting the sample ODA
	Using the ODA to create business object definitions

	Entering values and saving a profile
	Setting up logging and tracing
	Specifying the trace file and trace level
	Specifying the ODA message file

	Moving through the source-node hierarchy
	Limiting display of child nodes
	Specifying an object path
	Associating an operating-system file

	Providing additional information
	Using multiple ODAs simultaneously
	Working with error and trace message files

	Part 2. Developing an Object Discovery Agent
	Chapter 5. Developing an Object Discovery Agent
	Running an ODA
	Selecting the ODA
	Obtaining ODA configuration properties
	Selecting and confirming source data
	Generating content
	Obtaining business-object properties
	Providing generated content

	Saving content

	Overview of the ODA development process
	Tools for ODA development
	Adapter Development Kit
	Development support for business object definitions
	Development support for ODAs

	ODA development process
	Setting up the development environment
	Stages of ODA development

	Extending the ODA base class
	Starting the ODA
	Obtaining configuration properties
	Obtaining the handle to the ODKUtility object
	Initializing the configuration-property array

	Initializing ODA metadata
	Initializing the ODA start
	Retrieving ODA configuration properties
	Establishing a connection
	Checking the ODA version

	Determining the ODA generated content
	Choosing the ODA content type
	Choosing the ODA content protocol
	Indicating the implemented content protocols
	Implementing the content-generation method

	Generating business object definitions as content
	Generating source nodes
	Determining the parent-node path
	Implementing the search-pattern feature
	Querying the data source
	Constructing the tree nodes

	Generating business object definitions
	Defining the generateBoDefs() method
	Requesting business-object properties
	Creating the business object definitions
	Providing generated business object definitions

	Providing access to generated business object definitions

	Generating binary files as content
	Using files
	Creating files for file content
	Reading files for source data

	Generating files
	Defining the generateBinFiles() method
	Requesting properties for file information
	Creating the files
	Providing generated files

	Providing access to generated files

	Working with agent properties
	Defining the agent property
	Defining the property value
	Choosing the type of display control
	Specifying default values
	Initializing a single-cardinality property
	Initializing a multiple-cardinality property

	Setting conditions on the property value
	Defining the complete condition
	Defining input conditions
	Defining dependent conditions
	Defining a sample condition

	Shutting down the ODA
	Handling trace and error messages
	Indicating a log destination
	Sending a message to the trace file
	Error and informational messages
	Trace messages

	Message files
	Message format
	Name and location of a message file
	Generating a message string
	Maintaining the message file

	Handling exceptions
	What is an ODK exception?
	Exceptions from the ODK API library

	Chapter 6. Adding an Object Discovery Agent to the business integration system
	Naming the ODA
	Compiling the ODA
	Starting up a new ODA
	Preparing the ODA run-time directory
	Creating startup scripts
	Creating the startup script
	Creating the shortcut

	Part 3. ODK class reference
	Chapter 7. Overview of the ODK API
	Classes and interfaces

	Chapter 8. AgentMetaData class
	Member variables
	agentVersion
	searchableNodes
	searchPatternDesc
	supportedContent

	Methods
	AgentMetaData()
	toXml()

	Chapter 9. AgentProperty class
	Property-type constants
	Member variables
	allDefaultValues
	allDependencies
	allValidValues
	allValues
	cardinality
	description
	isHidden
	isMultiple
	isReadOnly
	isRequired
	propName
	type

	Methods
	AgentProperty()
	copy()

	Chapter 10. BusObjAttr class
	Attribute constants
	Methods
	BusObjAttr()
	getAppText()
	getAttrType()
	getAttrTypeName()
	getBOVersion()
	getCardinality()
	getComments()
	getDefault()
	getMaxLength()
	getName()
	getRelationType()
	isForeignKey()
	isKey()
	isRequiredKey()
	isRequiredServerBound()
	isSimpleType()
	setAppText()
	setAttrType()
	setBOVersion()
	setCardinality()
	setComments()
	setDefault()
	setIsForeignKey()
	setIsKey()
	setIsRequiredKey()
	setMaxLength()
	setName()
	setRelationType()

	Chapter 11. BusObjAttrType interface
	Attribute-type constants
	Static member variable

	Chapter 12. BusObjDef class
	BusObjDef()
	addDefaultVerbs()
	getAppInfo()
	getAttrCount()
	getAttribute()
	getAttributeIndex()
	getAttributeList()
	getName()
	getVerb()
	getVerbCount()
	getVerbList()
	getVersion()
	insertAttribute()
	insertVerb()
	removeAttribute()
	removeVerb()
	setAppInfo()
	setAttributeList()
	setVerbList()

	Chapter 13. BusObjVerb class
	BusObjVerb()
	clone()
	getAppInfo()
	getName()
	setAppInfo()
	setName()

	Chapter 14. CompleteCondition class
	Operator constants
	Member variables
	allDependentConditions
	allInputConditions

	Methods
	CompleteCondition()
	copy()

	Chapter 15. ContentMetaData class
	Member variables
	contentType
	count
	length

	Methods
	ContentMetaData()
	badContent()
	contentNotReady()
	contentUnavailable()

	Chapter 16. ContentType class
	Member variables
	BinaryFile
	BusinessObject

	Methods
	ContentType()
	equals()
	from_int()
	toString()
	value()
	xmlObject()

	Chapter 17. CxBiDiEngine class
	BiDiBOTransformation()
	BiDiBusObjTransformation()
	BiDiStringTransformation()

	Chapter 18. DependentCondition class
	Member variables
	isDynamic
	operatorType
	propertyName
	specificValue
	typeOfSpecificValue

	Methods
	DependentCondition()
	copy()

	Chapter 19. IGeneratesBinFiles interface
	generateBinFiles()
	getBinFile()
	getContentProtocol()

	Chapter 20. IGeneratesBoDefs interface
	generateBoDefs()
	getBoDefs()
	getContentProtocol()
	getTreeNodes()

	Chapter 21. InputCondition class
	Member variables
	isDynamic
	operatorType
	specificValue
	typeOfSpecificValue

	Methods
	InputCondition()
	copy()

	Chapter 22. ODKAgentBase2 class
	getAgentProperties()
	getMetaData()
	getVersion()
	init()
	terminate()
	Deprecated Methods

	Chapter 23. ODKConstant interface
	String-value constants
	User-response-dialog constants
	Cardinality constants
	Trace-level constants
	Message-type constants
	Node-nature constants
	Content-protocol constants
	Content-index constant

	Chapter 24. ODKException class
	Methods
	ODKException()
	getMsg()

	Exception subclasses

	Chapter 25. ODKUtility class
	contentComplete()
	getAgentProperty()
	getAllAgentProperties()
	getAllBOSpecificProperties()
	getBOSpecificProperty()
	getBOSpecificProps()
	getClientFile()
	getMsg()
	getODKUtility()
	sendMsg()
	sendStatusMsg()
	trace()
	Deprecated Methods

	Chapter 26. TreeNode class
	Member variables
	description
	isExpandable
	isGeneratable
	name
	nodes
	polymorphicNature

	Method
	TreeNode()

	Notices
	Programming interface information
	Trademarks and service marks

	Index

