
IBM WebSphere Business Integration Server Express

and Express Plus

Adapter for Healthcare Data Protocols User

Guide

Version 1.1.0

���

Note!

Before using this information and the product it supports, read the information in Appendix E, “Notices,” on page 135.

21Sept2005

This edition of this document applies to IBM WebSphere Integration Adapter for Healthcare Protocols, version 1.1.0,

to all subsequent releases and modifications until otherwise indicated in new editions

To send us your comments about this document, email doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . v

Audience . v

Prerequisites for this document . v

Related documents . v

Typographic conventions . vi

New in this release . vii

New in release 1.1 . vii

Chapter 1. Overview . 1

Connector architecture . 1

Application-connector communication method . 3

Event handling . 4

Guaranteed event delivery . 8

Business object requests . 8

Message processing . 8

Error handling . 13

Tracing . 13

Chapter 2. Configuring the connector . 15

Compatibility . 15

Prerequisites . 15

Installing the adapter and related files . 16

Installed file structures . 16

Connector configuration . 17

Enabling guaranteed event delivery . 23

Meta-object attributes configuration . 27

Startup file configuration . 42

Creating multiple instances of connectors on one server . 43

Starting the connector . 45

Stopping the connector . 46

Chapter 3. Business objects . 49

Connector business object requirements . 49

Overview of the HL7 message structure . 52

Overview of business objects for HL7 . 53

Mapping repeating data elements . 54

ISBO definitions . 54

BO Name . 54

BO AppSpecificInfo . 57

BO attribute structure . 59

BO Attribute Property Name . 62

BO attribute property type . 65

BO attribute property Iskey . 67

BO attribute property IsForeignKey . 68

BO attribute property Cardinality . 69

BO attribute property MaxLength . 71

BO attribute property IsRequired . 72

BO attribute property Relationship . 74

BO attribute property AppSpecificInfo . 75

HL7 Business Objects . 78

Chapter 4. Troubleshooting . 81

Startup problems . 81

© Copyright IBM Corp. 2004, 2005 iii

Event processing . 81

Appendix A. Standard configuration properties for connectors 83

New properties . 83

Standard connector properties overview . 83

Standard properties quick-reference . 85

Standard properties . 89

Appendix B. Connector Configurator Express 103

Overview of Connector Configurator Express . 103

Starting Connector Configurator Express . 104

Running Configurator from System Manager . 104

Creating a connector-specific property template . 105

Creating a new configuration file . 107

Using an existing file . 109

Completing a configuration file . 110

Setting the configuration file properties . 110

Saving your configuration file . 117

Completing the configuration . 117

Using Connector Configurator Express in a globalized environment 117

Appendix C. HL7 message structure . 119

HL7 messages . 119

Appendix D. Business object minimal extractor utility 133

Example invocation . 133

Appendix E. Notices . 135

Programming interface information . 136

Trademarks and service marks . 137

iv Adapter for Healthcare Data Protocols User Guide

About this document

The products IBM(R) WebSphere(R) Business Integration Server Express and IBM(R)

WebSphere(R) Business Integration Server Express Plus are made up of the

following components: InterChange Server Express, the associated Toolset Express,

CollaborationFoundation, and a set of software integration adapters. The tools in

Toolset Express help you to create, modify, and manage business processes. You

can choose from among the prepackaged adapters for your business processes that

span applications. The standard processess template--CollaborationFoundation--
allows you to quickly create customized processes.

The adapter supplies integration connectivity for leading e-business technologies,

enterprise applications, legacy, and mainframe systems. The product set includes

tools and templates for customizing, creating, and managing components for

business process integration.

This document describes the installation, configuration, business object

development, and troubleshooting for the IBM WebSphere Business Integration

Server Express and Express Plus Adapter for Healthcare Data Protocols.

Except where noted, all the information in this guide applies to both IBM

WebSphere Business Integration Server Express and IBM WebSphere Business

Integration Server Express Plus. The term ″WebSphere Business Integration Server

Express″ and its variants refer to both products.

Audience

This document is for consultants, developers, and system administrators who

support and manage the WebSphere business integration system at customer sites.

Prerequisites for this document

Users of this document should be familiar with

v the WebSphere Business Integration Server Express system

v business object development

v the WebSphere MQ application

v the Healthcare data protocols

Related documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Server

Express installations, and includes reference material on specific components.

This document contains many references to other documents: the WebSphere

Business Integration Server Express Installation Guide for Windows, for Linux, or for

i5/OS and the System Implementation Guide. If you choose to print this document,

you may want to print these documents as well.

You can download, install, and view the documentation at the following site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

© Copyright IBM Corp. 2004, 2005 v

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue text Blue text, which is visible only when you view the manual

online, indicates a cross-reference hyperlink. Click any blue

text to jump to the object of the reference.

ProductDir Represents the directory where the IBM WebSphere Business

Integration Server Express and Express Plus adapter product

is installed. The CROSSWORLDS environment variable

contains the ProductDir directory path for Server Express.

The default for Windows is IBM\WebSphereServer\, the

default for Linux is IBM/WebSphereServer/, and the default

for i5/OS is QIBM/ProdData/WBIServer44/.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For Linux and i5/OS installations,

substitute slashes (/) for backslashes. All product pathnames

are relative to the directory where the product is installed on

your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows text system variable or user variable. The

equivalent notation in a Linux environment is $text,

indicating the value of the text Linux environment variable.

vi Adapter for Healthcare Data Protocols User Guide

New in this release

New in release 1.1

This is the first release of this guide.

© Copyright IBM Corp. 2004, 2005 vii

viii Adapter for Healthcare Data Protocols User Guide

Chapter 1. Overview

v “Connector architecture”

v “Application-connector communication method” on page 3

v “Event handling” on page 4

v “Guaranteed event delivery” on page 8

v “Business object requests” on page 8

v “Message processing” on page 8

v “Error handling” on page 13

v “Tracing” on page 13

The connector for the Healthcare datahandlers, Healthcare Level Seven (HL7) and

National Council for Drug Control programs (NCPDP) message standard, is a

runtime component of the WebSphere Business Integration Server Express Adapter

for Healthcare Data Protocols. Both HL7 and NCPDP message standards refer to

other well-defined standards, such as various ISO and ANSI standards. The

connector allows the integration broke, InterChange Server Express, to exchange

business objects with healthcare-enabled business processes.

Connectors consist of an application-specific component and the connector

framework. The application-specific component contains code tailored to a

particular application. The connector framework, whose code is common to all

connectors, acts as an intermediary between InterChange Server Express and the

application-specific component. The connector framework provides the following

services between InterChange Server Express and the application-specific

component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and

connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the

connector, see the System Administration Guide or the System Implementation Guide.

All WebSphere Business Integration Server Express integration adapters operate

with the integration broker, InterChange Server Express.

The connector for the healthcare data protocol allows InterChange Server Express

to exchange business objects with applications that send or receive data in the form

of HL7/NCPDP messages.

Connector architecture

The connector allows WebSphere business processes to asynchronously exchange

business objects with applications that issue or receive healthcare (HL7/NCPDP)

data protocol messages when changes to data occur.

As shown in Figure 1, the connector interacts with several components whose

collective purpose is to bridge the world of WebSphere business objects with that

of healthcare messages.

© Copyright IBM Corp. 2004, 2005 1

The healthcare environment is made up of various components that are described

below.

Connector for Healthcare

The connector for healthcare is metadata-driven. Message routing and format

conversion are initiated by an event polling technique. The connector retrieves

WebSphere MQ messages from queues, calls the healthcare data handler to convert

messages to their corresponding business objects, and then delivers the objects to

the corresponding business processes. In the opposite direction, the connector

receives business objects from the integration broker, InterChange Server Express,

converts them into healthcare messages using the same data handler, and then

delivers the messages to an WebSphere MQ queue.

The type of business object and verb used in processing a message are based on

the metadata in the Format field of the WebSphere MQ message header. You

construct a meta-object to store the business object name and verb to associate with

the WebSphere MQ message header Format field text.

You can optionally construct a dynamic meta-object that is added as a child to the

business object passed to the connector. The child meta-object values override

those specified in the static meta-object that is specified for the connector as a

whole. If the child meta-object is not defined or does not define a required

conversion property, the connector, by default, examines the static meta-object for

Healthcare
Data Handler

IBM WebSphere Integration
Broker (Processes)

Connector for
Healthcare

(HL7/NCPDP)

MQSeries Output Queue MQSeries Input Queue

MQ Channels

outgoing
messages

incoming
messages

Figure 1. Healthcare data handler architecture

2 Adapter for Healthcare Data Protocols User Guide

the value. You can specify one or more dynamic child meta-objects instead of, or to

supplement, a single static connector meta-object.

The connector can poll multiple input queues, polling each in a round-robin

manner and retrieving a configurable number of messages from each queue. For

each message retrieved during polling, the connector adds a dynamic child

meta-object (if specified in the business object). The child meta-object values can

direct the connector to populate attributes with the format of the message as well

as with the name of the input queue from which the message was retrieved.

When a message is retrieved from the input queue, the connector looks up the

business object name associated with the FORMAT text field. The message, along

with the business object name, is then passed to the data handler. If a business

object is successfully populated with message content, the connector checks to see

if it a collaboration subscribes to it, and then delivers it to the integration broker

using the gotApplEvents() method.

Healthcare data handler

The connector calls the heathcare data handler to convert business objects into

HL7/NCPDP messages and vice versa.

WebSphere MQ

The connector for the Healthcare data handler uses an MQ implementation of the

JavaTM Message Service (JMS), an API for accessing enterprise-messaging systems.

This makes possible interaction with incoming and outgoing WebSphere MQ event

queues.

MQ channels

The WebSphere MQ event queues exchange messages with the WebSphere MQ

Interface. The software integrates WebSphere MQ messaging capabilities with

HL7/NCPDP message types, performing delivery, acknowledgement, queue

management, timestamping, and other functions.

Application-connector communication method

The connector makes use of IBM’s WebSphere MQ implementation of the Java

Message Service (JMS). The JMS is an open-standard API for accessing

enterprise-messaging systems. It is designed to allow business applications to

asynchronously send and receive business data and events.

Message request

Figure 2 illustrates a message request communication.

1. The connector framework receives a business object representing an healthcare

message from the integration broker.

2. The connector passes the business object to the data handler.

3. The data handler converts the healthcare business object into an

HL7/NCPDP-compliant message.

4. The connector dispatches the HL7/NCPDP-compliant message to the

WebSphere MQ output queue.

5. The JMS layer makes the appropriate calls to open a queue session and routes

the message to the MQ Series input queue.

Chapter 1. Overview 3

Event delivery

Figure 2 illustrates the message return communication.

1. The polling method retrieves the next applicable message from the WebSphere

MQ input queue.

2. The data handler converts the message into a business object.

3. The HL7 data handler receives the business object and sets the verb in it to the

default verb specified in the data handler-specific meta-object.

4. The connector then determines whether the business object is subscribed to by

the integration broker. If so, the connector framework delivers the business

object to the integration broker, and the message is removed from the

in-progress queue.

Event handling

For event notification, the connector detects an event written to a queue by an

application, rather than by a database trigger, when messages are stored in the

WebSphere MQ queue.

Retrieval

The connector uses a polling method to poll the WebSphere MQ input queue at

regular intervals for messages. When the connector finds a message, it retrieves it

from the WebSphere MQ input queue and examines it to determine its format. If

the format has been defined in the connector’s static or child meta-objects, the

connector uses the data handler to generate an appropriate business object with a

verb.

Integration broker

Healthcare
Business

Object

Connector
MQSeries Input Queue

Healthcare
data handler

HL7/NCPDP
message

1

2

4

3

In-progress queue

Figure 2. Application-connector communication method: Message request

4 Adapter for Healthcare Data Protocols User Guide

In-progress queue

The connector processes messages by first opening a transactional session to the

WebSphere MQ queue. This transactional approach allows for a small chance that a

business object could be delivered to a business process twice due to the connector

successfully submitting the business object but failing to commit the transaction in

the queue. To avoid this problem, the connector moves all messages to an

in-progress queue. There, the message is held until processing is complete. If the

connector shuts down unexpectedly during processing, the message remains in the

in-progress queue instead of being reinstated to the original WebSphere MQ queue.

Note: Transactional sessions with a JMS service provider require that every

requested action on a queue be performed and committed before events are

removed from the queue. Accordingly, when the connector retrieves a

message from the queue, it does not commit to the retrieval until: 1) The

message has been converted to a business object; 2) the business object is

delivered to the integration broker, and 3) a return value is received.

Synchronous acknowledgment

To support applications that require feedback on the requests they issue, the

connector for healthcare can issue report messages to the applications detailing the

outcome of their requests once they have been processed.

To achieve this, the connector posts the business data for such requests

synchronously to the integration broker. If the business object is successfully

processed, the connector sends a report back to the requesting application

including the return code from the integration broker and any business object

changes. If the connector or the integration broker fails to process the business

object, the connector sends a report containing the appropriate error code and error

message.

In either case, an application that sends a request to the connector for Healthcare is

notified of its outcome.

If the connector for healthcare receives any messages requesting positive or

negative acknowledgment reports (PAN or NAN), it posts the content of the

message synchronously to the integration broker and then incorporates the return

code and modified business data in to a report message that is sent back to the

requesting application.

Table 1 shows the required structure of messages sent to the connector to be

processed synchronously.

 Table 1. Required structure of synchronous WebSphere MQ messages

MQMD Field (message

descriptor) Description

Supported values (multiple values

should be OR’d)

MessageType Message type DATAGRAM

Chapter 1. Overview 5

Table 1. Required structure of synchronous WebSphere MQ messages (continued)

MQMD Field (message

descriptor) Description

Supported values (multiple values

should be OR’d)

Report Options for

report message

requested

You can specify one or both of the

following:

v MQRO_PAN The connector sends a report

message if the business object can be

successfully processed.

v MQRO_NANThe connector sends a report

message if an error occurred while

processing the business object.

You can specify one of the following to

control how the correlation ID of the

report message is to be set:

v MQRO_COPY_MSG_ID_TO_CORREL_IDThe

connector copies the message ID of the

request message to the correlation ID of

the report. This is the default action.

v MQRO_PASS_CORREL_IDThe connector

copies the correlation ID of the request

message to the correlation ID of the

report.

ReplyToQueue Name of reply

queue

The name of the queue to which the

report message should be sent.

ReplyToQueueManager Name of queue

manager

The name of the queue manager to which

the report message should be sent.

Message Body A serialized business object in a format

compatible with the data handler

configured for the connector.

Upon receipt of a message as described in Table 1, the connector:

1. Reconstructs the business object in the message body using the configured data

handler.

2. Looks up the business process specified for the business object and verb in the

static metadata object.

3. Posts the business object synchronously to the specified process.

4. Generates a report encapsulating the result of the processing and any business

object changes or error messages.

5. Sends the report to the queue specified in the replyToQueue and

replyToQueueManager fields of the request.

Table 2 shows the structure of the report that is sent to the requesting application

from the connector.

 Table 2. Structure of the report returned to the requesting application

MQMD field Description

Supported values (multiple values should

be OR’d)

MessageType Message type REPORT

6 Adapter for Healthcare Data Protocols User Guide

Table 2. Structure of the report returned to the requesting application (continued)

MQMD field Description

Supported values (multiple values should

be OR’d)

feedback Type of report One of the following:

v MQRO_PAN If the business object is

successfully processed.

v MQRO_NANIf the connector or the

integration broker encountered an error

while processing the request.

Message Body If the business object is successfully

processed, the connector populates the

message body with the business object

returned by the integration broker. This

default behavior can be overridden by

setting the DoNotReportBusObj property to

true in the static metadata object.

If the request could not be processed, the

connector populates the message body

with the error message generated by the

connector or the integration broker.

Recovery

Upon initialization, the connector checks the in-progress queue for messages that

have not been completely processed, presumably due to a connector shutdown.

The connector configuration property InDoubtEvents allows you to specify one of

four options for handling recovery of such messages: fail on startup, reprocess,

ignore, or log error.

Fail on startup

With the fail on startup option, if the connector finds messages in the in-progress

queue during initialization, it logs an error and immediately shuts down. It is the

responsibility of the user or system administrator to examine the message and take

appropriate action, either to delete these messages entirely or move them to a

different queue.

Reprocess

With the reprocessing option, if the connector finds any messages in the

in-progress queue during initialization, it processes these messages first during

subsequent polls. When all messages in the in-progress queue have been

processed, the connector begins processing messages from the input queue.

Ignore

With the ignore option, if the connector finds any messages in the in-progress

queue during initialization, the connector ignores them but does not shut down.

Log error

With the log error option, if the connector finds any messages in the in-progress

queue during initialization, it logs an error but does not shut down.

Archiving

If the connector property ArchiveQueue is specified and identifies a valid queue,

the connector places copies of all successfully processed messages in the archive

queue. If ArchiveQueue is undefined, messages are discarded after processing.

Chapter 1. Overview 7

Guaranteed event delivery

The guaranteed-event-delivery feature enables the connector framework to ensure

that events are never lost and never sent twice between the connector’s event

store, the JMS event store, and the destination’s JMS queue. To become

JMS-enabled, you must configure the connectorDeliveryTransport standard

property to JMS. Thus configured, the connector uses the JMS transport and all

subsequent communication between the connector and the integration broker

occurs through this transport. The JMS transport ensures that the messages are

eventually delivered to their destination. Its role is to ensure that once a

transactional queue session starts, the messages are cached there until a commit is

issued; if a failure occurs or a rollback is issued, the messages are discarded.

Note: Without use of the guaranteed-event-delivery feature, a small window of

possible failure exists between the time that the connector publishes an

event (when the connector calls the gotApplEvent() method within its

pollForEvents() method) and the time it updates the event store by deleting

the event record (or perhaps updating it with an “event posted” status). If a

failure occurs in this window, the event has been sent but its event record

remains in the event store with an “in progress” status. When the connector

restarts, it finds this event record still in the event store and sends it,

resulting in the event being sent twice.

You can configure the guaranteed-event-delivery feature for a JMS-enabled

connector with, or without, a JMS event store. To configure the connector for

guaranteed event delivery, see “Enabling guaranteed event delivery” on page 23.

If connector framework cannot deliver the business object to the integration broker,

the object is placed on a FaultQueue (instead of UnsubscribedQueue and

ErrorQueue) and generates a status indicator and a description of the problem.

FaultQueue messages are written in MQRFH2 format.

Business object requests

Business object requests are processed when the integration broker issues a

business object. Using the healthcare data handler, and depending on the

requirements specified in the subscription meta-object, the connector can transform

HL7 and NCPDP objects before issuing them.

Message processing

The connector processes business objects passed to it by the integration broker

based on the verb for each business object. The connector uses business object

handlers to process the business objects that the connector supports.The business

object handlers contain methods that interact with an application and that

transform business object requests into application operations.

The connector supports the following business object verbs:

v Create

v Retrieve

Create

Processing of business objects with create depends on whether the objects are

issued asynchronously or synchronously.

8 Adapter for Healthcare Data Protocols User Guide

Asynchronous delivery

This is the default delivery mode for business objects with Create verbs. A message

is created from the business object using a data handler and then written to the

output queue. If the message is delivered, the connector returns BON_SUCCESS,

else BON_FAIL.

Note: The connector has no way of verifying whether the message is received or if

action has been taken.

Synchronous acknowledgment

If a replyToQueue has been defined in the connector properties and a

responseTimeout exists in the conversion properties for the business object, the

connector issues a request in synchronous mode. The connector then waits for a

response to verify that appropriate action was taken by the receiving application.

For WebSphere MQ, the connector initially issues a message with a header as

shown in Table 3.

 Table 3. Request Message Descriptor Header (MQMD)

Field Description Value

Format Format name Output format as defined in the conversion properties and

truncated to 8 characters to meet IBM requirements (example:

MQSTR).

MessageType Message type MQMT_DATAGRAMa

Report Options for report message

requested.

When a response message is expected, this field is populated as

follows:

MQRO_PANa to indicate that a positive-action report is required if

processing is successful.

MQRO_NANa to indicate that a negative-action report is required if

processing fails.

MQRO_COPY_MSG_ID_TO_CORREL_IDa to indicate that the correlation

ID of the report generated should equal the message ID of the

request originally issued.

ReplyToQueue Name of reply queue When a response message is expected, this field is populated

with the value of connector property ReplyToQueue.

Persistence Message persistence MQPER_PERSISTENTa

Expiry Message lifetime MQEI_UNLIMITEDa

a Indicates constant defined by IBM.

The message header described in Table 3 is followed by the message body. The

message body is a business object that has been serialized using the data handler.

The Report field is set to indicate that both positive and negative action reports are

expected from the receiving application. The thread that issued the message waits

for a response message that indicates whether the receiving application was able to

process the request.

When an application receives a synchronous request from the connector, it

processes the business object and issues a report message as described in Table 4,

Table 5, and Table 6.

Chapter 1. Overview 9

Table 4. Response Message Descriptor Header (MQMD)

Field Description Value

Format Format name Input format of busObj as defined in the conversion properties.

MessageType Message type MQMT_REPORTa

a Indicates constant defined by IBM.

 Table 5. Population of response message

Verb Feedback field Message body

Create SUCCESS VALCHANGE (Optional) A serialized business object reflecting

changes.

VALDUPES FAIL (Optional) An error message.

 Table 6. Feedback codes and response values

WebSphere MQ feedback code

Equivalent WebSphere business integration system

responsea

MQFB_PAN or MQFB_APPL_FIRST SUCCESS

MQFB_NAN or MQFB_APPL_FIRST + 1 FAIL

MQFB_APPL_FIRST + 2 VALCHANGE

MQFB_APPL_FIRST + 3 VALDUPES

MQFB_APPL_FIRST + 4 MULTIPLE_HITS

MQFB_APPL_FIRST + 5 Not applicable

MQFB_APPL_FIRST + 6 Not applicable

MQFB_APPL_FIRST + 7 UNABLE_TO_LOGIN

MQFB_APPL_FIRST + 8 APP_RESPONSE_TIMEOUT (results in immediate

termination of connector)

MQFB_NONE What the connector receives if no feedback code is

specified in the response message

a See the connector development guide for details.

If the business object can be processed, the application creates a report message

with the feedback field set to MQFB_PAN (or a specific WebSphere business

integration system value). Optionally the application populates the message body

with a serialized business object containing any changes. If the business object

cannot be processed, the application creates a report message with the feedback

field set to MQFB_NAN (or a specific WebSphere business integration system value)

and then optionally includes an error message in the message body. In either case,

the application sets the correlationID field of the message to the messageID of the

connector message and issues it to the queue specified by the ReplyTo field.

Upon retrieval of a response message, the connector by default matches the

correlationID of the response to the messageID of a request message. The

connector then notifies the thread that issued the request. Depending on the

feedback field of the response, the connector either expects a business object or an

error message in the message body. If a business object was expected but the

message body is not populated, the connector simply returns the same business

object that was originally issued by the integration broker for the Request

operation. If an error message was expected but the message body is not

populated, a generic error message is returned to the integration broker along with

the response code. However, you can also use a message selector to identify, filter

and otherwise control how the adapter identifies the response message for a given

request. This message selector capability is a JMS feature. It applies to synchronous

request processing only and is described below.

10 Adapter for Healthcare Data Protocols User Guide

Filtering response messages using a message selector: Upon receiving a business

object for synchronous request processing, the connector checks for the presence of

a response_selector string in the application-specific information of the verb. If

the response_selector is undefined, the connector identifies response messages

using the correlation ID as described above.

If response_selector is defined, the connector expects a name-value pair with the

following syntax:

response_selector=JMSCorrelationID LIKE ’selectorstring’

The message selectorstring must uniquely identify a response and its values be

enclosed in single quotes as shown in the example below:

response_selector=JMSCorrelationID LIKE ’Oshkosh’

In the above example, after issuing the request message, the adapter would

monitor the ReplyToQueue for a response message with a correlationID equal to

″Oshkosh.″ The adapter would retrieve the first message that matches this message

selector and then dispatch it as the response.

Optionally, the adapter performs run-time substitutions enabling you to generate

unique message selectors for each request. Instead of a message selector, you

specify a placeholder in the form of an integer surrounded by curly braces, for

example: ’{1}’. You then follow with a colon and a list of comma-separated

attributes to use for the substitution. The integer in the placeholder acts as an

index to the attribute to use for the substitution. For example, the following

message selector:

response_selector=JMSCorrelationID LIKE ’{1}’: MyDynamicMO.CorrelationID

would inform the adapter to replace {1} with the value of the first attribute

following the selector (in this case the attribute named CorrelationId of the

child-object named MyDynamicMO. If attribute CorrelationID had a value of 123ABC,

the adapter would generate and use a message selector created with the following

criteria:

JMSCorrelation LIKE ’123ABC’

to identify the response message.

You can also specify multiple substitutions such as the following:

response_selector=PrimaryId LIKE ’{1}’ AND AddressId LIKE ’{2}’ :

PrimaryId, Address[4].AddressId

In this example, the adapter would substitute {1} with the value of attribute

PrimaryId from the top-level business object and {2} with the value of AddressId

from the 5th position of child container object Address. With this approach, you

can reference any attribute in the business object and meta-object in the response

message selector. For more information on how deep retrieval is performed using

Address[4].AddressId, see JCDK API manual (getAttribute method)

An error is reported at run-time when any of the following occurs:

v If you specify a non-integer value between the ’{}’ symbols

Chapter 1. Overview 11

v If you specify an index for which no attribute is defined

v If the attribute specified does not exist in the business or meta-object

v If the syntax of the attribute path is incorrect

For example, if you include the literal value ’{’ or ’}’ in the message selector, you

can use ’{{’ or ″{}″ respectively. You can also place these characters in the attribute

value, in which case the first ″{″ is not needed. Consider the following example

using the escape character: response_selector=JMSCorrelation LIKE ’{1}’ and

CompanyName=’A{{P’: MyDynamicMO.CorrelationID

The connector would resolve this message selector as follows:

 JMSCorrelationID LIKE ’123ABC’ and CompanyName=’A{P’

When the connector encounters special characters such as ’{’, ’}’, ’:’ or ’;’ in

attribute values, they are inserted directly into the query string. This allows you to

include special characters in a query string that also serve as application-specific

information delimiters.

The next example illustrates how a literal string substitution is extracted from the

attribute value:

response_selector=JMSCorrelation LIKE ’{1}’ and CompanyName=’A{{P’:

MyDynamicMO.CorrelationID

If MyDynamicMO.CorrelationID contained the value {A:B}C;D, the connector would

resolve the message selector as follows: JMSCorrelationID LIKE ’{A:B}C;D’ and

CompanyName=’A{P’

For more information on the response selector code, see JMS 1.0.1 specifications.

Creating custom feedback codes: You can extend the WebSphere MQ feedback

codes to override default interpretations shown in Table 6 by specifying the

connector property FeedbackCodeMappingMO. This property allows you to create

a meta-object in which all WebSphere business integration system-specific return

status values are mapped to the WebSphere MQ feedback codes. The return status

assigned (using the meta-object) to a feedback code is passed to the integration

broker. For more information, see “FeedbackCodeMappingMO” on page 20.

Retrieve

Business objects with the Retrieve verb support synchronous delivery only. The

connector processes business objects with this verb as it does for the synchronous

delivery defined for create. However, when using a Retrieve verb, the

responseTimeout and replyToQueue are required. Furthermore, the message body

must be populated with a serialized business object to complete the transaction.

Table 7 shows the response messages for these verbs.

 Table 7. Population of response message

Verb Feedback field Message body

Retrieve FAIL

FAIL_RETRIEVE_BY_CONTENT

(Optional) An error message.

MULTIPLE_HITS SUCCESS A serialized business object.

12 Adapter for Healthcare Data Protocols User Guide

Error handling

All error messages generated by the connector are stored in a message file named

BIA_HealthcareConnector.txt. (The name of the file is determined by the

LogFileName standard connector configuration property.) Each error has an error

number followed by the error message:

Message number

Message text

The connector handles specific errors as described in the following sections.

Application timeout

The error message ABON_APPRESPONSETIMEOUT is returned when:

v The connector cannot establish a connection to the JMS service provider during

message retrieval.

v The connector successfully converts a business object to a message but cannot

deliver it to the outgoing queue due to connection loss.

v The connector issues a message but times out waiting for a response from a

business object whose conversion property TimeoutFatal is equal to True.

v The connector receives a response message with a return code equal to

APP_RESPONSE_TIMEOUT or UNABLE_TO_LOGIN.

Unsubscribed business object

The connector delivers a message to the queue specified by the UnsubscribedQueue

property if:

v The connector retrieves a message that is associated with an unsubscribed

business object.

v The connector retrieves a message but cannot associate the text in the Format

field with a business object name.

Note: If the UnsubscribedQueue is not defined, unsubscribed messages are

discarded.

Data handler conversion

If the data handler fails to convert a message to a business object, or if a

processing error occurs that is specific to the business object (as opposed to the

JMS provider), the message is delivered to the queue specified by ErrorQueue. If

ErrorQueue is not defined, messages that cannot be processed due to errors are

discarded.

If the data handler fails to convert a business object to a message, BON_FAIL is

returned.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. See the

connector configuration properties in Chapter 2, “Configuring the connector,” on

page 15, for more on configuring trace messages. For more information on tracing,

including how to enable and set it, see the Connector Development Guide.

What follows is recommended content for connector trace messages.

Chapter 1. Overview 13

Level 0 This level is used for trace messages that identify the connector

version.

Level 1 Use this level for trace messages that provide key information on

each business object processed or record each time a polling thread

detects a new message in an input queue.

Level 2 Use this level for trace messages that log each time a business

object is posted to the integration broker, either from

gotApplEvent() or executeCollaboration().

Level 3 Use this level for trace messages that provide information

regarding message-to-business-object and business-object-to-
message conversions or provide information about the delivery of

the message to the output queue.

Level 4 Use this level for trace messages that identify when the connector

enters or exits a function.

Level 5 Use this level for trace messages that indicate connector

initialization, represent statements executed in the application,

indicate whenever a message is taken off of or put onto a queue,

or record business object dumps.

14 Adapter for Healthcare Data Protocols User Guide

Chapter 2. Configuring the connector

v “Prerequisites”

v “Installed file structures” on page 16

v “Connector configuration” on page 17

v “Enabling guaranteed event delivery” on page 23

v “Meta-object attributes configuration” on page 27

v “Startup file configuration” on page 42

v “Starting the connector” on page 45

v “Stopping the connector” on page 46

This chapter describes how to install and configure the connector and how to

configure the message queues to work with the connector.

Compatibility

The adapter framework that an adapter uses must be compatible with the version

of the integration broker with which the adapter is communicating. Version 1.1 of

the Adapter for Healthcare Data Protocols is supported on the following adapter

framework and integration broker:

v Adapter framework: WebSphere Business Integration Adapter Framework,

versions 2.1, 2.2, 2.3.x, 2.4., and 2.6

v Integration broker:

– InterChange Server Express

See the Release Notes for any exceptions.

Note: For instructions on installing the integration broker and its prerequisites, see

the WebSphere Business Integration Server Express Installation Guide for Linux,

for Windows, or for i5/OS.

Prerequisites

Prerequisite software

The following software must be installed before installing and configuring the

Adapter for Healthcare Data Protocols:

v

– All operating system environments require the Java compiler (IBM JDK 1.4.2

for Windows 2003) for compiling custom adapters

– Linux:

Red Hat Linux AS 3.0 Update 1, Intel (IA32)

SuSE Linux 8.1, ES, SP3, Intel (IA32)

SuSE Linux ES 9.0, Intel (IA32)

Note: The TMTP (Tivoli Monitoring for Transaction Performance) component

of the WebSphere Business Integration Adapter FrameworkV2.6 is not

supported on Linux Red Hat.

– Windows:

Windows XP with Service Pack 1A, for WebSphere Business Integration

© Copyright IBM Corp. 2004, 2005 15

Adapter Framework (administrative tools only)

Windows 2003 (Standard Edition or Enterprise Edition)

– OS/400 V5R2 and i5/OS V5R3:

i5/OS refers to OS/400 and i5/OS unless explictly stated.

Installing the adapter and related files

For information on installing WebSphere Business Integration Server Express

adapter products, refer to the WebSphere Business Integration Server Express

installation guide for Windows, for Linux, or for i5/OS. The guide is located in the

WebSphere Business Integration Server Express Adapters Infocenter at the

following site: http://www.ibm.com/websphere/wbiserverexpress/infocenter.

Installed file structures

The following subsections describe the file stuctures used by the connector on a

Windows, Linux, and i5/OS system.

Installed Windows File Structure

The table below describes the file structure used by the connector as installed in a

Windows machine.

 Table 8. Files installed with the connector - Windows

Directory Installed files

ProductDir\bin\Data\App Healthcare_HL7_ConnectorTemplate and

Healthcare_NCPDP_ConnectorTemplate - The

connector’s configuration file templates

ProductDir\connectors\Healthcare BIA_CWHealthcare.jar--The main connector code

BIA_CWHealthcareDatahandler.jar - the

datahandler code for healthcare

start_Healthcare.bat--The connector startup batch

file

start_Healthcare_service.bat

ProductDir\connectors\messages

\BIA_Healthcareconnector.txt

BIA_healthcareConnector.txt—The connector

message file, containing error messages and codes

ProductDir\connectors\healthcare

\start_healthcare_service.bat

The startup script for the connector service.

ProductDir\connectors\Healthcare

\dependencies\hl7\BIA_HL7I18N.cfg
ProductDir\connectors\Healthcare

\dependencies\hl7\BIA_HL7MTEventMap.cfg

The healthcare configuration files.

Installed Linux File Structure

The table below describes the file structure used by the connector as installed on a

Linux machine.

 Table 9. Files installed with the connector - Linux

Directory Installed files

ProductDir/bin/Data/App Healthcare_HL7_ConnectorTemplate and

Healthcare_NCPDP_ConnectorTemplate--The

connector’s configuration file templates

ProductDir/connectors/Healthcare BIA_CWHealthcare.jar--The main connector code

BIA_CWHealthcareDataHandler.jar

start_Healthcare.sh--The connector startup shell

file

16 Adapter for Healthcare Data Protocols User Guide

Table 9. Files installed with the connector - Linux (continued)

Directory Installed files

ProductDir/connectors/messages

/BIA_HealthcareConnector.txt

BIA_HealthcareConnector.txt—The connector

message file, containing error messages and codes

ProductDir/connectors/Healthcare

/dependencies/hl7/BIA_HL7MTEventMap.cfg

Configuration file

ProductDir/connectors/Healthcare

/dependencies/hl7/BIA_HL7I18N.cfg

Configuration file

ProductDir/connectors/Healthcare/

BIA_CWHealthcareDataHandler.jar

The Healthcare data handler

Installed i5/OS File Structure

The table below describes the file structure used by the connector as installed on

an i5/OS machine.

 Table 10. Files installed with the connector - i5/OS

Directory Installed files

ProductDir/connectors/Healthcare BIA_CWHealthcare.jar--The main connector code

start_healthcare.sh--The connector startup shell file

ProductDir/connectors/messages

/BIA_HealthcareConnector.txt

BIA_healthcareConnector.txt—The connector

message file, containing error messages and codes

ProductDir/repository/Healthcare

/dependencies/BIA_HL7MTEventMap.cfg

Configuration file

ProductDir/connectors/Healthcare/

dependencies/hl7/BIA_HL7I18N.cfg/

Configuration file

ProductDir/connectors/Healthcare/

BIA_CWHealthcareDataHandler.jar

The Healthcare data handler

Connector configuration

Connectors have two types of configuration properties: standard configuration

properties and connector-specific configuration properties. You must set the values

of these properties before running the connector. Use one of the following tools to

set a connector’s configuration properties:

v Connector Configurator Express—Access to this tool is from the System

Manager.

Standard connector properties

Standard configuration properties provide information that all connectors use. See

Appendix A, “Standard configuration properties for connectors,” on page 83 for

documentation of these properties.

Connector-specific properties

Connector-specific configuration properties provide information needed by the

connector at runtime. Connector-specific properties also provide a way of changing

static information or logic within the connector without having to recode and

rebuild the agent.

Note: Always check the values WebSphere MQ provides because they may be

incorrect or unknown. If the provided values are incorrect, specify them

explicitly.

Chapter 2. Configuring the connector 17

Table 11 lists the connector-specific configuration properties for the connector for

heathcare. See the sections that follow for explanations of the properties.

 Table 11. Connector-specific configuration properties

Name Possible values Default value Required

“ApplicationPassword” on page

19

Login password No

“ApplicationUserID” on page 19 Login user ID No

“ArchiveQueue” on page 19 Queue to which copies of

successfully processed messages are

sent

queue://CrossWorlds.

QueueManager/MQCONN.

No

“BOPref” on page 19 Business object preference HL7 Yes

“Channel” on page 19 MQ server connector channel Yes

“ClassName” on page 20 Data handler class name com.ibm.adapters.

datahandlers.hl7.

HL7DataHandler

No

“ConfigurationMetaObject” on

page 20

Name of configuration meta-object Yes

“Component delimiter” on page

20

User defined ^

“DataHandlerConfigMO” on

page 20

Data handler meta-object MO_DataHandler _Default Yes

“DataHandlerMimeType” on

page 20

MIME type of file HL7 No

“DefaultVerb” on page 20 Any verb supported by the

connector.

Create

“Dummy string” on page 20 User defined

“ErrorQueue” on page 20 Queue for unprocessed messages queue://crossworlds.

Queue.manager/

MQCONN.ERROR

No

“Field delimiter” on page 21 Default field delimiter for all

types.

The default value is ″|″

“HostName” on page 21 WebSphere MQ server The default is ″|″. No

“InDoubtEvents” on page 21 FailOnStartup Reprocess Ignore

LogError

Reprocess No

“InputQueue” on page 21 Poll queues queue://CrossWorlds.

QueueManager/MQCONN.IN

Yes

“InProgressQueue” on page 22 In-progress event queue queue://CrossWorlds.

QueueManager/

MQCONN.IN_PROGRESS

No

“PollQuantity” on page 22 Number of messages to retrieve from

each queue specified in the

InputQueue property

1 No

“Port” on page 22 Port established for the WebSphere

MQ listener

No

“ReplyToQueue” on page 22 Queue to which response messages

are delivered when the connector

issues requests

queue://CrossWorlds.

QueueManager/

MQCONN.REPLYTO

No

18 Adapter for Healthcare Data Protocols User Guide

Table 11. Connector-specific configuration properties (continued)

Name Possible values Default value Required

“Representation” on page 23 Header or message object parsing. Can be one of the

following:″Simplified″ or

″Native″

Simplified signifies the use of a

parsing method which

provides fine object represent

only to message headers.

Native signifies the use of

parsing method, which

provides fine object represent

to the whole message.

“Repetition delimiter” on page

22

User defined The default value is ″~″

“Subcomponent delimiter” on

page 23

User defined The default value is ″&″

“UnsubscribedQueue” on page

23

Queue to which unsubscribed

messages are sent

queue://CrossWorlds.

QueueManager/

MQCONN.UNSUBSCRIBE

No

“UseDefaults” on page 23 true or false false

ApplicationPassword

Password used with the ApplicationUserID to log in to WebSphere MQ.

Default = None.

If the ApplicationPassword is left blank or removed, the connector uses the default

password provided by WebSphere MQ.

ApplicationUserID

User ID used with the ApplicationPassword to log in to WebSphere MQ.

Default=None.

If the ApplicationUserID is left blank or removed, the connector uses the default

user ID provided by WebSphere MQ.

ArchiveQueue

Queue to which copies of successfully processed messages are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ARCHIVE

BOPref

Business object preferences prefix. The default is HL7.

Channel

MQ server connector channel through which the connector communicates with

WebSphere MQ.

Default=None.

If the value of Channel is left blank or the property is removed, the connector uses

the default server channel provided by WebSphere MQ.

Chapter 2. Configuring the connector 19

ClassName

Data handler class to use when converting messages to and from business objects.

Default = com.ibm.adapters.DataHandlers.hl7.HL7DataHandler

Component delimiter

The default component delimiter for all flights. The default is ″^″.

ConfigurationMetaObject

Name of static meta-object containing configuration information for the connector.

Default = none.

DataHandlerConfigMO

Meta-object passed to data handler to provide configuration information.

Default = MO_DataHandler_Default

DataHandlerMimeType

Allows you to request a data handler based on a particular MIME type.

Default = HL7

DefaultVerb

Specifies the verb to be set within an incoming business object, if it has not been

set by the data handler during polling.

Default= Create

Dummy string

The dummy string.

ErrorQueue

Queue to which messages that could not be processed are sent.

Default = queue://crossworlds.Queue.manager/MQCONN.ERROR

FeedbackCodeMappingMO

Allows you to override and reassign the default feedback codes used to

synchronously acknowledge receipt of messages to the integration broker. This

property enables you to specify a meta-object in which each attribute name is

understood to represent a feedback code. The corresponding value of the feedback

code is the return status that is passed to the integration broker. For a listing of the

default feedback codes, see “Synchronous acknowledgment” on page 5. The

connector accepts the following attribute values representing WebSphere

MQ-specific feedback codes:

v MQFB_APPL_FIRST

v MQFB_APPL_FIRST_OFFSET_N where N is an integer (interpreted as the value of

MQFB_APPL_FIRST + N)

The connector accepts the following WebSphere business integration

system-specific status codes as attribute values in the meta-object:

v SUCCESS

v FAIL

v APP_RESPONSE_TIMEOUT

20 Adapter for Healthcare Data Protocols User Guide

v MULTIPLE_HITS

v UNABLE_TO_LOGIN

v VALCHANGE

v VALDUPES

Table 12 shows a sample meta-object.

 Table 12. Sample feedback code meta-object attributes

Attribute Name Default Value

MQFB_APPL_FIRST SUCCESS

MQFB_APPL_FIRST + 1 FAIL

MQFB_APPL_FIRST + 2 UNABLE_TO_LOGIN

Default = none.

Field delimiter

The default delimiter for all types. The default is ″|″ the pipe symbol.

HostName

The name of the server hosting WebSphere MQ.

Default=None.

If the HostName is left blank or removed, the connector allows WebSphere MQ to

determine the host.

InDoubtEvents

Specifies how to handle in-progress events that are not fully processed due to

unexpected connector shutdown. Choose one of four actions to take if events are

found in the in-progress queue during initialization:

v FailOnStartup. Log an error and immediately shut down.

v Reprocess. Process the remaining events first, then process messages in the

input queue.

v Ignore. Disregard any messages in the in-progress queue.

v LogError. Log an error but do not shut down.

Default = Reprocess.

InputQueue

Specifies the message queues that the connector polls for new messages. See the

MQSA documentation to configure the WebSphere MQ queues.

The connector accepts multiple semicolon-delimited queue names. For example, to

poll the queues MyQueueA, MyQueueB, and MyQueueC, the value for connector

configuration property InputQueue is: MyQueueA;MyQueueB;MyQueueC.

The connector polls the queues in a round-robin manner and retrieves up to

pollQuantity number of messages from each queue. For example, pollQuantity

equals 2, and MyQueueA contains 2 messages, MyQueueB contains 1 message and

MyQueueC contains 5 messages.

With pollQuanity set to 2, the connector retrieves at most 2 messages from each

queue per call to pollForEvents. For the first cycle (1 of 2), the connector retrieves

Chapter 2. Configuring the connector 21

the first message from each of MyQueueA, MyQueueB, and MyQueueC. That completes

the first round of polling. The connector starts a second round of polling (2 of 2)

and retrieves one message each from MyQueueA and MyQueueC—it skips MqQueueB

because that queue is now empty. After polling all queues twice, the call to the

method pollForEvents is complete. The sequence of message retrieval is:

1. 1 message from MyQueueA

2. 1 message from MyQueueB

3. 1 message from MyQueueC

4. 1 message from MyQueueA

5. Skip MyQueueB because it is empty

6. 1 message from MyQueueC

Default = queue://crossworlds.Queue.manager/MQCONN.IN

InProgressQueue

Message queue where messages are held during processing. You can configure the

connector to operate without this queue by using System Manager to remove the

default InProgressQueue name from the connector-specific properties. Doing so

prompts a warning at startup that event delivery may be compromised if the

connector is shut down while are events pending.

Default= queue://crossworlds.Queue.manager/MQCONN.IN_PROGRESS

I118N

Specifies the path name of the BIA_HL7I18N.cfg file

..\Healthcare\dependencies\hl7\BIA_HL7I18N.cfg

MTEventMap

This configuration contains a map of (Message X event type) -> Message structure.

The file is located at ...\Healthcare\dependencies\hl7\HL7MTEventMap.cfg.

PollQuantity

Number of messages to retrieve from each queue specified in the InputQueue

property during a pollForEvents scan.

Default =1

Port

Port established for the WebSphere MQ listener.

Default=None.

If the value of Port is left blank or the property is removed, the connector allows

WebSphere MQ to determine the correct port.

Repetition delimiter

Default repetition delimiter for all types. The default is ″~″.

ReplyToQueue

Queue to which response messages are delivered when the connector issues

requests.

Default = queue://crossworlds.Queue.manager/MQCONN.REPLYTO

22 Adapter for Healthcare Data Protocols User Guide

Representation

Representation determines how the message is parsed, either ″Simplified″ or

″Native.″ Simplified parses so that it represents only the message header. Native

parses so that the entire message is represented. The default is ″Simplified.″

Subcomponent delimiter

Default subcomponent delimiter. The default is :&.″

UnsubscribedQueue

Queue to which messages about business objects that are not subscribed to are

sent.

Default =Default sub component delimiter for all types

queue://crossworlds.Queue.manager/MQCONN.UNSUBSCRIBED

UseDefaults

On a Create operation, if UseDefaults is set to true, the connector checks whether

a valid value or a default value is provided for each isRequired business object

attribute. If a value is provided, the Create operation succeeds. If the parameter is

set to false, the connector checks only for a valid value and causes the Create

operation to fail if it is not provided. The default is false.

Enabling guaranteed event delivery

You can configure the guaranteed-event-delivery feature for a JMS-enabled

connector in one of the following ways:

v If the connector uses a JMS event store (implemented as a JMS source queue),

the connector framework can manage the JMS event store. For more information,

see “Guaranteed event delivery for connectors with JMS event stores.”

v If the connector uses a non-JMS event store (for example, implemented as a

JDBC table, Email mailbox, or flat files), the connector framework can use a JMS

monitor queue to ensure that no duplicate events occur. For more information,

see “Guaranteed event delivery for connectors with non-JMS event stores” on

page 25.

Guaranteed event delivery for connectors with JMS event

stores

If the JMS-enabled connector uses JMS queues to implement its event store, the

connector framework can act as a ″container″ and manage the JMS event store (the

JMS source queue). In a single JMS transaction, the connector can remove a

message from a source queue and place it on the destination queue. This section

provides the following information about use of the guaranteed-event-delivery

feature for a JMS-enabled connector that has a JMS event store:

v “Enabling the feature for connectors with JMS event stores”

v “Effect on event polling” on page 25

Enabling the feature for connectors with JMS event stores

To enable the guaranteed-event-delivery feature for a JMS-enabled connector that

has a JMS event store, set the connector configuration properties to values shown

in Table 13.

Chapter 2. Configuring the connector 23

Table 13. Guaranteed-event-delivery connector properties for a connector with a JMS event

store

Connector property Value

DeliveryTransport JMS

ContainerManagedEvents JMS

PollQuantity The number of events to processing in a single poll of the event store

SourceQueue Name of the JMS source queue (event store) which the connector framework

polls and from which it retrieves events for processing

Note: The source queue and other JMS queues should be part of the same

queue manager. If the connector’s application generates events that are

stored in a different queue manager, you must define a remote queue

definition on the remote queue manager. WebSphere MQ can then transfer

the events from the remote queue to the queue manager that the

JMS-enabled connector uses for transmission to the integration broker. For

information on how to configure a remote queue definition, see your IBM

WebSphere MQ documentation.

In addition to configuring the connector, you must also configure the data handler

that converts between the event in the JMS store and a business object. This

data-handler information consists of the connector configuration properties that

Table 14 summarizes.

 Table 14. Data-handler properties for guaranteed event delivery

Data-handler property Value Required?

MimeType The MIME type that the data handler handles.

This MIME type identifies which data handler

to call.

Yes

DHClass The full name of the Java class that

implements

the data handler

Yes

DataHandlerConfigMOName The name of the top-level meta-object that

associates MIME types and their data handlers

Optional

Note: The data-handler configuration properties reside in the connector

configuration file with the other connector configuration properties.

If you configure a connector that has a JMS event store to use guaranteed event

delivery, you must set the connector properties as described in Table 13 and

Table 14. To set these connector configuration properties, use the Connector

Configurator Express tool. Connector Configurator Express displays the connector

properties in Table 13 on its Standard Properties tab. It displays the connector

properties in Table 14 on its Data Handler tab.

Note: Connector Configurator Express activates the fields on its Data Handler tab

only when the DeliveryTransport connector configuration property is set to

JMS and ContainerManagedEvents is set to JMS.

For information on Connector Configurator Express, see Appendix B, “Connector

Configurator Express,” on page 103.

24 Adapter for Healthcare Data Protocols User Guide

Effect on event polling

If a connector uses guaranteed event delivery by setting ContainedManagedEvents

to JMS, it behaves slightly differently from a connector that does not use this

feature. To provide container-managed events, the connector framework takes the

following steps to poll the event store:

1. Start a JMS transaction.

2. Read a JMS message from the event store.

The event store is implemented as a JMS source queue. The JMS message

contains an event record. The name of the JMS source queue is obtained from

the SourceQueue connector configuration property.

3. Call the data handler to convert the event to a business object.

The connector framework calls the data handler that has been configured with

the properties in Table 14 on page 24.

4. Send the resulting message to the JMS destination queue.

For InterChange Server Express, the message sent to the JMS destination queue

is the business object.

5. Commit the JMS transaction.

When the JMS transaction commits, the message is written to the JMS

destination queue and removed from the JMS source queue in the same

transaction.

6. Repeat step 1 through 5 in a loop. The PollQuantity connector property

determines the number of repetitions in this loop.

Important: A connector that sets the ContainerManagedEvents property is set to JMS

does not call the pollForEvents() method to perform event polling. If

the connector’s base class includes a pollForEvents() method, this

method is not invoked.

Guaranteed event delivery for connectors with non-JMS event

stores

If the JMS-enabled connector uses a non-JMS solution to implement its event store

(such as a JDBC event table, Email mailbox, or flat files), the connector framework

can use duplicate event elimination to ensure that duplicate events do not occur.

This section provides the following information about use of the

guaranteed-event-delivery feature with a JMS-enabled connector that has a

non-JMS event store:

v “Enabling the feature for connectors with non-JMS event stores”

v “Effect on event polling”

Enabling the feature for connectors with non-JMS event stores: To enable the

guaranteed-event-delivery feature for a JMS-enabled connector that has a non-JMS

event store, you must set the connector configuration properties to values shown

in Table 15.

 Table 15. Guaranteed-event-delivery connector properties for a connector with a non-JMS

event store

Connector property Value

DeliveryTransport JMS

DuplicateEventElimination true

MonitorQueue Name of the JMS monitor queue, in which the connector

framework stores the ObjectEventId of processed business

objects

Chapter 2. Configuring the connector 25

If you configure a connector to use guaranteed event delivery, you must set the

connector properties as described in Table 15. To set these connector configuration

properties, use the Connector Configurator Express tool. It displays these connector

properties on its Standard Properties tab. For information on Connector

Configurator Express, see Appendix B, “Connector Configurator Express,” on page

103.

Effect on event polling: If a connector uses guaranteed event delivery by setting

DuplicateEventElimination to true, it behaves slightly differently from a connector

that does not use this feature. To provide the duplicate event elimination, the

connector framework uses a JMS monitor queue to track a business object. The

name of the JMS monitor queue is obtained from the MonitorQueue connector

configuration property.

After the connector framework receives the business object from the

application-specific component (through a call to gotApplEvent() in the

pollForEvents() method), it must determine if the current business object

(received from gotApplEvents()) represents a duplicate event. To make this

determination, the connector framework retrieves the business object from the JMS

monitor queue and compares its ObjectEventId with the ObjectEventId of the

current business object:

v If these two ObjectEventIds are the same, the current business object represents a

duplicate event. In this case, the connector framework ignores the event that the

current business object represents; it does not send this event to the integration

broker.

v If these ObjectEventIds are not the same, the business object does not represent a

duplicate event. In this case, the connector framework copies the current

business object to the JMS monitor queue and then delivers it to the JMS

delivery queue, all as part of the same JMS transaction. The name of the JMS

delivery queue is obtained from the DeliveryQueue connector configuration

property. Control returns to the connector’s pollForEvents() method, after the

call to the gotApplEvent() method.

For a JMS-enabled connector to support duplicate event elimination, you must

make sure that the connector’s pollForEvents() method includes the following

steps:

v When you create a business object from an event record retrieved from the

non-JMS event store, save the event record’s unique event identifier as the

business object’s ObjectEventId attribute.

The application generates this event identifier to uniquely identify the event

record in the event store. If the connector goes down after the event has been

sent to the integration broker but before this event record’s status can be

changed, this event record remains in the event store with an In-Progress status.

When the connector comes back up, it should recover any In-Progress events.

When the connector resumes polling, it generates a business object for the event

record that still remains in the event store. However, because both the business

object that was already sent and the new one have the same event record as

their ObjectEventIds, the connector framework can recognize the new business

object as a duplicate and not send it to the integration broker.

v During connector recovery, make sure that you process In-Progress events before

the connector begins polling for new events.

Unless the connector changes any In-Progress events to Ready-for-Poll status

when it starts up, the polling method does not pick up the event record for

reprocessing.

26 Adapter for Healthcare Data Protocols User Guide

Meta-object attributes configuration

The connector for HL7 can recognize and read two kinds of meta-objects:

v Static connector meta-object

v Dynamic child meta-object

The attribute values of the dynamic child meta-object duplicate and override those

of the static meta-object.

Static meta-object

The static meta-object consists of a list of conversion properties defined for

different business objects. To define the conversion properties for a business object,

first create a string attribute and name it using the syntax busObj_verb. For

example, to define the conversion properties for a Customer object with the verb

Create, create an attribute named HL7_MTADT_A03_Create. In the application-specific

text of the attribute, you specify the actual conversion properties.

Additionally, a reserved attribute named Default can be defined in the meta-object.

When this attribute is present, its properties act as default values for all business

object conversion properties.

Note: If a static meta-object is not specified, the connector cannot map a given

message format to a specific business object type during polling. When this

is the case, the connector passes the message text to the configured data

handler without specifying a business object. If the data handler cannot

create a business object based on the text alone, the connector reports an

error indicating that this message format is unrecognized.

Table 16 describes the meta-object properties.

 Table 16. Static meta-object properties

Property name Description

CollaborationName The collaboration name must be specified in the application-specific

text of the attribute for the business object/verb combination. For

example, if you expect to handle synchronous requests for the business

object Customer with the Create verb, the static metadata object must

contain an attribute named HL7_MTnnn_Verb, where nnn is the HL7

message type, for example, HL7_MTADT_A03_Create. The

HL7_MTADT_A03_Create attribute must contain application-specific text

that includes a name-value pair. For example,

CollaborationName=MyCustomerProcessingCollab. See the

“Application-specific information” on page 28 section for syntax

details. Failure to do this results in runtime errors when the connector

attempts to synchronously process a request involving the Customer

business object.

Note: This property is available only for synchronous requests.

DoNotReportBusObj Optionally, you can include the DoNotReportBusObj property. By setting

this property to true, all PAN report messages issued have a blank

message body. This is recommended when you want to confirm that a

request has been successfully processed but does not need notification

of changes to the business object. This does not affect NAN reports. If

this property is not found in the static meta-object, the connector

defaults to false and populates the message report with the business

object.

Note: This property is available only for synchronous requests.

Chapter 2. Configuring the connector 27

Table 16. Static meta-object properties (continued)

Property name Description

InputFormat The input format is the message format to associate with the given

business object. When a message is retrieved and is in this format, it is

converted to the given business object if possible. If this format is not

specified for a business object, the connector does not handle

subscription deliveries for the given business object.

OutputFormat The output format is set on messages created from the given business

object. If a value for the OutputFormat property is not specified, the

input format is used, if available. An OutputFormat property value

defined in a dynamic child meta-object overrides the value defined in

the static meta-object.

InputQueue The input queue that the connector polls to detect new messages. You

can use connector-specific properties to configure multiple

InputQueues and optionally map different data handlers to each

queue.

OutputQueue The output queue is the queue to which messages derived from the

given business object are delivered. An OutputQueue property value

defined in a dynamic child meta-object overrides the value defined in

the static meta-object.

ResponseTimeout The length of time in milliseconds to wait for a response before timing

out. The connector returns SUCCESS immediately without waiting for a

response if this property is undefined or has a value less than zero. A

ResponseTimeout property value defined in a dynamic child

meta-object overrides the value defined in the static meta-object.

TimeoutFatal If this property is defined and has a value of true, the connector

returns APP_RESPONSE_TIMEOUT when a response is not received within

the time specified by ResponseTimeout. All other threads waiting for

response messages immediately return APP_RESPONSE_TIMEOUT to the

integration broker. This causes the integration broker to terminate the

connection to the connector. A TimeoutFatal property defined in a

dynamic child meta-object overrides the value defined in the static

meta-object.

Note: The InputQueue property in the connector-specific properties defines which

queues the adapter polls. This is the only property that the adapter uses to

determine which queues to poll. In the static MO, the InputQueue property

and the InputFormat property can serve as criteria for the adapter to map a

given message to a specific business object. This feature is not used by the

adapter for healthcare data protocols.

Application-specific information

The application-specific information is structured in name-value pair format,

separated by semicolons. For example:

InputFormat=ORDER_IN;OutputFormat=ORDER_OUT

You can use application-specific information to map a data handler to an input

queue.

Mapping data handlers to InputQueues

You can use the InputQueue property in the application-specific information of the

static meta-object to associate a data handler with an input queue. This feature is

useful when dealing with multiple trading partners who have different formats

and conversion requirements. To do so you must:

28 Adapter for Healthcare Data Protocols User Guide

1. Use connector-specific properties (see “InputQueue” on page 21) to configure

one or more input queues.

2. For each input queue, specify the queue manager and input queue name as

well as data handler class name and mime type in the application-specific

information.

For example, the following attribute in a static meta-object associates a data

handler with an InputQueue named CompReceipts:

[Attribute]

Name = HL7_MTADT_A03_Create

Type = String

Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

AppSpecificInfo = InputQueue=//queue.manager/CompReceipts;

 DataHandlerClassName=com.crossworlds.

DataHandlers.HL7.disposition_notification;

 DataHandlerMimeType=message/

disposition_notification

IsRequiredServerBound = false

[End]

Overloading input formats

When retrieving a message, the connector normally matches the input format to

one specific business object and verb combination. The connector then passes the

business object name and the contents of the message to the data handler. This

allows the data handler to verify that the message contents correspond to the

business object that the user expects.

If, however, the same input format is defined for more than one business object,

the connector cannot determine which business object the data represents before

passing it to the data handler. In such cases, the connector passes the message

contents only to the data handler and then looks up conversion properties based

on the business object that is generated. Accordingly, the data handler must

determine the business object based on the message content alone.

If the verb on the generated business object is not set, the connector searches for

conversion properties defined for this business object with any verb. If only one set

of conversion properties is found, the connector assigns the specified verb. If more

properties are found, the connector fails the message because it is unable to

distinguish among the verbs.

Static configuration meta object

A static configuration meta-object is specific to MQ connectivity. It provides the

following services:

v Defines the output queue

v Defines the verb upon the retrevial of a message from the input queue for each

BO. This BO_Verb association with an input message is specified on the attribute

name.

v Specifies the format of data from both input queue and output queue fo reach

BO. This information is specified in the ASI Property.

Chapter 2. Configuring the connector 29

Table 17. Where IK=Is key, FK=Foreign key, IR=Is required, C=Cardinality, ML=Maximum

length, and Def=Default

Attribute

Name Type IK FK IR C ML Def ASI Comment

Default String Yes No Yes 1 1 OutputQueue

=queue:

//crossworlds

.queue.

manager/

MQCONN.OUT

Output

queue

defnition

HL7

_Message

_Create

String No No No 1 7 Create InputFormat

=MQSTR;

OutputFormat

=MQSTR

Object

Event

ID

No No 1 Reserved

for

system

use

A sample static meta-object

The static meta-object shown below configures the connector to convert

HL7_MTADT_A03 business objects using verbs Create and Retrieve. Note that attribute

Default is defined in the meta-object. The connector uses the conversion properties

of this attribute:

OutputQueue=CustomerQueue1;ResponseTimeout=5000;

 TimeoutFatal=true

as default values for all other conversion properties. Thus, unless specified

otherwise by an attribute or overridden by a dynamic child meta-object value, the

connector issues all business objects to queue CustomerQueue1 and then waits for a

response message. If a response does not arrive within 5000 milliseconds, the

connector terminates immediately.

Business object with verb create: Attribute HL7_MTADT_A03_Create indicates to the

connector that any messages of format NEW should be converted to a business

object with the verb Create. Because an output format is not defined, the connector

sends messages representing this object-verb combination using the format defined

for input (in this case NEW).

Business object with verb retrieve: Attribute HL7_MTADT_A03_Retrieve specifies

that business objects with verb Retrieve should be sent as messages with format

RETRIEVE. Note that the default response time has been overridden so that the

connector can wait up 10000 milliseconds before timing out (it still terminates if a

response is not received).

[ReposCopy]

Version = 3.0.0

Repositories = 1cHyILNuPTc=

[End]

[BusinessObjectDefinition]

Name = Sample_MO

Version = 3.0.0

[Attribute]

Name = Default

Type = String

Cardinality = 1

MaxLength = 1

IsKey = true

30 Adapter for Healthcare Data Protocols User Guide

IsForeignKey = false

IsRequired = false

AppSpecificInfo = OutputQueue=queue://crossworlds.queue.manager/MQCONN.OUT;

 ResponseTimeout=5000;TimeoutFatal=true

IsRequiredServerBound = false

[End]

[Attribute]

Name = HL7_MTADT_A03_Create

Type = String

Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

AppSpecificInfo = InputFormat=NEW

IsRequiredServerBound = false

[End]

[Attribute]

Name = HL7_MTADT_A03_Retrieve

Type = String

Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

AppSpecificInfo = OutputFormat=RETRIEVE;ResponseTimeout=10000

IsRequiredServerBound = false

[End]

[Attribute]

Name = ObjectEventId

Type = String

MaxLength = 255

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Verb]

Name = Create

[End]

[Verb]

Name = Retrieve

[End]

[End]

Dynamic child meta-object

If it is difficult or unfeasible to specify the necessary metadata through a static

meta-object, the connector can optionally accept metadata specified at runtime for

each business object instance.

The connector recognizes and reads conversion properties from a dynamic

meta-object that is added as a child to the top-level business object passed to the

connector. The attribute values of the dynamic child meta-object duplicate the

conversion properties that you can specify via the static meta-object that is used to

configure the connector.

Because dynamic child meta object properties override those found in static

meta-objects, if you specify a dynamic child meta-object, you need not include a

connector property that specifies the static meta-object. Accordingly, you can use

either a dynamic child meta-object or a static meta-object, or both.

Chapter 2. Configuring the connector 31

Table 18 shows sample static meta-object properties for business object

HL7_MTADT_A03_Create. Note that the application-specific text consists of

semicolon-delimited name-value pairs

 Table 18. Static meta-object structure for HL7_MTADT_A03_Create

Attribute name Application-specific text

HL7_MTADT_A03_Create InputFormat=ORDER_IN;

OutputFormat=ORDER_OUT; OutputQueue=QueueA;

ResponseTimeout=10000;

 TimeoutFatal=False

Table 19 shows a sample dynamic child meta-object for business object

HL7_MT_Create.

 Table 19. Dynamic child meta-object Structure for HL7_MTADT_A03_Create

Property name Value

OutputFormat ORDER_OUT

OutputQueue QueueA

ResponseTimeout 10000

TimeoutFatal False

The connector checks the application-specific text of the top-level business object

received to determine whether tag cw_mo_conn specifies a child meta-object. If so,

the dynamic child meta-object values override those specified in the static

meta-object.

Population of the dynamic child meta-object during polling

In order to provide the integration broker with more information regarding

messages retrieved during polling, the connector populates specific attributes of

the dynamic meta-object, if already defined for the business object created.

Table Table 20 shows how a dynamic child meta-object might be structured for

polling.

 Table 20. JMS dynamic child meta-object structure for polling

Property name Sample value

InputFormat ORDER_IN

InputQueue MYInputQueue

OutputFormat CxIgnore

OutputQueue CxIgnore

ResponseTimeout CxIgnore

TimeoutFatal CxIgnore

As shown in Table 20, you can define an additional property, InputQueue, in a

dynamic child meta-object. This property contains the name of the queue from

which a given message has been retrieved. If this property is not defined in the

child meta-object, it will not be populated.

Example scenario:

v The connector retrieves a message with the format ORDER_IN from the queue

WebSphere MQ queue.

32 Adapter for Healthcare Data Protocols User Guide

v The connector converts this message to an order business object and checks the

application-specific text to determine if a meta-object is defined.

v If so, the connector creates an instance of this meta-object and populates the

InputQueue and InputFormat properties accordingly, then publishes the business

object to available processes.

MO_DataHandler_Healthcare

The following meta-object is used to configure all heathcare data handlers.

 Table 21. Where IK=Is key, FK=Foreign key, IR=Is required, C=Cardinality, ML=Maximum

length, and Def=Default

Attribute

Name Type IK FK IR C ML Def Comment

HL7 MO_

DataHandler

_HL7

No No 1 N/A Attribute

name

designates a

name for the

MIME type

of HL7

messages

Dummy

Key

String Yes No Yes 1 1

MO_DataHandler_HL7

The following meta-object contains configuration properties for the HL7 data

handler. BO_Prefix, Default Verb, and ClassName are used in the invocation of the

data handler by the connector.

 Table 22. Where IK=Is key, FK=Foreign key, IR=Is required, C=Cardinality, ML=Maximum

length, and Def=Default

Attribute Name Type IK FK IR C ML Def Comment

BOPrefix String Yes No Yes 1 4 HL7 BO’s prefix

Default Verb String No No No 1 7 Create Verb set in BO

Class Name String No No No 1 255 com.ibm

.adapters

.datahandlers

.hl7

.HL7DataHandle

Java class name

of the HL7 data

handler

Chapter 2. Configuring the connector 33

Table 22. Where IK=Is key, FK=Foreign key, IR=Is required, C=Cardinality, ML=Maximum

length, and Def=Default (continued)

Attribute Name Type IK FK IR C ML Def Comment

Representation String No No No 1 1 Simplified Can be on of

the following:

″Simplified″ or

″Native″

Simplified

signifies the

use of a

parsing method

which provides

find object

representation

to only the

message

header.

Native signifies

the user of a

parsing method

which provides

fine object

representation

to the whole

message

Field

delimiter

String No No No 1 1 | Default field

delimiter for all

types

Repetition

Delimiter

String No No No 1 1 ~ Default

repetition

delimiter for all

types

Component

Delimiter

String No No No 1 1 ^ Default

component

delimiter for all

types

Sub-

component

Delimiter

String No No No 1 1 & Default

subcomponent

delimiter for all

types

MTEventMap String No No No 1 255 file=...\

Healthcare\

dependencies\

HL7\ BIA_

HL7MTEvent

Map.cfg

This

configuration

contains a map

of (Message

type X Event

Type)-
>Message

Structure

34 Adapter for Healthcare Data Protocols User Guide

Table 22. Where IK=Is key, FK=Foreign key, IR=Is required, C=Cardinality, ML=Maximum

length, and Def=Default (continued)

Attribute Name Type IK FK IR C ML Def Comment

I118N String No No No 1 255 file=...\

Healthcare\

dependencies\

HL7\

BIA_HLI118N.cfg

Specifies the

path name of

the BIA_

HL7I118N.cfg

file. This files

contains map

information on

ISO character

set, escape

secquence and

Java name

DummyKey String Yes No No 1

Sample dynamic child meta-object

[BusinessObjectDefinition]

Name = MO_Sample_Config

Version = 1.0.0

[Attribute]

Name = OutputFormat

Type = String

MaxLength = 1

IsKey = true

IsForeignKey = false

IsRequired = false

DefaultValue = ORDER

IsRequiredServerBound = false

[End]

[Attribute]

Name = OutputQueue

Type = String

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

DefaultValue = OUT

IsRequiredServerBound = false

[End]

[Attribute]

Name = ResponseTimeout

Type = String

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

DefaultValue = -1

IsRequiredServerBound = false

[End]

[Attribute]

Name = TimeoutFatal

Type = String

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

DefaultValue = false

IsRequiredServerBound = false

[End]

[Attribute]

Chapter 2. Configuring the connector 35

Name = InputFormat

Type = String

MaxLength = 1

IsKey = true

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = InputQueue

Type = String

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = ObjectEventId

Type = String

MaxLength = 255

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Verb]

Name = Create

[End]

[Verb]

Name = Retrieve

[End]

[End]

[BusinessObjectDefinition]

Name = HL7_MTADT_A03

Version = 1.0.0

AppSpecificInfo = cw_mo_conn=MyConfig

[Attribute]

Name = FirstName

Type = String

MaxLength = 1

IsKey = true

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = LastName

Type = String

MaxLength = 1

IsKey = true

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = Telephone

Type = String

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

36 Adapter for Healthcare Data Protocols User Guide

IsRequiredServerBound = false

[End]

[Attribute]

Name = MyConfig

Type = MO_Sample_Config

ContainedObjectVersion = 1.0.0

Relationship = Containment

Cardinality = 1

MaxLength = 1

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = ObjectEventId

Type = String

MaxLength = 255

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Verb]

Name = Create

[End]

[Verb]

Name = Retrieve

[End]

[End]

JMS headers, HL7 message properties, and dynamic child

meta-object attributes

You can add attributes to a dynamic meta-object to gain more information about,

and more control over, the message transport. Adding such attributes allows you

to modify JMS properties, to control the ReplyToQueue on a per-request basis

(rather than using the default ReplyToQueue specified in the adapter properties),

and to re-target a message CorrelationID. This section describes these attributes

and how they affect event notification and request processing in both synchronous

and asynchronous modes.

The following attributes, which reflect JMS and HL7 header properties, are

recognized in the dynamic meta-object.

 Table 23. Dynamic meta-object header attributes

Header attribute name Mode Corresponding JMS header

CorrelationID Read/Write JMSCorrelationID

ReplyToQueue Read/Write JMSReplyTo

DeliveryMode Read JMSDeliveryMode

Priority Read JMSPriority

Destination Read JMSDestination

Expiration Read JMSExpiration

MessageID Read JMSMessageID

Redelivered Read JMSRedelivered

TimeStamp Read JMSTimeStamp

Chapter 2. Configuring the connector 37

Table 23. Dynamic meta-object header attributes (continued)

Header attribute name Mode Corresponding JMS header

Type Read JMSType

UserID Read JMSXUserID

AppID Read JMSXAppID

DeliveryCount Read JMSXDeliveryCount

GroupID Read JMSXGroupID

GroupSeq Read JMSXGroupSeq

JMSProperties Read/Write

Read-only attributes are read from a message header during event notification and

written to the dynamic meta-object. These properties also populate the dynamic

MO when a response message is issued during request processing. Read/write

attributes are set on message headers created during request processing. During

event notification, read/write attributes are read from message headers to populate

the dynamic meta-object.

The interpretation and use of these attributes are described in the sections below.

Note: None of the above attributes are required. You may add any attributes to the

dynamic meta-object that relate to your business process.

JMS Properties: Unlike other attributes in the dynamic meta-object,

JMSProperties must define a single-cardinality child object. Every attribute in this

child object must define a single property to be read/written in the variable

portion of the JMS message header as follows:

1. The name of the attribute has no semantic value.

2. The type of the attribute should always be String regardless of the JMS

property type.

3. The application-specific information of the attribute must contain two

name-value pairs defining the name and format of the JMS message property to

which the attribute maps.

The table below shows application-specific information properties that you must

define for attributes in the JMSProperties object.

 Table 24. Application-specific information for JMS property attributes

Name Possible values Comments

Name Any valid JMS property

name

This is the name of the JMS

property. Some vendors

reserve certain properties to

provide extended

functionality. In general,

users should not define

custom properties that begin

with JMS unless they are

seeking access to these

vendor-specific features.

38 Adapter for Healthcare Data Protocols User Guide

Table 24. Application-specific information for JMS property attributes (continued)

Name Possible values Comments

Type String, Int, Boolean, Float,

Double, Long, Short

This is the type of the JMS

property. The JMS API

provides a number of

methods for setting values in

the JMS Message:

setIntProperty,

setLongProperty,

setStringProperty, etc. The

type of the JMS property

specified here dictates which

of these methods is used for

setting the property value in

the message.

The figure below shows attribute JMSProperties in the dynamic meta-object and

definitions for four properties in the JMS message header: ID, GID, RESPONSE

and RESPONSE_PERSIST. The application-specific information of the attributes

defines the name and type of each. For example, attribute ID maps to JMS

property ID of type String).

Asynchronous event notification: If a dynamic meta-object with header attributes

is present in the event business object, the connector performs the following steps

(in addition to populating the meta-object with transport-related data):

 1. Populates the CorrelationId attribute of the meta-object with the value

specified in the JMSCorrelationID header field of the message.

 2. Populates the ReplyToQueue attribute of the meta-object with the queue

specified in the JMSReplyTo header field of the message. Since this header field

is represented by a Java object in the message, the attribute is populated with

the name of the queue (often a URI).

 3. Populates the DeliveryMode attribute of the meta-object with the value

specified in the JMSDeliveryMode header field of the message.

 4. Populates the Priority attribute of the meta-object with the JMSPriority

header field of the message.

 5. Populates the Destination attribute of the meta-object with the name of the

JMSDestination header field of the message. Since the Destination is

represented by an object, the attribute is populated with the name of the

Destination object.

 6. Populates the Expiration attribute of the meta-object with the value of the

JMSExpiration header field of the message.

 7. Populates the MessageID attribute of the meta-object with the value of the

JMSMessageID header field of the message.

Figure 3. JMS properties attribute in a dynamic meta-object

Chapter 2. Configuring the connector 39

8. Populates the Redelivered attribute of the meta-object with the value of the

JMSRedelivered header field of the message.

 9. Populates the TimeStamp attribute of the meta-object with the value of the

JMSTimeStamp header field of the message.

10. Populates the Type attribute of the meta-object with the value of the JMSType

header field of the message.

11. Populates the UserID attribute of the meta-object with the value of the

JMSXUserID property field of the message.

12. Populates the AppID attribute of the meta-object with the value of the

JMSXAppID property field of the message.

13. Populates the DeliveryCount attribute of the meta-object with the value of the

JMSXDeliveryCount property field of the message.

14. Populates the GroupID attribute of the meta-object with the value of the

JMSXGroupID property field of the message.

15. Populates the GroupSeq attribute of the meta-object with the value of the

JMSXGroupSeq property field of the message.

16. Examines the object defined for the JMSProperties attribute of the meta-object.

The adapter populates each attribute of this object with the value of the

corresponding property in the message. If a specific property is undefined in

the message, the adapter sets the value of the attribute to CxBlank.

Synchronous event notification: For synchronous event processing, the adapter

posts an event and waits for a response from the integration broker before sending

a response message back to the application. Any changes to the business data are

reflected in the response message returned. Before posting the event, the adapter

populates the dynamic meta-object just as described for asynchronous event

notification. The values set in the dynamic meta-object are reflected in the

response-issued header as described below (all other read-only header attributes in

the dynamic meta-object are ignored.):

v CorrelationID If the dynamic meta-object includes the attribute CorrelationId,

you must set it to the value expected by the originating application. The

application uses the CorrelationID to match a message returned from the

connector to the original request. Unexpected or invalid values for a

CorrelationID will cause problems. It is helpful to determine how the

application handles correlating request and response messages before using this

attribute. You have four options for populating the CorrelationID in a

synchronous request.

1. Leave the value unchanged. The CorrelationID of the response message will

be the same as the CorrelationID of the request message. This is equivalent

to the WebSphere MQ option MQRO_PASS_CORREL_ID.

2. Change the value to CxIgnore. The connector by default copies the message

ID of the request to the CorrelationID of the response. This is equivalent to

the WebSphere MQ option MQRO_COPY_MSG_ID_TO_CORREL_ID.

3. Change the value to CxBlank. The connector will not set the CorrelationID

on the response message.

4. Change the value to a custom value. This requires that the application

processing the response recognize the custom value.

If you do not define attribute CorrelationID in the meta-object, the connector

handles the CorrelationID automatically.

v ReplyToQueue If you update the dynamic meta-object by specifying a different

queue for attribute ReplyToQueue, the connector sends the response message to

the queue you specify. This is not recommended. Having the connector send

40 Adapter for Healthcare Data Protocols User Guide

response messages to different queues may interfere with communication

because an application that sets a specific reply queue in a request message is

assumed to be waiting for a response on that queue.

v JMS properties The values set for the JMS Properties attribute in the dynamic

meta-object when the updated business object is returned to the connector are

set in the response message.

Asynchronous request processing: The connector uses the dynamic meta-object,

if present, to populate the request message prior to issuing it. The connector

performs the following steps before sending a request message:

1. If attribute CorrelationID is present in the dynamic meta-object, the connector

sets the CorrelationID of the outbound request message to this value.

2. If attribute ReplyToQueue is specified in the dynamic meta-object, the connector

passes this queue via the request message and waits on this queue for a

response. This allows you to override the ReplyToQueuevalue specified in the

connector configuration properties. If you additionally specify a negative

ResponseTimeout (meaning that the connector should not wait for a response),

theReplyToQueue is set in the response message, even though the connector

does not actually wait for a response.

3. If attribute JMSProperties is specified in the dynamic meta-object, the

corresponding JMS properties specified in the child dynamic meta-object are set

in the outbound message sent by the connector.

Note: If header attributes in the dynamic meta-object are undefined or specify

CxIgnore, the connector follows its default settings.

Synchronous request processing: The connector uses the dynamic meta-object, if

present, to populate the request message prior to issuing it. If the dynamic

meta-object contains header attributes, the connector populates it with

corresponding new values found in the response message. The connector performs

the following steps (in addition to populating the meta-object with

transport-related data) after receiving a response message:

 1. If attribute CorrelationID is present in the dynamic meta-object, the adapter

updates this attribute with the JMSCorrelationID specified in the response

message.

 2. If attribute ReplyToQueue is defined in the dynamic meta-object, the adapter

updates this attribute with the name of the JMSReplyTo specified in the

response message.

 3. If attribute DeliveryMode is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSDeliveryMode header field of

the message.

 4. If attribute Priority is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSPriority header field of the

message.

 5. If attribute Destination is defined in the dynamic meta-object, the adapter

updates this attribute with the name of the JMSDestination specified in the

response message.

 6. If attribute Expiration is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSExpiration header field of the

message.

 7. If attribute MessageID is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSMessageID header field of the

message.

Chapter 2. Configuring the connector 41

8. If attribute Redelivered is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSRedelivered header field of the

message.

 9. If attribute TimeStamp is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSTimeStamp header field of the

message.

10. If attribute Type is present in the dynamic meta-object, the adapter updates

this attribute with the value of the JMSType header field of the message.

11. If attribute UserID is present in the dynamic meta-object, the adapter updates

this attribute with the value of the JMSXUserID header field of the message.

12. If attribute AppID is present in the dynamic meta-object, the adapter updates

this attribute with the value of the JMSXAppID property field of the message.

13. If attribute DeliveryCount is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSXDeliveryCount header field of

the message.

14. If attribute GroupID is present in the dynamic meta-object, the adapter updates

this attribute with the value of the JMSXGroupID header field of the message.

15. If attribute GroupSeq is present in the dynamic meta-object, the adapter

updates this attribute with the value of the JMSXGroupSeq header field of the

message.

16. If attribute JMSProperties is defined in the dynamic meta-object, the adapter

updates any properties defined in the child object with the values found in

the response message. If a property defined in the child object does not exist

in the message, the value is set to CxBlank.

Note: Using the dynamic meta-object to change the CorrelationID set in the

request message does not affect the way the adapter identifies the response

message—the adapter by default expects that the CorrelationID of any

response message equals the message ID of the request sent by the adapter.

Error handling: If a JMS property cannot be read from or written to a message,

the connector logs an error and the request or event fails. If a user-specified

ReplyToQueue does not exist or cannot be accessed, the connector logs an error and

the request fails. If a CorrelationID is invalid or cannot be set, the connector logs

an error and the request fails. In all cases, the message logged is from the

connector message file.

Startup file configuration

Before you start the connector for HL7, you must configure the startup file with

the path information for the MQ Java client libraries. If the MQ Java client libraries

are not listed in the startup file, use the instructions in the sections below to

configure these files for Windows, Linux, or i5/OS. systems.

Windows

To complete the configuration of the connector for Windows platforms, the

healthcare connector gets the path of the MQ Java Client Library from the

environment variable MQ_LIB_RUNTIME:

1. Open the start_Healthcare.bat file.

2. Scroll to the section beginning with “Set the directory containing your MQ

Java client libraries,” and specify the location of your MQ Java client

libraries.

42 Adapter for Healthcare Data Protocols User Guide

Linux

To complete the configuration, the installer for InterChange Server Express

automatically sets the variables related to MQ Java Client Library.

Note: If you still want to add the MQ path into the startup scripts, you can

append the MQ path to CLASSPATH (JCLASSES) constructed in this startup

script: start_Healthcare.sh.

i5/OS

To complete the configuration, the installer for InterChange Server Express

automatically set the variables related to MQ Java Client Library.

Note: If you still want to add the MQ path into the startup script, you can append

the MQ path to CLASSPATH (JCLASSES) constructed in this startup script:

start_Healthcare.sh.

Creating multiple instances of connectors on one server

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

v For Windows Platforms:

ProductDir\connectors\connectorInstance

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file,

create this directory and store the file here:

ProductDir\repository\connectorInstance

where connectorInstance uniquely identifies the connector instance.

You can specify the InterChange Server Express server name as a parameter of

startup.bat; an example is: start_healthcare.bat connName serverName.

v For i5/OS Platforms:

/QIBM/UserData/WBIServer44/WebShereICSName/connectors/connectorInstance

where connectorInstance uniquely identifies the connector instance and where

WebSphereICSName is the name of the Interchange Server Express instance with

which the connector runs.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file,

create this directory and store the file here:

/QIBM/UserData/WBIServer44/WebSphereICSName/repository

/connectorInstance where WebSphereICSName is the name of the Interchange

Server Express

instance with which the connector runs.

v For Linux Platforms:

ProductDir/connectors/connectorInstance where connectorInstance uniquely

identifies the connector instance. If the connector has any connector-specific

Chapter 2. Configuring the connector 43

meta-objects, you must create a meta-object for the connector instance. if you

save the meta-object as a file, create this directory and store the file here:

ProductDir/repository/connectorInstance.You can specify the InterChange

Server Express servername as a parameter of connector_manager; an example is

connector_manager -start connName WebSphereICSName [-cConfigFile].

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer

Express to import them. You can copy any of the files for the initial connector.

Just rename them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

Use the following steps to create a configuration file (connector definition) for the

connector instance in Connector Configurator Express.

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create

business object definitions.”

3. (For Windows only.) Create a startup script shortcut.

4. (For Windows only.) Copy the initial connector’s shortcut text and change the

name of the initial connector (in the command line) to match the name of the

new connector instance.

5. (For i5/OS only.) Create a job description for the connector using the

information below:

CRTDUPOBJ(QWBIISRSC) FROMLIB(QWBISVR44)OBJTYPE(*JOBD)TOLIB

(QWBISVR44) NEWOBJ(newemailname) where newemailname is a 10-character

name that you use for the job description for your new connector.

6. (For i5/OS only.) Add the new connector to the WebSphere Business

Integration Server Express Console. For information about the WebSphere

Business Integration Server Express console, refer to the online help provided

with the Console.

44 Adapter for Healthcare Data Protocols User Guide

Starting the connector

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:ProductDir\connectors\healthcare.

On Linux systems the startup script should reside in the ProductDir/bin directory.

On i5/OS systems the startup script should reside in

/QIBM/UserData/WBIServer44/WebSphereICSName/connectors /Healthcare

The name of the startup script depends on the operating system platform, as

Table 25 shows.

 Table 25. Startup scripts for a connector

Operating system Startup script

Linux connector_manager

i5/OS start_healthcare.sh

Windows start_healthcare.bat

When the startup script runs, it expects by default to find the configuration file in

the ProductDir (see the commands below). This is where you place your

configuration file.

v Starting the connector on a Windows system:

– From the Start menu, select Programs>IBM WebSphere Business Integration

Express>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Server Express.” However, it can be

customized. Alternatively, you can create a desktop shortcut to your

connector.

– From the Windows command line: start_connName connName brokerName

{-cconfigFile}.

– On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for

an Auto service) or when you start the service through the Windows Services

window (for a Manual service).
v Starting the connector on a Linux system:

– From the command line type:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies the

integration broker.

– For InterChange Server Express, specify for brokerName the name of the

InterChange Server Express instance.
v Starting the connector on an i5/OS system:

– From the Windows system where the WebSphere Business Integrations Server

Express Console is installed, select IBM WebSphere Business Integration

Server Express>Toolset Express>

Administrative>Console. Then specify the i5/OS system name or IP address

and a user profile and password that has *JOBCTL special authority. Select

the connector from the list of connectors, and click Start

– To automatically start the adapter using the Console, use the

submit_adapter.sh script. You can also set the adapter agent from the Console

Chapter 2. Configuring the connector 45

to start automatically. To set the option, right-click on the adapter agent and

click to enable the Autostart check box.

– In Batch mode, from the i5/OS command line, you need to run the CL

command QSH and from the QSHELL environment. Run

/QIBM/ProdData/WBIServer44/bin/submit_adapter.sh connName

WebSphereICSName pathToConnNameStartScript jobDescriptionName, where

connName is the connector name, WebSphereICSName is the Interchange Server

Express server name (default is QWBIDFT44), pathToConnNameStartScript is

the full path to the connector start script, jobDescriptionName is the name of

the job description to use in the QWBISVR44 library.

– In interactive mode, you need to run the CL command QSH and from the

QSHELL environment.

Run /QIBM/UserData/WBIServer44/WebSphereICSName/connectors

/Healthcare/start_Healthcare.sh Healthcare WebSphereICSName

[-cConfigFile]

For more information on how to start a connector, including the command-line

startup options, refer to the System Administration Guide.

Tasks performed during connector startup

When the connector is started, it performs the following tasks:

v Retrieves configuration information

v Retrieves the supported internal business object definitions

v Returns the connector version

v Returns a pointer to the internal business object handler

v Retrieves a pointer to the data handler

Stopping the connector

The way to stop a connector depends on the way the connector was started.

v Windows:

– You can invoke the startup script which creates a separate “console” window

for the connector. In this window, type “q” and press Enter to stop the

connector.

– You can configure the connector to start as a Windows service. In this case,

the connector stops when the Windows system shuts down.
v i5/OS:

– If you started the connector using the Console, or using the

″submit_adapter.sh″ script in QSHELL, then you can use one of two methods

to stop the connector:

– From the Windows system where the WebSphere Business Integration Server

Express Console is installed, select IBM WebSphere Business Integration

Express> Toolset Express>Administrative>Console. Then specify the i5/OS

system name or IP address and a user profile and password that has *JOBCTL

special authority. Select the Healthcare adapter from the list and select the

Stop button. Use the CL Command WRKACTJOB SBS (QWBISVR44) to

display the jobs to the Server Express product. Scroll the list to find the job

with the jobname that matches the job description for the connector. Use the

CL Command WRKSMBJOB to display the jobs; the job name is QWBIISRSC.

Select Option 4 on this job, and press F4 to get the prompt for the ENDJOB

command. Then specify *IMMED for the Option parameter and press enter.

Note: The connector will end when the QWBISVR44 subsystem has ended.

46 Adapter for Healthcare Data Protocols User Guide

– If you used the start_connName.sh script to start the adapter from QSHELL,

press F3 to

end the connector. You can also stop the agent, by using a script named

stop_adapter.sh
located in the /QIBM/ProdData/WBIServer44/bin directory.

v Linux:

Connectors run in the background so they have no separate window. Instead,

run the following command to stop the connector:

connector_manager -stop connName

where connName is the name of the connector.

Chapter 2. Configuring the connector 47

48 Adapter for Healthcare Data Protocols User Guide

Chapter 3. Business objects

v “Connector business object requirements” on page 49

v “Overview of the HL7 message structure” on page 52

v “Overview of business objects for HL7” on page 53

The connector for health care data protocols is a metadata-driven connector. In

WebSphere business objects, metadata is data about the application’s data, which is

stored in a business object definition and which helps the connector interact with

an application. A metadata-driven connector handles each business object that it

supports based on metadata encoded in the business object definition rather than

on instructions hard-coded in the connector.

Business object metadata includes the structure of a business object, the settings of

its attribute properties, and the content of its application-specific text. Because the

connector is metadatametadata-driven, it can handle new or modified business

objects without requiring modifications to the connector code. However, the

connector’s configured data handler makes assumptions about the structure of its

business objects, object cardinality, the format of the application-specific text, and

the database representation of the business object. Therefore, when you create or

modify a business object for health care data protocols, your modifications must

conform to the rules the connector is designed to follow, or the connector cannot

process new or modified business objects correctly.

This chapter describes how the connector processes business objects and describes

the assumptions the connector makes. You can use this information as a guide to

implementing new business objects.

Connector business object requirements

The business object requirements for the connector reflect the way the health care

data handler converts:

v an HL7 message into a WebSphere business object, and vice versa

v a NCPDP message into a WebSphere business object, and vice versa

The sections below discuss the requirements for WebSphere business objects as

well as the HL7 and NCPDP message structure.

A review of the following WebSphere documents is strongly recommended:

v System Implementation Guide

v Business Object Development Guide

Business object hierarchy

WebSphere business objects can be flat or hierarchical. All the attributes of a flat

business object are simple (that is, each attribute represents a single value, such as

a String or Integer or Date).

In addition to containing simple attributes, a hierarchical business object has

attributes that represent a child business object, an array of child business objects,

or a combination of both. In turn, each child business object can contain a child

business object or an array of business objects, and so on.

© Copyright IBM Corp. 2004, 2005 49

Important: A business object array can contain data whose type is a business

object. It cannot contain data of any other type, such as String or

Integer.

There are two types of relationships between parent and child business objects:

v Single-cardinality—When an attribute in a parent business object represents a

single child business object. The attribute is of the same type as the child

business object.

v Multiple-cardinality—When an attribute in the parent business object represents

an array of child business objects. The attribute is an array of the same type as

the child business objects.

WebSphere uses the following terms when describing business objects:

v hierarchical—Refers to a complete business object, including the top-level

business object and its the child business objects at any level.

v parent—Refers to a business object that contains at least one child business

object. A top-level business object is also a parent.

v individual—Refers to a single business object, independent of any child business

objects it might contain or that contain it.

v top-level—Refers to the individual business object at the top of the hierarchy,

which does not itself have a parent business object.

v wrapper—Refers to a top-level business object that contains information used to

process its child business objects. For example, the healthcare connector requires

the wrapper business object to contain information that determines the format of

its child data business objects and routes the children.

Business object attribute properties

Business object architecture defines various properties that apply to attributes. This

section describes how the connector interprets several of these properties. For

further information on these properties, see Business Object Attributes and

Attribute Properties in Chapter 2 of the Business Object Development Guide.

Name property

Each business object attribute must have a unique name within the business object.

The name should describe the data that the attribute contains.

For an application-specific business object, check the Data Handler Guide for specific

naming requirements.

The name can be up to 80 alphanumeric characters and underscores. It cannot

contain spaces, punctuation, or special characters.

Type property

The Type property defines the data type of the attribute:

v For a simple attribute, the supported types are Boolean, Integer, Float, Double,

String, Date, and LongText.

v If the attribute represents a child business object, specify the type as the name of

the child business object definition (for example, Type = MT502A) and specify the

cardinality as 1.

v If the attribute represents an array of child business objects, specify the type as

the name of the child business object definition and specify the cardinality as n.

50 Adapter for Healthcare Data Protocols User Guide

Note: All attributes that represent child business objects also have a

ContainedObjectVersion property (which specifies the child’s version

number) and a Relationship property (which specifies the value

Containment).

Cardinality property

Each simple attribute has cardinality 1. Each business object attribute that

represents a child or array of child business objects has cardinality 1 or n,

respectively.

Note: When specified for a required attribute, cardinality 1 indicates a child

business object must exist, and cardinality n indicates zero to many instances

of a child business object.

Key property

At least one attribute in each business object must be specified as the key. To

define an attribute as a key, set this property to true.

When you specify as key an attribute that represents a child business object, the

key is the concatenation of the keys in the child business object. When you specify

as key an attribute that represents an array of child business objects, the key is the

concatenation of the keys in the child business object at location 0 in the array.

Foreign key property

The Foreign Key property is typically used in application-specific business objects

to specify that the value of an attribute holds the primary key of another business

object, serving as a means of linking the two business objects. The attribute that

holds the primary key of another business object is called a foreign key. Define the

Foreign Key property as true for each attribute that represents a foreign key.

You can also use the Foreign Key property for other processing instructions. For

example, this property can be used to specify what kind of foreign key lookup the

connector performs. In this case, you might set Foreign Key to true to indicate that

the connector checks for the existence of the entity in the database and creates the

relationship only if the record for the entity exists.

Required property

The Required property specifies whether an attribute must contain a value. If a

particular attribute in the business object that you are creating must contain a

value, set the Required property for the attribute to true.

For information on enforcing the Required property for attributes, see the section

on initAndValidateAttributes() in Connector Reference: C++ Class Library and

Connector Reference: Java Class Library.

AppSpecificInfo

The AppSpecificInfo property is a String no longer than 255 characters that is

specified primarily for an application-specific business object.

Max length property

The Max Length property is set to the number of bytes that a String-type attribute

can contain. Although this value is not enforced by the WebSphere system, specific

connectors or data handlers may use this value. Check the guide for the connector

or data handler that will process the business object to determine minimum and

maximum allowed lengths.

Chapter 3. Business objects 51

Note: The Max Length property is very important when you use a fixed width

data handler. Attribute length is not available in the collaboration mapping

process (relevant only when InterChange Server Express is the integration

broker).

Default value property

The Default Value property can specify a default value for an attribute.

If this property is specified for an application-specific business object, and the

UseDefaults connector configuration property is set to true, the connector can use

the default values specified in the business object definition to provide values for

attributes that have no values at runtime.

For more information on how the Default Value property is used, see the section

on initAndValidateAttributes() in Connector Reference: C++ Class Library and

Connector Reference: Java Class Library.

Comments property

The Comments property allows you to specify a human-readable comment for an

attribute. Unlike the AppSpecificInfo property, which is used to process a business

object, the Comments property provides only documentation information.

Special attribute value

Simple attributes in business object can have the special value, CxIgnore. When it

receives a business object from the integration broker, the connector ignores all

attributes with a value of CxIgnore. It is as if those attributes were invisible to the

connector.

If no value is required, the connector sets the value of that attribute to CxIgnore by

default.

Overview of the HL7 message structure

HL7 standard supports primarily two modes of operations: Batch and Interactive.

Data exchanged between systems can roughly be classified into two groups:

individual and bulk to suit the two modes of operations.

By definition, bulk message is a collection of individual messages. It consists of

header, sequentially listed individual message, and trailer. The embedded

individual message retains its structure, just as it were in the interactive operation

mode. There is no structural difference between individual messages operating in

two different modes of operation. But because the nature of batch operation does

not allow dialog messages, certain categories of individual message are only suited

for the interactive operation mode.

Structurally all individual message contains a header. Some contains body and

others don’t. An Individual message is, according to the standard, an “atomic unit

of data transferred between systems”. However the very same standard also allows

the notion of logical message, whose data is physically broken down to more than

one individual messages and correlated together using a logical message id in

message headers. The breakup of a message into individual messages is driven

primarily by message length negotiated between parties engaging in message

exchanges.

For more information about the HL7 message structure and HL7 message

components see

52 Adapter for Healthcare Data Protocols User Guide

Overview of business objects for HL7

HL7 provides two ways by which to offer message representation:

v Sampled object representation

The HL7 message body offers object representation to just the header. The

message body is treated as a blob. One business object, to represent all message

types.

v Native object representation

This level of object representation of HL7 message offers object representation to

both message header and message body. A corresponding business object

represents virtually every HL7 data element, including every message structure

or query.

The following sections describe rules to follow when constructing business objects

to represent HL7 data elements.

Supported native message

When creating, configuring or modifying supported native messages:

v All message types and queries, except examples, defined by version 2.4 of HL7

message standard specification

v Industry specific business objects (ISBO) that correspond to the template used in

the standard specification are provided for reference only. Not all data elements

are fully solidified, thus no support is provided to these business objects.

v Earlier versions of the HL7 standard permited users to create their own custom

made (CM) data type. Since CM data types are not specified in the standard,

they are not included in the published collection of industry specific business

objects (ISBOs). However, the metadata model employed in the published ISBOs

offers users a way to create their ASBO representation to these CM data types.

Mapping the primitive data type

Use the following table to map the primitive data type:

 Table 26. Mapping the Primitive data type

HL7 data elements Business object attribute data type

SI String

ID String

NM Float

DT String

IS String

ST String

FT String

TX String

Chapter 3. Business objects 53

Mapping repeating data elements

Use the following table to map repeating data elements:

 Table 27. Mapping repeating data elements

Repeating HL7 data

element

BO attribute data

type Cardinality ASI

SI, ID, DT, IS, ST, FT,

TX

CW_Array_String N DataTypeID=HL7

data type ID

NM CW_Array_Float N DataTypeID=NM

ISBO definitions

Documenting all of the business objects needed to represent the complete HL7 data

element catalog is prohibitive. The following section explains how the business

objects are constructed, along with noting several the special treatment required for

several HL7 data elements hat do not follow traditional BO construction rules

Business object construction follows the HL7 data element structure very closely,

except for the HL7_DTEncodedText, HL7_DTMA, HL7_DTNA, HL7_DTQIP, and

HL7_DTUnionALL.

Note: The rules of constructing BO from HL7 data elements are detailed in the

following subsections. The naming convention adopts [] to signify

optionality and <> to signify the explanation of content enclosed by the

angle brackets which is not part of the required characters in the naming

convention. Each business object must contain the ObjectEventID BO. For

this reason, the following business objects do not specifically list that

business object.

BO Name

Message BO

Construct the Message BO using the following parameters:

v Corresponding HL7 data element

Message structure identified by a pair of HL7 message type and event/query

IDs

v Naming convention

HLT_MT<message type>_<Event code/query id>
where event code with smallest lexigraphical value is applicable to the message

type/query

v Marking convention

N/A

v Grammar

N/A

v Example:

HL7_MTADT_A01 for ADT message type with ACK event with event code A01,

A04, A08, and A13

HL7_MTQBP_Q21 for Query statement ID Q21 and Q24.

Group BO

The Group BO construct is summarized as follows:

54 Adapter for Healthcare Data Protocols User Guide

v Corresponding HL7 data element

Any segment group with two or more segments.

v Naming convention

HLT_MT<message type>_<Event code/query id>_GP<group index>
where event code with the smallest lexical value is applicable to the message

type/query and index is unique in the scope of the message structure.

v Marking convention

N/A

v Grammar

N/A

v Example:

HL7_MTADT_A03 has a group name HL7_MTADT_A03_GP1

 Table 28. Naming conventions for segment group

ADT^A03^ADT_A03 ADT Message

MSH Message header

EVN Event type

PID Patient identification

[PD1] Additional demographics

[{ ROL }] Role

[PV2] Patient visit - Additional information

[{ ROL }] Role

[{ DB1 }] Disability information

[{ DG1 }] Diagnosis information

[DRG] Diagnosis related group

[{

PR1 Procedures

[{ ROL }] Role

}]

[{ OBX }] Observation/Result

[PDA } Patient death/autopsy

Segment BO

The construction of the Segment BO is summarized as follows:

v Corresponding HL7 data element

HL7 segment and the segment definition of QPD, QED, RCP, QAK segments

with their parameter tables of a conformance statement

v Naming convention

HL7_SG<segment ID>_[<Query ID>]
where Segment ID is the segment ID defined by HL7 and Query ID is the query

ID defined by HL7 or user. Only QPD, QED, RCP, QAK segments require query

ID.

v Marking convention

N/A

v Grammar

N/A

Chapter 3. Business objects 55

v Example:

The segment BO for MSH is named HL7_SGMSHThe segment BO for QBD segment

in QBP_Q21 is named HL7_SGQBD_Q21

Complex data type BO

The construction of a complex data type BO is summarized as follows:

v Corresponding HL7 data element

Complex HL7 data type except MA, NA, and QIP data types

v Naming convention

HL7_DT<data type>
where Data Type is the data type ID defined by HL7 for complex HL7 data

types.

To the CE data type the following convention is used: HL7_DT<Data Type>_<Table

Number>
where table number is the id of table for the segment field of CE data type,

which is defined in a segment definition

The polymorphic nature of CM data type warrants separate treatment. Each

instance of CM data type is specified in the following table. The data structure

name is specified in the table of Data Structures in the HL7 Message Standard

Access Database.

 Table 29. List of all business objects for complex data types for CM data

DT BO Data structure name Description

HL7_DTAUI AUI Authorization information

HL7_DTCCD CCD Charge time

HL7_DTCCP CCP Channel calibration parameters

HL7_DTCSU CSU Channel sensitivity/units

HL7_DDI DDI Daily deductible

HL7_DIN DIN Activation code

HL7_DLD DLD Discharge location

HL7_DLT DLT Delta check

HL7_DTN DTN Day, type and number

HL7_DEIP EIP Parent order

HL7_DTELD ELD Error

HL7_DTLA1 LA1 Location with address information (variant one)

HL7_DTLA2 LA2 Location with address information (variant two)

HL7_DMOC MOC Charge to practice

HL7_DMSG MSG Message type

HL7_DNDL NDL Observing practitioner

HL7_DNR NR Wertebereich

HL7_DOCD_ OCD Occurence

HL7_DOSD OSD Order sequence

HL7_DOSP OSP Occurence span

HL7_DPCF PCF Pre-certification

HL7_DPEN PEN Penalty

HL7_DTPI PI Personal identifier

56 Adapter for Healthcare Data Protocols User Guide

Table 29. List of all business objects for complex data types for CM data (continued)

DT BO Data structure name Description

HL7_DTPIP PIP Privileges

HL7_DTPLN PLN Practitioner ID numbers

HL7_DTPRL PRL Parent result link

HL7_DTPTA PTA Policy type

HL7_DTRFR RFR Reference range

HL7_DTRMC RMC Room coverage

HL7_DTSPD SPD Specialty

HL7_DTSPS SPS Specimen source

HL7_DTUVC UVC Value code and amount

HL7_DTVR VR Value qualifier

HL7_DTWVI WFI Channel identifier

HL7_DTWVS WVS Waveform source

v Marking convention

N/A

v Grammar

N/A

v Example:

The BO for CQ data type is named HL_DTCQ.

The 46th field of OBR segment, which is of CE data type, uses table 0411, as

shown the following excerpt. The BO name of this CE data type is

HL7_DTCE_0411.

 Table 30. 46th field of the OBR segment

SEQ LEN DT OPT RP/# TBL# ITEM # Element Name

46 250 CE O Y 0411 01474 Placer supplemental service

information

Data type union BO

The construct of the Data type union BO is summarized as follows:

v Corresponding HL7 data element

Varies according to data type

v Naming convention

HL7_DTUnionAll

v Marking convention

N/A

v Grammar

N/A

v Example:

N/A

BO AppSpecificInfo

The following details application specific properties for common business objects.

Chapter 3. Business objects 57

Message BO

The construct of the Message BO for AppSpecificInfo is summarized as follows:

v Corresponding HL7 data element

Message structure identified by a pair of HL7 message type and event /query

ID

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

v Example:

N/A

Group BO

The construct of the Group BO for AppSpecificInfo is summarized as follows:

v Corresponding HL7 data element

Any segment group with two or more segments.

v Naming convention

N/A

v Marking convention

N/A

v Grammar

StructType=Group

The values of StructType ASI property is defined in the following table:

 Table 31. StructType value definition table

StructType value Description

Group To signify that the BO is for a segment group

Segment To signify that the BO is for a segment

DataType To signify that the BO is for an HL7 data type

Union To signify that the BO is a union BO, which represents the

polymorphic data type. Attributes of union BO represent data types

permitted in the variant range of data types. Only one of the attributes

in a union BO is populated at runtime. The context into how to choose

valued attributed is indicated by Type Context ASI property

Array To signify that the BO is for a component array container

v Example:

N/A

Segment BO

The construct of the Segment BO for AppSpecificInfo is summarized as follows:

v Corresponding HL7 data element

HL7 segment and the segment definition of QPD, QED, RCP, QAK segments

with their parameter tables of a conformance statement.

v Naming convention

N/A

v Marking convention

N/A

58 Adapter for Healthcare Data Protocols User Guide

v Grammar

StructType=Segment;SegID=<segment ID>

where segment ID is the HL7 segment ID

v Example:

N/A

BO of a Complex data type

The construct of the BO for a complex data type for BO AppSpecificInfo is

summarized as follows:

v Corresponding HL7 data element

Complex HL7 data type except MA, NA and QIP data type

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

v Example:

N/A

Data type Union BO

The construct of the data type Union BO for BO AppSpecificInfo is summarized as

follows:

v Corresponding HL7 data element

Varies according to data type

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

v Example:

N/A

BO attribute structure

The following section details the attribute structure for several common business

objects.

Message BO

The construct of the data type Message BO for BO Attribute Structure is

summarized as follows:

v Corresponding HL7 data element

Attribute of the types of segment BO or segment group BO. The actual list of

attributes is specified by the HL7 message structure definition

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

Chapter 3. Business objects 59

v Example:

The message structure for message type ADT and event type A61 has the

following attribute types:

 Table 32. Attribute types for each attribute of HL7_MTADT_A61 and HL7 counter parts

Attribute type Attribute type HL7 Counterpart

1 HL7_SGMSH MSH

2 HL7_SGEVN EVN

3 HL7_SGPID PID

4 HL7_SGPD1 [PD1]

5 HL7_SGV1 PV1

6 HL7_SGROL [{ROL}]

7 HL7_SGPV2 [PV2}

Group BO

The construct of the data type Group BO for BO Attribute Structure is summarized

as follows:

v Corresponding HL7 data element

Any segment group with two or more segments

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

v Example:

BO HL7_MTADT_A03_GP1 with HL7 counter parts depicted in the following table

with its HL7 counter part.

 Table 33. Attribute sequence for each attribute of HL7_MTADT_A03_GP1 and their HL7

counter parts

Attribute sequence Attribute type HL7 counterpart

1 HL7_SGPR1 PR1

2 HL7_SGROL [{ROL}]

Segment BO

The construct of the data type Segment BO for BO AttributeStructure is

summarized as follows:

v HL7 segment and the segment definition of QPD, RDT segments with their

parameter tables of a conformance statement.

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

60 Adapter for Healthcare Data Protocols User Guide

v Example:

BO HL7_SGQBD_Q21 with HL7 message standard specification definition for query

Q21.

v

 Table 34. Attribute sequence for query definition Q21 in BO HL7_SGQBD_Q21

Attribute sequence Attribute type HL7 counterpart

1 HL7_DTCE MessageQueryName (CE)

2 HL7_DTENDCODEDTEXT QueryTag (ST)

3 HL7_DTCX PersonIdentifier (CX)

4 HL7_DTCX WhatDomainsReturned (CSX)

BO of complex data type

The construct of the complex data structure for BO AttributeStructure is

summarized as follows:

v Corresponding HL7 data element

Any segment group with two or more segments

v Naming convention

N/A

v Marking convention

N/A

v Grammar

N/A

v Example:

BO HL7_MTADT_A03_GP1 with HL7 counter parts depicted in the following table

with its HL7 counter part.

 Table 35. Attribute sequence for each attribute of HL7_MTADT_A03_GP1 and their HL7

counter parts

Attribute sequence Attribute type HL7 counterpart

1 HL7_SGPR1 PR1

2 HL7_SGROL [{ ROL }]

Data type Union BO

The Union BO represents the total aggregate of all data types defined by the

standard specification.

Note: The Union BO must not recursively contain another Union BO.

The construct of the Union BO is summarized as follows:

v Corresponding HL7 data element

– HL7 data type except CM and Varies

– CM values from Table 29 on page 56
v Naming convention

N/A

v Marking convention

N/A

Chapter 3. Business objects 61

v Grammar

N/A

v Example:

N/A

BO Attribute Property Name

The following details the attribute property names for common business objects

Message BO

The property name attributes of the Message BO are summarized as follows:

v Corresponding HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.

v Naming convention

<concantenation of words in description>
where the concatenation follows the following rules:

 Table 36. Concatenation rules

Rule name Rule description

Word selection All words except the following punctuations and auxiliary words,

regardless of their letter capitalization, in the description are

included in the concatenation: ″a″, ″an″, ″the″, ″in″, ″of″, ″for″,

″with″, ″at″, ″/″, ″\″, ″-″, ″(″, ″)″,″[″, ″]″, ″’″, space, tab

Data type Some descriptions contain parenthesis enclosing a data type id.

These data types are stripped out along with the parenthesis.

Word capitalization First letter of each remaining words is capitalized, and the remaining

letters of the each remaining word are all suppressed to lower case.

Note: HL7 standard specification uses tables to convey the message structure or

query message structure. However, even though each column contains

brief descriptive words, none of the table columns bears the name

“description” in the column title. That is to what “attribute description”

refers. In the follow example, “ADT message” column is equivalent to the

description column

v Marking convention

N/A

v Grammar

N/A

v Example:

The following example uses BO HL7_MTADT_A61.

 Table 37. Attribute names of BO HL7_MTADT_A61, constructed from the message structure

of ADT_A61. ADT message column is the description of each attribute in the message

structure definition

HL7 message structure

ADT^A61^ADT^A61 ADT message Message BO attribute name

MSH Message handler Message Header

EVN Event type Phenotype

PID Patient identification Patient Identification

62 Adapter for Healthcare Data Protocols User Guide

Table 37. Attribute names of BO HL7_MTADT_A61, constructed from the message structure

of ADT_A61. ADT message column is the description of each attribute in the message

structure definition (continued)

HL7 message structure

ADT^A61^ADT^A61 ADT message Message BO attribute name

[PD1] Additional

demographics

Additional Demographics

PV1 Patient visit Potentialities

[{ROL}] Role Role

[PV2} Patient visit -- additional

information

Patient Visit Additional Info

Group BO

The property name attributes of the Group BO are summarized as follows:

v Corresponding HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments

v Naming convention

HLT_MT<message type>_<Event code/query id>_GP<group index>
where event code with the smallest lexigraphical value is applicable to the

message type/query and group index is unique in the scope of the message

structure. That is, the attribute name of Group BO is the same as its type

v Marking convention

N/A

v Grammar

N/A

v Example:

The attribute name for the only group in BO HL_MTADT_A03 is HL_MTADT_A03. See

the table under the heading Complex data types for more information.

Segment BO

The property name attributes of the Segment BO are summarized as follows:

v Corresponding HL7 data element

– The field names, or element name, of the regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

<concatenation of words in the element name of regular segment or the

parameter name in the parameter table>

where event code with the smallest lexigraphical value is applicable to the

message type/query and group index is unique in the scope of the message

structure. That is, the attribute name of Group BO is the same as its type

v Marking convention

N/A

v Grammar

N/A

v Example:

Using BO HL_SGQBD_Q21:

Chapter 3. Business objects 63

Table 38. The attribute names of HL7_SGQBD_Q21 and their HL7 counter parts

Attribute

sequence

Segment BO

attribute name

BO segment attribute

type HL7 counter part

1 MessageQueryName HL7_DTCE MessageQueryName (CE)

2 QueryTag HL7_DTENDCODEDTEXT QueryTag (ST)

3 PersonIdentifier HL7_DTCX PersonIdentifier

4 WhatDomains

Returned

HL7_DTCX WhatDomainsReturned

The segmented for MSH contains these values:

 Table 39.

SEQ MSH segment attribute name Element name

1 Field separator Field separator

2 Encoding characters Encoding characters

3 Sending application Sending application

4 Sending facility Sending facility

BO of complex data type

The property name attributes of the complex data type BO are summarized as

follows:

Corresponding HL7 data element

HL7 components in the definition data type except CM and Varies

v Naming convention

<concatenation of words in the component name ordinary data type or the

description column of regular segment or the parameter name in the

parameter table>

where the concatenation follows the rules listed in Table 36 on page 62.

Additionally, the parenthesis at the end of the component, which used to

indicate the component data type, are filtered out

v Marking convention

N/A

v Grammar

N/A

v Example:

Using BO HL7_DTCP, which corresponds to the CP data type with the following

description:

<price (MO)> ^ <price type (ID)> ^ <from value (NM)> ^ <to value (NM)> ^

<range units (CE)> ^ <range type (ID)>

 Table 40. Attribute names of BO complex data type HL7_DTCP as derived from the

component names of the CP data type

Attribute name of HL7_DTCP Component name of CP data type

Price Price

PriceType Price type

FromValue From value

ToValue To value

RangeUnits Range units

64 Adapter for Healthcare Data Protocols User Guide

Table 40. Attribute names of BO complex data type HL7_DTCP as derived from the

component names of the CP data type (continued)

Attribute name of HL7_DTCP Component name of CP data type

RangeType Range type

Data type Union BO

The property name attributes of the Union BO are summarized as follows:

Corresponding to the HL7 data element

v HL7 data type except CM and Varies

v Data structure as listed in Table 29 on page 56

v Primitive data type

v Naming convention

<Name of complex data type>

v Marking convention

N/A

v Grammar

N/A

v Example:

The name of attribute of type HL7_DTCP is HL7_DTCP , the name of attribute NM is

NM.

BO attribute property type

The following details the attribute property types for common business objects.

Message BO

The property type attributes of the Message BO are summarized as follows:

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.

v Naming convention

<BO names of corresponding segment group or segment>

Please see “Message BO” on page 58 for details on how BOs are named.

v Marking convention

N/A

v Grammar

N/A

v Example:

See BO HL7_MTADT_A61, Table 37 on page 62, for the names of the attribute types.

Group BO

The property type attributes of the Group BO are summarized as follows:

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments

v Naming convention

<Name of segment BO in a segment group>
see “Message BO” on page 54for a complete list of

Chapter 3. Business objects 65

v Marking convention

N/A

v Grammar

N/A

v Example:

See BO HL7_MTADT_A61, Table 37 on page 62.

Segment BO

The property type attributes of the Segment BO are summarized as follows:

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

<Name of BO of complex data type or the appropriate primitive data type >

v Marking convention

N/A

v Grammar

N/A

v Example:

See Table 38 on page 64.

BO of complex data type

The property type attributes of the complex data type are summarized as follows:

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– Components of data structures listed in Table 29 on page 56 of this document

for CM type
v Naming convention

<Name of BO of complex data type that corresponds to the subconponent or

the appropriate primitive data type >

v Marking convention

N/A

v Grammar

N/A

v Example:

See Table 32 on page 60.

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

<Name of BO of complex data type that corresponds to the subconponent or

the appropriate primitive data type >

v Marking convention

N/A

66 Adapter for Healthcare Data Protocols User Guide

v Grammar

N/A

v Example:

The name of attribute of typeHL7_DTCP is HL7_DTCP; the name of attribute of type

NM is NM

BO attribute property Iskey

The following details the attribute property Iskey for common business objects.

Message BO

Key attributes in the message BO bear no significance.

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.

v Naming convention

N/A

v Marking convention

Set key to true for the first attribute of the message BO.

v Example:

N/A

Group BO

Key attributes in the group BO bear no significance.

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments

v Naming convention

N/A

v Marking convention

Set key to true for the first attribute of the group BO.

v Example:

N/A

Segment BO

Key attributes in Segment BO are derived from ordinary segments and do not bear

any significance. Their presence is only to fulfill the architecture’s system

requirements, but are crucial to parameters in the QPD, RDT segments

v Corresponding to the HL7 data element
v The fields of regular HL7 segment

v The parameter names of QPD, RDT segments of a conformance statement

v Naming convention

N/A

v Marking convention

– For all segment BO except segments of type QPD, RDT, set the first attribute

key to true

– For segments of type QPD, RDT, set key to true for attributes whose

corresponding parameter is marked as “Key”
v Grammar

N/A

Chapter 3. Business objects 67

v Example:

N/A

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56of this document

for CM type
v Naming convention

N/A

v Marking convention

– All BO of complex data type, including those listed in Table 29 on page 56and

primitive type attributes

– Set the IsKey property of the first attribute to true.
v Grammar

N/A

v Example:

N/A

BO attribute property IsForeignKey

The following details the attribute property IsKey for common business objects.

Message BO

Key attributes in the message BO bear no significance.

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.
v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Grammar

N/A

v Example

N/A

Group BO

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments
v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Example:

N/A

68 Adapter for Healthcare Data Protocols User Guide

Segment BO

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Grammar

N/A

v Example:

N/A

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

v

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56of this document

for CM type
v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Grammar

N/A

v Example:

N/A

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Grammar

N/A

v Example:

N/A

BO attribute property Cardinality

The following details the attribute property Cardinality for common business

objects.

Chapter 3. Business objects 69

Message BO

Key attributes in the message BO bear no significance.

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.
v Naming convention

N/A

v Marking convention

Segment group or segment that has {} brace: set cardinality to N else to 1

v Example:

The corresponding message BO for the ADT_A61 HL7 message structure for

message type ADT and event type A61 has following attributes:

 Table 41. This example shows the attribute cardinality for each attribute of

HL7_MTADT_A61 and their HL7 counter parts

Attribute sequence Attribute type HL7 counter part Cardinality

1 HL7_SGMSH MSH 1

2 HL7_SGEVN EVN 1

3 HL7_SGPID PID 1

4 HL7_SGPD1 [PD1] 1

5 HL7_SGV1 PV1 1

6 HL7_SGROL [{ ROL }] N

7 HL7_SGPV2 [PV2] 1

Group BO

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments

v Naming convention

N/A

v Marking convention

Set IsForeignKey to false

v Example:

N/A

Segment BO

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

N/A

v Marking convention

Segment fields that have the RP# or RP column marked with ″Y″ or ″y″: set

cardinality to N else set to 1

v Grammar

N/A

70 Adapter for Healthcare Data Protocols User Guide

v Example:

For BO HL7_SGQBD_Q21, the cardinality attribute for the HL7 message standard

specification for parameter definition for query Q21:

 Table 42. This example shows the attribute cardinality for each attribute of

HL7_SGQBD_Q21 and their HL7 counter parts

Attribute sequence Sequence BO attribute name RP#/RP Cardinality

1 MessageQueryName 1

2 QueryTag 1

3 PersonIdentifier N 1

4 WhatDomainReturned Y N

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56of this document

for CM type
v Naming convention

N/A

v Marking convention

Set cardinality to 1

v Grammar

N/A

v Example

N/A

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

N/A

v Marking convention

Set cardinality to 1

v Grammar

N/A

v Example:

N/A

BO attribute property MaxLength

The following details the attribute property MaxLength for common business

objects.

Chapter 3. Business objects 71

Because the architecture BO does not have the notion of BO size, a characteristic

strongly exhibited in all HL7 data elements instead of just data element of

primitive type, the notion of Maximum Length can’t be conveyed in the traditional

manner through the MaxLength BO attributes property. This attribute property is

not used in BOs of all scopes of HL7 data element representation in order to

achieve uniformity in the representation of Maximum Length of HL7 data element.

Instead, the notion of Maximum Length of HL7 data element is conveyed through

the AppSpecificInfo. Since this version of the data handler does not support

validation, Maxlength as an AppSpecificInfo property does not take place in any

part of the BO of this release.

Because the MaxLength can be a decisive factor on whether BOs of certain size can

be stored in communication channels for certain brokers, it is still important to set

the correct value to this attribute property. If it is not mentioned, the default value

of this attribute property is 255 for all primitive attributes.

BO attribute property IsRequired

The following details the attribute property IsRequired for common business

objects.

Message BO

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.
v Naming convention

N/A

v Marking convention

Set IsRequired to false if the HL7 message structure definition encloses the

segment or segment group with square bracket [], otherwise set the property to

true.

v Example:

The corresponding message BO for the ADT_A61 HL7 message structure for

message type ADT and event type A61 has following attributes:

 Table 43. This example shows the attribute cardinality for each attribute of

HL7_MTADT_A61 and their HL7 counter parts

Attribute sequence Attribute type HL7 counter part IsRequired

1 HL7_SGMSH MSH True

2 HL7_SGEVN EVN True

3 HL7_SGPID PID True

4 HL7_SGPD1 [PD1] False

5 HL7_SGV1 PV1 True

6 HL7_SGROL [{ ROL }] False

7 HL7_SGPV2 [PV2] False

Group BO

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments

72 Adapter for Healthcare Data Protocols User Guide

v Naming convention

N/A

v Marking convention

Segment group or segment BO that has [] brace: set IsRequired to false,

otherwise set to true

v Example:

N/A

Segment BO

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

N/A

v Marking convention

If the OPT column of segment field or query parameter is not set to O, then set

IsRequired property of corresponding attribute to false, otherwise set to true.

v Grammar

N/A

v Example:

For BO HL7_SGQBD_Q21, the IsRequired attribute for the HL7 message standard

specification for parameter definition for query Q21:

 Table 44. This example shows the IsRequired attribute for HL7_SGQBD_Q21 and their HL7

counter parts

Attribute sequence Sequence BO attribute name OPT IsRequired

1 MessageQueryName R True

2 QueryTag R True

3 PersonIdentifier R True

4 WhatDomainReturned O False

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56of this document

for CM type
v Naming convention

N/A

v Marking convention

Set IsRequired to false

v Grammar

N/A

v Example:

N/A

Chapter 3. Business objects 73

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

N/A

v Marking convention

Set IsRequired to false

v Grammar

N/A

v Example:

N/A

BO attribute property Relationship

The following details the attribute property Relationship for common business

objects.

Message BO

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.
v Naming convention

N/A

v Marking convention

Set Relationship to Containment

v Example:

N/A

Group BO

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments
v Naming convention

N/A

v Marking convention

Set Relationship to Containment

v Example:

N/A

Segment BO

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

N/A

74 Adapter for Healthcare Data Protocols User Guide

v Marking convention

Set Relationship to Containment

v Grammar

N/A

v Example:

N/A

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56of this document

for CM type
v Naming convention

N/A

v Marking convention

If the attribute type is BO, set Relationship to Containment, otherwise take out

the attribute property when working with BO definition file

v Grammar

N/A

v Example:

N/A

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

N/A

v Marking convention

If the attribute type is BO, set Relationship to Containment, otherwise take out

the attribute property when working with BO definition file

v Grammar

N/A

v Example:

N/A

BO attribute property AppSpecificInfo

The following details the attribute property Relationship for common business

objects.

Message BO

v Corresponding to the HL7 data element

Attributes in segment groups or segments that make up the HL7 message

structure definition or query structure definition.

Chapter 3. Business objects 75

v Naming convention

N/A

v Marking convention

N/A

v Example:

N/A

Group BO

v Corresponding to the HL7 data element

Segments or segment subgroup of a given segment group with two or more

segments
v Naming convention

N/A

v Marking convention

N/A

v Example:

N/A

Segment BO

v Corresponding to the HL7 data element

– The fields of regular HL7 segment

– The parameter names of QPD, RDT segments of a conformance statement
v Naming convention

N/A

v Marking Convention

N/A

v Grammar

– All data types other than CM: StructType=DataType;DataTypeID=<HL7 data

type ID>

– DT BO listed in Table 29 on page 56 StructType=DataType;DataTypeID=CM

v Example:

– For attribute that corresponds to the ST data type, the AppSpecificInfo is

StructType=DataType;DataTypeID=ST; MaxLength=199

– For attribute whose type is HL7_DTMSG as defined in Table 29 on page 56,

the AppSpecificInfo is StructType=DataType;DataTypeID=CM

BO of complex data type

Key attributes in BO of Complex Data Type do not bear any significance.

v Corresponding to the HL7 data element

– HL7 components in the definition data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type
v Naming convention

N/A
v Marking convention

If the attribute type is BO, set Relationship to Containment, otherwise take out

the attribute property when working with BO definition file
v Grammar

76 Adapter for Healthcare Data Protocols User Guide

– All data types other than CM, MA, NA, QIP and Varies

StructType=DataType;DataTypeID=<HL7 data type ID>

– DT BO listed in Table 29 on page 56, StructType=DataType;DataTypeID=CM

– MA, NA and QIP type BO

– Union BO for varies data type StructType=Union;TypeContext=<reference

path at where the data type is specified in the BO structure>

TypeContext is used to indicate where in the BO structure to retrieve the data

type announcer information such as the CM or NM for the data carrier.

The path can be relative or can also be absolute path where the root is the

top-most parent BO.

Since the RDT segment definition expects user to provide definition for each of

the columns and hence does not consist of column of varies data type, the need

to supporting absolute path is not warranted. This release only supports the

relative path.

In this release, the relative pathname is defined as BO attribute name of the one

of data type announcer
v Example:

 Table 45. This example shows the attribute AppSpecificInfo for each attribute of HL7_DTCQ

and their HL7 counter parts

Attribute

sequence Attribute name Attribute type ASI

1 Quantity Float DataTypeID=NM

2 Units HL7_DTCE DataTypeID=CM

The ObservationValue attribute of BO HL7_SGOBX, which corresponds to the OBX-5

(varies) and is depended on the data type announcer located at OBX-2, has

AppSpecificInfo StructType=Union;TypeContext=ValueType

Here the path to the data type announcer is ″ValueType″, which is just the attribute

name. Because both the ″ValueType″ and ″ObservationValue″ attributes are located

in the same BO, this path is a relative path.

Data type Union BO

The property type attributes of the Union BO data type are summarized as follows:

v Corresponding to the HL7 data element

– HL7 data type except CM and Varies

– Components of data structures listed in Table 29 on page 56 of this document

for CM type

– Primitive data types
v Naming convention

N/A
v Marking convention

N/A
v Grammar

– All Data type other than CM StructType=DataType;DataTypeID=<HL7 data

type ID>

– CM type BO listed in Table 29 on page

56 StructType=DataType;DataTypeID=CM

Chapter 3. Business objects 77

– MA, NA type BO listed in Table 29 on page 56

StructType=Array;DataTypeID=<MA or NA, whichever appropriate data type

ID>

v Example:

For attribute that corresponds to the ST data type, the AppSpecificInfo is

StructType=DataType;DataTypeID=STFor an attribute whose type is HL7_DTMSG

as defined in Table 29 on page 56, the AppSpecificInfo is

StructType=DataType;DataTypeID=CM

HL7 Business Objects

The two included sample health care business objects are:

v BIA_MO_DataHandler_Healthcare.txt

v BIA_MO_DataHandler_Hl7.txt

BIA_MO_DataHandler_Healthcare.txt

The BIA_MO_DataHandler_Health.txt is located in the

WebSphereBI/connectors/Healthcare/samples/ folder.

[ReposCopy]

Version = 3.0.0

[End]

[BusinessObjectDefinition]

Name = BIA_MO_DataHandler_Healthcare

Version = 1.0.0

[Attribute]

Name = ncpdp

Type = BIA_MO_DataHandler_NCPDP

ContainedObjectVersion = 3.0.0

Relationship = Containment

Cardinality = 1

MaxLength =

IsKey = true

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = hl7

Type = BIA_MO_DataHandler_HL7

ContainedObjectVersion = 3.0.0

Relationship = Containment

Cardinality = 1

MaxLength =

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

[Attribute]

Name = ObjectEventId

Type = String

Cardinality = 1

MaxLength = 255

IsKey = false

IsForeignKey = false

IsRequired = false

IsRequiredServerBound = false

[End]

78 Adapter for Healthcare Data Protocols User Guide

[Verb]

Name = Create

[End]

[Verb]

Name = Delete

[End]

[Verb]

Name = Retrieve

[End]

[Verb]

Name = Update

[End]

[End]

BIA_MO_DataHandler_HL7.txt

The BIA_MO_DataHandler_HL7.txt is located in the

WebSphereBI/connectors/Healthcare/samples/ folder.

[ReposCopy] Version = 3.0.0 [End] [BusinessObjectDefinition] Name =

BIA_MO_DataHandler_HL7 Version = 3.0.0 [Attribute] Name = ClassName Type =

String Cardinality = 1 MaxLength = 255 IsKey = false IsForeignKey = false

IsRequired = false DefaultValue =

com.ibm.adapters.datahandlers.hl7.HL7DataHandler IsRequiredServerBound =

false [End] [Attribute] Name = BOPrefix Type = String Cardinality = 1

MaxLength = 255 IsKey = false IsForeignKey = false IsRequired = false

DefaultValue = HL7 IsRequiredServerBound = false [End] [Attribute] Name =

Representation Type = String Cardinality = 1 MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false DefaultValue = simplified

IsRequiredServerBound = false [End] [Attribute] Name = FieldDelimiter Type

= String Cardinality = 1 MaxLength = 255 IsKey = false IsForeignKey = false

IsRequired = false DefaultValue = | IsRequiredServerBound = false [End]

[Attribute] Name = ComponentDelimiter Type = String Cardinality = 1

MaxLength = 255 IsKey = false IsForeignKey = false IsRequired = false

DefaultValue = ^ IsRequiredServerBound = false [End] [Attribute] Name =

RepetitionDelimiter Type = String Cardinality = 1 MaxLength = 255 IsKey =

true IsForeignKey = false IsRequired = false DefaultValue = ~

IsRequiredServerBound = false [End] [Attribute] Name = EscapeDelimiter Type

= String Cardinality = 1 MaxLength = 255 IsKey = true IsForeignKey = false

IsRequired = false DefaultValue = \ IsRequiredServerBound = false [End]

[Attribute] Name = SubcomponentDelimiter Type = String Cardinality = 1

MaxLength = 255 IsKey = false IsForeignKey = false IsRequired = false

DefaultValue = & IsRequiredServerBound = false [End] [Attribute] Name =

MTEventMap Type = String Cardinality = 1 MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false DefaultValue =

file=C:\x\WebSphereAdapters\connectors\Healthcare\dependencies\

hl7\BIA_HL7MTEventMap.cfg IsRequiredServerBound = false [End] [Attribute]

Name = I18N Type = String Cardinality = 1 MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false DefaultValue =

file=C:\x\WebSphereAdapters\connectors\Healthcare\dependencies\

hl7\BIA_HL7I18N.cfg IsRequiredServerBound = false [End] [Attribute] Name =

DummyKey Type = String Cardinality = 1 MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false DefaultValue = dummy

IsRequiredServerBound = false [End] [Attribute] Name = DefaultVerb Type =

String Cardinality = 1 MaxLength = 255 IsKey = false IsForeignKey = false

IsRequired = false DefaultValue = Create IsRequiredServerBound = false

[End] [Attribute] Name = EnableStackTrace Type = String Cardinality = 1

MaxLength = 255 IsKey = false IsForeignKey = false IsRequired = false

Chapter 3. Business objects 79

DefaultValue = true IsRequiredServerBound = false [End] [Attribute] Name =

ObjectEventId Type = String Cardinality = 1 MaxLength = 255 IsKey = false

IsForeignKey = false IsRequired = false IsRequiredServerBound = false [End]

[Verb] Name = Create [End] [Verb] Name = Delete [End] [Verb] Name =

Retrieve [End] [Verb] Name = Update [End] [End]

80 Adapter for Healthcare Data Protocols User Guide

Chapter 4. Troubleshooting

This chapter describes problems that you may encounter when starting up or

running the connector.

Startup problems

 Problem Potential solution / explanation

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

javax/jms/JMSException...

Connector cannot find file jms.jar from the IBM

WebSphere MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

com/ibm/mq/jms/MQConnectionFactory...

Connector cannot find file com.ibm.mqjms.jar in the IBM

WebSphere MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during

initialization and the following message is reported:

Exception in thread "main"

java.lang.NoClassDefFoundError:

javax/naming/Referenceable...

Connector cannot find file jndi.jar from the IBM

WebSphere MQ Java client libraries. Ensure that variable

MQSERIES_JAVA_LIB in start_connector.bat points to the

IBM WebSphere MQ Java client library folder.

The connector shuts down unexpectedly during

initialization and the following exception is reported:

java.lang.UnsatisfiedLinkError: no mqjbnd05 [Windows

2003]in shared library path

Connector cannot find a required runtime library for

mqjbnd05.dll [Windows 2003]or libmqjbnd05.so [Linux])

from the IBM WebSphere MQ Java client libraries. Ensure

that your path includes the IBM WebSphere MQ Java

client library folder.

The connector reports MQJMS2005: failed to create

MQQueueManager for ‘:’

Explicitly set values for the following properties:

QueueManager, HostName, Channel, and Port.

Event processing

 Problem Potential solution / explanation

The connector delivers all messages with an MQRFH2

header.

To deliver messages with only the MQMD WebSphere

MQ header, append ?targetClient=1 to the name of

output queue URI. For example, if you output messages

to queue queue://my.queue.manager/OUT, change the URI

to queue://my.queue.manager/OUT?targetClient=1. See

Chapter 2, “Configuring the connector,” on page 15 for

more information.

The connector truncates all message formats to 8

characters upon delivery regardless of how the format

has been defined in the connector meta-object.

This is a limitation of the WebSphere MQ MQMD

message header and not the connector.

© Copyright IBM Corp. 2004, 2005 81

82 Adapter for Healthcare Data Protocols User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration Server Express adapters. The

information covers InterChange Server Express.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

These standard properties have been added in this release:

v AdapterHelpName

v ControllerEventSequencing

v jms.ListenerConcurrency

v jms.TransportOptimized

v TivoliTransactionMonitorPerformance

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator Express and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator Express

You configure connector properties from Connector Configurator Express, which

you access from System Manager. For more information on using Connector

Configurator Express, refer to the sections on Connector Configurator Express in

this guide.

Connector Configurator Express and System Manager run only on the Windows

system. If you are running the connector on a Linux system, you must have a

Windows machine with these tools installed.

To set connector properties for a connector that runs on Linux, you must start up

System Manager on the Windows machine, connect to the Linux integration broker,

and bring up Connector Configurator Express for the connector.

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

© Copyright IBM Corp. 2004, 2005 83

2. Repository for InterChange Server Express integration broker.

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager).

v Agent restart (InterChange Server Express only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator Express window, or see the Update Method

column in Table 46 on page 85.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

84 Adapter for Healthcare Data Protocols User Guide

Standard properties quick-reference

Table 46 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ. .

See the section following the table for a description of each property.

Note: In the Notes column in Table 46, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server Express.

 Table 46. Summary of standard configuration properties

Property name Possible values Default value Update method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data\

App\Help that has a valid

<Regional Setting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

 Server Express.

AgentTraceLevel 0 through 5 0 Dynamic

for InterChange

Server Express;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

BrokerType InterChange Server

Express

InterChange Server

Express

Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++

connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

Appendix A. Standard configuration properties for connectors 85

Table 46. Summary of standard configuration properties (continued)

Property name Possible values Default value Update method Notes

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport IDL or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is

JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is

InterChange

Server Express.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

86 Adapter for Healthcare Data Protocols User Guide

Table 46. Summary of standard configuration properties (continued)

Property name Possible values Default value Update method Notes

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is

InterChange

Server Express.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport

is JMS.

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value

of DeliveryTransport

is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

Appendix A. Standard configuration properties for connectors 87

Table 46. Summary of standard configuration properties (continued)

Property name Possible values Default value Update method Notes

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChang

Server Express.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEvent

Elimination

is true and

ContainerManaged

Events

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is

InterChange

Server Express.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

InterChange

Server Express;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is InterChange

Server Express;

otherwise any

valid local

directory.

For InterChange

Server Express, the

value is set

to <REMOTE>

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

88 Adapter for Healthcare Data Protocols User Guide

Table 46. Summary of standard configuration properties (continued)

Property name Possible values Default value Update method Notes

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 3 Dynamic

if InterChange

Server Express;

otherwise

Component

restart

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if InterChange

Server Express;

otherwise

Component

restart

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is Cwe.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to

<REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory

is set to

<REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is

not valid if the

value of

BrokerType is

InterChange

 Server Express.

XMLNameSpaceFormat short or long short Agent restart This property is

not valid

if the value

of BrokerType

is InterChange

Server Express.

Standard properties

This section describes the standard connector configuration properties.

Appendix A. Standard configuration properties for connectors 89

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

The default value of this property is 1.

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The value is ICS for InterChange Server Express.

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

90 Adapter for Healthcare Data Protocols User Guide

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator Express appendix in this guide.

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator Express.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

Appendix A. Standard configuration properties for connectors 91

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is InterChange Server Express).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches InterChange Server Express, the connector

controller blocks the request to the application-specific component. When the

application-specific component becomes operational, the controller forwards the

request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is InterChange Server

Express).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

92 Adapter for Healthcare Data Protocols User Guide

The default value is 0.

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. For Java Messaging Service, the value is JMS.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be IDL or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is IDL.

The default value is JMS.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

are listed in Connector Configurator Express. The properties

jms.MessageBrokerName and jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment when InterChange Server Express is the

integration broker.

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the WebSphere Business Integration Server Express

Installation Guide for Windows, for Linux, or for i5/OS.

Appendix A. Standard configuration properties for connectors 93

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS for InterChange

Server Express.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

94 Adapter for Healthcare Data Protocols User Guide

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is InterChange Server Express.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

Appendix A. Standard configuration properties for connectors 95

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when InterChange Server Express is the integration broker. It enables

batch writing of multiple events to the database, thereby improving system

performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

96 Adapter for Healthcare Data Protocols User Guide

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator Express appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is InterChange Server Express).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is InterChange Server Express).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

Appendix A. Standard configuration properties for connectors 97

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the WebSphere Business Integration Server Express Installation Guide for

Windows, for Linux or for i5/OS.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is InterChange Server Express).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is InterChange Server Express).

The default value is 1000.

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is InterChange Server Express).

The default value is 10.

98 Adapter for Healthcare Data Protocols User Guide

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

Appendix A. Standard configuration properties for connectors 99

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

Because the integration broker is InterChange Server Express, this value must be

set to set to <REMOTE> because the connector obtains this information from the

InterChange Server Express repository.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is InterChange Server Express, the server sends the request

and waits for a response message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

100 Adapter for Healthcare Data Protocols User Guide

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 3.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is not valid if the value of BrokerType is InterChange Server Express.

Also, it is valid only if the value of the DeliveryTransport property is JMS, and the

value of the WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 91.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

Appendix A. Standard configuration properties for connectors 101

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

102 Adapter for Healthcare Data Protocols User Guide

Appendix B. Connector Configurator Express

This appendix describes how to use Connector Configurator Express to set

configuration property values for your adapter.

You use Connector Configurator Express to:

v Create a connector-specific property template for configuring your connector

v Create a configuration file

v Set properties in a configuration file

The topics covered in this appendix are:

v “Overview of Connector Configurator Express”

v “Creating a connector-specific property template” on page 105

v “Creating a new configuration file” on page 107

v “Setting the configuration file properties” on page 110

Overview of Connector Configurator Express

Connector Configurator Express allows you to configure the connector component

of your adapter for use with the InterChange Server Express integration broker.

You use Connector Configurator Express to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with InterChange Server Express, maps for use with

collaborations as well as specify messaging, logging and tracing, and data

handler parameters, as required.

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator Express incorporates them

into your configuration file as soon as you create the file. However, you do need to

set the value of each standard property in Connector Configurator Express.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator Express

will show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

© Copyright IBM Corp. 2004, 2005 103

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 105 to set up a new one.

Running connectors on Linux

Connector Configurator Express runs only in a Windows environment. If you are

running the connector in a Linux environment, use Connector Configurator

Express in Windows to modify the configuration file and then copy the file to your

Linux environment.

Some properties in the Connector Configurator Express use directory paths, which

default to the Windows convention for directory paths. If you use the

configuration file in a Linux environment, revise the directory paths to match the

Linux convention for these paths. Select the target operating system in the toolbar

drop-list so that the correct operating system rules are used for extended

validation.

Starting Connector Configurator Express

You can start and run Connector Configurator Express in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator Express without running System Manager

and work with connector configuration files, irrespective of your broker.

To do so:

v Start>All Programs, click IBM WebSphere Business Integration

Express>Toolset Express>Development>Connector Configurator Express.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select InterChange Server Express.

You may choose to run Connector Configurator Express independently to generate

the file, and then connect to System Manager to save it in a System Manager

project (see “Completing a configuration file” on page 110.)

Running Configurator from System Manager

You can run Connector Configurator Express from System Manager.

To run Connector Configurator Express:

1. Open System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator

Express. The Connector Configurator Express window opens and displays a

New Connector dialog box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select InterChange Server Express.

To edit an existing configuration file:

104 Adapter for Healthcare Data Protocols User Guide

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator Express opens

and displays the configuration file with the integration broker type and file

name at the top.

v From Connector Configurator Express, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 105.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your \ProductDir\bin\Data\App

directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator Express:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

Appendix B. Connector Configurator Express 105

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

106 Adapter for Healthcare Data Protocols User Guide

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator Express stores the information you have

entered as an XML document, under \data\app in the \bin directory where you

have installed Connector Configurator Express.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows, Linux, and i5/OS is 255

characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\IBM\WebSphereServer\Data\Std\StdConnProps.xml

In Linux and i5/OS, the first character should be /.

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, Linux, and i5/OS, Other (if not Windows or Linux), and None-no

extended validation (switches off extended validation). The default on startup is

Windows.

To start Connector Configurator Express:

Appendix B. Connector Configurator Express 107

v In the System Manager window, select Connector Configurator Express from

the Tools menu. Connector Configurator Express opens.

v In stand-alone mode, launch Connector Configurator Express.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select InterChange Server Express.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Note: Connector Configurator Express does not check the spelling of the

name that you enter. You must ensure that the name is correct.

v System Connectivity

Click InterChange Server Express.

v Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running. If you save as a file, the Save File

Connector dialog box appears. Choose *.cfg as the file type, verify in the File

Name field that the name is spelled correctly and has the correct case, navigate

to the directory where you want to locate the file, and click Save. The status

108 Adapter for Healthcare Data Protocols User Guide

display in the message panel of Connector Configurator Express indicates that

the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator Express window, as described later in this

chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.This is a text file that lists properties and applicable

default values for a specific connector. Some connectors include such a file in a

\repository directory in their delivery package (the file typically has the

extension .txt; for example, CN_healthcare.txt for the healthcare connector).

v An InterChange Server Express repository file. Definitions used in a previous

InterChange Server Express implementation of the connector may be available to

you in a repository file that was used in the configuration of that connector.

Such a file typically has the extension .in or .out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator Express, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator Express, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v InterChange Server Express Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in

an InterChange Server Express environment. A repository file may include

multiple connector definitions, all of which will appear when you open the

file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator Express.

Appendix B. Connector Configurator Express 109

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator Express window displays the configuration screen, with the current

attributes and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value InterChange Server

Express.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 113..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator Express checks that values have

been set for all required standard properties. If a required standard property is

missing a value, Connector Configurator Express displays a message that the

validation failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, Linux, and i5/OS, or Other from the Target System droplist, the

system will validate the property subtype s well as the type, and it displays a

warning message if the validation fails.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator Express displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator Express requires values for properties in these categories

for connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

110 Adapter for Healthcare Data Protocols User Guide

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on InterChange Server Express, values for these properties

are also required:

v Associated Maps

v Security

Important: Connector Configurator Express accepts property values in either

English or non-English character sets. However, the names of both

standard and connector-specific properties, and the names of supported

business objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

Appendix B. Connector Configurator Express 111

v To discard the changes, preserve the original values, and exit Connector

Configurator Express, click File>Exit (or close the window), and click No

when prompted to save changes.

v To enter values for other categories in Connector Configurator Express, select

the tab for the category. The values you enter for Standard Properties (or

any other category) are retained when you move to the next category. When

you close the window, you are prompted to either save or discard the values

that you entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 111.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator Express will point to the adapter-specific Extended

Help files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\.

Otherwise, Connector Configurator Express will point to the adapter-specific

Extended Help files located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

112 Adapter for Healthcare Data Protocols User Guide

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under ″Standard connector properties overview″Appendix A, “Standard

configuration properties for connectors,” on page 83.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator Express to

specify the business objects that the connector will use. You must specify both

generic business objects and application-specific business objects, and you must

specify associations for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

(using meta-objects) with their applications.

InterChange Server Express as your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator Express window, click Save to

Project. The revised connector definition, including designated support for the

added business object definition, is saved to an ICL (Integration Component

Library) project in System Manager.

Appendix B. Connector Configurator Express 113

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

2. From the Edit menu of the Connector Configurator Express window, click

Delete Row. The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator Express window does not

validate your Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

Associated maps

Each connector supports a list of business object definitions and their associated

maps that are currently active in InterChange Server Express. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

114 Adapter for Healthcare Data Protocols User Guide

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator Express window.

v Associated Maps

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When InterChange Server Express boots, it tries to

automatically bind a map to each supported business object for each connector.

If more than one map takes as its input the same business object, the server

attempts to locate and bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator Express window, click Save

to Project.

4. Deploy the project to InterChange Server Express.

5. Reboot the server for the changes to take effect.

Security

You can use the Security tab in Connector Configurator Express to set various

privacy levels for a message. You can only use this feature when the

DeliveryTransport property is set to JMS.

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For Linux and i5/OS:

/ProductDir/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “”: is the default; used when no privacy levels for a message category have

been set.

Appendix B. Connector Configurator Express 115

v none: Not the same as the default: use this to deliberately set a privacy level of

none for a message category.

v integrity

v privacy

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator Express log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator Express uses the logging and tracing values of that file as

default values. You can change those values in Connector Configurator Express.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT): Writes logging or tracing messages to the STDOUT

display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File: Writes logging or tracing messages to a file that you specify. To

specify the file, click the directory button (ellipsis), navigate to the preferred

location, provide a file name, and click Save. Logging or tracing message are

written to the file and location that you specify.

116 Adapter for Healthcare Data Protocols User Guide

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator Express saves the file in the broker

mode that you selected during configuration. The title bar of Connector

Configurator Express always displays the broker mode that InterChange Server

Express is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

For details about using projects in System Manager, and for further information

about deployment, see the System Implementation Guide.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Using Connector Configurator Express in a globalized environment

Connector Configurator Express is globalized and can handle character conversion

between the configuration file and the integration broker. Connector Configurator

Express uses native encoding. When it writes to the configuration file, it uses

UTF-8 encoding.

Connector Configurator Express supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

Appendix B. Connector Configurator Express 117

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

118 Adapter for Healthcare Data Protocols User Guide

Appendix C. HL7 message structure

v “HL7 messages”

v “Message construction rules” on page 130

This appendix describes the HL7 healthcare message structure.

HL7 messages

An HL7 message consists of the following data elements.

Message type

An HL7 message type is a unique identifier for the business purpose of a message.

Every message must contain a message type id as way to announce the purpose of

the message. For example, ADT is a unique message ID to Patient Administration.

However, it is rather not a unique classification on the structure of a message. One

message type can have more than one message structure.

The message type is advertised in the message header segment

Message event

The message event, sometimes called a trigger, is a unique identifier to the context

in which message is generated. The message event consists of an upper case letter

and two digits. For example, A01 is for admission/visit notification and A61 is for

changing consulting doctor. Both A01 and A61 are used with ADT messages.

Event type is advertised in the message header segment.

Message structure

The message structure is a data structure used to express an association of a

message type with an event for a class of messages. Each message structure also

contains a unique ID.

It structurally consists of a well-defined list of HL7 segments. Segments can be

optional, and can repeat. There is no limit on how many times a segment can

repeat.

Segments can be aggregated together to form a segment group, which can repeat

as well. In the standard specification, segment group is indicated by {} or [], where

{} signifies repetition and [] signifies optionality.

Because message structure definition allows {} or [] to enclose single segment, it is

possible to interpret the segment group consisting of a single segments. But for

purpose of discussing the data handler and related ISBOs, we reserve the term

segment group to segment aggregation of two or more segments enclosed by {} or

[].

Relative position of segments in a message structure and segment groups is well

defined. At the message structure level, segment is the atomic data type.

© Copyright IBM Corp. 2004, 2005 119

Message structures are defined by both message type and events. One message

type can associate with more than one event, but one event can only associate with

exactly one message type. Furthermore, some events with a given message type

associate with the same message structure. For example message type ADT with

both event A01 and event A04 uses message structure ADT_A01

 Table 47. Message structure of ADT_A61

ADT^A61^ADT_A61 ADT Message

MSH Message header

EVN Event type

[PD1] Additional demographics

[{ROL}] Roll

[PV2] Patient visit--additional information

Segment

Segment is a well-defined list attributes, each of an HL7 data type. All segments

start with three upper case letter segment IDs. Segment attributes can be optional

and can repeat. The maximum number of how many times an attribute can repeat

is specified. Various tables define the validity of certain attribute values.

Note: The relative position of segment attribute is significant in how it is defined.

Every segment ends with a segment terminator, either the ASCII carriage return or

x0D.

HL7 calls the segment attribute Field. The standard designates a delimiter, whose

value is a defined by the user on per message instances basis, to separate fields.

When the fields repeat, the standard designates a user-defined delimiter, whose

value is defined on per message instance basis, to separate repeating fields.

Delimiters that separate repeating instances of a field are also defined by use, and

call repetition

 Table 48. MSH segment specification

SEQ LEN DT OPT RP# TBL ITEM Element Name

1 1 ST R 00001 Field separator

2 4 ST R 00002 Encoding character

3 180 HD O 0361 00003 Sending application

4 180 HD O 0362 00004 Sending facility

5 180 HD O 0361 00005 Receiving application

6 180 HD O 0362 00006 Receiving facility

7 26 TS R 00007 Date/time of message

8 40 ST O 00008 Security

9 13 CM R 0076/0003 00009 Message type

10 20 ST R 00010 Message control ID

11 3 PT R 00011 Processing ID

12 60 VID R 0104 00012 Version ID

13 15 NM O 00013 Squence number

120 Adapter for Healthcare Data Protocols User Guide

Table 48. MSH segment specification (continued)

SEQ LEN DT OPT RP# TBL ITEM Element Name

14 180 ST O 00014 Continuation pointer

15 2 ID O 0155 00015 Accept acknowledgement type

16 2 ID O 0155 00016 Application acknowledgement

type

17 3 ID O 0399 0017 Country code

18 16 ID O Y 0211 00018 Character code

19 250 CE O 00692 Principle language of message

20 20 ID O 0356 01317 Alternate character set handling

21 10 ID O Y 0449 01598 Conformance statement ID

Note: In Table 48 on page 120″Len″ stands for maximum length in number of

characters; ″DT″ stands for data type; ″OPT″ stands for optionality; ″RP#″

stands for the maximum number of time the field can repeat; ″TBL#″ stands

the id of table, which contains the finite list of legitimate values for

validation; ″ITEM#″ stands of the unique id of the data element in the whole

standard; ″Element Name″ stands for brief descriptive name of the field.

The structures of many segments are statically defined and can be shared in many

message structures. There are also some segments that share the same segment ID

but have a different structure -- different attribute in name and data type. QPD,

QED, RCP, QAK belong to this category of segments

Data types

HL7 defines a long list of data types. Some are as defined as a primitive type,

while others are defined as a complex type, A complex datatype consists of more

than one attribute of teh primitive type. HL7 calls the attributes of a complex data

type acomponent

For example, the following HD data type uses three components, namespace ID,

universal ID, and universal ID type.

<namespace ID (IS)>^<universal ID (ST)>^

 <universal ID type)ID)>

The standard designates a delimiter, whose value is defined by the user on per

message instances basis, to separate components.

Other complex data type can further define a component of a given data type. HL7

calls the attribute of this complex data type subcomponent. The complex data type

must have all attributes be of primitive type.

The standard also designates a delimiter to separate subcomponents whose value

is defined by the user on per message instances basis.

The component delimiter of the data type that defines a component is then

demoted to subcomponent delimiter.

HL7 also designates an escape character for escapting characters that are identical

to various delimiters. These are defined by the user on per message instance basis.

Appendix C. HL7 message structure 121

Most data types are well are statically specified as distinct data structures in the

standard. A few data types, notably the CM and * data type, exhibit dynamic

behavior, and warrant special attention.

Custom made data types

CM is also called a Composite data type. This data type is a custom construction

using previously defined data types for each unique situation, in a different

segment, or at different field of the same segment. There are number of data

structures associated with the CM data type.

The data structures for the CM types, which can differ widely from one another,

are solidified at time when segments they belong to are defined. The CM data type

is known at design time.

In earlier versions of the HL7 standard, CM is meant to be custom-made data type,

data type defined on local site of deployment. For this reason, CM data type

represents endless number of structures with different combination and

permutation of readily defined data types.

Version 2.4 of HL7 only has finite number of data structures that is labeled with

CM data type.

Polymorphic data type

This is the data type that is marked with * symbol or with ″varies″ data type label,

instead of the usual two or three capital letters.

This data type exhibits a common behavior that it can be any one of the already

defined data type and the data type is declare in some other place. For example,

OBX-2 declares the data type of OBX-5, which is actual data carrier of this

polymorphic data type. For ease of discussion, lets call the field that announce the

data type of polymorphic data type data Data Type Announcer, and call the field

that contains the actual data of the polymorphic data type Data Carrier.

The data type announcer and data carrier can coexist in the same segment; they

can also exist on different segments. For example, OBX segment has OBX-2 field

being the data type announcer and OBX-5 field being the data carrier. RDF

segment contains a field of RCD data type, of which each instance of the RCD field

acts as a data announcer for data carrier in the RDT segment. The relationship of

the RDF and RDT segment is in analogues to relationship database’s table

description metadata and rows of actual data.

In the case of both data type announcer and data carrier residing in the same

segment, the relative position of the announcer field and the data carrier field can

also vary. Data type announcer can precede data carrier, or the other way around.

Section 8.5.2.4, chapter 8, contains example that data type announcer MFE-5 trails

behind the data carrier MFE-4.

There is no fixed number of fields that sets data type announcer and data carrier

apart. Their relationship is shown in the following diagram.

122 Adapter for Healthcare Data Protocols User Guide

The range of the variant data type is known and finite, even though it is

polymorphic.

Delimiter and enhaced data model

The delimiters for segment, field, component, and subcomponent are all

user-defined Delimiters are announced in the message header for each individual

message.

A segment delimiter is defined as an ASCII carriage return or x0A. When data

containing the characters identical to these delimiters, an escape sequence is used

to mark the character.

Component delimiters can be demoted to subcomponent delimiters when a data

type is used on anther data type’s components. The use of repetition delimiters in

most data elements is contextual depending the nature of its data elements, with

certain excpetions.

The repetition delimiter is used between repeating instances of data type element

segment fields. The common character used is ″~″. Components of data type

element are generally not expected to repeat, except for MA, NA, and QIP data

types.

NA is defined as component:

<value1> ^ <value2> ^ <value3> ^ <value4> ^ ...

The data type of each of its component is NM. It is used to express an array of

numbers. The ″...″ signifies that NA can in theory contain infinitely many values.

So it represents a repetition of fields, and the repetition delimiter is the field

delimiter. It is illustrated in the following example

 OBX|3|NA|5&WAV^^99SVL|1|0^1^2^3^4^5^6^7^8^7^6^5^4^3^2^1^0^-1^-2^-3^-4^-5^-

6^-7^-8||||||F|...<cr>

MA is defined as component:

<sample 1 from channel 1 (NM)> ^ <sample 1 from channel 2

 (NM)> ^ <sample 1 from channel 3 (NM)> ...~<sample 2 from channel 1

 (NM)> ^ <sample 2 from channel 2 (NM)> ^ <sample 2 from channel 3

 (NM)> ...~ ...

The pattern in the structure is that a group of clustered components delineated by

component delimiter ″^″ repeats and the repetition is delineated by the segment

repetition delimiter ″~″.

... Data Type Announcer Data Carrier...

Figure 4. Data carrier and data type announcer relationship in polymorphic data type where

″...: represents other fields in the segment.

Figure 5. The area in bold is an example of how NA is used in the OBX segment.

Appendix C. HL7 message structure 123

This definition example shows three channels per component cluster, with six

channels per component cluster. It is possible to have than more components,

depending on the implementation requirements.

OBX|3|NA|5&WAV^^99SVL|1|0^1^2^3^4^5^6^7^8^7^6^5^4^3^2^1^0^-1^-2^-3^-4^-5^-
6^-7^-8~0^1^2^3^4^5^6^7^8^7^6^5^4^3^2^1^0^-1^-2^-3^-4^-5^-6^-7^-
8~0^1^2^3^4^5^6^7^8^7^6^5^4^3^2^1^0^-1^-2^-3^-4^-5^-6^-7^-8||||||F|...<cr>

Unlike NA, the size of the component cluster is finite.

QIP is defined as component:<segment field name (ST) > ^ <value1 (ST) &

value2 (ST) & value3 (ST) ...>

The definition of this data type has two components, the first being a conventional

component, and the second having infinitely repeatable subcomponents.

 |@PID.5.1^EVANS&Param2&Param3|

As show, there are three kinds of repetitions in data type elements. NA has

repeatable component; QIP has repeatable subcomponents; and MA has repeatable

custom defined component clusters. Each of these repetitions uses different

delimiters.

Assuming component can repeat with component delimiter, applying the

component delimiter demotion rule to the component repetition results in

reclassification of these repetitions; the subcomponent repetition can be further

considered as in the same category as component repetition.

In order to arrive to a unified data model of HL7 data elements, some expansion

has to be made to the traditional HL7 data mode. The enhanced data model allows

the repetition of component, where the older data model does not.

The enhanced model permits an addition data element called the component

cluster to the data type element. Furthermore both component and component

cluster data element are allowed to repeat.

The following diagram depeicts the hierarchy of the data element in this enhanced

data model.

Figure 6. The area in bold is an example of how MA is used in the OBX segment

Figure 7. The areas in bold are the repeating subcomponents of QIP

124 Adapter for Healthcare Data Protocols User Guide

The following table summarizes the delimiter for each data element.

 Table 49. Delimiters for each data element

Data element in

ehanced data

model Repeatability Delimters Description

Data type Yes Segment field

delimiter

(commonly ~)

Segment field delimiter

delineates repeating instances of

the data type element

Component

Cluster

Yes Segment field

delimiter

(commonly ~)

Segment field delimiter

delineates repeating instances of

the data type element. Data

type, which contains the

component cluster, must not be

repeatable.

Component Yes Component

delimiter

(commonly ^)

Component delimiter delineates

repeating instances of the data

type element.

Subcomponent Yes Subcomponent

delimiter

(commonly &)

Subcomponent delimiter

delineates repeating instances of

the data type element.

Internationalization

HL& allows messages to be encoded using various characters adn encoding, on a

per message basis.

The following table details the supported character sets.

Subcomponent

Component

Compnent cluster

Data type

Segment

Segment group

Message

Figure 8. Data element hierarchy in the enhanced data model

Appendix C. HL7 message structure 125

Table 50. List of character set identifiers and cannonical names used in the adapter.

HL7 Character

Set Description

Corresponding Canonical

Name Supported by

BIA_Healthcare Adapter

ASCII The printable 7-bit ASCII character

set. (This is the default if this field is

omitted)

(Regular ASCII7)

8859/1 The printable characters from the

IDO 8859/1 character set.

ISO8859_1

8859/ The printable characters from the

IDO 8859/2 character set.

ISO8859_2

8859/3 The printable characters from the

IDO 8859/3 character set.

ISO8859_3

8859/4 The printable characters from the

IDO 8859/4 character set.

ISO8859_4

8859/5 The printable characters from the

IDO 8859/5 character set.

ISO8859_5

8859/6 The printable characters from the

IDO 8859/6 character set.

ISO8859_6

8859/7 The printable characters from the

IDO 8859/7 character set.

ISO8859_7

8859/8 The printable characters from the

IDO 8859/8 character set.

ISO8859_8

8859/9 The printable characters from the

IDO 8859/9 character set.

ISO8859_9

ISO IR14 Code for Information Exchange (one

byte)(JIS X 0201-1976). Note that the

code contains a space, i.e. ″ISO IR14″.

JIS0201

ISO IR87 Code for the Japanese graphic

character set for information

exchange (JIS X 0208 1990)

JIS0208

ISO IR159 Code for the supplementary Japanese

graphic character set for information

exchange (JIS X 0212 1990).

JISO21‘2

UNICODE The world wide character standard

from ISO/IEC 10646-1-1993

UTF-8 (same as IDO1010646

ISO-IR xxxx Other character sets naming

convention layed out in ISO 2375.

This is just a different representation

of th esame character set id listed

ablve.

HL7 defines the default character set as a single byte character set which should

always have ISO IR6 (ISO 646) or ISO IR14 (JIS X 0201 1976) in the G0 area.

Escape sequence for multi-character set data

A message can be encoded using more than one character set and encoding

scheme. An escape sequence is used to flag a switch to a different character set, as

well as the return to the default character set. The following example shows the

data pattern when using escape sequence for data encoded in alternate character

set.

126 Adapter for Healthcare Data Protocols User Guide

<Escape sequence>

 <encoded data using alternate character set>

Returning from the alternate character set to the default character set uses the

same technique using the escape set of the default character set.

<Escape sequence>

 <encoded data using alternate character set> <Default escape sequence>

ISO 2002-1994 defines the technique on how the escape sequence is structured. by

the ISO 2002-1994 standard, the escape sequence is a sequence of bit patterns is

used to identify a character set. ISO 2002-1994 uses the decimal xx/yy notation

when expressing the escape sequences. This document expresses the bit sequence

of escape sequence in a sequence of bytes using hexadecimal notation. The

following quote is from the HL7 standard specification, describing where and

when to use the escape sequence.

 Each repetition of a PN, XPN, XON, XCN, or XAD field is assumed to begin with the

default character set. If another character set is to be used, the HL7 defined

escape sequence used to announce that character set must be at the beginning of the

repetition, and the HL7 defined escape sequence used to start the default character

set must be at the end of the repetition. Note also that several character sets may

be intermixed within a single repetition as long as the repetition ends with a

return to the default character set.″

Modes of escape sequence for the multi-character set

HL7 provides two modes of specifying and handling escpae sequences:

v ISO 2002-1994 standard

v 2.3 (Described in HL7 v. 2.3

Both modes employ the sam ISO 2002-1994 technique for specifying the escape

sequence. They differ in how the escape character is represented in the escape

sequence.

ISO 2002 mode escape sequences

This mode uses ASCII escpae characters instead of the HL7 defined escape instead

of the previously mentioned characters. The following table provides the list of

escape sequences for character sets supported by HL7.

 Table 51.

Escape sequence Character set used in HL7

ESC 2842 ISO-IR6 G0 or ASCII (ISO 646 : ASCII))

ESC 2D41 ISO-IR100 (ISO 8859 : Latin Alphabet 1)

ESC 2D42 ISO-IR101 (ISO 8859 : Latin Alphabet 2)

ESC 2D43 ISO-IR109 (ISO 8859 : Latin Alphabet 3)

ESC 2D44 ISO-IR110 (ISO 8859 : Latin Alphabet 4))

ESC 2D4C ISO-IR144 or 8859/5 (ISO 8859: Cyrillic))

ESC 2D47 ISO-IR127 or 8859/6 (ISO 8859 : Arabic)

ESC 2D46 ISO-IR126 or 8859/7 (ISO 8859 : Greek)

ESC 2D48 ISO-IR138 or 8859/8 (ISO 8859 : Hebrew)

ESC 2D4D ISO-IR148 or 8859/9 (ISO 8859 : Latin Alphabet 5)

ESC 284A ISO-IR14 (JIS X 0201 -1976: Romaji)

Appendix C. HL7 message structure 127

Table 51. (continued)

Escape sequence Character set used in HL7

ESC 2949 ISO-IR13 (JIS X 0201 : Katakana)

ESC 2442 ISO-IR87 (JIS X 0208 : Kanji, hiragana and katakana)

ESC 242844 ISO-IR159 (JIS X 0212 : Supplementary Kanji)

Escape sequence in HL7 define mode

When another character set is to be used, the HL7 defined escape sequence must

be used at the beginning of the repetition, and the HL7 defined escape sequence

used to start the default character set must be at the end of the repetition.

The escape sequence consists of the escape character followed by an escape code

ID of one character, zero, or more data characters, and another occurrence of the

escape character where the escape character is defined by the user in the message.

The following table lists the escape sequence for each character set using ″\″ as the

HL7 defined escape character.

 Table 52. List of escape sequences for HL7-supported character sets

Escape sequence Character set used in HL7

\C2842\ ISO-IR6 G0 or ASCII (ISO 646 : ASCII))

\C2D41\ ISO-IR100 (ISO 8859 : Latin Alphabet 1)

\C2D42\ ISO-IR101 (ISO 8859 : Latin Alphabet 2)

\C2D43\ ISO-IR109 (ISO 8859 : Latin Alphabet 3)

\C2D44\ ISO-IR110 (ISO 8859 : Latin Alphabet 4))

\C2D4C\ ISO-IR144 or 8859/5 (ISO 8859: Cyrillic))

\C2D47\ ISO-IR127 or 8859/6 (ISO 8859 : Arabic)

\C2D46\ ISO-IR126 or 8859/7 (ISO 8859 : Greek)

\C2D48\ ISO-IR138 or 8859/8 (ISO 8859 : Hebrew)

\C2D4D\ ISO-IR148 or 8859/9 (ISO 8859 : Latin Alphabet 5)

\C284A\ ISO-IR14 (JIS X 0201 -1976: Romaji)

\C2949\ ISO-IR13 (JIS X 0201 : Katakana)

\M2442\ ISO-IR87 (JIS X 0208 : Kanji, hiragana and katakana)

\M242844\ ISO-IR159 (JIS X 0212 : Supplementary Kanji)

Hexadecimal escape sequences and local sequence

HL7 permits the transmission of binary data encoded in the form of \Xdddd...\,

where the dddd denotes s a pair of binary value represented using ASCII character

1-9 and A-F. This is the hexadecimal escape sequence.

Alternatively, up on mutual agreements between parties engaged in the HL7

communication, users can also encode their data using a custom escape sequence,

which has the form of \Zdddd...\, where the dddd are valid characters permitted in

TX data type.

Other encoding schemes

Beside character set encoding, there are still other encoding schemes used in the

HL7 message standard.

128 Adapter for Healthcare Data Protocols User Guide

Sometimes, messages make reference to data in other systems. HL7 provides the

user the ability to access that data in two ways, by reference and by value. When

passing data by reference, it uses the Reference Pointer (RP) data type for the

receiving system to track the referenced data, but without physically transferring

the data across the wire to the receiving system.

When it is necessary for the receiving system to obtain an actual copy of the data,

the data then needs transferred to the receiving system. Many times this data from

a third-party application and does not follow the HL7 message construction roles.

A special encoding scheme is required to fit for this kind of data into an HL7

message.

There are two ways to encode these special kinds of data: Hex and Base64.

v Hex encoding uses consecutive pairs of hexadecimal digits to represent

consecutive single octets of binary data

v Base64 encoding follows the MIME standard RFC 1521. This method uses four

consecutive ASCII characters to represent three consecutive octets of binary data

by way of direct value to character substitution

The following table is an exact copy of HL7 Table 0290 for the value to ASCII

lookup.

 Table 53. HL7 table 0290 for the binary to ASCII value in base 64 MIME encoding scheme

Value Code Value Code Value Code Value Code

3 D 20 U 37 l 54 54 2

4 E 21 V 38 m 55 55 3

5 F 22 W 39 n 56 56 4

6 G 23 X 40 o 57 57 5

7 H 24 Y 41 p 58 58 6

8 I 25 Z 42 q 59 59 7

9 J 26 a 43 r 60 60 8

10 K 27 b 44 s 61 61 9

11 L 28 c 45 t 62 62 +

12 M 29 d 46 u 63 63 /

13 N 30 e 47 v

14 O 31 f 48 w (pad) =

15 P 32 g 49 x

16 Q 33 h 50 y

Presentation data

HL7 also allows the exchange of Formatted Text (FT) data intended for the

purpose of display rendering. It is often used in the transmission of reports legible

to human, rather than machine.

The presentation data contains embedded presentation instructions. Like HTML,

there is a group of predefined tags that serve as instruction to the receiving HL7

application on how to render the data. Although the presentation instructions are

well defined, the location at where the presentation instructions are embedded in

the FT string is completely driven by the design of reports and hence unknown

ahead of time.

Appendix C. HL7 message structure 129

Message construction rules

Construct the segments in the order defined for the message. Each message is

contructed as follows:

1. The first three characters are the segment ID code

2. Each data field in the sequence is inserted in the segment in the following

manner:

a. A field separator is placed in the segment

b. If the value is not present, no further characters are required

c. If the value is present, but null, the characters ″″ (two consecutive double

quotation marks) are placed in the field

d. Otherwise, place the characters of the value in the segment. As many

characters can be included as the maximum defined for the data field. It is

not necessary, and is undesirable, to pad fields to fixed lengths. Padding to

fixed lengths is permitted

e. If the field definition calls for a field to be broken into components, the

following rules are used

1) If more than one component is included, htey are separated by the

component separator

2) Components that are present but null are represented by the characters

″″

3) Components that are not present are treated by including no characters

in the component

4) Components that are not present at the end of a component need not be

represented by component separators. For example, the two data

components are equivalent:

|ABC^DEF^^| and |ABC^DEF|

f. If the component definition calls for a subcomponent to be broken into

subcomponents, the following rules are used:

1) If more than one subcomponent is included, htey are separated by the

component separator

2) Subcomponents that are present but null are represented by the

characters ″″

3) Subcomponents that are not present are treated by including no

characters in the component

4) Subcomponents that are not present at the end of a component need not

be represented by component separators. For example, the two data

components are equivalent:

^XXX&YYY&&^ and ^XXX&YYY^

g. If the field definition permits repetition of a field, the repetition separator is

used only if more than one occurrence is transmitted. In such a case, the

repetition separator is placed between occurrences. If three occurrences are

transmitted, two repetition separators are used.)

In the example below, two occurrences of telephone number are being sent:

|234-7120~599-1288B1234

Repeat Step 1b while there are any fields present to be sent. If all the data

fields remaining in the segment definitino are not present, there are no

requirements to include any more delimiters.

The following rules apply to receiving HL7 messages and converting their contents

to data values:

130 Adapter for Healthcare Data Protocols User Guide

1. Ignore segments, fields, components, subcomponents, and extra repetitions of a

field that are present but were not expected

2. Treat segments that were expected but are not present as consisting entirely of

fields that are not present

3. Treat fields and components that are expected but were not included in a

segment as not present

Appendix C. HL7 message structure 131

132 Adapter for Healthcare Data Protocols User Guide

Appendix D. Business object minimal extractor utility

The business object minimal extractor utility is a java-based batch tool that can be

used to extract a subset of business object definitions from a master file of

industry-specific business objects. It offers an alternative to using BO Designer. The

utility works only with name/value pair text files, and it can be run in any of the

following ways:

v To extract individual business object definitions. The utility may be run serially

against a master file so that after several runs, a small collection of business

object definitions has been extracted. Child objects are extracted each time they

are included within a parent object’s definition, which means that the same child

object definition may be extracted multiple times. This option is invoked by

using the -b argument.

v To extract a list of business objects defined in an identified input file. Used in

this way, the utility can extract a small collection of business object definitions

from one run. If multiple parent objects share the same child objects, the utility

will reduce the child object definitions to just one instance, thus reducing

redundancy. This option is invoked by using the -f argument.

If the utilty is run using the -f argument against the output of multiple runs that

used the -b argument, multiple copies of a child object definition will be reduced

to just one instance.

v To extract a minimal definition of a business object where dependancies of the

BO are defined across multiple input files. This option is invoked by using the -c

argument.

Example invocation

The following example shows invocation syntax and descriptions of valid

parameters.

java com.ibm.crossworlds.BusObjMinimalExtractor [-h]

[-i <InputBusObjFileName>] [-b <TargetBusObject>]

[-o <BusObjectOutputFileName>]

[-d] [-w <OutputSortedFileName>] [-r <InputSortedFileName>]

[-f <BusObjListFile>] [-c <BusObjDefFileListFile>]

 Table 54. Description of elements in sample invocation

Parameters Description

[-h] Output the invocation syntax

[-i <InputBusObjFileName>] Specifies the .in file that contains the

business object definition to be extracted

[-b <TargetBusObject>] Specifies the business object for which you

want to extract a definition

[-o <BusObjectOutputFileName>] Specifies the .in file to which the extracted

definition should be written

[-d] An optional boolean parameter used to

indicate that child objects should be listed

before their parents. When not used, parent

objects are listed first.

© Copyright IBM Corp. 2004, 2005 133

Table 54. Description of elements in sample invocation (continued)

Parameters Description

[-w <OutputSortedFileName>] Specifies the name of a topologically sorted

file to be created from the

<InputBusObjFileName> .in file that

contains the business object definitions to be

extracted.

[-r <InputSortedFileName>] Specifies the name of a topologically sorted

file from which business object definitions

will be extracted.

[-f <BusObjListFile>] A file that contains a list of business objects

for which definitions will be extracted. Each

business object name should be written on a

separate line.

[-c <BusObjDefFileListFile>] Specifies the name of a file that contains a

list of files from which a BO definition will

be extracted.

134 Adapter for Healthcare Data Protocols User Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2004, 2005 135

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

136 Adapter for Healthcare Data Protocols User Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

 WebSphere Business Integration Server Express and Express Plus include software

developed by the Eclipse Project (http://www.eclipse.org/).

WebSphere Business Integration Server Express, Version 4.4, and WebSphere

Business Integration Server Express Plus, Version 4.4

Appendix E. Notices 137

	Contents
	About this document
	Audience
	Prerequisites for this document
	Related documents
	Typographic conventions

	New in this release
	New in release 1.1

	Chapter 1. Overview
	Connector architecture
	Connector for Healthcare
	Healthcare data handler
	WebSphere MQ
	MQ channels

	Application-connector communication method
	Message request
	Event delivery

	Event handling
	Retrieval
	Recovery
	Archiving

	Guaranteed event delivery
	Business object requests
	Message processing
	Create
	Retrieve

	Error handling
	Application timeout
	Unsubscribed business object
	Data handler conversion

	Tracing

	Chapter 2. Configuring the connector
	Compatibility
	Prerequisites
	Prerequisite software

	Installing the adapter and related files
	Installed file structures
	Installed Windows File Structure
	Installed Linux File Structure
	Installed i5/OS File Structure

	Connector configuration
	Standard connector properties
	Connector-specific properties

	Enabling guaranteed event delivery
	Guaranteed event delivery for connectors with JMS event stores

	Meta-object attributes configuration
	Static meta-object
	Dynamic child meta-object

	Startup file configuration
	Windows
	Linux
	i5/OS

	Creating multiple instances of connectors on one server
	Create a new directory
	Create business object definitions
	Create a connector definition
	Create a start-up script

	Starting the connector
	Tasks performed during connector startup

	Stopping the connector

	Chapter 3. Business objects
	Connector business object requirements
	Business object hierarchy
	Business object attribute properties

	Overview of the HL7 message structure
	Overview of business objects for HL7
	Supported native message
	Mapping the primitive data type

	Mapping repeating data elements
	ISBO definitions
	BO Name
	Message BO
	Group BO
	Segment BO
	Complex data type BO
	Data type union BO

	BO AppSpecificInfo
	Message BO

	BO attribute structure
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO Attribute Property Name
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property type
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property Iskey
	Message BO
	Group BO
	Segment BO
	BO of complex data type

	BO attribute property IsForeignKey
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property Cardinality
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property MaxLength
	BO attribute property IsRequired
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property Relationship
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	BO attribute property AppSpecificInfo
	Message BO
	Group BO
	Segment BO
	BO of complex data type
	Data type Union BO

	HL7 Business Objects
	BIA_MO_DataHandler_Healthcare.txt
	BIA_MO_DataHandler_HL7.txt

	Chapter 4. Troubleshooting
	Startup problems
	Event processing

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator Express
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Running connectors on Linux

	Starting Connector Configurator Express
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps
	Security
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Completing the configuration
	Using Connector Configurator Express in a globalized environment

	Appendix C. HL7 message structure
	HL7 messages
	Message type
	Message event
	Message structure
	Segment
	Data types
	Other encoding schemes
	Presentation data
	Message construction rules

	Appendix D. Business object minimal extractor utility
	Example invocation

	Appendix E. Notices
	Programming interface information
	Trademarks and service marks

