
IBM WebSphere Business Integration

Server Express and Express Plus

Map Development Guide

Version 4.4

���

IBM WebSphere Business Integration

Server Express and Express Plus

Map Development Guide

Version 4.4

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 507.

22April2005

This edition of this document applies to IBM WebSphere Business Integration Server Express version 4.4, IBM

WebSphere Business Integration Server Express Plus version 4.4, Toolset Express version 4.4, and to all subsequent

releases and modifications until otherwise indicated in new editions.

To send us your comments about this document, e-mail doc-comments@us.ibm.com. We look forward to hearing

from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . xi

Audience . xi

How to use this manual . xi

Related documents . xii

Typographic conventions . xii

New in this release . xiii

New in release 4.4 . xiii

New in release 4.3.1 . xiii

New in release 4.3 . xiii

Part 1. Maps . 1

Chapter 1. Introduction to map development . 3

About data mapping . 3

Maps: A closer look . 5

Tools for map development . 7

Overview of map development . 11

Chapter 2. Creating maps . 15

Overview of Map Designer Express . 15

Creating a map: Basic steps . 32

Mapping standards . 53

Chapter 3. Working with maps . 55

Opening and closing a map . 55

Specifying map property information . 58

Designing maps for bidirectional languages . 60

Using map documents . 60

Using map automation . 65

Finding information in a map . 72

Finding and replacing text . 73

Printing a map . 74

Deleting objects . 74

Using execution order . 77

Creating polymorphic maps . 78

Importing and exporting maps from InterChange Server Express 79

Chapter 4. Compiling and testing maps . 81

Checking the transformation code . 81

Validating a map . 82

Compiling a map . 82

Compiling a set of maps . 84

Testing maps . 85

Doing advanced debugging . 92

Testing maps that contain relationships . 93

Debugging maps . 98

Chapter 5. Customizing a map . 101

Overview of Activity Editor . 101

Working with activity definitions . 110

Exporting Web services into Activity Editor . 157

Using bidirectional functionality in Activity Editor . 161

© Copyright IBM Corp. 2004, 2005 iii

Importing Java packages and other custom code . 163

Using variables . 168

More attribute transformation methods . 172

Reusing map instances . 184

Handling exceptions . 185

Creating custom data validation levels . 187

Understanding map execution contexts . 189

Mapping child business objects . 192

More on using submaps . 197

Executing database queries . 202

Part 2. Relationships . 221

Chapter 6. Introduction to relationships . 223

What is a relationship? . 223

Relationships: A closer look . 229

Overview of the relationship development process . 235

Chapter 7. Creating relationship definitions 237

Overview of Relationship Designer Express . 237

Creating a relationship definition . 243

Defining identity relationships . 244

Defining lookup relationships . 247

Creating the relationship table schema . 248

Copying relationship and participant definitions . 248

Renaming relationship or participant definitions . 249

Specifying advanced relationship settings . 249

Deleting a relationship definition . 253

Optimizing a relationship . 254

Chapter 8. Implementing relationships . 257

Implementing a relationship . 257

Using lookup relationships . 258

Using simple identity relationships . 263

Using composite identity relationships . 274

Managing child instances . 282

Setting the verb . 285

Performing foreign key lookups . 290

Maintaining custom relationships . 295

Writing safe relationship code . 297

Executing queries in the relationship database . 299

Loading and unloading relationships . 309

Part 3. Mapping API Reference . 313

Chapter 9. BaseDLM class . 315

getDBConnection() . 315

getName() . 317

getRelConnection() . 318

implicitDBTransactionBracketing() . 319

isTraceEnabled() . 319

logError(), logInfo(), logWarning() . 320

raiseException() . 321

releaseRelConnection() . 323

trace() . 324

Chapter 10. BusObj class . 327

Exceptions and exception types . 328

Syntax for traversing hierarchical business objects . 328

iv Map Development Guide

copy() . 329

duplicate() . 330

equalKeys() . 330

equals() . 331

equalsShallow() . 332

exists() . 332

getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(), getBusObj(), getBusObjArray(), getLongText(),

getString() . 333

getLocale() . 335

getType() . 335

getVerb() . 336

isBlank() . 336

isKey() . 336

isNull() . 337

isRequired() . 338

keysToString() . 338

set() . 339

setContent() . 340

setDefaultAttrValues() . 341

setKeys() . 341

setLocale() . 342

setVerb() . 342

setVerbWithCreate() . 343

setWithCreate() . 343

toString() . 344

validData() . 345

Deprecated methods . 345

Chapter 11. BusObjArray class . 347

addElement() . 348

duplicate() . 348

elementAt() . 349

equals() . 349

getElements() . 350

getLastIndex() . 350

max() . 350

maxBusObjArray() . 351

maxBusObjs() . 352

min() . 353

minBusObjArray() . 354

minBusObjs() . 355

removeAllElements() . 356

removeElement() . 356

removeElementAt() . 357

setElementAt() . 357

size() . 358

sum() . 358

swap() . 358

toString() . 359

Chapter 12. CwBidiEngine class . 361

BiDiBOTransformation() . 361

BiDiBusObjTransformation() . 362

BiDiStringTransformation() . 363

Chapter 13. CwDBConnection class . 365

beginTransaction() . 365

commit() . 366

executePreparedSQL() . 367

executeSQL() . 368

Contents v

executeStoredProcedure() . 370

getUpdateCount() . 371

hasMoreRows() . 371

inTransaction() . 372

isActive() . 372

nextRow() . 373

release() . 373

rollBack() . 374

Chapter 14. CwDBStoredProcedureParam class 377

CwDBStoredProcedureParam() . 377

getParamType() . 378

getValue() . 379

Chapter 15. DtpConnection class . 381

beginTran() . 381

commit() . 382

executeSQL() . 383

execStoredProcedure() . 384

getUpdateCount() . 385

hasMoreRows() . 385

inTransaction() . 386

nextRow() . 386

rollBack() . 387

Chapter 16. DtpDataConversion class . 389

getType() . 389

isOKToConvert() . 390

toBoolean() . 392

toDouble() . 393

toFloat() . 393

toInteger() . 394

toPrimitiveBoolean() . 395

toPrimitiveDouble() . 395

toPrimitiveFloat() . 396

toPrimitiveInt() . 397

toString() . 398

Chapter 17. DtpDate class . 399

DtpDate() . 401

addDays() . 402

addWeekdays() . 403

addYears() . 404

after() . 405

before() . 406

calcDays() . 406

calcWeekdays() . 407

get12MonthNames() . 408

get12ShortMonthNames() . 408

get7DayNames() . 408

getCWDate() . 409

getDayOfMonth() . 409

getDayOfWeek() . 410

getHours() . 410

getIntDay() . 410

getIntDayOfWeek() . 411

getIntMilliSeconds() . 411

getIntMinutes() . 411

getIntMonth() . 412

getIntSeconds() . 412

vi Map Development Guide

getIntYear() . 412

getMSSince1970() . 413

getMaxDate() . 413

getMaxDateBO() . 414

getMinDate() . 415

getMinDateBO() . 417

getMinutes() . 418

getMonth() . 418

getNumericMonth() . 418

getSeconds() . 419

getShortMonth() . 419

getYear() . 420

set12MonthNames() . 420

set12MonthNamesToDefault() . 421

set12ShortMonthNames() . 421

set12ShortMonthNamesToDefault() . 421

set7DayNames() . 422

set7DayNamesToDefault() . 422

toString() . 422

Chapter 18. DtpMapService class . 425

runMap() . 425

Chapter 19. DtpSplitString class . 427

DtpSplitString() . 427

elementAt() . 428

firstElement() . 428

getElementCount() . 429

getEnumeration() . 430

lastElement() . 430

nextElement() . 430

prevElement() . 431

reset() . 432

Chapter 20. DtpUtils class . 433

padLeft() . 433

padRight() . 433

stringReplace() . 434

truncate() . 435

Chapter 21. IdentityRelationship class . 437

addMyChildren() . 437

deleteMyChildren() . 439

foreignKeyLookup() . 440

foreignKeyXref() . 442

maintainChildVerb() . 444

maintainCompositeRelationship() . 446

maintainSimpleIdentityRelationship() . 448

updateMyChildren() . 450

Chapter 22. CxExecutionContext class . 455

Static constants . 455

CxExecutionContext() . 455

getContext() . 456

setContext() . 456

Chapter 23. MapExeContext class . 459

getConnName() . 459

getInitiator() . 459

Contents vii

getLocale() . 460

getOriginalRequestBO() . 461

setConnName() . 462

setInitiator() . 462

setLocale() . 463

Deprecated methods . 464

Chapter 24. Participant class . 465

Participant() . 465

getBusObj(), getString(), getLong(), getInt(), getDouble(),
getFloat(), getBoolean() . 467

getInstanceId() . 467

getParticipantDefinition() . 468

getRelationshipDefinition() . 468

set() . 469

setInstanceId() . 469

setParticipantDefinition() . 470

setRelationshipDefinition() . 470

Chapter 25. Relationship class . 473

addParticipant() . 474

create() . 476

deactivateParticipant() . 477

deactivateParticipantByInstance() . 478

deleteParticipant() . 479

deleteParticipantByInstance() . 480

getNewID() . 481

retrieveInstances() . 482

retrieveParticipants() . 484

updateParticipant() . 485

Deprecated methods . 486

Chapter 26. UserStoredProcedureParam class 487

UserStoredProcedureParam() . 487

getParamDataTypeJavaObj() . 488

getParamDataTypeJDBC() . 489

getParamIndex() . 489

getParamIOType() . 490

getParamName() . 491

getParamValue() . 491

setParamDataTypeJavaObj() . 492

setParamDataTypeJDBC() . 492

setParamIndex() . 493

setParamIOType() . 493

setParamName() . 494

setParamValue() . 494

Chapter 27. Message files . 495

Message location . 495

Format for map messages . 498

Maintaining the files . 500

Operations that use message files . 500

Appendix. Attribute properties . 505

Notices . 507

Programming interface information . 508

Trademarks and service marks . 509

viii Map Development Guide

Index . 511

Contents ix

x Map Development Guide

About this document

The products IBM(R) WebSphere Business Integration Server Express and IBM(R)

WebSphere Business Integration Server Express Plus include the following

components: Interchange Server Express, the associated Toolset Express,

CollaborationFoundation, and a set of software integration adapters. The tools in

Toolset Express help you to create, modify, and manage business processes. You

can choose from among the prepackaged adapters for your business processes that

span applications. The standard processes template--CollaborationFoundation--
allows you to quickly create customized processes.

This document provides an introduction to the use of maps and relationships and

describes how to use Map Designer Express and Relationship Designer Express for

creating and modifying maps and relationships.

Except where noted, all the information in this guide applies to both IBM

WebSphere Business Integration Server Express and IBM WebSphere Business

Integration Server Express Plus. The term ″WebSphere Business Integration Server

Express″ and its variants refer to both products.

Audience

This document is for connector developers, collaboration developers, and IBM

WebSphere consultants who create or modify business object definitions or maps.

How to use this manual

This manual is organized as follows.

 Part I: Maps

Chapter 1, “Introduction to map development” Is an overview of maps and the WebSphere

Business Integration mapping tools.

Chapter 2, “Creating maps” Provides an introduction to the use of Map

Designer Express for the creation and

modification of maps.

Chapter 3, “Working with maps” Describes some advanced features of Map

Designer Express that you might use after

creating maps.

Chapter 4, “Compiling and testing maps” Describes how to compile a map into its

executable form and how to run a test run to

verify the map’s correctness.

Chapter 5, “Customizing a map” Describes how to implement maps.

Part II: Relationships

Chapter 6, “Introduction to relationships” Provides an introduction to relationships,

including the kinds of relationships that

WebSphere Business Integration supports and

the way the system implements a relationship.

Chapter 7, “Creating relationship definitions” Provides an introduction to the use of

Relationship Designer Express for the creation

and modification of relationship definitions.

Chapter 8, “Implementing relationships” Describes how to implement relationships.

Part III: Mapping API Reference

© Copyright IBM Corp. 2004, 2005 xi

Chapter 9, “BaseDLM class”
Chapter 10, “BusObj class”
Chapter 11, “BusObjArray class”
Chapter 12, “CwBidiEngine class,” on page 361
Chapter 13, “CwDBConnection class”
Chapter 14, “CwDBStoredProcedureParam class”
Chapter 15, “DtpConnection class”
Chapter 16, “DtpDataConversion class”
Chapter 17, “DtpDate class,” on page 399
Chapter 18, “DtpMapService class”
Chapter 19, “DtpSplitString class”
Chapter 20, “DtpUtils class”
Chapter 21, “IdentityRelationship class”
Chapter 22, “CxExecutionContext class,” on page 455
Chapter 23, “MapExeContext class,” on page 459
Chapter 24, “Participant class”
Chapter 25, “Relationship class”
Chapter 26, “UserStoredProcedureParam class”

Contain reference pages for methods of classes in

the Mapping API.

Chapter 27, “Message files”

“Attribute properties”

Related documents

The complete set of documentation describes the features and components

common to all WebSphere Business Integration Server Express and WebSphere

Business Integration Server Express Plus installations, and includes reference

material on specific components.

You can download, install, and view the documentation at the following site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Note: Important information about this product may be available in Technical

Support Technotes and Flashes issued after this document was published.

These can be found on the WebSphere Business Integration Support Web

site, http://www.ibm.com/software/integration/websphere/support/.

Select the component area of interest and browse the Technotes and Flashes

sections.

Typographic conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name,

information that you type, or information that the system

prints on the screen.

italic or italic Indicates a variable name, title name, or new term the first

time that it appears

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

ProductDir Represents the directory where the product is installed.

xii Map Development Guide

http://www.ibm.com/software/integration/websphere/support/

New in this release

This section describes the new and changed features of IBM WebSphere Business

Integration Server Express and IBM WebSphere Business Integration Server Express

Plus and their associated tools for map and relationship development, which are

covered in this document.

New in release 4.4

For this release, the following changes have been made to the guide:

v Support is provided for instance creation in the Diagram tab.

v The updateParticipantByInstance() method is not supported and its description

has been deleted from the Relationship class.

v The Activity Editor group block has been enhanced with an icon representation

to manage components better when the activity group is reused.

v Support is provided for configuring standard function blocks in the Preference

dialog for direct use in Map Designer Express.

v Support is provided for bidirectional language capability for naming maps.

v Additional support is provided for handling primitives in the

DtpDataConversion class.

v A new chapter is provided for the CwBidiEngine class.

v A new chapter is provided for the CxExecutionContext class.

New in release 4.3.1

The guide was not changed in the 4.3.1 release.

New in release 4.3

This is the first release of this guide.

© Copyright IBM Corp. 2004, 2005 xiii

xiv Map Development Guide

Part 1. Maps

© Copyright IBM Corp. 2004, 2005 1

2 Map Development Guide

Chapter 1. Introduction to map development

Welcome to the map development process. This chapter provides an overview of

data mapping, introduces the tools you use to implement maps, and describes map

and relationship definitions.

This chapter covers the following topics:

v “About data mapping” on page 3

v “Maps: A closer look” on page 5

v “Tools for map development” on page 7

v “Overview of map development” on page 11

About data mapping

Data mapping is the process of transforming (or mapping) data from one

application-specific format to another. Mapping is central to the process of

transferring information between different applications and for providing

collaborations (business processes) that are independent of specific applications. By

mapping data between application-specific business objects and generic business

objects, WebSphere creates the environment that allows for the use of “best of

breed” applications. The WebSphere Business Integration Server Express system

provides a modular and extensible architecture for easy maintenance of your maps.

The WebSphere map development system provides comprehensive support for

mapping between business objects, including the following capabilities:

v Transforming data values from one or more attributes in a source business object

to one or more attributes in a destination business object

v Establishing and maintaining relationships between data entities that are

equivalent but are represented differently and cannot be directly transformed

v Enabling access to external mapping resources, such as third-party mapping

products and databases for performing queries

When data mapping is set up among differing applications, an event occurrence in

one application is performed in any other application to which it is mapped. An

event occurrence can be when data is created, retrieved, updated, or deleted.

Mapping uses maps that define the transfer (or transformation) of data between the

source and destination business objects. In the map development environment,

data is mapped from an application-specific business object to a generic business

object or from a generic business object to an application-specific business object.

Table 1 lists the types of mapping required.

 Table 1. Mapping requirements

Direction of business object Source business object

Destination business

object Type of map

Connector to collaboration Application-specific Generic Inbound map

Collaboration to connector Generic Application-specific Outbound map

Example: Figure 1 on page 4 illustrates how mapping occurs at run time, using a

fictionalized Employee Management collaboration as an example.

© Copyright IBM Corp. 2004, 2005 3

Map

App A
Employee

Generic
Employee

InterChange Server

Map

App A
Connector Controller

App A App B

Collaboration1

Generic
Employee

App B
Employee

App B
Connector Controller

App A
Employee

Business Object

App A
Connector

App B
Connector

App B
Employee

Business Object
1 8

2 3 4 6 75

The Employee Management collaboration (Collaboration1) receives an Employee

business object from the source connector (App A), then sends an Employee business

object to the destination connector (App B). Figure 1 illustrates the following

sequence occurs (the numbers here correspond to the numbers in the figure):

1. An event occurs in App A. The App A connector produces an App A Employee

business object and sends it to the App A connector controller.

2. The App A connector controller sends the App A Employee business object to the

Employee Management collaboration (Collaboration1), which resides on

InterChange Server Express, for mapping. The request includes the name of the

data map that the server must use, based on the map name specified in the

connector configuration.

3. The inbound map returns the generic Employee business object to the App A

connector controller.

4. The App A connector controller checks the collaborations that have subscriptions

to the generic Employee business object. In this case, Collaboration1 has a

subscription, so the connector controller hands the business object to

Collaboration1.

5. The collaboration performs some processing, then produces another generic

Employee business object as output, which it sends to the App B connector

controller.

6. The App B connector controller sends the generic business object to InterChange

Server Express, requesting mapping to the App B Employee business object.

7. The outbound map returns the application-specific Employee business object to

the App B connector controller.

Figure 1. Data mapping at run time

4 Map Development Guide

8. The App B connector controller passes the App B Employee object to the App B

connector, which can then pass the data in the business object into App B.

The figure shows two types of maps in use:

v One inbound map from the App A Employee business object to the generic

Employee business object used by the collaboration

v One outbound map from the generic Employee business object to the App B

Employee business object

The Employee data moves in only one direction—from Application A toward

Application B. If you want to exchange the Employee data in both directions

between both applications, two more maps are required:

v An inbound map from the application-specific business object of Application B

to the generic business object

v An outbound map from the generic business object to the application-specific

business object of Application A

Maps: A closer look

As Table 2 shows, a map is a two-part entity, consisting of a map definition and a

run-time object.

Map definition

You define a map to the map development system with a map definition. Map

definitions are stored in projects in System Manager. The Map Designer Express

tool provides dialogs to assist in the creation of the map definitions (often referred

to simply as maps). It also handles storing the completed map definition in

projects in System Manager.

For more information on how to use Map Designer Express to create map

definitions, see “Creating a map: Basic steps” on page 32..

The map definition provides the following information about the map:

v The map name

v The source and destination objects of the map

v The map transformations

Map definition name

A map definition is simply a template or description of the map. It provides

information on how to transform attributes of one business object to another.

Therefore, the name of the map definition should identify the direction of the map

and the business objects it transforms.

Source and destination business objects

Maps consist of one or more source business objects and one or more destination

business objects. The source business objects are the ones to be transformed; the

destination business objects are the ones that are generated with data from the source

business objects.

Map transformations

The rest of the map consists of a series of transformation steps. A transformation

step is a segment of Java code that returns the value of a destination attribute. A

Chapter 1. Introduction to map development 5

map contains one transformation step for each destination attribute that is

transformed. Transformations are implemented as Java code and are therefore

stored in a Java source (.java) file.

Table 2 shows some of the transformations you can perform on a destination

business object. Standard transformations include Set Value, Move, Join, Split,

Submap, and Cross-Reference. You can create custom transformations with

graphical function blocks, as well as with Java code for ″Relationships,″

″Content-based logic,″ ″Date Conversion,″ and ″String transformations.″

 Table 2. Transformations of a map

Transformation Description For more information

Standard transformations Transformations for which Map Designer

Express can autogenerate code

Set Value Specifying a value for a destination

attribute

“Specifying a value for an attribute” on

page 39

Move (Copy) Copying a source attribute to a

destination attribute

“Copying a source attribute to a

destination attribute” on page 40

Join Joining two or more source attributes into

a single destination attribute

“Joining attributes” on page 41

Split Splitting a source attribute into two or

more destination attributes

“Splitting attributes” on page 43

Submap Calling a map for a child business object “Transforming with a submap” on page

45

Cross-Reference Maintaining identity relationships for the

business objects

“Cross-referencing identity relationships”

on page 49

Custom transformations Creating a transformation other than one

of the standard transformations listed

above

“Creating a Custom transformation” on

page 49

Relationship Associating business objects that cannot

be directly mapped because each

application maintains the data in its own

format

Chapter 8, “Implementing relationships,”

on page 257

Content-based logic Transforming a destination attribute

based on the content of the source

attribute

“Content-based logic” on page 173

Date conversion Converting a date from its format in the

source attribute to its format in the

destination attribute

“Date formatting” on page 178

String Performing basic transforms on a string,

such as case conversion and obtaining

substrings

“Using Expression Builder for string

transformations” on page 181

When a clear correspondence exists between the source attribute and destination

attribute, the transformation step simply copies the source value to the destination

attribute. Other transformations can involve calculations, string manipulations,

data type conversions, and any other logic that you can code using Java.

Figure 2 illustrates some typical kinds of attribute transformations:

6 Map Development Guide

FirstName

LastName

Address

City

State_Prov

ZipCode

Source Destination

CustomerName

Address1

Address2

City

StateProv

ZipPostal

Split

Key:

Join

District

Move1
2

3

2

1

1

1

3

As Figure 2 shows, attributes from the source business object are typically:

v Copied to a destination attribute (City, StateProv, ZipPostal).

v Split into multiple destination attributes (CustomerName).

v Joined into one destination attribute (Address1, Address2).

v Ignored when the destination object has no equivalent attribute (District).

For simple transformations such as copying a value into an attribute, splitting a

value into two or more attributes, or joining two or more values into one attribute,

you can specify the step graphically and Map Designer Express generates the Java

code. For more complex transformations, you can customize the transformation

with a graphical editor or write your own Java code.

Map instance

The map definition is a template for the run-time instantiation of the map, the map

instance. During map execution, the Map Development system creates instances of

the map based on the map definition and the transformation code.

Each map instance provides the following information:

v Basic functionality such as logging, tracing, connections, and exception handling

through methods of the BaseDLM class

v The map execution context

For more information, see “Understanding map execution contexts” on page 189.

A map instance is represented in the Mapping API by an instance of the BaseDLM

class.

Tools for map development

Table 3 shows the two graphical design tools of mapping.

Figure 2. Typical attribute transformations

Chapter 1. Introduction to map development 7

Table 3. Principal components of data mapping system

Design tool Mapping component Description

Map Designer Express Map Uses Java code to specify how to transform attributes

from one or more source business objects to one or

more destination business objects. You typically create

one map for each source business object you want to

transform, though you can also break up a map into

several submaps.

Relationship Designer

Express

Relationship Establishes an association between two or more data

entities in the Map Development system. Relationship

definitions most often associate two or more business

objects. You use relationship definitions to transform

data that is equivalent across business objects but is

represented differently. For example, a state code for the

state of Michigan might be represented as MI in one

application and MICH in another. This data is equivalent

but is represented differently in each application. Most

maps use one, or a few, relationship definitions.

These graphical tools run on Windows 2003 and Windows XP. Therefore, these

platforms are for map development.

Table 4 lists the additional tools that are supported for map development.

 Table 4. Tools for map development

Tool Description

Mapping API Set of Java classes with which you can

customize the generated mapping code.

System Manager Provides graphical windows to configure a

map instance as well as configure a

relationship object.

Map Designer Express

Map Designer Express creates and compiles maps. You can launch Map Designer

Express from System Manager by selecting Map Designer Express from the Tools

menu. For other ways to launch Map Designer Express, see “Starting Map

Designer Express” on page 15.. Map Designer Express provides a tab window to

view map information. This window displays one of four tabs: Table tab, Diagram

tab, Messages tab, or Test tab.

Figure 3 shows a map displayed in the Diagram tab of Map Designer Express.

8 Map Development Guide

For information on how to use Map Designer Express to create a map, see

Chapter 2, “Creating maps,” on page 15.

Relationship Designer Express

Relationship Designer Express creates relationship definitions that store the

run-time relationship instance data. You can launch Relationship Designer Express

from System Manager by selecting Relationship Designer Express from the Tools

menu. Figure 4 shows several relationships displayed in Relationship Designer

Express.

Figure 3. Map Designer Express

Chapter 1. Introduction to map development 9

For more information on how to use Relationship Designer Express, see Chapter 7,

“Creating relationship definitions,” on page 237.

Mapping API

Many transformation steps can be programmed using standard Java methods. To

make writing transformation steps easier, the map development system provides a

mapping API (described in detail in Part 3, “Mapping API Reference,” on page

313), with methods to handle the most common data transformation situations. The

mapping API includes the following classes:

v DTP (Data Transformation Package) classes provide methods for string

manipulation, data type conversion, date manipulation, submap calling, and

SQL query execution. The classes are:

– DtpConnection (deprecated)

– DtpDataConversion

– DtpDate

– DtpMapService

– DtpSplitString

– DtpUtils

v Business object classes are used for both collaboration development and

mapping. The classes are:

– BusObj

– BusObjArray

v Relationship management classes provide methods for creating and managing

relationship instances. The classes are:

– Participant

– Relationship

– IdentityRelationship

v Database connection classes provide methods for SQL query execution. These

classes are:

– CwDBConnection

– CwDBStoredProcedureParam

– DtpConnection (deprecated)

– UserStoredProcedureParam (deprecated)
v Utility classes assist with error handling and debugging, and setting important

run-time values for maps. The classes are:

– BaseDLM

– MapExeContext

System Manager

System Manager is a graphical tool that provides an interface to InterChange

Server Express and the repository. System Manager provides the means to manage

maps and configure a map definition. You can:

v Set some general properties of a map definition, including its trace level and

data validation level.

v Display the source and destination business objects of a map.

v Compile a map definition.

Figure 4. Relationship Designer Express

10 Map Development Guide

Note: System Manager provides ways to start up Map Designer Express. For more

information, see “Starting Map Designer Express” on page 15.

System Manager also provides the means to manage relationships. You can:

v Set some general properties of a relationship, including the location of its

relationship tables.

v Display the participants of the relationship.

Note: System Manager also provides ways to start up Relationship Designer

Express. For more information, see “Starting Relationship Designer Express”

on page 237.

Overview of map development

This section provides an overview of map development, which includes the

following high-level tasks:

1. Installing and setting up the map development software and installing the Java

Development Kit.

2. Designing and implementing the map.

Requirements for setting up the development environment

Before you start the development process, the following must be true:

v The map development software is installed on a machine that you can access.

For information on how to install and start up the map development software

system, see your system installation guide.

v The IBM Java Development Kit (JDK) is installed from the product CD.

Be sure to update the PATH environment variable to include the installed Java

directory. Restart InterChange Server Express after you have updated the path.

v System Manager is running.

For information on starting up System Manager, see your system installation

guide.

v Map Designer Express is open and connected to System Manager.

For information on how to start Map Designer Express, see “Overview of Map

Designer Express” on page 15.

Designing and implementing the map

To design and implement maps you need to do the following:

1. Learn the data formats used by all business objects involved in the map.

2. Create the map within Map Designer Express.

3. Customize any required transformation rule.

4. Define any relationships within Relationship Designer Express that the map

needs.

5. Customize the mapping transformation to perform relationship management.

6. Implement error and message handling, if appropriate.

7. Generate the .java file and compiled code. The compiled code is an executable

Java class. For more information, see “Map development files” on page 12.

8. Test and debug the map, recoding as necessary.

Figure 4 provides a visual overview of map development and provides a quick

reference to chapters where you can find information on specific topics.

Chapter 1. Introduction to map development 11

Tip: If a team of people is available for map development, the major tasks of

developing a map can be done in parallel by different members of the

development team.

Task Steps:

Create the map

Refer to:

Customize the map

Add the relationships
(if needed)

Chapter 2

Chapter 3

Chapter 7

Chapter 4

Chapter 8

Test and debug

Chapter 5

• Create the map definition

•

•

• Validate and compile the map
• Implement error and message handling

•

•

• Create the relationship definition

• Customize the map by adding
relationship-management transformation

• Recompile the map

• Test map

• Modify the map as needed

Create the simple transformations

Use custom transformation rules to
meet your transformation requirements

Recompile the map

Add any required complex
transformations

Map development files

The following information forms the basis of the map:

v When you compile a map, Map Designer Express generates two types of files

(.java, .class) or an optional message file (.txt) if map-specified messages are

defined in the map. These files are saved in the project in System Manager.

v Map Designer Express generates a map definition when you save a map to the

project in System Manager. This map definition contains general information

about the map (such as map properties) as well as information about how the

destination attributes are mapped.

Attention: Do not modify the mapname.java file. If you do, your changes are not

reflected in the map design, which is stored in the project in System

Manager. Therefore, these changes are not editable in Map Designer

Express. Map Designer Express reads only the map definition.

Relationship Designer Express also stores relationship definitions in XML format in

System Manager. At deployment, System Manager creates table schemas in the

relationship database to contain the relationship run-time instance data. For each

relationship, you can specify the location of all its relationship tables. The default

location for these tables is the IBM WebSphere Business Integration Server Express

repository.

Figure 5. Overview of the map development task

12 Map Development Guide

Table 5 lists the file types that Map Designer Express can generate (.java, .class,

.cwm, .bo, .txt) and their locations relative to the System Manager workplace.

 Table 5. Map file types

File type Description

Location relative to System Manager

workspace

.java Generated Java code, created by Map

Designer Express when you compile a

map.

Stored in ProjectName\Maps\Src.

.class Compiled Java code, created by Map

Designer Express when you compile a

map.

Stored in ProjectName\Maps\Classes.

.cwm Map definition file, generated by Map

Designer Express when you save a map

definition.

Saved to ProjectName\Maps when

″Saved″ to System Manager.

.bo Plain text file, used to save and load

test run data and to save test run

results.

You can save these files to any

location.

.txt Message file, created by Map Designer

Express from information in the

Messages tab when it compiles the map.

Stored in

ProjectName\Maps\Messages.

Chapter 1. Introduction to map development 13

14 Map Development Guide

Chapter 2. Creating maps

This chapter provides an overview of Map Designer Express and describes how to

use Map Designer Express to create maps.

Note: This chapter frequently uses the terms map and map definition

interchangeably. When the term map is used, it refers to the map definition

(what is accessed through Map Designer Express).

This chapter covers the following topics:

v “Overview of Map Designer Express” on page 15

v “Creating a map: Basic steps” on page 32

v “Mapping standards” on page 53

For background information on how the WebSphere Business Integration Express

system uses maps, see Chapter 1, “Introduction to map development,” on page 3.

Overview of Map Designer Express

Map Designer Express is a graphical development tool for creating and modifying

maps. A map is made up of a series of transformation steps that define how to

calculate the value for each attribute in the destination business object. Creating a

map is the process of specifying the transformation steps for each destination

attribute that you want to transform.

Using Map Designer Express, you can specify simple transformation steps, such as

copying a source attribute to a destination attribute of the same data type,

interactively using drag-and-drop. Map Designer Express automatically generates

the Java code necessary to perform the transformation.

To assist with other common transformations, such as splitting a source attribute

into multiple destination attributes or joining multiple source attributes into a

single destination attribute, Map Designer Express prompts you for information,

such as the delimiter on which to split or join, then generates the necessary Java

code. To specify more complex transformations, you can define activities

graphically using Activity Editor in a custom transformation rule, modify the Java

code directly in the Activity Editor window, or write your own transformation

steps from scratch.

This section covers the following topics to introduce you to Map Designer Express:

v “Starting Map Designer Express” on page 15

v “Working in projects” on page 16

v “Layout of Map Designer Express” on page 16

v “Assigning preferences” on page 22

v “Customizing the main window” on page 25

v “Using Map Designer Express functionality” on page 27

Starting Map Designer Express

To launch Map Designer Express, do one of the following:

v From System Manager, perform one of these actions:

© Copyright IBM Corp. 2004, 2005 15

– From the Tools menu, select Map Designer Express.

– Click a map folder in a project to enable the Map Designer Express icon in

the System Manager toolbar. Then click the Map Designer Express icon.

– Right-click the map folder in a project and select Create New Map from the

Context menu.

– Right-double-click a map to start Map Designer Express with the selected

map opened.
v From a development tool, such as Business Object Designer Express,

Relationship Designer Express, or Process Designer Express, perform one of

these actions:

– From the Tools menu, select Map Designer Express.

– In the Programs toolbar, click the Map Designer Express button.

Restriction: Process Designer Express is a development tool that is only

available in WebSphere Business Integration Server Express Plus.

v Use a system shortcut:

Start > Programs > IBM WebSphere Business Integration

Server Express > Toolset Express >

 Development > Map Designer Express

Important: For Map Designer Express to be able to access maps stored in System

Manager, Map Designer Express must be connected to an instance of

System Manager. The preceding steps assume that you have already

started System Manager. If System Manager is already running, Map

Designer Express will automatically connect to it.

Map Designer Express displays in its own application window. You can launch

more than one instance of Map Designer Express at a time to edit more than one

map.

Working in projects

Map Designer Express views, edits, and modifies maps stored in System Manager

on a project basis. A project is simply a logical grouping of entities for management

and deployment purposes. System Manager allows you to create multiple projects.

When Map Designer Express establishes a connection to System Manager, it

obtains a list of business objects that are defined in the current project. If you add

or delete a business object using Business Object Designer Express, System

Manager notifies Map Designer Express, which dynamically updates the list of

business object definitions.

Before you can work on a map, you need to select which project the map is in by

entering the name of the project in the Open a Map from a Project dialog. Before

you switch to another project, you need to save the maps you modified in the

current project. For more information on opening a map from a project and saving

a map in a project, see “Steps for opening a map from a project in System

Manager” on page 56 and “Saving a map to a project” on page 51, respectively.

Layout of Map Designer Express

When you first open Map Designer Express without specifying a map, the Map

Designer Express tab window is empty and the output window does not display.

When you open an existing map, the Map Designer Express window displays the

Map tabs in the tab window.

16 Map Development Guide

Table 6 describes each of the components in the Map Designer Express main

window.

 Table 6. Components of the Map Designer Express window

Window area Description For more information

Menus Provide options to access Map Designer Express

functionality.

“Map Designer Express pull-down menus”

on page 27

Toolbar Actually contains three separate toolbars, each of

which provides a set of buttons to access Map

Designer Express functionality.

“Map Designer Express toolbars” on page 30

Map Designer

Express tab window

Displays map information for an open map in

one of four Map tabs.

“Table tab” on page 17 “Diagram tab” on

page 19 “Messages tab” on page 21 “Test

tab” on page 22

Output Window Displays results from the compilation of a map

and other status messages. If the output window

is not currently displaying when Map Designer

Express generates a status message, it opens this

window automatically. You can clear the

contents of the output window with the Clear

Output option of the View menu.

Tip: You can control whether the output

window pane displays as part of the main

window of Map Designer Express with the

Output Window option of the View menu.

N/A

Status Bar Displays Map Designer Express status messages.

Tip: You can control whether the status bar

displays as part of the Map Designer Express

window with the Status Bar option of the View

menu.

N/A

The following sections describe the general layout of each of the tabs that display

in the Map Designer Express tab window.

Table tab

The Table tab of Map Designer Express displays mapping information in a tabular

format that lists all mapping attributes and transformations.

The Table tab consists of the following areas:

v Attribute Transformation Table

v Business Objects Pane

Attribute Transformation Table: The attribute transformation table presents in a

tabular format all transformations associated with the map. Table 7 shows the

columns that make up this table.

Chapter 2. Creating maps 17

Table 7. Columns of the Attribute Transformation Table

Column name Description

Exec. Order The execution order for the destination attribute.

When you add a transformation to the end of this table, Map Designer Express

automatically assigns its execution order as the last in the table. You can change the

execution order of an attribute by typing the desired order number in the Exec. Order field.

Note: You can specify how Map Designer Express handles the execution order of destination

attributes with the option Defining Map: automatically adjust execution order. By

default, this option is disabled. When the option is enabled, Map Designer Express

automatically adjusts the execution order of other attributes. You can change the setting of

this option on the General tab of the Preferences dialog. For more information, see

“Specifying General Preferences” on page 23.

Source Attribute The name of the source attribute for the transformation.

This field provides a combo box that contains a list of all source and destination business

objects with their attributes listed under them. Click the appropriate source attribute from

this list. You can select multiple source attributes by clicking the Multiple Attributes entry in

the combo box list. Map Designer Express displays the Multiple Attributes dialog from

which you can select the attributes.

Note: You can specify how Map Designer Express displays the source attribute name with

the option Defining Map: show full attribute path. By default, this option is disabled and

Map Designer Express displays all source attribute names as ...AttrName. When the option

is enabled, Map Designer Express displays the full attribute path: ObjSrcBusObj.AttrName.

You can change the setting of this option on the General tab of the Preferences dialog. For

more information, see “Specifying General Preferences” on page 23.

Source Type The data type of the source attribute.

 This field is read-only.

Destination Attribute The name of the destination attribute for the transformation.

This field provides a combo box that contains a list of all source and destination business

objects with their attributes listed under them. Click the appropriate destination attribute

from this list.

Note: You can specify how Map Designer Express displays the destination attribute name

with the option Defining Map: show full attribute path. By default, this option is disabled

and Map Designer Express displays all destination attribute names as ...AttrName. When the

option is enabled, Map Designer Express displays the full attribute path:

ObjDestBusObj.AttrName. You can change the setting of this option on the General tab of the

Preferences dialog. For more information, see “Specifying General Preferences” on page 23.

Dest. Type The data type of the destination attribute.

 This field is read-only.

18 Map Development Guide

Table 7. Columns of the Attribute Transformation Table (continued)

Column name Description

Transformation Rule The transformation rule and code for this attribute’s transformation step.

This field provides a combo box that contains a list of standard transformations:

v None (no transformation)

v Join

v Move

v Split

v Set Value

v Submap

v Cross-Reference

v Custom

Click the appropriate transformation from this list to enter it in the field. For more

information, see “Specifying standard attribute transformations” on page 38.

Comment An informational description of the attribute’s transformation.

See “Setting comments in the comment field of the attribute” on page 54.

Steps for defining a map from the Table tab: To define a map from the Table tab,

follow these general steps:

1. Click in an empty cell in the Source Attribute column. From the available

combo box, click the source attribute to transform.

2. Click in the corresponding cell in the Destination Attribute column. Click the

destination attribute from the available combo box.

3. Click in the corresponding cell in the Transformation Rule column. This column

provides a combo box:

v For a standard transformation (Join, Move, Split, Set Value, Submap, or

Cross-Reference), select the associated option from the list. Map Designer

Express generates code for these standard transformations. You can

customize this code as needed. For more information, see “Specifying

standard attribute transformations” on page 38.

v For a transformation that is not in this combo box, select Custom from the

list and add the custom Java code in Activity Editor. For more information,

see “Creating a Custom transformation” on page 49.
4. Click in the corresponding cell in the Comment column. For more information,

see “Setting comments in the comment field of the attribute” on page 54.

Business Objects Pane: The business objects pane presents in a list all source and

destination business objects associated with the map. Its left area displays the

source business objects; its right area displays the destination business objects. If

the map contains a temporary business object, the business objects pane contains

three areas: Source Business Object, Temporary Business Object, and Destination

Business Object.

Tip: You can control whether the business objects pane displays as part of the

Table tab with the Business Objects Pane option of the View menu.

Diagram tab

The Diagram tab of Map Designer Express provides a drag-and-drop interface for

defining and reviewing the transformations. You view and design maps in the map

workspace, which displays on the right side of the window.

Chapter 2. Creating maps 19

The Diagram tab consists of the following areas:

v Business object browser, which displays in the project pane, on the leftmost part

of the window. This browser uses a hierarchical format to list the business

objects in the project in System Manager when Map Designer Express is

connected to System Manager. To refresh the list of business objects in the

business object browser, right-click in the business object browser and select

Refresh All from the Context menu. Map Designer Express queries System

Manager and updates the business object browser with the current business

objects.

Note: If you add or delete a business object from the project in System Manager,

System Manager dynamically updates the list of business object

definitions.

Tip: You can control whether the business object browser displays as part of the

Diagram view with the Project Pane option of the View pull-down menu.

v Map workspace, which always displays the information about the current map.

When you open a map, the map workspace displays a business object window

for each source and destination business object used in the map. Each business

object window lists some or all attributes defined in the business object,

depending on what viewing mode is currently selected. In the case of a

destination business object or temporary business object, the business object

window also lists the transformation rule and comments associated with the

attribute. In the map workspace, you can add, delete, or modify transformations

in the map. Lines connecting attributes represent the transformations between

the attributes.

Tip: You can control which attributes display in the source and destination

business objects in the Diagram tab with the options of the View > Diagram

submenu. This submenu allows you to select whether to display all attributes,

only linked (mapped) attributes, or only unlinked (unmapped) attributes.

In the Diagram view, you can also add multiple instances for multicardinality

child business objects and graphically map attributes to these instances. This is

extremely helpful when mapping a flat business object to a hierarchical business

object.

To create an instance, right-click the child business object and select Add

Instance from the Context menu that opens. You can also delete an instance from

this menu by selecting Remove Instance.

Note: You can only add or delete instances from the multicardinality business

object level. The instance addition or deletion will happen only

sequentially. For example, the last instance you created will be the first

one deleted.

Figure 6 on page 21 illustrates the creation of multiple instances for the child

business object PhoneInfo on the Source side.

20 Map Development Guide

When you expand the multicardinality business objects, the list of instances

displays and not the attributes. To see the attributes, you need to expand the

individual instances, as shown in the expanded instance PhoneInfo[2] on the

Source side. You can perform mappings from the attributes present under the

instances to any part of the destination, including other instances on the

Destination side.

Figure 6 also illustrates mapping across instances. The PhoneType and

PhoneCountry attributes of PhoneInfo Instance[2] on the Source side are mapped

to the PhoneType and PhoneCountry attributes of PhoneInfo Instance[1] on the

Destination side.

Messages tab

The Messages tab displays the map’s messages. A message consists of a message

ID and its associated message text.

The Messages tab is divided into two panes. The top pane is the message grid,

which consists of three columns: Message ID column, Message column, and

Explanation column (for comments for the entire message file). The bottom or

Description pane is for entering plain text. When you enter text into the

Description pane, the text is added to the top of the generated message file as

comments. Map Designer Express saves any change made to the map’s messages

in the project of System Manager.

Figure 6. Instance creation

Chapter 2. Creating maps 21

For more information on messages and how to use them, see Chapter 27, “Message

files,” on page 495. For information about the format of messages, see “Format for

map messages” on page 498.

When you compile a new map, Map Designer Express generates an external

message file, based on the information entered in the Messages tab. This message

file is saved in the message directory.

Attention: You must make all changes to a map’s messages through the Messages

tab of Map Designer Express. Do not use an external text editor to

make changes to the generated message file. Any changes made from

the external editor will not be visible to Map Designer Express because

they will not be stored in the map definition of the project.

Furthermore, such changes will be overwritten the next time you

compile the map.

Test tab

The Test tab provides an interface for testing maps and viewing the results. In this

tab, you can run tests to verify that transformations are working properly.

The Test tab consists of the following areas:

v Test path diagram

The test path diagram at the top of the window shows the map test as a series

of icons:

– The Source Testing Data arrow indicates the direction of the map

transformation and is labeled with the business object type for the source

business object that is participating in the map test.

– The Map icon represents the currently open map, which is used in the test.

– The Destination Testing Data arrow indicates the direction of the map

transformation and is labeled with the business object type for the destination

business object that results from the map test.
v Source Testing Data pane

The source testing data area in the lower left window uses a hierarchical format

to list the attributes of the source business object that participates in the map.

Click the plus symbol (+) next to a source business object to expand it. In this

area, you enter test data for the source business object.

v Destination Testing Data pane

The destination testing data area in the lower right window uses a hierarchical

format to list the attributes of the destination business object that results from

the map. Click the plus symbol (+) next to a business object to expand it. In this

area, you view test results data for the destination business object.

Note: Map Designer Express displays results from the test run of the map in the

output window.

For more information on how to use the Test tab, see “Testing maps” on page 85..

Assigning preferences

The Preferences dialog allows you to customize the behavior of the Map Designer

Express tool. To display the Preferences dialog:

v From the View menu, select Preferences.

v Use the keyboard shortcut of Ctrl+U.

22 Map Development Guide

Figure 7 shows the Preferences dialog.

Map Designer Express saves preference settings in the Windows registry. Therefore,

they remain in effect for the current Map Designer Express session and future

sessions. The Preferences dialog provides the following tabs:

v General

v Validation

v Key Mapping

v Automatic Mapping

v Custom Mapping

Specifying General Preferences

The General tab of the Preferences dialog displays the general preferences you can

specify for how Map Designer Express manages maps.

 Table 8. General Map Designer Express Preferences

General Preference Description For more information

Open Map

validate map when open When this option is enabled, Map Designer

Express validates the map when it opens it.

Recommendation: If a map uses business

objects with many attributes, that is, more

than a thousand attributes, enabling this

option may result in the map taking a long

time to open. If that is the case, and it is not

desirable, you should disable this option.

“Opening a map” on page 55

Delete Map

Figure 7. Preferences dialog

Chapter 2. Creating maps 23

Table 8. General Map Designer Express Preferences (continued)

General Preference Description For more information

close map before delete When this option is enabled, Map Designer

Express always closes the currently open

map before displaying the Delete Map

dialog.

“Steps for deleting maps” on page

76

always display warning

message

When this option is enabled, Map Designer

Express always displays a confirmation

before deleting a map.

“Steps for deleting maps” on page

76

Compile Map

save map before compile When this option is enabled, Map Designer

Express always saves the current map to the

project in System Manager before compiling

it.

“Compiling a map” on page 82

Defining Map

automatically adjust

execution order

When this option is enabled, Map Designer

Express automatically renumbers the

execution order of destination attributes in

the Table tab when execution order of an

existing attribute changes.

“Using execution order” on page 77

show full attribute path When this option is enabled, Map Designer

Express shows the full attribute path for the

names of source and destination attributes in

the Table tab.

“Table tab” on page 17

show business object

instance name

When this option is enabled, Map Designer

Express displays the names of the source

and destination business object and their

variable names. When this option is

disabled, Map Designer Express omits the

names of the business object variables in

both the Table and Diagram tabs.

“Steps for modifying business

object variables” on page 169

Specifying Validation

The Validation tab of the Preferences dialog provides options you can select for

Map Designer Express to perform validations on the map when you save the map.

The options are as follows:

v Show warning if verb not mapped

v Show warning if key attribute not mapped

v Show warning if required attribute not mapped

v Show warning if child business object not mapped

Map Designer Express will do the selected validation as deep as there are other

transformation rules in that level.

Example: If path a.b.c is mapped, then Map Designer Express will perform these

validations on business objects level a, a.b, and a.b.c.

For more information, see “Validating a map” on page 82.

Specifying Key Mapping

The Key Mapping tab of the Preferences dialog displays the key mappings for

several standard transformations in the Diagram tab.

24 Map Development Guide

Table 9. Key Mapping Map Designer Express Preferences

Key map Description For more information

Move/Join/Submap Key map to use when creating a Move, Join, or Submap transformation. Map Designer

Express distinguishes between the transformations by the type and number of source

attributes:

v Move—one source attribute that is not a child

business object

“Copying a source attribute to a

destination attribute” on page 40

v Join—more than one source attribute that is

not a child business object

“Joining attributes” on page 41

v Submap—one or more source attributes that

are a child business object

“Transforming with a submap” on

page 45

Split/Cross-Reference Key map to use when creating a Split

transformation or for maintaining identity

relationships

“Splitting attributes” on page 43,

“Cross-referencing identity

relationships” on page 49

Custom Key map to use when creating a Custom

transformation.

“Creating a Custom transformation”

on page 49

The Key Mapping tab provides the following functionality:

v To change a key mapping, click in the appropriate transformation field and

select the desired key map for this transformation from the combo box. Click

OK.

v To return key mappings to their default values, click Use Default and then click

OK.

Specifying Automatic Mapping

The Automatic Mapping tab of the Preferences dialog provides options you can

select for Map Designer Express to use when searching for matching attribute

names in business objects for map automation. The options are as follows:

v Ignore Case--to perform case-insensitive name matches on the search string

v Ignore Incompatible Data types--to perform name matches with incompatible

data types on the search string

Note: Selecting this option may result in data loss.

For more information, see “Using map automation” on page 65.

Specifying Custom Mapping

The Custom Mapping tab of the Preferences dialog allows you to configure the

standard function blocks to be used directly in Map Designer Express.

For more information, see “Tip: Using function blocks directly in Map Designer

Express” on page 110

Customizing the main window

Map Designer Express allows you to customize its main window by:

v “Selecting how windows display”

v “Floating a dockable window” on page 26

Selecting how windows display

When you first open Map Designer Express without specifying a map, the main

window is empty with the toolbars and status bar visible. When you open a map,

Chapter 2. Creating maps 25

Map Designer Express displays the Diagram tab in the tab window and opens the

output window. By default, Map Designer Express displays each of the map tabs

as follows:

v Table tab—the business objects pane displays under the attribute transformation

table.

v Diagram tab—the map workspace area displays and is empty.

v Messages and Test tabs—as described in “Messages tab” on page 21 and “Test

tab” on page 22, respectively.

You can customize the appearance of the main window and the Map tabs with

options from the View menu. Table 10 describes the options of the View pull-down

menu and how they affect the appearance of the Map Designer Express window.

 Table 10. View menu options for Map Designer Express window customization

View menu option Element displayed

Toolbars A submenu with options for each of the Map Designer

Express toolbars:

v Standard toolbar

v Designer toolbar

v Programs toolbar

Status Bar A single-line pane in which Map Designer Express displays

status information.

Business Objects Pane A pane that displays the source and destination business

objects in the Table tab of Map Designer Express.

Project Pane A pane that displays the business object browser in the

Diagram tab of Map Designer Express.

Diagram A submenu with options for which attributes to display in the

source and destination business objects in the business object

windows of the Diagram tab:

v All Attributes

v Linked Attributes

v Unlinked Attributes

The Designer toolbar also provides icons for displaying these

attributes.

Output Window A small window across the bottom of the Map Designer

Express window. The Clear Output option of the View menu

clears all text in the output window.

Tip: When a menu option appears with a check mark to the left, the associated

element displays. To turn off display of the element, select the associated menu

option. The check mark disappears to indicate that the element does not currently

display. Conversely, you can turn on the display of an undisplayed element by

selecting the associated menu option. In this case, the check mark appears beside

the displaying element.

Floating a dockable window

Map Designer Express supports the following features as dockable windows:

v Toolbars in the main window:

– Standard toolbar

– Designer toolbar

– Programs toolbar

26 Map Development Guide

For more information about the features of these toolbars, see “Map Designer

Express toolbars” on page 30.

v Output Window

v Find Control pane. For more information, see “Finding information in a map”

on page 72.

Tip: By default, a dockable window is usually placed along the edge of the main

window and moves as part of the main window. When you float a dockable

window, you detach it from the main window, allowing it to function as an

independent window. To float a dockable window, hold down the left mouse

button, grab the border of the window and drag it onto the main window or

desktop.

Using Map Designer Express functionality

You can access Map Designer Express’s functionality using any of the following:

v Pull-down menus

v Context menu

v Toolbar buttons

v Keyboard shortcuts

Map Designer Express pull-down menus

Map Designer Express provides the following pull-down menus:

v File menu

v Edit menu

v View menu

v Debug menu

v Tools menu

v Help menu

The following sections describe the options of each of these menus.

Functions of the File menu: The File pull-down menu of Map Designer Express

provides the options shown in Table 11.

 Table 11. Options of the File menu in Map Designer Express

File menu option Description For more information

New Creates a new map file, clearing any

existing map from the map

workspace

“Creating a map: Basic steps” on

page 32

Open Opens an existing map From Project

or From File

“Opening a map” on page 55

Close Closes the current map “Closing a map” on page 57

Save Saves the current map to the same

name To Project or To File

“Saving maps” on page 51

Save As Saves the current map to a name

different from the map To Project or

To File

“Saving maps” on page 51

Delete Deletes a specified map “Deleting objects” on page 74

Validate Map Validates the current map “Validating a map” on page 82

Compile Compiles the current map “Compiling a map” on page 82

Compile with Submap(s) Compiles the current map and its

submaps

“Compiling a map” on page 82

Chapter 2. Creating maps 27

Table 11. Options of the File menu in Map Designer Express (continued)

File menu option Description For more information

Compile All Compiles all or a subset of maps

defined

“Compiling a set of maps” on page

84

Create Map Document Creates HTML files that describe the

map between business objects

“Steps for creating a map document”

on page 63

View Map Document Displays the HTML map-document

file in your HTML browser

“Viewing a map document” on page

64

Print Setup, Print Preview, Print Provides options for previewing,

printing, and configuring a print job

“Printing a map” on page 74

Exit Exits Map Designer Express N/A

Functions of the Edit menu: The Edit pull-down menu of Map Designer Express

provides the following options:

v Standard Windows edit options—Cut, Copy, and Paste

v Delete Current Selection—Deletes the currently selected object

v Select All—In the Diagram tab, selects all transformations between the source

and destination business objects

v Insert Row—Inserts a row before the current row in the attribute transformation

table of the Table tab

v Add Business Object—Displays the Add Business Object dialog to add business

objects (source, destination, and temporary) to the map

v Delete Business Object—Displays the Delete Business Object dialog to delete a

business object

v Find—Searches an attribute name or transformation code for text or

transformation code for unmapped attributes

v Replace—Searches and replaces in custom Java code or comments

v Map Properties—Displays the Map Properties window

Functions of the View menu: The View pull-down menu of Map Designer

Express provides the following display options:

v Business Objects Pane—When enabled, displays the source and destination

business objects at the bottom pane of the Table tab in the Map Designer Express

window

v Diagram—Provides options for displaying attributes in the business object

windows of the Diagram tab

v Project Pane—Always enabled, displays the business object browser as the left

pane of the Diagram tab in the Map Designer Express window

v Clear Output—Clears the contents of the output window

v Output Window—When enabled, displays status messages, including messages

about opening, validating, saving, compiling, and test running the map

v Toolbars—Provides options for displaying the Map Designer Express toolbars:

Standard, Designer, and Programs

v Status Bar—When enabled, displays a single-line status message at the bottom of

the main window

v Preferences—Displays the Preferences dialog, from which you can set Map

Designer Express preferences

For information on View menu options that control display, see “Selecting how

windows display” on page 25.

28 Map Development Guide

Functions of the Debug menu: The Debug pull-down menu provides access to

the debugging facilities of Map Designer Express. It provides the following

options:

v Run Test—Connects to a server and starts the test run of a map that is opened

from a project

v Continue—Continues execution after it stops at a breakpoint

v Step Over—Continues execution after it stops at a breakpoint, but stops

execution before executing the next attribute

v Stop Test Run--Stops the test run of a map

v Advanced--Provides options for connecting to a server for testing a map that

resides in the server (Attach) and disconnecting from a server and closing a map

(Detach)

v Toggle Breakpoint—Sets a breakpoint in a map, which pauses execution just

before the selected attribute’s transformation

v Breakpoints—Displays all breakpoints for the map

v Clear All Breakpoints—Clears all breakpoints in the map

For more information about the use of Map Designer Express testing and

debugging facilities, see “Testing maps” on page 85.

Functions of the Tools menu: The Tools pull-down menu of Map Designer

Express provides options to start each of the tools, including the Map Automation

tools:

v Automatic Mapping

v Reverse Map

v Process Designer Express

Restriction: This tool is only available in WebSphere Business Integration Server

Express Plus.

v Map Designer Express

v Business Object Designer Express

v Relationship Designer Express

Functions of the Help Menu: The Help menu provides the standard Windows

Help options:

v Help Topics

v Documentation

v About Map Designer Express

Context menu

The Context menu is a shortcut menu that is available, by right-clicking, from

numerous places, such as the transformation rule column, row header in the Table

view, child business object in the source testing pane, or edit box in a dialog. A

menu opens that contains useful commands, which change depending on where

you click.

Example: Clicking in the transformation rule column opens a Context menu that

provides the following options:

v Open—Opens the corresponding dialog box for the transformation rule, such as

Join, Split, and Submap. For custom transformations, opens Activity Editor.

v Open in New Window—For custom transformations, opens a new instance of

Activity Editor to show the detail of the transformation rule.

Chapter 2. Creating maps 29

v View Source—Shows the transformation’s corresponding Java code in Activity

Editor. Depending on the nature of the transformation, the code may be

read-only.

Note: The default action when you double-click the transformation cell is Open. If

Open is not available for that transformation, then a message saying that the

action is not available is displayed in the status bar.

Map Designer Express toolbars

Map Designer Express provides three toolbars for common tasks you need to

perform:

v Standard toolbar

v Designer toolbar

v Programs toolbar

These toolbars are dockable; that is, you can detach them from the palette of the

main window and float them over the main window or the desktop.

Tip: To identify the purpose of each toolbar button, roll over each button with

your mouse cursor.

Standard toolbar: Figure 8 shows the Standard toolbar.

The following list provides the function of each Standard toolbar button, left to

right:

 1. New map

 2. Open

 3. Save to project

 4. Open from file

 5. Save to file

 6. Find in map

 7. Print map

 8. Cut

 9. Copy

10. Paste

11. Delete

12. Help

Designer toolbar: Figure 9 shows the Designer toolbar.

The following list provides the function of each Designer toolbar button, left to

right:

 1. Add Business Object

Figure 8. Standard toolbar

Figure 9. Designer toolbar

30 Map Development Guide

2. Validate

 3. Compile

 4. Run Test

 5. Continue

 6. Step over

 7. Toggle Breakpoints

 8. Clear All Breakpoints

 9. All Attributes

10. Linked Attributes

11. Unlinked Attributes

Programs toolbar: Figure 10 shows the Programs toolbar.

The following list provides the function of each Programs toolbar button, left to

right:

1. Process Designer Express

Restriction: This toolbar is only available in WebSphere Business Integration

Server Express Plus.

2. Map Designer Express

3. Business Object Designer Express

4. Relationship Designer Express

Keyboard shortcuts

Map Designer Express provides the keyboard shortcuts shown in Table 12 for

many of the menu options.

 Table 12. Keyboard shortcuts for Map Designer Express

Keyboard shortcut Description For more information

Ctrl+E Save the current map definition to a map

definition file

“Saving a map to a file” on page 52

Ctrl+F Display Find control panel to locate text or

unlinked attributes in the map (use Ctrl+H for

replace)

“Finding information in a map” on page 72

Ctrl+H Display Replace dialog to find and replace text

in customized Java Code and comments of

transformation rules.

“Finding and replacing text” on page 73

Ctrl+I Open a map definition file “Steps for opening a map from a file” on

page 57

Ctrl+M View a map document “Viewing a map document” on page 64

Ctrl+N Display the New Map wizard to create a new

map

“Creating a map: Basic steps” on page 32

Ctrl+O Open a map definition from the project in

System Manager

“Steps for opening a map from a project in

System Manager” on page 56

Ctrl+P Print the map definition “Printing a map” on page 74

Ctrl+S In Map Designer Express main window—Save

the current map definition to the project in

System Manager

“Saving a map to a project” on page 51

Figure 10. Programs toolbar

Chapter 2. Creating maps 31

Table 12. Keyboard shortcuts for Map Designer Express (continued)

Keyboard shortcut Description For more information

Ctrl+U Display the Preferences dialog to set Map

Designer Express preferences

“Assigning preferences” on page 22

Ctrl+Alt+F Save the current map definition to a map

definition file with a different name (Save As)

“Saving a map to a file” on page 52

Ctrl+Alt+S Save the current map definition to the project in

System Manager with a different name (Save

As)

“Saving a map to a project” on page 51

Ctrl+Shift+P Display the Print Setup dialog to specify

information for printing the map definition

“Printing a map” on page 74

Ctrl+Enter Display the Map Properties dialog, from which

you can set general and business object

properties for the map

“Specifying map property information” on

page 58

F7 Compile the current map “Compiling a map” on page 82

Alt+F4 Close the current map “Closing a map” on page 57

Del Delete the currently selected entity N/A

F1 Display context-sensitive help for the current

dialog or window

N/A

Ctrl+F7 Compile all or a subset of maps defined in

System Manager

“Compiling a set of maps” on page 84

F8 During a test run, continue a paused map by

executing until the end of the map or another

active breakpoint

“Steps for processing breakpoints” on page

91

F9 Toggle the state of a breakpoint for a

transformation rule

“Setting breakpoints” on page 88

F10 During a test run, continue a paused map by

executing the next single step

“Steps for processing breakpoints” on page

91

Creating a map: Basic steps

Table 13 provides an overview of the subtasks for creating a new map.

 Table 13. Subtasks for creating a new map

Subtask Associated procedure (see . . .)

1. Creating a new map file with the New Map wizard,

specifying the project, the source and destination

business objects, and the name for the new map.

“Steps for creating the map definition” on page 33.

2. Setting the verb for each destination business object.

In most cases, destination business objects have the

same verb as source business objects. You can also set

the value of the verb always to be a specific value.

“Setting the destination business object verb” on page

37.

3. Specifying the transformation steps for each

destination attribute that you want to map. How you

do this depends on what kind of transformation is

required.

“Specifying standard attribute transformations” on

page 38.

4. Specifying the comment for the destination attribute.

Although this information is optional, it greatly

improves readability of the map information in Map

Designer Express.

“Setting comments in the comment field of the

attribute” on page 54.

5. Saving the map. “Saving maps” on page 51.

6. Checking completion, validating, and compiling the

map.

“Checking completion” on page 53, “Validating a

map” on page 82, and “Compiling a map” on page 82

7. Testing and debugging the map. “Testing maps” on page 85

32 Map Development Guide

Steps for creating the map definition

Map Designer Express provides a New Map wizard to assist you in creating a map

definition. Perform the following steps to create a map definition using the New

Map wizard:

1. Start the New Map wizard in one of the following ways:

v From the File menu, select New to create a new map.

v Use the keyboard shortcut of Ctrl+N.

v In the Standard toolbar, click the New Map button.

Result: Map Designer Express displays the first window of the New Map

wizard.

2. From the list box, select the name of the project for which you want to create

the map.

3. Select the business object you will use as the source business object for the

map. You can select one or more source business objects by clicking in the Use

column of each desired business object. Then click Next to continue.

Figure 11. Welcome window of New Map wizard

Chapter 2. Creating maps 33

Tip: To locate a particular business object, enter its name in the Find field. The

up and down arrows scroll through the business object list. Click Next to

continue.

The New Map wizard does not require that you specify the source business

object. You can click Next without selecting the source business object to

postpone specifying this business object definition. You can specify it at a later

time in the map workspace of the Diagram tab. For more information, see

“Creating the source and destination business objects” on page 36.

Note: If you add or delete a business object from System Manager, it

dynamically updates the list of business object definitions.

4. Select the business object type you will use as the destination business object

for the map. You can select one or more destination business objects by clicking

in the Use column of each desired business object. Then click Next to continue.

Figure 12. Selecting source business objects

34 Map Development Guide

Tip: To locate a particular business object, enter its name in the Find field. The

up and down arrows scroll through the business object list. Click Next to

continue.

The New Map wizard does not require that you specify the destination

business object. You can click Next without selecting the destination business

object to postpone specifying this business object definition. You can specify it

at a later time in the map workspace of the Diagram tab. For more information,

see “Creating the source and destination business objects” on page 36.

Note: If you add or delete a business object from System Manager, it

dynamically updates the list of business object definitions.

5. Specify the name to associate with the map.

Rule: A map name must be less than or equal to 76 alphanumeric characters

and underscores (_). It cannot contain spaces or certain punctuation symbols,

such as a period, a left brace([), a right brace (]), a single quotation mark, or a

double quotation mark.

The New Map wizard does not require that you specify the map name. You can

click Finish without entering the map name to postpone naming this map

definition. When you save the map, Map Designer Express prompts you with

the Save Map As dialog for you to specify the required map name. For more

information, see “Saving a map to a project” on page 51.

Specify whether the map is an inbound or outbound map. This map role is

needed for automatically generating relationship codes.

6. Click Finish to save the new map definition with the specified source and

destination business objects.

Result: Map Designer Express displays the new map’s information in its

Diagram tab.

Figure 13. Selecting destination business objects

Figure 14. Saving new map

Chapter 2. Creating maps 35

Creating the source and destination business objects

If you do not specify the map’s source and destination business objects from the

New Map wizard, you can specify them from the Add Business Object dialog or

the Diagram tab in the business object browser.

Steps for specifying business objects from the Add Business

Object dialog

Perform the following steps to add a source or destination business object to a map

from the General tab of the Add Business Object dialog.

1. Display the Add Business Object dialog in one of the following ways:

v From the Edit menu of Map Designer Express, select Add Business Object.

v In the Designer toolbar, click the Add Business Object button.

v From the Table tab, right-click in the empty area of the business objects pane

and select Add Business Object from the Context menu.

v From the Diagram tab, right-click in the map workspace and select Add

Business Object from the Context menu.
2. To specify a source business object:

v Click the business object in the business object list.

v Click the Add to Source button.

Tip: To locate a particular business object, enter its name in the Find field. The

up and down arrows scroll through the business object list.

3. To specify a destination business object:

v Click the business object in the business object list.

v Click the Add to Destination button.

Tip: To locate a particular business object, enter its name in the Find field. The

up and down arrows scroll through the business object list.

4. To close the dialog, click Done.

Steps for specifying business objects from the Diagram tab in

the business object browser

From the Diagram tab, you can add a source or destination business object to a

map. Perform the following steps to do this:

1. Drag the source business object from the business object browser to the left side

of the map workspace. The business object displays and its title starts with Src.

2. Drag the destination business object from the business object browser to the

right side of the map workspace. The business object displays and its title starts

with Dest.

Note: A dotted-line boundary divides the left and right halves of the workspace

and identifies the source and destination portions of the map workspace. Be

sure to carefully drop objects in the appropriate place.

Figure 15 shows the source and destination business objects in the map workspace.

36 Map Development Guide

Tip: Alternatively, you can create the source and destination business objects by

right-clicking the business object in the business object browser; selecting Copy

from the Context menu; then right-clicking in the map workspace and selecting

Paste As Input Object or Paste As Output Object.

Map Designer Express creates a window, called a business object window, for the

source and destination objects. The title bar of this window displays the business

object instance name. For help interpreting the title bar of the business object

window, see “Using generated business object variables and attributes” on page

168. The business object window for the source business object contains columns

for the name and data type of each source attribute. The business object window

for the destination business object contains columns for the name, data type,

transformation rule (which identifies the transformation step), and an optional

comment.

Guideline: If you make a mistake by dragging the wrong business object or

making it an output object instead of input, you can delete the object from the map

workspace and try again. To delete a business object from the map workspace, you

can either:

v Select the business object to delete and from the Edit menu select Delete Current

Selection (or press the Del key).

v Right-click the title bar of the business object’s window and select Delete from

the Context menu.

Setting the destination business object verb

The verb indicates how the system should process the business object’s data. When

a map executes, the system needs to know what verb to assign to each destination

business object it creates.

If a map has only one source business object and one destination business object,

the verb for the destination business object is usually the same as the verb for the

source business object.

Figure 15. Defining Source and Destination business objects

Chapter 2. Creating maps 37

In this case, you need to copy the verb from the source business object to the

destination business object (see Figure 15 on page 37), by defining a Move

transformation rule with the source attribute as the source business object’s verb

and the destination attribute as the destination business object’s verb. For more

information, see “Copying a source attribute to a destination attribute” on page 40.

Tip: You can also drag-and-drop the verb from the source business object to the

destination business object to define the value of the verb.

If a map has a destination business object with a verb that is not found in the

source business object, you need to set the verb to a constant value, by defining a

Set Value transformation rule with the destination attribute as the destination

business object’s verb. In the Set Value dialog box, enter the constant verb value.

For more information, see “Specifying a value for an attribute” on page 39.

Maps sometimes have more than one source or destination business object, and

these objects can have several child business objects. In these cases, you must

consider carefully which verb to assign to each destination business object. Some

destination business objects might require some custom logic to set the verb based

on the verbs of one or more source business objects.

Specifying standard attribute transformations

You can specify several standard attribute transformations interactively in Map

Designer Express while writing little or no Java code. Table 14 shows the standard

transformations that you can specify in Map Designer Express.

 Table 14. Common attribute transformations

Name Transformation step Purpose

Set Value “Specifying a value for an attribute” on page 39 For an attribute in the destination business

object that is not found in the source business

object but is required in the destination

application

Move “Copying a source attribute to a destination

attribute” on page 40

For an attribute that is the same in both the

source and destination business objects

Join “Joining attributes” on page 41 For an attribute in the destination business

object that is a combination of several attributes

in the source business object

Split “Splitting attributes” on page 43 For an attribute in the destination business

object that is either:

v Only one part of an attribute in the source

business object

v Made up of several fields, but with different

delimiters from those in the source business

object

Submap “Transforming with a submap” on page 45 For attributes in the source and destination

business objects that contain child business

objects

Cross-Reference “Cross-referencing identity relationships” on

page 49

For maintaining the identity relationships for

the business objects

Custom “Creating a Custom transformation” on page 49 For an attribute that requires transformations

not provided by the automatically generated

transformations

For information on additional transformations you can perform, see “More

attribute transformation methods” on page 172.

38 Map Development Guide

In the Diagram tab, you can select which attributes display in the business object

windows with the options of the View > Diagram menu. You can choose to display

all attributes, only linked (mapped) attributes, or only unlinked (unmapped)

attributes.

Tip: Attributes appear in the same order that they appear in the business object

definition. To locate a particular attribute in a long list of attributes, select

Find from the Edit menu (or use the keyboard shortcut of Ctrl+F). For more

information, see “Finding information in a map” on page 72..

Specifying a value for an attribute

Some destination attribute values do not depend on a source attribute and can be

filled in with a constant value. This is especially true if the destination business

object contains many attributes that are not found in the source business object but

are required in the destination application. Some examples of default values for

attributes are CustomerStatus = "active" or AddressType = "business".

This type of transformation is called a Set Value transformation. You set the value

of a destination attribute with the Set Value dialog, shown in Figure 16.

Steps for specifying a Set Value transformation: Perform the following steps to

specify a Set Value transformation:

1. Display the Set Value dialog in one of the following ways:

v From the Table tab, perform the following steps:

a. Select the destination attribute whose value you want to set.

b. Click Set Value from the list in the Transformation Rule column.
v From the Diagram tab, perform the following steps:

a. Select the destination attribute whose value you want to set.

b. Click Set Value from the list in the Rule column of the destination

business object.
v If a Set Value transformation is already defined, you can display the Set

Value dialog to reconfigure the transformation, including modifying its

transformation code in either of the following ways:

– Double-click the corresponding cell of the transformation rule column.

– Click the Set Value bitmap icon contained in the transformation rule

column.

Figure 16. Set Value dialog

Chapter 2. Creating maps 39

2. Through the Set Value dialog, you set the constant value to assign to the

destination attribute. The Set Value dialog provides the following functionality:

v To specify the constant value, enter it in the Value field. For numeric values,

simply enter the number and make sure that the String Value check box is

not selected. For string values, enter the string value in the Value field and

select the String Value check box.

Note: The Set Value dialog uses the Examples area to show how the

resulting destination attribute will look.

v To modify the value you have entered, click in the Value field and edit as

appropriate.

v To customize the generated code, click the View Code push button.

Result: Map Designer Express opens Activity Editor in Java view, containing

a sample of the transformation code in read-only mode for the destination

attribute. To make changes to the transformation code, click Edit Code in

Activity Editor. For more information, see “Overview of Activity Editor” on

page 101.

Note: When you save the changes in Activity Editor, they are communicated

to Map Designer Express. When you save the map, they are saved too.

v To confirm the transformation setting, click OK.

Copying a source attribute to a destination attribute

The simplest kind of transformation step is a copy of one source attribute into a

corresponding destination attribute. This type of transformation is called a Move

transformation.

Steps for specifying a Move transformation: Perform the steps from one of these

map tabs to specify a Move transformation:

v From the Table tab:

1. Select the source attribute.

2. Select the destination attribute.

3. Click Move from the list in the Transformation Rule column.
v From the Diagram tab:

1. Select the source attribute.

2. Use Ctrl+Drag to move to the destination attribute; that is, hold down the

Ctrl key and drag the attribute onto the destination attribute in the

destination business object window. Continue to hold down the Ctrl key

until after you release the mouse button; otherwise, the operation does not

succeed.

Result: Map Designer Express creates a blue arrow from the source to the

destination object. If the transformation involves a single source attribute that

is not a child business object, Map Designer Express assumes that the

transformation is a Move and automatically assigns Move to the Rule

column of the destination attribute.

Tip: You can customize the key sequence used to initiate a Move transformation

in the Diagram tab from the Key Mapping tab of the Preferences dialog. For

more information, see “Specifying Key Mapping” on page 24.

Result: Map Designer Express generates the code to copy the value of the source

attribute to the destination attribute. If the source and destination attributes are of

different data types, Map Designer Express determines whether a type conversion

is possible, and if so, generates the code to convert the source type to the

40 Map Development Guide

destination type. If a type conversion is not possible, or might result in data loss,

Map Designer Express displays a dialog box for you to confirm or cancel the

operation.

If you want to see a sample of the generated code for the Move transformation, in

the Context menu of the rule column, select View Source.

Joining attributes

You can concatenate, or join, the values from more than one source attribute into a

single destination attribute. This type of transformation is called a Join

transformation. For instance, the source business object might store the area code,

telephone number, and extension in separate attributes, while the destination

business object stores these values together in one attribute.

In addition to joining the attributes, you can reorder them and insert delimiters,

parentheses, or other characters. For instance, when joining separate area code and

telephone number attributes into a single attribute, you might want to insert

parentheses around the area code.

Tip: The attributes you want to join can sometimes be located in more than one

source business object, such as in a parent business object and one of its child

business objects. You can also join an attribute with a variable you have

defined. (To learn about defining variables, see “Creating temporary

variables” on page 170.)

You join multiple source attributes into one destination attribute with the Join

dialog, shown in Figure 17.

Steps for specifying a Join transformation: Perform the following steps to specify

a Join transformation:

1. Display the Join dialog in one of the following ways:

v From the Table tab:

a. Select the source attributes to join.

Tip: You can click Multiple Attributes in the combo box to display the

Multiple Attributes dialog. In this dialog, you can select multiple source

attributes. To locate a particular business object, enter its name in the

Find field. The up and down arrows scroll through the business object

list. Once you have selected the source attributes, click OK to close the

dialog.

b. Select the single destination attribute.

c. Click Join from the list in the Transformation Rule column.
v From the Diagram tab:

a. Select two or more source attributes.

b. Use Ctrl+Drag to move to the destination attribute; that is, hold down the

Ctrl key and drag the selected source attributes to the destination

attribute. Continue to hold down the Ctrl key until after you release the

mouse button; otherwise, the operation does not succeed.

Result: If the transformation involves more than one source attribute,

Map Designer Express assumes that the transformation is a Join. It

automatically assigns Join to the Rule column of the destination attribute

and displays the Join dialog.

Chapter 2. Creating maps 41

Tip: You can customize the key sequence used to initiate a Join

transformation in the Diagram tab from the Key Mapping tab of the

Preferences dialog. For more information, see “Specifying Key Mapping” on

page 24.

v If a Join transformation is already defined, you can use the Join dialog to

reconfigure the transformation, including modifying its transformation code,

in either of the following ways:

– Double-click the corresponding cell of the transformation rule column.

– Click the Join bitmap icon contained in the transformation rule column.

2. Through the Join dialog, you build an expression to concatenate the source

attributes by adding delimiters, grouping with parentheses, and reordering the

attributes if necessary. The Join dialog provides the following functionality:

v To insert a delimiter or parenthesis, enter it in the Delimiter field associated

with the attribute. Do not put quotation marks around delimiters. The

delimiter you enter is appended to the associated attribute. For leading

delimiters, enter the delimiters in the Delimiters field of the initial blank line.

Note: The Join dialog uses the Examples area to show how the resulting

string will look after the join.

v To modify a delimiter or parenthesis you have entered, click in the Delimiter

field and edit as appropriate.

v To reorder a delimiter or the attributes, click the left-most column to select

the row, then click Move Up or Move Down to move the whole row up or

down.

v To customize the generated code, click the View Code push button.

Result: Map Designer Express opens Activity Editor in Java view, containing

a sample of the transformation code in read-only mode for the destination

Figure 17. Join dialog

42 Map Development Guide

attribute. To make changes to the transformation code, click Edit Code in

Activity Editor. For more information, see “Overview of Activity Editor” on

page 101.

Note: When you save the changes in Activity Editor, they are communicated

to Map Designer Express. When you save the map, they are saved too.

v To confirm the transformation setting, click OK.

Result: Map Designer Express generates the code to join the source attributes. If

any source attribute is of a different data type from the destination attribute, Map

Designer Express makes the necessary calls to methods in the DtpDataConversion

class to convert the types.

Splitting attributes

To split a source attribute into two or more destination attributes, you specify the

transformation for each destination attribute separately. This type of transformation

is called a Split transformation. For instance, to split a source attribute, such as

phone_number, into three separate destination attributes, such as area_code,

tel_number, and extension, you specify the transformations for area_code,

tel_number, and extension separately.

You split a source attribute into multiple destination attributes with the Split

dialog, shown in Figure 18.

Steps for specifying a Split transformation: Perform the following steps to

specify a Split transformation:

1. Display the Split dialog in one of the following ways:

v From the Table tab, perform the following steps:

a. Select the single source attribute to split.

b. Select one of the desired destination attributes.

c. Click Split from the list in the Transformation Rule column.

d. Repeat these steps for each destination attribute that receives a segment

of the source attribute.
v From the Diagram tab, perform the following steps:

a. Select the single source attribute to split.

b. Use Alt+Drag to move to one of the destination attributes; that is, hold

down the Alt key and drag the source attribute to one of the destination

attributes.

Result: If the transformation involves more than one destination attribute,

Map Designer Express assumes that the transformation is a Split. It

automatically assigns Split to the Rule column of the destination attribute

and displays the Split dialog.

c. Repeat these steps for each destination attribute that receives a segment

of the source attribute.

Tip: You can customize the key sequence used to initiate a Split

transformation in the Diagram tab from the Key Mapping tab of the

Preferences dialog. For more information, see “Specifying Key Mapping” on

page 24.

v If a Split transformation is already defined, you can use the Split dialog to

reconfigure the transformation, including modifying its transformation code,

in either of the following ways:

– Double-click the corresponding cell of the transformation rule column.

Chapter 2. Creating maps 43

– Click the Split bitmap icon contained in the transformation rule column.

2. Through the Split dialog, you split an expression into segments that are

separated by a delimiter. Each segment is identified with an index number,

with the first segment having an index number of zero (0). The Split dialog

provides the following functionality:

v To identify the delimiter by which to parse the source attribute, enter it in

the Delimiter field. Do not put quotation marks around delimiters. You can

specify one or more delimiters in this field. The transformation uses each of

the specified delimiters to parse the string into segments. For example, to

split LastName,FirstName, specify “,” as the delimiter, LastName as segment 0

(the first segment) and FirstName as segment 1 (the second segment).

Note: The Split dialog uses the Examples area to show how the source

attribute string looks and to indicate which segment is currently being

accessed. The accessed segment displays in bold and red.

v To modify a delimiter or parenthesis you have entered, click in the Delimiter

field and edit as appropriate.

v To identify the segment of the source attribute that is copied to the

destination attribute, enter its index number in the Sub-string Index field.

v To customize the generated code, click the View Code push button.

Result: Map Designer Express opens Activity Editor in Java view, containing

a sample of the transformation code in read-only mode for the destination

attribute. To make changes to the transformation code, click Edit Code in

Activity Editor. For more information, see “Overview of Activity Editor” on

page 101.

Note: When you save the changes in Activity Editor, they are communicated

to Map Designer Express. When you save the map, they are saved too.

v To confirm the transformation setting, click OK.

Result: Map Designer Express generates the transformation code for the

destination attribute. The generated code uses methods from the DtpSplitString()

class to parse the source attribute into segments.

Figure 18. Split dialog

44 Map Development Guide

Transforming with a submap

A submap is a map that is called from within another map, called the main map.

This section provides the following information about submaps:

v “Uses for submaps”

v “Steps for specifying a Submap transformation” on page 46

Uses for submaps: You can call a submap to obtain a value for any destination

attribute, but submaps are most commonly used for the following:

v To modularize a map

v To specify transformations between child business objects

Improving map modularity: Using submaps can improve the modularity of your

maps by isolating common transformations that can be reused in more than one

map. For example, a Customer business object might have an Address child

business object that is also a child of an Order business object. If you create a

submap for the Address business object, you can reuse the submap in both the

Customer and Order business object maps.

Figure 19 illustrates how a submap, MyAddrToGenAddr, can be reused by two

different maps.

Transforming child business objects: When the source and destination attributes

contain multiple-cardinality child business objects, it is useful to use a submap to

specify their transformations. Typical examples of multiple-cardinality child

business objects are the multiple addresses of a customer or the multiple line items

in an order.

In the simplest case, you transform each source child business object into a single

destination child business object, in a one-to-one relationship. Figure 20 illustrates

the use of submaps for an Employee business object and its child business array

that contains instances of EmployeeAddress.

Figure 19. Using submaps for modularity

Chapter 2. Creating maps 45

A submap can be associated with a conditional statement that governs whether it

executes. For example, consider Figure 21: the Order business object has an

OrderLine attribute that contains a multiple-cardinality child business object,

OrderLine. The OrderLine business object has a DeliverySchedule attribute that

contains a multiple-cardinality child business object, DelSched.

OrderLine[2]

Order

OrderLine

DeliverSched[2]
DeliverSched[1]

DeliverSched[0]

OrderLine[1]

ched

OrderLine[0]

DeliverSched

DeliverSched[2] DeliverSched[2]
DeliverSched[1] DeliverSched[1]

DeliverSched[0] DeliverSched[0]

ched

Some conditions that can be written in the map for Order can:

v Execute the submap that transforms the OrderLine attribute in Order only if a

different attribute in Order has a particular value.

v Execute the submap that transforms the DeliverSched attribute in OrderLine

only if a different attribute in OrderLine has a particular value.

v Execute the submap that transforms the DeliverSched attribute in OrderLine

only if an attribute in Order has a particular value.

Steps for specifying a Submap transformation: Perform the following steps to

specify a Submap transformation:

1. Create the map that you want to use as a submap.

Employee

Address[2]

App_Empl

AppAddr[2]

AppAddr[1]

AppAddr[0]

Address[1]

Address[0]

Figure 20. One-to-one transformation of child business object arrays

Figure 21. Source business object with multiple-cardinality child business object

46 Map Development Guide

Recommendation: You do this in the same way that you create and save any

other map. IBM naming conventions suggest that submap names begin with

the string “Sub_”.

2. Save the submap to the project in System Manager and compile the submap.

3. Specify the Submap transformation on the attribute in the parent business

object that needs to call the submap. This source attribute contains a child

business object that is mapped to a destination attribute that contains a child

business object.

You specify that a submap needs to be called with the Submap dialog, shown

in Figure 22. Display the Submap dialog in one of the following ways:

v From the Table tab, perform the following steps:

a. In the parent map, select a source attribute (which is a child business

object).

b. Select the desired destination attribute (which is also a child business

object).

c. Click Submap from the list in the Transformation Rule column.

d. Repeat these steps for each source attribute that is a source business

object for the submap and each destination attribute that is a destination

business object for this submap.
v From the Diagram tab, perform the following steps:

a. In the parent map, select the source attribute (which is a child business

object).

b. Use Ctrl+Drag to move to the destination attribute; that is, hold down the

Ctrl key and drag the source attribute onto the destination attribute.

Continue to hold down the Ctrl key until after you release the mouse

button; otherwise, the operation does not succeed.

If the transformation involves a source attribute that is a child business

object, Map Designer Express assumes that the transformation is a

Submap. It automatically assigns Submap to the Rule column of the

destination attribute and displays the Submap dialog.

Tip: You can customize the key sequence used to initiate a Submap

transformation in the Diagram tab from the Key Mapping tab of the

Preferences dialog. For more information, see “Specifying Key Mapping” on

page 24.

v If a Submap transformation is already defined, you can use the Submap

dialog to reconfigure the transformation, including modifying its

transformation code, in either of the following ways:

– Double-click the corresponding cell of the transformation rule column.

– Click the Submap bitmap icon contained in the transformation rule

column.

Chapter 2. Creating maps 47

4. Through the Submap dialog, you specify the name of the submap to call. The

Submap dialog provides the following functionality:

v To identify the submap to call, select its name from the list in the Map area.

The map list displays maps that meet the following condition: The submap

has the same business object definitions for its source and destination

business objects as the source and destination attribute you have selected.

Tip: To locate a particular submap, enter its name in the Find field. The up

and down arrows scroll through the business object list.

v To specify a condition for the submap, enter it in the Condition area of the

Submap dialog. You can enter the condition now or simply dismiss the

dialog and enter the condition in the destination attribute’s generated code.

v To customize the generated code, click the View Code push button.

Result: Map Designer Express opens Activity Editor in Java view, containing

a sample of the transformation code in read-only mode for the destination

attribute. To make changes to the transformation code, click Edit Code in

Activity Editor. For more information, see “Overview of Activity Editor” on

page 101.

Note: When you save the changes in Activity Editor, they are communicated

to Map Designer Express. When you save the map, they are saved too.

v To confirm the transformation setting, click OK.

Result: Map Designer Express generates the Java code to call the specified submap.

It automatically creates a call to the runMap() method to call the submap.

Note: In any attribute’s code, you can use Expression Builder to insert a map

execution call. For more information, see “Using Expression Builder to call a

submap” on page 199.

Reminder: If you have saved a transformation rule using custom Java code, you will

need to manage any object dependencies that are used in the custom

Figure 22. Submap dialog

48 Map Development Guide

Java code manually. For example, if the custom Java code calls a

submap, then you will need to manually deploy the submap to the

server.

Cross-referencing identity relationships

In some cases, the source attribute may need to reference a relationship table to

find out what value to set in the destination attribute. This can be done using a

Cross-Reference transformation.

Steps for specifying a Cross-Reference transformation: Perform the following

steps to specify a Cross-Reference transformation:

1. Select the source and destination attributes in any of the ways previously

described for other transformations. Both have to be business objects.

2. Select Cross-Reference in the corresponding transformation cell.

Result: The Cross-Reference dialog appears:

3. In this dialog, select the relationship name from the list.

Result: The Participant combo box will be populated with all participants from

the selected relationship. The Business Object combo box, by default, will be

populated according to the mapping role defined in the map property. You can

change the combo boxes.

Creating a Custom transformation

In a Custom transformation, you use Activity Editor to customize the activity for

the transformation graphically or to enter the Java code to transform the source

attribute to the destination attribute.

Tip: If you want to use only one standard function block in a custom

transformation, you can configure the function block in the Preferences dialog for

direct use in Map Designer Express. For more information, see “Tip: Using

function blocks directly in Map Designer Express” on page 110.

Figure 23. Cross-Reference dialog

Chapter 2. Creating maps 49

Steps for specifying a Custom transformation: Perform the steps from one of

these map tabs to define a Custom transformation:

v From the Table tab:

1. Select the source attribute.

2. Select the desired destination attribute.

3. Click Custom from the list in the Transformation Rule column.
v From the Diagram tab:

1. Select the source attribute.

2. Select the desired destination attribute.

3. Drag the source attribute onto the destination attribute in the destination

business object window.
v If a custom transformation is already defined, you can modify its transformation

code in either of the following ways:

– Double-click the corresponding cell of the transformation rule column.

– Click the Custom bitmap icon contained in the transformation rule column.

Tip: You can customize the key sequence used to initiate a Custom transformation

from the Key Mapping tab of the Preferences dialog. For more information, see

“Specifying Key Mapping” on page 24.

Result: Map Designer Express displays Activity Editor with a graphical view. For

more information on Activity Editor, see “Overview of Activity Editor” on page

101.

Reminder: If you have saved a transformation rule using custom Java code, you will

need to manage any object dependencies that are used in the custom

Java code manually. For example, if the custom Java code calls a

submap, then you will need to manually deploy the submap to the

server.

Table 15 lists information in this guide that is useful in defining a custom

transformation.

 Table 15. Defining custom transformations

Information provided For more information

How to use Activity Editor to customize transformation code Chapter 5, “Customizing a map,” on page 101

How to create relationships for relationship attributes For a general introduction to relationships, see

Chapter 6, “Introduction to relationships,” on page

223.

1. Use Map Designer Express to create the map for the

business objects that contain relationships.

Chapter 2, “Creating maps,” on page 15

2. Use Relationship Designer Express to define the

relationship.

Chapter 7, “Creating relationship definitions,” on page

237

3. Return to Map Designer Express to code the

relationship between the attributes.

Chapter 8, “Implementing relationships,” on page 257

More complex transformations you can perform: “More attribute transformation methods” on page 172

Content-based logic “Content-based logic” on page 173

Date formatting “Date formatting” on page 178

String processing “Using Expression Builder for string transformations”

on page 181

Note: You can also customize an existing transformation by modifying the

generated code from Activity Editor. If you modify code in auto-update

50 Map Development Guide

mode, Activity Editor prompts for a confirmation. If you confirm the

change, Activity Editor saves the customized code. The label of the

transformation icon in the Transformation Rule column of the Table or

Diagram tab changes from displaying in black, normal text to displaying in

blue, italic text. These blue icon labels help you distinguish between code

that is in auto-update mode (generated by Map Designer Express) and code

you have customized.

You can tell Activity Editor not to confirm by changing the setting in the

Preferences dialog.

Saving maps

To preserve the map definition for use at a later time, you must save the map.

Before Map Designer Express saves a map, it first validates the map. For more

information, see “Validating a map” on page 82.

Map Designer Express provides two ways to save the current map:

v “Saving a map to a project” on page 51

v “Saving a map to a file” on page 52

Important: For Map Designer Express to be able to save a map, a map must

currently be open.

Saving a map to a project

A map definition stores map information in a project in System Manager. This map

definition contains the following information for a map:

v The general map information, which includes map properties

v The map design, which includes the transformation mappings

v The custom transformation code

To save a map to a project in System Manager, you can perform any of the actions

shown in Table 16.

 Table 16. Saving a map to the project

If you want to . . . Then . . .

Save the map definition to the name

of the currently open map.

Do one of the following:

v Select To Project from the File > Save submenu.

v Use the keyboard shortcut of Ctrl+S.

v In the Standard toolbar, click the Save Map to

Project button).

Save the map definition to a name

different from the currently open

map.

Do one of the following:

v Select To Project from the File > Save As submenu.

v Use the keyboard shortcut of Ctrl+Alt+S.

Result: Map Designer Express displays the Save Map

As dialog in which you can specify the map name.

Chapter 2. Creating maps 51

When you save the map, Map Designer Express saves the map definition and map

content to the project in System Manager. It saves the map content as XML data.

Note: You can specify whether Map Designer Express automatically saves a map

to the project in System Manager before compiling the map with the option

Compile Map: save map before compile. By default, this option is enabled.

You can change the setting of this option on the General tab of the

Preferences dialog. For more information, see “Specifying General

Preferences” on page 23.

Tip: To rename an existing map, select To Project from the File > Save As

submenu.

Saving a map to a file

A map definition can be stored as text in an operating-system file, called a map

definition file. A map definition file contains the complete map definition; that is,

this file uses Extended Markup Language (XML) format to represent the following

parts of a map definition:

v The general map information, which includes map properties

v The map content, which includes the transformation mappings in an

uncompressed format

Recommendation: Map Designer Express creates a map definition file with a .cwm

extension. You should follow a naming convention for your map definition files,

such as. using the file extension (.cwm) to distinguish them.

You import a map definition into Map Designer Express by opening an existing

map definition file. For more information, see “Steps for opening a map from a

file” on page 57.

Figure 24. Save As dialog

52 Map Development Guide

You can save the currently open map to a map definition file in any of the ways

shown in Table 17.

 Table 17. Saving a map to a map definition File

If you want to . . . Then . . .

Save the map to the name of the

currently open map in the format:

MapName.cwm

(where MapName is the name of the

currently open map)

Note: Map Designer Express will

always open the File Save dialog if

you do not open the currently

opened map from file.

Do one of the following:

v Select To File from the File > Save submenu.

v Use the keyboard shortcut of Ctrl+E.

v In the Standard toolbar, click the Save Map to File

button (see Figure 24).

Save the map to a specified map

definition file. Map Designer

Express displays a dialog box to

allow you to select the file name.

Do one of the following:

v Select To File from the File > Save As submenu.

v Use the keyboard shortcut of Ctrl+Alt+F.

Note: When you select the To File option from the File > Save or File > Save As

menus, Map Designer Express displays a dialog box to allow you to select

the file name. This file name identifies the file. It is not necessarily the name

of the map.

Example: You can save MapA in a file named fileA.cwm. This fileA file contains the

map definition for MapA. When Map Designer Express opens the fileA map

definition file, it displays the MapA map definition.

Tip: Exporting a map copies only the map.

Checking completion

When you are mapping two large business objects, it is easy to overlook some

required attributes. You can search for attributes that are not yet mapped to make

sure that you have specified all desired transformations. Such attributes are called

unlinked attributes.

Perform the following step to check completion:

v From the Edit menu Select Find; and click the Unlinked attributes option in the

Find control pane.

Result: Map Designer Express displays a list of attributes for which there is no

transformation code. For more information, see “Finding information in a map”

on page 72.

Note: Once the code is completed, you must compile and test it. For information

on compiling a map, see “Compiling a map” on page 82. For information on

testing a map, see “Testing maps” on page 85..

Mapping standards

This section provides the following procedural standards for maps:

v “Tips on mapping individual attributes” on page 54

v “Setting comments in the comment field of the attribute” on page 54

Chapter 2. Creating maps 53

Tips on mapping individual attributes

The following points provide a general approach to mapping individual attributes:

v If the attribute mapping does not include relationship management, start by

copying the source attribute to the destination attribute (see “Copying a source

attribute to a destination attribute” on page 40), then modify the generated code,

as needed.

v If the attribute mapping requires a call to a method in the Mapping API, write

the code without copying the attribute.

v If the destination attribute requires a default when the source attribute is null,

copy the attribute and note that the generated code includes two if statements

for checking the source attribute. You can either:

– Provide the default in an else statement for both of the if statements.

– Add another if statement at the beginning of the code that checks the source

attribute for null and adds a default value. Place the rest of the code in the

else statement.

Important: Do not map the ObjectEventid attribute. InterChange Server Express

reserves the ObjectEventId for its own processing purposes. Any

custom code that has ObjectEventId as destination attribute will not

execute properly.

Setting comments in the comment field of the attribute

Attribute comments can improve the readability of your map. However, Map

Designer Express does not automatically generate a comment for an attribute.

Table 18 provides some suggested standards for attribute comments based on the

type of transformation associated with the destination attribute.

 Table 18. Settings for the Attribute Comment

Situation Setting for Attribute Comment

If the child business object is not mapped =No mapping

Set Value transformation =SET VALUE(value)

Move transformation =MOVE

Join transformation =JOIN(srcAttr1, srcAttr2, ...)

Split transformation =SPLIT(srcAttr[index])

For child business objects, when the mapping is done without calling a

submap to indicate the object has to be expanded to see its attributes

=Mapping here

If the code to call the submap is generated =SUBMAP(mapName)

If the attribute’s mapping contains Mapping API calls that implement

relationships, such as:

v retrieveInstances()

v retrieveParticipants()

v maintainSimpleIdentityRelationship()

v maintainCompositeRelationship()

v All other methods in the IdentityRelationship class except

foreignKeyLookup() and foreignKeyXref()

=Relationship(type)

where type can be:

v identity

v lookup

v custom

If the attribute’s mapping contains foreignKeyLookup() =foreignKeyLookup()

If the attribute’s mapping contains foreignKeyXref() =foreignKeyXref()

Custom transformation that is not one of those listed above

(relationship or foreign key)

=CUSTOM(summary)

If the attribute’s code does not contain anything except setting the verb =SET VERB

54 Map Development Guide

Chapter 3. Working with maps

This chapter describes some advanced features of Map Designer Express that you

might use after creating maps.

The chapter covers the following tasks:

v “Opening and closing a map” on page 55

v “Specifying map property information” on page 58

v “Designing maps for bidirectional languages” on page 60

v “Using map documents” on page 60

v “Using map automation” on page 65

v “Finding information in a map” on page 72

v “Finding and replacing text” on page 73

v “Printing a map” on page 74

v “Deleting objects” on page 74

v “Using execution order” on page 77

v “Creating polymorphic maps” on page 78

v “Importing and exporting maps from InterChange Server Express” on page 79

Opening and closing a map

Map Designer Express displays one map at a time within the tab window. This

map is called the current map (sometimes called the “currently open map”). You

can control which map is the current map with the following Map Designer

Express procedures:

v “Opening a map”

v “Closing a map” on page 57

Opening a map

A map must be open in Map Designer Express before you can view its information

in a Map tab or modify this information. When Map Designer Express opens a

map, if the validate map when open preference is enabled, it first performs a set of

validations on this map.

Note: You can specify whether Map Designer Express validates a map when it

opens it, with the option Open Map: validate map when open. By default,

this option is enabled.

If this preference is enabled when a map that uses big business objects (that

is, thousands of attributes) is opened, Map Designer Express may take a

long time to open the map. You can change the setting of this option on the

General tab of the Preferences dialog. For more information, see “Specifying

General Preferences” on page 23.

The validations that Map Designer Express performs on the map are as follows:

v Ensures that each business object definition that the map uses is defined in the

project in System Manager.

v Ensures that every attribute in the map exists in the specified business object

definition, as defined in the project in System Manager.

© Copyright IBM Corp. 2004, 2005 55

v Ensures that the type of each attribute in the map matches its type in the

specified business object definition, as defined in the project in System Manager.

v Validates transformations:

– Ensures execution order is correct; that is, that execution order is unique,

positive, and consecutive.

– Ensures that no attributes have cyclic dependencies on each other. If any

cyclic transformations are found, Map Designer Express displays the cyclic

rules in the output window.

– Checks transformation information:

Move transformation—only one source attribute is involved.

Join transformation—more than one source attribute is involved.

Split transformation—only one source attribute is involved; split index is

greater than or equal to zero; split delimiter is not empty.

Set Value transformation—no source attribute is involved; a value has been

specified.

Submap transformation—at least one source attribute is involved; submap

name is specified.

Cross-Reference transformation—only one source attribute is involved.

Map Designer Express provides the following ways to open a map:

v “Steps for opening a map from a project in System Manager” on page 56

v “Steps for opening a map from a file” on page 57

Steps for opening a map from a project in System Manager

Perform the following steps to open a map from a project in System Manager:

1. Open the Open a Map from a Project dialog in one of the following ways:

v Click File > Open > From Project.

v Use the keyboard shortcut of Ctrl+O.

v In the Standard toolbar, click the Open Map from Project button.

Result: Map Designer Express displays the Open Map dialog.

56 Map Development Guide

2. Select the project.

3. Select the map’s name from the list of maps currently defined in the project in

System Manager.

Tip: To locate a particular map name, enter its name in the Find field. The up

and down arrows scroll through the map list.

4. Click the Open button to open the map from the project.

Steps for opening a map from a file

A map definition can be stored in XML format in an operating-system file called a

map definition file. To create a map definition file, you save the map as a map

design file (.cwm) in Map Designer Express. For more information, see “Saving a

map to a file” on page 52.

When you open a map definition file, you open the map in Map Designer Express.

Perform the following steps to open a map definition file:

1. Open the Open a Map from a File dialog in one of the following ways:

v Click File > Open > From File.

v Use the keyboard shortcut of Ctrl+I.

v In the Standard toolbar, click the Open Map from File button.

Result: The Open file with Map dialog box appears.

2. Select the map definition file you want to open. The file must be a .cwm file

created by Map Designer Express.

Result: Map Designer Express opens the map definition file. The map

information appears in the Map tabs.

Important: Opening the map in Map Designer Express does not automatically

save the map to the project. To save this map to the project,

continue to step 3..

3. Save the map to the project in System Manager. For more information, see

“Saving a map to a project” on page 51..

Rule: You must save the map to the project in System Manager for it to be

compiled. To compile the map, select Compile from the File menu. For more

information, see “Testing maps” on page 85.

Closing a map

Perform one of the following actions to close the current map, which is displaying

in the tab window:

v Open a new map in any of the ways discussed in “Opening a map” on page 55.

Result: Map Designer Express closes the current map before it opens a new one.

v From the File menu, select Close.

Result: Map Designer Express closes the current map and clears the tab window.

To make a new map current, you can either create a new map or open an

existing map.

v Exit from Map Designer Express in one of the following ways:

– From the File menu, select Exit.

– Use the keyboard shortcut of Alt+F4.

Figure 25. Open Map dialog

Chapter 3. Working with maps 57

Result: Map Designer Express automatically closes the current map before it

exits.

Note: If you have changed the current map since it was last saved, Map Designer

Express displays a confirmation box to confirm the map closure.

Specifying map property information

Use the Map Properties dialog (see Figure 26) to display and specify property

information for a map. To display the Map Properties dialog, perform any of the

following actions:

v From the Edit menu, select Map Properties.

v Use the keyboard shortcut of Ctrl+Enter.

v In the map workspace of the Diagram tab, right-click and select Map Properties

from the Context menu.

The Map Properties dialog provides the following tabs:

v General tab

v Business Objects tab

Figure 26 shows the General tab of the Map Properties dialog.

Figure 26. General tab of Map properties dialog

58 Map Development Guide

Defining General Property information

The General tab of the Map Properties dialog displays the general property

information shown in Table 19.

 Table 19. General Map Property Information

General Map Property Description For more information

Map name Identifies the map whose properties the

dialog displays. This field is initialized when

you create a new map and is not an editable

field.

N/A

Mapping role Identifies the purpose of the map. Possible

values of mapping roles are:

v Application-specific to generic

v Generic to application-specific

v Other (for maps that do not have a

specific mapping direction associated with

them)

Note: For previously defined maps that do

not have this property information, the

combo box will be empty. This is permissible

as long as you do not use any Relationship

transformation rules. When you first create a

Relationship transformation rule and this

value is empty, Map Designer Express will

prompt you for this value.

Run-time properties Specifies the map properties (trace level, data validation level, implicit database

transaction, and fail on invalid data) that apply to the map instance at run time.

You can specify these properties here in the General tab of Map Designer Express’s

Map Properties dialog or from the Map Properties window that System Manager

provides. The changes are made to the local file system. Deploying the map to the

server will not update the run-time instance.

Note: You can update these map properties dynamically from the server

component management view by right-clicking on a map and selecting the

properties from the Context menu. The changes will be automatically updated to

the server.

Trace level Sets the trace level for the map. “Adding trace messages” on page

502

Data validation level Allows you to check each operation in a map

and log an error when data in the incoming

business object cannot be transformed.

“Creating custom data validation

levels” on page 187

Implicit Database

transaction

Determines whether InterChange Server

Express uses implicit transaction bracketing

for transactions over its connections.

Fail on invalid data Determines whether map execution fails if

data is invalid.

“Creating custom data validation

levels” on page 187

Variable declarations You can declare your own Java variables to use in your transformation code. For

more information, see “Using variables” on page 168.

Map file declaration block Allows you to import Java packages (such as

MapUtils) into a map for use within

transformation code.

“Importing Java packages and other

custom code” on page 163

Map local declaration

block

Allows you to import custom Java code

developed outside of Map Designer Express

into a map for use within transformation

code.

“Importing Java packages and other

custom code” on page 163

Chapter 3. Working with maps 59

Defining business objects

The Business Objects tab of the Map Properties dialog displays information about

the map’s business objects. It lists the source and destination business objects as

well as any temporary business object that might be defined. For more

information, see “Steps for modifying business object variables” on page 169.

Designing maps for bidirectional languages

WebSphere Business Integration Server Express supports bidirectional languages.

This support is in a standard Windows-type bidirectional format (logical left to

right). With this support, data that flows into the InterChange Server Express

environment that comes from one of the bidirectional language-enabled connectors

is guaranteed to be in uniform bidirectional language format (CWBF=ILYNN).

However, data can be introduced into a map from sources other than enabled

connectors, for instance, a component that does not support bidirectional languages

that is exported through Web services, an adapter that does not support

bidirectional languages or data imported from some external source where the

bidirectional support is unknown. For more information see, “Using bidirectional

functionality in Activity Editor” on page 161.

Using non-bidirectional enabled sources can create bidirectional format

inconsistencies that cause comparisons within a collaboration to return incorrect

results. These types of errors can be avoided by:

v Only accepting input from sources that enforce the same bidirectional format as

the WebSphere Business Integration Server Express system such as the adapters

that are already enabled with this support.

v Enabling the connectors to this collaboration to enforce the correct bidirectional

format. For more information, see the Collaboration Development Guide.

v Using the APIs in the CwBidiEngine class to transform all data into a consistent

bidirectional format (see Chapter 12, “CwBidiEngine class,” on page 361).

Using map documents

You can create a map document to see all transformations in a single map or

between two maps. While checking a map, you might want to view all of its

transformations in a single operation, rather than opening and viewing each

attribute separately. To do so, you can create a map document that contains all

transformations. A map document provides you with an automated way to

document native-map transformations.

This section provides the following information:

v A description of the two HTML files that make up a map document

v How to create a new map document

v How to view a map document

v How to print out a map document

What is a map document?

A map document consists of two HTML files that describe all transformations of a

map (or set of maps):

v A map-table file that describes the map transformations in a tabular format.

The map-table file has the name mapDoc.HTM.

v A Java-code file that contains the code of the map transformations.

60 Map Development Guide

The Java-code file has the name mapDocJavaCode.HTM.

In both these HTML files, mapDoc is the user-specified name of the map document.

The map document can include information for all attributes, only those attributes

that have map transformations, or only those attributes that do not have map

transformations (unlinked attributes). If you specify all attributes, the map

document also contains a list of unlinked attributes in the source and destination

business objects.

The following sections describe the format of the two HTML files of a map

document.

Map-table file format

The map-table file, mapDoc.HTM, describes the map transformations in a tabular

format:

v If the map document describes only one map, Map Designer Express creates a

single-map map table.

v If the map document describes two maps, Map Designer Express creates a

multiple-map map table.

Single-map map table: A single-map map table describes the mapping flow in a

single map; that is, it describes the transformations between a source and

destination business object. The single-map map table has the following columns:

v Source Attribute shows the names of the source business object’s attributes.

v Transformation Rule describes the kind of mapping transformation between the

attribute in the source business object (in the column to the left) and the

attribute in the destination business object (in the column to the right). The

transformations listed in this column are hypertext links to the location of the

attribute in the mapDocJavaCode.HTM Java-code file for the map.

v Destination Attribute shows the names of the destination business object’s

attributes.

Figure 27 shows the HTML file that contains a single-map map table.

Chapter 3. Working with maps 61

Note: If you enabled the Comment check box Create Map Document dialog, the

map table contains a fourth column called Comment, which shows the

comment for each of the destination attributes in the table.

Multiple-map map table: A multiple-map map table describes the mapping flow

between two maps; that is, it describes the transformations in the inbound map

(between the application-specific and generic business object) and an outbound

map (between the generic and application-specific business object). The

multiple-map map table has the following columns:

v Source Attribute shows the names of the application-specific business object’s

attributes.

v The first Transformation Rule column describes the kind of mapping

transformation between the attribute in the application-specific business object

(in the column to the left) and the attribute in the generic business object (in the

column to the right). The transformations listed in this column are hypertext

links to the location of the attribute in the mapDocJavaCode.HTM Java-code file for

the inbound (application-specific to generic) map.

v Common Attribute shows the names of the generic business object’s attributes.

v The second Transformation Rule column describes the kind of mapping

transformation between the attribute in the generic business object (in the

column to the left) and the attribute in the application-specific business object (in

the column to the right). The transformations listed in this column are hypertext

links to the location of the attribute in the mapDocJavaCode.HTM Java-code file for

the outbound (generic to application-specific) map.

Figure 27. Single-map map table

62 Map Development Guide

v Destination Attribute shows the names of the application-specific business

object’s attributes.

Figure 28 shows the HTML file that contains a multiple-map map table.

Java-Code file format

The Java-code file, mapDocJavaCode.HTM, provides more detailed information about

the map. It contains the Java code that performs the transformations. This code is

in standard program format. The Java-code file is useful when you want to view

all map transformations in a single operation, rather than opening and viewing

each attribute separately.

Steps for creating a map document

Perform the following steps to create a map document:

1. From the File menu, select Create Map Documents.

Result: Map Designer Express displays the Create Map Document dialog (see

Figure 29).

2. Select the map-document configuration options from the Create Map Document

dialog:

v Specify the project.

v Specify the maps that are involved in the map document.

Guideline: If you do not select the “Show mapping flow with two maps”

check box, you can select only one map from the drop-down list. The

drop-down list includes all maps currently defined. If a map is currently

open, its name appears by default.

If you select the “Show mapping flow with two maps” check box, the second

drop-down list is enabled. This second drop-down list provides only those

Figure 28. Multiple-map map table

Chapter 3. Working with maps 63

maps that share the same generic business object as the first map. From this

list, you can select the name of the second map to include in the map

document.

v Specify the attributes in the destination business object to include in the map

document.

Click the appropriate radio button to indicate whether to include all

attributes, only mapped attributes, or only unmapped attributes in the map

document.

v Specify a name for the new map document.

Guideline: You can click the Browse button to find a location for the

map-document file. Map Designer Express automatically appends the suffix

.HTM to the map-document name you enter. Therefore, you do not need to

specify a file extension.
3. To initiate creation of the map document, select one of the following options:

v Click Save to save the selected maps in a map document.

v Click Save/View to save the selected maps in a map document and view this

new map document in an HTML browser.

Figure 29 shows the Create Map Document dialog.

When you create a map document, Map Designer Express creates the map

document as a Hypertext Markup Language (HTML) file (mapDoc.HTM) and a

related Java code file (mapDocJavaCode.HTM) where mapDoc is the map-document

name you specified in the Map Document Configuration dialog.

Viewing a map document

You can view a map document in any of the following ways:

v Open an existing map document in either of the following ways:

– From the File menu, select View Map Document.

– Use the keyboard shortcut of Ctrl+M.

Result: The Open dialog displays the available map-document files. Specify the

HTML map document to read and click Open.

v Open a new map document by clicking Save/View on the Map Document

Configuration dialog.

Figure 29. Create Map Document dialog

64 Map Development Guide

v Go into the directory that contains the map document files and double-click the

desired file.

Result: Map Designer Express invokes your browser to display the HTML

map-document file that you selected.

Guideline: In addition, you can view the Java code associated with a particular

transformation by clicking the entry in the Mapping Action column of the map

table. Your browser displays the corresponding Java code segments that implement

the mapping between the associated source and destination attributes.

Printing a map document

Perform the following steps to print a map-document file:

1. View the desired file in your HTML browser.

For more information, see “Viewing a map document” on page 64.

2. Print the displaying HTML file from the browser by doing one of the following:

v Select Print from the browser’s File menu.

v Use the keyboard shortcut of Ctrl+P.

v Click the Print button in the Standard tool bar.

Using map automation

Map automation allows you to create maps automatically between business objects

with similar attributes. You can also generate reverse maps for any given maps.

This section covers the following tasks:

v “Creating maps automatically”

v “Creating reverse maps automatically” on page 69

v “Using synonyms for automation” on page 71

Creating maps automatically

Map Designer Express can generate maps automatically between business objects

having source and destination attributes with the same names. Even if the business

objects are different, they may have certain elements in common. For example, a

customer business object usually has the attributes First name, Last name, Address,

and Zip code to maintain customer data.

To map business objects automatically, Map Designer Express looks for attributes

with matching names between the source and destination business objects and uses

a Move transformation. The mapping happens only at corresponding levels, that is,

the top-level attributes in the source business objects are mapped with the top-level

attributes in the destination business objects, not any other level. Similarly, the

child business objects on the source side are considered for map automation only if

corresponding child objects are found in the destination business objects at the

same level.

Steps for creating maps automatically

Before you begin: You need to have a map definition file with the source and

destination business objects specified. For information on creating a new map

definition file with the New Map wizard, see “Steps for creating the map

definition” on page 33.

Perform the following steps to create maps automatically:

Chapter 3. Working with maps 65

1. From the Tools menu, select Automatic Mapping.

Result: The Automatic Mapping dialog appears, giving you the ability to

provide a prefix or suffix for Map Designer Express to use for searching

attributes.

2. To use this option, do the following in the Automatic Mapping dialog:

a. Select the check box Add Prefix or Suffix to attributes during search.

Note: This option is disabled, by default.

b. Select Prefix or Suffix; and in the space provided, type a prefix or suffix to

add to the search string for the particular session.

Restriction: At any given instance, the choice can only be a suffix or a

prefix. You cannot use both at the same time for searching.

c. Click OK.

Note: Map Designer Express will also use the preferences you have set for

case and data types in the Automatic Mapping tab of the Preferences

dialog.

Figure 30. Prefix and Suffix Setting dialog

66 Map Development Guide

For information on setting these preferences, see“Specifying Automatic

Mapping” on page 25.

Result: Map Designer Express will perform a search on every attribute on the

source side with the prefix or suffix added to the search string on the destination

side. Every time a matching attribute is found on the destination business object,

automatic mapping will take place between the source attribute and the prefixed

destination attribute.

Example of automatic mapping

The following illustration of automatic mapping includes adding a prefix.

Suppose a source business object has the following attributes:

1. FirstName

2. LastName

3. Address

4. Zip

The destination business object has these attributes:

1. ORCL_FirstName

2. ORCL_LastName

Figure 31. Automatic Mapping tab in Preferences dialog

Chapter 3. Working with maps 67

3. ORCL_Address

4. Pin

5. State

6. Country

In the Automatic Mapping dialog, we select the check box Add Prefix or Suffix to

attributes during search. We type ORCL_ in the Prefix space and click OK.

Note: This example presumes we have previously set the preference to Ignore

Case in the Automatic Mapping tab of the Preferences dialog to perform a

case-insensitive search on the names.

Result: Map Designer Express performs a case-insensitive search on the attributes

on the source side (FirstName, LastName, and Address) with the prefix ORCL added

to the search string on the destination side (ORCL_FirstName, ORCL_LastName,

ORCL_Address). Every time a matching attribute is found on the destination

business object, automatic mapping takes place between the source attribute and

the prefixed destination attribute using a Move transformation. In our example, the

mapping will occur between FirstName and ORCL_FirstName, LastName and

ORCL_LastName, Address and ORCL_Address. The other attributes do not match

up, so no mapping takes place between them.

Figure 32 illustrates this example.

Figure 32. Example of adding a prefix in automatic mapping

68 Map Development Guide

Creating reverse maps automatically

Typically, maps are used in pairs. In most places where a map is used, a map is

also needed in the opposite direction. Using Reverse Map, automates the steps

required to create a reverse map. The following table shows the standard

transformation rules that Map Designer Express currently supports (Current map

column) and the transformation rules that Reverse Map currently includes (Reverse

map column).

 Table 20. Transformation rules used for current map to reverse map

Current map Reverse map

Move Move

Split Join

Join Split

Set Value No mapping

Custom No mapping

Cross-Reverence No mapping

Submap Submap if there is one

As Table 20 shows, reverse mapping presently includes the Move, Split, Join, and

Submap transformations. The Set Value, Cross-Reference, and Custom

transformation rules are left untouched during a reverse map creation.

Restriction: For a Join to Split reverse mapping to take place delimiters must be

provided. For a Split to Join reverse mapping, however, delimiters are optional.

Steps for creating reverse maps automatically

Perform the following steps to create a reverse map automatically.

1. Open the map for which you need a reverse map.

2. From the Tools menu, select Reverse Map.

Result: The Save As dialog appears.

3. Type a name for the reverse map and click Save.

Result: Map Designer Express creates a reverse map for the currently open

map and opens the reverse map in a new instance of Map Designer Express.

Example of reverse mapping

The following example shows a before and after map reversal scenario.

Figure 33 shows a map that needs a reverse map. It uses the Move, Custom, Join,

Split, and Set Value transformations.

Chapter 3. Working with maps 69

After you perform the steps for automatically creating a reverse map (see “Steps

for creating reverse maps automatically” on page 69), the following map opens.

Figure 33. Map that needs a reverse map

70 Map Development Guide

As you can see in Figure 34, the Move transformation becomes a Move again in the

reverse map. The Split and Join transformations are reversed. The Custom (Pay)

and Set Value (Shift) transformations are left untouched. You need to do these

manually with Activity Editor. The transformations that cannot be made in the

reverse direction will be listed as warnings in the output window.

For information on using Activity Editor, see Chapter 5, “Customizing a map,” on

page 101.

Using synonyms for automation

To enhance the basic matching process, you can create multiple synonyms for an

attribute name. For example, you can match an attribute name not only with one

matching name but also with several possible equivalent names.

Example: Suppose we have a CR as an attribute name on the source side. It could

be matched to the following attribute names on the destination side:

v Defect

v Change request

v Bug number

v Defect number

v CR

Figure 34. Map created automatically as a result of reversal

Chapter 3. Working with maps 71

You add these synonyms at the project level in the Synonyms window of System

Manager. You can edit the entries here and add more comma separated strings to

help in map automation. You can also create global synonyms that apply to all the

business objects in the project.

For the procedure for creating synonyms for map automation in System Manager,

see the System Implementation Guide.

System Manager will search for all the synonyms for a given attribute and perform

automatic mapping when it finds the matches. For example, a CR on the source

side will match up to Defect, Change request, Bug number, and CR if you have added

these as synonyms in the Synonyms window. When any of these words is

encountered, a mapping will be performed automatically.

Finding information in a map

You can use Map Designer Express’s search facility to perform the following

searches:

v Search for text in an attribute name or in the attribute’s transformation code.

v Search for unlinked attributes.

Steps for finding information in a map

Perform the following steps to find information in a map.

1. Initiate a find in one of the following ways:

v From the Edit menu, select Find.

v Use the keyboard shortcut of Ctrl+F.

v In the Standard toolbar, click the Find button.

Result: Map Designer Express displays the Find control pane (see Figure 35).

Find results area,
where the search
facility displays the
search results.

Find area, where you
specify where to
search and whether
the search is case
sensitive.

Choose what to find
by clicking one of these
radio buttons

Figure 35. Find Control Pane

72 Map Development Guide

2. From the Find control pane, select one of the radio buttons in the What to find?

area to indicate which kind of search you want to perform:

v To search for text:

a. Select the Text radio button.

b. Enter the text to search for in the Find field. You can enter multiple

words and spaces if necessary.

c. Indicate where to search for the text by selecting one or more options in

the Find area:

Attribute—search the attribute names for the specified text.

Code—search the attributes’ transformation code for the specified text.

You can select either Attribute or Code, or both of those options.

Case Sensitive—make the text search case sensitive. To find only instances

of the text that have the same case that you typed, select Case Sensitive.

Restriction: You cannot search on data types or comments.

d. Click Find to initiate the search.
v To search for unlinked attributes:

a. Select the Unlinked Attributes radio button. The Find control pane

deactivates the fields in the Find area.

b. Click Find to initiate the search.

Result: Map Designer Express displays the search results in the Find Results

area. You can click any attribute name to automatically select that attribute in

the map.
3. Click Close to close the Find control pane.

Finding and replacing text

Using Map Designer Express’s Find and Replace capability, you can search for

specified text in any customized Java Code or in the comments of a transformation

rule (or in both) and replace it with other specified text.

Steps for finding and replacing text

Perform the following steps to find and replace text.

1. Initiate a find and replace in one of the following ways:

v From the Edit menu, select Replace.

v Use the keyboard shortcut of Ctrl+H.

Result: Map Designer Express displays the Replace dialog.

Figure 36. Replace dialog

Chapter 3. Working with maps 73

2. In the Replace dialog, enter the text to search for in the Find what field and the

text to replace it in the Replace with field. Select Match case, as necessary.

3. Indicate where to Replace in by selecting either Code or Comment or both.

4. Click Find Next to initiate the search.

Result: One of the following results takes place:

v If you specified Replace in Code, when text is found in the customized Java

code of a transformation rule, Activity Editor will display with the

customized Java code in Quick view mode.

v If you specified Replace in Comment, the Table view will be activated and

the text will appear in the comment column in the Table view.
5. Click Replace to replace the match with the new text.

Guideline: You can replace all similar matches with one action by clicking

Replace All.

6. To continue finding and replacing the specified text, instance by instance,

repeat steps 4 and 5.

Printing a map

Map Designer Express allows you to print a map. It creates a tabular

representation of the map, much like the map appears in the Table tab. You can

print a map in any of the following ways:

v From the File menu, select Print to print the current map.

v Use the keyboard shortcut of Ctrl+P.

v In the Standard toolbar, click the Print button.

Map Designer Express also supports the following standard print tasks:

v Print Preview—select Print Preview from the File menu to preview the page

layout for the current map.
v Print Setup

– From the File menu select Print Setup to display the Print Setup dialog,

where you can configure information such as printer setting, paper size and

orientation.

– Use the keyboard shortcut of Ctrl+Shift+P.

Guideline: When Map Designer Express performs the print or print-preview task,

it copies the attribute transformation table in the Table tab. Before you print, you

can adjust the width of the individual columns and height of individual rows in

the attribute transformation table to make the whole map fit on one page or to

customize the print result.

Deleting objects

This section provides information on how to delete the following objects:

v “Steps for deleting map transformation steps”

v “Steps for deleting business objects” on page 75

v “Steps for deleting maps” on page 76

Steps for deleting map transformation steps

Deleting a map transformation step includes three components:

v Deleting the transformation code

74 Map Development Guide

v Deleting the comment

v Deleting the data flow arrow

Perform the following steps to delete the transformation step from one of these

map tabs.

v From the Table tab: Select the attribute line to delete by clicking in the leftmost

column (the column to the left of Exec. Order) and doing one of the following

actions:

– Right-click and select Delete Row from the Context menu.

– From the Edit menu, select Delete Current Selection.

– Use the keyboard shortcut of Del.

Result: Map Designer Express automatically deletes any incomplete

transformations when you save the map.

v From the Diagram tab: Select the data flow arrow and do one of the following

actions:

– From the Edit menu, select Delete Current Selection.

– Use the keyboard shortcut of Del.

– Right-click and select Delete from the map workspace’s Context menu.

Result: A dialog asks you whether to delete the associated data flow arrow.

Click Yes and Map Designer Express displays a second confirmation asking if

you want to delete the associated code. Click Yes and all three items are deleted.

Steps for deleting business objects

Perform the following steps to delete a business object from a map:

1. Display the Delete Business Object dialog in one of the following ways:

v From the Edit menu, select Delete Business Object.

v From the Table tab, perform either of the following actions:

– Right-click in the empty area of the business objects pane and select

Delete Business Object from the Context menu.

– Right-click the business object in the business objects pane (click the name

in the cell) and select Delete <BusObjName> (where BusObjName is the

name of the selected business object.)

Result: The Delete Business Object dialog displays.

Chapter 3. Working with maps 75

2. Through the Delete Business Object dialog, you specify which business objects

you want to delete from the map. The Delete Business Object dialog provides

the following functionality:

v To delete a business object:

– Select the business object in the business object list.

– Click the Delete button.
v To locate a particular business object, enter its name in the Find field. The up

and down arrows scroll through the business object list.

v To close the dialog, click Done.

Steps for deleting maps

Perform the following steps to delete a map from the project in System Manager:

1. From the File menu, select Delete.

Result: Map Designer Express displays the Delete Map dialog, as Figure 38

shows.

Note: If a map is currently open, Map Designer Express closes this map before

it displays the Delete Map dialog. You can specify whether Map

Designer Express closes any currently open map with the option Delete

Map: close map before delete. By default, this option is enabled. If the

option is disabled, Map Designer Express provides a confirmation

prompt if you select the currently open map from the Delete Map dialog.

You can change the setting of this option on the General tab of the

Preferences dialog. For more information, see “Specifying General

Preferences” on page 23.

2. Enter the project name.

Figure 37. Delete Business Object dialog

Figure 38. Delete Map dialog

76 Map Development Guide

3. Select the map or maps you want to delete.

From the Delete Map dialog, you can:

v Select a single map by clicking on the map name in the list.

v Select multiple maps by holding down the Ctrl or Shift key and clicking on

the map names.

v Locate a particular business object by entering its name in the Find field. The

up and down arrows scroll through the business object list.
4. Click the Delete button to delete the maps.

Result: Map Designer Express displays a confirmation box for the delete.

Note: You can specify whether Map Designer Express confirms the deletion of

a map with the option Delete Map: always display warning message. By

default, this option is enabled. You can change the setting of this option

on the General tab of the Preferences dialog. For more information, see

“Specifying General Preferences” on page 23.

Using execution order

By default, map execution occurs in the order that the destination attributes appear

in the Table tab. Only destination attributes that have transformations are executed.

Often, the execution order is the order in which the destination attributes are

defined in the destination business object. Figure 39 shows an execution order of

the map A-to-B in which destination attributes are executed in the order they are

defined.

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Dest - B

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Execution Order

B Attr1
B Attr2
B Attr3
B Attr4
B Attr5
B Attr6
B Attr7

Src - A

Note: Figure 39 assume that all destination attributes have transformation code.

However, certain attributes might have dependencies in their execution order. To

ensure that the transformation code of certain attributes is executed before the

transformation code of other ones, you can specify the order of their execution.

You can change the execution order to specify data flow. For example, suppose in

the map A-to-B that Attr7 needs to execute immediately after Attr3 (in other

words, Attr7 needs to execute before Attr4). Figure 40 shows how a sequence

specification in the destination business operation changes the sequence.

Figure 39. Default execution order

Chapter 3. Working with maps 77

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

Dest - B

Attr1

Attr2

Attr3

Attr4

Attr5

Attr6

Attr7

B Attr1
B Attr2
B Attr3
B Attr7
B Attr4
B Attr5
B Attr6

Execution Order
Src - A

You can specify an explicit execution sequence that overrides the default order

from the Table tab of Map Designer Express. To specify the sequence of

transformations between two destination attributes in the Table tab, click in the

Exec. Order field for the destination attribute whose execution order you want to

change and enter the desired execution order value.

Note: You can specify whether Map Designer Express renumbers the execution

order for any attributes affected by this change with the option Defining

Map: automatically adjust execution order. By default, this option is

disabled. When the option is enabled, Map Designer Express automatically

adjusts the execution order of other attributes. You can change the setting of

this option on the General tab of the Preferences dialog. For more

information, see “Specifying General Preferences” on page 23.

By default, the Table tab displays attributes in the order their transformations are

defined. You can then choose to display these mapped attributes by their execution

order, their attribute names, or ordered by any other column of the attribute

transformation table. Just click the heading of the column to order the attributes by

that column’s value.

Important: If you click the row header of the transformation and drag-and-drop

the transformation to a new position, you change the order in which

the transformation rule is displayed. However, this action does not

affect its execution order.

Creating polymorphic maps

Polymorphic mapping allows a single source business object to map to one of

many potential destination business objects. To do this form of mapping, you must:

1. Create a separate map (one source object and one destination object) for each

possible outcome.

2. Create a main polymorphic map that has a single source business object and

multiple destination objects.

3. Within the first attribute of each destination business object, check some

condition that dictates which destination business object is to be populated. If

the condition is true, run the appropriate map to accomplish the desired results

using the runMap() method.

Figure 40. Changing execution order

78 Map Development Guide

Example: Below is sample code from the first attribute in one of the destination

business objects in a main polymorphic map. In this example, ObjInput is the

Instance variable for the source business object, ObjOutput1 is the Instance variable

for the output object which contains this code, and InputToOutput1 is the submap

which performs the actual mapping from ObjInput to ObjOutput1. In this case, the

condition which dictates whether this mapping occurs is based on the value of the

Attr1 attribute within the source business object. Your condition will obviously

vary.

BusObj[] rSrcBO = new BusObj[1];

BusObj[] rDstBO = new BusObj[1];

rSrcBO[0] = ObjInput;

String Attr1Val = ObjInput.getString("Attr1");

if (Attr1Val.equals("Poly1"))

 {

 try

 {

 rDstBO = DtpMapService.runMap("InputToOutput1",

 DtpMapService.CWMAPTYPE,rSrcBO,cwExecCtx);

 ObjOutput1.setContent(rDstBO[0]);

 }

 catch (MapFailureException e)

 {

 e.toString();

 e.printStackTrace();

 raiseException(e);

 }

 catch (MapNotFoundException e)

 {

 raiseException("MapNotFoundException",

 "runMap did not find map");

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

Importing and exporting maps from InterChange Server Express

With the repos_copy utility, you can load and unload specified map definitions in

the repository with the -e option. A map repository file is the file that the

repos_copy utility creates when it extracts a map definition from the repository

into a .jar file. This file contains a map definition in an InterChange Server

Express-defined .jar format.

Recommendation: You should use the .jar file extension for the map repository

file.

Example: The following repos_copy command unloads (exports) the ClCwCustomer

(ClarifyBusOrg to generic Customer) map definition from the repository of an

InterChange Server Express named WebSphereICS into a map repository file:

repos_copy -eMap:ClCwCustomer+BusObj:Customer+BusObj:Clarify_Customer

-oNM_ClCwCustomer.jar -sWebSphereICS -pnull -uadmin

You can create one repository file that contains all map definition files, including:

Chapter 3. Working with maps 79

v Main map definitions

v Submap definitions

v Files for both directions, if applicable.

Example: To copy all related map definitions for the ClarifyBusOrg/Customer

mapping into a map repository file, use the following repos_copy command:

repos_copy -eMap:ClCwCustomer+Map:CwClCustomer

-oNM_ClCwCustomer_and_CwClCustomer.jar -sWebSphereICS -pnull -uadmin

If you are reusing a submap in several maps, create a separate repos_copy file for

it instead of putting it in the main text file.

You can also use repos_copy to load (import) a map definition into the repository

from a map repository file.

Example: The following repos_copy command loads the ClCwCustomer map

definition into the repository of an InterChange Server Express named

WebSphereICS:

repos_copy -iNM_ClCwCustomer.jar -sWebSphereICS -uadmin -pnull

This repos_copy command assumes that the ClCwCustomer and CwClCustomer map

definitions do not currently exist in the repository. If they do exist, this command

fails to load these new map definitions. You can use one of the -a options of

repos_copy to choose how to handle duplicate map definitions:

 -ai Skip over duplicate map definitions during the load

-ar Overwrite any duplicate map definitions with the map definition in the

map repository file.

-arp Interactively query the user whether to overwrite any duplicate map

definitions with the map definition in the map repository file.

Note: In Production mode, the maps will be automatically compiled.

You can also use repos_copy to load and unload relationship definitions in the

repository. For more information, see “Loading and unloading relationships” on

page 309.

80 Map Development Guide

Chapter 4. Compiling and testing maps

This chapter describes how to validate, compile, and test maps using Map

Designer Express.

The chapter covers the following tasks:

v “Checking the transformation code” on page 81

v “Validating a map” on page 82

v “Compiling a map” on page 82

v “Compiling a set of maps” on page 84

v “Testing maps” on page 85

v “Doing advanced debugging” on page 92

v “Testing maps that contain relationships” on page 93

v “Debugging maps” on page 98

Checking the transformation code

When you have finished writing the transformation code associated with a

destination attribute, you can perform a limited syntax check on the code. By

checking as you proceed, you reduce debugging time required at the end of the

map development process. You can check attribute code using the technique of

finding unmatched delimiters.

Note: This technique is also useful when you have a compilation error whose

cause you cannot immediately determine from the error message.

Finding unmatched delimiters

Map Designer Express provides the Check for Unmatched Delimiters feature to

help you resolve one of the errors in a program that is most difficult to identify.

This feature checks for unmatched delimiters in an attribute’s transformation code.

Map Designer Express checks for these paired tokens: (), [], { }, “ ”, and ‘ ’.

Steps for finding unmatched delimiters

Perform the following steps to do a syntax check on an attribute’s transformation

code:

1. Invoke Activity Editor in Java mode.

For information on how to display Activity Editor, see “Starting Activity

Editor” on page 101.

2. Use the Check for Unmatched Delimiters option in Activity Editor. Right-click

and select Check for Unmatched Delimiters from the Context menu.

Note: If an unpaired instance of one of the delimiters exists, Activity Editor

displays a message in the output window, providing the line number

where the error was unable to be resolved. This line number might not

be the actual line of the missing delimiter.

3. To go to the source of the unmatched delimiter, note the line number displayed

at the bottom of the window.

© Copyright IBM Corp. 2004, 2005 81

Tip: To move to this line, use the Goto Line option from either the Edit menu

or the Context menu of Activity Editor. Enter a line number to navigate to the

line where the problem occurred.

Note: If the problem is caused by unmatched quotation marks at one end of a

string literal, the string does not appear pink as it should. When you add

the missing quotation mark, the entire string turns pink.

Validating a map

Map Designer Express’s validation process verifies the accuracy of the map’s data

flow by performing the following checks:

v Ensures that the map has no incomplete transformation steps.

v Ensures that indexes to business object arrays are properly sequenced, starting

from zero (0).

v Provides a warning if any transformation step maps to the ObjectEventId

attribute.

v Validates transformations:

– Makes sure execution order is correct; that is, that execution order is unique,

positive, and consecutive.

– Ensures that no attributes have cyclic dependencies on each other. If any

cyclic transformations are found, Map Designer Express displays the cyclic

rules in the output window.

– Checks transformation information:

Move transformation—only one source attribute is involved.

Join transformation—more than one source attribute is involved.

Split transformation—only one source attribute is involved; split index is

greater than or equal to zero; split delimiter is not empty.

Set Value transformation—no source attribute is involved; a value has been

specified.

Submap transformation—at least one source attribute is involved; submap

name is specified.

Cross-Reference transformation—only one source attribute is involved.

Map Designer Express automatically validates a map when you save it. You can

also choose to validate the map by performing either of the following actions:

v From the File menu, select Validate Map.

v In the Designer toolbar, click the Validate button.

At this point, if you have specified any options on the Validation tab of the

Preferences dialog, Map Designer Express will issue a warning if the specific

condition is not mapped.

For more information on setting dependencies between attributes, see “Using

execution order” on page 77.

Compiling a map

When it compiles a map, Map Designer Express generates a .class file from the

.java file that holds Java code for the map’s transformations. It generates this

.java file from the transformation code stored as part of the map definition in the

project.

82 Map Development Guide

Important: To be able to compile a map, the Java compiler (javac) must exist on

your system and its path must be on your PATH system variable. For

more information, see “Requirements for setting up the development

environment” on page 11..

Steps for compiling a map from Map Designer Express

From within Map Designer Express, you can initiate compilation of a map in

several ways:

v To compile the current map, do one of the following:

– From the File menu, select Compile.

– Use the keyboard shortcut of F7.

– In the Designer toolbar, click the Compile button.
v To compile the current map and any submaps that this map is using:

– From the File menu, Select Compile with Submap(s).
v To compile all or a subset of maps defined in System Manager, do one of the

following:

– From the File menu, select Compile All.

– Use the keyboard shortcut of Ctrl+F7.

For more information, see “Compiling a set of maps” on page 84.

By default, Map Designer Express saves the map in the project before it begins the

compile and generates the Java code in the .java file and .class file. If any

message file is needed, Map Designer Express will also generate the message file.

Note: You can specify whether Map Designer Express automatically saves a map

to the project before compiling the map with the option Compile Map: save

map before compile. By default, this option is enabled. You can change the

setting of this option on the General tab of the Preferences dialog. For more

information, see “Specifying General Preferences” on page 23.

To compile, Map Designer Express calls the Java compiler on the map’s Java source

code (.java file). The actions it then takes depend upon whether the compilation is

successful.

Steps for compiling a map from System Manager

System Manager also provides several ways to compile a map:

v To compile a single map, do one of the following:

– Highlight the desired map and select Compile from the Component menu.

– Right-click the desired map and select Compile from the Context menu.
v To compile a map and its submaps:

– Right-click the desired map and select Compile with Submap(s) from the

Context menu.
v To compile all maps defined in the project:

– Highlight the Maps folder and select Compile All from the Component menu.

Note: You will need to select which map folder in the project to compile all

maps for by right-clicking on the map folder and selecting Compile All

from the Context menu.

Chapter 4. Compiling and testing maps 83

A successful map compilation

When the map successfully compiles, Map Designer Express takes the following

steps:

v Compiles the Java code into a .java file.

v Displays the following message in the output window at the bottom of each

Map tab to indicate that there are no errors during compilation:

Compilation is successful.

An unsuccessful map compilation

If an error occurs during compilation, Map Designer Express generates error

messages and displays them in the output window at the bottom of the screen.

Unless an output window is already open, Map Designer Express opens one at the

bottom of the Map tab to display these compilation messages.

When a compile error occurs, the output window displays the error message with

the problematic attribute name and line number in blue. Click the hyperlink to

navigate to the problematic area in the Java view in Activity Editor.

Tip: You can clear the output window of messages by selecting Clear Output from

the View menu.

Some errors are easy to detect, while others are not.

Compiling a set of maps

Using the Compile All option on the File menu, you can compile all maps in your

System Manager, or a subset of maps.

Steps for compiling a set of maps

Perform the following steps to compile a set of maps:

1. From the File menu, select Compile All.

Result: Map Designer Express displays the Compile All Maps window.

2. Select the project for the map compile.

3. Select the maps to compile.

Guideline: Selecting any check box at the root will automatically check all its

child check boxes. Thus, when you select a project, all maps in that project are

selected. To select only a subset of maps, deselect the appropriate Compile

check boxes.

Figure 41 illustrates the Compile All Maps window.

84 Map Development Guide

Result: Map Designer Express displays the success or failure of each map’s

compilation in the output window. You might want to enlarge the size of the

output window before starting the compilation process so you can see more of the

compilation status messages.

Testing maps

You can test a map’s transformation steps by providing sample data for the source

business object and executing a test run of the map. A test run is map execution

that does not involve an event sent by a connector or a call sent by an access

client; the map executes within Map Designer Express. Map Designer Express

provides a separate tab, the Test tab in the Map Designer Express window to test

maps and view test results.

Note: When a map is selected from Testing Environment for further debugging,

Testing Environment will launch Map Designer Express, giving Map

Designer Express the input business objects to the map under testing.

This section describes how to set up and execute a test run, using these main steps:

v “Steps for preparing to run the test” on page 86

v “Creating test data” on page 86

v “Setting breakpoints” on page 88

v “Running the test map” on page 90

v “Viewing test run results” on page 91

Figure 41. Compile All Maps window

Chapter 4. Compiling and testing maps 85

v “Steps for changing the map and re-executing” on page 92

Tip: An alternative testing strategy, which is not covered in detail, is to set

breakpoints in the map and to send a triggering event from the connector, which

causes the map to execute.

Steps for preparing to run the test

Before running the test, perform the following steps:

1. Open the map to debug from the project.

2. If the map has not been compiled since the last modification, compile it by

selecting Compile from the File menu. For more information, see “Compiling a

map” on page 82.

3. If the Test tab of Map Designer Express is not currently displaying in the tab

window, select the Test tab.

Creating test data

Every time you test a map, you must load data into the source business object. To

do this, use the Source Testing Data pane in the Test tab (see Figure 42). The Source

Testing Data pane allows you to specify the following test information:

v The calling context—indicates the map execution context for the map run.

v The generic business object—provides test data for the generic business object

when testing the SERVICE_CALL_RESPONSE calling context for an identity

relationship.

v The test data—data for the attributes of the source business object.

Important: The calling context and generic business object are required only for

testing relationships within maps. For more information, see “Testing

maps that contain relationships” on page 93.

Testing the map for the first time

When you test the map for the first time, you must manually enter the values of

the attributes in the Source Testing Data pane.

The following sections provide information about how to enter this data:

v “Guidelines for creating test data for the source business object” on page 86

v “Steps for creating test data for a child business object” on page 87

Guidelines for creating test data for the source business object: To create source

business object data for the first time, follow these rules:

v To set the verb, select it from the verb combo box in the verb row.

v To assign a value to a source attribute, type it into the attribute’s Value column.

You do not have to provide values for all attributes.

v To assign a value to a relationship attribute, specify the appropriate value in the

Value column and make sure you also specify the correct calling context. For

more information, see “Testing maps that contain relationships” on page 93.

v To assign values to a child business object, right-click the child object and select

Add Instance from the Context menu. For more information, see “Steps for

creating test data for a child business object” on page 87.

v To assign default values to the source attributes attribute, select the source

business object and select Reset from the Context menu.

v If you are testing relationships, make sure to set the ObjectEventIds of the

source parent object and all child objects that participate in the relationships.

86 Map Development Guide

v To save the values you have entered for future test runs, create a business object

(.bo) file by selecting the source business object and performing either of the

following actions:

– Click the Save To button in the Source Testing Data pane.

– Select Save To from the Context menu. When prompted, enter a file name

where these values will be stored.

Result: The next time you test this map, you can click the Load From button

and the attributes will be filled in automatically from the business object file.

Steps for creating test data for a child business object: If the source business

object has child business objects and you want to specify test data for the child

attributes, you must first create an instance for each child object you need. To do

this, perform the following steps:

1. Right-click the child business object name and select Add Instance from the

Context menu. When you expand the object, you see the instance that Map

Designer Express has created.

Guideline: The first instance you add has an index number of zero. You can

have as many instances as you want (as long as the child attribute has

multiple-cardinality).

2. Click the plus symbol (+) beside the instance index number to expand the child

business object.

Result: When you expand the object, you see the child attributes for this

instance.

3. To create data for the child business object instance, follow these guidelines:

v To set the verb for the child business object, select it from the verb combo

box in the verb row.

v To specify a value for a child attribute, select it and enter the value in the

Value column.

Figure 42. Source Testing Data pane of the Test tab

Chapter 4. Compiling and testing maps 87

v If the name of the attribute is followed by (N), the attribute contains a

multiple-cardinality child business object and you can add more instances.

To add a child business object to the end of the array, right-click the last

index and select Add Instance from the Context menu.

v Modify the values of as many instances as you want. Add and remove

instances as follows:

– To add an instance, right-click the child instance name and select Add

Instance.

– To delete an instance, right-click the instance name of the child instance

you want to delete and select Remove Instance.

– To delete all instances, right-click the child instance name and select

Remove All Instances. This option is only enabled if the child business

object has multiple-cardinality.

Testing the map in subsequent runs

For subsequent test runs, Map Designer Express reuses the previously specified

test data. You can perform any of the following actions on this data:

v Leave all test data as it is.

v Modify values for any individual attributes by changing the appropriate entries

of the Values column.

Tip: If you modify the data, remember to resave any business object (.bo) file.

v Load a set of values from a business object (.bo) file.

To load attribute values from a business object file, select the source business

object and perform either of the following actions:

– Click the Load From button in the Source Testing Data pane.

– Select Load From from the Context menu.

When prompted, enter the name of the business object file to be loaded.

v Return all source destination values to their defined default values by selecting

the source business object and selecting the Reset option from the Context menu.

Setting breakpoints

When you set a breakpoint, map execution pauses just before the transformation of

the destination attribute on which the breakpoint is set. The use of breakpoints lets

you step through map execution and check the sequence and the results of

individual operations. You can set as many breakpoints as you like.

Guideline: Breakpoints are not part of the map’s definition. You set breakpoints on

the map after the map is opened in Map Designer Express, and when the map is

debugged (either with Debug > Run Test or Debug > Advanced > Attach).

Breakpoints have no effect on the map when the map is not debugged from Map

Designer Express.

Note: You can only set a breakpoint on a destination attribute that has a

transformation defined for it.

Steps for setting breakpoints

Perform the following steps to set a breakpoint.

1. Use one of the following methods:

v Right-click a destination attribute in the Destination Testing Data pane and

select Set Breakpoint from the Context menu. If the destination source

attribute is not yet expanded, you can expand it with either of the following

commands:

88 Map Development Guide

– Click the plus symbol (+) next to the destination business object.

– Select the destination business object and select Expand from the Context

menu.

Note: The Context menu of the destination business object also provides a

Collapse option.
v Select Toggle Breakpoint from the Debug menu.

v Use the keyboard shortcut of F9.

v In the Designer toolbar, click the Toggle Breakpoint button.

Note: The Toggle Breakpoint option toggles a breakpoint definition on and off.

If the breakpoint is not currently set, Toggle Breakpoint sets it. If the

breakpoint is currently set, Toggle Breakpoint removes it.

Result: Map Designer Express displays a dark circle next to the destination

attribute on which the breakpoint is set, as shown in Figure 43.

Once you set the breakpoint, the execution of the map instance pauses at this

breakpoint and you can see the current status of the map. Unless you specify at

least one breakpoint, the map executes and finishes with the message:

Test run finished

Rule: You must always provide values for the source data associated with the

destination attributes where you set the breakpoints. Otherwise, the

transformation rule will run normally and the breakpoints will execute

normally, but the destination value will usually be empty, depending on what

transformation rule is defined. For more information, see “Creating test data”

on page 86.

To view all breakpoints for the map, select Breakpoints from the Debug menu.

Result: Map Designer Express displays the Breakpoints dialog (see Figure 44).

Figure 43. Breakpoint set

Chapter 4. Compiling and testing maps 89

2. From the Breakpoints dialog, you can perform any of the following actions:

v Locate a destination attribute on which a breakpoint is set—double-click the

breakpoint name.

Tip: To locate a particular breakpoint, enter its name in the Find field. The

up and down arrows scroll through the business object list. In the

Destination Testing Data pane, Map Designer Express highlights the

destination attribute.

v Remove a breakpoint—in the Breakpoints area, select the breakpoint to

remove and click the Delete button.

You can also remove a breakpoint by performing any of the following

actions:

– Right-click a destination attribute in the Destination Testing Data pane and

select Clear Breakpoint from the Context menu.

– Use any of the commands for the Toggle Breakpoint option on an existing

breakpoint. For more information, see “Setting breakpoints” on page 88.
v Clear all breakpoints that display in the Breakpoints area—click the Clear All

button.

You can also clear all breakpoints by performing any of the following actions:

– From the Debug menu, select Clear All Breakpoints.

– In the Designer toolbar, click the Clear All Breakpoints button.

Running the test map

Once you have entered the source test data and set any desired breakpoints, you

are ready to test the map. To run a map test involves:

1. “Steps for starting the test run”

2. “Steps for processing breakpoints” on page 91 (if any breakpoints have been

set)

Steps for starting the test run

To start the test run, perform the following steps:

1. Perform one of the following actions:

v From the Debug menu, select Run Test.

Figure 44. Breakpoints dialog of the test tab

90 Map Development Guide

v In the Designer toolbar, click the Run Test button.

Result: The Connect to InterChange Server Express dialog box will display and

allow you to connect to the server for testing.

2. In the dialog, enter the server name, user name, and password.

3. Specify whether you want to deploy the map and dependent business objects

for the test run.

Guideline: Deploying a minimum set of business objects to the server for

testing will minimize debugging initialization time.

Result: Execution of the map starts. Map Designer Express displays the following

message in the output window:

Starting test run...

Steps for processing breakpoints

Map execution pauses when it reaches a destination attribute where you have set a

breakpoint. When the breakpoint is reached, Map Designer Express takes the

following actions:

1. Highlights the destination attribute on which the breakpoint was set and

displays a dark circle with a yellow arrow next to it.

2. Displays the following message in the output window:

Test Run stopped at attribute AttrName (next transformation > "Rule").

Tip: With map execution paused, you can examine the values of the destination

attributes that have been processed so far by looking in the Value column of

the Destination Testing Data pane.

3. Processes the breakpoint and continues map execution, when you do either of

the following actions:

v Proceed to the next breakpoint or the end of the map, whichever comes first.

To continue map execution, perform one of the following actions:

– From the Debug menu, select Continue.

– Use the keyboard shortcut of F8.

– In the Designer toolbar, click the Continue button.
v Execute this destination attribute, then stop before executing the next

attribute.

To continue map execution for only one more step, perform one of the

following actions:

– From the Debug menu, select Step Over.

Tip: Select this option to watch the code execute attribute by attribute.

– Use the keyboard shortcut of F10.

– In the Designer toolbar, click the Step Over button.

Result: When the execution of the test run is finished without any run-time

errors, Map Designer Express displays the following message in the output

window:

Test run finished.

Viewing test run results

Test run results display in the destination business object, which is in the

Destination Testing Data pane. Values resulting from the map transformations are

visible in the Values column of this table. You can view test run results by either:

v “Watching the process” on page 92

v “Viewing results after execution” on page 92

Chapter 4. Compiling and testing maps 91

Watching the process

During a test run that has test data and breakpoints, you can watch as the

destination business object fills with values. Values appear in the Values column in

the Destination Testing Data pane as they are processed. When map execution is

paused on a breakpoint, all destination attributes before that attribute in the

execution order have values displayed.

To view the transformations as they occur:

v Set a breakpoint on the second destination attribute and step through map

execution with the Step Over option. The map will be read-only.

Viewing results after execution

To view test run results when the map has already executed, examine the

destination business object in the Destination Testing Data pane.

To save the test results:

v Highlight the destination business object and select Save To from the Context

menu.

Result: Map Designer Express saves the values of the destination attributes in a

business object (.bo) file.

Steps for changing the map and re-executing

As you test the map, you might discover the need to change the map. To edit the

map and then continue the test, perform the following steps:

1. Switch to either the Table or Diagram tab to view the map transformations.

2. Make the edits to fix the errors.

3. Recompile the map.

4. Continue the testing process by switching back to the Test tab.

5. Begin a new test run.

Important:

1. Make sure you complete the test run, either with success or failure, before you

attempt to recompile the map.

2. After you modify the map, be sure to deploy the map to the server for the

change to be reflected in the server.

Doing advanced debugging

Besides debugging maps that are stored in local projects, you can also directly

debug a map that resides in the server. Perform the following steps to do this:

1. Select Debug > Advanced > Attach.

Result: The Connect to InterChange Server Express dialog displays.

2. Enter the Server name, User name, and Password; and click Connect.

Result: Map Designer Express displays a list of new maps on that server.

3. Select the map you want to attach to.

Result: The map opens in Map Designer Express in Read-only mode.

4. Set breakpoints in the map to have the server pause map execution at a certain

transformation rule.

Result: When a breakpoint is hit on the server, you can step over or continue

map execution, as usual. The resulting business object values will display in the

Destination Test Data pane.

92 Map Development Guide

5. Stop the debugging session at any time using Debug > Advanced > Detach.

Result: Map Designer Express will close the map.

Testing maps that contain relationships

When you test a map that contains a relationship transformation, you need to

provide the following information in addition to the test data:

v The calling context

Part of a map’s execution context includes a calling context. Many of the

relationship methods in the Mapping API use this calling context to determine

what action to take during the mapping. For this reason, if you are testing a

relationship attribute in a map, you usually must specify the appropriate calling

context for the transformation.

v The generic business object definition

When you test the SERVICE_CALL_RESPONSE calling context for an identity

relationship, you need to specify the maps generic business object so that the

test run can locate the generic key value in the relationship.

Note: For more information on calling maps within a collaboration, see the

Collaboration Development Guide.

You specify this information in the Source Testing Data pane of the Test tab.

Tip: If the width of the Source Testing Data pane is not enough to let you see the

complete menu options of the Calling Context combo box, you can expand the size

of this area by putting the cursor over the right-hand boundary until you see the

following symbol <-||-> and drag the boundary to the right.

If you are testing Relationships, select the appropriate generic object from the list

of business objects, select Calling Context, and set the ObjectEventIds for the

parent and child objects that match the ones you already set in the Test Data

screen. The calling context you need to provide and whether you need to specify a

generic business object depend on the type of relationship you are testing. This

section provides information on the following:

v “Testing an identity relationship”

v “Testing a lookup relationship” on page 96

Testing an identity relationship

To test point-to-point mapping (from Application 1 to Application 2) for an identity

relationship you use three maps:

v An inbound map from Application 1’s application-specific business object to a

generic business object—App1_to_Generic

v An outbound map from the generic business object to Application 2’s

application-specific business object—Generic_to_App2

v An inbound map from Application 2’s application-specific business object to the

generic business object—App2_to_Generic

Example: Figure 45 shows an example of a point-to-point communication of

customer data between a Clarify application and an SAP application. If each

application uses a unique key value to identify customers, these three business

objects can be related with an identity relationship. Therefore, each map includes a

Chapter 4. Compiling and testing maps 93

cross-reference transformation rule. As each of these maps executes, these

relationship methods access the calling context to determine the actions to take.

To test the Create verb, you need to verify that a new application-specific key

value in Application 1 (Clarify application in Figure 45) causes a new generic key

value to be added for the generic business object and a new application-specific

key value in Application 2 (SAP application in Figure 45). Therefore, testing

involves three steps:

1. Testing the inbound map, App1_to_Generic, to send in a new key value from

Application 1 and ensuring that a new key value is generated for the generic

business object. Follow the steps in Table 21.

 Table 21. Testing the App1-to-Generic map for an identity relationship

To set up test run To verify test run

1. Set the calling context to EVENT_DELIVERY

or ACCESS_REQUEST by selecting the

appropriate calling context from the

Calling Context combo box.

2. Enter the application-specific value in the

key of the source business object. This

value is unique for the key attribute(s) in

Application 1.

3. Run the test.

4. Read the resulting generic key value in the

destination business object, which has been

added to the relationship table for the

App1/Generic identity relationship.

5. Save the destination business object data in

a .bo file (e.g. App1_to_Generic.bo) by

selecting the destination business object and

selecting Save To from the Context menu.

2. Testing the outbound map, Generic_to_App2, to ensure that the new generic

key value is sent to Application 2.

SAP_Customer
to

Generic

Inbound Map

SERVICE_CALL_RESPONSE

Clarify_Site SAP_Customer

Inbound Map Outbound Map

Customer

Application-Specific
Business Object

Application-Specific
Business Object

EVENT_DELIVERY
or

ACCESS_REQUEST SERVICE_CALL_REQUEST

Generic
Business
Object

Clarify_Site
to

Customer

Customer
to

SAP_Customer

Figure 45. Maps involved in point-to-point testing of an identity relationship

94 Map Development Guide

To test an identify relationship in the outbound Generic_to_App2 map, you

must provide the generic key value in your source Test Data. You might want

to do either of the following, but they are both wrong:

v Put an arbitrary number into the generic business object’s primary key

attribute, then run the map.

v Create the record directly in the relationship table.

In both cases, Map Designer Express generates the

RelationshipRuntimeException or NullPointerException. The error occurs

because the generic key value has to be in the system for the

SERVICE_CALL_REQUEST to work properly, and the relationship table is not the

only place the generic key value is stored.

The correct solution is to first run an inbound EVENT_DELIVERY (or

ACCESS_REQUEST) map that uses the same identity relationship (as described in

step 1). Follow the steps in Table 22 to test the outbound Generic_to_App2 map.

 Table 22. Testing the generic-to-app2 map for an identity relationship

To set up test run To verify test run

1. Set the calling context to

SERVICE_CALL_REQUEST by selecting this

calling context from the Calling Context

combo box.

2. Load the generic business object with the

test results from the previous step (e.g.

App1_to_Generic.bo).

3. Run the test.

4. Read the resulting application-specific key

value in the destination business object,

which is empty because Application 2 has

not generated its key value yet.

5. Save the destination business object data in

a .bo file (e.g. Generic_to_App2.bo) by

selecting the destination business object and

selecting Save To from the Context menu.

3. Testing the inbound map, app2_to_generic, to verify that the new key value

from Application 2 is associated with the new generic key value.

When the calling context is SERVICE_CALL_RESPONSE, an identity relationship

must cross-reference the ID in the application-specific business object to the ID

in the generic business object. Therefore, for this test, you must specify the

generic business object definition. Follow the steps in Table 23.

Chapter 4. Compiling and testing maps 95

Table 23. Testing the App2_to_Generic map for an identity relationship

To set up test run To verify test run

1. Set the calling context to

SERVICE_CALL_RESPONSE by selecting this

calling context from the Calling Context

combo box.

2. Set the generic business object by

selecting the name of the appropriate

generic business object from the Generic

Business Object combo box. Map

Designer Express adds the specified

generic business object to the Source

Testing Data pane.

3. Load the application-specific business

object with the test results from the

previous step (e.g. Generic_to_App2.bo).

4. In the application-specific business object,

enter an application-specific value in the

key of the business object.

5. In the generic business object, enter the

generic key value associated with the

Application 1 key. This value should be

the same key value generated for the

generic business object in the

EVENT_DELIVERY/ACCESS_REQUEST test (step

1).

6. Run the test.

7. Read the resulting generic key value in the

destination business object, which should be

the same value you entered in the generic

source business object.

8. You can use Relationship Manager to

verify that the correct application-specific key

values are associated with this generic key

value for this identity relationship.

Testing for other verbs involves similar steps. For more detailed information on the

actions of relationship methods for an identity relationship, see Chapter 8,

“Implementing relationships,” on page 257.

Testing a lookup relationship

To test point-to-point mapping (from Application 1 to Application 2) for a lookup

relationship you use two maps:

v From Application 1’s application-specific business object to a generic business

object—App1_to_Generic

v From the generic business object to Application 2’s application-specific business

object—Generic_to_App2

Example: Figure 46 shows an example of a point-to-point communication of

customer data between a Clarify application and an SAP application. If each

application uses a special static code to identify geographic states, these three

business objects can be related with a lookup relationship. Therefore, each map

includes Custom transformations that do static lookups. For more information, see

the ″Static Lookup″ activity example in “Example 3: Using Static Lookup for

conversion” on page 154. As each of these maps executes, these relationship

methods access the calling context to determine the actions to take.

96 Map Development Guide

To test the Create verb, you need to verify that an existing application-specific

lookup value in Application 1 (Clarify application in Figure 46) causes the

associated generic lookup value to be added to the generic business object and the

associated application-specific lookup value in Application 2 (SAP application in

Figure 46) to be added to its business object. Therefore, testing involves two steps:

1. Testing the inbound map, App1_to_Generic, to send in an existing lookup value

from Application1 and ensuring that the associated generic lookup value is

obtained for the generic business object. Follow the steps in Table 24.

 Table 24. Testing the App1-to-Generic map for a lookup relationship

To set up test run To verify test run

1. Set the calling context to EVENT_DELIVERY

or ACCESS_REQUEST by selecting the

appropriate calling context from the

Calling Context combo box.

2. Enter the application-specific value in the

lookup field of the source business object.

This value is an existing lookup value

whose data is already loaded in the

App1/Generic relationship table.

3. Run the test.

4. Read the resulting generic lookup value in

the destination business object, which has

been obtained to the relationship table for the

App1/Generic lookup relationship.

5. Save the business object data in a .bo file

(e.g. App1_to_Generic.bo) by highlighting the

destination business object and selecting Save

To from the Context menu.

2. Testing the outbound map, Generic_to_App2, to send in the generic lookup

value and ensuring that the associated lookup value is obtained for Application

2. Follow the steps in Table 25.

 Table 25. Testing the Generic-to-App2 Map for a lookup relationship

To set up test run To verify test run

1. Set the calling context to

SERVICE_CALL_REQUEST by selecting this

calling context from the Calling Context

combo box.

2. Load the generic business object with the

test results from the previous step (e.g.

App1_to_Generic.bo).

3. Run the test.

4. Read the resulting application-specific key

value in the destination business object,

which contains the Application 2 lookup

value.

5. Save the business object data in a .bo file

(e.g. Generic_to_App2.bo) by highlighting the

destination business object and selecting Save

To from the Context menu.

Clarify_Site SAP_Customer

Inbound Map Outbound Map

Customer

Application-Specific
Business Object

Application-Specific
Business Object

EVENT_DELIVERY
or

ACCESS_REQUEST SERVICE_CALL_REQUEST

Generic
Business Object

Clarify_Site
to

Customer

Customer
to

SAP_Customer

Figure 46. Maps involved in point-to-point testing of a lookup relationship

Chapter 4. Compiling and testing maps 97

Note: A lookup relationship can be tested for the SERVICE_CALL_RESPONSE calling

context. However, this case usually only is required if the map is doing

something else that requires the lookup data. The relationship methods for a

lookup relationship in the Mapping API never write data to a relationship

table.

Debugging maps

This section provides the following information about debugging a map:

v “Resolving run-time errors”

v “Debugging tips” on page 99

For information on how to test relationships, see “Testing maps that contain

relationships” on page 93.

Resolving run-time errors

Even if your map compiled successfully, you can get a run-time error during the

map execution in the Debugger.

Important: When resolving run-time errors, make sure that there are no pending or

failed events related to the dependent business object before starting the map

debugger.

Example 1: You have an outbound map with the generic business object on one

side and an application specific business object on the other side. Let us assume

that this map has an identity relationship in it.

1. Go to the Test tab and select the calling context SERVICE_CALL_REQUEST.

2. Select the verb ″Update.″

3. Run the test.

Result: An error message like the one below displays:

Exception at step 17,

attribute <attribute name>,

java.lang.nullpointerexception

This exception is happening because the map is trying to update an entry in the

repository that is not created in the first place. Ideally, you should ensure that the

sequence of steps is correct. You should look at the database for relationship

entries pertaining to the map in question. You should then draw the conclusions

based on whether it is ready for SERVICE_CALL_REQUEST or not.

Example 2: You have the following line of the mapping code for

Customer.CustomerId:

_cw_CpBTBSourceValue = ObjSAP_CustomerMaster.get("CustomerIdd");

Clearly, it contains a typo (an extra letter d in the name of the attribute).

Unfortunately, the compiler does not catch this error because the error is in a string

constant. There is no way for the compiler to verify what a “correct” constant

value should be. However, when you run the map, the following InterChange

Server Express error dialog displays:

ICS Error: Exception at step 3, attribute CustomerId, Exception msg

number - 11030, Error11030 Attribute CustomerIdd doesn’t exist in business

object SAP_CustomerMaster.

When you get this run-time error, leave the Test tab and fix the map.

98 Map Development Guide

Debugging tips

This section provides the following tips for making the debugging of a map easier:

v “Using logging messages”

v “Writing safe mapping code”

Important: When debugging a map, make sure that there are no pending or failed

events related to the dependent business object before starting the map debugger.

Using logging messages

Use the logInfo() method for tracking the map execution. It takes a String as an

argument, which is sent on the InterChange Server Express log. You need to type it

in Activity Editor for the attribute whose execution needs to be tracked. To make

sure that the submap is executed, create a custom transformation rule and use the

″Log Information″ function block to customize the activity or write the code

directly.

Example: The code can be as simple as the following:

logInfo("in submap");

Put it on the first line of code of the destination object’s first attribute in the

submap.

Example: If you need to track the value of the specific attribute SAP.CustomerName,

use:

logInfo(ObjSAP_CustomerMaster.getString("CustomerName"));

You might not always want to see this message. If this is the case, change the

DataValidationLevel property of the map.

To set the DataValidationLevel, select the Map Properties option from the Edit

menu of Map Designer Express and change 0 to 1 or a greater number. The

settings are as follows:

 0 No data validation

1 IBM data validation level

2 or greater User-defined data validation

To ensure that the logInfo message is not displayed, set DataValidationLevel to 1.

In your code, before calling the logInfo() method, check for a data validation

level. Here is the code:

if (dataValidationLevel > 1)

 logInfo(ObjSAP_CustomerMaster.getString("CustomerName"));

This ensures that logInfo is executed only if the data validation level is set to a

number greater than 1. If you decide to display the message, change the data

validation level setting in the Map Properties to 2.

Writing safe mapping code

If you customize your transformation rule in Activity Editor or write your own

mapping code, you are not guaranteed that it will work properly during run time.

To make sure that the map continues executing when an error occurs and you get

a notification of an error, use the ″Catch Error″ function block in Activity Editor or

follow Java’s way of handling exceptions.

Chapter 4. Compiling and testing maps 99

Example: Put your code inside the try block, for example:

try

 {

 BusObj temp = new BusObj("SAP_Order");

// rest of your code

 }

Then use a catch block to catch whatever exceptions might occur when the code

runs:

catch (Exception e)

 {

 logInfo(e.toString());

 }

The logInfo() method can be used to send system-generated error messages to the

InterChange Server Express log.

100 Map Development Guide

Chapter 5. Customizing a map

This chapter provides describes two ways to generate Java code: using Activity

Editor to define transformation rules graphically and writing Java code directly.

This chapter covers the following topics:

v “Overview of Activity Editor” on page 101

v “Working with activity definitions” on page 110

v “Exporting Web services into Activity Editor” on page 157

v “Using bidirectional functionality in Activity Editor” on page 161

v “Importing Java packages and other custom code” on page 163

v “Using variables” on page 168

v “More attribute transformation methods” on page 172

v “Reusing map instances” on page 184

v “Handling exceptions” on page 185

v “Creating custom data validation levels” on page 187

v “Understanding map execution contexts” on page 189

v “Mapping child business objects” on page 192

v “More on using submaps” on page 197

v “Executing database queries” on page 202

Overview of Activity Editor

Using Activity Editor, you can specify the flow of activities for a specific

transformation rule graphically, without knowing programming or Java code. For

each transformation rule in Map Designer Express, you can display one activity

and its subactivities. You can view the associated attribute’s transformation code

graphically, modify it, and have the tool generate the corresponding Java code.

You launch Activity Editor directly from Map Designer Express (see “Starting

Activity Editor” on page 101). At startup, Activity Editor communicates with

System Manager to discover the set of activities allowed. After you have finished

designing the activity for a particular transformation rule, you save the changes in

Activity Editor, and they are communicated to Map Designer Express.

This section covers the following topics to introduce you to Activity Editor:

v “Starting Activity Editor” on page 101

v “Layout of Activity Editor” on page 102

v “Using Activity Editor functionality” on page 106

Starting Activity Editor

You launch Activity Editor through the transformation rule column of the Table or

Diagram tabs of Map Designer Express. Perform the following steps to do this:

1. Select the attribute you want to work with.

2. Do one of the following:

v Double-click the attribute’s corresponding cell of the transformation rule

column.

© Copyright IBM Corp. 2004, 2005 101

v Click the bitmap icon in the corresponding cell of the transformation rule

column.

Result: Map Designer Express responds to these actions depending on the

following:

v Whether the code is still in auto-upgrade mode

Transformation code is in auto-upgrade mode if Map Designer Express has

generated it, and you have not customized it in any way. When you customize

auto-upgrade code, Activity Editor displays a confirmation prompt notifying you

that saving this code takes it out of auto-update mode. For code not in

auto-update mode, Map Designer Express displays the transformation rule in

blue italic font in the transformation rule column.

If the transformation code is not in auto-update mode (that is, you have

modified the autogenerated code), Map Designer Express opens Activity Editor

in Java view when you double-click the attribute’s transformation rule cell or

click the mapping rule icon.

v The type of transformation defined

Transformation code that is in auto-update mode is generated from one of the

standard transformations that Map Designer Express provides on the combo box

of the transformation rule column. When you double-click the attribute’s

transformation rule cell or click the mapping rule icon, the type of

transformation determines what Map Designer Express displays:

– For the Custom transformation, Map Designer Express opens Activity Editor

on the transformation code.

– For all other standard transformations (Set Value, Join, Split, Submap, and

Cross-Reference), Map Designer Express displays the transformation’s dialog.

Click the View Code push-button on this dialog to open Activity Editor in a

new window with the attribute name in the title bar. You can open multiple

instances of Activity Editor at the same time.

Layout of Activity Editor

Activity Editor has two main views: Graphical view and Java view. Depending on

the nature of the activity, at any given time, only one view is visible. Thus, if Map

Designer Express invokes Activity Editor to display a graphical activity, Activity

Editor will startup with the Graphical view. If you choose to translate this

graphical activity into Java code, the Java view will display in place of the

Graphical view.

Restriction: Once the activity has changed to Java code, it will not be converted

back to the graphical nature.

Both views have common Window elements in their Design and Quick view

modes, as described in Table 26.

 Table 26. Common Window elements

Window element Description

Title Bar Contains the name of the application

(Activity Editor), application icon, and the

main activity’s name.

Menu Contains the primary menus (Design mode

only).

102 Map Development Guide

Table 26. Common Window elements (continued)

Window element Description

Toolbar Contains dockable toolbars with shortcuts to

various functions and tools (Design mode

only).

Document Display Area Displays the representation of the activity

definition. It is organized with a workbook

look.

Status Bar Displays status information and some handy

shortcuts.

Working in Graphical view

If Map Designer Express opens Activity Editor with an activity definition that has

a graphical nature, Activity Editor will display the activity definition in Graphical

view in one of two available display modes: Design mode or Quick view mode.

v Design mode: In Design mode, Activity Editor resembles a regular

application--in addition to the main editing window, it has a menu bar, toolbars,

and the Library, Content, and Properties windows that support your editing

needs during the design stage of the activity definition.

Figure 47 shows the Graphical view in Design mode.

The Graphical view has four main windows: the Activity Workbook window, the

Library window, the Content window, and the Properties window.

– Activity Workbook window--This window is the main activity editing area,

and is usually referred to as the editing canvas. It is also known as the

activity canvas or graphical canvas. This area is where you drag and drop the

function blocks.

– Library window--This window contains a tree view of the available function

blocks, and optionally, the named groups. The function blocks are arranged in

folders according to their purpose (see “Identifying supported function

Figure 47. Graphical view in Design mode

Chapter 5. Customizing a map 103

blocks” on page 114), and you can expand them to show the actual function

blocks. You can also view the function blocks as icons in the Content window.

In addition, the Library window contains the following folders:

- System--This folder contains system elements that can be added to the

editing canvas. System elements include comments, descriptions, labels,

to-do tags, and constants.

- My Library--This folder enables you to customize the Library window. It

contains any user-defined function blocks that have been specified in the

Activity Settings view in System Manager. This folder also contains any

Web services function blocks that have been exported from System

Manager.

- My Collection--This folder enables you to create a collection of the

components you use most often. You can place regular function blocks in

this folder, or you can create your own reusable component group. For

more information, see “Steps for defining activity group blocks” on page

113.

- Variables--this folder contains global variables accessible to the current

activity. It typically contains the port’s business object variables, all of the

other business objects and variables defined in the activity, and the global

variable cwExecCtx.
– Content window--This window contains a large icon list of the available

function blocks under the currently selected folder in the Library window.

You can select a function block to view its description and properties in the

Properties window, or drag-and-drop a function block onto the editing canvas

to create part of the activity flow.

– Properties window--This window displays the properties of the currently

selected function block in a gridlike layout. Some properties are editable;

others are read-only.
v Quick view mode: In Quick view mode, Activity Editor only displays the main

editing canvas; all other supporting windows (Library, Content, and Properties);

the menu bar; and the toolbars are hidden.

Figure 48 shows the Graphical view in Quick view mode.

Initially, when an activity definition that has a graphical nature opens, Activity

Editor displays the top-level view of the definition in a tabbed window. Inside the

Figure 48. Graphical view in Quick view mode

104 Map Development Guide

tab window is the editing canvas. For information on working with activity

definitions on the editing canvas, see “Working with activity definitions” on page

110.

Working in Java view

If Map Designer Express opens Activity Editor with an activity definition that

contains only custom Java code, Activity Editor displays the activity definition in

Java view. Similar to Graphical view, Activity Editor is available in Java view in

two display modes: Design mode and Quick view mode.

v Design mode: In Design mode, the Java view of Activity Editor contains the

main Java WordPad for viewing and editing custom Java code to provide the

definition for the activity. The WordPad is contained in a tabbed window area.

In addition to the regular editing options in a WordPad (Cut, Copy, Paste,

Delete, Select All, Undo, Redo), the Java WordPad provides syntax highlighting

for the Java Programming language.

By default, comments are green, string literals are pink, and keywords are blue.

Tip: You can customize the syntax highlighting schemes in the Preferences

dialog.

Figure 49 shows the Java view in Design mode.

v Quick view mode: In Quick view mode, the Java view only displays the

WordPad. Figure 50 shows the Java view in Quick view mode.

Figure 49. Java view in Design mode

Chapter 5. Customizing a map 105

Tip: To change from Quick view mode to Design mode, click the >> button on the

status bar. If you do not see the >> button, resize the Quick view window

horizontally until the button appears.

Note: Initially, the Java view will be in read-only mode. To enter customized Java

code, click the Edit Code toolbar button, or select Edit Code from the Tools

menu.

Using Activity Editor functionality

You can access Activity Editor’s functionality using any of the following:

v Pull-down menus

v Context menu

v Toolbar buttons

v Keyboard shortcuts

Activity Editor pull-down menus and keyboard shortcuts

Activity Editor provides the following pull-down menus:

v File menu

v Edit menu

v View menu

v Tools menu

v Help menu

The following sections describe the options of each of these menus and their

associated keyboard shortcuts.

Functions of the File menu: The File pull-down menu of Activity Editor provides

the following options:

v Save [Ctrl+S]--Saves the activity to Map Designer Express.

v Print Setup [Ctrl+Shift+P]--Opens the Print Setup dialog box for specifying print

options.

v Print Preview--Switches Activity Editor to print preview mode.

v Print [Ctrl+P]--Opens the Print dialog box for printing the current activity.

v Close --Closes Activity Editor.

Figure 50. Java view in Quick view mode

106 Map Development Guide

Functions of the Edit menu: The Edit pull-down menu of Activity Editor provides

the following options:

v Undo [Ctrl+A]--Clears the last change you made and restores the previous

version.

v Redo [Ctrl+Y]--Restores a change that was previously removed with the Undo

command.

v Cut [Ctrl+X]--Deletes the selected item and copies it to the clipboard.

v Copy [Ctrl+C]--Copies the selected item to the clipboard.

v Paste [Ctrl+P]--Pastes the object in the clipboard to the cursor position if they are

compatible.

v Delete [Del]--Deletes the selected item.

v Select All [Ctrl+A]--Selects all items.

v Find [Crtl+F]--Finds the specific text in the editing area.

v Replace [Ctrl+H]--Replaces specific text with different text in the editing area.

v Goto Line [Ctrl+G]--Moves the cursor to a specific line.

Functions of the View menu: The View pull-down menu of Activity Editor

provides the following options:

v Design mode--Toggles between Design mode and Quick view mode. (Only one

mode is enabled at a single time.)

v Quick view mode--Toggles between Quick view mode and Design mode. (Only

one mode is enabled at a single time.)

v Go To--Provides the following options:

– Back [Alt+Left Arrow]--Moves backward in the navigation history in the

Graphical view.

– Forward [Alt+Right Arrow]--Moves forward in the navigation history in the

Graphical view.

– Up One Level--Displays the diagram from one higher level.

– Home [Alt+Home]--Goes to the top-level diagram in Graphical view.
v Zoom In [Ctrl++]--Magnifies content in Activity Editor.

v Zoom Out [Ctrl+-]--Minimizes content in Activity Editor.

v Zoom To [Crtl+M]--Opens the Zoom dialog box for specifying a particular zoom

level.

v Library window--Toggles the Library window on and off.

v Content window--Toggles the Content window on and off.

v Properties window--Toggles the Properties window on and off.

v Toolbars--Opens a submenu for displaying toolbars (Standard, Graphics, and

Java) that toggle on and off.

v Status Bar--Toggles the status bar on and off.

v Preferences... {Ctrl+U]--Opens the Preferences dialog box for specifying the

default behavior of Activity Editor.

Functions of the Tools menu: The Tools pull-down menu of Activity Editor

provides the following option:

v Translate [Ctrl+T]--Translates the current activity to Java code and opens the

Java view.

v Edit Code--Allows you to edit code in Java.

v Check for Unmatched Delimiters--Checks for unmatched delimiters in the Java

code.

Chapter 5. Customizing a map 107

v Expression Builder--Opens the Expression Builder utility.

Functions of the Help menu: The Help pull-down menu of Activity Editor

provides the following options:

v Help Topics [F1]--Opens the context-sensitive Help topics

v Documentation--Opens the InterChange Server Express documentation.

Context menu

Activity also provides a context menu for performing many tasks on the editing

canvas. You access the Context menu by right-clicking the editing canvas. The

Context menu provides the following options:

v New Constant--Creates a new Constant container on the editing canvas.

v Add Label--Creates a new label component on the editing canvas.

v Add Description--Creates a new description component on the editing canvas.

v Add Comment--Creates a new comment component on the editing canvas.

v Add To do--Creates a new reminder component in the activity.

v Add To My Collection--Creates a new group component for reuse in the Library

window.

Activity Editor toolbars

Activity Editor provides three toolbars for common tasks you need to perform.

v Standard toolbar

v Graphics toolbar

v Java toolbar

The functions of the toolbar buttons are the same as their corresponding menu

items.

Tip: To identify the function of each toolbar button, roll over each button with

your mouse cursor.

Standard toolbar: Figure 51 shows the Standard toolbar.

Table 27 provides the function of each Standard toolbar button (left to right) and

the corresponding menu command.

 Table 27. Functions of Standard toolbar buttons

Function Corresponding menu command

Save Activity File > Save

Print Activity File > Print

Cut Edit > Cut

Copy Edit > Copy

Paste Edit > Paste

Delete Edit > Delete

Help Help > Help Topics

Graphics toolbar: Figure 52 shows the Graphics toolbar.

Figure 51. Activity Editor Standard toolbar

108 Map Development Guide

Table 28 provides the function of each Graphics toolbar button (left to right) and

the corresponding menu command.

 Table 28. Functions of Graphics toolbar buttons

Function Corresponding menu command

Back View > Go To > Back

Forward View > Go To > Forward

Up One Level View > Go To > Up One Level

Home View > Go To > Home

Zoom In View > Zoom In

Zoom Out View > Zoom Out

Figure 53 shows the Java toolbar.

 Table 29 provides the function of each Java toolbar button (left to right) and the

corresponding menu command.

 Table 29. Functions of Java toolbar buttons

Function Corresponding menu command

Edit Code Tools > Edit Code

Undo Edit > Undo

Redo Edit > Redo

Find Text Edit > Find

Goto Line Edit > Goto Line

Expression Builder Tools > Expression Builder

Status bar elements: Activity Editor also provides a Status bar, as shown in

Figure 54.

Table 30 describes the functionality of each Status bar element, left to right.

 Table 30. Functions of Status bar elements

Element Function

Zoom: 100% Edit box for specifying a zooming percentage

Ready Status message

10.9 Navigation pane showing the current

position of the I-bar in the Java editor

Figure 52. Activity Editor Graphics toolbar

Figure 53. Activity Editor Java toolbar

Figure 54. Activity Editor Status bar

Chapter 5. Customizing a map 109

Table 30. Functions of Status bar elements (continued)

Element Function

>> (Shown in Quick view mode)

<< (Shown in Design mode)

Toggle between Design mode and quick view

mode

Working with activity definitions

Activity Editor is used to define and modify activity definitions for transformation

rules. This is done on the editing canvas using the canvas components: function

blocks, connection links, tags, and New Constant icon.

Using function blocks

An activity definition is built with function blocks, which represent discrete parts of

the activity definition, such as a constant, a variable or a programming method.

Many of the function blocks in Activity Editor correspond to individual methods in

the Mapping API.

You place function blocks on the editing canvas by dragging and dropping them

from either the Library or Content window. Once you drop a function block on the

editing canvas, you can move it around, by clicking it to select it and dragging it

to the desired location.

Function blocks can have inputs, outputs, or both. The inputs and outputs for each

function block are predefined and accept only the specified value type. When you

drop the function block on the editing canvas, its input and output ports are

represented by arrows. These ports serve as connecting points for linking between

the function block and other components. By default, the name of each input and

output is displayed next to its connection port (you can use the View > Preferences

option to hide the names).

For a description of supported function blocks in the Map Designer Express and

Relationship Designer Express contexts, see“Identifying supported function blocks”

on page 114.

Note: In addition to the standard function blocks that Activity Editor provides,

you can export Web services from System Manager into Activity Editor. The

export process converts each method in the Web service to a function block,

which you can then use in activity definitions the same way as other

function blocks. For more information, see “Exporting Web services into

Activity Editor” on page 157.

You can also import your own Java library for use as function blocks in

Activity Editor. Importing custom Jar libraries into activity settings will

enable any public methods in the Jar library to be used as function blocks in

Activity Editor. For more information, see “Importing Java packages and

other custom code” on page 163.

Tip: Using function blocks directly in Map Designer Express

If you only want to use one standard function block in a custom transformation,

you can configure the function block in the Preferences dialog for direct use in

Map Designer Express. Then after selecting the source and destination attributes

for the Custom transformation, you can select the configured function block in the

transformation rule combo box under Custom in Map Designer Express.

110 Map Development Guide

Steps for using function blocks directly in Map Designer Express: Perform the

following steps to set up direct use of function blocks in Map Designer Express:

1. Start Map Designer Express. For information on starting Map Designer Express,

see “Starting Map Designer Express” on page 15

2. From the View menu, select Preferences, or use the keyboard shortcut of

Ctrl+U.

Result: The Preferences dialog opens.

3. In the Preferences dialog, select the Custom Mapping tab.

4. From the list of standard function blocks, select the function blocks to be used

directly in Map Designer Express.

Figure 55 shows the Custom Mapping tab with the selected function blocks.

5. Click OK.

Result: The configured function blocks will be available for direct use in the

transformation rule combo box under Custom in Map Designer Express.

Using connection links

Function blocks are connected by connection links. The connection links define the

flow of activity between the various components in the activity definition. They

connect the output port of one function block to the input port of another function

block.

Note: Outgoing ports can connect to multiple connection links, but incoming ports

can only connect to one connection link.

Figure 55. Preferences screen with Custom Mapping tab showing

Chapter 5. Customizing a map 111

Tip: When you drag-and-drop to connect function blocks together, Activity Editor

uses the option set in the Validation tab of the Preferences dialog to determine if it

needs to validate and check whether the ″from″ parameter type is the same as the

″to″ parameter type.

v By default, this preference is set to ″Warning,″ meaning that when you create a

link between two parameters that are of different types, Activity Editor will

show a message warning you that this may lead to a compile error.

v Setting the option to ″Ignore″ tells Activity Editor not to do any validation.

v Setting the option to ″Error″ tells Activity Editor not to allow you to create links

between different types.

Example: To specify that the output of function block A should go to the input of

function block B, perform the following steps:

1. Click and hold down the left mouse button on the outgoing port of function

block A.

2. While continuing to hold down the left mouse button, move the cursor onto

the incoming port of function block B.

3. Release the left mouse button.

Result: The connection link is placed between function block A’s out-port and

function block B’s in-port. Graphically, the connection link will appear as a

right-angled line between components. If function block B’s in-port is already

connected with another connection link, the newer connection link will replace the

existing connection link.

Using label, description, comment, and to-do tags

The System folder (located in the Library and Content windows) contains function

blocks for adding label, description, comment, and to-do tags to the activity

definitions. These tags help identify each activity or subactivity, or serve as a

reminder of something that needs to be done. You drag and drop these function

blocks onto the editing canvas as you would any other function block. However,

there are no input and output ports.

To edit a new tag, single click in the center of the tag. The cursor changes to an

I-beam, and you can enter your text. The tags automatically wrap lines of text that

are too long. If you want to start a new line, press enter.

To resize a tag, left-click the lower right-hand corner of the tag and hold down the

left mouse button while dragging the tag to the desired size.

Figure 56 shows resizing a label tag and entering multiple lines of text.

Label

line 1
line 2

 Restriction: Each of these editing components has a minimize size, so the

components cannot be resized to be smaller than a certain size.

Figure 56. Resizing a label and entering multiple lines of text

112 Map Development Guide

To move the tag around the canvas, click the edge of the component and

drag-and-drop it.

Using the New Constant function block

Activity Editor has a New Constant function block that you can drag and drop onto

the editing canvas to define a constant value that you set and use as input to other

function blocks. The New Constant function block is located in the System folder

in the Library window and Content window. Activity Editor displays a text edit

box on top of the function block icon for you to enter the value of the Constant. To

revise this value, double-click the Constant icon and enter the new value.

Constants contain one outgoing port.

Note: The Constant is the only activity definition component that accepts only a

single line for the value. This is because the constant is translated to a Java

code String, and the system cannot translate a multi-line constant value. If

multi-line input is required, use the ″\n″ value to separate between lines in

the Constant.

Example: The value ″line1\nline2″ will tell the system to output the text in

two lines.

Steps for defining activity group blocks

Once you have defined an activity flow with a set of function blocks on the editing

canvas, you can select and save it as a named activity group for later reuse in

another activity definition. The saved activity group is represented by an icon. The

following procedure describes the steps to take.

Before you begin: You need to enable ″Show child functions in Library window″

in the Preference dialog to display the added group.

Perform the following steps:

1. Select the activity components you want to group together on the editing

canvas. To select multiple components, hold down the Ctrl key and click each

component.

2. Right-click the editing canvas to open the Context menu. Then select Add to

My Collection. Alternatively, right-click the component and select Add to My

Collection.

Result: The Add to My Collection dialog box is displayed.

3. In the Add to My Collection dialog, type a name and a description for the

activity group block; and select an icon to represent this group. Then click OK.

Result: The activity group block is added to the My Collection folder in the

Library and Content windows. You can drag and drop the icon onto the editing

canvas for any activity definition.

Note: Any input or output parameters that are not connected when the user

group is saved will appear as the input/output of this activity group.

Example: Figure 57 on page 114 shows an activity in which the graphical

components enclosed in the box are saved as an activity group.

Chapter 5. Customizing a map 113

When this activity group is reused, it has an icon representation, as shown in

Figure 58.

Tip: Double-clicking on this group icon will show the group definition in detail.

Identifying supported function blocks

The supported function blocks, in the Map Designer Express context, are organized

into the categories shown in the following table. These categories correspond to

folders in the Library window and the Content window.

 Table 31. Organization of function blocks

Function block folder Description For more information

General/APIs/Business Object Function blocks for working

with business objects.

Table 32 on page 116

General/APIs/Business

Object/Array

Function blocks for working

with Java arrays in the BusObj

class.

Table 33 on page 119

General/APIs/Business

Object/Constants

Function blocks for working

with Java constants in the

BusObj class.

Table 34 on page 120

Figure 57. Graphical components that are saved as a single activity

Figure 58. Reused activity group represented as an icon

114 Map Development Guide

Table 31. Organization of function blocks (continued)

Function block folder Description For more information

General/APIs/Business Object

Array

Function blocks for working

with business object arrays.

Table 35 on page 120

General/APIs/Database

Connection

Function blocks for creating

and maintaining a database

connection.

Table 36 on page 121

General/APIs/Identity

Relationship

Function blocks for working

with identity relationships.

Table 37 on page 123

General/APIs/Maps Function blocks for querying

and setting run-time values

needed for map execution.

Table 38 on page 125

General/APIs\Maps/

Constants

Function block constants. Table 39 on page 125

General/APIs/Maps/

Exception

Function blocks for creating

new exception objects in a

map.

Table 40 on page 126

General/APIs/Participant Function blocks for setting and

retrieving values for

participants in identity

relationships.

Table 41 on page 127

General/APIs/Participant/

Array

Function blocks for creating

and working with participant

arrays.

Table 42 on page 129

General/APIs/Participant/

Constants

Function block constants for

use with participants.

Table 43 on page 129

General/APIs/Relationship Function blocks for

manipulating run-time

instances of relationships.

Table 44 on page 129

General/Date Function blocks for working

with dates.

Table 45 on page 131

General/Date/Formats Function blocks for specifying

different date formats.

Table 46 on page 133

General/Logging and Tracing Function blocks for handling

log and trace messages.

Table 47 on page 133

General/Logging and

Tracing/Log Error

Function blocks for formatting

error messages.

Table 48 on page 134

General/Logging and

Tracing/Log Information

Function blocks for formatting

informational messages.

Table 49 on page 134

General/Logging and

Tracing/Log Warning

Function blocks for formatting

warning messages.

Table 50 on page 135

General/Logging and

Tracing/Trace

Function blocks for formatting

trace messages.

Table 51 on page 135

General/Mapping Function blocks for executing

maps within a specified

context.

Table 52 on page 136

General/Math Function blocks for basic

mathematical tasks.

Table 53 on page 136

General/Properties Function blocks for retrieving

configuration property values.

Table 54 on page 138

Chapter 5. Customizing a map 115

Table 31. Organization of function blocks (continued)

Function block folder Description For more information

General/Relationship Function blocks for

maintaining and querying

identity relationships.

Table 55 on page 138

General/String Function blocks for

manipulating String objects.

Table 56 on page 139

General/Utilities Function blocks for throwing

and catching exceptions, as

well as looping, moving

attributes, and setting

conditions.

Table 57 on page 141

General\Utilities/Vector Function blocks for working

with Vector objects.

Table 58 on page 142

The following tables describe the function blocks in each category, including the

acceptable values for their inputs and outputs.

 Table 32. General/APIs/Business Object

Name Description Inputs and outputs with acceptable values

Copy Copies all attribute values from the input

business object.

API: BusObj.copy()

Inputs:

v copy to--BusObj

v copy from--BusObj

Duplicate Creates a business object exactly like the

original one.

API: BusObj.duplicate()

Inputs:original--BusObj

Outputs: duplicate--BusObj

Equal Keys Compares business object 1’s and business

object 2’s values, to determine whether they are

equal.

API: BusObj.equalKeys()

Inputs:

v business object 1--BusObj

v business object 2--BusObj

Outputs: key values equal?-- boolean

Equals Compares business object 1’s and business

object 2’s values, including child business

objects, to determine whether they are equal.

API: BusObj.equals()

Inputs:

v business object 1--BusObj

v business object 2--BusObj

Outputs: equal?-- boolean

Exists Checks for the existence of a business object

attribute with a specified name.

API: BusObj.exists()

Inputs:

v business object--BusObj

v attribute--String

Outputs: exists?-- boolean

Get Boolean Retrieves the value of a single attribute, as a

boolean, from a business object.

API: BusObj.getBoolean()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value-- boolean

116 Map Development Guide

Table 32. General/APIs/Business Object (continued)

Name Description Inputs and outputs with acceptable values

Get Business Object Retrieves the value of a single attribute, as a

BusObj, from a business object.

API: BusObj.getBusObj()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--BusObj

Get Business Object

Array

Retrieves the value of a single attribute, as a

BusObj Array, from a business object.

API: BusObj.getBusObjArray()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--BusObjArray

Get Business Object

Type

Retrieves the name of the business object

definition on which this business object was

based.

API: BusObj.getType()

Inputs: business object--BusObj

Outputs: type--String

Get Double Retrieves the value of a single attribute, as a

double, from a business object.

API: BusObj.getDouble()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--double

Get Float Retrieves the value of a single attribute, as a

float, from a business object.

API: BusObj.getFloat()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--float

Get Int Retrieves the value of a single attribute, as an

integer, from a business object.

API: BusObj.getInt()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--int

Get Long Retrieves the value of a single attribute, as a

long, from a business object.

API: BusObj.getLong()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--long

Get Long Text Retrieves the value of a single attribute, as a

long text, from a business object.

API: BusObj.getLongText()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--String

Get Object Retrieves the value of a single attribute, as an

object, from a business object.The attribute can

be specified as either the attribute name or the

attribute position.

API: BusObj.get()

Inputs:

v business object--BusObj

v attribute--String, int

Outputs: value--Object

Get String Retrieves the value of a single attribute, as a

string, from a business object.

API: BusObj.getString()

Inputs:

v business object--BusObj

v attribute--String

Outputs: value--String

Chapter 5. Customizing a map 117

Table 32. General/APIs/Business Object (continued)

Name Description Inputs and outputs with acceptable values

Get Verb Retrieves this business object’s verb.

API: BusObj.getVerb()

Inputs: business object--BusObj

Outputs: verb--String

Is Blank Finds out whether the value of an attribute is

set to a zero-length string.

API: BusObj.isBlank()

Inputs:

v business object--BusObj

v attribute--String

Outputs: blank?--boolean

Is Business Object Tests whether the value is a business object

(BusObj).

Inputs: value--Object

Outputs: result--boolean

Is Key Finds out whether a business object’s attribute

is defined as a key attribute.

API: BusObj.isKey()

Inputs:

v business object--BusObj

v attribute--String

Outputs: key?--boolean

Is Null Finds out whether the value of a business

object’s attribute is null.

API: BusObj.isNull()

Inputs:

v business object--BusObj

v attribute--String

Outputs: null?--boolean

Is Required Finds out whether a business object’s attribute

is defined as a required attribute.

API: BusObj.isRequired()

Inputs:

v business object--BusObj

v attribute--String

Outputs: required?--boolean

Iterate Children Iterates through the child business object array. Inputs:

v business object--BusObj

v attribute--String

v current index--int

v current element--BusObj

Key to String Retrieves the values of a business object’s

primary key attributes as a string.

API: BusObj.keysToString()

Inputs: business object--BusObj

Outputs: key string--String

New Business

Object

Creates a new business object instance (BusObj)

of the specified type.

API: Collaboration.BusObj()

Inputs: type--String

Outputs: business object--BusObj

Set Content Sets the contents of this business object to

another business object. The two business

objects will own the content together. Changes

made to one business object will be reflected in

the other business object.

API: BusObj.setContent()

Inputs:

v business object--BusObj

v content--BusObj

Set Default

Attribute Values

Sets all attributes to their default values.

API: BusObj.setDefaultAttrValues()

Inputs: business object--BusObj

118 Map Development Guide

Table 32. General/APIs/Business Object (continued)

Name Description Inputs and outputs with acceptable values

Set Keys Sets the values of the ″to″ business object’s key

attributes to the values of the key attributes in

″from″ business object.

API: BusObj.setKeys()

Inputs:

v from business object--BusObj

v to business object--BusObj

Set Value with

Create

Sets the business object’s attribute to a specified

value of a particular data type, creating an

object for the value if one does not already

exist.

API: BusObj.setWithCreate()

Inputs:

v business object--BusObj

v attribute--String

v value--BusObj, BusObjArray, Object

Set Verb Sets the verb of a business object.

API: BusObj.setVerb()

Inputs:

v business object--BusObj

v verb--String

Set Verb with

Create

Sets the verb of a child business object, creating

the child business object if one does not already

exist.

API: BusObj.setVerbWithCreate()

Inputs:

v business object--BusObj

v attribute--String

v verb--String

Set Value Sets a business object’s attribute to a specified

value of a particular data type.

API: BusObj.set()

Inputs:

v business object--BusObj

v attribute--String

v value--boolean, double, float, int, long,

Object, String, BusObj

Shallow Equals Compares business object 1 and business object

2’s values, excluding child business objects, to

determine whether they are equal.

API: BusObj.equalsShallow()

Inputs:

v business object 1--BusObj

v business object 2--BusObj

Outputs: equal?--boolean

To String Gets the values of all attributes in a business

object as string.

API: BusObj.toString()

Inputs: business object--BusObj

Outputs: string--String

Valid Data Checks whether the specified value is a valid

type for a specified attribute.

API: BusObj.validData()

Inputs:

v business object--BusObj

v attribute--String

v value--Object, BusObj, BusObjArray,

String, long, int, double, float, boolean

Outputs: valid?--boolean

 Table 33. General/APIs/Business Object/Array

Name Description Inputs and outputs with acceptable values

Get BusObj At Retrieves the element at the specified index in

the business object array.

Inputs:

v array--BusObj[]

v index--int

Outputs: business object--BusObj

New Business

Object Array

Creates a new business object array. Inputs: size--int

Outputs: array--BusObj[]

Chapter 5. Customizing a map 119

Table 33. General/APIs/Business Object/Array (continued)

Name Description Inputs and outputs with acceptable values

Set BusObj At Sets the element at the specified index in the

business object array.

Inputs:

v array--BusObj[]

v index--int

v business object--BusObj

Size Retrieves the size of the business object array Inputs: array--BusObj[]

Outputs: size--int

 Table 34. General/APIs/Business Object/Constants

Name Description Inputs and outputs with acceptable values

Verb: Create Business object verb ″Create″. Outputs: Create--String

Verb: Delete Business object verb ″Delete″. Outputs: Delete--String

Verb: Retrieve Business object verb ″Retrieve″. Outputs: Retrieve--String

Verb: Update Business object verb ″Update″. Outputs: Update--String

 Table 35. General/APIs/Business Object Array

Name Description Inputs and outputs with acceptable values

Add Element Adds a business object to this business object

API: BusObjArray.addElement()

Inputs:

v business object array--BusObjArray

v element--BusObj

Duplicate Creates a business object array exactly like the

original one.

API: BusObjArray.duplicate()

Inputs: original--BusObjArray

Outputs: duplicate--BusObjArray

Equals Compares business object array 1’s and business

object array 2’s values, to determine whether

they are equal.

API: BusObjArray.equals()

Inputs:

v array 1--BusObjArray

v array 2--BusObjArray

Outputs: equal?-- boolean

Get Element At Retrieves a single business object by specifying

its position in the business object array.

API: BusObjArray.elementAt()

Inputs:

v business object array--BusObjArray

v index--int

Outputs: element--BusObj

Get Elements Retrieves the contents of this business object

array.

API: BusObjArray.getElements()

Inputs: business object array--BusObjArray

Outputs: element--BusObj[]

Get Last Index Retrieves the last available index from a

business object array.

API: BusObjArray.getLast Index()

Inputs: business object array--BusObjArray

Outputs: last index--int

Is Business Object

Array

Tests whether value is a business object array

(BusObjArray).

Inputs: value--Object

Outputs: result--boolean

120 Map Development Guide

Table 35. General/APIs/Business Object Array (continued)

Name Description Inputs and outputs with acceptable values

Max attribute value Retrieves the maximum values for the specified

attribute among all elements in this business

object array.

API: BusObjArray.max()

Inputs:

v business object array--BusObjArray

v attribute--String

Outputs: max--String

Min attribute value Retrieves the minimum value for the specified

attribute among all elements in this business

object array.

API: BusObjArray.min()

Inputs:

v business object array--BusObjArray

v attribute--String

Outputs: min--String

Remove All

Elements

Removes all elements from the business object

array.

API: BusObjArray.removeAllElements()

Inputs: business object array--BusObjArray

Remove Element Removes a business object element from a

business object array.

API: BusObjArray.removeElement()

Inputs:

v business object array--BusObjArray

v element--BusObj

Remove Element At Removes an element at a particular position in

this business object array.

API: BusObjArray.removeElementAt()

Inputs:

v business object array--BusObjArray

v index--int

Set Element At Sets the value of a business object in the

business object array.

API: BusObjArray.setElementAt()

Inputs:

v business object array--BusObjArray

v index--int

v element--BusObj

Size Gets the number of elements in this business

object array.

API: BusObjArray.size()

Inputs: business object array--BusObjArray

Outputs: size--int

Sum Adds the values of the specified attribute for all

business objects in this business object array.

API: BusObjArray.sum()

Inputs:

v business object array--BusObjArray

v attribute--String

Outputs: sum--double

Swap Reverses the positions of two business objects in

this business object array.

API: BusObjArray.swap()

Inputs:

v business object array--BusObjArray

v index 1--int

v index 2--int

To String Retrieves the values in this business object array

as a single string.

API: BusObjArray.to String()

Inputs: business object array--BusObjArray

Outputs: string--String

 Table 36. General/APIs/Database Connection

Name Description Inputs and outputs with acceptable values

Begin Transaction Begins an explicit transaction for the current

connection.

API: CwDBConnection.beginTransaction()

Inputs: database connection--
CwDBConnection

Chapter 5. Customizing a map 121

Table 36. General/APIs/Database Connection (continued)

Name Description Inputs and outputs with acceptable values

Commit Commits the active transaction associated with

the current connection.

API: CwDBConnection.commit()

Inputs: database connection--
CwDBConnection

Execute Prepared

SQL

Executes a prepared SQL Query by specifying

its syntax.

API: CwDBConnection.executePreparedSQL()

Inputs:

v database connection--CwDBConnection

v query--String

Outputs: equal?-- boolean

Execute Prepared

SQL with Parameter

Executes a prepared SQL query by specifying

its syntax with the specified parameters.

API:CwDBConnection.executePreparedSQL()

Inputs:

v database connection--CwDBConnection

v query--String

v parameters--java.util.Vector

Execute SQL Executes a static SQL query by specifying its

syntax.

API: CwDBConnection.executeSQL()

Inputs:

v database connection--CwDBConnection

v query--String

Execute SQL with

Parameter

Executes a static SQL query by specifying its

syntax with the specified parameters.

API: CwDBConnection.executeSQL()

Inputs:

v database connection--CwDBConnection

v query--String

v parameters--java.util.Vector

Execute Stored

Procedure

Executes an SQL stored procedure by specifying

its name and parameter array.

API: CwDBConnection.executeStored

Procedure()

Inputs:

v database connection--CwDBConnection

v query--String

v parameters--java.util.Vector

Get Database

Connection

Establishes a connection to a database and

returns a CwDBConnection() object.

API: BaseDLM.getDBConnection() or

BaseCollaboration.getDBConnection()

Inputs: connection pool name--String

Outputs: database connection--
CwDBConnection

Get Database

Connection with

Transaction

Establishes a connection to a database and

returns a CwDBConnection() object.

API: BaseDLM.getDBConnection() or

BaseCollaboration.getDBConnection()

Inputs:

v connection pool name--String

v implicit transaction--boolean

Outputs: database connection--
CwDBConnection

Get Next Row Gets the next row from the query result.

API: CwDBConnection.nextRow()

Inputs: database connection--
CwDBConnection

Outputs: row--java.util.Vector

Get Update Count Gets the number of rows affected by the last

write operation to the database.

API: CwDBConnection.getUpdateCount()

Inputs: database connection--
CwDBConnection

Outputs: count--int

Has More Rows Determines whether the query result has more

rows to process.

API: CwDBConnection.hasMoreRows()

Inputs: database connection--
CwDBConnection

Outputs: more rows?--boolean

122 Map Development Guide

Table 36. General/APIs/Database Connection (continued)

Name Description Inputs and outputs with acceptable values

In Transaction Determines whether a transaction is in progress

in the current connection.

API: CwDBConnection.inTransaction()

Inputs: database connection--
CwDBConnection

Outputs: in transaction?--boolean

Is Active Determines whether the current connection is

active.

API: CwDBConnection.isActive()

Inputs: database connection--
CwDBConnection

Outputs: is active?--boolean

Release Releases use of the current connection,

returning it to its connection pool.

API: CwDBConnection.release()

Inputs: database connection--
CwDBConnection

Roll Back Rolls back the active transaction associated with

the current connection.

API: CwDBConnection.rollback()

Inputs: database connection--
CwDBConnection

 Table 37. General/APIs/Identity Relationship

Name Description Inputs and outputs with acceptable values

Add My Children Adds the specified child instances to a

parent/child relationship for an identity

relationship.

API: IdentityRelationship.addMyChildren()

Inputs:

v map--BaseDLM

v parentChildRelDefName--String

v parentParticipantDefName--String

v parentBusObj--BusObj

v childParticipantDefName--String

v childBusObjList--BusObj,BusObjArray

Delete All My

Children

Removes all child instances from a parent/child

relationship for an identity relationship

belonging to the specified parent.

API: IdentityRelationship.deleteMyChildren()

Inputs:

v map--BaseDLM

v parentChildRelDefName--String

v parentParticipantDefName--String

v parentBusObj--BusObj

v childParticipantDefName--String

Delete My Children Removes the specified child instances from a

parent/child relationship for an identity

relationship belonging to the specified parent.

API: IdentityRelationship.deleteMyChildren()

Inputs:

v map--BaseDLM

v parentChildRelDefName--String

v parentParticipantDefName--String

v parentBusObj--BusObj

v childParticipantDefName--String

v childBusObjList--BusObj,BusObjArray

Chapter 5. Customizing a map 123

Table 37. General/APIs/Identity Relationship (continued)

Name Description Inputs and outputs with acceptable values

Foreign Key

Cross-Reference

Performs a lookup in the relationship table in

the relationship database based on the foreign

key of the source business object, adding a new

relationship instance in the foreign relationship

table if the foreign key does not exist.

API: IdentityRelationship.foreignKeyXref()

Inputs:

v map--BaseDLM

v RelDefName--String

v appParticipantDefName--String

v genParticipantDefName--String

v appSpecificBusObj--BusObj

v appForeignAttr--String

v genericBusObj--BusObj

v genForeignAttr--String

Foreign Key

Lookup

Performs a lookup in a foreign relationship

table based on the foreign key of the source

business object, failing to find a relationship

instance if the foreign key does not exist in the

foreign relationship table.

API: IdentityRelationship.foreignKeyLookup()

Inputs:

v map--BaseDLM

v relDefName--String

v appParticipantDefName--String

v appSpecificBusObj--BusObj

v appForeignAttr--String

v genericBusObj--BusObj

v genForeignAttr--String

Maintain Child

Verb

Sets the child business object verb based on the

map execution context and the verb of the

parent business object.

API: IdentityRelationship.maintainChildVerb()

Inputs:

v map--BaseDLM

v relDefName--String

v appSpecificParticipantName--String

v genericParticipantName--String

v appSpecificObj--BusObj

v appSpecificChildObj--String

v genericObj--BusObj

v genericChildObj--String

v to_Retrieve--boolean

v Is_Composite--boolean

Maintain Composite

Relationship

Maintains a composite identity relationship

from within the parent map.

API: IdentityRelationship.maintain

CompositeRelationship()

Inputs:

v map--BaseDLM

v relDefName--String

v participantDefName--String

v appSpecificBusObj--BusObj

v genericBusObjList--BusObj, BusObjArray

Maintain Simple

Identity

Relationship

Maintains a simple identity relationship from

within either a parent or child map.

API: IdentityRelationship.maintain

Simple Identity Relationship()

Inputs:

v map--BaseDLM

v relDefName--String

v participantDefName--String

v appSpecificBusObj--BusObj

v genericBusObj--BusObj

124 Map Development Guide

Table 37. General/APIs/Identity Relationship (continued)

Name Description Inputs and outputs with acceptable values

Update My

Children

Adds and deletes child instances in a specified

parent/child relationship of an identity

relationship, as necessary.

API: IdentityRelationship.updateMyChildren()

Inputs:

v map--BaseDLM

v parentChildRelDefName--String

v parentParticipantDef--String

v parentBusObj--BusObj

v childParticipantDef--String

v childAttrName--String

v childIdentityRelDefName--String

v childIdentityParticipantDefName--String

 Table 38. General/APIs/Maps

Name Description Inputs and outputs with acceptable values

Get Adapter Name Retrieves the adapter name associated with the

current map instance.

API: MapExeContext.getConnName()

Inputs: map--BaseDLM

Outputs: adapter name--String

Get Calling Context Retrieves the calling context associated with the

current map instance.

API: MapExeContext.getInitiator()

Inputs: map--BaseDLM

Outputs: calling context--String

Get Original

Request Business

Object

Retrieves the original-request business object

associated with the current map instance.

API: MapExeContext.getOriginalRequestBO()

Inputs: map--BaseDLM

Outputs: original business object--BusObj

 Table 39. General/APIs/Maps/Constants

Name Description Inputs and outputs with acceptable values

Calling Context:

ACCESS

_REQUEST

An access client has sent an access request from

an external application to InterChange Server

Express.

API: MapExeContext.ACCESS_REQUEST

Outputs: ACCESS_REQUEST--String

Calling Context:

ACCESS

_RESPONSE

The source business object is sent back to the

source access client in response to a

subscription delivery request.

API: MapExeContext.ACCESS_RESPONSE

Outputs: ACCESS_RESPONSE--String

Calling Context:

EVENT

_DELIVERY

A connector has sent an event from the

application to InterChange Server Express

(event-triggered flow).

API: MapExeContext.EVENT_DELIVERY

Outputs: EVENT_DELIVERY--String

Calling Context:

SERVICE_CALL

_FAILURE

A collaboration’s service call request has failed.

As such, corrective action might need to be

performed.

API: MapExeContext.SERVICE_CALL_FAILURE

Outputs: SERVICE_CALL_FAILURE

--String

Chapter 5. Customizing a map 125

Table 39. General/APIs/Maps/Constants (continued)

Name Description Inputs and outputs with acceptable values

Calling Context:

SERVICE_CALL

_REQUEST

A collaboration is sending a business object

down to the application through a service call

request.

API:

MapExeContext.SERVICE_CALL_REQUEST

Outputs: SERVICE_CALL_REQUEST

--String

Calling Context:

SERVICE_CALL

_RESPONSE

A business object was received from the

application as a result of a successful response

to a collaboration service call request.

API: MapExeContext.SERVICE_CALL

_RESPONSE

Outputs: SERVICE_CALL_RESPONSE

--String

 Table 40. General/APIs/Maps/Exception

Name Description Inputs and outputs with acceptable values

Raise Map

Exception

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

Raise Map

Exception 1

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

v parameter 1--String

Raise Map

Exception 2

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

v parameter 1--String

v parameter 2--String

Raise Map

Exception 3

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

v parameter 1--String

v parameter 2--String

v parameter 3--String

Raise Map

Exception 4

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

v parameter 1--String

v parameter 2--String

v parameter 3--String

v parameter 4--String

126 Map Development Guide

Table 40. General/APIs/Maps/Exception (continued)

Name Description Inputs and outputs with acceptable values

Raise Map

Exception 5

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception type--String

v message--String

v parameter 1--String

v parameter 2--String

v parameter 3--String

v parameter 4--String

v parameter 5--String

Raise Map

RunTimeEntity

Exception

Raises a map run-time exception.

API: raiseException()

Inputs:

v map--BaseDLM

v exception--RunTimeEntityException

 Table 41. General/APIs/Participant

Name Description Inputs and outputs with acceptable values

Get Boolean Data Retrieves the data associated with the

Participant object.

API: Participant.getBoolean()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--boolean

Get Business Object

Data

Retrieves the data associated with the

Participant object.

API: Participant.getBusObj()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--BusObj

Get Double Data Retrieves the data associated with the

Participant object.

API: Participant.getDouble()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--double

Get Float Data Retrieves the data associated with the

Participant object.

API: Participant.getFloat()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--float

Get Instance ID Retrieves the relationship instance ID of the

relationship in which the participant instance is

participating.

API: Participant.getInstanceId()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: instance ID--int

Get Int Data Retrieves the data associated with the

Participant object.

API: Participant.getInt()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--int

Get Long Data Retrieves the data associated with the

Participant object.

API: Participant.getLong()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--long

Get Participant

Name

Retrieves the participant definition name from

which the participant instance is created.

API: Participant.getParticipantDefinition()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: name--String

Chapter 5. Customizing a map 127

Table 41. General/APIs/Participant (continued)

Name Description Inputs and outputs with acceptable values

Get Relationship

Name

Retrieves the name of the relationship definition

in which the participant instance is

participating.

API: Participant.getRelationshipDefinition()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: name--String

Get String Data Retrieves the data associated with the

Participant object.

API: Participant.getString()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: data--String

New Participant Creates a new participant instance with no

relationship instance.

API: Participant()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Output: participant--
Server.RelationshipServices.Participant

New Participant in

Relationship

Creates a new participant instance for adding to

an existing participant in a relationship

instance.

API: RelationshipServices.Participant()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

v partData--BusObj, String, long, int,

double, float, boolean

Output: participant--
Server.RelationshipServices.Participant

Set Data Sets the data associated with the participant

instance.

API: Participant.set()

Inputs:

v participant--
Server.RelationshipServices.Participant

v partData--BusObj, String, long, int,

double, float, boolean

Set Instance ID Sets the instance ID of the relationship in which

the participant instance is participating.

API: Participant.setInstanceId()

Inputs:

v participant--
Server.RelationshipServices.Participant

v id--int

Set Participant

Definition

Sets the participant definition name from which

the participant instance is created.

API: Participant.setParticipantDefinition()

Inputs:

v participant--
Server.RelationshipServices.Participant

v partDefName--String

Set Relationship

Definition

Sets the relationship definition in which the

participant instance is participating.

API: Participant.setRelationshipDefinition()

Inputs:

v participant--
Server.RelationshipServices.Participant

v relDefName--String

128 Map Development Guide

Table 42. General/APIs/Participant/Array

Name Description Inputs and outputs with acceptable values

Get Participant At Retrieves the element at the specified index in

the participant array.

Inputs:

v array--
Server.RelationshipServices.Participant[]

v index--int

Outputs: participant--
Server.RelationshipServices.Participant

New Participant

Array

Creates a new participant array with the

specified size.

Inputs: size--int

Outputs: array--
Server.RelationshipServices.Participant[]

Set Participant At Sets the element at the specified index in the

participant array.

Inputs:

v array--
Server.RelationshipServices.Participant[]

v index--int

v participant--
Server.RelationshipServices.Participant

Size Retrieves the size of the participant array. Inputs: array--
Server.RelationshipServices.Participant[]

Outputs: size--int

 Table 43. General/APIs/Participant/Constants

Name Description Inputs and outputs with acceptable values

Participant:

INVALID

_INSTANCE_ID

Participant constant indicating the participant

ID is invalid.

API: Participant.INVALID_INSTANCE_ID

Outputs: INVALID_INSTANCE_ID--int

 Table 44. General/APIs/Relationship

Name Description Inputs and outputs with acceptable values

Add Participant Adds an existing participant object to a

relationship instance.

API: Relationship.addParticipant()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: result instance ID--int

Add Participant

Data

Adds a new participant to an existing

relationship instance.

API: Relationship.addParticipant()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

v partData--BusObj, String, long, int,

double, float, boolean

Outputs: result instance ID--int

Add Participant

Data to New

Relationship

Adds a participant to a new relationship

instance.

API: Relationship.addParticipant()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Outputs: result instance ID--int

Chapter 5. Customizing a map 129

Table 44. General/APIs/Relationship (continued)

Name Description Inputs and outputs with acceptable values

Create Relationship Creates a new relationship instance.

API: Relationship.create()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Outputs: instance ID--int

Create Relationship

with Participant

Creates a new relationship instance.

API: Relationship.create()

Inputs: participant--
Server.RelationshipServices.Participant

Outputs: instance ID--int

Deactivate

Participant

Deactivates a participant from one or more

relationship instances.

API: Relationship.deactivate Participant()

Inputs: participant--
Server.RelationshipServices.Participant

Deactivate

Participant By Data

Deactivates a participant from one or more

relationship instances.

API: Relationship.deactivate Participant()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Deactivate

Participant By

Instance

Deactivates a participant from a specific

relationship instance.

API: Relationship.deactivate

ParticipantByInstance()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

Deactivate

Participant By

Instance Data

Deactivates a participant from a specific

relationship instance with the data associated

with the participant.

API: Relationship.deactivate

ParticipantByInstance()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

v partData--BusObj, String, long, int,

double, float, boolean

Delete Participant Removes a participant instance from one or

more relationship instances.

API: Relationship.deleteParticipant()

Inputs: participant--
Server.RelationshipServices.Participant

Delete Participant

By Instance

Removes a participant from a specific

relationship instance.

API: Relationship.deleteParticipanByInstancet()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

Delete Participant

By Instance Data

Removes a participant from a specific

relationship instance with the data associated

with the participant.

API: Relationship.deleteParticipanByInstancet()

Inputs:

v relDefName--String

v partDefName--String

v instanceId--int

v partData--BusObj, String, long, int,

double, float, boolean

130 Map Development Guide

Table 44. General/APIs/Relationship (continued)

Name Description Inputs and outputs with acceptable values

Delete Participant

with Data

Removes a participant instance from one or

more relationship instances.

API: Relationship.deleteParticipant()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Get Next Instance

ID

Returns the next available relationship instance

ID for a relationship, based on the relationship

definition name.

API: Relationship.getNewID()

Inputs: relDefName--String

Outputs: ID--int

Retrieve Instances Retrieves zero or more IDs of relationship

instances which contain the given participant(s).

API: Relationship.retrieveInstances()

Inputs:

v relDefName--String

v partDefName--String,String[]

v partData--BusObj, String, long, int,

double, float, boolean

Outputs: instance IDs--int

Retrieve Instances

for Participant

Retrieves zero or more IDs of relationship

instances which contain a given participant.

API: Relationship.retrieveInstances()

Inputs:

v relDefName--String

v partData--BusObj, String, long, int,

double, float, boolean

Outputs: instance IDs--int

Retrieve

Participants

Retrieves zero or more participants from a

relationship instance.

API: Relationship.retrieveParticipants()

Inputs:

v relDefName--String

v partDefName--String, String[]

v instanceId--int

Outputs: participant instances--
Server.RelationshipServices.Participant[]

Retrieve

Participants with ID

Retrieves zero or more participants from a

relationship instance.

API: Relationship.retrieveParticipants()

Inputs:

v relDefName--String

v instanceId--int

Outputs: participant instances--
Server.RelationshipServices.Participant[]

Update Participant Updates a participant in one or more

relationship instances.

API: Relationship.updateParticipant()

Inputs:

v relDefName--String

v partDefName--String

v partData--BusObj

 Table 45. General/Date

Name Description Inputs and outputs with acceptable values

Add Day Adds additional days to the from date. Inputs:

v from date--String

v date format--String

v day to add--int

Outputs: to date-- String

Chapter 5. Customizing a map 131

Table 45. General/Date (continued)

Name Description Inputs and outputs with acceptable values

Add Month Adds additional months to the from date. Inputs:

v from date--String

v date format--String

v month to add--int

Outputs: to date-- String

Add Year Adds additional years to the from date. Inputs:

v from date--String

v date format--String

v year to add--int

Outputs: to date-- String

Date After Compares two dates and determines whether

Date 1 is after Date 2.

Inputs:

v Date 1--String

v Date 1 format--String

v Date 2--String

v Date 2 format--String

Outputs: Is Date 1 after Date 2?-- boolean

Date Before Compares two dates and determines whether

Date 1 is before Date 2.

Inputs:

v Date 1--String

v Date 1 format--String

v Date 2--String

v Date 2 format--String

Outputs: Is Date 1 before Date 2?-- boolean

Date Equals Compares two dates and determines whether

they are equal.

Inputs:

v Date 1--String

v Date 1 format--String

v Date 2--String

v Date 2 format--String

Outputs: Are they equal?-- boolean

Format Change Changes a date format. Inputs:

v date--String

v input format--String

v output format--String

Outputs: formatted date--String

Get Day Returns the numeric day of month based on

date expression.

Inputs:

v Date--String

v Format--String

Outputs: Day--int

Get Month Returns the numeric month of year based on

date expression.

Inputs:

v Date--String

v Format--String

Outputs: Month--int

132 Map Development Guide

Table 45. General/Date (continued)

Name Description Inputs and outputs with acceptable values

Get Year Returns the numeric year based on date

expression.

Inputs:

v Date--String

v Format--String

Outputs: Year--int

Get Year Month

Day

Given an input date, extracts the

Year/Month/Day parts from the input date

respectively.

Inputs:

v Date--String

v Format--String

Outputs:

v Year--int

v Month--int

v Day--int

Now Gets today’s date. Inputs: format--String

Outputs: now--String

 Table 46. General/Date/Formats

Name Description Inputs and outputs with acceptable values

yyyy-MM-dd Date format of yyyy-MM-dd

Example: 2003-02-25

Outputs: format--String

yyyyMMdd Date format of yyyyMMdd

Example: 20030225

Outputs: format--String

yyyyMMdd

HH:mm:ss

Date format of yyyyMMdd HH:mm:ss

Example: 20030225 12:36:40

Outputs: format--String

 Table 47. General/Logging and Tracing

Name Description Inputs and outputs with acceptable values

Log error Sends the specified error message to the

InterChange Server Express log file.

Inputs: message--String, byte, short, int,

long, float, double

Log error ID Sends the error message associated with the

specified ID to the InterChange Server Express

log file.

Inputs: ID--String, byte, short, int, long,

float, double

Log information Sends the specified information message to the

InterChange Server Express log file.

Inputs: message--String, byte, short, int,

long, float, double

Log information ID Sends the information message associated with

the specified ID to the InterChange Server

Express log file.

Inputs: ID--String, byte, short, int, long,

float, double

Log warning Sends the specified warning message to the

InterChange Server Express log file

Inputs: message--String, byte, short, int,

long, float, double

Log warning ID Sends the warning message associated with the

specified ID to the InterChange Server Express

log file.

Inputs: ID--String, byte, short, int, long,

float, double

Trace Sends the specified trace message to the

InterChange Server Express log file.

Inputs: message--String, byte, short, int,

long, float, double

Chapter 5. Customizing a map 133

Table 48. General/Logging and Tracing/Log Error

Name Description Inputs and outputs with acceptable values

Log error ID 1 Formats the error message associated with the

specified ID with the parameter and sends it to

the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter--String, byte, short, int, long,

float, double

Log error ID 2 Formats the error message associated with the

specified ID with the parameters and sends it to

the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

Log error ID 3 Formats the error message associated with the

specified ID with the parameters and sends it to

the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

v parameter 3--String, byte, short, int, long,

float, double

 Table 49. General/Logging and Tracing/Log Information

Name Description Inputs and outputs with acceptable values

Log information ID

1

Formats the information message associated

with the specified ID with the parameter and

sends it to the InterChange Server Express log

file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter--String, byte, short, int, long,

float, double

Log information ID

2

Formats the information message associated

with the specified ID with the parameters and

sends it to the InterChange Server Express log

file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

Log information ID

3

Formats the information message associated

with the specified ID with the parameters and

sends it to the InterChange Server Express log

file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

v parameter 3--String, byte, short, int, long,

float, double

134 Map Development Guide

Table 50. General/Logging and Tracing/Log Warning

Name Description Inputs and outputs with acceptable values

Log warning ID 1 Formats the warning message associated with

the specified ID with the parameter and sends

it to the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter--String, byte, short, int, long,

float, double

Log warning ID 2 Formats the warning message associated with

the specified ID with the parameters and sends

it to the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

Log warning ID 3 Formats the warning message associated with

the specified ID with the parameters and sends

it to the InterChange Server Express log file.

Inputs:

v ID--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

v parameter 3--String, byte, short, int, long,

float, double

 Table 51. General/Logging and Tracing/Trace

Name Description Inputs and outputs with acceptable values

Trace ID 1 Formats the trace message associated with the

specified ID with the parameter and displays it

if tracing is set to the specified level or a higher

level.

Inputs:

v ID--String, byte, short, int, long, float,

double

v level--String, byte, short, int, long, float,

double

v parameter--String, byte, short, int, long,

float, double

Trace ID 2 Formats the trace message associated with the

specified ID with the parameters and displays it

if tracing is set to the specified level or a higher

level.

Inputs:

v ID--String, byte, short, int, long, float,

double

v level--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

Chapter 5. Customizing a map 135

Table 51. General/Logging and Tracing/Trace (continued)

Name Description Inputs and outputs with acceptable values

Trace ID 3 Formats the trace message associated with the

specified ID with the parameters and displays it

if tracing is set to the specified level or a higher

level.

Inputs:

v ID--String, byte, short, int, long, float,

double

v level--String, byte, short, int, long, float,

double

v parameter 1--String, byte, short, int, long,

float, double

v parameter 2--String, byte, short, int, long,

float, double

v parameter 3--String, byte, short, int, long,

float, double

Trace on Level Displays the trace message if tracing is set to

the specified level or a higher level.

Inputs:

v message--String, byte, short, int, long,

float, double

v level--String, byte, short, int, long, float,

double

 Table 52. General/Mapping

Name Description Inputs and outputs with acceptable values

Run Map Executes the specified map with the current

calling context.

Inputs:

v Map Name--String

v Source Business Objects--BusObj, BusObj[]

Outputs: Map Results--BusObj, BusObj[]

Run Map with

Context

Executes the specified map with the calling

context specified.

Inputs:

v Map Name--String

v Source Business Objects--BusObj, BusObj[]

v calling context--String

Outputs: Map Results--BusObj, BusObj[]

 Table 53. General/Math

Name Description Inputs and outputs with acceptable values

Absolute value a=abs(b)

API: Math.abs()

Inputs: b--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Ceiling Returns the next highest integer that is greater

than or equal to the specified numeric

expression.

Inputs: number--String, float, double

Outputs: ceiling--int

Divide a=b/c Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

136 Map Development Guide

Table 53. General/Math (continued)

Name Description Inputs and outputs with acceptable values

Equal Is value 1 equal to value 2? Inputs:

v value 1--String, byte, short, int, long, float,

double

v value 2--String, byte, short, int, long, float,

double

Outputs: are they equal?--boolean

Floor Returns the next lowest integer that is greater

than or equal to the specified numeric

expression.

Inputs: number--String, float, double

Outputs: floor--int

Greater than Is value 1 greater than value 2? Inputs:

v value 1--byte, short, int, long, float, double

v value 2--byte, short, int, long, float, double

Outputs: result--boolean

Greater than or

Equal

Is value 1 greater than or equal to value 2? Inputs:

v value 1--byte, short, int, long, float, double

v value 2--byte, short, int, long, float, double

Outputs: result--boolean

Less than result=value 1 is less than value 2? Inputs:

v value 1--byte, short, int, long, float, double

v value 2--byte, short, int, long, float, double

Outputs: result--boolean

Less than or equal Is value 1 less than or equal to value 2? Inputs:

v value 1--byte, short, int, long, float, double

v value 2--byte, short, int, long, float, double

Outputs: result--boolean

Maximum a=max(b, c)

API: Math.max()

Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Minimum a=min(b, c)

API: Math.min()

Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Minus a=b-c Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Chapter 5. Customizing a map 137

Table 53. General/Math (continued)

Name Description Inputs and outputs with acceptable values

Multiply a=b*c Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Not Equal result=is value 1 not equal to value 2? Inputs:

v value 1--String, byte, short, int, long, float,

double

v value 2--String, byte, short, int, long, float,

double

Outputs: are they not equal?--boolean

Not a Number Returns true if input is not a number. Inputs: input--String

Outputs: is not a number--boolean

Number to String Converts a numeric expression to a character

expression.

Inputs: number--String, short, int, long, float,

double

Outputs: string--String

Plus a=b+c Inputs:

v b--byte, short, int, long, float, double

v c--byte, short, int, long, float, double

Outputs: a--byte, short, int, long, float,

double

Round Rounds a numeric expression down to the next

lowest integer if <5; otherwise, the integer is

rounded up.

Inputs: number--String, float, double

Outputs: rounded number--int

String to Number Converts a character expression to a numeric

expression.

API: Math.type()

Inputs: string--String

Outputs: String, short, int, long, float, double

 Table 54. General/Properties

Name Description Inputs and outputs with acceptable values

Get Property Retrieves the specified configuration property

value.

Inputs: property name--String

Outputs: property value--String

 Table 55. General/Relationship

Name Description Inputs and outputs with acceptable values

Maintain Identity

Relationship

Maintains an identity relationship with the

maintainSimpleIdentityRelationship()

Relationship API.

Inputs:

v relationship name--String

v participant name--String

v Generic Business Object--String

v Application-Specific Business

Object--String

v calling context--String

138 Map Development Guide

Table 55. General/Relationship (continued)

Name Description Inputs and outputs with acceptable values

Static Lookup Looks up a static value in the relationship. Inputs:

v relationship name--String

v participant name--String

v inbound?--boolean

v source value--String

Outputs: lookup value--String

 Table 56. General/String

Name Description Inputs and outputs with acceptable values

Append Text Appends the ″in string2″ to the end of the

string ″in string 1.″

Inputs:

v in string 1--String

v in string 2--String

Outputs: result--String

If Returns the first value if condition is true and

the second value if condition is false.

Inputs:

v condition--boolean, Boolean

v value 1--String

v value 2--String

Outputs: result--String

Is Empty Returns the second value if the first value is

empty.

Inputs:

v value 1--String

v value 2--String

Outputs: result--String

Is NULL Returns the second value if the first value is

null.

Inputs:

v value 1--String

v value 2--String

Outputs: result--String

Left Fill Returns a string of the specified length; fills the

left with indicated value.

Inputs:

v string--String

v fill string--String

v length--int

Outputs: filled string--String

Left String Returns the left portion of string for the

specified number of positions.

Inputs:

v string--String

v length--int

Outputs: left string--String

Lower Case Changes all characters to Lower Case letters Inputs: fromString--String

Outputs: toString--String

Object To String Gets a string representation of the object. Inputs: object--Object

Outputs: string--String

Chapter 5. Customizing a map 139

Table 56. General/String (continued)

Name Description Inputs and outputs with acceptable values

Repeat Returns a character string that contains a

specified character expression repeated a

specified number of times.

Inputs:

v repeating string--String

v repeat count--int

Outputs: result--String

Replace Replaces part of a string with indicated value

data.

Inputs:

v input--String

v old string--String

v new string--String

Outputs: replaced string--String

Right Fill Returns a string of the specified length; fills the

right with indicated value.

Inputs:

v string--String

v fill string--String

v length--int

Outputs: filled string--String

Right String Returns the right portion of string for the

specified number of positions.

Inputs:

v string--String

v length--int

Outputs: right string--String

Substring by

position

Returns a portion of the string based on start

and end parameters.

Inputs:

v string--String

v start position--int

v end position--int

Outputs: substring--String

Substring by value Returns a portion of the string based on start

and end parameters. The substring will not

include the start and end value.

Inputs:

v string--String

v start value--int

v end value--int

Outputs: substring--String

Text Equal Compares the strings ″inString1″ and

″inString2″ and determine whether they are the

same.

Inputs:

v inString1--String

v inString2--String

Outputs: are they equal?--boolean

Text Equal Ignore

Case

Compares the strings ″inString1″ and

″inString2″ lexicographically, ignoring case

considerations.

Inputs:

v inString1--String

v inString2--String

Outputs: are they equal?--boolean

Text Length Finds the total number of characters in a string Inputs: str--String

Outputs: length---byte, short, int, long, float,

double

140 Map Development Guide

Table 56. General/String (continued)

Name Description Inputs and outputs with acceptable values

Trim Left Trims the specified number of characters from

the left side of the string.

Inputs:

v input--String

v trim length--int

Outputs: result--String

Trim Right Trims the specified number of characters from

the right side of the string.

Inputs:

v input--String

v trim length--int

Outputs: result--String

Trim Text Trims white spaces before and after the string Inputs: in string--String

Outputs: trimmed string--String

Upper Case Changes all characters into Upper Case letters Inputs: fromString--String

Outputs: toString--String

 Table 57. General/Utilities

Name Description Inputs and outputs with acceptable values

Catch Error Catches all the Exceptions thrown in the current

activity and its subactivities. (Double-click the

function block icon in the canvas to define the

subactivity.)

Inputs:

v Error Name--String

v Error Message--String

Catch Error Type Catches the specified Exception type thrown in

the current activity and its subactivities.

(Double-click the function block icon in the

canvas to define the subactivity.)

Inputs:

v error type--String

v Error Message--String

Condition If ″Condition″ is true, executes the subactivity

defined in ″True Action″; otherwise, executes

the subactivity defined in ″False Action.″

(Double-click the function block icon in the

canvas to define the subactivity.)

Inputs: Condition--boolean

Loop Repeats the subactivity until ″Condition″ is

false. (Double-click the function block icon in

the canvas to define the subactivity.)

Inputs: Condition--boolean

Move Attribute in

Child

Moves the value from ″from attribute″ to ″to

attribute″.

Inputs:

v source parent--BusObj

v source child BO attribute--string

v from attribute--String

v destination parent--BusObj

v destination child BO attribute--String

v to attribute--String

Raise Error Throws a new Java Exception with the given

message.

Inputs: message--String

Raise Error Type Throws the specified Java Exception with the

given message.

Inputs:

v error type--String

v message--String

Chapter 5. Customizing a map 141

Table 58. General/Utilities/Vector

Name Description Inputs and outputs with acceptable values

Add Element Adds the specified element to the end of the

vector, increasing its size by one.

Inputs: vector--java.util.Vector

Outputs: element--Object

Get Element Gets the element at the specified index in the

Vector object.

Inputs:

v vector--java.util.Vector

v index--int

Outputs: element--Object

Iterate Vector Iterates through the vector object. Inputs:

v vector--java.util.Vector

v current index--int

v current element--Object

New Vector Creates a new vector object. Outputs: vector--java.util.Vector

Size Gets the number of elements in this vector. Inputs: vector--java.util.Vector

Outputs: size--int

To Array Gets the array representation containing all of

the elements in this vector.

Inputs: vector--java.util.Vector

Outputs: array--Object[]

Example 1: Steps for changing a value to uppercase

The following example illustrates the steps for using Activity Editor to change the

source attribute’s value to all uppercase and assign the change to the destination

attribute.

Perform the following steps:

1. From the Diagram tab, drag the source attribute onto the destination attribute

to create a Custom transformation rule. Then click the icon of the Custom

transformation rule to open Activity Editor.

Result: Activity Editor opens.

Example: Figure 59 shows the Custom transformation we are using in this

example. The source attribute is ObjClarify_contact.LastName, and the

destination attribute is ObjContact.LastName.

142 Map Development Guide

For more information on creating Custom and other transformations, see

Chapter 2, “Creating maps,” on page 15.

2. Select a category in the Library window (top left) to show the function blocks

available in that category, as icons, in the Content window (bottom left).

Figure 60 shows the available function blocks for the ″String″ category; the

source and destination attributes in this example are displayed as icons in the

editing canvas.

Figure 59. Custom transformation rule

Chapter 5. Customizing a map 143

3. To use any of the function blocks in the activity, drag the function block from

the tree in the Library window and drop it onto the editing canvas; or

alternatively, drag the icon from the Content window and drop it onto the

editing canvas.

Example: In our example, we want to change the source attribute to all

uppercase letters, so we will drag-and-drop the Upper Case function block in

the String category from the Content window onto the editing canvas. This

action is shown in Figure 61.

4. After you drop a function block on the editing canvas, you can move it around

the canvas by selecting the function block icon and dragging and dropping it at

the desired position. When the function block is in place, you are ready to

connect the inputs and outputs of the function block to define the flow of

execution.

Example: In our example, we want to convert the attribute value of

ObjClarify_Contact.LastName to all uppercase letters. We can do this by

connecting the output of the icon for ObjClarify_Contact.LastName to the input

of the Upper Case function block. To do this, move the mouse cursor to the

output of the icon of port ObjClarify_Contact.LastName.

Result: The shape of the icon will change to an arrow to indicate that you can

initiate a link at that point, as shown in Figure 62.

Figure 60. Function blocks in String category and icons for source and destination attributes

Figure 61. Dragging the Upper Case function block

144 Map Development Guide

5. When the mouse icon is changed to an arrow, hold down the mouse button

and move the mouse to the input of the Upper Case function block, and release

the mouse button. A connection link will be drawn to connect the input and

outputs.

To indicate that the result of the Upper Case function block should be assigned

to the destination attribute (in our example, ObjContact.LastName), repeat the

same steps to drag-and-drop from the output of the Upper Case function block

to the input of the ObjContact.LastName port icon. Figure 63 shows the

connection links.

Figure 62. Cursor as arrow at output port of ObjClarify_Contact.LastName

Chapter 5. Customizing a map 145

Result: We have defined an activity which will take the value of the source

attribute, uppercase it, and set the uppercased value to the destination attribute.

6. Save the activity by selecting To Project or To File from the File > Save

submenu or by clicking the Save Map to Project or Save Map to File button in

the Standard toolbar.

7. To see an example of the Java code that will be generated by this activity, click

the Java tab.

Result: The Java tab will be activated with the sample Java code, as shown in

Figure 64.

Example 2: Steps for changing a date format

The following example illustrates the steps for using Activity Editor to change the

source value’s date format to a different format and assign it to the destination

attribute.

Perform the following steps:

 1. From the Diagram tab, drag the source attribute onto the destination attribute

to create a Custom transformation rule. Then click the icon of the Custom

transformation rule to open Activity Editor.

Result: Activity Editor opens.

Example: Figure 65 shows the Custom transformation we are using in this

example. The source attribute is

ObjClarify_QuoteSchedule.PriceProgExpireDate, and the destination attribute

is ObjARInvoice.GLPostingDate.

Figure 63. Upper Case function block with connection links

Figure 64. Java tab with code

146 Map Development Guide

For more information on creating Custom and other transformations, see

Chapter 2, “Creating maps,” on page 15.

 2. Select a category in the Library window (top left) to show the available

function blocks available in that category, as icons, in the Content window

(bottom left).

Figure 66 shows the available functions blocks for the ″Date″ category; the

source and destination attributes in our example are displayed as icons in the

editing canvas.

Figure 65. Custom transformation rule

Chapter 5. Customizing a map 147

3. To use any of the function blocks in the activity, drag the function block from

the tree in the Library window and drop it onto the editing canvas; or

alternatively, drag the icon from the Content window and drop it onto the

activity canvas.

Example: We want to change the date format of the source attribute from

″yyyyMMdd″ to ″yyyy.MM.dd G ’at’ HH:mm:ss z″ and assign it to the

destination attribute; so we will drag-and-drop the Format Change function

block in the Date category from the Content window onto the editing canvas,

as shown in Figure 67.

Note: A date formatted with ″yyyyMMdd″ looks like this: ″20030227″; a date

formatted with ″yyyy.MM.dd G ’at’ HH:mm:ss z″ looks like this

″2003.02.27 AD at 00:00:00 PDT″.

Figure 66. Function blocks in Date category and icons for source and destination attributes

148 Map Development Guide

4. After you drop a function block onto the activity canvas, you can move it

around the canvas by selecting the function block icon and dragging and

dropping it at the desired position. When the function block is in place, you

are ready to connect the inputs and outputs of the function block to define the

flow of execution.

Example: We want to change the date format of the source attribute

ObjClarify_QuoteSchedule.PriceProgExpireDate. We will do this by connecting

the output of the port icon for ObjClarify_QuoteSchedule.PriceProgExpireDate

to the date input of the Format Change function block. To do this, move the

mouse cursor to the output of the icon of port

ObjClarify_QuoteSchedule.PriceProgExpireDate.

Result: The shape of the icon will change to an arrow to indicate that you can

initiate a link at that point, as shown in Figure 68.

Figure 67. Dragging the Date Format Change function block

Chapter 5. Customizing a map 149

5. When the mouse icon is changed to an arrow, hold down the mouse button

and move the mouse to the date input of the Format Change function block,

and release the mouse button. A connection link will be drawn to connect the

input and outputs.

To indicate that the result of the Format Change function block should be

assigned to the destination attribute ObjARInvoice.GLPostingDate, repeat the

same steps to drag-and-drop from the output of the Format Change function

block to the input of the ObjARInvoice.GLPostingDate port icon. Figure 69

shows the connection links.

Figure 68. Cursor as arrow at output port of ObjClarify_QuoteSchedule.PriceProgExpireDate

Figure 69. Date Format Change function block with connection links

150 Map Development Guide

Result: Now we have instructed the Format Change function block to take the

input from the attribute ObjClarify_QuoteSchedule.PriceProgExpireDate,

change its date format, and assign the result to the attribute

ObjARInvoice.GLPostingDate. However, we still need to let the Format

Change function block know what the original date format is and what

resulting format we want.

 6. In our example, if the source attribute

ObjClarify_QuoteSchedule.PriceProgExpireDate is in the date format of

yyyMMDD (that is, 20030227), we can use the predefined Date Format

function block yyyyMMdd. Drag-and-drop the yyyyMMdd function block

onto the activity canvas and connect the format output of the yyyyMMdd

function block to the input format of the Format Change function block.

Result: This will specify that the input format of the date is in yyyyMMdd

format, as shown in Figure 70.

 7. Activity Editor provides three predefined Date formats: yyyyMMDD

HH:mm:ss, yyyyMMDD, and yyyy-MM-dd. If the desired date format is not

one of the three predefined formats, you can specify the date format you want

by using a Constant.

Example: We want the Format Change function block to change the date

format to yyyy.MM.dd G ’at’ Hh″mm″ss z. This is not one of the predefined

formats, so we will create a New Constant component in the activity canvas

by dragging and dropping the New Constant icon (located under the System

category) from the Content window to the editing canvas. Figure 71 shows the

result of this action.

Figure 70. Input Date Format

Chapter 5. Customizing a map 151

8. To specify a constant with the value yyyy.MM.dd G ’at’ Hh″mm″ss z, click the

editable area of the Constant component in the activity canvas and enter the

text yyyy.MM.dd G ’at’ Hh"mm"ss z. By default, any Constant component will

have the type String (shown in the Properties window when the Constant

component is selected). However, you can change the type of the Constant by

selecting the Constant and using the combo box in the Properties window.

Figure 72 shows the New Constant icon with the text value entered.

Figure 71. New Constant icon dropped on the activity canvas

152 Map Development Guide

9. To continue to specify that we want the output format of the Format Change

function block as yyyy.MM.dd G ’at’ Hh″mm″ss z, we define a connection link

between the Constant component and the output format of the Format

Change function block.

Result: We have completed the activity definition that will change the date

format of the source attribute to a new date format and assign it to the

destination attribute.

10. To add a comment or description to remind us later what this activity does,

we can add a Description component to the activity and enter a description.

Tip: Use the Context menu in the editing canvas and select Add Description,

or drag the New Description icon under the System folder in the Content

window and drop it onto the editing canvas. Figure 73 shows how to add the

Description component using the Context menu.

Result: The Description component will be created in the editing canvas.

11. Enter the description in the Description component by clicking on the editable

area of the component and typing directly into the component. You can resize

the Description by clicking and moving the lower right-hand corner of the

Description component. Figure 74 shows adding the Description.

Figure 72. New Constant with text entered

Figure 73. Adding a Description using the Context menu

Chapter 5. Customizing a map 153

12. Save the activity by selecting To Project or To File from the File > Save

submenu or by clicking the Save Map to Project or Save Map to File button in

the Standard toolbar. Figure 75 shows saving the activity.

Example 3: Using Static Lookup for conversion

The following example illustrates using the Static Lookup relationship function

block in Activity Editor.

Figure 74. Adding the Description

Figure 75. Saving the activity

154 Map Development Guide

In InterChange Server Express, a static lookup relationship normally consists of

two or more relationship tables. For example, consider a system that consists of

three end-applications, as shown in Figure 76.

SAP
Application

PeopleSoft
Application

Clarify
Application

WBI ICS

Each of these three applications has a different representation for ″State″

information, as shown in Table 59.

 Table 59. Application-specific representation of state information

SAP application PeopleSoft application Clarify application

California CA 01 State1

Washington WA 02 State2

Hawaii HI 03 State3

Delaware DE 04 State4

When state information is sent to the WebSphere Business Integration Server

Express system from the SAP application, SAP specified-state code is sent to

InterChange Server Express. But when InterChange Server Express needs to pass

this information to other applications, the state information has to be converted to

the format that the target application understands. In order to do this, the system

needs a generic representation of the ″State″ information. With the generic

representation, the system can process business logics in a generic, unified manner;

and the generic representation will be converted to the application-specific format

only when needed.

Thus, in the preceding example, we would create a static lookup relationship for

doing this ″State″ conversion, with the application-specific data as WebSphere

Business Integration Server Express-managed participants. With this setup, a

generic ID is used to represent the state information in the WebSphere Business

Integration Server Express system. Table 60 shows this representation.

 Table 60. Generic representation of state information

Generic ID SAP application PeopleSoft application Clarify application

California 1 CA 01 State1

Washington 2 WA 02 State2

Hawaii 3 HI 03 State3

Delaware 4 DE 04 State4

Application-specific data is converted to the generic ID as it enters the InterChange

Server Express system, and the generic ID is converted to application-specific data

as it exits the system.This data conversion is shown in Figure 77.

Figure 76. Static Lookup relationship with three end-applications

Chapter 5. Customizing a map 155

SAP
Application

PeopleSoft
Application

Clarify
Application

WBI ICS
CA --> 1

1 --> 01

1 --> State1

The ID conversion is usually done in maps that convert application-specific

business objects to generic business objects, or vice versa. For example in the

SAP-to-Generic map, we would do a static lookup for the data ″CA″ and convert it

to the generic representation that InterChange Server Express understands, ″1″.

And in the Generic-to-Clarify map, we would instead do a static lookup for the

generic data ″1″ and convert it to ″State1″. In either map, only one static lookup is

required.

Figure 78 shows how to use the Static Lookup function block to convert the

SAP-specified state data to the InterChange Server Express generic state data for

processing in InterChange Server Express.

StateRel

SapPrt

true

ObjSAP.State

ObjGeneric.State

relationship name

participant name

inbound?

source value

lookup value

Static Lookup

Similarly, the Static Lookup function block is used to convert the InterChange

Server Express-generic state data to Clarify-specific state data in the

Generic-to-Clarify map. This is shown in Figure 79 on page 157.

Figure 77. Data conversion from application-specific to generic to application-specific

Figure 78. Using static lookup function block to convert SAP-specific state data to InterChange Server Express-generic

state data

156 Map Development Guide

StateRel

ClarifyPrt

false

ObjGeneric.State

ObjClarify.State

relationship name

participant name

inbound?

source value

lookup value

Static Lookup

Normally, in a static lookup relationship, we convert application-specific data to

generic data, or generic data to application-specific data. In these scenarios, only

one Static Lookup function block is used. But in the special cases where you want

to directly lookup a name-value pair, then two Static Lookup function blocks are

required.

For more information on defining and using static relationships, see Chapter 7,

“Creating relationship definitions,” on page 237.

Exporting Web services into Activity Editor

A Web service is part of an InterChange Component Library Project in System

Manager just like business objects and maps. After the Web service is registered,

tested, and verified, its services and methods can be exported as function blocks

into Activity Editor for use within maps, like other function blocks.

For information on registering, testing, verifying and exporting a Web service from

System Manager into Activity Editor, see the System Implementation Guide.

Using Web services in Activity Editor

After exporting a Web service from System Manager, you need to restart Activity

Editor. When Activity Editor opens, the exported Web service is added as a

category under My Library. It has the same functionality as other categories in My

Library.

Figure 80 shows the Web services category and function blocks in Activity Editor

after exporting from System Manager.

Figure 79. Using static lookup function block to convert InterChange Server Express-generic state data to

Clarify-specific state data

Chapter 5. Customizing a map 157

Similar to using other function blocks in Activity Editor, using any of the Web

services function blocks is a matter of dragging and dropping the function blocks

and connecting the inputs and outputs. For information on using Activity Editor,

see “Working with activity definitions” on page 110.

Example of using a Web service in a map

The following example illustrates how to invoke a Web service using Activity

Editor to change a source attribute’s zip code to the temperature for the city and

assign the change to the destination attribute.

Perform the following steps:

1. From the Diagram tab of Map Designer Express, create a custom

transformation by dragging the source business object attribute

ObjTemperatrueInput.zipcode onto the destination business object attribute

ObjTemperatureOutput.currentTemperature. Then click the icon of the Custom

transformation rule to launch Activity Editor.

Figure 81 shows the custom transformation.

Figure 80. Web services category in Activity Editor

158 Map Development Guide

2. Select the Web services category in the Library window to show the function

blocks available in that category, as icons, in the Content window.

3. Drag and drop the Web services getTemp function block from the Content

window onto the editing canvas.

4. Connect the output port of the icon for the source business object attribute

ObjTemperatureInput.zipcode.to the input port ″zipcode″ of the getTemp

function block; and connect the output port ″result″ of the getTemp function

block to the input port of the icon of the destination business object attribute

ObjTemperatureOutput.currentTemperature.

Figure 82 shows the connected inputs and outputs of the getTemp function

block.

Figure 81. Creating the custom transformation

Chapter 5. Customizing a map 159

5. Save the activity template and map.

6. Switch to Test view in Map Designer Express. Enter a valid zip code in the

Source-zipcode field. Click Debug Map. You can choose to deploy the map and

business objects to the server if you have not already done so.

Result: After the test run is finished, you will see the current temperature for

the zip code in the destination business object.

Figure 83 shows how the zip code 94010 of the source business object attribute

has been transformed to 59 degrees for the destination business object attribute.

Figure 82. Connecting the inputs and outputs

160 Map Development Guide

Using bidirectional functionality in Activity Editor

WebSphere Business Integration Server Express supports bidirectional languages.

This support is in a standard Windows-type bidirectional format (logical left to

right). Because of this support, all maps also support bidirectional languages.

However, data entering a map may come from:

 An adapter that supports bidirectional languages. To determine if your adapter

supports bidirectional languages, see your adapter’s user’s guide.

 A component that does not support bidirectional languages, an adapter that

does not support bidirectional languages, or data imported from some external

source where the bidirectional support is unknown.

Bidirectional format inconsistencies cause comparisons within a map to return

incorrect results. These types of errors can be avoided by:

v Only accepting input from sources that enforce the same bidirectional format as

the WebSphere Business Integration Server Express system such as the adapters

that are already enabled with this support.

v Enabling the connectors to this map to enforce the correct bidirectional format

(see ″Enabling connectors for bidirectional languages″ in the Collaboration

Development Guide).

v Using the APIs in the CwBidiEngine class to transform all data into a consistent

bidirectional format (see Chapter 12, “CwBidiEngine class,” on page 361).

InterChange Server Express automatically enables BiDi functionality with the

following ten connectors: Email, JDBC, JMS, JText, Lotus Domino, MQ Series,

PS, SAP, Web services, and XML. Therefore, when data in Windows BiDi format

utilizes these enabled connectors in a Web service no special configuration is

needed.

Figure 83. Test view results

Chapter 5. Customizing a map 161

In the event that a Web service operates with BiDi data that is not in Windows

BiDi format, two results are possible:

v The connection to such a service might fail all together.

v The BiDi data that is in a format different from Common Windows Bidirectional

Format (CWBF) gives unpredictable results in data processing because the data

is being compared against data in the CWBF format. In other words, identical

information is being held in different BiDi formats. To rectify these potential

situations, you need to perform the following steps for Web service deployment

inside Activity Editor.

Steps for deploying Bidi API in a Web service

Perform these steps to deploy BiDi in a Web service:

1. Register the Web service.

For information on registering, testing, verifying and exporting a Web service

see the System Implementation Guide.

2. Test the Web service using BiDi data to determine the BiDi format standard.

3. Export the Web service into Activity Editor.

4. Design the data flow using Activity Editor. Figure 84 shows an example of a

BiDi design process.

5. Add calls to BiDi API inside the generated code just before the data is sent to

the Web service and just after the reply is received to preserve the BiDi data

consistency.

Note: For more information on the BiDi transformations of BO instance content

used in the BiDi API, see Chapter 12, “CwBidiEngine class,” on page 361.

Figure 84. Activity Editor screen with BiDi elements

162 Map Development Guide

Importing Java packages and other custom code

Map Designer Express provides two ways to import Java packages and other

custom code:

v “Importing Jar libraries as activity function blocks” on page 163

v “Importing through the Map Properties dialog” on page 165

A description of each method follows.

Importing Jar libraries as activity function blocks

In addition to using the standard function blocks that Activity Editor provides,

Map Designer Express allows you to import your own Java library for use as

function blocks in Activity Editor. Importing custom Jar libraries into activity

settings will enable any public methods in the Jar library to be used as function

blocks in Activity Editor.

Steps for importing Jar libraries as activity function blocks

Before you begin: You need to export your Java classes into a .jar file.

Perform the following steps to import a Jar library into Activity Editor:

1. In System Manager, open the Activity Settings view by clicking Window >

Show View > Other and selecting Activity Settings from the category System

Manager.

2. Right-click BuildBlock Libraries and select Add Library. Figure 85 shows the

Activity Settings view for adding a custom Jar library.

3. In the Open File dialog box, navigate to your custom .jar files and select Open.

System Manager will try to import your custom .jar file for use as function

blocks in Activity Editor. If the file is imported properly, the name of your

custom .jar file will appear under BuildBlock Libraries in the Activity Settings

view.

Tip: After you import your custom .jar files into Activity Settings, when your

maps and collaboration template compile in System Manager, the custom .jar

file will automatically be included into the compile CLASSPATH. To prepare

InterChange Server Express for compilation, make sure that its CLASSPATH

includes your custom.jar file. For information on setting up InterChange

Server Express for importing your custom .jar files, see “Importing third-party

classes to InterChange Server Express” on page 166.

4. Restart Map Designer Express.

Rule: After you change any settings in the Activity Settings view, you must

restart Map Designer Express for the change to take effect in Activity Editor.

Figure 85. Activity Settings view

Chapter 5. Customizing a map 163

Result: When you open Activity Editor, the custom Jar library will be listed in the

Library window under My Library in Activity Editor. By default, available custom

function blocks are listed according to their package structure. You can use them in

an activity the same way as standard function blocks.

Customizing display settings of custom Jar libraries

You can customize the display settings of the function blocks imported into

Activity Editor, such as its name and icon, by changing the custom Jar library’s

properties. Perform the following steps to do this:

v Display the Properties window for the custom Jar library by right-clicking on

your custom Jar library listed under BuildBlock Libraries in the Activity Settings

view in System Manager.

Result: When the Properties window for the custom Jar library is opened, it will

list the available function blocks in this custom library in a tree structure on the

right-hand side of the dialog. The available function blocks are listed as child

nodes under the Java class and package that contain them.

For the Java package and classes, you can customize the display name of the entry

and whether Activity Editor should display this Java package/class in the My

Library tree structure by changing the check box ″Hide level in tree display.″ If this

option is enabled, Activity Editor will not display this entry in the My Library

subtree. This option is usually useful when the Java methods in your custom Jar

library are in a Java class that is in a package many levels deep, and enabling this

option can better organize your My Library subtree in Activity Editor.

Figure 86 shows the dialog for customizing the Jar library display.

For those Java methods used as function blocks in Activity Editor, you can specify

the function block display name, description, icon, and parameter’s display name

in the Properties window. When you import an icon for the function block, the

icon that you select will be copied into the Activity Settings folder and will be

available for other function blocks in the same package to use.

Figure 86. Properties dialog for customizing Jar library display

164 Map Development Guide

Recommendation: If you choose to import an icon for your function block to use,

the icon should be 32 pixels by 32 pixels in size and should be in .bmp format. The

color depth of the icon can be up to 24-bit.

Figure 87 shows the Properties dialog for customizing the Jar library function block

display.

 Rule: After you change any settings in the Activity Settings view, you must restart

Map Designer Express for the change to take effect in Activity Editor.

Note: You can import and export activity settings using the Import/Export wizard

in the Eclipse Workbench. For more information, see the documentation for

the Eclipse Workbench.

Importing through the Map Properties dialog

Map Designer Express automatically imports the Java packages necessary to

execute a map. If you write transformation code that uses methods from another

Java package, or if you use the Map Utilities (MapUtils) package, you need to

import the package into the map. You can also write your own custom Java code

outside of Map Designer Express and import your code into a map for use within

transformation code.

Note: The version of the Java Development Kit (JDK) that is appropriate for the

IBM WebSphere Business Integration Server Express release must be

installed for map development.

Attention: Map Designer Express cannot debug or verify the logic of any code

imported into a map. Consequently, the map developer is responsible

for all errors and exceptions caused by imported code.

Steps for importing Java packages or other custom code

To import a Java package or other custom code:

1. Display the General tab of the Map Properties dialog, as follows:

Figure 87. Properties dialog for customizing Jar library function block display

Chapter 5. Customizing a map 165

From the Edit menu, select Map Properties. For information on other ways to

display the Map Properties dialog, see “Specifying map property information”

on page 58. The Map Properties dialog box appears (see Figure 92 on page 188).

2. Enter the import statements in the Map file declaration block. You can also

enter other Java statements in the Map local declaration block.

Note: When you compile the map, the Java compiler looks for imported

packages in the directory defined by the CLASSPATH environment variable.

If you import a package into a map and deploy the map at another

InterChange Server Express system before compiling it, make sure you

also deliver the imported package with the map.

For requirements for compiling a map with System Manager, see

“Compiling a map” on page 82.

All statements execute at the beginning of the map, before any transformation

steps execute.

3. Click OK to close the Map Properties dialog box.

Steps for importing map utilities

To use the Map Utilities package, you must import it into the map by performing

the following steps:

1. Ensure the CollabUtils.jar file is in the <ProductDir>\lib directory.

2. Ensure the start_server.bat (or CWSharedEnv.sh) file contains a reference to

the CollabUtils.jar file.

Note: Steps 1 and 2 are needed for the server compile.

3. Modify the Compiler Classpath preference for compiling the maps and

collaboration templates from System Manager:

a. In System Manager, select Window > Preferences to open the Preference

dialog.

b. Expand System Manager Preferences, and select Compiler.

c. In the Compiler preference page, click New and select the .jar file to be

included in the compile CLASSPATH for maps and collaboration templates.
4. From Map Designer Express, open the map that needs to use the Map Utilities

package.

5. Display the Map Properties dialog.

6. In the Map Properties dialog box, type the following import statement in the

Map file declaration block:

import com.crossworlds.MapUtils.*;

7. Click OK to close the Map Properties dialog box.

Importing third-party classes to InterChange Server Express

If the imported classes are in a third-party package rather than in the JDK, in order

to set up the server compile, you must add them to the path of the imported

classes in the JCLASSES variable.

Recommendation: You should use some mechanism to differentiate those classes in

JCLASSES that are standard from those that are custom.

Example: You can create a new variable to hold only those custom classes and

append this new variable to JCLASSES, by performing the following steps:

1. Create a new map property, such as one called DEPENDENCIES.

166 Map Development Guide

2. Place the CwMacroUtils.jar in its own directory.

Example: Create a dependencies directory below the product directory and

place the jar file in it.

3. Add the dependencies directory to the file used to start InterChange Server

Express (by default, start_server.bat or CWSharedEnv.sh), which is located in

the bin directory below the product directory. For example, add the following

entry for Linux:

set DEPENDENCIES=$ProductDir/

dependencies/CwMacroUtils.jar

Add the following entry for Windows:

set DEPENDENCIES="%ProductDir%"\dependencies\

CwMacroUtils.jar

4. Add DEPENDENCIES to the JCLASSES entry:

For Linux, add:

set JCLASSES=$JCLASSES:ExistingJarFiles:

$DEPENDENCIES

For Windows, add:

set JCLASSES=ExistingJarFiles

;%DEPENDENCIES%

5. In each map that uses the classes, include the PackageName.ClassName specified

in the CwMacroUtils.jar file.

6. Restart InterChange Server Express to make the methods available to the maps.

Note: Be sure you have modified the Compiler Classpath preference for compiling

the maps and collaboration templates from System Manager. To do this,

perform the following steps:

1. In System Manager, select Window > Preferences to open the Preference

dialog.

2. Expand System Manager Preferences, and select Compiler.

3. In the Compiler preference page, click New and select the .jar file to be

included in the compile CLASSPATH for maps and collaboration templates.

Guidelines: When importing a custom class, you may get an error message

indicating that the software could not find the custom class. If this occurs, check

the following:

v Check that the custom class is part of a package. It is good programming

practice for custom classes to be placed in a package. Make sure that the custom

class code includes a correct package statement and that it is placed at the

beginning of the source file, prior to any class or interface declarations.

v Verify that the import statement is correct in the map definition code. The

import statement must reference the correct package name; it may further

specify the name of the custom class or it may reference all classes in the

package.

Example: If your package name is COM.acme.graphics and the custom class is

Rectangle, you can import the entire package:

import COM.acme.graphics.*;

Or, you can import just the Rectangle custom class:

import COM.acme.graphics.Rectangle;

v Be sure that you have updated the CLASSPATH environment variable to include

the path to the package containing the custom class, or to the custom class itself

if it is not in a package.

Chapter 5. Customizing a map 167

Example: When importing a custom class, you might create a folder called

%ProductDir%\lib\com\<ProductDir>\package, where package is the name of your

package. Then, place your custom class file under the folder you just created.

Finally, in the CLASSPATH variable in the start_server.bat file, include the path

%ProductDir%\lib.

Using variables

A variable is a placeholder for a value in the Java code. This section provides the

following information about using variables in transformation code:

v “Using generated business object variables and attributes”

v “Creating temporary variables” on page 170

Using generated business object variables and attributes

This section provides information about generating business object variables for the

source and destination business objects. When you add a business object to the

map, Map Designer Express automatically generates the following:

v An instance name

The instance name that Map Designer Express generates is a system-declared

local variable that you can use to refer to this business object in the mapping

code. It is prefixed with the letters Obj, which is followed by the name of the

business object definition.

Example: If you add Customer to the map, its instance name is ObjCustomer.

Map Designer Express generates an instance name for both the source and

destination business objects.

When you write code in Activity Editor, you use the instance name to refer to

the business object and its attributes.

v An index for the business object within a business object array (if the business

object is multiple-cardinality)

The business object index represents the order of this source or destination

business object. The index number of the first source and destination business

objects in a map is zero. Additional business objects take the next available

index number, such as 1, 2, 3, and so on.

When the map is executed, the index number represents the position of the

business object in the array that is passed into the map (source business objects)

or returned by the map (destination business objects).

Map Designer Express displays this information in the following locations:

v In the Business Objects tab of the Map Properties dialog

Right-click the title bar of the business object window and select Properties from

the Context menu. The Map Properties dialog appear with the Business Objects

tab displaying and the selected business object highlighted in the list. This tab

displays both the instance name and its index within the business object array (if

the business object is multiple cardinality).

v In the Table tab—in the business object pane

v In the Diagram tab—in the title bar of the business object window in the

following format:

The title bar displays the instance name for the business object.

Note: You can specify whether Map Designer Express displays the names of the

variables for the source and destination business objects with the option

Defining Map: show business object instance name. By default, this option

168 Map Development Guide

is enabled and Map Designer Express displays these variable names

(ObjBusObj) in both the Table and Diagram tabs. When the option is

disabled, Map Designer Express only displays the names of the source and

destination business objects. You can change the setting of this option on the

General tab of the Preferences dialog. For more information, see “Specifying

General Preferences” on page 23.

Steps for modifying business object variables

You can modify these business object variables from the Business Objects tab of the

Map Properties dialog (see Figure 88).

To change the business object type of the source or destination business object in

the map in the Map Properties dialog, perform the following steps:

1. Open the map.

2. Display the Business Objects tab of the Map Properties dialog in any of the

following ways:

v From the Edit menu, select Map Properties.

v From the Diagram tab, right-click the business object window and select

Properties from the Context menu.

Result: The General tab of the Map Properties dialog box appears. Click the

Business Objects tab.

For information on other ways to display the Map Properties dialog, see

“Specifying map property information” on page 58..

3. Select the business object type you want to change.

4. Click the Change push- button under Business Object Type.

5. Select the new type.

6. Click OK to close the Select Business Object dialog.

7. Click OK to close the Map Properties dialog.

Figure 88. Business Objects Tab of the Map Properties Dialog

Chapter 5. Customizing a map 169

Note: Invalid transformation rules will be deleted.

Referencing business object attributes

Use the business object variables that Map Designer Express generates to reference

business objects and their attributes, as follows:

v To reference attributes in a source or destination business object, use the

business object name followed by the attribute name, with a period (.) as a

separator:

Example:

ObjBusObjName.AttrName

v To reference attributes in a child business object, use the child business object

name and the child attribute name.

Example: The following example sets the value of the OrigHireDate attribute in

ObjPsft_Employee to the HireDate attribute of EmployeeHR_Misc, which is a child

of ObjEmployee:

ObjPsft_Employee.set("OrigHireDate",

 ObjEmployee.getString("EmployeeHR_Misc.HireDate"));

v If the child business object has a cardinality of n (meaning there can be more

than one instance of the child associated with the parent), you must supply an

index number for the child business object.

Example: The following example sets the value of the TimeZone attribute of

Address, which is a multiple-cardinality child of ObjCustomer:

ObjCustomer.set("Address[0].TimeZone",

ObjSAP_Customer.getString("TimeZone"));

Creating temporary variables

Map Designer Express lets you create temporary variables that can be accessed in

transformation steps throughout the map; that is; temporary variables are global to

the map. For example, you can calculate a value in one transformation step, store it

in a temporary variable, and reference the variable in another transformation step.

This is especially useful if a certain calculation is performed repeatedly; you can

perform the calculation once, store the result in a temporary variable, and retrieve

the value as needed (for example, with a Move transformation).

Steps for creating temporary business object variables

Temporary variables are defined within a temporary business object. Perform the

following steps to create a temporary business object variable:

1. Select Add Business Object from the Edit menu.

Result: The General tab of the Add Business Object Properties dialog box

appears.

For information on other ways to display the Add Business Object dialog, see

“Steps for specifying business objects from the Add Business Object dialog” on

page 36.

2. Click the Temporary tab. This is where you define the temporary variables.

Figure 89 shows the Temporary tab of the Add Business Object dialog. In the

Name field appears the temporary business object’s name, which Map Designer

Express has generated. The first generated name is ObjTemporary. This field is

read-only.

170 Map Development Guide

3. Click in the Attribute field.

Result: A new row appears in the variables table. Enter the name of the

temporary variable.

Note: Do not create two temporary variables with the same name.

4. Click the Type field and select the temporary variable’s data type from the

pull-down list.

Note: To be compatible with the InterChange Server Express data type scheme,

all temporary variables have an internal type String. The data type

specified in the Add Business Object dialog will affect only how the

variable is initialized. If you want to write custom Java code to assign

values to the temporary variable, the value has to be converted to a

String first.

5. Repeat steps 3 and 4 for each of the temporary variables you need in the map.

6. Click the Add Temporary Business Object button.

7. You can either define another temporary business object or click Done to finish.

Steps for using temporary business object variables in

transformation steps

Use the temporary variable in a transformation step in this way:

v In the Diagram tab:

1. Click the row header (left-most) column of the temporary attribute.

2. Copy the variable value to an attribute by holding the Ctrl key and

dragging the variable onto the attribute.
v In the Activity Editor Java tab, use the variable name in the transformation step

for an attribute.

Important: Because a temporary variable is a global variable, you must explicitly

initialize a temporary variable to null when using the Map Instance

Reuse option. Otherwise, the value of the temporary variable from a

previous execution of the map instance can incorrectly be used as the

Figure 89. Temporary tab of the Add Business Object dialog

Chapter 5. Customizing a map 171

value of the temporary variable in subsequent executions of the same

map. When you do not use the Map Instance Reuse option, the

InterChange Server Express system automatically initializes temporary

variables between separate invocations of the map.

Result: Once Map Designer Express creates the temporary business object, this

business object appears in the Table and Diagram tabs with the map’s other

business objects, as follows:

v In the Table tab:

– The business object pane adds a new area for the temporary business object.

Right-click the name of the temporary business object to open a Context

menu with options to edit and delete this business object.

– The temporary business object and its attributes appear in the combo boxes of

the Source Attribute and Dest. Attribute columns in the attribute

transformation table.
v In the Diagram tab, the map workspace adds a new business object window for

the temporary business object.

This Temporary business object window has many of the same characteristics as

a business object window. Variables you create appear in the variables table just

like attributes in a business object. This business object window provides a Rule

and Comment column where you can add the temporary variable’s

transformation code and comment, respectively.

You can right-click in the title bar of the Temporary business object window to

get a Context menu that provides options to edit and delete this business object,

as well as its properties. Specify a value for the variable in one of the following

ways:

– To enter code that returns the value of the variable, double-click in the Rule

column, select the appropriate transformation rule, and click Edit Code to

enter the code in Activity Editor.

– To copy a value from a business object attribute to a variable, hold down the

Ctrl key and drag the attribute onto the variable name. You can also split and

join attributes into a variable.

Note: A temporary business object also appears in the Business Object tab of the

Map Properties dialog.

Declaring variables

Tips: Keep the following tips in mind when declaring variables:

v When creating a variable local to the current attribute (not visible to all other

attributes), declare it at the top of the current attribute’s transformation step (in

Activity Editor).

v When creating a variable global to the current map (visible to all attributes),

declare it in the Map Local Declaration block section of the General tab in the

Map Properties dialog. When writing code to assign values to these variables, do

this at the top of Activity Editor in the first attribute of the destination object (as

specified by the execution order).

More attribute transformation methods

You can perform attribute transformations interactively in the following ways:

v Using only Map Designer Express—create one of the standard transformations.

172 Map Development Guide

Table 14 on page 38 lists the standard transformations for which Map Designer

Express can generate code.

v Using a combination of Map Designer Express and Activity Editor to modify

and enhance the code—create a Custom transformation.

You can create customized transformations in either of the following ways:

– By creating a standard transformation and opening Activity Editor to change

the generated code. After you customize a standard transformation, Map

Designer Express displays the type of the transformation in blue italicized

font in the transformation rule column.

– By creating a Custom transformation and opening Activity Editor to define

the transformation. After you create a Custom transformation, Map Designer

Express displays the keyword Custom in black font in the transformation rule

column. For more information, see “Creating a Custom transformation” on

page 49.

This section describes how to implement the following kinds of custom

transformations:

v “Content-based logic”

v “Date formatting” on page 178

v “Using Expression Builder for string transformations” on page 181

Content-based logic

Customer.CustomerStatus = ’Inactive’

if SAP_CustomerMaster.DeleteInd = ’X’.

Otherwise, CustomerStatus = ’Active’.

You can create a Custom transformation and write the entire piece of code to

implement the content-based logic yourself. However, a better approach is to start

by creating a Move transformation between DeleteInd (in the SAP_CustomerMaster

object) and CustomerStatus (see “Copying a source attribute to a destination

attribute” on page 40 for the procedure to move attributes).

As a result, Map Designer Express generates the move-transformation, as shown in

the following sample code:

{

 Object _cw_CpBTBSourceValue = null;

 //

 // RETRIEVE SOURCE

 // ---------------

 //

 // Retrieve the source value from the source business object and

 // place it in a local variable for code safety.

 //

 _cw_CpBTBSourceValue = ObjSAP_CustomerMaster.get("DeleteInd");

 //

 // SET DESTINATION

 // ---------------

 //

 // Put the source value into the destination business object

 // attribute.

 //

 {

 Object _cw_SetSrcVal = _cw_CpBTBSourceValue;

 BusObj _cw_SetDestBusObj = ObjCustomer;

Chapter 5. Customizing a map 173

String _cw_SetDestAttr = "CustomerStatus";

 //

 // Set the destination value only if neither

 // source nor destination is null.

 //

 if ((_cw_SetSrcVal != null) && (_cw_SetDestBusObj != null))

 {

 if (dataValidationLevel >= 1)

 {

 if (!_cw_SetDestBusObj.validData(_cw_SetDestAttr, _cw_SetSrcVal))

 {

 String warningMessage =

"Invalid data encountered when attempting to set the value of the

\’_cw_SetDestAttr\’ attribute of BusObj \’_cw_SetDestBusObj\’ while running

map \’" + getName() + "\’. The invalid value was \’" + _cw_SetSrcVal

+ "\’.";

 //

 // Log a warning about this failure.

 //

 logWarning(warningMessage);

 if (failOnInvalidData)

 {

 //

 // Fail the map execution with a warning message.

 //

 throw new MapFailureException(warningMessage);

 }

 }

 }

// SECTION THAT NEEDS TO BE UPDATED WITH THE LOGIC

 if (_cw_SetSrcVal != null)

 {

 if (_cw_SetSrcVal instanceof BusObj)

 {

 //

 // Since BusObjs are not immutable, we need to make

 // a copy of the source object before actually

 // putting it into the destination attribute.

 //

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((BusObj)_cw_SetSrcVal).duplicate());

 }

 else if (_cw_SetSrcVal instanceof BusObjArray)

 {

 //

 // Since BusObjs are not immutable, we need to make

 // a copy of the source object before actually

 // putting it into the destination attribute.

 //

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((BusObjArray)_cw_SetSrcVal).duplicate());

 }

 else

 {

 //

 // Since our version of simple data types are immutable in

 // Java (Strings included), we do not have to make a copy

 // of the source value here.

 //

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, _cw_SetSrcVal);

 }

 }

 }

 }

}

174 Map Development Guide

// HERE IS THE MODIFIED CODE

 if (_cw_SetSrcVal != null)

 {

 if (((String)_cw_SetSrcVal).equals("X"))

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, "Inactive");

 else

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, "Active");

 }

 }

 }

}

Select Save from Activity Editor File menu to save the changes.

Verb-based logic

Customer.CustomerStatus = ’Inactive’ if Verb = ’Create’. Otherwise,

CustomerStatus = ’Active’.

Follow the procedure in “Content-based logic” on page 173, but use the following

conditional statement to replace the section of the generated code:

// HERE IS THE MODIFIED CODE

if (_cw_SetSrcVal != null)

 {

 if (ObjSAP_CustomerMaster.getVerb() .equalsIgnoreCase("Create"))

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, "Inactive");

 else

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,"Active");

Providing default values if source data Is missing

Map SAP_CustomerMaster.State into Customer.CustomerAddress.State. If SAP’s

state is missing, default to CA.

Notice that before the destination attribute is set to the source value, the code

checks if the source attribute is not equal to null.

Example: In this example, if the source data is missing, set the destination attribute

to a default value.

Start by moving SAP_CustomerMaster.State into Customer.CustomerAddress.State.

Change the condition statement to the following:

// HERE IS THE MODIFIED CODE

if (_cw_SetSrcVal != null)

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, _cw_SetSrcVal);

else

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, "CA");

_cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, "CA");

Tip: If you started the coding by copying the source attribute into the destination

attribute, the line of code that sets the default value has to be typed twice.

This is because the code that is generated when the source attribute is moved

into the destination attribute checks twice that the source attribute is not null.

Thus, you must enter the default value.

Logic based on calling context

When you need to check for the value of the calling context, use the built-in

variable strInitiator, which is of type String.

Chapter 5. Customizing a map 175

Example: To check if the calling context is EVENT_DELIVERY, use the following

statement:

if (strInitiator.equals(MapExeContext.EVENT_DELIVERY))

//rest of the code

Forcing a map to fail if the source data Is missing

Map SAP_CustomerMaster.State into Customer.CustomerAddress.State. If SAP’s

state is missing, stop the map from executing.

Start by moving SAP_CustomerMaster.State into Customer.CustomerAddress.State.

Then add one more if() statement to check if the State attribute for SAP is equal

to null. The generated code looks like the following:

{

 Object _cw_CpBTBSourceValue = null;

 //

 // RETRIEVE SOURCE

 // ---------------

 //

 // Retrieve the source value from the source business object and

 // place it in a local variable for code safety.

 //

 _cw_CpBTBSourceValue = ObjSAP_CustomerMaster.get("State");

 //

 // SET DESTINATION

 // ---------------

 //

 // Put the source value into the destination business object

 // attribute.

 //

 {

 Object _cw_SetSrcVal = _cw_CpBTBSourceValue;

 BusObj _cw_SetDestBusObj = ObjCustomer;

 String _cw_SetDestAttr = "CustomerAddress.State";

 // New code

 if (_cw_SetSrcVal == null)

 {

 String errorMessage = "Data in the state attribute is missing";

 logError(errorMessage);

 //

 // Fail the map execution with a warning message.

 //

 throw new MapFailureException(errorMessage);

 }

 // End of new code

 //

 // Set the destination value only if neither

 // source nor destination is null.

 //

 else if ((_cw_SetSrcVal != null) && (_cw_SetDestBusObj != null))

 {

 if (dataValidationLevel >= 1)

 {

 if (!ObjCustomer.validData("CustomerAddress.State", _cw_SetSrcVal))

 {

 String warningMessage =

"Invalid data encountered when attempting to set the value of

the \"CustomerAddress.State\" attribute of BusObj \’ObjCustomer\’

while running map \’" + getName() + "\’. The invalid value

was \’" + _cw_SetSrcVal + "\’.";

 //

 // Log a warning about this failure.

176 Map Development Guide

//

 logWarning(warningMessage);

 if (failOnInvalidData)

 {

 //

 // Fail the map execution with a warning message.

 //

 throw new MapFailureException(warningMessage);

 }

 }

 }

 if (_cw_SetSrcVal != null)

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr, _cw_SetSrcVal);

 }

 }

}

If the map is run and the State attribute is not set, an error message is produced in

both a dialog window and on the server screen. The message on the server screen

is similar to the following:

[1999/09/22 17:58:51.008] [Server]

Sub_SaCwCustomerMaster: Error Data

in the state attribute is missing

The map stops executing.

Tip: Use the following code to display the actual error message generated by the

system on a map failure:

try

 {

 // your code

 }

catch (Exception e)

 {

 throw new MapFailureException(e.toString());

 }

Logging messages from a message file

Notice how the example in “Forcing a map to fail if the source data Is missing” on

page 176 uses the logError() method to display the error message on the screen.

You can use messages provided in the generic messages file, CWMapMessages.txt,

which is stored in \DLMs\messages. See Chapter 27, “Message files,” on page 495,

for more information about message files.

CWMapMessages.txt has the following format:

critical data is missing error

10

Data in the {1} attribute is missing. Map execution stopped.

Another error

11

Another error message

Notice that instead of {1} you can use the word State to correspond directly to the

error that needs to be displayed. If implemented, however, the message is no

longer generic. If another attribute also has critical data, you need another message

in the message file specific to that particular attribute.

Note: Do not modify the CwMapMessages.txt file. If you need to write your own

messages, enter them in the Messages tab of Map Designer Express, which

Chapter 5. Customizing a map 177

creates a map-specific error message file named mapName_locale.txt (where

mapName is the same name as the map), for example, mapName_en_US.txt.

The server saves this message file in the directory \DLMs\messages after

deployment.

To display message #10, use the following code:

logWarning(10, "State");

The word State replaces {1} in the message text.

The following message is displayed in the InterChange Server Express log file:

[1999/09/23 10:17:43.648] [Server]

Sub_SaCwCustomerMaster:

Warning 10: Data in the State attribute is missing.

Map execution stopped.

Date formatting

The Mapping API provides methods for date formatting in the DtpDate class.

Table 61 summarizes the date-formatting methods.

 Table 61. Date-Formatting Methods of the DtpDate Class

Date Formatting DtpDate Method

Getting the month name from a date getMonth(), getShortMonth()

Getting the month value from a date getIntMonth(), getNumericMonth()

Getting the day of the month getDayOfMonth(), getIntDay()

Getting the day of the week getDayOfWeek(), getIntDayOfWeek()

Getting the year from a date getYear(), getIntYear()

Getting the hour value getHours()

Getting the minutes value from a date getMinutes(), getIntMinutes()

Getting the seconds value from a date getSeconds(), getIntSeconds()

Getting the number of milliseconds in the

date

getMSSince1970()

Getting the earliest date from a list getMinDate(), getMinDateBO()

Getting the most recent date from a list getMaxDate(), getMaxDateBO()

Parsing the date according to a specified

format

DtpDate()

Getting the date in a specified or default

format

toString()

Reformatting a date to the IBM-generic

date format

getCWDate()

Adding days to date addDays()

Adding weekdays to date addWeekdays()

Adding years to date addYears()

Calculating days between dates calcDays()

Calculating weekdays between dates calcWeekdays()

Comparing dates after(), before()

Using full month names get12MonthNames(), set12MonthNames(),

set12MonthNamesToDefault()

Using short month names get12ShortMonthNames(),

set12ShortMonthNames(),

set12ShortMonthNamesToDefault()

Using weekday names get7DayNames(), set7DayNames(),

set7DayNamesToDefault()

178 Map Development Guide

Tip: Always catch DtpDateException. This guarantees that if the date format is

invalid, a message is sent to the InterChange Server Express log.

Using the generic date format

IBM uses the following date format in its generic business objects:

YYYYMMDD HHMMSS

This format is called the generic date format.

Steps for converting to generic date format: To convert an application-specific

date to this generic format, use the getCWDate() method of the DtpDate class.

Example: To map the SAP date attribute into a generic date, perform a Copy of the

source attribute (the SAP date string) into the destination attribute (the generic

date string):

1. Create a DtpDate object to hold the generic date.

Copy the source attribute (the SAP date string) into a new DtpDate object (the

generic date string) by parsing the SAP date string (YYYYMMDD) with the

DtpDate() constructor.

2. Convert the SAP date string into the generic date format (YYYYMMDD

HHMMSS) with the getCWDate() method.

3. Create the destination attribute and initialize its value to the generic date

format with the setWithCreate() method.

The last section of the code should look like this:

// HERE IS THE MODIFIED CODE

if (_cw_SetSrcVal != null)

 {

 try

 {

 DtpDate myDate = new DtpDate((String)_cw_SetSrcVal, "YMD");

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 myDate.getCWDate());

 }

 catch (DtpDateException de)

 {

 logError(5501);

 logInfo(de.getMessage());

 }

 }

Example: To map the Clarify date attribute into the generic date, perform a Copy

of the source attribute (the Clarify date string) into the destination attribute (the

generic date string):

1. Create a DtpDate object to hold the generic date.

Copy the source attribute (the Clarify date string) into a new DtpDate object

(the generic date string) by parsing the Clarify date string (MM/DD/YYYY

HH:MM:SS) with the DtpDate() constructor.

2. Convert the Clarify date string into the generic date format (YYYYMMDD

HHMMSS) with the getCWDate() method.

3. Create the destination attribute and initialize its value to the generic date

format with the setWithCreate() method.

The following code converts the Clarify date into the Generic date:

Chapter 5. Customizing a map 179

if (_cw_SetSrcVal != null)

 {

 try

 {

 DtpDate myDate = new DtpDate((String)_cw_SetSrcVal,

 "M/D/Y h:m:s");

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 myDate.getCWDate());

 }

 catch (DtpDateException de)

 {

 logError(5501);

 logInfo(de.getMessage());

 }

 }

To map the Generic date into the Clarify format, use the following code:

if (_cw_SetSrcVal != null)

 {

 try

 {

 DtpDate myDate = new DtpDate((String)_cw_SetSrcVal, "YMD hms");

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 myDate.toString("M/D/Y h:m:s", true));

 }

 catch (DtpDateException de)

 {

 logError(5501);

 logInfo(de.getMessage());

 }

}

Steps for converting from generic date format: To convert from the generic date

format to the SAP date format, perform the following steps:

1. Create a DtpDate object to hold the SAP date.

Perform a Copy of the source attribute (the generic date string) into a new

DtpDate object (the SAP date string) by parsing the generic date string

(YYYYMMDD HHMMSS) with the DtpDate() constructor.

2. Convert the IBM generic date format into the SAP date string (YYYYMMDD)

with the toString() method.

3. Create the destination attribute and initialize its value to the SAP date format

with the setWithCreate() method.

The following code fragment shows this generic-to-SAP date conversion:

// HERE IS THE MODIFIED CODE

if (_cw_SetSrcVal != null)

 {

 try

 {

 DtpDate myDate = new DtpDate((String)_cw_SetSrcVal, "YMD hms");

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 myDate.toString("YMD"));

 }

 catch (DtpDateException de)

 {

 logError(5501);

 logInfo(de.getMessage());

 }

 }

180 Map Development Guide

Obtaining the current date

To create a DtpDate object that is initialized with the current system date, use the

DtpDate() constructor without any parameters:

DtpDate()

Example: To map the current date into the generic format, use the following code:

//get the current date

DtpDate myDate = new DtpDate();

// format the date to the destination object’s format and map

_cw_SetDestBusObj.set(_cw_SetDestAttr, myDate.getCWDate());

To map the current date into the application-specific format, use the following

code:

//get the current date

DtpDate myDate = new DtpDate();

// format the date to the destination object’s format and map

_cw_SetDestBusObj.set(_cw_SetDestAttr, myDate.toString(

 "application format");

Using Expression Builder for string transformations

When writing transformation code, you may need to build complex Java

expressions to reference a particular attribute, manipulate a string, or call an API

method. You can enter these expressions manually in Activity Editor, or use

Expression Builder to construct the expression interactively. Expression Builder is a

utility available from within Activity Editor.

Tip: Alternatively, you can use Activity Editor’s Graphical view.

To display Expression Builder, place the cursor at the position in Activity Editor

where you want to insert the expression and do one of the following:

v From the Tools menu, select Expression Builder.

v On the Java toolbar, click the Expression Builder button.

v Right-click anywhere in the Activity Editor window and select Expression

Builder from the Context menu.

Figure 90 identifies the main components of Expression Builder.

You can write or modify
the expression code here.

Click a symbol’s button to
insert it into the expression.

Click here to clear
the expression and
start over.

Note: In the API list, the number 1 refers to the object selected from the far left

window and the number 2 refers to the object selected from the middle

Figure 90. Expression Builder dialog

Chapter 5. Customizing a map 181

window, if there is an object present. When you insert the API, pairs of

brackets surround variables (<<variable>>). You must replace the brackets

and the variable with a value.

This section describes how to use Expression Builder to perform the following

kinds of string transformations:

v “Steps for converting to uppercase text”

v “Using string manipulation methods”

Steps for converting to uppercase text

Move SAP_CustomerMaster.CustomerName into Customer.AccountOpenedBy and

convert all letters to uppercase text.

To use the toUpperCase() string manipulation functions, perform the following

steps:

1. Perform a Move transformation from SAP_CustomerMaster.CustomerName into

Customer.AccountOpenedBy.

2. Open the Activity Editor window by double-clicking in the Transformation

Rule column associated with Customer.AccountOpenedBy. In Activity Editor,

scroll down to the point where the destination is set to the source data. Change

it to contain just the following code:

if (_cw_SetSrcVal != null)

 {

 //

 // Since our version of simple data types are immutable in

 // Java (Strings included), we do not have to make a copy

 // of the source value here.

 //

 _cw_SetDestBusObj.setWithCreate(

 _cw_SetDestAttr, _cw_SetSrcVal);

 }

The _cw_SetSrcVal variable contains SAP.CustomerName and _cw_SetDestAttr

contains AccountOpenedBy.

3. Convert CustomerName to uppercase before copying it into AccountOpenedB.

If you know the method to use, add it to the line of code above; otherwise, you

can use Expression Builder to help you find the correct method. To do this:

a. Copy (Ctrl+C) _cw_SetSrcVal.

b. Highlight _cw_SetSrcVal (this code will be replaced with the code generated

by Expression Builder) and select Expression Builder from the Tools menu.

c. Select String in the Main Categories list.

d. Select the method toUpperCase() from the list of String APIs.

e. Click Insert API.

f. When this method is displayed in the top window, replace the word

“string,” which is a placeholder, with the word _cw_SetSrcVal that you

copied earlier.

g. Click OK.

Result: The method call is inserted into the code.

h. Select the Save option from the File menu to save the code.

Using string manipulation methods

The following string transformation uses string manipulation methods (such as

length() and substring()) to move SAP_CustomerMaster.AddressLine1 into

Customer.CustomerAddress.AddressLine1 and AddressLine2:

182 Map Development Guide

v If the length of AddressLine1 is less than 10 characters, move the SAP

AddressLine1 to CustomerAddress.AddressLine1 and do not map AddressLine2.

v If the length is greater or equal to 10 characters, map everything after the

comma in the SAP AddressLine1 into CustomerAddress.AddressLine2. If a

comma is not found, map 9 characters to AddressLine1, and the rest to

AddressLine2.

Steps for performing the string transformation: To perform this string

transformation, follow these steps:

1. Perform a Move transformation of AddressLine1 into

CustomerAddress.AddressLine1.

2. Open the Activity Editor window of AddressLine1 and scroll down to the point

where the destination is set to the source data. Change it to contain the

following code:

if (_cw_SetSrcVal != null)

 //

 // Since our version of simple data types are immutable in

 // Java (Strings included), we do not have to make a copy

 // of the source value here.

 //

 {

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 _cw_SetSrcVal);

 }

The _cw_SetSrcVal variable contains SAP.AddressLine1, and _cw_SetDestAttr

contains CustomerAddress.AddressLine1.

3. Check the length of SAP.AddressLine1 and either map the entire string into

CustomerAddress.AddressLine1 or map the substring of SAP.AddressLine1 that

precedes the comma.

You can either modify the code yourself or use Expression Builder. In either

case, use the methods length(), substring(int, int), substring(int), and

indexOf(int) methods of the String class.

4. Change the code to the following:

if (_cw_SetSrcVal != null)

 {

 // first check the length of _cw_SetSrcVal

 if (((String)_cw_SetSrcVal).length() < 10)

 {

 // if it is less then 10, map it to AddressLine1

 _cw_SetDestBusObj.setWithCreate(

 _cw_SetDestAttr, _cw_SetSrcVal);

 }

 else

 {

 // if the length is not less than 10, search for comma

 int index = ((String)_cw_SetSrcVal).indexOf(",");

 // if comma is found, take a substring of _cw_SetSrcVal up to

 // the comma and map it to AddressLine1

 if (index != -1)

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((String)_Cw_SetSrcVal).substring(0, index));

 // if comma is not found, take first 9 characters of

 // _cw_SetSrcVal and map them to AddressLine1

 else

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((String)_Cw_SetSrcVal).substring(0, 9));

 }

 }

Chapter 5. Customizing a map 183

5. Move SAP.AddressLine1 into CustomerAddress.AddressLine2. Modify the

bottom part of the code to contain the following:

if (_cw_SetSrcVal != null)

 {

 // first check the length of _cw_SetSrcVal

 if (((String)_cw_SetSrcVal).length() >= 10)

 {

 // if the length is not less than 10, search for comma

 int index = ((String)_cw_SetSrcVal).indexOf(",");

 // if comma is found, take a substring of _cw_SetSrcVal after

 // the comma and map it to AddressLine2

 if (index != -1)

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((String)_Cw_SetSrcVal).substring(index + 1));

 // if comma is not found, take all characters of

 // _cw_SetSrcVal starting at the 10th and map them to

 // AddressLine1

 else

 _cw_SetDestBusObj.setWithCreate(_cw_SetDestAttr,

 ((String)_Cw_SetSrcVal).substring(9));

 }

 }

Source data validation

If you write code yourself, make sure that the source data is not null or blank. To

check whether the source attribute is null, use one of the following:

v if (ObjSource.isNull("Attr"))— returns true if it is empty

v if (ObjSource.get("Attr") == null) — returns true if attr is empty

To check whether the source attribute is an empty string, do the following:

v if (ObjSource.isBlank("Attr")) — returns true if it is blank

v if (ObjSource.getString("Attr").length() == 0) — returns true if attr of type

String is blank

Reusing map instances

Typically, the map development system creates an instance of a map to process

each transformation of data between the source and destination business objects.

When the instance completes the handling of the transformation, the system frees

up its resources. To reduce memory usage, the IBM system recycles an instance of

a map instance by caching it and reusing it when the same type of map is

instantiated at some later time. When the IBM system can recycle an existing map

instance, it can avoid the overhead of map instantiation, thereby improving overall

system performance and memory use.

Restrictions: The map development system automatically caches a map instance;

that is, a map instance uses the Map Instance Reuse option by default. However,

the Map Instance Reuse option imposes the following programming requirements

on the map:

v Avoid using global variables in the map code.

A global variable is a variable you declare in the Map local declaration block

area of the General tab in the Map Properties dialog.

v If your map requires global variables, avoid initializing these global variables at

declaration time. Instead, ensure that the global variables are always initialized

at a map node, preferably the first transformation (attribute) node in a map.

184 Map Development Guide

Attention: A map containing global variables that are not initialized at the first

transformation node cannot safely be recycled because the variable

values in the cached map instance persist when the instance is reused.

When the cached map instance is reused and begins execution, each

global variable contains the value from the end of the previous use of

the map instance.

If you cannot define your map so that it meets the preceding restrictions, you must

disable the Map Instance Reuse option for this map. To disable this option, remove

the check mark from the Map instance reuse box, which appears in the map’s

Map Properties window in System Manager. This window also allows you to

specify the size of the map-instance pool.

Note: Deploying the map to the server will not update the run-time instance. You

can update the map properties dynamically from the server component

management view by right-clicking on the map and selecting the properties

from the Context menu. The changes will be automatically updated to the

server.

Handling exceptions

An exception represents an occurrence that, if not handled explicitly within the

map, stops the map’s execution. During the execution of a map, run-time

exceptions can occur. When you define a custom transformation rule, you can use

the ″Catch Error″ function block to trap any run-time exception. Once you catch a

particular exception, you can determine how to handle this exception.

Relationship exceptions

When using relationships in a map, several exceptions can occur. All of these

exceptions are subclasses of RelationshipRuntimeException. If you are not

concerned about the kind of exception, but simply want to catch them all, you can

catch RelationshipRuntimeException. Otherwise, you can catch any of the

following exceptions for specific cases:

v RelationshipRuntimeDataAccessException—thrown if a problem occurs while

accessing the relationship database. You might catch this exception in any

method call from the Relationship or Participant class.

v RelationshipRuntimeDuplicateIdentityEntryException—thrown if you try to

add a participant to an identity relationship with the same relationship instance

ID as an existing relationship instance. You might catch this exception in

addMyChildren() and create() method calls.

v RelationshipRuntimeUserErrorException—is an abstract exception. It is thrown

only if a RelationshipRuntimeMetaDataErrorException or

RelationshipRuntimeGeneralUserErrorException occurs. You might catch this

exception in any method call from the Relationship or Participant class during

map development. Once the map is debugged, you can remove the handlers for

this exception.

v RelationshipRuntimeMetaDataErrorException—thrown if an error occurs while

manipulating the metadata associated with participant instances, such as the

relationship name or participant definition name. You might catch this exception

in any method call that adds, modifies, or deletes participant instances.

v RelationshipRuntimeGeneralUserErrorException—thrown if there is an error in

the run-time data supplied with a Relationship or Participant class method

call.

Chapter 5. Customizing a map 185

Example: The exception is thrown if you pass a business object of the wrong

type to the create() method.

Figure 91 illustrates the relationship run-time exception hierarchy. Any exception

you catch automatically catches those that are lower in the hierarchy. However, if

an exception lower in the hierarchy is thrown, you cannot know exactly which one

it is unless you catch it specifically.

RelationshipRuntimeException

RelationshipRuntimeDataAccessException

RelationshipRuntimeUserErrorException

RelationshipRuntimeDuplicateIdentityEntryException

RelationshipRuntimeMetaDataErrorException

RelationshipRuntimeGeneralUserErrorException

Example: If you catch RelationshipRuntimeUserErrorException, you automatically

also catch RelationshipRuntimeMetaDataErrorException and

RelationshipRuntimeGeneralUserErrorException. However, you cannot easily

know which one of these was actually thrown, unless you test the exception with

the instance of operator. The exception you choose to catch depends on how

specific you want your exception handling to be.

Example: Handling duplicate relationship instance IDs

When you add a participant to an identity relationship using the addMyChildren()

or create() methods, RelationshipRuntimeDuplicateIdentityEntryException is

thrown if you pass a relationship instance ID that already exists. This exception

also provides a method, getInstanceId(), to retrieve the relationship instance ID

that caused the duplication.

Example: The following example shows how you can catch this exception and

retrieve the ID.

int instanceId;

try

 {

 instanceId = Relationship.create(myParticipantObj);

 }

catch (RelationshipRuntimeDuplicateIdentityEntryException rrdiee)

 {

 /*

 ** There already is a relationship instance with this

 ** entry, grab the instanceId from the exception

 */

 instanceId = rrdiee.getInstanceId();

 }

Figure 91. Relationship run-time exceptions

186 Map Development Guide

Creating custom data validation levels

When values are mapped from one business object to another based on

transformation code, incorrect data can result. The data validation feature checks

each operation in a map and logs an error when data in the incoming business

object cannot be transformed to data in the outgoing business object according to

certain rules.

Example: Suppose that a map transforms a string value in the source business

object to an integer value in the destination business object. This type conversion

works properly when an incoming string value represents an integer (for example,

“1234” represents the integer 1234). However, the conversion does not work

properly if the string value does not represent an integer (for example, “ABCD”

might indicate invalid data).

This section provides the following information about using data validation levels

in a map:

v “Coding a data validation level”

v “Steps for testing the data validation level” on page 188

Coding a data validation level

The map development system defines data validation levels 0 and 1; levels 2 and

greater are available for you to define. Table 62 summarizes the data validation

levels:

 Table 62. Data Validation Levels

Level Description

0 Default; no data validation

1 IBM-defined data type checks

2 and greater User-defined validation checks

To create a custom validation level, double-click an attribute to display its code in

the Activity Editor window. Note the following if statement, which introduces the

code that throws an exception when invalid data is encountered:

if (dataValidationLevel >= 1)

Add your own if statement to specify the action that you want to associate with

the data validation level. The data validation rules that you associate with a level

can be whatever is appropriate and needed for your business logic and

applications. For example, a level 2 rule for a particular attribute might check for a

certain value and, if it is not present, set the attribute to a default.

Example: The following example code uses data validation level 2 to check that a

credit card number is valid:

/*

** At data validation level 2, check credit card numbers resulting

** from data entry errors, etc.

*/

if (dataValidationLevel >= 2)

 {

 if (!CustUtility.validateCreditCard(ObjPurchaseReq.getString

 ("creditCardNumber")))

 {

 logWarning("Invalid credit card number sent through.");

 if (failOnInvalidData)

Chapter 5. Customizing a map 187

{

 throw new MapFailureException(

 "Invalid credit card number.");

 }

 }

 }

Steps for testing the data validation level

In a test run of the map, you can set the data validation level to see that it is

working properly. Perform the following steps to test the data validation level for a

map instance:

1. Display the Map Properties dialog, as follows:

From the Edit menu, select Map Properties. For information on other ways to

display the Map Properties dialog, see “Specifying map property information”

on page 58.

Result: The General tab of the Map Properties dialog appears.

2. Set the data validation level you want to test. Optionally, set the map to fail if

the data is invalid.

3. Stop and restart the map for the new data validation level to take effect.

v If you have changed the map code, recompile the map. Recompiling

automatically restarts the map.

v If you have not changed the map code, you do not have to recompile.

However, you must explicitly stop and restart the map before the new data

validation level takes effect. Use the Component menu of service Manager to

stop and start a map.

Note: You can also set the data validation level and whether it fails if invalid data

is present from the Map Properties window and the server component

management view.

If you want the map
to fail when invalid
data is encountered,
check this box.Set the data validation

level for the level you
want to test.

Figure 92. General tab of Map Properties dialog

188 Map Development Guide

Understanding map execution contexts

Each map instance executes within a specific execution context that is set by the

connector controller. The Mapping API represents the map execution context with

an instance of the MapExeContext class.

For every map that Map Designer Express generates, the map’s execution context

is accessible through a system-defined variable named cwExecCtx. You can

reference this variable in the Variables folder in Activity Editor or when you call a

Mapping API method that requires the execution context, including those in

Table 63.

 Table 63. Mapping API methods that require the map execution context

Purpose Mapping API method For more information

Calling a submap runMap() “Transforming with a submap”

on page 45

Maintaining a

relationship

v addMyChildren()

v deleteMyChildren()

v updateMyChildren()

v maintainChildVerb()

v maintainSimpleIdentityRelationship()

v maintainCompositeRelationship()

v foreignKeyXref()

v foreignKeyLookup()

Chapter 8, “Implementing

relationships,” on page 257

Table 64 shows the two pieces of information that you most often need from the

map execution context.

 Table 64. MapExeContext Methods for Context Information

Execution Context Information MapExeContext Method

The calling context getInitiator(), setInitiator()

The original-request business object getOriginalRequestBO()

This section discusses both these pieces of map-execution-context information.

Note: In addition, you can use the getConnName() and setConnName() methods of

MapExeContext to access the name of the connector from the map execution

context.

Calling contexts

The calling context indicates the purpose for the current map execution. When

transforming relationship attributes, you usually need to take actions based on the

map’s calling context. Table 65 lists the valid constants for calling contexts.

 Table 65. Calling contexts

Calling-context constant Description

EVENT_DELIVERY The source business object(s) being mapped are event(s)

from an application, sent from a connector to

InterChange Server Express in response to a

subscription request (event-triggered flow).

Chapter 5. Customizing a map 189

Table 65. Calling contexts (continued)

Calling-context constant Description

ACCESS_REQUEST The source business object(s) being mapped are calls

from an application, sent from an access client to

InterChange Server Express (call-triggered flow).

ACCESS_RESPONSE The source business object(s) being mapped are sent

back to the access client in response to a subscription

delivery request.

SERVICE_CALL_REQUEST The source business object(s) being mapped are sent

from InterChange Server Express to an application,

through a connector.

SERVICE_CALL_RESPONSE The source business object(s) being mapped are sent

back to InterChange Server Express from an application

as a response to a successful service call request.

SERVICE_CALL_FAILURE The source business object(s) being mapped are sent

back to InterChange Server Express from an application

after a failed service call request.

You can reference these calling contexts as constants in the MapExeContext object

that is available in every map that Map Designer Express creates.

Example: You reference the SERVICE_CALL_REQUEST calling context as

MapExeContext.SERVICE_CALL_REQUEST.

Figure 93 illustrates when each of the calling contexts occurs in an event-triggered

flow. Event-triggered flow is initiated when a connector sends an event to a

collaboration in InterChange Server Express.

SERVICE_CALL_RESPONSE

EVENT_DELIVERY SERVICE_CALL_REQUEST
InterChange
Server
Express

Source
Connector

Destination
Connector

As Figure 93 shows, any mapping request coming from a connector to InterChange

Server Express (that is, a map from application-specific business object to generic

business object) has a calling context of EVENT_DELIVERY. Any mapping request

coming from InterChange Server Express to a connector (that is, a map from

generic business object to application-specific business object) has a calling context

of SERVICE_CALL_REQUEST. Mapping requests sent by connectors in response to a

collaboration’s service call request can have contexts of SERVICE_CALL_RESPONSE or

SERVICE_CALL_FAILURE.

Figure 94 illustrates when each of the calling contexts occurs in a call-triggered

flow. Call-triggered flow is initiated when an access client sends a direct Server

Access Interface call to a collaboration in InterChange Server Express.

Figure 93. Calling contexts in an event-triggered flow

190 Map Development Guide

As Figure 94 shows, any mapping request coming from an access client to

InterChange Server Express (that is, a map from application-specific business object

to generic business object) has a calling context of ACCESS_REQUEST. Any mapping

request coming from InterChange Server Express to an access client (that is, a map

from generic business object to application-specific business object) has a calling

context of ACCESS_RESPONSE.

Original-request business objects

Another important part of the map’s context is the original-request business object.

This business object is the one that has initiated the map execution. Table 66 shows

the calling contexts and the associated original-request business object.

 Table 66. Calling contexts and their associated original-request business objects

Calling context Original-request business object

Original-request business

object from example

EVENT_DELIVERY, ACCESS_REQUEST Application-specific business object that came in

from the application

AppA-specific

SERVICE_CALL_REQUEST,

SERVICE_CALL_FAILURE

Generic business object that was sent down from

InterChange Server Express

Generic

SERVICE_CALL_RESPONSE Generic business object that was sent down by

the SERVICE_CALL_REQUEST

Generic

ACCESS_RESPONSE Application-specific business object that came in

from the access request initially

AppA-specific

For example, the generic business object is the original-request business object for

maps that execute with a calling context of SERVICE_CALL_RESPONSE,

SERVICE_CALL_FAILURE, or SERVICE_CALL_REQUEST. These maps use the generic

business object to store relationship instance IDs for the relationship attributes

being transformed. Having the relationship instance IDs is necessary for the map

to look up the relationship instance and fill in the relevant participant data for

newly created or updated objects.

Example: The following example illustrates how this might work in a customer

synchronization scenario. Suppose you are using the system to keep data

synchronized between Application A and Application B. Both applications store

customer data, and the customer ID attributes are managed using a relationship.

For the purposes of this example, details about the collaborations and connectors

involved are omitted.

SERVICE_CALL_RESPONSE

ACCESS_REQUEST SERVICE_CALL_REQUEST
InterChange

Express
Server

Access
Client

Destination
Connector

ACCESS_RESPONSE

Figure 94. Calling contexts in a call-triggered flow

Chapter 5. Customizing a map 191

When a new customer is added in Application A:

1. A map transforms an AppA-specific business object to a generic business object

with a calling context of EVENT_DELIVERY.

When transforming the customer ID attribute, the map creates a new

relationship instance in the customer ID relationship table and inserts the new

relationship instance ID into the customer ID attribute of the generic business

object.

2. A map transforms the generic business object to a AppB-specific business object

with a calling context of SERVICE_CALL_REQUEST.

No changes occur to the relationship tables. Application B successfully adds the

new customer to the application.

3. A map transforms the AppB-specific business object to a generic business object

with a calling context of SERVICE_CALL_RESPONSE. The context for this map

execution includes the generic business object generated in step 1.

The reason for this execution is to fill in the new participant data for the

relationship instance created in step 1. In this case, the new participant data is

the customer ID for the new customer added to application B.

Figure 95 illustrates when the map execution for each step occurs for a

call-triggered flow that successfully adds a new customer ID to Application B.

InterChange

Express
Server

Application A
Connector

Application B
Connector

1. AppA-specific to
Generic,

2. Generic to AppB-
specific

3. AppB-specific to
Generic

Mapping child business objects

When the source business object contains child business objects, how you map the

child business object depends on the cardinality of the child in the source and

destination business objects. This section provides information on how to map

child business objects in the following cases:

v “Mapping single-cardinality source and destination”

v “Mapping single-cardinality source to multiple-cardinality destination” on page

193

v “Mapping multiple-cardinality source and destination” on page 193

Mapping single-cardinality source and destination

To map a single-cardinality source child business object to a single-cardinality

destination business object:

v Click the plus symbol (+) to the left of the source child object name to expand it,

and follow simple transformation steps (see “Specifying standard attribute

Figure 95. Example of Calling Contexts

192 Map Development Guide

transformations” on page 38 and “More attribute transformation methods” on

page 172) to map source attributes to the destination attributes. You can create a

submap for it, but it is not necessary.

v It is a good practice to set a verb for the destination child object. To do this,

follow the instructions in “Setting the destination business object verb” on page

37. Set the verb to the source parent object’s verb (unless the objects have special

relationship requirements).

Example: This kind of mapping would be needed for the following map:

SAP_CustomerMaster

to

Customer.CustomerAddress

Mapping single-cardinality source to multiple-cardinality

destination

If the source child business object is of cardinality 1, it contains data to be mapped

only to a single instance of the destination child business object. To map a

single-cardinality source child object to a multiple-cardinality destination child

object, follow the procedure described in “Mapping single-cardinality source and

destination” on page 192. There is no need to create a submap.

Example: This kind of mapping would be needed for the following map:

SAP_CustomerMaster.SAP_CustCreditCentralData[1]

to

Customer.CustomerInformation.CustomerCreditData[n]

Mapping multiple-cardinality source and destination

To map a multiple-cardinality source child business object to a multiple-cardinality

destination business object, you need to create a multiple-cardinality submap. For

an introductions to submaps, see “Transforming with a submap” on page 45.

Example: This kind of mapping would be needed for the following map:

SAP_CustBankData[n]

to

Customer.CustomerInformation.CustomerBankData[n]

When you transform multiple source business objects of the same type, perform

the subtasks outlined in Table 67.

 Table 67. Creating a multiple-cardinality submap

Subtask Associated procedure (see . . .)

1. Creating a multiple-cardinality submap, which performs the

transformations for attributes in one source object to one

destination business object.

“Steps for creating the multiple-cardinality

submaps” on page 194

2. Calling this submap from the main map, in the

multiple-cardinality attribute of the destination business object.

The call to the submap is within a for loop that loops through

each business object within the multiple-cardinality object so

that each business object is passed to the submap.

“Steps for calling the multiple-cardinality submap”

on page 194

Chapter 5. Customizing a map 193

Steps for creating the multiple-cardinality submaps

To create a submap that maps multiple-cardinality child objects from the source to

destination object, you create a map with a single source business object and the

single destination business object. This map contains the transformations for

attributes in the source object to the corresponding attributes in the destination

object.

To create a multiple-cardinality submap, perform the following steps from within

Map Designer Express:

1. Close your main map and start a new map.

2. In the Diagram tab, drag the source child business object into the left half of

the map workspace area and the destination child business object into the right

half.

To map the SAP_CustBankData business object to the

Customer.CustomerInformation.CustomerBankData business object, drag

SAP_CustBankData into the left half of the workspace and CustomerBankData into

the right half.

3. Save the submap.

Recommendation: You should begin submap names with the prefix “Sub_”. For

example: Sub_SaCwCustBankData.

4. Set the verb of the destination object as described in “Setting the destination

business object verb” on page 37.

5. Map individual attributes as described in “Specifying standard attribute

transformations” on page 38 and “More attribute transformation methods” on

page 172.

6. Compile the submap by selecting Compile from the File menu.

Result: If everything is correct, the following message displays:

Map validation OK.

Map compilation successful.

Tip: If you forget to compile the submap, you cannot see it in the Submap dialog.

The message No submaps available displays.

Steps for calling the multiple-cardinality submap

To call the multiple-cardinality submap, call it with the runMap() method from the

main map, in the multiple-cardinality attribute of the destination business object.

The call to the submap is within a for loop that loops through each business object

within the multiple-cardinality object so that each business object is passed to the

submap.

To call a multiple-cardinality submap, perform the following steps from within

Map Designer Express:

1. Close the submap and open the main map.

2. Select the source child object and the destination child object and select

Submap from the transformation rule’s combo box.

For the SAP_CustBankData to Customer.CustomerInformation.CustomerBankData

transformation, select SAP_CustBankData and CustomerBankData.

Result: The Submap dialog box displays.

3. Select the name of the submap and click OK.

Example: Sub_SaCwCustBankData

In this example, you do not need to specify a condition, so click OK.

4. Open the Activity Editor of the destination child object.

194 Map Development Guide

For the SAP_CustBankData to Customer.CustomerInformation.CustomerBankData

transformation, you see code similar to the following in Activity Editor:

{

BusObjArray srcCollection_For_ObjSAP_Order_SAP_OrderPartners =

 ObjSAP_Order.getBusObjArray("SAP_OrderPartners");

//

// LOOP ONLY ON NON-EMPTY ARRAYS

// -----------------------------

//

// Perform the loop only if the source array is non-empty.

//

if ((srcCollection_For_ObjSAP_Order_SAP_OrderPartners != null) &&

 (srcCollection_For_ObjSAP_Order_SAP_OrderPartners.size() > 0))

 {

 int currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners;

 int lastInputIndex_For_ObjSAP_Order_SAP_OrderPartners =

 srcCollection_For_ObjSAP_Order_SAP_OrderPartners.getLastIndex();

 for (currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners = 0;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners <=

 lastInputIndex_For_ObjSAP_Order_SAP_OrderPartners;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners++)

 {

 BusObj currentBusObj_For_ObjSAP_Order_SAP_OrderPartners =

(BusObj) (srcCollection_For_ObjSAP_Order_SAP_OrderPartners.elementAt(

 (currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners));

 //

 // INVOKE MAP ON VALID OBJECTS

 // ---------------------------

 //

 // Invoke the map only on those child objects that meet certain

 // criteria.

 //

 if (currentBusObj_For_ObjSAP_Order_SAP_OrderPartners != null)

 {

 BusObj[] _cw_inObjs =

 { currentBusObj_For_ObjSAP_Order_SAP_OrderPartners };

 BusObj[] _cw_outObjs =

 DtpMapService.runMap(

 "Sub_SaOrderPartners_to_CwCustomerRole", "CwMap",

 _cw_inObjs, cwExecCtx);

 ObjOrder.setWithCreate("AssociatedCustomers",

 _cw_outObjs[0]);

 }

 }

 }

}

Notice that runMap() is a static method, so it is invoked as:

DtpMapService.runMap()

5. Make a few changes to this code, as follows:

v In the source business object, only the parent object has a verb associated

with it. In the code for calling the submaps to map the child objects, it is

good practice to set the source child object’s verb to the one of the parent’s

before passing this child object into the submap. Use the setVerb() method

of the BusObj class.

Note: If relationship management (cross-referencing) has to be performed in

the submap, verb passing is required. See “Defining transformation

rules for a simple identity relationship” on page 273 for more

information.

Chapter 5. Customizing a map 195

v The line of code for calling the submap must be included inside of the

try/catch block to ensure that you catch the MapNotFoundException.

Here is the modified code (changes are highlighted in bold):

 {

 BusObjArray srcCollection_For_ObjSAP_

Order_SAP_OrderPartners = ObjSAP_Order.getBusObjArray("SAP_OrderPartners");

 //

 // LOOP ONLY ON NON-EMPTY ARRAYS

 // -----------------------------

 //

 // Perform the loop only if the source array is non-empty.

 //

 if ((srcCollection_For_ObjSAP_Order_SAP_OrderPartners

 != null) &&

 (srcCollection_For_ObjSAP_Order_SAP_OrderPartners.size()

 > 0))

 {

 int currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners;

 int lastInputIndex_For_ObjSAP_Order_SAP_OrderPartners =

 srcCollection_For_ObjSAP_Order_SAP_OrderPartners.getLastIndex();

 for (currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners

 = 0;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners

 <=

 lastInputIndex_For_ObjSAP_Order_SAP_OrderPartners;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners++)

 {

 BusObj currentBusObj_For_ObjSAP_Order_SAP_OrderPartners =

 (BusObj)

 (srcCollection_For_ObjSAP_Order_SAP_OrderPartners.elementAt(

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderPartners));

 //

 // INVOKE MAP ON VALID OBJECTS

 // ---------------------------

 //

 // Invoke the map only on those child objects that meet

 certain

 // criteria.

 //

 if (currentBusObj_For_ObjSAP_Order_SAP_OrderPartners != null)

 {

 currentBusObj_For_ObjSAP_Order_SAP_OrderPartners.setVerb(

 ObjSAP_Order.getVerb()); BusObj[] _cw_inObjs

 = { currentBusObj_For_ObjSAP_Order_SAP_OrderPartners };

 try

 {

 BusObj[] _cw_outObjs = DtpMapService.runMap(

 "Sub_SaOrderPartners_to_CwCustomerRole", "CwMap",

 _cw_inObjs, cwExecCtx);

 ObjOrder.setWithCreate("AssociatedCustomers", _cw_outObjs[0]);

 }

 catch (MapNotFoundException me)

 {

 logError(5502, "Sub_SaOrderPartners_to_CwCustomerRole");

 throw new MapFailureException ("Submap not found");

 } }

 }

 }

 }

6. Once you have added the call to the submap, recompile the main map.

196 Map Development Guide

More on using submaps

This section provides the following tips on the use of submaps:

v “Providing conditions when calling the submap”

v “Using Expression Builder to call a submap” on page 199

v “Passing business objects of different types to submaps” on page 200

For an introductions to submaps, see “Transforming with a submap” on page 45.

Providing conditions when calling the submap

Often the map requires some programming logic to determine when to call a

submap. Sometimes you might have certain conditions that must be true for the

submap to be called. This logic goes into the main map, in the attribute that

contains the submap’s destination business object, and before the call to the

runMap() method. If you enter these conditions in the Conditions area of the

Submap dialog (see Figure 22 on page 48), Map Designer Express adds these

conditions to the if statement with which it surrounds the runMap() call.

Guidelines: Keep the following points in mind when entering these conditions:

v You can enter only one condition, although the condition can have multiple

clauses, combined with an AND (&&) operator.

v Do not end the line with a semicolon because the condition that you enter is

turned into an if clause in the destination attribute’s generated code.

Example: In the business objects shown in Figure 21 on page 46 the OrderLine

business object has an attribute called DelSched, which is a child business object. In

a submap condition, you can refer to that attribute as follows:

srcBusObj

Enter the following submap condition in the Conditions area of the Submap dialog

to execute a submap on the DelSched business object only if the value of the

TransportType attribute of the same business object is equal to the string AIR.

srcBusObj.getString("TransportType").equals("AIR")

The following condition executes the submap for OrderLine DelSched attributes

only if the OrderLine LinePrice attribute value is greater than $10,000.00.

ObjOrderLine.getFloat["LinePrice") > 10000.00

Example: Conditions are needed for the following map because the mapping

should occur only if SAP_CustPartnerFunctions.PartnerId is not equal to

SAP_CustomerMaster.CustomerId:

SAP_CustomerMaster.SAP_CustSalesAreaData.SAP_

CustPartnerFunctions[n]

to

Customer.RelatedCustomerRef

The following sections take you through the steps in creating the map call:

v “Steps for creating the submap” on page 198

v “Steps for calling the submap” on page 198

Chapter 5. Customizing a map 197

Steps for creating the submap

To create the Sub_SaCwCustCreditAreaData submap, perform the following steps

from within Map Designer Express:

1. Close the main map and start a new submap.

Specify a source business object of SAP_CustPartnerFunctions and a destination

business object of RelatedCustomerRef. Name the map as

Sub_SaCwCustPartners.

2. Set the verb as described in “Setting the destination business object verb” on

page 37.

3. Map individual attributes as described in “Specifying standard attribute

transformations” on page 38 and “More attribute transformation methods” on

page 172.

4. Compile the submap by selecting Compile from the File menu. If everything is

correct, the following message displays:

Map validation OK.

Native Map: Code generation succeeded.

Steps for calling the submap

To call the Sub_SaCwCustCreditAreaData submap, perform the following steps from

within Map Designer Express:

1. Go back to the main map and, in the Diagram tab, hold the Ctrl key and drag

SAP_CustPartnerFunctions onto RelatedCustomerRef. Double-click Submap

from the list in the Rule column of the destination business object. Select the

SaCwCustPartners map in the Submap dialog and click OK.

In the case of a simple condition, you can type it into the Condition area for

Submap dialog window:

srcBusObj.getString("PartnerId").equals("some_id")

Map Designer Express generates the code for the submap call with the

condition added to the if statement that precedes the submap call.

If you leave the Condition field blank and click OK, Map Designer Express

generates the code for the submap call without the condition. Continue to step

2 for information on how to explicitly add the code.

2. Modify the generated code to add the submap condition.

To access Activity Editor, double-click the Rule column again and click the

View Code push-button of the Submap dialog.

For the RelatedCustomerRef attribute, the code that includes the condition

follows:

{

 BusObjArray srcBusObjs = null;

 srcBusObjs =

ObjSAP_CustomerMaster.getBusObjArray

("SAP_CustSalesAreaData.SAP_CustPartnerFunctions");

 String parent_custid = ObjSAP_CustomerMaster.getString("CustomerId");

 //

 // LOOP ONLY ON NON-EMPTY ARRAYS

 // -----------------------------

 //

 // Perform the loop only if the source array is non-empty.

 //

 if ((srcBusObjs != null) && (srcBusObjs.size() > 0))

 {

 int srcIndex;

 int lastSrcIndex = srcBusObjs.getLastIndex();

 for (srcIndex = 0; srcIndex <= lastSrcIndex; srcIndex++)

 {

 BusObj srcBusObjInstance = (BusObj)

198 Map Development Guide

(srcBusObjs.elementAt(srcIndex));

 //

 // INVOKE MAP ON VALID OBJECTS

 // ---------------------------

 //

 // Invoke the map only on those children objects

 // that meet certain criteria.

 //

 if ((srcBusObjInstance != null))

 {

 // check the submap running condition

 if

 (!(srcBusObjInstance.getString("PartnerId")).equals(parent_custid))

 {

 // set the verb of the source business object of submap

srcBusObjInstance.setVerb(ObjSAP_CustomerMaster.getVerb());

 try

 {

 BusObj[] _cw_inObjs = { srcBusObjInstance };

 BusObj[] _cw_outObjs =

DtpMapService.runMap("Sub_SaCwCustPartners",

"CwMap", _cw_inObjs,cwExecCtx);

ObjCustomer.setWithCreate("RelatedCustomerRef", _cw_outObjs[0]);

 }

 catch(MapNotFoundException me)

 {

 logError(5502, "Sub_SaCwCustPartners");

 throw new MapFailureException("Submap not found");

 }

 }

 }

 }

 }

}

3. Once you have added the call to the submap, recompile the main map.

Using Expression Builder to call a submap

You can use Map Designer Express to automatically generate a submap call

through the Submap dialog. However, you can also use Expression Builder to

generate the submap call. Coding the map call allows you to write more varied

operations than Map Designer Express supports graphically. For example, you can

use a submap to provide a value for an attribute that does not contain a child

business object or use a submap that has multiple inputs and outputs.

Steps for using Expression Builder to call a submap

Perform the following steps to use Expression Builder to generate a submap call:

1. Double-click the transformation rule in either the Table or Diagram tab to

display Activity Editor in Java view.

2. Right-click anywhere in Activity Editor, then select Expression Builder from the

Context menu.

3. In Expression Builder:

v In the Main categories column, expand the Map folder.

v Under Maps, expand the map type: Native Map folder to display a list of all

compiled maps that are available on your system.

v Select the map to call and select the DtpMapService.runMap() method in the

Map APIs column.

v Click the Insert API button to initiate code generation (see Figure 96).

Chapter 5. Customizing a map 199

Generated code
appears in this
Code area.

Double-click the
Map folder to see
the Native Map
folder.

Double-click the
Native Map folder
to select a map.

Select the runMap()
method, then click
Insert API.

Result: Map Designer Express generates the Java code necessary to call the

map you specify as a submap. It displays in the code area at the top of the

Expression Builder window.

4. In the generated code, replace the input and output object place holders with

the actual current source and destination business object names for the submap,

and write code to handle the value that the submap returns.

Replace the placeholders InObj, , OutObj, and OutAttrName with the correct

names for the following:

v The top-level source business object variable: ObjSrcBusObj

v The source attribute: the path to the name of the attribute that contains the

child business object

v The destination business object variable: ObjDestBusObj

v The destination attribute.
5. Click OK to close Expression Builder.

Result: The code is inserted into Activity Editor at the insertion point.

Passing business objects of different types to submaps

To map source business objects of different types to a destination business object,

you need to create a many-to-one submap.

Example: This kind of mapping would be needed for the following map:

SAP_CustCreditControlAreaData[n]

to

Customer.CustomerInformation.CustomerCreditData[0].

CreditAreaCreditData[n]

Some of the attributes must be mapped from SAP_CustomerMaster and

SAP_CustCreditCentralData.

Transforming multiple source business objects of different types involves the

following major steps:

1. “Steps for creating the many-to-one submap” on page 201—create a

many-to-one submap, which transforms the needed attributes in the multiple

source business objects to those in the single destination business object.

2. “Steps for calling the many-to-one submap” on page 201—Call this submap

from the main map, in the attribute that holds the submap’s destination

business object.

Figure 96. Coding a submap call

200 Map Development Guide

Steps for creating the many-to-one submap

To create a submap that maps source child business objects of different types to

one destination child object, you create a map with the many source business

objects and the single destination business object. This map contains the

transformations for attributes in the different source object to the corresponding

attributes in the destination object.

To create a many-to-one submap, perform the following steps from within Map

Designer Express:

1. Close the main map and start a new map. The new map will have at least two

source objects and one destination object.

Drag SAP_CustCreditControlAreaData, SAP_CustCreditCentralData, and

SAP_CustomerMaster business objects into the left half of the mapping screen,

and CreditAreaCreditData into the right half. The new map will have three

source objects and one destination object.

2. Save the submap.

Recommendation: Submap names should begin with the prefix “Sub_”. For

example: Sub_SaCwCustCreditAreaData.

3. Set the verb of the destination object as described in “Setting the destination

business object verb” on page 37.

Unless the relationship management is performed in this submap, it does not

matter which source object is used to set the verb. Ensure that when you call

this submap, you set the verb for the same particular object before passing it

into the submap. If one of the source objects is the source parent object and you

choose to use its verb, you do not need to set the verb before passing this

object into the submap; it already has a verb associated with it.

4. Map individual attributes as described in “Specifying standard attribute

transformations” on page 38 and “More attribute transformation methods” on

page 172.

5. Compile the submap by selecting Compile from the File menu.

Result: If everything is correct, the following message displays:

Map validation OK.

Native Map: Code generation

 succeeded.

Steps for calling the many-to-one submap

To invoke the many-to-one submap, call it with the runMap() method from the

main map, in the attribute that holds the submap’s destination business object. To

invoke the Sub_SaCwCustCreditAreaData submap, perform the following steps from

within Map Designer Express:

1. Open the main map.

For the Sub_SaCwCustCreditAreaData submap, the main map is the map that

contains the CreditAreaCreditData business object as an attribute.

2. Double-click in the Transformation Rule column for the submap’s destination

object to open Activity Editor.

Double-click the Transformation Rule column associated with the

CreditAreaCreditData attribute to open its Activity Editor and enter the

following code:

{

BusObj srcobj1 = ObjSAP_CustomerMaster;

BusObj srcobj2 = (BusObj)

 (ObjSAP_CustomerMaster.getBusObj("SAP_CustCreditCentralData"));

BusObjArray srcobj3 =

Chapter 5. Customizing a map 201

(BusObjArray)(ObjSAP_CustomerMaster.get(

 "SAP_CustCreditControlAreaData"));

//

// INVOKE MAP ON VALID OBJECTS

// ---------------------------

//

// Invoke the map only on those child objects that meet certain

// criteria.

//

int i = 0;

// When checking all 3 source objects, != null might be not required

if (srcobj1 != null && srcobj2 != null & srcobj3 != null)

 {

 for (i = 0; i < srcobj3.size(); i++)

 {

 BusObj[] _cw_inObjs = new BusObj[3];

 // set verb for the one of the following objects

 _cw_inObjs[0] = srcobj1;

 _cw_inObjs[1]= srcobj2;

 _cw_inObjs[2] = srcobj3.elementAt(i);

 try

 {

 BusObj[] _cw_outObjs = DtpMapService.runMap(

 "Sub_SaCwCustCreditAreaData",

 "CwMap",

 _cw_inObjs,

 cwExecCtx);

 ObjCustomer.setWithCreate(

"CustomerInformation.CustomerCreditData[0].CreditAreaCreditData["

 + i + "]", _cw_outObjs[0]);

 }

 catch (MapNotFoundException me)

 {

 logError(5502, "Sub_SaCwCustCreditAreaData");

 throw new MapFailureException ("Submap not found");

 }

 }

 }

}

3. To track the map execution, use the logInfo() method inside the for loop. The

code follows.

logInfo("in for loop");

or

trace("in for loop");

4. Once you have added the call to the submap, recompile the main map.

If everything is working properly and none of your source objects is null, the

message in for loop displays in the InterChange Server Express log file as many

times as there are instances of the source child object.

Executing database queries

During execution of a map, you might need to obtain information from a database,

such as the relationship database. To obtain or modify information in a database,

you query its tables. A query is a request, usually in the form of an SQL (Structured

Query Language) statement, that you send to the database for execution. Table 68

shows the subtasks for executing a query in a database.

202 Map Development Guide

Note: You can access any external database that IBM supports through JDBC

through the WebLogic driver.

 Table 68. Subtasks for executing a query

Subtask for executing a query Associated procedure (see . . .)

1. Obtaining a connection (which is a

CwDBConnection object) to the database.

“Obtaining a connection” on page 203

2. Through the CwDBConnection object,

sending queries and managing

transactions in the database.

“Executing the query” on page 203

“Managing the transaction” on page 215

3. Releasing the connection. “Releasing a connection” on page 218

Obtaining a connection

To be able to query the database, you must first obtain a connection to this

database with the getDBConnection() method of the BaseDLM class. To identify the

connection to obtain, specify the name of the connection pool that contains this

connection. All connections in a particular connection pool are to the same

database. The number of connections in the connection pool is determined as part

of the connection pool configuration. You must determine the name of the

connection pool that contains connections for the database you want to query.

Important: Connections are opened when InterChange Server Express boots or

dynamically, when a new connection pool is configured. Therefore, the

connection pool that contains connections to the desired database must

be configured before the execution of the map instance that requests

the connection. You configure connection pools within IBM System

Manager.

In Figure 97, the call to getDBConnection() obtains a connection to the database

that is associated with connections in the CustDBConnPool connection pool.

The getDBConnection() call returns a CwDBConnection object in the connection

variable, which you can then use to access the database associated with the

connection.

Tip: The getDBConnection() method provides an additional form that allows you

to specify the transaction programming model for the connection. For more

information, see “Managing the transaction” on page 215.

Executing the query

Table 69 shows the ways that you can execute SQL queries with methods of the

CwDBConnection class.

 Table 69. Executing SQL queries with CwDBConnection methods

Type of query Description CwDBConnection method

Static query The SQL statement is sent as text to the database. executeSQL()

CwDBConnection connection =

 getDBConnection("CustDBConnPool");

Figure 97. Obtaining a Connection from a Connection Pool

Chapter 5. Customizing a map 203

Table 69. Executing SQL queries with CwDBConnection methods (continued)

Type of query Description CwDBConnection method

Prepared query After its initial execution, the SQL statement is

saved in its compiled, executable form so that

subsequent executions can use this precompiled

form.

executePreparedSQL()

Stored procedure A user-defined procedure that contains SQL

statements and conditional logic

executeSQL()executePreparedSQL()

executeStoredProcedure()

Executing static queries

The executeSQL() method sends a static query to the database for execution. A

static query is an SQL statement sent as a string to the database, which parses the

string and executes the resulting SQL statement. This section covers how to send

the following kinds of SQL queries to a database with executeSQL():

v Queries that return data from the database (SELECT)

v Queries that modify data in the database (INSERT, UPDATE, DELETE)

v Queries that execute stored procedures defined in the database

Executing static queries that return data (SELECT): The SQL statement SELECT

queries one or more tables for data. To send a SELECT statement to the database

for execution, specify a string representation of the SELECT as an argument to the

executeSQL() method.

Example: The following call to executeSQL() sends a SELECT of one column value

from the customer table:

connection.executeSQL(

 "select cust_id from customer where active_status = 1");

Note: In the preceding code, the connection variable is a CwDBConnection object

obtained from a previous call to the getDBConnection() method (see

Figure 97).

You can also send a SELECT statement that has parameters in it by using the

second form of the executeSQL() method.

Example: The following call to executeSQL() performs the same task as the

previous example except that it passes the active status as a parameter to the

SELECT statement:

Vector argValues = new Vector();

String active_stat = "1";

argValues.add(active_stat);

connection.executeSQL(

 "select cust_id from customer where

active_status = ?", argValues);

The SELECT statement returns data from the database tables as rows. Each row is

one row from the data that matches the conditions in the WHERE clause of the

SELECT. Each row contains the values for the columns that the SELECT statement

specified. You can visualize the returned data as a two-dimensional array of these

rows and columns.

Tip: The syntax of the SELECT statement must be valid to the particular database

you are accessing. Consult your database documentation for the exact syntax

of the SELECT statement.

204 Map Development Guide

To access the returned data, perform these steps:

1. Obtain one row of data.

2. Obtain column values, one by one.

Table 70 shows the methods in the CwDBConnection class that provide access to the

rows of returned query data.

 Table 70. CwDBConnection methods for row access

Row-access task CwDBConnection method

Check for existence of a row. hasMoreRows()

Obtain one row of data. nextRow()

Control the loop through the returned rows with the hasMoreRows() method. End

the row loop when hasMoreRows() returns false. To obtain one row of data, use

the nextRow() method. This method returns the selected column values as elements

in a Java Vector object. You can then use the Enumeration class to access the

column values individually. Both the Vector and Enumeration classes are in the

java.util package.

Table 71 shows the Java methods for accessing the columns of a returned query

row.

 Table 71. Java Methods for column-value access

Column-access task Java method

Determine number of columns. Vector.size()

Cast Vector to Enumeration. Vector.elements()

Check for existence of a column. Enumeration.hasMoreElements()

Obtain one column of data. Enumeration.nextElement()

Control the loop through the column values with the hasMoreElements() method.

End the column loop when hasMoreElements() returns false. To obtain one

column value, use the nextElement() method.

Example: The following code sample gets an instance of the CwDBConnection class,

which is a connection to a database that stores customer information. It then

executes a SELECT statement that returns only one row, which contains a single

column, the company name “CrossWorlds” for the customer id of 20987:

CwDBConnection connectn = null;

Vector theRow = null;

Enumeration theRowEnum = null;

String theColumn1 = null;

try

 {

 // Obtain a connection to the database

 connectn = getDBConnection("sampleConnectionPoolName");

 }

catch(CwDBConnectionFactoryException e)

 {

 System.out.println(e.getMessage());

 throw e;

 }

// Test for a resulting single-column, single-row, result set

try

Chapter 5. Customizing a map 205

{

 // Send the SELECT statement to the database

 connectn.executeSQL(

 "select company_name from customer where cust_id = 20987");

 // Loop through each row

 while(connectn.hasMoreRows())

 {

 // Obtain one row

 theRow = connectn.nextRow();

 int length = 0;

 if ((length = theRow.size())!= 1)

 {

 return methodName + "Expected result set size = 1," +

 " Actual result state size = " + length;

 }

 // Get column values as an Enumeration object

 theRowEnum = theRow.elements();

 // Verify that column values exist

 if (theRowEnum.hasMoreElements())

 {

 // Get the column value

 theColumn1 = (String)theRowEnum.nextElement();

 if (theColumn1.equals("CrossWorlds")==false)

 {

 return "Expected result = CrossWorlds,"

 + " Resulting result = " + theColumn1;

 }

 }

 }

 }

// Handle any exceptions thrown by executeSQL()

catch(CwDBSQLException e)

 {

 System.out.println(e.getMessage());

 }

Example: The following example shows a code fragment for a SELECT statement

that returns multiple rows, each row containing two columns, the customer id and

the associated company name:

CwDBConnection connectn = null;

Vector theRow = null;

Enumeration theRowEnum = null;

Integer theColumn1 = 0;

String theColumn2 = null;

try

 {

 // Obtain a connection to the database

 connectn = getDBConnection("sampleConnectionPoolName");

 }

catch(CwDBConnectionFactoryException e)

 {

 System.out.println(e.getMessage());

 throw e;

 }

// Code fragment for multiple-row, multiple-column result set.

// Get all rows with the specified columns, where the

// specified condition is satisfied

try

 {

206 Map Development Guide

connectn.executeSQL(

"select cust_id, company_name from customer where active_status = 1");

 // Loop through each row

 while(connectn.hasMoreRows())

 {

 // Obtain one row

 theRow = connectn.nextRow();

 // Obtain column values as an Enumeration object

 theRowEnum = theRow.elements();

 int length = 0;

 if ((length = theRow.size()) != 2)

 {

 return "Expected result set size = 2," +

 " Actual result state size = " + length;

 }

 // Verify that column values exist

 if (theRowEnum.hasMoreElements())

 {

 // Get the column values

 theColumn1 =

 ((Integer)theRowEnum.nextElement()).intValue();

 theColumn2 = (String)theRowEnum.nextElement();

 }

 }

 }

catch(CwDBSQLException e)

 {

 System.out.println(e.getMessage());

 }

Note: The SELECT statement does not modify the contents of the database.

Therefore, you do not usually need to perform transaction management for

SELECT statements.

Executing static queries that modify data: SQL statements that modify data in a

database table include the following:

v INSERT adds new rows to a database table.

v UPDATE modifies existing rows of a database table.

v DELETE removes rows from a database table.

To send one of these statements as a static query to the database for execution,

specify a string representation of the statement as an argument to the executeSQL()

method.

Example: The following call to executeSQL() sends an INSERT of one row into the

abc table of the database associated with the current connection:

connection.executeSQL("insert into abc values (1, 3, 6)");

Note: In the preceding code, the connection variable is a CwDBConnection object

obtained from a previous call to the getDBConnection() method.

For an UPDATE or INSERT statement, you can determine the number of rows in

the database table that have been modified or added with the getUpdateCount()

method.

Important: Because the INSERT, UPDATE, and DELETE statements modify the

contents of the database, you should assess the need for transaction

Chapter 5. Customizing a map 207

management for these statements. For more information, see

“Managing the transaction” on page 215.

Executing a static stored procedure: You can use the executeSQL() method to

execute a stored-procedure call as long as both of the following conditions exist:

v The stored procedure does not use OUT parameters.

If the stored procedure uses an OUT parameter, you must use

executeStoredProcedure() to execute it.

v The stored procedure is called only once.

The executeSQL() method does not save the prepared statement for the

stored-procedure call. Therefore, if you call the same stored procedure more than

once (for example, in a loop), use of executeSQL() can be slower than calling a

method that does save the prepared statement: executePreparedSQL() or

executeStoredProcedure().

For more information, see “Executing stored procedures” on page 210.

Executing prepared queries

The executePreparedSQL() method sends a prepared query to the database for

execution. A prepared query is an SQL statement that is already precompiled into the

executable form used by the database. The first time that executePreparedSQL()

sends a query to the database, it sends the query as a string. The database receives

this query, compiles it into an executable form by parsing the string, and executes

the resulting SQL statement (just as it does for executeSQL()). However, the

database returns this compiled form of the SQL statement to

executePreparedSQL(), which stores it in memory. This compiled SQL statement is

called a prepared statement.

In subsequent executions of this same query, executePreparedSQL() first checks

whether a prepared statement already exists for this query. If a prepared statement

does exist, executePreparedSQL() sends it to the database instead of the query

string. Subsequent executions of this query are more efficient because the database

does not have to parse the string and create the prepared statement.

You can send the following kinds of SQL queries to a database with

executePreparedSQL():

v Queries that return data from the database (SELECT)

v Queries that modify data in the database (INSERT, UPDATE, DELETE)

v Queries that execute stored procedures defined in the database

Executing prepared queries that return data (SELECT): If you need to execute

the same SELECT statement multiple times, use executePreparedSQL() to create a

precompiled version of the statement. Keep the following in mind to prepare a

SELECT statement:

v You can use parameters in this SELECT statement to pass specific information to

each execution of the prepared statement. For an example of how to use

parameters with a prepared statement, see Figure 98.

v When you execute a SELECT statement with executePreparedSQL(), you still use

the same methods to access the returned data (Table 70 and Table 71). For more

information, see “Executing static queries that return data (SELECT)” on page

204.

Executing prepared queries that modify data: If you need to execute the same

INSERT, UPDATE, or DELETE statement multiple times, use executePreparedSQL()

208 Map Development Guide

to create a precompiled version of the statement. The SQL statement that you

re-execute does not need to be exactly the same in each time it executes to take

advantage of the prepared statement. You can use parameters in the SQL statement

to provide information dynamically to each statement execution.

The code fragment in Figure 98 inserts 50 rows into the employee table. The first

time executePreparedSQL() is invoked, it sends the string version of the INSERT

statement to the database, which parses it, executes it, and returns its executable

form: a prepared statement. The next 49 times that this INSERT statement executes

(assuming all INSERTs are successful), executePreparedSQL() recognizes that a

prepared statement exists and sends this prepared statement to the database for

execution.

Tip: Executing the prepared version of the INSERT statement usually improves

application performance, although it does increase the application’s memory

footprint.

When you re-execute an SQL statement that modifies the database, you must still

handle transactions according to the transaction programming model. For more

information, see “Managing the transaction” on page 215.

Note: To simplify the code in Figure 98 does not include transaction management.

Executing a prepared stored procedure: You can use the executePreparedSQL()

method to execute a stored-procedure call as long as both of the following

conditions exist:

v The stored procedure uses does not contain OUT parameters.

CwDBConnection connection;

Vector argValues = new Vector();

argValues.setSize(2);

int emp_id = 1;

int emp_id = 2000;

for (int = 1; i < 50; i++)

 {

 argValues.set(0, new Integer(emp_id));

 argValues.set(1, new Integer(emp_num));

 try

 {

 // Send the INSERT statement to the database

 connection.executePreparedSQL(

"insert into employee (employee_id, employee_number) values (?, ?)",

 argValues);

 // Increment the argument values

 emp_id++;

 emp_num++

 }

 catch(CwDBSQLException e)

 {

 System.out.println(e.getMessage());

 }

 }

Figure 98. Passing argument values to a prepared statement

Chapter 5. Customizing a map 209

If the stored procedure uses an OUT parameter, you must use

executeStoredProcedure() to execute it.

v The stored procedure is called more than once.

The executePreparedSQL() method saves the prepared statement for the

stored-procedure call in memory. Therefore, if you call the stored procedure only

once, use of executePreparedSQL() can use more memory than calling the stored

procedure with executeSQL(), which does not save the prepared statement.

For more information, see “Executing stored procedures” on page 210.

Executing stored procedures

A stored procedure is a user-defined procedure that contains SQL statements and

conditional logic. Stored procedures are stored in a database along with the data.

Note: When you create a new relationship, Relationship Designer Express creates a

stored procedure to maintain each relationship table.

Table 72 shows the methods in the CwDBConnection class that call a stored

procedure.

 Table 72. CwDBConnection methods for calling a stored procedure

How to call the stored procedure CwDBConnection method Use

Send to the database a CALL statement to

execute the stored procedure.

executeSQL() To call a stored procedure that

does not have OUT parameters

and is executed only once

executePreparedSQL() To call a stored procedure that

does not have OUT parameters

and is executed more than once

Specify the name of the stored procedure

and an array of its parameters to create a

procedure call, which is sent to the

database for execution.

executeStoredProcedure() To call any stored procedure,

including one with OUT

parameters

Note: You can use JDBC methods to execute a stored procedure directly. However,

the interface that the CwDBConnection class provides is simpler and it reuses

database resources, which can increase the efficiency of execution. You

should use the methods in the CwDBConnection class to execute stored

procedures.

A stored procedure can return data in the form of one or more rows. In this case,

you use the same Java methods (such as hasMoreRows() and nextRow()) to access

these returned rows from the query result as you do for data returned by a

SELECT statement. For more information, see “Executing static queries that return

data (SELECT)” on page 204.

As Table 72 shows, the choice of which method to use to call a stored procedure

depends on:

v Whether the procedure provides any OUT parameters

An OUT parameter is a parameter through which the stored procedure returns a

value to the calling code. If the stored procedure uses an OUT parameter, you

must use executeStoredProcedure() to call the stored procedure.

v The number of times you call the stored procedure

The executeStoredProcedure() method saves the compiled version of the stored

procedure. Therefore, if you call the same stored procedure more than once (for

210 Map Development Guide

example, in a loop), use of executeStoredProcedure() can be faster than

executeSQL() because the database can reuse the precompiled version.

The following sections describe how to use the executeSQL() and

executeStoredProcedure() methods to call a stored procedure.

Calling stored procedures with no OUT parameters: To call a stored procedure

that does not include any OUT parameters, you can use either of the following

methods of CwDBConnection:

v The executeSQL() method sends a static stored-procedure call to the database.

This procedure call is sent as a string to the database, which compiles it into a

prepared statement before executing it. This prepared statement is not saved.

Therefore, executeSQL() is useful for a stored procedure that only needs to be

called once.

v The executePreparedSQL() method sends a prepared stored-procedure call to the

database.

In its first invocation, this procedure call is sent to the database, which creates

the prepared statement and executes it. However, the database then sends this

prepared statement back to executePreparedSQL(), which saves it in memory.

Therefore, executePreparedSQL() is useful for a stored procedure that needs to

be called more than once (for example, in a loop).

To call a stored procedure with one of these methods, specify as an argument to

the method a string representation of the CALL statement that includes the stored

procedure and any arguments. In Figure 99, the call to executeSQL() sends a CALL

statement to execute the setOrderCurrDate() stored procedure.

In Figure 99, the connection variable is a CwDBConnection object obtained from a

previous call to the getDBConnection() method. You can use executeSQL() to

execute the setOrderCurrDate() stored procedure because its single argument is an

IN parameter; that is, the value is only sent into the stored procedure. This stored

procedure does not have any OUT parameters.

You can use the form of executeSQL() or executePreparedSQL() that accepts a

parameter array to pass in argument values to the stored procedure. However, you

cannot use these methods to call a stored procedure that uses an OUT parameter.

To execute such a stored procedure, you must use executeStoredProcedure(). For

more information, see “Calling stored procedures with executeStoredProcedure()”

on page 211.

Note: Use an anonymous PL/SQL block if you plan on calling Oracle stored

PL/SQL objects via ODBC using the CwDBConnection .executeSQL() method.

The following is an acceptable format (the stored procedure name is myproc):

connection.executeSQL("begin myproc(...);

 end;");

Calling stored procedures with executeStoredProcedure(): The

executeStoredProcedure() method can execute any stored procedure, including

one that uses OUT parameters. This method saves the prepared statement for the

connection.executeSQL("call setOrderCurrDate(345698)");

Figure 99. Calling a stored procedure with executeSQL()

Chapter 5. Customizing a map 211

stored-procedure call, just as the executePreparedSQL() method does. Therefore,

executeStoredProcedure() can improve performance of a stored-procedure call

that is executed multiple times.

Steps for calling a stored procedure with the executeStoredProcedure() method: To call a

stored procedure with the executeStoredProcedure() method, perform the

following steps:

1. Specify as a String the name of the stored procedure to execute.

2. Build a Vector parameter array of CwDBStoredProcedureParam objects, which

provide parameter information: the in/out parameter type and value of each

stored-procedure parameter.

A parameter is a value you can send into or out of the stored procedure. The

parameter’s in/out type determines how the stored procedure uses the parameter

value:

v An IN parameter is for input only: the stored procedure accepts the parameter

value as input but does not use the parameter to return a value to the calling

code.

v An OUT parameter is for output only: the stored procedure does not interpret the

parameter value as input but uses the parameter to return a value to the calling

code.

v An INOUT parameter is for both input and output: the stored procedure accepts

the parameter value as input and uses the parameter to return a value to the

calling code.

A CwDBStoredProcedureParam object describes a single parameter of a stored

procedure. Table 73 shows the parameter information that a

CwDBStoredProcedureParam object contains as well as the methods to retrieve and

set this parameter information.

 Table 73. Parameter information in a CwDBStoredProcedureParam object

Parameter information CwDBStoredProcedureParam method

Parameter value getValue()

Parameter in/out type getParamType()

Steps for passing parameters to a stored procedure with executeStoredProcedure(): To

pass parameters to a stored procedure with executeStoredProcedure(), perform

the following steps:

1. Create a CwDBStoredProcedureParam object to hold the parameter information.

Use the CwDBStoredProcedureParam() constructor to create a new

CwDBStoredProcedureParam object. To this constructor, pass the following

parameter information to initialize the object:

v Parameter in/out type specifies whether the parameter is an IN, INOUT, or

OUT parameter.

v Parameter value is a Java data type that contains the value to assign to the

parameter. The CwDBStoredProcedureParam class provides many versions of

its constructor to support the different data types that could be associated

with the parameter value. For an OUT parameter, this parameter value can

be a dummy value but the data type should correspond to the OUT

parameter data type in the stored-procedure declaration.
2. Repeat step 1 for each stored-procedure parameter.

212 Map Development Guide

3. Create a Vector object with enough elements to hold all stored-procedure

parameters.

4. Add the initialized CwDBStoredProcedureParam object to the parameter Vector

object.

Use the addElement() or add() method of the Vector class to add the

CwDBStoredProcedureParam object.

5. Once you have created all CwDBStoredProcedureParam objects and added them

to the Vector parameter array, pass this parameter array as the second

argument to the executeStoredProcedure() method.

The executeStoredProcedure() method sends the stored procedure and its

parameters to the database for execution.

Example: Suppose you have the get_empno() stored procedure defined in a

database as follows:

create or replace procedure get_empno(emp_id IN number,

 emp_number OUT number) as

 begin

 select emp_no into emp_number

 from emp

 where emp_id = 1;

 end;

This get_empno() stored procedure has two parameters:

v The first parameter, emp_id, is an IN parameter.

Therefore, you must initialize its associated CwDBStoredProcedureParam object

with an in/out type of PARAM_IN, as well as with the appropriate value to send

into the stored procedure. Because emp_id is declared as the SQL NUMBER type

(which holds an integer value), the parameter’s value is of a Java Object that

holds integer values: Integer.

v The second parameter, emp_number, is an OUT parameter.

For this parameter, create an empty CwDBStoredProcedureParam object to send into

the stored procedure. You initialize this object with an in/out type of PARAM_OUT.

However, you provide a dummy Integer value for this parameter. Once the

stored procedure completes execution, you can obtain the returned value from

this OUT parameter with the getValue() method.

Figure 100 executes the get_empno() stored procedure with the

executeStoredProcedure() method to obtain the employee number for an

employee id of 65:

Chapter 5. Customizing a map 213

Tip: The Java Vector object is a zero-based array. In the preceding code, to access

the value for this OUT parameter from the Vector parameter array, the get()

call specifies an index value of 1 because this Vector array is zero-based.

A stored procedure processes its parameters as SQL data types. Because SQL and

Java data types are not identical, the executeStoredProcedure() method must

convert a parameter value between these two data types. For an IN parameter,

executeStoredProcedure() converts the parameter value from a Java data type to

its SQL data type. For an OUT parameter, executeStoredProcedure() converts the

parameter value from its SQL data type to a Java data type.

The executeStoredProcedure() method uses the JDBC data type internally to hold

the parameter value sent to and from the stored procedure. JDBC defines a set of

generic SQL type identifiers in the java.sql.Types class. These types represent the

most commonly used SQL types. JDBC also provides standard mapping from JDBC

types to Java data types.

Example: A JDBC INTEGER is normally mapped to a Java int type. The

executeStoredProcedure() method uses the mappings shown in Table 74.

 Table 74. Mappings between Java and JDBC data types

Java data type JDBC data type

String CHAR, VARCHAR, or LONGVARCHAR

Integer, int INTEGER

Long BIGINT

Float, float REAL

Double, double DOUBLE

java.math.BigDecimal NUMERIC

CwDBConnection connectn = null;

try

 {

 // Get database connection

 connectn = getDBConnection("CustomerDBPool");

 // Create parameter Vector

 Vector paramData = new Vector(2);

 // Create IN parameter for the employee id and add to parameter

 // vector

 paramData.add(

 new CwDBStoredProcedureParam(PARAM_IN, new Integer(65)));

 // Create dummy argument for OUT parameter and add to parameter

 // vector

 paramData.add(

 new CwDBStoredProcedureParam(PARAM_OUT, new Integer(0));

 // Call the get_empno() stored procedure

 connectn.executeStoredProcedure("get_empno", paramData);

 // Get the result from the OUT parameter

 CwDBStoredProcedureParam outParam =

 (CwDBStoredProcedureParam) paramData.get(1);

 int emp_number = ((Integer) outParam.getValue().intValue();

 }

Figure 100. Executing the get_empno() stored procedure

214 Map Development Guide

Table 74. Mappings between Java and JDBC data types (continued)

Java data type JDBC data type

Boolean, boolean BIT

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Clob CLOB

java.sql.Blob BLOB

byte[] BINARY, VARBINARY, or LONGVARBINARY

Array ARRAY

Struct STRUCT

Managing the transaction

A transaction is a set of operational steps that execute as a unit. All SQL statements

that execute within a transaction succeed or fail as a unit. This section provides the

following information about managing transactions:

v “Determining the transaction programming model”

v “Specifying the transaction scope” on page 216

Determining the transaction programming model

The grouping of the database operation execution steps into transactions is called

transaction bracketing. Associated with each connection is one of the following

transaction programming models:

v Implicit transaction bracketing—database operations are part of an implicit

transaction, which begins as soon as the connection is acquired and ends when

the connection is released; transaction bracketing is implicitly managed by

InterChange Server Express.

v Explicit transaction bracketing—database operations are part of an explicit

transaction, whose beginning and end is determined programmatically.

At run time, a map instance determines which transaction programming model to

use for each connection it acquires. By default, a map assumes that all connections

it acquires use implicit transaction bracketing as their transaction programming

model. You can override the default transaction programming model in any of the

ways listed in Table 75.

 Table 75. Overriding a transaction programming model for a connection

Transaction programming model to override Action to take

To specify a transaction programming model for all

connections obtained by a particular map instance

Select or deselect the Implicit Database Transaction check box on

the General tab of the Map Properties dialog. You can also set

this property on the Map Properties window of Service Manager.

To specify a transaction programming model for a

particular connection

Provide a boolean value to indicate the desired transaction

programming model (for this connection only) as the optional

second argument to the getDBConnection() method.

The following getDBConnection() call specifies explicit

transaction bracketing for the connection obtained from the

ConnPool connection pool:

conn = getDBConnection("ConnPool",

 false);

Chapter 5. Customizing a map 215

You can determine the current transaction programming model that connections

will use with the BaseDLM.implicitDBTransactionBracketing() method, which

returns a boolean value indicating whether the transaction programming model is

implicit transaction bracketing.

Specifying the transaction scope

The connection’s transaction programming model determines how the scope of the

database transaction is specified. Therefore, this section provides the following

information:

v “Transaction scope with implicit transaction bracketing”

v “Transaction scope with explicit transaction bracketing”

Transaction scope with implicit transaction bracketing: InterChange Server

Express handles the actions of the map in a single implicit transaction. If the

connection uses implicit transaction bracketing,InterChange Server Express also

handles the transaction management for operations performed on an external

database, one associated with a connection from a connection pool. When a map

performs database operations, InterChange Server Express also handles these

database operations as an implicit transaction, which is a subtransaction of the

main transaction (the map). This database subtransaction begins as soon as the

map obtains the connection. InterChange Server Express implicitly ends this

subtransaction when execution of the map completes.

The success or failure of this database subtransaction depends on the success or

failure of the map, as follows:

v If the map is successful, InterChange Server Express commits the database

subtransaction.

v If the map fails, InterChange Server Express rolls back the database

subtransaction. If this rollback fails, InterChange Server Express throws the

CwDBTransactionException exception and logs an error.

Transaction scope with explicit transaction bracketing: If the connection uses

explicit transaction bracketing, InterChange Server Express expects the map

definition to explicitly specify the scope of each database transaction. Explicit

transaction bracketing is useful if you have some database work to perform that is

independent of the success or failure of the map.

Example: If you need to perform auditing to indicate that certain tables were

accessed, this audit needs to be performed regardless of whether the table accesses

were successful or not. If you contain the auditing database operations in an

explicit transaction, they are executed regardless of the success or failure of the

map.

Table 76 shows the methods in the CwDBConnection class that provide management

of transaction boundaries for explicit transactions.

 Table 76. CwDBConnection methods for explicit transaction management

Transaction-management task CwDBConnection method

Begin a new transaction. beginTransaction()

End the transaction, committing (saving) all

changes made during the transaction to the

database.

commit()

Determine if a transaction is currently active. inTransaction()

End the transaction, rolling back (backing

out) all changes made during the transaction.

rollBack()

216 Map Development Guide

Steps for specifying the transaction scope of an explicit transaction: To specify

transaction scope of an explicit transaction, perform the following steps:

1. Mark the beginning of the transaction with a call to the beginTransaction()

method.

2. Execute all SQL statements that must succeed or fail as a unit between the call

to beginTransaction() and the end of the transaction.

3. End the transaction in either of two ways:

v Call commit() to end the transaction successfully. All modifications that the

SQL statements have made are saved in the database.

v Call rollBack() to end the transaction unsuccessfully. All modifications that

the SQL statements have made are backed out of the database.

You can choose what conditions cause a transaction to fail. Test the condition

and call rollBack() if any failure condition is met. Otherwise, call commit() to

end the transaction successfully.

Important: If you do not use beginTransaction() to specify the beginning of the

explicit transaction, the database executes each SQL statement as a

separate transaction. If you include beginTransaction() but do not

specify the end of the database transaction with commit() or

rollback() before the connection is released, InterChange Server

Express implicitly ends the transaction based on the success of the

map. If the map is successful, InterChange Server Express commits this

database transaction. If the map is not successful, InterChange Server

Express implicitly rolls back the database transaction. Regardless of the

success of the map, InterChange Server Express logs a warning.

The following code fragment updates three tables in the database associated with

connections in the CustDBConnPool. If all these updates are successful, the code

fragment commits these changes with the commit() method. If any transaction

errors occur, a CwDBTransactionException exception results and the code fragment

invokes the rollback() method.

CwDBConnection connection =

getDBConnection("CustDBConnPool", false);

// Begin a transaction

connection.beginTransaction();

// Update several tables

try

 {

 connection.executeSQL("update table1....");

 connection.executeSQL("update table2....");

 connection.executeSQL("update table3....");

 // Commit the transaction

 connection.commit();

 }

catch (CwDBSQLException e)

 {

 // Roll back the transaction if an executeSQL() call throws

 // an exception

 connection.rollback();

 }

// Release the database connection

connection.release();

Chapter 5. Customizing a map 217

To determine whether a transaction is currently active, use the inTransaction()

method.

Attention: Use the beginTransaction(), commit(), and rollback() methods only if

the connection uses explicit transaction bracketing. If the connection

uses implicit transaction bracketing, use of any of these methods results

in a CwDBTransactionException exception.

Releasing a connection

Once a connection is released, it is returned to its connection pool, where it is

available for use by other components. The way that a connection to the database

is released depends on the transaction programming model. Therefore, this section

provides the following information:

v “Releasing a connection with implicit transaction bracketing”

v “Releasing a connection with explicit transaction bracketing”

Releasing a connection with implicit transaction bracketing

InterChange Server Express automatically releases a connection that uses implicit

transaction bracketing once it has ended the database transaction. InterChange

Server Express does not end the database transaction until it determines the

success or failure of the map; that is, InterChange Server Express releases these

connections when the map instance finishes execution. If the map executes

successfully, InterChange Server Express automatically commits any database

transactions that are still active. If the map execution fails (for instance, if an

exception is thrown that is not handled with a catch statement), InterChange

Server Express automatically rolls back any transactions that are still active.

Releasing a connection with explicit transaction bracketing

For a connection that uses explicit transaction bracketing, the connection ends in

either of the following cases:

v InterChange Server Express automatically releases a connection that uses explicit

transaction bracketing.

v You can explicitly release a connection with the release() method of the

CwDBConnection class.

You can use the CwDBConnection.isActive() method to determine whether a

connection has been released. If the connection has been released, isActive()

returns false, as the following code fragment shows:

if (connection.isActive())

 connection.release();

Attention: Do not use the release() method if a transaction is currently active.

With implicit transaction bracketing, InterChange Server Express does

not end the database transaction until it determines the success or

failure of the map. Therefore, use of this method on a connection that

uses implicit transaction bracketing results in a

CwDBTransactionException exception. If you do not handle this

exception explicitly, it also results in an automatic rollback of the active

transaction. You can use the inTransaction() method to determine

whether a transaction is active. InterChange Server Express

automatically releases a connection regardless of the transaction

programming model it uses. In most cases, you do not need to

explicitly release the connection.

218 Map Development Guide

Re-establishing a connection

Database connections can be broken due to various reasons such as a network

problem or database shutdown. The InterChange Server Express can detect broken

connections in both internal and user databases.

If a connection is broken, the InterChange Server Express automatically tries to

re-establish the connect according to a predefined number of retry attempts at

predefined time intervals. See System Administration Guide for more information on

setting maximum retry attempts and retry time intervals.

Note: The default for maximum retry attempts is 3 and retry time intervals is 60

seconds.

Chapter 5. Customizing a map 219

220 Map Development Guide

Part 2. Relationships

© Copyright IBM Corp. 2004, 2005 221

222 Map Development Guide

Chapter 6. Introduction to relationships

This chapter provides an overview of WebSphere Business Integration Server

Express relationships and the relationship development process.

This chapter covers the following topics:

v “What is a relationship?” on page 223

v “Relationships: A closer look” on page 229

v “Overview of the relationship development process” on page 235

What is a relationship?

When attributes in a source and destination business object contain equivalent data

that is represented differently, the transformation step employs a relationship. A

relationship establishes an association between data from two or more business

objects. Each business object is called a participant in the relationship.

The data that you typically transform using relationships are:

v ID numbers, such as a customer ID or product ID

v Other values represented as codes, such as country, currency, or marital status

Example: Suppose application A uses sequential integers for customer IDs, and

application B uses generated customer codes. TashiCo has a customer ID of 806 in

application A and A100 in application B. To transfer customer ID data between

applications A and B, you can create a relationship among the application A

customer business object, the generic customer business object, and the application

B customer business object, based on the customer ID attributes.

This relationship establishes an association between customers from application A

and application B, based on the key attributes of their customer business objects. In

Figure 101, each box represents a participant in a relationship called CustIden.

Relationships are classified into the following categories based on the type of data

in the participant and the number of instances of each participant that can be

related:

Application A

CustIden

Participant

Application B

Participant

Generic Customer

Participant

Figure 101. Relationship with three participants

© Copyright IBM Corp. 2004, 2005 223

v A lookup relationship establishes an association between data, such as attributes in

business objects. The data can be related on a one-to-one, one-to-many, or

many-to-many basis. Lookup relationships typically transform non-key attributes

whose values are represented with codes, such as marital status or currency

code. Use a lookup relationship if these attribute values are static; that is, new

values are not often added or existing values removed.

v An identity relationship establishes an association between business objects or

other data on a one-to-one basis. For each relationship instance, there can be only

one instance of each participant. Identity relationships typically transform the

key attributes of business objects, such as ID numbers and product codes. The

relationship in Figure 101 is an example of an identity relationship. Use an

identity relationship if key values are dynamic; that is, key values are frequently

added or existing values are removed.

v A non-identity relationship establishes an association between business objects or

other data on a one-to-many or many-to-many basis. For each relationship instance,

there can be one or more instances of each participant. An example of a

non-identity relationship is an RMA-to-Order transformation, in which a single

RMA (Return Materials Authorization) business object can yield one or more

Order business objects.

Lookup relationships

A lookup relationship relates two pieces of non-key data. For example, in a

Clarify_Site to Customer map, you might transform attributes whose values are

represented by codes or abbreviations, such as SiteStatus, using a lookup

relationship. In a lookup relationship, there is one participant for each

application-specific business object.

The CustLkUp relationship in Figure 102 establishes a lookup relationship between

customer status codes from Clarify and SAP applications. Each box represents a

participant in the CustLkUp lookup relationship. Notice that this relationship has

two participants, one for each application-specific business object.

Note: Because a lookup relationship does not indicate which attributes are being

related, its participants use a special type called Data. For more information,

see “Participant type” on page 233.

Example: Suppose that the Clarify application represents an inactive customer with

a site status of Inactive while in SAP the corresponding value is 05. Although

these customer status codes are different, they represent the same status, as

Figure 103 shows.

Figure 102. CustLkUp lookup relationship definition

224 Map Development Guide

Table 77 shows the subtasks for creating a lookup relationship.

 Table 77. Subtasks for creating a lookup relationship

Subtask For more information

1. Defining a lookup relationship in Relationship

Designer Express.

“Defining lookup relationships” on page 247

2. Customizing mapping code to maintain the lookup

relationship.

“Using lookup relationships” on page 258

3. Testing the lookup relationship to verify that it is

implemented correctly.

“Testing a lookup relationship” on page 96

Identity relationships

An identity relationship establishes an association between business objects or other

data on a one-to-one basis. To maintain a one-to-one relationship, each business

object must have a key; that is, the object contains at least one attribute (a key

attribute) whose value uniquely identities the object. If both business objects

contain a key, they can participate in an identity relationship.

The WebSphere Business Integration Server Express system supports the following

kinds of identity relationships:

v “Simple identity relationships”

v “Composite identity relationships” on page 227

Both kinds of identity relationships involve relating business object attributes.

Therefore, each participant in an identity relationship has a business object as its

participant type. For more information on participant types, see “Participant type”

on page 233.

Simple identity relationships

A simple identity relationship relates two business objects through a single key

attribute; that is, each business object contains a single value that uniquely

identifies the object.

Example: Suppose the CustIden relationship (see Figure 101) is further refined to

establish an association between customers from the Clarify and SAP applications,

based on the key attributes of their customer business objects. In Figure 104, each

box represents a participant in this customer identity relationship. Notice that this

relationship has a participant for each application-specific business object and the

generic business object.

ClarLkUp

Data
Active

Inactive

Fired

Retired

SAPLkUp

Data
03

04

05

02

Figure 103. Relationship data for the CustLkUp lookup relationship

Chapter 6. Introduction to relationships 225

The TashiCo company is identified with a key value of A100 in the Clarify

application while this same company is identified with a key value of 806 in the

SAP application. Although these application IDs are different, they represent the

same customer, as Figure 105 shows.

Therefore, the following maps use a simple identity relationship to maintain the

transformations between the key attributes:

v The inbound maps (between the Clarify application-specific business object and

the generic Customer business object) use a simple identity relationship to

maintain the transformation between the SiteID attribute of the Clarify_Site

business object and generic CustomerID attribute of the generic Customer business

object.

v The outbound maps (between the generic Customer business object and the SAP

application-specific business object) also use a simple identity relationship to

maintain the transformation between the RefID attribute of the SAP_Customer

business object and the generic CustomerID attribute of the generic Customer

object.

Table 78 shows the subtasks for creating a simple identity relationship.

 Table 78. Subtasks for creating a simple identity relationship

Subtask For more information

1. Defining a simple identity relationship in

Relationship Designer Express.

“Defining identity relationships” on page 244

2. Customizing mapping code to maintain the simple

identity relationship.

“Using simple identity relationships” on page 263

3. Testing the simple identity relationship to verify that

it is implemented correctly.

“Testing an identity relationship” on page 93

Type:
Attributes:

Clarify_Site

SiteID

CustIden

ClarCust

Type:
Attributes:

SAP_Customer

RefID

SAPCust

Type:
Attributes:

Customer

CustomerID

CWCust

Figure 104. CustIden simple identity relationship definition

Clarify_Sit
SiteID
A100

A106

B312

C004

SAP_Custom
RefID
803

806

712

788

Figure 105. Relationship data for the custIden simple identity relationship

226 Map Development Guide

Composite identity relationships

A composite identity relationship relates two business objects through a composite

key. As the term “composite” indicates, a composite key is a key that consists of

several attributes. Values for all attributes are needed to uniquely identify the

object. A composite key consists of a unique key from a parent business object and

a nonunique key from a child business object.

Example: Suppose a particular order from TashiCo in the Clarify application is

identified with a key value of 8765. This same order in the SAP application is

identified with a key value of 0003411. Because these two order numbers uniquely

identify the same order, their key attributes are related with a simple identity

relationship. However, an order also contains order lines. If all participating

applications identify these order lines with a unique value, a simple identity

relationship can maintain their transformations.

However, it is often the case that an application uses only the line number to

identify an order-line item. That is, each order contains a line item identified with

1, with any subsequent items numbered 2, 3, and so on. These line numbers do not

uniquely identify the order-line items. To uniquely identify such items, the

application uses a composite key that consists of the order number (from the

parent order business object) and the line number (from the child order-line

business object).

In Figure 106, the OrdrLine relationship establishes a relationship between order

lines from the Clarify and SAP applications, based on their composite key

attributes: the unique key attribute of their parent order business object combined

with the order-line number in their child order-line business object. Each box

represents a participant in the OrdrLine composite identity relationship. Notice that

each participant has two attributes.

Chapter 6. Introduction to relationships 227

Example: Suppose the Clarify application (represented by the participant ClarOrder

in Figure 106) uses sequential integers to identify order-line items, while the SAP

application uses the line number to identify these items. The Clarify application

uniquely identifies each order-line item. Therefore, the maps between the Clarify

application-specific business object and the generic Order business object

(represented by the participant CWOrder) can use a simple identity relationship to

maintain the transformation of the order-line items.

However, the SAP application (represented by the participant SAPOrder) identifies

order-line items with their line number. Its items are not uniquely identified: every

order contains a line item identified with 1, with any subsequent items numbered

2, 3, and so on. To uniquely identify the third order-line item of Order 0003411,

you need to use a composite key, which includes both the order number (0003411)

and the item number (3). Therefore, the maps between the SAP application-specific

business object and the generic Order business object must use a composite identity

relationship to maintain the transformation of the order-line items.

The third line item from the TashiCo order (8765) is identified in the Clarify

application with the simple key value of 1171. However, this same line item is

identified in the SAP application with a composite key value of 0003411 (order

number) and 3 (line number). Although these order lines are identified differently,

they represent the same order line item, as Figure 107 shows.

Type: Clarify_SFAQuote
Attributes:
QuoteObjId

Clarify_QuoteLine

Type: Clarify_QuoteLine
Attributes: QuoteLineId

OrdrLine

ClarOr der

Type: SAP_Order
Attributes:
OrderId

SAP_OrderLineItem

Type: SAP_OrderLineItem
Attributes: LineItemId

SAPOrder

Type: Order
Attributes:
OrderId

OrderLineItem

Type: OrderLineItem
Attributes: LineItemId

CWOrder

Figure 106. OrdrLine composite identity relationship definition

228 Map Development Guide

Table 79 shows the subtasks for creating a composite identity relationship.

 Table 79. Subtasks for creating a composite identity relationship

Subtask For more information

1. Defining a composite identity relationship in

Relationship Designer Express.

“Defining identity relationships” on page 244

2. Customizing mapping code to maintain the

composite identity relationship.

“Using composite identity relationships” on page 274

3. Testing the composite identity relationship to verify

that it is implemented correctly.

“Testing an identity relationship” on page 93

Relationships: A closer look

To understand the types of relationships that the WebSphere Business Integration

Server Express system supports, you must understand how IBM implements the

following concepts:

v “Relationships”

v “Participants” on page 233

Relationships

As Table 80 shows, a relationship is a two-part entity, consisting of a repository

entity and a run-time object.

 Table 80. Parts of a relationship

Repository entity Run-time object

Relationship definition Relationship instance

Relationship definition

You define a relationship to the WebSphere Business Integration Server Express

system with a relationship definition. Relationship definitions identify each

participant and specify how the participants are related. In Figure 101, CustIden is

the relationship definition and it includes information about the three participants,

Application A, Application B, and Generic Customer.

The system stores relationship definitions in the repository. The Relationship

Designer Express tool provides dialogs to help you create the relationship

definitions. Using this tool, you also store the completed relationship definition in

the repository.

Tip: For more information on how to use Relationship Designer Express to create

relationship definitions, see “Customizing the main window” on page 240.

Clarify_SF AQuote
QuoteObjId

8764

8765

8765

8765

8766

8766

SAP_Order
OrderId

0003409

0003410

0003410

0003411

0003411

0003411

Clarify_QuoteLine

1168

1169

1170

1171

1172

1173

SAP_OrderLineItem

1

1

2

1

2

3

Figure 107. Relationship data for the OrdrLine composite identity relationship

Chapter 6. Introduction to relationships 229

The relationship definition provides the following information about the

relationship:

v The relationship name

v The name of the relationship database

Relationship definition name: A relationship definition is simply a template, or

description, of the relationship; it is not an actual business object. Therefore, the

name of the relationship definition should not be the name of the associated

business object.

Relationship database: The relationship database holds the relationship tables for a

relationship. The relationship uses these relationship tables to keep track of the

related application-specific values. For more information, see “Relationship tables”

on page 231.

To access the relationship database at run time, the system must have the following

information:

v The type of database management system (DBMS) that manages the relationship

database

v The name and password of the user account that accesses the relationship

database

v The location of the relationship database

By default, the relationship database is the WebSphere Business Integration Server

Express system repository; that is, Relationship Designer Express creates all

relationship tables in the repository. Relationship Designer Express allows you to

specify the location of relationship tables in either of the following ways:

v Change the default location of relationship databases of every relationship.

For more information, see “Global default settings” on page 252..

v Customize the location of each relationship’s tables as part of the process of

creating a relationship definition.

For more information, see “Advanced settings for relationship definitions” on

page 249.

Relationship instance

The relationship definition is a template for the run-time instantiation of the

relationship, called the relationship instance. During map execution, the system

creates instances of the relationship based on the relationship definition and using

the values from the actual business objects being transformed.

Example: The relationship data for the CustLkUp lookup relationship (see

Figure 103) shows that a customer status of Inactive in a Clarify application is the

same as a customer status of 05 in an SAP application. Although these status codes

are different, they represent the same customer status and therefore are in the same

relationship instance, as Figure 108 shows.

230 Map Development Guide

A relationship instance is represented in the Mapping API by an instance of the

Relationship or IdentityRelationship class.

To locate a relationship instance, the system requires the following information:

v A relationship table to identify which table contains the relationship instances for

a particular participant

v A relationship instance ID to identify the actual relationship instance within the

relationship table

Relationship tables: A relationship table is a database table that holds the

relationship run-time data for one participant in a relationship. InterChange Server

Express stores relationship instances in relationship tables, with one table

(sometimes called a participant table) storing information for one participant in the

relationship. For example, for the CustLkUp lookup relationship in Figure 102,

InterChange Server Express requires two participant tables, as shown in Figure 108.

When you create a relationship definition, Relationship Designer Express

automatically creates the table schemas that the relationship requires; that is, it

creates the relationship tables with the necessary columns for each participant. At

run time, these tables hold the data for the relationship instances.

Note: For an identity relationship, InterChange Server Express automatically

populates the relationship tables. For a lookup relationship, you must

populate the relationship tables with data. For more information, see

“Populating lookup tables with data” on page 259.

To access a relationship table at run time, the system must have the following

information:

v The name of the relationship table

Because a relationship table is associated with a participant, the name of this

table is defined as part of the participant definition. By default, any relationship

table has a name of the form:

RelationshipDefName_ParticipantDefName

Relationship Designer Express allows you to customize the name of a

relationship table as part of the process of creating a participant definition.

For more information, see “Advanced settings for participant definitions” on

page 250.

v The name of the database that contains the relationship table

The name of the relationship database is set as part of the relationship definition.

By default, the relationship database is the system repository. For more

information, see “Advanced settings for relationship definitions” on page 249..

In map-transformation steps, relationship tables are managed using methods in the

Relationship, IdentityRelationship, and Participant classes. Some Mapping API

ClarLkUp
Data

Active

Inactive

Fired

Retired

SAPLkUp
Data

03

04

05

02

Relationship
Instance

Figure 108. One Relationship instance for the CustLkUp relationship

Chapter 6. Introduction to relationships 231

methods automatically manage relationship tables. You can also explicitly access

these relationship tables to obtain this relationship data.

Relationship instance ID: The WebSphere Business Integration Server Express

system uniquely identifies each relationship instance by assigning it a unique

integer value, called a relationship instance ID. This instance ID allows the system to

correlate the participant values. In general, given any participant in a relationship,

you can retrieve the data for any other participant in the relationship by specifying

the relationship instance ID.

Example: For the relationship between customer status codes of a Clarify

application and an SAP application, the WebSphere Business Integration Server

Express system assigns a relationship instance ID to each relationship instance of

the lookup relationship. Figure 109 shows how instance ID 47 associates the two

application-specific participants, ClarLkUp and SAPLkUp. ID 47 associates the Clarify

customer status of Inactive with the SAP customer status value of 05. Notice that

this relationship is basically the same as the one in Figure 108, with the addition of

the relationship instance ID.

The WebSphere Business Integration Server Express system also uses a relationship

instance ID for the relationship between participants in an identity relationship. In

the CustIden relationship (see Figure 104), this instance ID associates the customer

IDs stored in the SiteID attribute of the Clarify_Site business object, the

CustomerID attribute of the generic Customer business object, and the RefID

attribute of the SAP_Customer business object. Figure 110 shows how the

relationship instance data for each participant of the CustIden relationship is

associated using the relationship instance ID.

In Figure 110, the relationship table for the CWCust participant is included for

clarity, though the table is not strictly necessary. In fact, relationship tables for the

participant representing the generic business object in any relationship are

necessary only if you want to generate a generic ID for the associated attribute in

the generic business object. The relationship in Figure 110 generates a generic ID

(07) for the CustomerID attribute in the generic Customer business object.

You can simplify your relationship definition and increase performance by

eliminating the relationship tables for the participant that represents the generic

business object. You do this by selecting the managed option for the participant

InstanceID

46

47

48

49

ClarLkUp
InstanceID

45

46

47

48

SAPLkUp

Relationship
Instance

47

Data

Active

Inactive

Fired

Retired

Data

03

04

05

02

Figure 109. A lookup relationship with relationship instance IDs

InstanceID

116

117

118

119

ClarCust
SiteID

A100

A106

B312

C004

InstanceID

114

115

116

117

CWCust
CustomerID

14

18

07

22

InstanceID

115

116

117

118

SAPCust
RefID

803

806

712

788

Figure 110. A customer identity relationship with relationship instance IDs

232 Map Development Guide

when you create the relationship definition. See “Advanced settings for participant

definitions” on page 250 for more information about this setting.

Figure 111 shows how relationship instance data is associated in the CustIden

relationship when the managed setting is specified for the CWCust participant.

The WebSphere Business Integration Server Express system stores the relationship

instance ID in the relationship table for each participant. As Figure 109 through

Figure 111 show, each relationship table in a relationship has a column that

contains the relationship instance ID. InterChange Server Express automatically

creates the instance ID column when it creates the table schema.

Participants

A relationship contains participants, which describe the entities participating in the

relationship. As Table 81 shows, a participant is a two-part entity, consisting of a

repository definition and a run-time object.

 Table 81. Parts of a participant

Repository entity Run-time object

Participant definition Participant instance

Participant definitions

The relationship definition contains a list of participant definitions. For instance, the

CustIden relationship definition in Figure 104 associates customer business objects

in Clarify and SAP and contains these participant definitions: SAPCust, CWCust, and

ClarCust.

The WebSphere Business Integration Server Express system stores participant

definitions in the repository. The Relationship Designer Express tool provides

dialogs to help you create the participant definitions. Using this tool, you also store

the completed participant definition in the repository.

The participant definition provides the following information about the participant:

v The participant name

v The participant type

v The name of the participant table and stored procedures

Participant definition name: A participant definition is simply a template, or

description, of the participant; it is not an actual business object. Therefore, the

name of the participant definition should not be the name of the associated

business object.

Participant type: Like the attributes in a business object definition, the

participants in a relationship definition have an associated type. The participant

InstanceID

116

117

118

119

ClarCust
SiteID

A100

A106

B312

C004

InstanceID

115

116

117

118

SAPCust
RefID

803

806

712

788

Figure 111. An identity relationship Instance with no generic table

Chapter 6. Introduction to relationships 233

type specifies the kind of data associated with instances of the participant. The

participant type can be one of the following:

v The name of a business object definition

Relationships with participants of this type establish an association between

entire business objects. In this case, you specify the attributes of the business

object that relate the participant to the other participants in the relationship. The

attributes you select, usually the key attributes of the business object, become

the participant instance identifiers.

v The word Data

In the participant definition, Data represents a supported attribute data type,

such as String, long, int, double, float, or boolean. You specify Data as the type

for participants in relationships that establish associations between specific

attributes in business objects. Participants in lookup relationships have a

participant type of Data.

For information on how to define the type of a participant, see “Creating a

relationship definition” on page 243.

Participant table and stored procedures: For every participant, InterChange

Server Express creates the following database entities:

v A participant table to hold the relationship instance IDs and the associated

participant’s application-specific value

v Stored procedures to perform Retrieve (Select), Insert, Delete, and Update

operations on the participant table

By default, Relationship Designer Express assigns names of the following form to

the participant’s table and stored procedure: RelName_ParticipantName_X, where

RelName is the name of the relationship definition, ParticipantName is the name of

the participant definition, and X is T for the participant table or SP for the stored

procedure. By default, Relationship Designer Express creates the relationship tables

in the WebSphere Business Integration Server Express system repository.

Relationship Designer Express allows you to customize the names of the

participant table and stored procedures. For more information on naming the

participant table and stored procedures, see “Advanced settings for participant

definitions” on page 250.

Participant instances

The participant definition is a template for the run-time instantiation of the

participant, called the participant instance. During map execution, the WebSphere

Business Integration Server Express system creates instances of the participant

based on the participant definition and the attribute values from the actual

business objects being transformed.

The WebSphere Business Integration Server Express system stores participant

instances as a column in the participant’s relationship table.

Example: For the CustIden relationship in Figure 104, the ClarCust participant has

a column called SiteID in its participant table to hold the values of its participant

instances. The SAPCust participant has a RefID column in its participant table to

hold the values of its participant instances.

Each participant instance contains the following information:

v Name of the relationship definition

234 Map Development Guide

v Relationship instance ID

v Name of the participant definition

v Data to associate with the participant

A participant instance is represented in the Mapping API by an instance of the

Participant class.

Overview of the relationship development process

A relationship in the WebSphere Business Integration Server Express system is a

two-part entity:

v A relationship definition, stored in the repository, to define the participants

v Code within a map to implement the relationship by accessing the relationship

tables

To define a relationship in the WebSphere Business Integration Server Express

system, you must perform the following basic steps:

1. Determine the type of relationship you need.

2. Within Relationship Designer Express define a relationship definition and

define the composite participants.

3. Within Map Designer Express customize the transformation rule, if necessary,

to maintain the relationship.

4. Recompile the affected maps.

5. Deploy the relationships and maps to InterChange Server Express with the

Create Schema option.

6. Ensure that the relationship database(s) exists and is defined correctly within

the relationship definition.

7. Populate relationship tables for any lookup relationships. Optionally, populate

other relationship tables with test data for the testing phase.

8. For each map, start all relationships in the map.

9. Test the relationship with the Test Connector. Be sure to set the appropriate

calling context as part of each of the tests.

Figure 112 provides a visual overview of the relationship development process and

provides a quick reference to chapters where you can find information on specific

topics. Note that if a team of people is available for map development, the major

tasks of developing a map can be done in parallel by different members of the

development team.

Chapter 6. Introduction to relationships 235

Task: Steps:

Define the
relationship

•
•
•

Create the relationship definition
• Create the participant definitions

Generate the table schemas

Refer to:

Customize the map

Populate
relationship tables

Activate the
relationship

• Add relationship-management code to
the appropriate maps

• Implement error and message handling
• Validate and compile the map

• Populate the relationship tables for all
lookup relationships

• Populate any other relationship tables
with test data (optional)

• Start the relationship from System
Manager

Chapter 7

Chapter 8

Chapter 4

Chapter 8

Test and debug
the map

• Test the map
• Before recoding, stop the relationship
• Recode as needed
• Before retesting, start the relationship

Determine the type
of relationship

• Determine what type of relationship
you need to use: lookup, identity
custom

, Chapter 6

Figure 112. Overview of the relationship development task

236 Map Development Guide

Chapter 7. Creating relationship definitions

This chapter describes how to create and modify relationship definitions using

Relationship Designer Express. For background information on how the WebSphere

Business Integration Server Express system uses relationships in mapping, see

Chapter 6, “Introduction to relationships,” on page 223. For help customizing

relationships in maps, see Chapter 5, “Customizing a map,” on page 101.

This chapter covers the following topics:

v “Overview of Relationship Designer Express” on page 237

v “Creating a relationship definition” on page 243

v “Defining identity relationships” on page 244

v “Defining lookup relationships” on page 247

v “Creating the relationship table schema” on page 248

v “Copying relationship and participant definitions” on page 248

v “Renaming relationship or participant definitions” on page 249

v “Specifying advanced relationship settings” on page 249

v “Deleting a relationship definition” on page 253

v “Optimizing a relationship” on page 254

Overview of Relationship Designer Express

Relationship Designer Express is a graphical development tool for creating and

modifying relationship definitions. A relationship definition establishes an association

between two or more participants. You create a relationship definition by

specifying the participants in the relationship and defining the data source and

other properties associated with each participant.

This section covers the following topics to introduce you to Relationship Designer

Express:

v “Starting Relationship Designer Express” on page 237

v “Working with projects” on page 238

v “Layout of Relationship Designer Express” on page 239

v “Customizing the main window” on page 240

v “Using Relationship Designer Express functionality” on page 241

Starting Relationship Designer Express

To launch Relationship Designer Express, do one of the following:

v From System Manager, perform one of these actions:

– From the Tools menu, select Relationship Designer Express.

– Click a Relationship folder in a project to enable the Relationship Designer

Express icon in the System Manager toolbar. Then click the Relationship

Designer Express icon.

– Right-click the Relationships folder in a project and select Relationship

Designer Express from the Context menu.

– Right-click a relationship in the Dynamic or Static folder and select Edit

Definitions from the Context menu.

© Copyright IBM Corp. 2004, 2005 237

Result:Relationship Designer Express launches and highlights the selected

relationship.
v From a development tool, such as Business Object Designer Express, Map

Designer Express, perform one of these actions:

– From the Tools menu, select Relationship Designer Express.

– In the Programs toolbar, click the Relationship Designer Express button.
v Use a system shortcut:

Start > Programs > IBM WebSphere Business Integration Server Express

 > Toolset Express > Development > Relationship

 Designer Express

Important: For Relationship Designer Express to be able to access relationships

stored in System Manager, Relationship Designer Express must be

connected to an instance of System Manager. The preceding steps

assume that you have already started System Manager. If System

Manager is already running, Relationship Designer Express will

automatically connect to it.

Working with projects

System Manager is the only tool that interacts with the server. It imports and

exports entities (relationships, maps) between InterChange Server Express and

System Manager projects. Various tools, such as Relationship Designer Express,

connect to System Manager and view, edit, and modify these entities on a project

basis.

A project is simply a logical grouping of entities for managing and deployment

purposes. Once entities are deployed to InterChange Server Express, the project

they originated from no longer has any meaning.

System Manager allows you to create multiple projects. Before you can work on a

relationship, you must select which project the relationship is in.

Steps for selecting a project

To select a project to work with, perform the following steps:

1. From the File menu, select Switch to Project.

2. In the Switch to Project submenu, select the name of the project.

Result: You can now work with the relationships in that project. Before you can

switch to yet another project, you need to save the relationships you modified in

the current project.

Figure 113 shows the Switch to Project option for browsing a project.

238 Map Development Guide

When Relationship Designer Express establishes a connection to System Manager,

it obtains a list of business objects that are defined in the current project. This list

assists you with defining participants.

If you add or delete a business object using Business Object Designer Express,

System Manager notifies Relationship Designer Express, which dynamically

updates the list of business object definitions.

Layout of Relationship Designer Express

In the Relationship Designer Express window, a list of relationship definitions

stored in the current project appears on the left side. In this relationship definition

list, the contents of each relationship definition appear in a hierarchical format

similar to the Windows Explorer. You can expand the relationship name by clicking

on the plus symbol (+) beside its name to see a list of its participant definitions,

participant types, and associated attributes. Figure 114 shows a relationship

definition list.

Figure 113. Browsing a project

Chapter 7. Creating relationship definitions 239

The Participant Types window shows a list of available data types in the current

project that you can associate with a participant.

Figure 115 shows the main window of Relationship Designer Express, with both

the Relationship Definition list and the Participant Types window.

Customizing the main window

Relationship Designer Express allows you to customize its main window by:

v “Selecting windows to display” on page 240

v “Floating a dockable window” on page 241

Selecting windows to display

When you first open Relationship Designer Express, only the relationship

definition list displays in the main window. The Participant Types window does

not display. You can customize the appearance of the main window with options

from the View pull-down menu. Table 82 describes the options of the View menu

and how they affect the appearance of the Relationship Designer Express main

window.

 Table 82. View menu options for main window customization

View menu option Element displayed

Participant Types The Participant Types window displays

Toolbar The Standard toolbar, which provides the main functionality for

Relationship Designer Express

Status Bar A single-line pane in which Relationship Designer Express

displays status information

Tip: When a menu option appears with a check mark to the left, the associated

element displays. To turn off the display of the element, select the associated menu

Figure 114. Relationship definition list

Figure 115. Relationship Designer Express main window

240 Map Development Guide

option. The check mark disappears to indicate that the element does not currently

display. Conversely, you can turn on the display of an undisplayed element by

selecting the associated menu option. In this case, the check mark appears beside

the displaying element.

Floating a dockable window

Relationship Designer Express supports the following features of the main window

as dockable windows:

v Standard toolbar

v Participant Types window

Tip: By default, a dockable window is usually placed along the edge of the main

window and moves as part of the main window. When you float a dockable

window, you detach it from the main window, allowing it to function as an

independent window. To float a dockable window, hold down the left mouse

button, grab the border of the window and drag it onto the main window or

desktop.

Using Relationship Designer Express functionality

You can access the Relationship Designer Express functionality using any of the

following:

v Pull-down menus

v Context menu

v Toolbar buttons

v Keyboard shortcuts

Relationship Designer Express pull-down menus

Relationship Designer Express provides the following pull-down menus:

v File menu

v Edit menu

v View menu

v Tools menu

v Help menu

The following sections describe the options of each of these menus. Keyboard

shortcuts are available for some of these options, as indicated.

Functions of the File menu: The File pull-down menu of Relationship Designer

Express provides the options shown in Table 83. Except for the Switch to Project

option, all File menu options affect objects in the current project.

 Table 83. File menu options in Relationship Designer Express

File menu option Description For more information

New (Ctrl+N) Creates a new relationship definition “Creating a relationship definition”

on page 243

Switch to Project (Ctrl+S) Lists other projects “Working with projects” on page 238

Save Saves the current relationship

definition to a file

“Creating a relationship definition”

on page 243

Save All Saves all open relationship definitions N/A

Add Participant Definition Adds a new participant definition to

the current relationship definition

“Creating a relationship definition”

on page 243

Chapter 7. Creating relationship definitions 241

Functions of the Edit menu: The Edit pull-down menu of Relationship Designer

Express provides the following options:

v Rename—renames the relationship definition

v Copy (Ctrl+C)—Copies the current relationship definition.

v Paste (Ctrl+V)—Pastes the copied relationship definition.

v Cut (Ctrl+X)—Deletes the current relationship definition.

v Advanced Settings—Displays the Advanced Settings window.

Functions of the View menu: The View pull-down menu of Relationship

Designer Express displays the following options:

v Participant Types—Displays the Participant Types window.

v Expand Tree—Displays the members of the current level of the relationship

definition list (same as clicking on the plus symbol beside the name of the level).

v Collapse Tree—Condenses the current level of the relationship definition list so

that its members do not display (same as clicking on the minus symbol beside

the name of the level).

v Toolbar—When enabled, displays the Standard toolbar.

v Status Bar—When enabled, displays a single-line status message at the bottom of

the main window.

For information on the View menu options that control display, see “Selecting

windows to display” on page 240.

Tools menu functions: The Tools pull-down menu of Relationship Designer

Express provides options to start each of the InterChange Server Express tools:

v Relationship Manager

v Process Designer Express

Restriction: This tool is only available in WebSphere Business Integration Server

Express Plus.

v Map Designer Express

v Business Object Designer Express

Help Menu functions: Relationship Designer Express provides a standard Help

menu with the following options:

v Help Topics (F1)

v Documentation

v About Relationship Designer Express

Context menu: The Context menu is a shortcut menu that is available, by

right-clicking from numerous places. A menu opens that contains useful

commands, which change depending on the location you click.

Relationship Designer Express Standard toolbar

Relationship Designer Express provides a Standard toolbar for common tasks you

need to perform. This toolbar is dockable; that is, you can detach it from the

palette of the main window and float it over the main window or the desktop.

Tip: To identify the purpose of each toolbar button, roll over each button with

your mouse cursor.

Figure 116 shows the Relationship Designer Express Standard toolbar.

242 Map Development Guide

The following list provides the function of each Standard toolbar button, left to

right:

v New Relation

v Save Relation

v New Participant

v Copy

v Paste

v Help

Creating a relationship definition

Perform the following steps to create a relationship definition:

1. Create a relationship name by doing one of the following:

v From the File menu, select New Relationship Definition

v Use the keyboard shortcut of Ctrl+N.

v In the Standard toolbar, click the New Relation button.
2. Name the icon for the relationship definition.

Rule: Relationship definition names can be up to 8 characters long, can contain

only letters and numbers, and must begin with a letter.

3. Create a participant definition for each business object to be related.

To do this, select the relationship definition name and perform one of the

following actions:

v From the File menu, select Add Participant Definition.

v In the Standard toolbar, click the New Participant button.
4. For each participant definition, name the icon for the participant definition.

Rule: Participant definition names can be up to 8 characters long, can contain

only letters and numbers, and must begin with a letter.

5. Associate a data type with each participant by dragging the type from the

Participant Types window onto the participant definition.

Tip: To display the Participant Types window, select Participant Types from the

View menu.

v To associate a business object data type, drag the business object definition

from the Participant Types window.

The participants in an identity relationship use business object definitions as

their participant type. For more information, see “Defining identity

relationships” on page 244.

v To associate a Java data type, drag the Data participant type from the

Participant Types window.

In the relationship definition, the Data participant type represents all data

types other than business object types. The participants in a lookup

relationship use Data as their participant type. For more information, see

“Defining lookup relationships” on page 247.
6. For participant types that are business object definitions, add or change the

attributes to associate with the participant.

Figure 116. Relationship Designer Express Standard toolbar

Chapter 7. Creating relationship definitions 243

The attributes you select become the basis on which the business objects are

related.

7. Save the relationship definition by doing one of the following:

v From the File menu, select Save Relationship Definition.

v Use the keyboard shortcut of Ctrl+S.

v In the Standard toolbar, click the Save Relation button.
8. Before executing a map that uses the relationship definition, perform the

following steps:

a. Activate the relationship. After the relationship is deployed to InterChange

Server Express, this new relationship is not activated. However, for the

Mapping API methods to be able to access the relationship tables, a

relationship table must be active. To activate the relationship, click the

relationship name in System Manager and select the Start option from the

Component menu.

b. Compile and deploy the map that uses the relationship.

Result: If the map is deployed and compiled successfully in InterChange

Server Express, InterChange Server Express creates the executable map code

and activates the map. For more information, see “Compiling a map” on

page 82.

Restrictions:

1. IBM supports creation of relationship tables only in those databases and

platforms supported for the InterChange Server Express repository.

2. If you create or make a change to a relationship definition, you must first stop

the relationship through the System Manager Relationship menu, make the

change to the relationship, and then restart the relationship.

Defining identity relationships

An identity relationship establishes an association between two or more business

objects on a one-to-one basis. That is, for a given relationship instance, there can be

only one instance of each participant. You typically create an identity relationship

to transform the key attributes in a business object, such as customer or product

ID. For more background information, see “Identity relationships” on page 225.

InterChange Server Express supports the kinds of identity relationships shown in

Table 84..

 Table 84. Kinds of Identity relationships

Identity

relationship type Description For more information

Simple identity

relationship

Relates two business objects through a single

key attribute

“Using simple identity relationships” on page

263

Composite identity

relationship

Relates two business objects through a

composite key (made up of more than one

attribute)

“Using composite identity relationships” on

page 274

Steps for defining identity relationships

To define an identity relationship using Relationship Designer Express, perform the

following steps:

1. Create a relationship definition and the participant definitions by following

steps 1-4 in “Creating a relationship definition” on page 243.

244 Map Development Guide

Guideline: Create a participant definition for each business object to be related.

Identity relationships require participants for the generic business object as well

as the application-specific business objects.

2. Associate a business object with each participant definition by dragging the

business object definition from the Participant Types window onto the

participant definition. You can release the drag button when the plus symbol

(+) appears in the Relationship Designer Express main window. For

information on how to open the Participant Types window, see step 5 in

“Creating a relationship definition” on page 243.

For identity relationships, the participant type is a business object. Every

identity relationship has a participant with a participant type of the generic

business object plus one participant for each application-specific business

object.

3. For each business object that you associate with a participant definition, add

the attributes that relate the business object with the other participants.

To do so, expand the associated business object in the Participant Types

window, select an attribute, and drag it onto the business object in the main

Relationship Designer Express window. The attributes you select become the

basis of the relationship between the business objects.

For identity relationships, the attributes are usually the key attributes of each

business object definition. The type of the key determines the kind of identity

relationship:

v For a single key, use a simple identity relationship. Each participant can

consist of only one attribute: the unique key of the business object. For more

information, see “Steps for creating the child relationship definition” on page

273.

v For a composite key, use a composite identity relationship. Specify a

composite key by adding each key attribute in the order in which it appears

in the composite key. Each participant can contain several attributes: usually,

the unique key from the parent business object and at least one attribute

from the child business object (within the parent business object). When

deployed to the server, the relationship is saved in a table, the name of

which is the concatenation of the attributes in the order in which they appear

in the participant definition. For more information, including the index size

limitations of some databases, see “Creating composite identity relationship

definitions” on page 274.
4. Highlight the relationship definition name and select Advanced Settings from

the Edit menu.

Initially, the Advanced Settings window displays the relationship definition

settings, as Figure 118 on page 250 shows.

a. Modify the relationship definition settings as follows:

v Under Relationship type, select the Identity box.

Result: This setting tells InterChange Server Express to process the

relationship as an identity relationship by setting a uniqueness constraint

on the relationship instance ID and the key attributes for each participant.

This action guarantees a one-to-one correspondence between all

participants in each relationship instance.

v If you want the relationship tables to reside in a database other than the

default database (the WebSphere Business Integration Server Express

system repository, by default), enter the appropriate database information

in the DBMS Settings area of the window. For more information, see

“Advanced settings for relationship definitions” on page 249.

Chapter 7. Creating relationship definitions 245

b. Modify the advanced settings for the participant definition.

v In the object browser of the Advanced Settings window, expand the

relationship definition and highlight the participant definition that

represents the generic business object to display the participant definition

settings (see Figure 119 on page 251). Select the box labeled IBM

WBI-managed.

Result: This action tells Relationship Designer Express not to create

relationship tables for the generic business object. When you maintain the

relationship with the maintainSimpleIdentityRelationship() method, the

WebSphere Business Integration Server Express system uses the

relationship instance IDs stored in the application-specific relationship

tables to transform the relationship attributes.

v If you want to customize the name for this participant’s relationship table

or stored procedure, enter the name in the appropriate field in the

window. For more information, see “Advanced settings for participant

definitions” on page 250.
c. Click OK to close the Advanced Settings window.

5. Save the relationship definition as described in steps 7-8 in “Creating a

relationship definition” on page 243.

Relating child business objects

When you create identity relationships, the business objects you are relating often

have child business objects. For instance, some customer business objects have

child business objects for storing address information. A child business object can

participate in the kinds of relationships that Table 85 shows.

 Table 85. Relationships for child business objects

Condition of child business object Kind of relationship For more information

The key for the child business object

uniquely identifies the child beyond

the context of its parent

Simple identity relationship “Coding a child-level simple identity

relationship” on page 273

The key for the child business object

does not uniquely identify it beyond

the context of its parent

Composite identity relationship

To maintain the child business objects

during an Update operation as part of

the identity relationship

Parent/child relationship “Managing child instances” on page

282

If the child is a multiple-cardinality child business object, you can change the index

to make the participant reference a specific child. To do so, select the child’s key

attribute, right-click, and select Change Index from the Context menu. If the source

and destination children in a map correspond one to one, the index is not

significant and you do not need to change it. However, if the map transforms the

children in any other way, you can enter a specific index number. For example, if

the child business objects represent addresses and the third source address

corresponds to the first destination address, you can change the indexes to 2 and 0,

respectively.

246 Map Development Guide

Defining lookup relationships

A lookup relationship associates data that is equivalent across business objects but

may be represented in different ways. In this case, given a value in one business

object, the relationship can look up its equivalent in the relationship tables for

another business object. The most common example of attributes that might

require lookups are codes (EmployeeType, PayLevel, OrderStatus) and abbreviations

(State, Country, Currency). For more background information, see “Lookup

relationships” on page 224.

When you create a relationship definition for a lookup, you add a participant

definition for each business object that contains the attributes you want to relate.

However, you do not associate the actual business object definitions or attribute

names with the participant definitions. Instead, you specify Data as the participant

type for each participant definition.

Steps for defining lookup relationships

To define a lookup relationship using Relationship Designer Express, perform the

following steps:

1. Create a relationship definition and the participant definitions by following

Steps 1-4 in “Creating a relationship definition” on page 243.

Tip: Create a participant definition for each business object to be related.

2. For each participant definition, specify Data as the participant type by dragging

the Data participant type from the Participant Types window onto the

participant definition.

In the relationship definition, the Data participant type represents all data types

other than business object types. When you create the map and work with

instances of the relationship using methods in the Relationship,

IdentityRelationship, and Participant classes, you can use data of any of the

supported Java data types, such as String, int, long, float, double, or boolean.

3. Make a note of the table name for storing the lookup values for each

participant definition. You need to know the table name so you can populate

the tables with the lookup values for each participant definition. Or, if you

already have tables containing the lookup values, you can replace the generated

table name with your own table name.

To retrieve the table names for each participant definition in the relationship

definition, or to specify your own table names:

a. Select the participant definition and select Advanced Settings from the Edit

menu.

Result: The Advanced Setting dialog box appears showing the storage

settings for that participant. See “Specifying advanced relationship settings”

on page 249 for more information on these settings.

b. Write down the storage settings for the participant, or overwrite the settings

with your own table information.

Chapter 7. Creating relationship definitions 247

c. Repeat step 3a and step 3b for each participant definition.

d. Click OK to close the Advanced Settings dialog box.
4. Save the relationship definition as described in steps 7-8 in “Creating a

relationship definition” on page 243.

Tip: To create the relationship tables, select the Create Schema box in the

Deploy Project dialog in System Manager. For more information about when to

create the run-time schema, see“Creating the relationship table schema” on

page 248.

5. Using the information you gathered in step 3, populate the relationship tables

with the lookup values for each participant, or add your own tables of lookup

values to the database. For more information, see “Populating lookup tables

with data” on page 259.

Creating the relationship table schema

For each relationship definition you create, InterChange Server Express uses the

following database objects to maintain the run-time data for instances of the

relationship:

v Tables in the relationship database hold the data of the relationship instances.

v Stored procedures in the relationship database maintain the relationship tables.

Copying relationship and participant definitions

To create a new relationship definition that is similar to an existing one, you can

copy the existing definition and modify it to suit your needs. You can also copy a

participant definition from a relationship definition and paste it into the same

relationship definition or into another one.

Steps for copying relationship definitions in the current

project

To copy a relationship definition, perform the following steps:

1. Select the relationship definition you want to copy (for example, CustToClient)

and select Save Relationship Definition from the File menu.

2. Select the relationship definition you want to copy and select Copy from the

Edit menu.

Figure 117. Advanced Settings dialog

248 Map Development Guide

3. Select the Project name (root tree node) and select Paste from the Edit menu.

Result: Relationship Designer Express creates a new relationship definition

with a name of Copy of CustToClient. The definition name appears in edit

mode.

4. Enter a new name for the relationship definition, and then press Enter.

5. To save the new definition to the repository, select Save Relationship Definition

from the File menu (or use the keyboard shortcut of Ctrl+S).

Tip: To copy a relationship definition from one InterChange Server Express to

another, use the repos_copy command. The repos_copy command copies

objects into and out of the InterChange Server Express repository.

Steps for copying participant definitions in the current project

To copy a participant definition, perform the following steps:

1. Select the relationship definition to which the participant definition you want to

copy belongs and select Save Relationship Definition from the File menu.

2. Select the participant definition you wish to copy and select Copy from the Edit

menu.

3. Select the relationship definition to which you want to copy the participant

definition and select Paste from the Edit menu.

Result: Relationship Designer Express creates a new participant definition with

a name of Copy. The definition name appears in edit mode.

4. Enter a new name for the participant definition, and then press Enter.

Renaming relationship or participant definitions

You can rename a relationship or participant definition before you save it to the

repository. To change a definition’s name after you have saved it, you must copy

the definition to a new name and delete the old name. For help copying

definitions, see “Copying relationship and participant definitions” on page 248.

Specifying advanced relationship settings

For each relationship definition you create, Relationship Designer Express

maintains advanced settings that affect the storage and processing of the

relationship instance data.

Note: If you change any database-related setting, such as a login account name,

password, or a table name after creating the relationship table schemas, you

must re-create the relationship table schemas using System Manager for

your changes to take effect.

To view or change the settings, select Advanced Settings from the Edit menu. In

the Advanced Settings dialog, the settings that appear on the right side differ

depending on which of the following items you have selected on the left:

v Relationship definition

v Participant definition

v Attribute

Advanced settings for relationship definitions

To view or change the settings for a relationship definition, select the relationship

name. The following illustration shows an example of the advanced settings at this

Chapter 7. Creating relationship definitions 249

level:

Select the relationship
definition name to view or
change its settings.

Table 86 summarizes the settings available for relationship definitions. Default

values for the DBMS settings come from the Global Default Settings dialog box

described in “Global default settings” on page 252.

 Table 86. Summary of advanced settings for relationship definitions

Setting Description

Relationship type

Dynamic (identity) When this option is enabled, the relationship is a dynamic (identity)

relationship. For more information, see “Defining identity relationships” on

page 244.

Static (lookup) When this option is enabled, the relationship is a static (lookup) relationship.

For more information, see “Defining lookup relationships” on page 247.

Cached When the Static field is enabled, this field is enabled. Select this field to have

the relationship tables cached in memory. For more information, see

“Optimizing a relationship” on page 254.

Version This field is read-only. Versions for relationship definitions are not supported in

this release.

DBMS Settings

URL The JDBC path where the relationship tables for this relationship definition are

located. The default location for all relationship tables is specified in Global

Default Settings (see 252).

Login The user name for logging in to the relationship database.

Password The password for logging in to the relationship database.

Type The relationship database type, such as SQL Server or DB2.

Note: If you specify a database for the relationship tables that is different from the

InterChange Server Express’s repository database, you might need to

increase the setting for the maximum number of connection pools that the

server can create. The server configuration parameter that specifies the

number of connection pools is MAX_CONNECTION_POOLS. The default value is

10.

Advanced settings for participant definitions

To view or change the settings for participant definitions, select the participant

definition name. The following illustration shows an example of the advanced

settings at this level:

Figure 118. Advanced settings for a relationship definition

250 Map Development Guide

Table 87 summarizes the settings available for participant definitions.

 Table 87. Summary of advanced settings for participant definitions

Setting Description

Table name Name of the relationship table in the relationship database containing

the relationship data for this participant instance.

Rule: DB2 relationship databases can only use a maximum of 17

characters in the relationship table names. Although table names do not

have a limit in DB2, index names do. Because Relationship Designer

Express generates index names for the relationship tables based on their

table names, relationship table names for a DB2 database must be 17

characters or less.

Stored procedure

name

Name of the stored procedure that maintains the relationship table.

InterChange

Server Express

managed

If selected, prevents relationship tables from being created for this

participant. Select this setting only when:

v The business object associated with this participant definition is a

generic business object.

v There is only one attribute associated with the participant and it is a

key attribute.

Advanced settings for attributes

To view or change the advanced settings for an attribute, select the attribute. The

following illustration shows an example of the advanced settings:

Figure 119. Advanced settings for a participant definition

Chapter 7. Creating relationship definitions 251

For attributes, the only setting available is the attribute column name. The column

name is the name of the column in the relationship table that contains the values

for the selected attribute. It is typically the same as the attribute name. You might

want to change the column name if you are using tables you created instead of the

default tables that the Relationship Designer Express creates.

Global default settings

When you save a new relationship definition and create the relationship table

schemas, Relationship Designer Express must know the location of the database for

the relationship tables, the type of database, and how to access the database with a

valid user name and password. Relationship Designer Express maintains default

values for these settings, which it uses for all new relationship definitions you

create. Once a relationship definition is created, these settings are stored with the

relationship definition, and you can change the settings for each relationship

definition individually.

By default, the database name and access information is the same one used by the

InterChange Server Express repository. If you want to store your relationship tables

in another location, you can modify the global settings.

Steps for viewing or changing the global default settings

To view or change the global default settings, perform the following steps:

1. In Relationship Designer Express, select Advanced Settings from the Edit menu.

Result: The Advanced Settings dialog box appears.

2. Click the Global defaults button.

Result: The Global Default Settings dialog box appears.

Figure 120. Advanced settings for attributes

252 Map Development Guide

Table 88 describes the global default settings for relationships.

 Table 88. Relationship global default settings

Setting Description

URL The JDBC path where the relationship database is located. The default is

the InterChange Server Express’s repository database.

Login The user name for logging in to the relationship database.

Password The password for logging in to the relationship database.

Type The relationship database type, such as SQL Server or DB2.

Note: If you specify a database for the relationship tables that is different from

the InterChange Server Express’s repository database, you might need to

increase the setting for the maximum number of connection pools that

the server can create. The server configuration parameter that specifies

the number of connection pools is MAX_CONNECTION_POOLS. The default

value is 10.

3. When you are finished viewing or making changes, click OK to save or Cancel

to exit without saving.

Note: Changes that you make to the global default settings apply only to new

relationship definitions. They do not affect existing relationships. If you

want to change the settings for an existing relationship, see “Specifying

advanced relationship settings” on page 249.

Deleting a relationship definition

You can delete a relationship definition listed in the main window of Relationship

Designer Express in either of the following ways:

v Highlight the definition and select Delete from the Edit menu.

v Right-click on the definition and select Delete.

Figure 121. Global Default Settings dialog

Chapter 7. Creating relationship definitions 253

Optimizing a relationship

By default, each relationship’s relationship tables are stored in the relationship

database. Each time a relationship retrieves or modifies run-time data, it uses SQL

statements to access this database. If the relationship tables are accessed frequently,

these accesses can have a significant impact on performance in terms of CPU usage

and InterChange Server Express resources. As part of the design of a relationship,

you can determine whether to cache these relationship tables into memory.

To make this decision, you need to determine how frequently the relationship’s

run-time data changes. The WebSphere Business Integration Server Express system

allows you to categorize your relationship in one of two ways:

v Dynamic relationship—a relationship whose run-time data changes frequently;

that is, its relationship tables have frequent Insert, Update, or Delete operations.

All relationships are dynamic by default.

v Static relationship—a relationship whose run-time data undergoes very minimal

change; that is, its relationship tables have very few Insert, Update, or Delete

operations. For example, because lookup tables store information such as codes

and status values, their data very often is static. Such tables make good

candidates for being cached in memory.

Note: System Manager categorizes relationships into these same two categories.

When you expand the Relationships folder, System Manager displays two

subfolders: Dynamic and Static.

You define whether a relationship is dynamic or static from the Advanced Setting

dialog for the relationship definition. The following sections summarize how to

define a dynamic and static relationship from this dialog. For information on how

to display the Advanced Setting dialog, see “Specifying advanced relationship

settings” on page 249.

Defining a dynamic relationship

For a dynamic relationship, InterChange Server Express accesses the run-time data

from its relationship tables in the relationship database. By default, InterChange

Server Express assumes a relationship is dynamic. Therefore, you do not have to

perform any special steps to define a dynamic relationship:

v For an identity relationship, click the Dynamic (identity) field on the Advanced

Settings dialog, as described in “Defining identity relationships” on page 244.

v For a lookup relationship, make sure the Dynamic (identity) field is not selected,

as described in “Defining lookup relationships” on page 247.

Note: For a dynamic relationship, do not click the Static (lookup) or Cached field

on the Advanced Settings dialog.

System Manager lists all dynamic relationships in the folder labeled Dynamic

under the Relationships folder.

Defining a static relationship

For a static relationship, InterChange Server Express can access the run-time data

from cached relationship tables. With caching enabled for the static relationship,

InterChange Server Express stores a copy of the relationship tables in memory.

When making the decision to cache relationship tables, try to balance the following

conditions:

254 Map Development Guide

v Performance usually improves if you let InterChange Server Express cache the

relationship tables in memory.

In this case, the server does not need to use SQL statements to access the

relationship database for the run-time data. Instead, it can access memory for

this data, which is much faster. If the run-time data for a static relationship is

not currently in memory, InterChange Server Express reads the appropriate

relationship tables from the database into memory when the data is first

accessed. For future accesses, InterChange Server Express uses the cached

version of the tables.

However, once the table is read into memory, InterChange Server Express must

maintain consistency between the relationship tables in the database and the

cached tables. For Update, Insert, and Delete operations, InterChange Server

Express must modify both the database tables and the cached tables. This double

update can be very performance intensive. When you determine whether to

cache a relationship’s tables, consider the expected lifetime and refresh rate of

the data.

v Memory usage increases when relationship tables are cached in memory. The

amount of memory used is roughly equivalent to the size of all in-memory

tables.

Recommendation: You should not cache a relationship table that contains more

than 1000 rows.

Important: InterChange Server Express does not check for excessive memory

usage. You must ensure that memory usage remains within the limits that your

system imposes.

To define a static relationship, display the Advanced Settings dialog (see

Figure 118) for the relationship definition and set the Static field from this dialog as

follows:

v For an identity relationship, enable both the Dynamic (identity) and Static

(lookup) fields. For more information on the use of the Dynamic (Identity) field,

see “Defining identity relationships” on page 244.

v For a lookup relationship, enable the Static (lookup) field, not the Dynamic

(identity) field.

When the Static (lookup) field is enabled, the Advanced Settings dialog also

enables the Cached field. The Cached field allows you to control when

InterChange Server Express actually caches the relationship’s table:

v When Cached is enabled, InterChange Server Express can cache the relationship

tables for a static relationship. It caches all relationship tables involved in the

relationship.

v When Cached is disabled, InterChange Server Express does not cache the

relationship tables in memory. Instead, it uses the tables in the relationship

database for future accesses.

You can only control caching for a relationship that is defined as static.

Notes:

1. After you change a relationship’s static or cached state from the Advanced

Settings dialog, make sure you save the relationship definition for the change to

be stored in the project.

2. You can modify the cached and reload relationship properties from the server

component management view. To do this, right-click the static relationship and

select the properties from the Context menu.

Chapter 7. Creating relationship definitions 255

v Cached—controls caching of the relationship’s tables.

v Reload—tells InterChange Server Express to reread the relationship’s tables

into memory.

256 Map Development Guide

Chapter 8. Implementing relationships

Relationship attributes are those you transform using relationships. You do not

transform relationship attributes by dragging from source attribute to destination

attribute. Instead, you create a Custom transformation and customize the

transformation rule for the destination relationship attribute using the function

blocks in Activity Editor or write code for the destination relationship attribute

using methods in the Relationship, IdentityRelationship, and Participant

classes.

This chapter describes how to develop code within a map to implement the

different kinds of relationships. It covers the following tasks.

Note: This chapter assumes that you have already created the relationship

definitions for the relationships. For information, see Chapter 7, “Creating

relationship definitions,” on page 237.

v “Implementing a relationship” on page 257

v “Using lookup relationships” on page 258

v “Using simple identity relationships” on page 263

v “Using composite identity relationships” on page 274

v “Managing child instances” on page 282

v “Setting the verb” on page 285

v “Performing foreign key lookups” on page 290

v “Maintaining custom relationships” on page 295

v “Writing safe relationship code” on page 297

v “Executing queries in the relationship database” on page 299

v “Loading and unloading relationships” on page 309

Implementing a relationship

Once you have created a relationship definition within Relationship Designer

Express you are ready to implement the relationship within the map. For

instructions on creating relationship definitions, see Chapter 7, “Creating

relationship definitions,” on page 237.

To implement a relationship, you can use the relationship function blocks in the

map’s destination object or add Mapping API methods to the code of attributes in

the map’s destination object.

Table 89 shows the function blocks to use.

 Table 89. Relationship function blocks

Kind of

relationship Function block For more information

Lookup General/APIs/Relationship/Retrieve Instances

General/APIs/Relationship/Retrieve Participants

“Using lookup relationships” on page

258

Simple Identity General/APIs/Identity Relationship/Maintain Simple

Identity Relationship

General/APIs/Identity Relationship/Maintain Child

Verb

“Using simple identity relationships”

on page 263

© Copyright IBM Corp. 2004, 2005 257

Table 89. Relationship function blocks (continued)

Kind of

relationship Function block For more information

Composite

Identity

General/APIs/Identity Relationship/Maintain

Composite Relationship

General/APIs/Identity Relationship/Maintain Child

Verb

General/APIs/Identity Relationship/Update My Children

(optional)

“Using composite identity

relationships” on page 274

Custom General/APIs/Relationship/Create Relationship

General/APIs/Identity Relationship/Add My Children

General/APIs/Relationship/Add Participant

Table 89 shows the Mapping API methods that maintain the different kinds of

relationships.

 Table 90. Mapping API methods for relationships

Kind of

relationship Mapping API method For more information

Lookup retrieveInstances()retrieveParticipants() “Using lookup relationships” on page

258

Simple Identity maintainSimpleIdentityRelationship()

maintainChildVerb()

“Using simple identity relationships”

on page 263

Composite

Identity

maintainCompositeRelationship()maintainChildVerb()

updateMyChildren() (optional)

“Using composite identity

relationships” on page 274

Custom create()addMyChildren()addParticipant() “Maintaining custom relationships”

on page 295

When transforming relationship attributes, a map needs to know the calling

context of the map. To determine the calling context, the map needs the following

information from the map execution context:

v The map’s calling context, which is part of the map execution context

For more information, see “Calling contexts” on page 189.

v The verb, which is part of the business object

These two factors tell the map what actions need to be taken on the relationship

tables.

For the relationships in Table 89, the associated Mapping API methods perform the

appropriate operations on the relationship tables. Therefore, these methods require

that the calling context and business object verb be passed in as arguments.

Using lookup relationships

A lookup relationship associates data that is equivalent across business objects but

may be represented in different ways. The following sections describe the steps for

using lookup relationships:

v “Creating lookup relationship definitions” on page 259

v “Populating lookup tables with data” on page 259

v “Customizing map transformations for a lookup relationship” on page 261

Note: For background information, see “Lookup relationships” on page 224..

258 Map Development Guide

Creating lookup relationship definitions

Lookup relationship definitions differ from identity relationship definitions in that

the participant types are not business objects but of the type Data (the first

selection in the participant types list). For more information on how to create a

relationship definition for a lookup relationship, see “Defining lookup

relationships” on page 247.

Example: Suppose you create a lookup relationship called StatAdtp for the

AddressType values. In Figure 122, each box represents a participant in the

StatAdtp lookup relationship. Notice that each participant in this relationship is of

type Data.

Because a lookup relationship does not indicate which attributes are being related,

you can use one lookup relationship definition for transforming several attributes.

In fact, you can use one lookup relationship definition for every attribute that

requires a lookup, regardless of the business object being transformed. However,

because only one set of tables is created for each relationship definition, using one

relationship definition for all lookup relationships would make the tables large and

hard to maintain.

A better strategy might be to create one lookup relationship definition per common

unit of data, such as country code or status. This way, each set of relationship

tables contains information related by meaning. Relationships defined this way are

also more modular because you can add new participants, as you support new

collaborations or applications, and reuse the same relationship definition. For

instance, suppose you create a lookup relationship definition for country code to

transform Clarify_Site business objects to SAP_Customer. Later on, if you add new

collaborations or a new application, you can reuse the same relationship definition

for every transformation involving a country code.

Populating lookup tables with data

When you deploy the lookup relationship definition with the option Create

Schema enabled, InterChange Server Express generates a relationship table (also

called a lookup table) for each participant. Each lookup table has a name of the

form:

RelationshipDefName_ParticipantDefName

When you deploy the StatAdtp relationship definition (see Figure 122) with the

option Create Schema enabled, InterChange Server Express generates the following

two lookup tables:

v StatAdtp_PsftAdtp_T

v StatAdtp_SAPAdtp_T

StatAdtp

PsftAdtp SAPAdtp
Type: Data Type: Data

Figure 122. The StatAdtp lookup relationship definition

Chapter 8. Implementing relationships 259

A lookup table contains a column for the relationship instance ID (INSTANCEID) and

its associated participant instance data (data). Figure 123 shows the lookup tables

for the PsftAdtp and SAPAdtp participants in the StatAdtp lookup relationship.

These two lookup tables use the relationship instance ID to correlate the

participants. For example, the instance ID of 116 correlates the PsftAdtp value of

Fired and the SAPAdtp value of 04.

Unlike relationship tables that hold data for identity relationships, lookup tables do

not get populated automatically. You must populate these tables by inserting data

into their columns. You can populate a lookup table in either of the following

ways:

v Create a script that contains SQL INSERT statements to fill the lookup table with

the desired data.

v Use Relationship Manager to add rows to the lookup table.

Inserting participant instances with SQL

You can insert participant data into a lookup table with the SQL statement INSERT.

This method is useful when you need to add many rows of data to the lookup

table. You can create the syntax for one INSERT statement and then use the editor to

copy and paste this line as many times as you have rows to insert. In each line,

you only have to edit the data to be inserted (usually in a VALUES clause of the

INSERT statement).

To use the INSERT statement, you must know the name of the lookup relationship

table and its columns. Table 91 shows the column names in a lookup table.

 Table 91. Columns of a lookup table

Column in lookup table Description

INSTANCEID The relationship instance ID.

data The participant data

STATUS Set to zero (0) when the participant is active

LOGICAL_STATE Indicates whether the participant instance

has been logically deleted (zero indicates

“no”)

TSTAMP Date of last modification for the participant

instance.

Attention: When you use SQL statements to insert participant data into a lookup

table, make sure you provide a value for the STATUS, LOGICAL_STATE,

and TSTAMP columns. All values are required for IBM WebSphere

Business Integration Server Express tools to function correctly. In

particular, omission of the TSTAMP value causes Relationship Manager to

be unable to retrieve the participant data; if no timestamp value exists,

Relationship Manager raises an exception.

StatAdtp_PsftAdtp_T StatAdtp_SAPAdtp_T

PsftAdtp SAPAdtp
INSTANCEID

114

115

116

117

Active

data

Inactive

Fired

Retired

INSTANCEID

115

116

117

118

03

data

04

05

02

Figure 123. Relationship tables for the CustLkUp lookup relationship

260 Map Development Guide

Example: Suppose you want to add the participant data in to the relationship table

that contains information for address type, shown in Table 92.

 Table 92. Sample values for address type for PsftAdtp participant

INSTANCEID STATUS LOGICAL_STATE TSTAMP data

1 0 0 current date Home

2 0 0 current date Mailing

The following INSERT statements create the Table 92 participant data in the

PstfAdtp lookup table:

INSERT INTO StatAdtp_PsftAdtp_T

 (INSTANCEID, STATUS, LOGICAL_STATE, TSTAMP, data)

 VALUES (1, 0, 0, getDate(), ’Home’)

INSERT INTO StatAdtp_PsftAdtp_T

 (INSTANCEID, STATUS, LOGICAL_STATE, TSTAMP, data)

 VALUES (2, 0, 0, getDate(), ’Mailing’)

Note: The preceding INSERT syntax is compatible with the MicroSoft SQL Server

7.0. If you are using another database server for your relationship table,

make sure you use INSERT syntax compatible with that server.

Inserting participant instances with Relationship Manager

Relationship Manager is an IBM WebSphere Business Integration Server Express

tool that graphically displays run-time data in a relationship table. Relationship

Manager is useful when you only need to add a few rows to the lookup table.

Customizing map transformations for a lookup relationship

Once you have created the relationship definition and participant definitions for

the lookup relationship, you can customize the map transformation rule for

performing the lookups. For information on customizing lookup relationships in

Activity Editor, see “Example 3: Using Static Lookup for conversion” on page 154.

Table 93 shows the Mapping API methods needed to implement a lookup

relationship. This table also lists in which map the API call is needed.

 Table 93. Mapping API methods for lookup relationships

Step in lookup relationship Map Mapping API method

Obtain relationship instance ID for the participant

data from the source business object. The instance

ID is saved in the generic business object.

Inbound map retrieveInstances()

Obtain participant instances for the relationship

instance ID from the generic business object. The

participant data is saved in the application-specific

business object.

Outbound map retrieveParticipants()

Tip: The retrieveInstances() and retrieveParticipants() methods do not

populate the lookup tables. They assume that the participant data already

exists in the tables. Make sure you populate lookup tables before you run a

map that contains a lookup relationship. For more information, see

“Populating lookup tables with data” on page 259.

Chapter 8. Implementing relationships 261

Coding the inbound map

You call the retrieveInstances() method in the inbound map to retrieve

relationship instance IDs for the participant data in the source business object. The

following piece of code performs a lookup in the inbound map:

String addrtype = ObjSrcObj.getString("SrcAttr");

int[] generic_ids = Relationship.retrieveInstances(

 "RelationshipDefName", "ParticipantDefName", dataFromSrcObj);

if (generic_ids != null && generic_ids.length > 0)

 {

 ObjDestObj.setWithCreate("DestAttr", generic_ids[0]);

 }

else

 {

 throw new MapFailureException(

 logError("No generic instance ID for lookup found");

 "No generic instance ID for lookup found");

 }

Tips: Keep the following tips in mind when coding the retrieveInstances()

method:

v The retrieveInstances() method does not raise an exception if it does not find

matching instance IDs for a particular participant data. To raise an exception if

no matching instances IDs are found, the preceding code fragment checks the

returned instance IDs (generic_ids) for a null value before it sets the destination

business object with setWithCreate().

v The retrieveInstances() method returns an array of relationship instance IDs.

Usually, a lookup relationship is structured so that each given piece of

participant data is associated with only one instance ID. However,

retrieveInstances() does not assume such a one-to-one correspondence. It

returns an array so it can return multiple relationship instance IDs.

Coding the outbound map

You call the retrieveParticipants() method in the outbound map to retrieve

relationship instance IDs for the participant data in the source business object. The

following piece of code performs a lookup in the outbound map:

int addrtype = ObjSrcObj.getInt("SrcAttr");

if (addrtype != null)

 {

 Participant[] psft_part = Relationship.retrieveParticipants(

 "RelationshipDefName", "ParticipantDefName", addrtype);

 if (psft_part != null && psft_part.length > 0)

 ObjDestObj.setWithCreate("DestAttr", psft_part[0].getString());

 }

Tips: Keep the following tips in mind when coding the retrieveParticipants()

method:

v If your outbound map cannot assume that the generic business object contains a

relationship instance ID, you might want to check for a null-valued instance ID

before calling retrieveParticipants(). The retrieveParticipants() method

raises a RelationshipRuntimeException exception if it receives a null-valued

instance ID.

v The retrieveParticipants() method returns an array of participant instances.

Usually, a lookup relationship is structured so that each relationship instance ID

is associated with only one piece of participant data. However,

retrieveParticipants() does not assume such a one-to-one correspondence. It

returns an array so it can return multiple participant instances.

262 Map Development Guide

Using simple identity relationships

An identity relationship establishes an association between business objects or

other data on a one-to-one basis. A simple identity relationship relates two business

objects through a single key attribute. The following sections describe the steps for

working with simple identity relationships:

v “Creating simple identity relationship definitions”

v “Accessing identity relationship tables”

v “Defining transformation rules for a simple identity relationship” on page 273

Creating simple identity relationship definitions

Identity relationship definitions differ from lookup relationship definitions in that

the participant types are business objects, not of the type Data (the first selection in

the participant types list). For a simple identity relationship, the relationship

consists of the generic business object and at least one application-specific business

object. The participant type for a simple identity relationship is a business object

for all participants. The participant attribute for every participant is a single key

attribute of the business object. (For more information on how to create a

relationship definition for a simple identity relationship, see “Defining identity

relationships” on page 244.)

Accessing identity relationship tables

To reference a simple identity relationship, define a Cross-Reference transformation

rule between the application-specific business object and the generic business

object. For more information, see “Cross-referencing identity relationships” on page

49.

Example: The CustIden relationship (see Figure 104) transforms a SiteID key

attribute in a Clarify customer to a RefID key attribute in an SAP customer. It

includes maps between the following objects:

v Inbound map: Clarify_Site to Customer

Obtain from the ClarCust relationship table the relationship instance ID that is

associated with the SiteID key value.

v Outbound map: Customer to SAP_Customer

Obtain from the SAPCust relationship table the RefID key value that is associated

with relationship instance ID.

Figure 124 shows how to use the CustIden relationship tables to transform a SiteID

value of A100 to a RefID value of 806.

Chapter 8. Implementing relationships 263

The maintainSimpleIdentityRelationship() method must manage the relationship

tables to ensure that related application-specific keys remain associated to a single

relationship instance ID. At a high level, the Cross-Reference transformation rule

generates code to do the following:

1. Perform validations on the arguments that are passed in. If an argument is

invalid, the method throws the RelationshipRuntimeException exception. For a

list of validations that the Java code generated by the Cross-Reference

transformation performs, see the maintainSimpleIdentityRelationship() API

in Chapter 21, “IdentityRelationship class,” on page 437.

2. Take the appropriate actions to maintain the relationship tables based on the

calling context, which includes the following factors:

v The verb of the business object

The Cross-Reference transformation obtains this verb from the source

business object. For inbound maps, the source is the application-specific

business object; for outbound maps, the source is the generic business object.

v The value of the calling context

The Cross-Reference transformation rule obtains the calling context from the

map execution context automatically.

Clarify_Site

Clarify_Site
to

Customer
A100 SAP_Customer806

SiteID = RefID =

Inbound Map

Customer
to

SAP_Customer

Outbound Map

InstanceID=

Customer

116

Application-Specific
Business Object

Application-Specific
Business Object

Generic
Business Object

InstanceID=
116

1

2 5

3 4

6

Relationship Database

InstanceID

116

117

118

119

A100

SiteID

A106

B312

C004

InstanceID

115

116

117

118

803

RefID

806

712

788

ClarCust SAPCust

Figure 124. Using relationship tables to transform a SiteID to a RefID

264 Map Development Guide

This transformation deals with the calling contexts shown in Table 94.

 Table 94. Calling contexts with maintainSimpleIdentityRelationship()

Calling context Description

EVENT_DELIVERY A connector has sent an event from the application to

InterChange Server Express (event-triggered flow).

ACCESS_REQUEST An access client has sent an access request from an

external application to InterChange Server Express

SERVICE_CALL_REQUEST A collaboration is sending a business object down to

the application through a service call request.

SERVICE_CALL_RESPONSE A business object was received from the application as

a result of a successful response to a collaboration

service call request.

SERVICE_CALL_FAILURE A collaboration’s service call request has failed. As

such, corrective action might need to be performed.

ACCESS_RESPONSE The source business object is sent back to the source

access client in response to a subscription delivery

request.

The following sections discuss the behavior of the Cross-Reference transformation

with each of the calling contexts in Table 94.

Note: For more information on calling maps within collaborations, see ″Calling a

native Map″ section in the Collaboration Development Guide

EVENT_DELIVERY and ACCESS_REQUEST calling contexts

When the calling context is EVENT_DELIVERY or ACCESS_REQUEST, the map that is

being called is an inbound map; that is, it transforms an application-specific

business object to a generic business object. A connector sends the EVENT_DELIVERY

calling context; an access client sends an ACCESS_REQUEST calling context. In either

case, the inbound map receives an application-specific business object as input and

returns a generic business object as output. Therefore, the task for the

Cross-Reference transformation is to obtain from the relationship table a

relationship instance ID for a given application-specific key value.

For the EVENT_DELIVERY and ACCESS_REQUEST calling contexts, the Java code

generated by the Cross-Reference transformation takes the following actions:

1. Locates the relationship instance in the relationship table that matches the

given application-specific business object’s key value. Table 95 shows the

actions that the Java code generated by the Cross-Reference transformation

takes on the relationship table based on the verb of the application-specific

business object.

2. Obtains the instance ID from the retrieved relationship instance.

3. Copies the instance ID into the generic business object.

 Table 95. Actions for the EVENT_DELIVERY and ACCESS_REQUEST Calling Contexts

Verb of

application-
specific business

object Action Performed by maintainSimpleIdentityRelationship()

Create Insert a new entry into the relationship table for the application-specific

business object’s key value.

If an entry for this key value already exists, retrieve the existing one; do

not add another one to the table.

Chapter 8. Implementing relationships 265

Table 95. Actions for the EVENT_DELIVERY and ACCESS_REQUEST Calling

Contexts (continued)

Verb of

application-
specific business

object Action Performed by maintainSimpleIdentityRelationship()

Update Retrieve the relationship entry from the relationship table for the given

application-specific business object’s key value.

If an entry for this key value does not exist, add one to the table.

Delete 1. Retrieve the relationship entry from the relationship table for the

given application-specific business object’s key value.

2. Mark the relationship entry as “deactive”.

Retrieve Retrieve the relationship entry from the relationship table for the given

application-specific business object’s key value. If an entry for this key

value does not exist, throw a RelationshipRuntimeException exception.

For an identity relationship that supports the transformation of an AppA

application-specific business object to AppB application-specific business object,

Figure 125 shows how the Java code generated by the Cross-Reference

transformation accesses a relationship table associated with the AppA participant

when a calling context is EVENT_DELIVERY (or ACCESS_REQUEST) and the AppA

application-specific business object’s verb is either Create or Update.

For a calling context of EVENT_DELIVERY (or ACCESS_REQUEST) and an

application-specific verb of either a Create or Update, Figure 126 shows the write

that the Java code generated by the Cross-Reference transformation makes to the

relationship table when no entry exists that matches the AppA application-specific

key value.

AppA Obj

AppA
to

Generic
AppA ID = DDD

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Inbound Map

InstanceID = 4

InterChange Server Express

Collaboration
(new or existing)

Active?

Y

Y

Y

Y

1. Does relationship id exist with:
AppA ID = DDD ?
- YES: Retrieve relationship instance
- NO: Create new relationship instance

2. Return InstanceID.•

1

2

Figure 125. EVENT_DELIVERY and ACCESS_REQUEST with a create or update verb

266 Map Development Guide

For a calling context of EVENT_DELIVERY (or ACCESS_REQUEST) and an

application-specific verb of Delete, Figure 127 shows the write that the Java code

generated by the Cross-Reference transformation performs on the AppA relationship

table.

SERVICE_CALL_REQUEST calling context

When the calling context is SERVICE_CALL_REQUEST, the map that is being called is

an outbound map; that is, it transforms a generic business object to an

application-specific business object. The outbound map receives a generic business

object as input and returns an application-specific business object as output.

Therefore, the task for the Cross-Reference transformation is to obtain from the

relationship table an application-specific business object’s key value for a given

relationship instance ID only if the verb is Update, Delete, or Retrieve. The

Cross-Reference transformation does not obtain the application-specific key value

for a Create verb.

Table 96 shows the action that the Cross-Reference transformation takes on the

relationship table based on the verb of the generic business object.

 Table 96. Actions for the SERVICE_CALL_REQUEST calling context

Verb of generic business

object Action performed by the Cross-Reference transformation

Create Take no action.

When the calling context is SERVICE_CALL_RESPONSE, the method actually writes a new

entry to the relationship table. For more information, see “SERVICE_CALL_RESPONSE

calling context” on page 269.

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

Y

Y

Y

InstanceID

1

2

3

AppA Relationship Table

AppA ID

AAA

BBB

CCC

Active?

Y

Y

Y

New
Relationship
Entry

Before Create After Create

Figure 126. The Write to the relationship table for a new relationship entry

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

N

Y

Y

“Deleted” Row
Before Delete After Delete

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCCDDD

Active?

Y

Y

Y

Y

Figure 127. The write to the relationship table for a delete verb

Chapter 8. Implementing relationships 267

Table 96. Actions for the SERVICE_CALL_REQUEST calling context (continued)

Verb of generic business

object Action performed by the Cross-Reference transformation

Update Delete Retrieve 1. Obtain the generic business object’s key value (the relationship instance ID) from the

original-request business object in the map execution context.

2. Retrieve the entry from the relationship table for the given generic business object’s

key value. If an entry for this key value does not exist, throw a

RelationshipRuntimeException exception. If no participants are found when the verb

is Retrieve, throw a CxMissingIDException exception.

3. Obtain the application-specific key value from the retrieved relationship entry.

4. Copy the application-specific key value into the application-specific business object.

As Table 96 shows, when the verb is Create, the Java code generated by the

Cross-Reference transformation does not write a new entry to the relationship

table. It does not perform this write operation because it does not yet have the

application-specific key value that corresponds to the relationship instance ID.

When the connector processes the application-specific business object, it notifies the

application of the need to insert a new row (or rows). If this insert is successful,

the application notifies the connector, which creates the appropriate

application-specific business object with a Create verb and the application’s key

value.

For the remaining verbs (Update, Delete, and Retrieve), the Java code generated by

the Cross-Reference transformation performs a read operation on the relationship

table. For an identity relationship that supports the transformation of an AppA

application-specific business object to AppB application-specific business object,

Figure 128 shows how the Cross-Reference transformation accesses a relationship

table associated with the AppB participant when a calling context is

SERVICE_CALL_REQUEST and the generic business object’s verb is Update, Delete, or

Retrieve.

AppB Obj

Generic
to

AppB
AppB ID = MMMM

InstanceID

1

2

3

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

Outbound Map

InstanceID = 3

InterChange ExpressServer

Collaboration
(existing)

Active?

Y

Y

Y

Figure 128. SERVICE_CALL_REQUEST with an update, delete, or retrieve verb

268 Map Development Guide

SERVICE_CALL_RESPONSE calling context

When the calling context is SERVICE_CALL_RESPONSE, the map that is being called is

an inbound map; that is, it transforms an application-specific business object to a

generic business object. The inbound map receives an application-specific business

object as input and returns a generic business object as output. The

SERVICE_CALL_RESPONSE calling context is important for the Create verb, to indicate

that the destination application was able to create a unique value for the new

entity and the connector has returned an application-specific business object.

The task for the Cross-Reference transformation rule is to maintain an

application-specific business object’s key value in the relationship table for an

existing relationship instance ID. For the SERVICE_CALL_RESPONSE calling context,

the Java code generated by the Cross-Reference transformation takes the following

actions:

1. Determines whether the generic business object is null:

v For the Update, Delete, and Retrieve verbs, the transformation throws the

RelationshipRuntimeException if the generic business object is null.

v For a Create verb, a null-valued generic business object is valid.
2. Locates the entry in the relationship table that matches the given

application-specific business object’s key value. Table 97 shows the action that

the Java code generated by the Cross-Reference transformation takes on the

relationship table based on the verb of the application-specific business object.

 Table 97. Actions for the SERVICE_CALL_RESPONSE calling context

Verb of

application-specific

business object Action performed by maintainSimpleIdentityRelationship()

Create For the given application-specific key, insert into the relationship table

the new relationship entry containing the application-specific business

object’s key value and its associated relationship instance ID. The

method obtains the relationship instance ID from the original-request

business object in the map execution context (cwExecCtx).

If an entry for this key value already exists, retrieve the existing one;

do not add another one to the table.

Delete 1. Retrieve the relationship entry from the relationship table for the

given application-specific business object’s key value.

2. Mark the relationship entry as “deactive.”

Update Retrieve the relationship entry from the relationship table for the given

application-specific business object’s key value.

Retrieve Retrieve the relationship entry from the relationship table for the given

application-specific business object’s key value.

For an identity relationship that supports the transformation of an AppA

application-specific business object to AppB application-specific business object,

Figure 129 shows how the Java code generated by the Cross-Reference

transformation accesses a relationship table associated with the AppB participant

when a calling context is SERVICE_CALL_RESPONSE and the AppB application-specific

business object’s verb is Create.

Chapter 8. Implementing relationships 269

When the calling context is SERVICE_CALL_RESPONSE and the verb is Create, the

inbound map has been invoked by the connector controller in response to the

following actions:

v The connector has been notified that the application has inserted a new row.

The connector sent this insert request to the application when it received the

application-specific business object with a Create verb from the outbound map.

This outbound map had a calling context of SERVICE_CALL_REQUEST. When the

calling context was SERVICE_CALL_REQUEST, the Cross-Reference transformation

could not write a new relationship instance to the relationship table because it

did not yet have the application-specific key value that corresponded to the

instance ID.

v The connector has generated a new application-specific business object based on

the values in the new application-specific row and with a verb of Create.

The connector sends this application-specific business object to InterChange

Server Express where it is received by the connector controller.

v The connector controller has called the inbound map to convert the

application-specific business object to a generic business object.

The inbound map contains a Cross-Reference transformation to create an entry

in the relationship table for the new application-specific key.

For a calling context of SERVICE_CALL_RESPONSE and an application-specific verb of

Create, Figure 130 shows the write that the Java code generated by the

Cross-Reference transformation makes to the relationship table.

App B Obj

App B
to

Generic
AppB ID = NNNN

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Inbound Map

InstanceID = 4

InterChange Server Express

Collaboration
(new)

Figure 129. SERVICE_CALL_RESPONSE with the create verb

270 Map Development Guide

The Cross-Reference transformation must associate the new AppB

application-specific key with its equivalent value in the AppA application. For the

EVENT_DELIVERY or ACCESS_REQUEST calling context, the Cross-Reference

transformation could just generate a new relationship instance ID. However, for

SERVICE_CALL_RESPONSE, the Cross-Reference transformation cannot just generate a

new instance ID. Instead, it must assign the same relationship instance ID to the

AppB key value as it has already assigned to the AppA key value. The method

obtains the instance ID associated with the AppA key value from the

original-request business object, which is part of the map execution context.

In Figure 130, the Java code generated by the Cross-Reference transformation takes

the following steps for the SERVICE_CALL_RESPONSE calling context and the Create

verb:

v Obtains the instance ID of 4 from the original-request business object in map

execution context.

v Creates a new entry in the AppB relationship table for this instance ID (4) and the

new application-specific key (NNNN).

When the map executions with both the EVENT_DELIVERY (or ACCESS_REQUEST) and

SERVICE_CALL_RESPONSE calling contexts (and a Create verb) are complete, the

relationship tables for AppA and AppB use common relationship instance IDs to

associate their keys, as Figure 131 shows.

For the Update and Delete verbs (and Retrieve, if the instance ID already exists in

the relationship table), the Cross-Reference transformation just retrieves the

relationship instance ID from the relationship table. For a calling context of

SERVICE_CALL_RESPONSE and an application-specific verb of Delete, the

Cross-Reference transformation must take an additional step to deactivate the

relationship instance, as Figure 132 shows.

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

“Inserted” Row

Before Create After Create

InstanceID

1

2

3

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

Active?

Y

Y

Y

Figure 130. The write to the relationship table for a create verb

InstanceID

1

2

3

4

AppA Relationship Table

AppA ID

AAA

BBB

CCC

DDD

Active?

Y

Y

Y

Y

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

Relationship
Instance

Figure 131. Creating the relationship instance

Chapter 8. Implementing relationships 271

SERVICE_CALL_FAILURE calling context

When the calling context is SERVICE_CALL_FAILURE, the map that is being called is

an inbound map; that is it transforms an application-specific business object to a

generic business object. For SERVICE_CALL_FAILURE, the inbound map receives a

null application-specific business object as input and returns a generic business

object as output. The SERVICE_CALL_FAILURE calling context is important for the

Create verb; it indicates that the destination application was unable to create a

unique value for the new entity and therefore the connector was unable to return

an application-specific business object. The task for the Cross-Reference

transformation is the same for all verbs, as Table 98 shows.

 Table 98. Actions for the SERVICE_CALL_FAILURE calling context

Verb of

Application-Specific

business object Action Performed by maintainSimpleIdentityRelationship()

Create Delete

Update Retrieve

1. Obtain the key value (relationship instance ID) from the generic

business object. This generic business object is in the map

execution context.

2. Copy the retrieved instance ID into the generic business object.

ACCESS_RESPONSE calling context

When the calling context is ACCESS_RESPONSE, the map that is being called is an

outbound map as a result of a call-triggered flow. It transforms a generic business

object to an application-specific business object. The outbound map receives a

generic business object as input and returns an application-specific business object

as output. Therefore, the task for the Cross-Reference transformation is the same

for all verbs, as Table 99 shows.

 Table 99. Actions for the ACCESS_RESPONSE calling context

Verb of generic

business object Action Performed by maintainSimpleIdentityRelationship()

Create Delete

Update Retrieve

1. Obtain the key value (relationship instance ID) from the generic

business object. This generic business object is in the map

execution context.

2. Convert the relationship instance ID to an integer value. If this

conversion fails, throw an exception.

3. Copy the key values from the original-request business object into

the application-specific business object.

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

N

Y

Y

“Deleted” Row
Before Delete After Delete

InstanceID

1

2

3

4

AppB Relationship Table

AppB ID

KKKK

LLLL

MMMM

NNNN

Active?

Y

Y

Y

Y

Figure 132. The write to the relationship table for SERVICE_CALL_RESPONSE and a delete verb

272 Map Development Guide

Because the original-request business object for ACCESS_RESPONSE is the

application-specific business object, the Cross-Reference transformation

automatically obtains this key value from the original-request business object in the

map execution context (cwExecCtx).

The Cross-Reference transformation can perform the tasks in Table 99 as long as it

has access to the original-request business object. However, in some cases, it might

not have access to this business object. For example, if the Cross-Reference

transformation is processing a child object that did not exist in the primary

request, the method tries to retrieve that child object’s relationship instance ID. If

the method cannot find the relationship instance, it just populates the keys of this

child object with the CxIgnore value.

Defining transformation rules for a simple identity relationship

For information on defining a Cross-Reference relationship, see “Cross-referencing

identity relationships” on page 49.

Coding a child-level simple identity relationship

If child business objects have a unique key attribute, you can relate these child

business objects in a simple identity relationship.

The following sections describe the steps for coding this simple identity

relationship:

v “Steps for creating the child relationship definition” on page 273

v “Steps for customizing the parent map” on page 273

v “Steps for customizing the submap” on page 274

Steps for creating the child relationship definition: To create a relationship

definition for a simple identity relationship between child business objects, perform

the following steps:

1. Create a participant definition whose participant type is the child business

object.

2. Set the participant attribute to the key attribute of the child business object.

Tip: Expand the child business object and select the key attribute.

3. Repeat steps 1 and 2 for each of the participants. As with all simple identity

relationships, this relationship contains one participant for the generic business

object and at least one participant for an application-specific business object.

Each participant contains a single attribute: the key of the business object.

Steps for customizing the parent map: In the map for the parent business object

(the main map), add the mapping code to the attribute that contains the child

business object. In Activity Editor for this attribute, perform the following steps to

code a simple identity relationship:

1. If you created a submap for the child object, call this submap from the child

attribute of the main map. Usually mapping transformations for a child object

are done within a submap, especially if the child object has multiple cardinality.

2. Use the General/APIs/Identity Relationship/Maintain Child Verb function

block to set the source child objects’ verbs for you.

The last parameter of the General/APIs/Identity Relationship/Maintain Child

Verb function block is a boolean flag to indicate whether the child objects are

participating in a composite relationship. Make sure you pass a value of false

as the last argument to the General/APIs/Identity Relationship/Maintain Child

Verb function block because this child object participates in a simple, not a

Chapter 8. Implementing relationships 273

composite identity relationship. If the child object has a submap, call the

General/APIs/Identity Relationship/Maintain Child Verb function block before

the call to the submap. For more information, see “Setting the source child

verb” on page 287.

Note: If the key attribute of the parent business object also participates in a simple

identity relationship, define a Cross-Reference transformation in the main

map, as described in “Cross-referencing identity relationships” on page 49.

Steps for customizing the submap: In the submap, perform the following steps:

1. Define a Move or Set Value transformation for the child business object.

2. Define a Cross-Reference transformation for the child business object and

specify the relationship name and participant. For more information, see

“Cross-referencing identity relationships” on page 49.

Using composite identity relationships

An identity relationship establishes an association between business objects or

other data on a one-to-one basis. A composite identity relationship relates two

business objects through a composite key attribute.

The following sections describe the steps for working with composite identity

relationships:

v “Creating composite identity relationship definitions” on page 274

v “Determining the relationship action” on page 275

v “Customizing map rules for a composite identity relationship” on page 277

Creating composite identity relationship definitions

Identity relationship definitions differ from lookup relationship definitions in that

the participant types are business objects, not of the type Data (the first selection in

the participant types list). As with a simple identity relationship:

v The composite identity relationship consists of the generic business object and at

least one application-specific business object.

v The participant type is a business object for all participants.

However, for a composite identity relationship, the participant attribute for every

participant is a composite key. This composite key usually consists of a unique key

from a parent business object and a nonunique key from a child business object.

Steps for creating composite identity relationship definitions

To create a relationship definition for a composite identity relationship, perform the

following steps:

1. Create a participant definition whose participant type is the parent business

object.

2. Set the first participant attribute to the key of the parent business object.

Tip: Expand the parent business object and select the key attribute.

3. Set the second participant attribute to the key of the child attribute.

Tip: Expand the parent business object, then expand the child attribute within

the parent. Select the key attribute from this child object.

4. Repeat steps 1-3 for each of the participants. As with all composite identity

relationships, this relationship contains one participant for the generic business

object and at least one participant for a application-specific business object.

274 Map Development Guide

Each participant consists of two attributes: the key of the parent business object

and the key of the child business object (from the attribute within the parent

business object).

Restriction: To manage composite relationships, the server creates internal tables.

A table is created for each role in the relationship. A unique index is then created

on these tables across all key attributes of the relationship. (In other words, the

columns which correspond to the key attributes of the relationship are the

participants of the index.) The column sizes of the internal tables have a direct

relation to the attributes of the relationship and are determined by the value of the

MaxLength attribute for the relationship.

Databases typically have restrictions on the size of the indexes that can be created.

For instance, DB2 has an index limitation of 1024 bytes with the default page size.

Thus, depending on the MaxLength attribute of a relationship and the number of

attributes in a relationship, you could run into an index size restriction while

creating composite relationships.

Important:

v You must ensure that appropriate MaxLength values are set in the repository file

for all key attributes of a relationship, such that the total index would never

exceed the index size limitations of the underlying DBMS.

If the MaxLength attribute for type String is not specified, the default is

nvarchar(255) in the SQLServer. Thus, if a relationship has N Keys, all of type

String and the default MaxLength attribute of 255 bytes, the index size would be

((N*255)*2) + 16 bytes. You can see that you would exceed the SQLServer 7 limit

of 900 bytes quite easily when N takes values of >=2 for the default MaxLength

value of 255 bytes for type String.

v Remember, too, that even when some DBMS’es support large indexes, it comes

at the cost of performance; hence, it is always a good idea to keep index sizes to

the minimum.

For more information on how to create a relationship definition for a composite

identity relationship, see “Defining identity relationships” on page 244.

Determining the relationship action

Table 100 shows the activity function blocks that the Mapping API provides to

maintain a composite identity relationship from the child attribute of the parent

source business object. The actions that these methods take depends on the source

object’s verb and the calling context.

 Table 100. Maintaining a composite identity relationship from the child attribute

Function block Description

General/APIs/Identity Relationship/

Maintain Child Verb

Set source child verb correctly

General/APIs/Identity Relationship/

Maintain Composite Relationship

Perform appropriate action on the

relationship tables

Actions of General/APIs/Identity Relationship/Maintain Composite

Relationship

The Maintain Composite Relationship function block will generate Java code that

calls the mapping API maintainCompositeRelationship(), which will manage

relationship tables for a composite identity relationship. This method ensures that

the relationship instances contain the associated application-specific key values for

Chapter 8. Implementing relationships 275

each relationship instance ID. This method automatically handles all of the basic

adding and deleting of participants and relationship instances for a composite

identity relationship.

The actions that maintainCompositeRelationship() takes are based on the value of

the business object’s verb and the calling context. The method iterates through the

child objects of a specified participant, calling the

maintainSimpleIdentityRelationship() on each one to correctly set the child key

value. As with maintainSimpleIdentityRelationship(), the action that

maintainCompositeRelationship() takes is based on the following information:

v The calling context: EVENT_DELIVERY, ACCESS_REQUEST, SERVICE_CALL_REQUEST,

SERVICE_CALL_RESPONSE, SERVICE_CALL_FAILURE, and ACCESS_RESPONSE

v The verb of the source business object: Create, Update, Delete, or Retrieve

For information on the actions that maintainSimpleIdentityRelationship() takes,

see “Accessing identity relationship tables” on page 263.

The maintainCompositeRelationship() method deals only with composite keys that

extend to only two nested levels. In other words, the method cannot handle the

case where the child object’s composite key depends on values in its grandparent

objects.

Example: If A is the top-level business object, B is the child of A, and C is the child

of B, the two methods will not support the participant definitions for the child

object C that are as follows:

v The participant type is A and the attributes are:

key attribute of A: ID

key attribute of B: B[0].ID

key attribute of C: B[0].C[0].ID

v The participant type is A and the attributes are:

key attribute of A: ID

key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods only support the participant

definitions that are as follows:

v The participant type is B and the attributes are:

key attribute of B: ID

key attribute of C: C[0].ID

v The participant type is B and the attributes are:

key attribute of B: ID

first key attribute of C: C[0].ID1

second key attribute of C: C[0].ID2

Actions of General/APIs/Identity Relationship/Maintain Child Verb

The Maintain Child Verb function block will generate Java code that calls the

mapping API maintainChildVerb(), which will maintain the verb of the child

objects in the destination business object. It can handle child objects whose key

attributes are part of a composite identity relationship. When you call

maintainChildVerb() as part of a composite relationship, make sure that its last

parameter has a value of true. This method ensures that the verb settings are

appropriate given the verb in the parent source object and the calling context. For

more information on the actions of maintainChildVerb(), see “Setting the source

child verb” on page 287.

276 Map Development Guide

Customizing map rules for a composite identity relationship

Once you have created the relationship definition and participant definitions for

the composite identity relationship, you can customize the map to maintain the

composite identity relationship. A composite identity relationship manages a

composite key. Therefore, managing this kind of relationship involves managing

both parts of the composite key. To code a composite identity relationship, you

need to customize the mapping transformation rules for both the parent and child

business objects, as Table 101 shows.

 Table 101. Activity function blocks for a composite identity relationship

Map

involved

Business object

involved Attribute Activity function blocks

Main Parent business

object

Top-level business

object

Use a Cross-Reference transformation rule

Child attribute

(child business

object)

General/APIs/Identity Relationship/Maintain Composite

Relationship

General/APIs/Identity Relationship/Maintain Child Verb

General/APIs/Identity Relationship/Update My Children

(optional)

Submap Child business

object

Key attribute

(nonunique key)

Define a Move or Set Value transformation for the verb.

If child business objects have a nonunique key attribute, you can relate these child

business objects in a composite identity relationship.

The following sections describe the steps for customizing this composite identity

relationship:

v “Steps for customizing the main map”

v “Customizing the submap” on page 281

v “Managing child instances” on page 282

Steps for customizing the main map

In the map for the parent business object (the main map), add the mapping code to

the parent attributes:

1. Map the verb of the top-level business object by defining a Move or Set Value

transformation rule.

2. Define a Cross-Reference transformation between the top-level business objects.

3. Define a Custom transformation for the child attribute and use the

General/APIs/Identity Relationship/Maintain Composite Relationship function

block in Activity Editor.

Steps for coding the child attribute

The child attribute of the parent object contains the child business object. This child

object is usually a multiple cardinality business object. It contains a key attribute

whose value identifies the child. However, this key value is not required to be

unique. Therefore, it does not uniquely identify one child object among those for

the same parent nor is it sufficient to identify the child object among child objects

for all instances of the parent object.

To identify such a child object uniquely, the relationship uses a composite key. In

the composite key, the parent key uniquely identifies the parent object. The

combination of parent key and child key uniquely identifies the child object. In the

map for the parent business object (the main map), add the mapping code to the

Chapter 8. Implementing relationships 277

attribute that contains the child business object. In Activity Editor for this attribute,

perform the following steps to code a composite identity relationship:

1. Define a Submap transformation for the child business object attribute of the

main map. Usually mapping transformations for a child object are done within

a submap, especially if the child object has multiple cardinality.

2. In the main map, define a Custom transformation rule for the child verb and

use the General/APIs/Identity Relationship/Maintain Child Verb function

block to maintain the child business object’s verb.

The last input parameter of the General/APIs/Identity Relationship/Maintain

Child Verb function block is a boolean flag to indicate whether the child objects

are participating in a composite relationship. Make sure you pass a value of

true as the last argument to maintainChildVerb() because this child object

participates in a composite, not a simple identity relationship. Make sure you

call maintainChildVerb() before the code that calls the submap. For more

information, see “Setting the source child verb” on page 287.

3. To maintain this composite key for the parent source object, customize the

mapping rule to use the General/APIs/Identity Relationship/Maintain

Composite Relationship function block.

4. To maintain the relationship tables in the case where a parent object has an

Update verb caused by child objects being deleted, customize the mapping rule

to use the General/APIs/Identity Relationship/Update My Children function

block.

Tip: Make sure the transformation rule that contains the Update My Children

function block has an execution order after the transformation rule that

contains the Maintain Composite Relationship function block.

Example of customizing the map for a Composite Identity

Relationship

The following example describes how the map can be customized for a Composite

Identity Relationship.

1. In the main map, define a Custom transformation rule between the child

business object’s verbs. Use the General/APIs/Identity Relationship/Maintain

Child Verb function block in the customized activity to maintain the verb for

the child business objects.

The goal of this custom activity is to use the maintainChildVerb() API to set the

child business object verb based on the map execution context and the verb of

the parent business object. Figure 133 on page 279 shows this custom activity.

278 Map Development Guide

2. If necessary, define a Submap transformation rule between the child business

object to perform any mapping necessary in the child level.

3. Define a Custom transformation rule between the top-level business objects.

Use the General/APIs/Identity Relationship/Maintain Composite Relationship

function block in the customized activity to maintain the composite identity

relationship for this map.

The goal of this custom activity is to use the maintainComposite Relationship()

API to maintain a composite identity relationship within the map. Figure 134

shows this custom activity.

4. Define a Custom transformation rule mapping from the source top-level

business object to the destination child business object attribute. Use the

General/APIs/Identity Relationship/Update My Children function block in the

customized activity to maintain the child instances in the relationship.

The goal of this custom activity is to use the updateMyChildren() API to add or

delete child instances in the specified parent/child relationship of the identity

relationship. Figure 135 shows this custom activity.

Figure 133. Using the Maintain Child Verb function block

Figure 134. Using the Maintain Composite Relationship function block

Figure 135. Using the Update My Children function block

Chapter 8. Implementing relationships 279

Example of coding the child attribute

Here is a sample of how the code in the child attribute of the parent map might

look. This code fragment would exist in the Order Line Item attribute of an SAP

Order business object. It uses maintainChildVerb() to set the child object verbs,

then calls a submap (Sub_SaOrderLieItem_to_CwOrderLineItem) in a for loop to

handle mapping of the Order line items child object:

{

BusObjArray srcCollection_For_ObjSAP_Order_SAP_OrderLineItem =

 ObjSAP_Order.getBusObjArray("SAP_OrderLineItem");

//

// LOOP ONLY ON NON-EMPTY ARRAYS

// -----------------------------

//

// Perform the loop only if the source array is non-empty.

//

if ((srcCollection_For_ObjSAP_Order_SAP_OrderLineItem != null) &&

 (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.size() > 0))

 {

 int currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem;

 int lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem =

 srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.getLastIndex();

 // ----

 IdentityRelationship.maintainChildVerb(

 "OrdrLine",

 "SAPOrln",

 "CWOrln",

 ObjSAP_Order,

 "SAP_OrderLineItem",

 ObjOrder,

 "OrderLineItem",

 cwExecCtx,

 true,

 true);

 // ----

 for (currentBusObjIndex_For_ObjSAP_Order_SAP_

 OrderLineItem = 0;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem <=

 lastInputIndex_For_ObjSAP_Order_SAP_OrderLineItem;

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem++)

 {

 BusObj currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem =

(BusObj) (srcCollection_For_ObjSAP_Order_SAP_OrderLineItem.elementAt(

 currentBusObjIndex_For_ObjSAP_Order_SAP_OrderLineItem));

 //

 // INVOKE MAP ON VALID OBJECTS

 // ---------------------------

 //

 // Invoke the map only on those children objects that meet

 // certain criteria.

 //

 if (currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem != null)

 {

 BusObj[] _cw_inObjs = new BusObj[2];

 _cw_inObjs[0] =

 currentBusObj_For_ObjSAP_Order_SAP_OrderLineItem;

 _cw_inObjs[1] = ObjSAP_Order;

 logInfo ("*** Inside SAPCW header, verb is: " +

 (_cw_inObjs[0].getVerb()));

 try

 {

280 Map Development Guide

BusObj[] _cw_outObjs = DtpMapService.runMap(

 "Sub_SaOrderLineItem_to_CwOrderLineItem",

 "CwMap",

 _cw_inObjs,

 cwExecCtx);

 _cw_outObjs[0].setVerb(_cw_inObjs[0].getVerb());

 ObjOrder.setWithCreate("OrderLineItem", _cw_outObjs[0]);

 }

 catch (MapNotFoundException me)

 {

 logError(5502,

 " Sub_SaOrderLineItem_to_CwOrderLineItem ");

 throw new MapFailureException ("Submap not found");

 }

 }

 }

 // Start of the child relationship code

 BusObjArray temp = (BusObjArray)ObjOrder.get("OrderLineItem");

 try

 {

 IdentityRelationship.maintainCompositeRelationship(

 "OrdrLine",

 "SAPOrln",

 ObjSAP_Order,

 temp,

 cwExecCtx);

 }

 catch RelationshipRuntimeException re

 {

 logError(re.toString());

 }

 // This call to updateMyChildren() assumes the existence of the

 // OrdrOrln parent/child relationship between the SAP_Order

 // (parent) and SAP_OrderItem (child)

 IdentityRelationship.updateMyChildren(

 "OrdrOrln",

 "SAOrders",

 ObjSAP_Order,

 "SAOrdrLn",

 "LineItem",

 "OrdrLine",

 "SAPOrln",

 cwExecCtx);

 // End of the child relationship code

 }

}

Customizing the submap

In the map for the child business object (the submap), add the mapping code to

the the key attribute of the child object. The only code you need to add is a call to

the setVerb() method to set the child object’s verb to the parent object’s verb. For

more information, see “Setting the destination business object verb” on page 37.

Note: When the child object primary key requires the

maintainCompositeRelationship() method, make the call in the parent map,

right after the end of the for loop for calling the submap. In the submap,

the code for the destination object’s primary key should contain the

following line:

Chapter 8. Implementing relationships 281

// maintainCompositeRelationship()

is called in the parent map.

Managing child instances

Activity Editor provides the function blocks in Table 102 to manage child object

instances that belong to a parent in an identity relationship.

 Table 102. Function blocks for Managing Child Instances

Function block Description

General/APIs/Identity

Relationship/Add My Children

Adds child relationship instances to parent/child

relationship tables

General/APIs/Identity

Relationship/Delete My Children

Deletes child relationship instances to parent/child

relationship tables

General/APIs/Identity

Relationship/Update My Children

Deletes or adds child relationship instances from

parent/child relationship tables.

Note: The most common use of the function blocks in Table 102 is to maintain

child business objects in custom relationships involving composite identity

relationships.

The function blocks in Table 102 assume that the parent business object being

passed is an after-image; that is, the image of the business object after the verb

operation has taken place. For example, if a business object has an Update verb

with the update caused by the addition of new child objects, these new child

objects already exist in the business object. Similarly, if a business object has an

Update verb with the update caused by the deletion of child objects, the business

object already has these child objects deleted.

This following sections describe the steps for managing child instances:

v “Creating the parent/child relationship definition”

v “Handling updates to the parent business object” on page 283

Creating the parent/child relationship definition

A parent/child relationship is a 1-to-many relationship between parent (1) and child

(many) business objects. A parent/child relationship involves the following

participants:

v A participant containing the key attribute of that parent business object

v A participant containing the key of the child business object

The relationship tables for a parent/child relationship enable the function blocks in

Table 102 to track the child business objects associated with a particular parent

business object.

Steps for creating the parent/child relationship definition

To create a relationship definition for a parent/child relationship, perform the

following steps in Relationship Designer Express:

1. Create a participant definition whose participant type is the parent business

object.

2. Set the participant attribute to the key of the parent business object:

Expand the parent business object and select the key attribute.

3. Create a participant definition whose participant type is the child business

object.

282 Map Development Guide

4. Set the participant attribute to the key of the child attribute:

Expand the child business object (not the child attribute with the parent object),

and select the key attribute from this child object.

Note: The parent-child relationship needs to be maintained only if the child object

does not have a unique key; that is, the child object only exists within the

context of its parent.

For more information, see “Defining identity relationships” on page 244.

Handling updates to the parent business object

This section provides information to ensure that child objects that participate in a

composite identity relationship are correctly managed during an Update:

v “Comparing the before- and after-images”

v “Tips on using Update My Children” on page 284

Comparing the before- and after-images

The Update My Children function block updates the relationship tables for a

parent/child relationship. A parent/child relationship is needed to help determine

whether child objects have been added to or deleted from a parent business object.

For a given parent business object, this method makes sure that the following

images of the business object match:

v The before-image information is contained in the relationship tables for the

parent/child relationship.

v The after-image is contained in the parent business object.

For the map to detect that a child business object has been deleted, it must

determine how many instances of the child object of this type that the parent

business object had before the Update (the before-image) and compare that to what

the parent object presently has (the after-image). The map can use the Update My

Children function block to make this comparison and find out what has been

deleted or added.

When Update My Children compares the before- and after-images, it can

determine whether to remove the associated relationship instances from the

relationship tables for any child object that is not present in the parent business

object. The method removes relationship instances from the following relationship

tables:

v The relationship table for the child participant in the parent/child relationship

v The relationship table for the participant in the composite identity relationship

that contains the parent and child objects

Note: Although Update My Children can also add instances to the relationship

table for any child object that is present in the parent business object (but

not in the child relationship table), it does not need to do this when called

in the context of a composite identity relationship. All new child objects for

the parent object have already been added to the relationship tables by the

Maintain Composite Relationship function block For more information, see

“Actions of General/APIs/Identity Relationship/Maintain Composite

Relationship” on page 275.

Chapter 8. Implementing relationships 283

Tips on using Update My Children

When you use the Update My Children function block to maintain relationship

tables for a child object involved in a composite identity relationship, keep the

following tips in mind:

v Make sure you use the Update My Children function block after the Maintain

Composite Relationship function block and that you have set the appropriate

verbs on the child business objects.

v The Update My Children function block is only needed to track child objects

involved in composite relationships.

You do not need to use the Update My Children function block to track child

objects involved in a simple identity relationship. For more information, see

“Coding a child-level simple identity relationship” on page 273.

v The Update My Children function block (as with the Maintain Composite

Relationship function block) deals only with composite keys that extend to only

two nested levels: the parent and its immediate children.

In other words, the method cannot handle the case where the grandchild object’s

composite key depends on values in its grandparent objects. For example, if A is

the top-level business object, B is the child of A, and C is the child of B, the two

methods will not support the participant definitions for the child object C that

are as follows:

– The participant type is A and the attributes are:

key attribute of A: ID

key attribute of B: B[0].ID

key attribute of C: B[0].C[0].ID

– The participant type is A and the attributes are:

key attribute of A: ID

key attribute of C: B[0].C[0].ID

To access a grandchild object, these methods only support the participant

definitions that are as follows:

– The participant type is B and the attributes are:

key attribute of B: ID

key attribute of C: C[0].ID

– The participant type is B and the attributes are:

key attribute of B: ID

first key attribute of C: C[0].ID1

second key attribute of C: C[0].ID2

v The Update My Children function block manages the parent/child relationship

tables for the EVENT_DELIVERY and SERVICE_CALL_RESPONSE calling contexts only.

Execution of the Update My Children function block with a calling context of

SERVICE_CALL_REQUEST or ACCESS_RESPONSE does not produce any changes to

these relationship tables.

v The Update My Children function block can also be used when the child

business object has a unique ID; that is, the child object participates in a simple

identity relationship. In this case, you must still define the parent/child

relationship (see “Creating the parent/child relationship definition” on page

282).

284 Map Development Guide

Setting the verb

This section provides information on setting the verb of a business object

participating in a map:

v “Conditionally setting the destination verb”

v “Setting the source child verb” on page 287

For information on setting the verb of the destination business object, see “Setting

the destination business object verb” on page 37.

Conditionally setting the destination verb

Usually, you just set the destination verb to the value of the source verb by

defining a Move transformation. (For more information on this action, see “Setting

the destination business object verb” on page 37.) However, sometimes the source

application sets the business object verb in an unusual manner; for example, the

verb is set to Update even though the event is new. As another example, the verb

is always set to Retrieve. In the situations like these, the map must reset the

destination verb to the one that corresponds to the actual event.

If the source business object’s key participates in a relationship, the map can

perform a static lookup in the relationship table to determine if the source business

object exists. The map can then set the destination verb to either Update or Create

based on whether the corresponding entry is found in the table. You perform this

static lookup in much the same way as accessing a lookup relationship. Table 103

shows the function block to use for each kind of static lookup.

 Table 103. Checking for Existence of the source business object

Type of source business object Map type Function block

Application-specific Inbound General/APIs/Relationship/

Retrieve Instances

Generic Outbound General/APIs/Relationship/

Retrieve Participants

Example of steps for customizing the inbound map

The following example shows how an inbound map can conditionally set the

destination verb based on the result of a lookup:

1. In the map, define a Custom transformation between the source business object

and the destination verb.

2. In the activity of this Custom Transformation, perform the following steps. The

goal of this activity is to identify the number of instances in the participant of

the relationship. If there are no participant instances in the relationship, the

destination business object verb should be Create; otherwise, the verb should

be Update.

a. Define the activity, as shown in Figure 136 on page 286, to identify the

number of instances in the relationship participant.

Chapter 8. Implementing relationships 285

b. Double-click the Condition function block in the canvas to open it. Select

True Action to define the action to take when the condition is true. Define

the True Action as shown in Figure 137.

c. Select the False Action to define the action to take when the number of

participant instances is not zero. Define the False Action as shown in

Figure 138.

Example of steps for customizing the outbound map

You can use similar steps in the outbound map to perform a static lookup based

on the primary key of the generic object. To do that, you need to replace the

function block General/APIs Relationship/Retrieve Instances with the function

block General/APIs Relationship/Retrieve Participants. Here are the steps:

1. In the map, define a Custom transformation between the key attribute of the

source business object and the destination verb.

2. In the activity of this Custom transformation, perform the following steps. The

goal of this activity is to identify the number of participants of the relationship.

Figure 136. Identifying the number of instances in the relationship participant

Figure 137. Defining the True Action

Figure 138. Defining the False Action

286 Map Development Guide

If there are no participant instances in the relationship, the destination business

object verb should be Create; otherwise, the verb should be Update.

a. Define the activity, as shown in Figure 139, to identify the number of

participants in the relationship.

b. Follow steps 2b and 2c, described in “Example of steps for customizing the

inbound map” on page 285.

Setting the source child verb

When a parent source business object has child business objects, the value of the

source child verb is usually the same as that of the parent verb. Therefore, you set

the source child object’s verb by defining a Move transformation from the parent

verb to the child verb. However, if the parent object’s verb is Update, the update

could be the result of any of the modifications shown in Table 104.

 Table 104. Updating a parent business object

Update task Verb in child object

Modifying some non-child attribute in the parent object Update

Modifying some attribute in a child object Update

Adding more child objects Create

Deleting existing child objects Delete

All of the modifications in Table 104 are represented by a verb of Update in the

parent object. However, not all of these modifications represent an Update to the

child object. The value of the source child verb depends on what action was taken

on the parent verb. When the child object’s key participates in an identity

relationship (composite or simple), the source child verb value depends not just on

the parent verb but also on the calling context. In such cases, use the Maintain

Child Verb function block to handle the setting of the verb of the source child

object.

This section provides the following information about using the Maintain Child

Verb function block to maintain a source child object verb:

v “Determining the child verb setting”

v “Tips for using the Maintain Child Verb function block” on page 289

Determining the child verb setting

The Maintain Child Verb function block must ensure that the verb settings of the

child objects in the source business object are appropriate, given the verb in the

Figure 139. Identifying the number of participants in the relationship

Chapter 8. Implementing relationships 287

parent source object and the calling context. The actions that this method takes are

based on the verb in the parent source object and the calling context.

EVENT_DELIVERY and ACCESS_REQUEST calling contexts: When the calling

context is EVENT_DELIVERY or ACCESS_REQUEST, the map that is being called is an

inbound map; that is, it transforms an application-specific business object to a

generic business object. The inbound map receives an application-specific business

object as input and returns a generic business object as output. For

EVENT_DELIEVERY (or ACCESS_REQUEST), there are no special cases to handle when

setting the child verbs. Therefore, the maintainChildVerb() method just copies the

parent verb to the child verb for all verb values, as Table 105 shows.

 Table 105. Actions for the EVENT_DELIVERY and ACCESS_REQUEST calling contexts

Verb of generic

business object Action performed by the Maintain Child Verb function block

Create Delete Update

Retrieve

Set the verbs of all child objects in the source object to the verb in the parent source object.

This action overwrites any existing verb in the child object.

SERVICE_CALL_REQUEST calling context: When the calling context is

SERVICE_CALL_REQUEST, the map that is being called is an outbound map; that is, it

transforms a generic business object to an application-specific business object. The

outbound map receives a generic business object as input and returns an

application-specific business object as output. For SERVICE_CALL_REQUEST, the Java

code generated by the Maintain Child Verb function block handles the special case

for an Update verb: If the change to the parent object is the creation of new child

objects, the Maintain Child Verb function block changes the verb to Create for any

child objects that do not currently exist in the relationship tables, as Table 106

shows.

 Table 106. Actions for SERVICE_CALL_REQUEST calling context

Verb of generic

business object Action performed by the Maintain Child Verb function block

Create Delete

Retrieve

Set the verbs of all child objects in the source object to the verb in the parent source object.

This action overwrites any existing verb in the child object.

Update 1. Retrieve the relationship instance from the child relationship table for the given generic

business object’s key value.

2. Set the verb of the child object based on the success of the table lookup:

v If a relationship instance for this child object exists, set the verb of the child object to

Update.

v If a relationship instance for this child object does not exist, set the verb of the child

object to Create.

SERVICE_CALL_RESPONSE calling context: When the calling context is

SERVICE_CALL_RESPONSE, the map that is being called is an inbound map; that is it

transforms an application-specific business object to a generic business object. The

inbound map receives an application-specific business object as input and returns a

generic business object as output.

The behavior of the Maintain Child Verb function block is determined by the

second-to-last parameter of the method. This parameter is the boolean to_Retrieve

flag, whose value indicates whether the application resets or preserves child

objects’ verbs when processing a collaboration request, as Table 107 shows.

288 Map Development Guide

Table 107. Connector behavior

Value of to_Retrieve

flag Connector behavior

true Connector sets child object verbs to different value from what they had coming into the

application.

For example, if a business object comes to the connector with a parent verb of Update and a

child verb of Create, the connector might reset all child object verbs to their parent value after

the application completes the operation. In this case, the child verb would be changed to

Update.

false Connector preserves child object verbs.

For example, if a business object comes to the connector with a parent verb of Update and a

child verb of Create, the connector preserves all child object verbs. In this case, the child verb

would still be Create.

Note: The Java code generated by the Maintain Child Verb function block uses the

value of the to_Retrieve parameter only when it processes the

SERVICE_CALL_RESPONSE calling context.

If the to_Retrieve argument is true, the Maintain Child Verb function block

performs the tasks in Table 108.

 Table 108. Actions for the SERVICE_CALL_RESPONSE calling context

Verb of generic

business object Action performed by the Maintain Child Verb function block

Create Delete

Retrieve Update

Set the verbs of all child objects in the source object to the verb in the parent source object.

This action overwrites any existing verb in the child object.

1. Look up each child object in the child relationship table.

2. Set the verb of the child object based on the success of the table lookup:

v If a relationship instance for this child object exists, set the verb of the child object to

Update.

v If a relationship instance for this child object does not exist, set the verb of the child

object to Create.

Note: If you are unsure of the behavior of your application, set the to_Retrieve

argument to true. With a true flag value, performance might be affected

because the Java code generated by the Maintain Child Verb function block

might perform an unnecessary lookup. However, it is usually safer to have

an unnecessary lookup than to have an incorrect verb setting in the child

object.

Tips for using the Maintain Child Verb function block

The Maintain Child Verb function block maintains the verb of the child objects in

the source business object. It can handle child objects that are part of a simple or a

composite identity relationship. This function block must ensure that the verb

settings are appropriate given the verb in the parent source object and the calling

context.

Keep the following tips in mind when using the Maintain Child Verb function

block:

v The second to last parameter in this method is the to_Retrieve boolean flag,

which indicates whether the application resets or preserves child objects’ verbs.

Chapter 8. Implementing relationships 289

For more information on how to set the to_Retrieve flag, see

“SERVICE_CALL_RESPONSE calling context” on page 288.

v The last parameter in this method is the is_Composite boolean flag, which

indicates whether the child object is part of a simple or composite identity

relationship.

The key attribute of a child business object can participate in either of the

following kinds of identity relationship:

– As a unique key in a simple identity relationship

Set the value of the is_Composite flag to false.

– As a nonunique key of a composite key in a composite identity relationship;

in this case, the other part of the composite key is the unique key in the

parent business object.

Set the value of the is_Composite flag to true.
v Make sure you use the Maintain Child Verb function block in the child attribute

of the source parent map, before calling the submap.

For multiple-cardinality child objects, use the Maintain Child Verb function block

right before the start of the for loop. The method iterates through the child

objects to set the child verbs correctly.

Performing foreign key lookups

A foreign key is an attribute within one business object that contains the key value

of another business object. This key value is considered “foreign” to the source

business object because it identifies some other business object. To transform a

foreign key in a source business object, you must access the relationship table

associated with the business object that the foreign key references (the foreign

relationship table). From this foreign relationship table, you can obtain the

associated key value for the foreign key of the destination business object.

The Mapping API provides the methods in Table 109 to perform foreign key

lookups.

 Table 109. Function blocks for foreign key lookups

Function block Description

General/APIs/Identity

Relationship/Foreign Key

Lookup

Performs a foreign key lookup, failing to find a relationship

instance if the foreign key does not exist in the foreign

relationship table.

General/APIs/Identity

Relationship/Foreign Key

Cross-Reference

Performs a foreign key lookup, adding a new relationship

instance in the foreign relationship table if the foreign key

does not exist.

Using the Foreign Key Lookup function block

The Java code generated by the Foreign Key Lookup function block performs a

lookup in a foreign relationship table for the foreign key of the source business

object. This function block takes the following actions:

1. Verifies that the application-specific participant contains a single key, not a

composite key.

Determines the participant type of the application-specific participant, which is

the application-specific business object. In this business object, verifies that only

one key attribute exists. If more than one key attribute exists, the Foreign Key

Lookup function block does not know which application-specific key attribute

290 Map Development Guide

to populate with the application-specific equivalent of the generic business

object’s foreign key. Therefore, it throws the RelationshipRuntimeException

exception.

2. Locates the relationship instance in the foreign relationship table that matches

the value of the foreign key in the generic business object.

3. Obtains the application-specific key value from the retrieved relationship

instance.

4. Copies the application-specific key value into the foreign key of the

application-specific business object.

The Java code generated by the Foreign Key Lookup function block takes these

actions on the foreign relationship table regardless of the verb in the source

business object.

Using the Foreign Key Cross-Reference function block

As with the Foreign Key Lookup function block, the Foreign Key Cross-Reference

function block performs a lookup in a foreign relationship table based on the

foreign key of the source business object. However, the Foreign Key

Cross-Reference function block provides the additional functionality that it can add

an entry to the foreign relationship table if the lookup fails. The following sections

discuss the behavior of the Foreign Key Cross-Reference function block with each

of the calling contexts.

EVENT_DELIVERY, ACCESS_REQUEST, and

SERVICE_CALL_RESPONSE calling contexts

When the calling context is EVENT_DELIVERY, ACCESS_REQUEST, or

SERVICE_CALL_RESPONSE, the map that is being called is an inbound map; that is, it

transforms an application-specific business object to a generic business object. The

inbound map receives an application-specific business object as input and returns a

generic business object as output. Therefore, the task for the Foreign Key

Cross-Reference function block is to obtain from the foreign relationship table the

generic key for a given application-specific key value.

For the EVENT_DELIVERY, ACCESS_REQUEST, and SERVICE_CALL_RESPONSE calling

contexts, the Foreign Key Cross-Reference function block takes the following

actions:

1. Verifies that the generic participant contains a single key, not a composite key.

Determines the participant type of the generic participant, which is the generic

business object. In this business object, verifies that only one key attribute

exists. If more than one key attribute exists, the Foreign Key Cross-Reference

function block does not know which generic key attribute to populate with the

generic equivalent of the application-specific business object’s foreign key.

Therefore, it throws the RelationshipRuntimeException exception.

2. Locates the relationship instance in the foreign relationship table that matches

the value of the foreign key in the application-specific business object. Table 110

shows the actions that the Foreign Key Cross-Reference function block takes on

the foreign relationship table based on the verb of the application-specific

business object.

3. Obtains the instance ID from the retrieved relationship instance.

Chapter 8. Implementing relationships 291

4. Copies the instance ID into the foreign key of the generic business object.

 Table 110. Actions for EVENT_DELIVERY, ACCESS_REQUEST, and

SERVICE_CALL_RESPONSE

Verb of

application-specific

business object

Action performed by the Foreign Key Cross-Reference function

block

Create For the EVENT_DELIVERY and ACCESS_REQUEST calling contexts, insert a

new relationship entry into the foreign relationship table for the

application-specific business object’s key value.

For the SERVICE_CALL_RESPONSE calling context, insert into the

relationship table the new relationship entry containing the

application-specific business object’s key value and its associated

relationship instance ID. The method obtains the relationship instance

ID from the original-request business object in the map execution

context (cwExecCtx). For more information on the behavior of the

SERVICE_CALL_RESPONSE, see “SERVICE_CALL_RESPONSE calling

context” on page 269.

If an entry for this key value already exists, retrieve the existing one;

do not add another one to the table.

Update Retrieve the relationship entry from the foreign relationship table for

the given application-specific business object’s foreign key value.

If an entry for this foreign key value does not exist, insert a new

relationship instance into the foreign relationship table for the

application-specific business object’s foreign key value.

Retrieve Retrieve the relationship entry from the foreign relationship table for

the given application-specific business object’s foreign key value

Figure 140 shows how the Foreign Key Cross-Reference function block accesses the

foreign relationship table (for App Obj C) when a calling context is EVENT_DELIVERY,

ACCESS_REQUEST, or SERVICE_CALL_RESPONSE and the verb for the application-specific

business object (App Obj A) is either Create or Update.

App Obj A
AppObjC

to
Generic

App ObjC ID = 1234

InstanceID

1

2

3

4

Relationship
App ObjC ID

8097

2341

6539

1234

Map

(new or existing)

Active?

Y

Y

Y

Y

1

2

App Obj C
(foreign key)

Generic Obj A

Generic Obj C
(foreign key)

Generic ObjA
InstanceID = 4

1. Does relationship id exist with:
App ObjCID=1234?

• YES: Retrieve relationship instance
• NO: Create new relationship instance

2. Return Instance ID.

Figure 140. Foreign key lookup for a create or update verb

292 Map Development Guide

Note: The Foreign Key Cross-Reference function block only adds relationship

instances to the foreign relationship table for inbound maps.

SERVICE_CALL_REQUEST calling context and Foreign Keys

When the calling context is SERVICE_CALL_REQUEST, the map that is being called is

an outbound map; that is, it transforms a generic business object to an

application-specific business object. The outbound map receives a generic business

object as input and returns an application-specific business object as output. For

the SERVICE_CALL_REQUEST calling context, the Foreign Key Cross-Reference

function block takes the following actions:

1. Verifies that the application-specific participant contains a single key, not a

composite key.

Determines the participant type of the application-specific participant, which is

the application-specific business object. In this business object, verifies that only

one key attribute exists. If more than one key attribute exists, the Foreign Key

Cross-Reference function block does not know which application-specific key

attribute to populate with the application-specific equivalent of the generic

business object’s foreign key. Therefore, it throws the

RelationshipRuntimeException exception.

2. Performs the task outlined in Table 111, based on the verb of the

application-specific business object.

The Foreign Key Cross-Reference function block obtains from the foreign

relationship table an application-specific business object’s key value for a given

a relationship instance ID only if the verb is Update, Delete, or Retrieve. The

Foreign Key Cross-Reference function block does not obtain the

application-specific key value for a Create verb.

Table 111 shows the action that the Foreign Key Cross-Reference function block

takes on the foreign relationship table, based on the verb of the generic business

object.

 Table 111. Actions for the SERVICE_CALL_REQUEST calling context and a Foreign Key

Verb of generic business

object Action performed by the Foreign Key Cross-Reference function block

Create Take no action.

The method writes a new relationship instance to the foreign relationship table when the

calling context is SERVICE_CALL_RESPONSE. For more information, see “EVENT_DELIVERY,

ACCESS_REQUEST, and SERVICE_CALL_RESPONSE calling contexts” on page 291.

Update Delete Retrieve 1. Obtain the generic business object’s key value (the relationship instance ID) from the

original-request business object in the map execution context.

2. Retrieve the relationship instance from the foreign relationship table for the given

generic business object’s key value. If a relationship instance for this key value does

not exist, throw a RelationshipRuntimeException exception. If no participants are

found when the verb is Retrieve, throw a CxMissingIDException exception.

3. Obtain the application-specific key value from the retrieved relationship instance.

4. Copy the application-specific key value into the application-specific business object.

As Table 111 shows, when the verb is Create, the Foreign Key Cross-Reference

function block does not write a new relationship instance to the relationship table.

It does not perform this write operation because it does not yet have the

application-specific foreign key value that corresponds to the instance ID. When

the connector processes the application-specific business object, it notifies the

application of the need to insert a new row (or rows). If this insert is successful,

Chapter 8. Implementing relationships 293

the application notifies the connector, which creates the appropriate

application-specific business object with a Create verb and the application’s key

value.

Note: For the SERVICE_CALL_REQUEST calling context, the Foreign Key

Cross-Reference function block manages the foreign relationship table in the

same way that the Maintain Simple Identity Relationship function block

manages a relationship table.

ACCESS_RESPONSE calling context and foreign keys

When the calling context is ACCESS_RESPONSE, the map that is being called is an

outbound map; that is, it transforms a generic business object to an

application-specific business object. The outbound map receives a generic business

object as input and returns an application-specific business object as output.

Therefore, the task for the Foreign Key Cross-Reference function block is to obtain

from the foreign relationship table the application-specific key for a given generic

key value.

For the ACCESS_RESPONSE calling context, the Foreign Key Cross-Reference function

block takes the following actions:

1. Verifies that the application-specific participant contains a single key, not a

composite key.

Determines the participant type of the application-specific participant, which is

the application-specific business object. In this business object, verifies that only

one key attribute exists. If more than one key attribute exists, the Foreign Key

Cross-Reference function block does not know which application-specific key

attribute to populate with the application-specific equivalent of the generic

business object’s foreign key. Therefore, it throws the

RelationshipRuntimeException exception.

2. Locates the relationship instance in the foreign relationship table that matches

the value of the foreign key in the generic business object.

3. Obtains the application-specific key value from the retrieved relationship

instance.

4. Copies the application-specific key value into the foreign key of the

application-specific business object.

The Foreign Key Cross-Reference function block takes these actions on the foreign

relationship table regardless of the verb in the generic business object.

Tips for using the Foreign Key Cross-Reference and Foreign

Key Lookup function blocks

Keep the following tips in mind when using the Foreign Key Cross-Reference and

Foreign Key Lookup function blocks:

v Put the call to the Foreign Key Lookup or Foreign Key Cross-Reference function

blocks in the transformation step for the foreign key attribute of the destination

business object.

v The Foreign Key Lookup and Foreign Key Cross-Reference function blocks do

not support composite keys as the foreign key.

v After using the Foreign Key Lookup function block, check that the destination

foreign key attribute does not contain a null value. A null foreign key value

indicates that the Foreign Key Lookup function block was not able to locate the

corresponding foreign key value for the foreign key in the source business

object. To indicate this condition, log message number 5007 or 5008 (depending

294 Map Development Guide

on whether or not the map is forced to fail) and, optionally, throw the

MapFailureException exception to stop the map.

You do not need this check after using the Foreign Key Cross-Reference function

block because this function block automatically adds an entry to the foreign

relationship table if the application-specific key value does not exist.

v If any of the child object attributes require the use of the Foreign Key

Cross-Reference function block or the Foreign Key Lookup function block (but

not the Maintain Simple Identity Relationship function block or the Maintain

Composite Relationship function block), you can set the verb of the source child

object by defining a Move transformation from the source parent object’s verb to

the child business object’s verb. Make the call inside the for loop, just before the

runMap() method is called.

Maintaining custom relationships

The mapping API provides methods to handle operations on relationship tables for

some basic relationships such as lookup and identity relationships.For other

relationships, you can create custom relationships by programming the adding and

deleting of participants yourself.

How you program the transformation code for a relationship attribute depends on

several factors that vary with each execution of the map. You typically structure

the code as a series of cases handling each of the possible situations that might

occur. The following factors are those you most typically need to consider:

v The verb associated with the source business object: Create, Retrieve, Update, or

Delete. For example, if the verb is Create, the map usually creates a new

relationship instance or adds a new participant instance to an existing

relationship instance. Your code should handle each verb that is supported by

the application-specific business object and its connector.

v The calling context associated with the map instance. Calling contexts indicate

the purpose of the current map execution and can affect how you handle each of

the verb cases. For example, if the verb is Create and the calling context is

EVENT_DELIVERY, you usually create a new relationship instance; if the calling

context is SERVICE_CALL_RESPONSE, you usually add a participant to the

relationship instance. To learn more about calling contexts, see “Understanding

map execution contexts” on page 189.

v The business logic contained in the collaboration associated with the map. For

example, if the collaboration manages the synchronization of data between two

applications, the map developer must coordinate with the collaboration

developer to determine which business logic is contained in the collaboration

and which is handled in the map.

The Relationship and IdentityRelationship classes contain methods for creating

relationship instances and adding, deleting, and updating participant instances.

The Participant class provides “set” and “get” methods for specifying and

retrieving various properties of participant instances.

The following sections provide information on how to manage a custom

relationship:

v “Creating a new relationship instance” on page 296

v “Creating participant instances” on page 296

v “Deleting participant instances” on page 296

Chapter 8. Implementing relationships 295

Creating a new relationship instance

To create a new relationship instance, use the create() or addMyChildren()

methods. Both methods create a relationship instance with one new participant

instance.

The most common example of creating a new relationship instance is when the

verb is Create and the calling context is EVENT_DELIVERY (or ACCESS_REQUEST). In

this case, an application generates a “create” event for which a collaboration has

subscribed, and the map transforms an application-specific business object to a

generic business object. To create a new relationship instance, you must supply the

relationship definition name, the participant definition name for the participant

you are adding, and the data associated with the participant.

The following code creates a new instance of a relationship called CustIden after a

customer is added in the Clarify application. The participant definition

representing Clarify is called ClarCust:

instanceId = Relationship.create

("CustIden","ClarCust",appBusObj);

The return value, instanceId, is the instance ID of the new relationship instance.

Creating participant instances

To create a new participant instance for a relationship, use the addParticipant()

method. You typically create a new participant instance when:

v The source business object’s verb is Create and the calling context is

EVENT_DELIVERY. In this case, you create a new relationship instance and a new

participant instance at the same time.

v The source business object’s verb is Create and the calling context is

SERVICE_CALL_RESPONSE. In this case, you add the new participant to an existing

relationship instance.

The following code adds a new participant instance to a relationship called

CustIden. It assumes a verb of Create and a calling context of

SERVICE_CALL_RESPONSE. The relID variable contains the ID of the relationship

instance to receive the new participant instance.

instanceId = Relationship.addParticipant("CustIden","SAPCust",

 relID, appBusObj);

Deleting participant instances

To delete a participant instance from a relationship instance, use one of the

methods of the Relationship class listed in Table 112.

 Table 112. Methods that Delete a participant instance

Relationship method Description

deleteParticipant() Deletes all participant instances that match

the relationship definition name,

participant definition name, and

participant data that you specify.

deleteParticipantByInstance() Deletes one participant from a specific

relationship instance that you specify.

deactivateParticipant() Identical to deleteParticipant() except

that it leaves a record of the participant in

the relationship tables.

296 Map Development Guide

Table 112. Methods that Delete a participant instance (continued)

Relationship method Description

deactivateParticipantByInstance() Identical to

deleteParticipantByInstance() except

that it leaves a record of the participant in

the relationship tables.

You typically delete participant instances when the source business object has a

verb of Delete and the calling context is either EVENT_DELIVERY (or ACCESS_REQUEST)

or SERVICE_CALL_RESPONSE.

Example: The following code assumes a calling context of SERVICE_CALL_RESPONSE

and a verb of Delete. It deletes a participant instance representing a Clarify

customer from the CustIden relationship.

Relationship.deleteParticipant

("CustIden","ClarCust",appBusObj);

Writing safe relationship code

Recommendation: You should use the following defensive coding standards for

attributes that require relationship management:

v Always make sure that the source attribute is not null before calling a method of

the Mapping API.

v Always put the call to a method of the Mapping API inside the try/catch block

and display the appropriate error message inside the catch section.

Checking for null source attribute

Before calling one of the Mapping API methods in Table 113, make sure that the

source attribute is not null. If the attribute is null, log an error and do not call the

method.

 Table 113. Handling null source attributes

Mapping API method Error number to log Stop map execution?

maintainSimpleIdentityRelationship() 5000 Yes

foreignKeyXref()

foreignKeyLookup()

5003 The mapping specification should

specify whether the map execution

should stop.

To stop map execution, you can throw the MapFailureException exception.

Handling exceptions from the mapping API method

To ensure that any exceptions raised by the Mapping API methods in Table 114 are

caught, put the call to a method of the Mapping API inside the try/catch block

and log the appropriate error message inside the catch section.

Chapter 8. Implementing relationships 297

Table 114. Handling Exceptions from mapping API methods

Mapping API method Exception to Catch

Error

Number to

Log

maintainSimpleIdentity

Relationship()

maintainComposite

Relationship()

RelationshipRuntimeException 5001

CxMissingIDException 5002

foreignKeyLookup() RelationshipRuntimeException 5007 or 5008

foreignKeyXref() RelationshipRuntimeException 5009

Example: The following code fragment includes a call to the

maintainSimpleIdentityRelationship() method that catches both the

RelationshipRuntimeException and CxMissingIDException exceptions, logs

informational message to display the error text generated by the server, and stops

the map execution by throwing MapFailureException:

try

 {

 // API call

 IdentityRelationship.maintainSimpleIdentityRelationship(...);

 }

catch (RelationshipRuntimeException re)

 {

 logError(5001);

 logInfo(re.toString());

 throw new MapFailureException("RelationshipRuntimeException");

 }

catch (CxMissingIDException ce)

 {

 logError(5002);

 logInfo(ce.toString());

 throw new MapFailureException("RelationshipRuntimeException");

 }

Example: The following code fragment shows exception handling for the

foreignKeyLookup() method that catches the RelationshipRuntimeException

exception, logs informational message to display the error text generated by the

server, and then checks the destination attribute to see whether it was successfully

mapped; if not, the fragment displays an error with 5007 if the map has to stop

execution or message 5008 if it can continue the map execution:

try

 {

 // API call

 IdentityRelationship.foreignKeyLookup(...);

 }

catch (RelationshipRuntimeException re)

 {

 logInfo(re.toString());

 }

if (ObjDest.isNull("DestAttr")

 {

 logError(5007, "DestAttrName", "SrcAttrName", "RelationshipName",

 "ParticipantName", strInitiator);

 throw new MapFailureException("foreignKeyLookup() failed");

 }

298 Map Development Guide

If the map execution is to be continued, use the following if statement:

if (ObjDest.isNull("DestAttr")

 {

 logError(5008, "DestAttrName", "SrcAttrName", "RelationshipName",

 "ParticipantName", strInitiator);

 }

Example: The following code fragment shows exception handling for the

foreignKeyXref() method that catches RelationshipRuntimeException, logs an

informational message to display the error text generated by the server, then

checks the destination attribute to see whether it was successfully mapped; if not,

the fragment displays an error with message 5009 and stops the map execution by

throwing MapFailureException:

try

 {

 // API call

 IdentityRelationship.foreignKeyXref(...);

 }

catch (RelationshipRuntimeException re)

 {

 logInfo(re.toString());

 }

if (ObjDest.isNull("DestAttr")

 {

 logError(5009, "DestAttrName", "SrcAttrName", "RelationshipName",

 "ParticipantName", strInitiator);

 throw new MapFailureException("foreignKeyXref() failed");

 }

Executing queries in the relationship database

As you use relationships, you may need to obtain information about a relationship

definition. The relationship information is stored in special tables in the

relationship database. To obtain information about a relationship, you can query its

relationship tables. A query is a request, usually in the form of an SQL (Structured

Query Language) statement, that you send to the database for execution.

To execute queries in the relationship database:

1. Open a connection to the relationship database to obtain a DtpConnection

object.

2. Through the DtpConnection object, execute queries and manage transactions in

the relationship database.

The connection automatically closes when the map finishes execution.

Important: Using the DtpConnection class and its methods to establish a

connection to a relationship database is supported for backward

compatibility only. These deprecated methods will not generate errors, but

you should avoid using them and migrate existing code to the new

methods. The deprecated methods might be removed in a future

release. In new map development, use the CwDBStoredProcedureParam

class and its methods to obtain a database connection and execute SQL

queries. For more information, see “Executing database queries” on

page 202.

Chapter 8. Implementing relationships 299

Opening a connection

To be able to query the relationship database, you must first open a connection to

this database with the getRelConnection() method of the BaseDLM class. To identify

the relationship database to open, specify the name of the relationship definition

you want to query. The repository keeps track of the location of the relationship

tables for each relationship definition. For more information, see “Advanced

settings for relationship definitions” on page 249.

Example: The following call to getRelConnection() opens the relationship database

that contains the relationship tables for the SapCust relationship:

DtpConnection connection = getRelConnection("SapCust");

This call returns a DtpConnection object in the connection variable, which you can

then use to access the relationship database.

Executing the query

The executeSQL() method sends the actual query to the relationship database for

execution. This section covers execution of the following kinds of SQL queries:

v Queries that return data from the relationship tables (SELECT)

v Queries that modify the relationship tables (INSERT, UPDATE, DELETE)

v Queries that execute stored procedures

Queries that return data (SELECT)

The SQL statement SELECT queries one or more tables for data. To send a SELECT

statement to the relationship database for execution, specify a string representation

of the SELECT as an argument to the executeSQL() method.

Note: The DtpConnection.executeSQL() methods is supported for backward

compatibility only. Do not use this method in the development of new code;

instead, use the executeSQL() method of the CwDBConnection class.

Example: The following call to executeSQL() sends a SELECT of one column value

from the RelRT_T table:

connection.executeSQL(

 "select data from RelRT_T where INSTANCEID = 2");

Note: In the preceding code, the connection variable is a DtpConnection object

obtained from a previous call to the getRelConnection() method.

You can also send a SELECT statement that has parameters in it by using the

second form of the executeSQL() method.

Example: The following call to executeSQL() performs the same task as the

previous example except that it passes the instance ID as a parameter to the

SELECT statement:

Vector argValues = new Vector();

String instance_id = "2";

argValues.addElement(instance_id);

connection.executeSQL(

 "select data from RelRT_T where INSTANCEID = ?", argValues);

The SELECT statement returns data from the relationship tables as rows. Each row

is one row from the specified relationship table that matches the conditions in the

300 Map Development Guide

SELECT. Each row contains the values for the columns that the SELECT statement

specified. You can visualize the returned data as a two-dimensional array of these

rows and columns.

Tip: The syntax of the SELECT statement must be valid to the particular

relationship database you are accessing. Consult your database documentation

for the exact syntax of the SELECT statement.

To access the returned data, perform the following steps:

1. Obtain one row of data.

2. Obtain column values, one by one.

Table 115 shows the methods in the DtpConnection class that provide access to the

rows of returned query data.

 Table 115. DtpConnection methods for row access

Row-Access task DtpConnection method

Check for existence of a row. hasMoreRows()

Obtain one row of data. nextRow()

Control the loop through the returned rows with the hasMoreRows() method. End

the row loop when hasMoreRows() returns false. To obtain one row of data, use

the nextRow() method. This method returns the selected column values as elements

in a Java Vector object. You can then use the Enumeration class to access the

column values individually. Both the Vector and Enumeration classes are in the

java.util package. See Table 71 on page 205 for the Java methods for accessing the

columns of a returned query row.

Note: The mechanism for accessing rows from the query result is the same for the

deprecated DtpConnection class as for its replacement, the CwDBConnection

class. For more information, see “Executing static queries that return data

(SELECT)” on page 204.

Example: The following code sample gets an instance of the DtpConnection class,

which is a connection to the relationship database that stores the

sampleRelationshipName relationship definition. It then executes a SELECT

statement that returns only one column with a single string value of

“CrossWorlds”:

Vector theRow = null;

Enumeration theRowEnum = null;

String theColumn1 = null;

DtpConnection connectn = null;

try

 {

 connectn = getRelConnection("sampleRelationshipName");

 }

catch(DtpConnectionException e)

 {

 System.out.println(e.getMessage());

 }

// Test for a resulting single column, single row, result set

// specified condition

try

 {

Chapter 8. Implementing relationships 301

connectn.executeSQL(

 "select data from RelRT_T where INSTANCEID = 2");

 // Loop through each row

 while(connectn.hasMoreRows())

 {

 theRow = connectn.nextRow();

 int length = 0;

 if ((length = theRow.size())!= 1)

 {

 return "Expected result set size = 1," +

 " Actual result state size = " + length;

 }

 // Get each column

 theRowEnum = theRow.elements();

 if(theRowEnum.hasMoreElements())

 {

 // Get the value

 theColumn1 = (String)theRowEnum.nextElement();

 if(theColumn1.equals("CrossWorlds")==false)

 {

 return "Expected result = CrossWorlds,"

 + " Resulting result = " + theColumn1;

 }

 }

 }

 }

catch(DtpConnectionException e)

 {

 System.out.println(e.getMessage());

 }

Note: The SELECT statement does not modify the contents of the relationship

database. Therefore, you do not usually need to perform transaction

management for SELECT statements.

Queries that modify the relationship tables

SQL statements that modify a relationship table include the following:

v INSERT adds new rows to a relationship table.

v UPDATE modifies existing rows of a relationship table.

v DELETE removes rows from a relationship table.

To send one of these statements to the relationship database for execution, specify

a string representation of the statement as an argument to the executeSQL()

method.

Note: The DtpConnection.executeSQL() methods is supported for backward

compatibility only. Do not use this method in the development of new code;

instead, use the executeSQL() method of the CwDBConnection class.

Example: The following call to executeSQL() sends an INSERT of one row into the

RelRT_T table:

connection.executeSQL("insert into RelRT_T values

(1, 3, 6)");

Note: In the preceding code, the connection variable is a DtpConnection object

obtained from a previous call to the getRelConnection() method.

302 Map Development Guide

For an UPDATE or INSERT statement, you can determine the number of rows in

the relationship table that have been modified or added with the getUpdateCount()

method.

Because the INSERT, UPDATE, and DELETE statements modify the contents of the

relationship database, you must perform transaction management for these

statements. A transaction is a set of operational steps that execute as a unit. All SQL

statements that execute within a transaction succeed or fail as a unit. Table 116

shows the methods in the DtpConnection class that provide transaction support for

SQL queries.

 Table 116. DtpConnection methods for transaction management

Transaction-Management task DtpConnection method

Begin a new transaction. beginTran()

End the transaction, committing (saving) all

changes made during the transaction to the

database.

commit()

Determine if a transaction is currently active. inTransaction()

End the transaction, rolling back (backing

out) all changes made during the transaction.

rollBack()

To mark the beginning of a transaction in the relationship database, use the

beginTran() method. Execute all SQL statements that must succeed or fail as a unit

between this call to beginTran() and the end of the transaction. You can end the

transaction in either of two ways:

v Call commit() to end the transaction successfully. All modifications that the SQL

statements have made are saved in the relationship database.

v Call rollBack() to end the transaction unsuccessfully. All modifications that the

SQL statements have made are backed out of the relationship database.

You can choose what conditions cause a transaction to fail. Test the condition and

call rollBack() if any failure condition is met. Otherwise, call commit() to end the

transaction successfully.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction

connection.beginTran();

// insert a row

connection.executeSQL("insert...");

// commit the transaction

connection.commit();

// release the database connection

releaseRelConnection(true);

To determine whether a transaction is currently active, use the inTransaction()

method.

Queries that call stored procedures

A stored procedure is a user-defined procedure that contains SQL statements and

conditional logic. Stored procedures are stored in a database. When you create a

new relationship, Relationship Designer Express creates a stored procedure to

maintain each relationship table.

Chapter 8. Implementing relationships 303

Table 117 shows the methods in the DtpConnection class that call a stored

procedure. These methods are supported for backward compatibility only. Do not

use these methods in the development of new code; instead, use the executeSQL()

and executeStoredProcedure() methods of the CwDBConnection class.

 Table 117. DtpConnection methods for Calling a Stored Procedure

How to call the stored procedure DtpConnection method Use

Send a CALL statement that executes the

stored procedure to the relationship

database.

executeSQL() To call a stored procedure that does

not have OUT parameters

Specify the name of the stored procedure

and an array of its parameters to create a

procedure call, which is sent to the

relationship database for execution.

execStoredProcedure() To call any stored procedure,

including one with OUT parameters

Note: You can use JDBC methods to execute a stored procedure directly. However,

the interface that the Mapping API provides is simpler and it reuses

database resources, which can increase the efficiency of execution. You

should use the Mapping API to execute stored procedures.

As Table 117 shows, the choice of which method to use to call a stored procedure

depends on:

v Whether the procedure provides any OUT parameters

An OUT parameter is a parameter through which the stored procedure returns a

value to the calling code. If the stored procedure uses an OUT parameter, you

must use execStoredProcedure() to call the stored procedure.

v The number of times you call the stored procedure

The execStoredProcedure() method precompiles the stored procedure.

Therefore, if you call the same stored procedure more than once (for example, in

a loop), use of execStoredProcedure() can be faster than executeSQL() because

the relationship database can reuse the precompiled version.

The following sections describe how to use the executeSQL() and

execStoredProcedure() methods to call a stored procedure.

Calling stored procedures with executeSQL(): To call a stored procedure with the

executeSQL() method, specify as an argument to the executeSQL() method a string

representation of the CALL statement that includes the stored procedure and any

arguments.

Example: The following call to executeSQL() sends a CALL statement to execute

the setOrderCurrDate() stored procedure:

connection.executeSQL(“call setOrderCurrDate(345698)”);

Note: In the preceding code, the connection variable is a DtpConnection object

obtained from a previous call to the getRelConnection() method.

You can execute the setOrderCurrDate() stored procedure because its single

argument is an IN parameter; that is, the value is only sent into the stored

procedure. The stored procedure does not have any OUT parameters.

304 Map Development Guide

Note: You can use the form of executeSQL() that accepts a parameter array to pass

in parameter values. However, you cannot use executeSQL() to call a stored

procedure that uses an OUT parameter. To execute such a stored procedure,

you must use execStoredProcedure().

Use an anonymous PL/SQL block if you plan on calling Oracle stored PL/SQL

objects via ODBC using the DtpConnection executeSQL method. The following is an

acceptable format (the stored procedure name is myproc):

executeSQL("begin myproc(...); end;");

Calling stored procedures with execStoredProcedure(): To call a stored procedure

with the execStoredProcedure() method, you:

1. Specify the name of the stored procedure to execute as a string.

2. Build a Vector parameter array of UserStoredProcedureParam objects, which

provide parameter information (such as the name, type, and value of each

parameter).

A parameter is a value you can send into or out of the stored procedure. The

parameter’s in/out type determines how the stored procedure uses the parameter

value:

v An IN parameter is for input only: The stored procedure accepts the parameter

value as input but does not use the parameter to return a value to the calling

code.

v An OUT parameter is for output only: The stored procedure does not interpret

the parameter value as input but uses the parameter to return a value to the

calling code.

v An IN/OUT parameter is for both input and output: The stored procedure

accepts the parameter value as input and uses the parameter to return a value to

the calling code.

A UserStoredProcedureParam object describes a single parameter for a stored

procedure. Table 118 shows the parameter information that a

UserStoredProcedureParam object contains as well as the methods to retrieve and

set this parameter information.

 Table 118. Parameter information in a UserStoredProcedureParam Object

Parameter information UserStoredProcedureParam method

Parameter name getParamName(), setParamName()

Parameter value getParamValue(), setParamValue()

Parameter data type:

v As a Java Object

getParamDataTypeJavaObj(),

setParamDataTypeJavaObj()

v As a JDBC data type

getParamDataTypeJDBC(), setParamDataTypeJDBC()

Parameter in/out type getParamIOType(), setParamIOType()

Parameter index position getParamIndex(), setParamIndex()

Steps for passing parameters to a stored procedure: To pass parameters to a

stored procedure, perform the following steps:

1. Create a UserStoredProcedureParam object to hold the parameter information.

Use the UserStoredProcedureParam() constructor to create a new

UserStoredProcedureParam object. To this constructor, pass the following

parameter information to initialize the object:

Chapter 8. Implementing relationships 305

v Parameter index indicates the position within the declaration of the stored

procedure for this parameter.

v Parameter data type is usually the name of the Java Object that holds the

parameter value.

v Parameter value is a Java Object that contains the value to assign to the

parameter. For an OUT parameter, this value can be a dummy value but the

Object type should correspond to the OUT parameter data type in the

stored-procedure declaration.

v Parameter in/out type specifies whether the parameter is an IN, INOUT, or

OUT parameter.

v Parameter name associates a string name with the parameter.
2. Repeat step 1 for each stored-procedure parameter.

3. Create a Vector object with enough elements to hold all stored-procedure

parameters.

4. Add the initialized UserStoredProcedureParam object to the parameter Vector

object.

Use the addElement() method of the Vector class to add the

UserStoredProcedureParam object.

5. Once you have created all UserStoredProcedureParam objects and added them

to the Vector parameter array, pass this parameter array as the second

argument to the execStoredProcedure() method.

The execStoredProcedure() method sends the stored procedure and its

parameters to the relationship database for execution.

Note: The first argument to execStoredProcedure() is the name of the stored

procedure to execute.

Example: Suppose you have the get_empno() stored procedure defined as follows:

create or replace procedure get_empno(emp_id IN number,

 emp_number OUT number) as

 begin

 select emp_no into emp_number

 from emp

 where emp_id = 1;

 end;

This stored procedure has two parameters:

v The first parameter, emp_id, is an IN parameter.

Therefore, you must initialize its associated UserStoredProcedureParam object

with an in/out type of “IN”, as well as with the appropriate data type, name,

and the value to send into the stored procedure. Because emp_id is declared as

the SQL NUMBER type (which holds an integer value), the parameter’s data

type and value must be of a Java Object that holds integer values: Integer.

v The second parameter, emp_number, is an OUT parameter.

For this parameter, create an empty UserStoredProcedureParam object to send into

the stored procedure. You initialize this object with an in/out type of “OUT” as

well as with the appropriate data type and name. However, you provide a

dummy value for this parameter. Once the stored procedure completes

execution, you can obtain the returned value from this OUT parameter with the

getParamValue() method.

Example: The following example executes the get_empno() stored procedure with

the execStoredProcedure() method:

306 Map Development Guide

DtpConnection connectn = null;

try

 {

 // Get database connection

 connectn = getRelConnection("Customer");

 // Create parameter Vector

 Vector paramData = new Vector(2);

 // Construct the procedure name

 String sProcName = "get_empno";

 // Create IN parameter

 UserStoredProcedureParam arg_in = new UserStoredProcedureParam(

 1, "Integer", new Integer(6), "IN", "arg_in");

 // Create dummy argument for OUT parameter

 UserStoredProcedureParam arg_out = new UserStoredProcedureParam(

 2, "Integer", new Integer(0), "OUT", "arg_out");

 // Add these two parameters to the parameter Vector

 paramData.addElement(arg_in);

 paramData.addElement(arg_out);

 // Run get_empno() stored procedure

 connectn.execStoredProcedure(sProcName, paramData);

 // Get the result from the OUT parameter

 arg_out = (UserStoredProcedureParam) paramData.elementAt(1);

 Integer emp_number = (Integer) arg_out.getParamValue();

 }

Tip: The Vector object is a zero-based array while the UserStoredProcedureParam-
objects are indexed as a one-based array. In the preceding code, the OUT

parameter is created with an index value of 2 in the

UserStoredProcedureParam() constructor because this parameter array is

one-based. However, to access the value for this OUT parameter from the

Vector parameter array, the elementAt() call specifies an index value of 1

because this Vector array is zero-based.

A stored procedure processes its parameters as SQL data types. Because SQL and

Java data types are not identical, the Mapping API must convert a parameter value

between these two data types. For an IN parameter, the Mapping API converts the

parameter value from a Java Object to its SQL data type. For an OUT parameter,

the Mapping API converts the parameter value from its SQL data type to a Java

Object. The Mapping API converts a parameter value between these two data

types using two layers of data type mapping:

v From Java type to JDBC type

v From JDBC type to SQL data type

The Mapping API uses the JDBC data type internally to hold the parameter value

sent to and from the stored procedure. JDBC defines a set of generic SQL type

identifiers in the java.sql.Types class. These types represent the most commonly

used SQL types. JDBC also provides standard mapping from JDBC types to Java

data types. For example, a JDBC INTEGER is normally mapped to a Java int type.

To map an IN (or INOUT) parameter from a Java object to its JDBC equivalent, the

Mapping API uses the mappings in Table 119.

Chapter 8. Implementing relationships 307

Table 119. Mappings from Java object to JDBC data type equivalent

From Java object To JDBC data type

String CHAR, VARCHAR, or LONGVARCHAR

java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] BINARY, VARBINARY, or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Clob CLOB

Blob BLOB

Array ARRAY

Struct STRUCT

Ref REF

To map an OUT (or INOUT) parameter from a JDBC data type to its Java object

equivalent, the Mapping API uses the mappings in Table 120.

 Table 120. Mappings from JDBC data type to Java object

From JDBC data type To Java object

CHAR, VARCHAR, LONGVARCHAR String

NUMERIC, DECIMAL java.math.BigDecimal

BIT Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT, DOUBLE Double

BINARY, VARBINARY, or LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB Clob

BLOB Blob

ARRAY Array

STRUCT Struct

REF Ref

Therefore, every UserStoredProcedureParam object contains two representations of

its data type, as Table 121 shows.

 Table 121. Parameter data types

Parameter data type Description UserStoredProcedureParam method

The Java Object Data type that the map-transformation code

uses to hold the parameter value

getParamDataTypeJavaObj(),

setParamDataTypeJavaObj()

The JDBC data type Data type that the Mapping API uses

internally to hold the parameter value

getParamDataTypeJDBC(),

setParamDataTypeJDBC()

308 Map Development Guide

You can use the UserStoredProcedureParam methods in Table 121 to access either

form of the parameter data type. However, you should use the Java Object data

type (such as Integer, String, or Float) for the following reasons:

v For IN (and INOUT) parameters, you must provide the parameter value as a

Java Object. Therefore, providing the parameter data type as a Java Object is

more consistent.

v The execStoredProcedure() method sends parameters in a Vector parameter

array. The Vector object can only contain elements that are Java Objects.

The emp_id parameter of get_empno() is declared with the SQL data type of

NUMBER, which contains an integer value. Therefore, in the code example that

starts on 307, the call to UserStoredProcedureParam() for the emp_id parameter

(parameter with the index position of 1) sets its value to 6 with its third argument

of:

new Integer(6)

This call also sets the parameter type to the same Java Object type with its second

argument of:

"Integer"

Closing a connection

The connection to the relationship database is released when the map is finished

executing. If the map executes successfully, all transactions are automatically

committed if they are not already explicitly committed. If the map execution fails

(for instance, if an exception is thrown that is not handled with a catch statement),

all transactions are rolled back if they are not already explicitly rolled back.

Loading and unloading relationships

With the repos_copy utility, you can load and unload specified relationship

definitions in the repository.

Note: You can also use repos_copy to load and unload map definitions in the

repository. For more information, see “Importing and exporting maps from

InterChange Server Express” on page 79.

Unloading a relationship definition

With the repos_copy utility, you can unload specified relationship definitions in the

repository with the -e option. A relationship repository file is the file that the

repos_copy utility creates when it extracts a relationship definition from the

repository into a text (.jar) file.

Example: The following repos_copy command unloads the StateLk relationship

definition from the repository of an InterChange Server Express named

WebSphereICS into a relationship repository file:

repos_copy -eRelationship:StateLk -oRL_StateLookup.jar

-sWebSphereICS -uadmin -pnull

Attention: A relationship is not a first-class entity. Therefore, its name space is

separate from the first-class entities. While no first-class entities can

have the same name, a relationship can have the same name as a

first-class entity (such as a business object or collaboration). However, if

a relationship definition has a name that matches any existing first-class

entity, you cannot use the -e option of repos_copy to unload or load

Chapter 8. Implementing relationships 309

that relationship definition. You can load and unload the entire

repository, which includes relationship definitions.

You can copy several relationship definitions into one relationship repository file.

Example: To copy both the StateLk and CustLkUp relationship definitions, use the

following repos_copy command:

repos_copy –eRelationship:StateLk+Relationship:CustLkUp

–oRL_Lookup_Relationships.jar –sWebSphereICS -uadmin -

pnull

Loading a relationship definition

You can also use repos_copy to load a relationship definition into the repository

from a relationship repository file.

Example: The following repos_copy command loads the StateLk relationship

definition into the repository of an InterChange Server Express named

WebSphereICS:

repos_copy -iRL_StateLookup.jar

-sWebSphereICS -uadmin -pnull

The repos_copy utility performs the following validations when it loads a

relationship definition:

v It validates the Database URL of the relationship definition it loads.

v It validates that any dependent objects for the relationship definition already

exist in the repository.

If repos_copy cannot perform both of these validations, it cannot load the

relationship definition. However, repos_copy provides special command-line

options to suppress or restrict these validations, as the following sections explain.

Validating the database URL

The repos_copy utility provides the -r option to assist in loading relationship

definitions into a repository. The -r option tells repos_copy to add relationship

definitions to the repository without creating their run-time schemas. When

repos_copy backs up an entire repository (with the -o option), some of the

information in the resulting repository text file describes relationship definitions. If

you then use repos_copy (without the -r option) to load a different repository with

the contents of this repository text file, repos_copy might generate errors of the

following format when it attempts to load the relationship definitions:

Server error: An error occurred during the validation

of the runtime database connection information for

relationship definition Customer. The database URL

used is: jdbc:weblogic:mssqlserver4:Cwrelns312@CWDEV:1433.

The database login name used is: crossworlds.

The database type used is: W55s/wPE/l4=1.

Reason: SqlServer.

The cause of this error is repos_copy’s attempt to validate the URL for the

relationship database. Part of a relationship’s definition is the Database URL of the

relationship database.

If repos_copy cannot find the relationship database, it generates an error and rolls

back the repository load. If you are just backing up and restoring on the same

InterChange Server Express (with the same relationship databases), you do not

need to include the -r option. Validation of the relationship database URL succeeds

310 Map Development Guide

because the database URLs can be located. Therefore, the repository load

(including the relationship definitions) is successful.

However, in the import process of a migration when you are moving repository

data from one machine to another, the -r option can be helpful. If you execute the

repos_copy command in an environment that cannot locate any existing

relationship databases in the repository data, repos_copy generates the validation

error. To suppress this validation, include the -r option of repos_copy when you

load the repository. By suppressing this validation, repos_copy can successfully

add the relationship definitions to the repository. It uses the current repository

database as the location for the relationship database. You can then use

Relationship Designer Express to change the Database URL to point to the

appropriate location of each relationship database.

Example: The following repos_copy command loads the StateLk relationship

definition into the repository, suppressing the validation of its Database URL:

repos_copy -rStateLk -iRL_StateLookup.txt -sWebSphereICS -uadmin

-pnull

Validating dependent objects

By default, repos_copy validates whether all dependent objects exist when it loads

a relationship definition. For example, it checks that all business objects involved

in the relationship exist in the repository. If all dependent objects do not exist,

repos_copy generates an error and rolls back the repository load. In the repos_copy

command window, the following message is displayed:

Some of the participants for relationships were missing.

For more info, refer to InterChange Server log file.

Chapter 8. Implementing relationships 311

312 Map Development Guide

Part 3. Mapping API Reference

© Copyright IBM Corp. 2004, 2005 313

314 Map Development Guide

Chapter 9. BaseDLM class

The methods documented in this chapter operate on map instances. They are

defined on the IBM WebSphere Business Integration Server Express-defined class

BaseDLM. The BaseDLM class is the base class for all map instances. All created maps

are subclasses of BaseDLM; they all inherit these methods. The BaseDLM class

provides utility methods for error handling and debugging in maps, and

establishing a connection to a database. All methods in this class can be called

without referring to the class name.

Table 122 summarizes the methods of the BaseDLM class.

 Table 122. BaseDLM method summary

Method Description Page

getDBConnection() Establishes a connection to a database and

returns a CwDBConnection object.

315

getName() Retrieves the name of the current map. 317

getRelConnection() Establishes a connection to a relationship

database and returns a DtpConnection object.

318

implicitDBTransactionBracketing() Retrieves the transaction programming model

that the map instance uses for any connection it

obtains.

319

isTraceEnabled() Compares the specified trace level with the

current trace level of the map.

319

logError(), logInfo(), logWarning() Sends an error, information, or warning message

to the InterChange Server Express log file.

320

raiseException() Raises an exception. 321

releaseRelConnection() Releases a connection to a relationship database. 323

trace() Generates a trace message. 324

getDBConnection()

Establishes a connection to a database and returns a CwDBConnection object.

Syntax

CwDBConnection getDBConnection(String connectionPoolName)

CwDBConnection getDBConnection(String connectionPoolName,

 boolean implicitTransaction)

Parameters

connectionPoolName

The name of a valid connection pool. The method connects to the

database whose connection is in this specified connection pool.

implicitTransaction

A boolean value to indicate the transaction programming model to

use for the database associated with the connection. Valid values

are:

true Database uses implicit transaction bracketing

false Database uses explicit transaction bracketing

© Copyright IBM Corp. 2004, 2005 315

Return values

Returns a CwDBConnection object.

Exceptions

CwDBConnectionFactoryException – If an error occurs while trying to establish the

database connection.

Notes

The getDBConnection() method obtains a connection from the connection pool that

connectionPoolName specifies. This connection provides a way to perform queries

and updates to the database associated with that connection. All connections in a

particular connection pool are associated with the same database. The method

returns a CwDBConnection object through which you can execute queries and

manage transactions on the database. See the methods in the CwDBConnection class

for more information.

By default, all connections use implicit transaction bracketing as their transaction

programming model. To specify a transaction programming model for a particular

connection, provide a boolean value to indicate the desired transaction

programming model as the optional implicitTransaction argument to the

getDBConnection() method. The following getDBConnection() call specifies explicit

transaction bracketing for the connection obtained from the ConnPool connection

pool:

conn = getDBConnection("ConnPool",false);

The connection is released when the map instance finishes execution. You can

explicitly close this connection with the release() method. You can determine

whether a connection has been released with the isActive() method.

Examples

The following example establishes a connection to the database associated with

connections in the CustConnPool connection pool. It then uses an implicit

transaction to insert and update rows in a table of the database.

CwDBConnection connection = getDBConnection("CustConnPool");

// Insert a row

connection.executeSQL("insert...");

// Update rows...

connection.executeSQL("update...");

Because the preceding call to getDBConnection() does not include the optional

second argument, this connection uses implicit transaction bracketing as its

transaction programming model (unless the transaction programming model is

overridden in the Map Properties dialog). Therefore, it does not specify explicit

transaction boundaries with beginTransaction(), commit(), and rollback(). In

fact, an attempt to call one of these transaction methods with implicit transaction

bracketing generates a CwDBTransactionException exception.

Note: You can check the current transaction programming model with the

implicitDBTransactionBracketing() method.

The following example also establishes a connection to the database associated

with connections in the CustConnPool connection pool. However, it specifies the

316 Map Development Guide

use of explicit transaction bracketing for the connection. Therefore, it uses an

explicit transaction to contain the inserts and updates on rows in the database

tables.

CwDBConnection connection = getDBConnection("CustConnPool", false);

// Begin a transaction

connection.beginTransaction();

// Insert a row

connection.executeSQL("insert...");

// Update rows...

connection.executeSQL("update...");

// Commit the transaction

connection.commit();

// Release the connection

connection.release();

The preceding call to getDBConnection() includes the optional

implicitTransaction argument to set the transaction programming model to

explicit transaction bracketing. Therefore, this examples uses the explicit

transaction calls to indicate the boundaries of the transaction. If these transaction

methods are omitted, InterChange Server Express handles the transaction as it

would for an implicit transaction.

See also

Chapter 13, “CwDBConnection class”, implicitDBTransactionBracketing(),

isActive(), release()

getName()

Retrieves the name of the current map.

Syntax

String getName()

Parameters

None.

Return values

None.

Exceptions

None.

Examples

The following example obtains the name of the current map and logs an

informational message:

String mapName = getName();

logInfo(mapName + " is starting");

Chapter 9. BaseDLM class 317

getRelConnection()

Establishes a connection to a relationship database and returns a DtpConnection

object.

Syntax

DtpConnection getRelConnection(String relDefName)

Parameters

relDefName A relationship definition name. The method connects to the

database containing the relationship tables for this relationship

definition.

Return values

Returns a DtpConnection object.

Exceptions

DtpConnectionException – If an error occurs while trying to establish the database

connection.

Notes

This method establishes a connection to the database that contains the relationship

tables used by the relDefName relationship, and provides a way to perform queries

and updates to the relationship database. The method returns a DtpConnection

object through which you can execute queries and manage transactions. See the

methods in the DtpConnection class for more information.

The connection is released when the map is finished executing. You can explicitly

close this connection with the releaseRelConnection() method.

Examples

The following example establishes a connection to the database containing the

relationship tables for the SapCust relationship. It then uses a transaction to execute

a query for inserting rows into a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction

connection.beginTran();

// insert a row

connection.executeSQL("insert...");

// update rows...

connection.executeSQL(“update...”);

// commit the transaction

connection.commit();

See also

getDBConnection(), Chapter 15, “DtpConnection class”, releaseRelConnection()

318 Map Development Guide

implicitDBTransactionBracketing()

Retrieves the transaction programming model that the map instance uses for any

connection it obtains.

Syntax

boolean implicitDBTransactionBracketing()

Parameters

None.

Return values

A boolean value to indicate the transaction programming model to be used in all

database connections.

Notes

The implicitDBTransactionBracketing() method returns a boolean value indicates

which transaction programming model the map instance assumes is used by all

connections that it obtains, as follows:

v A value of true indicates that all connections use implicit transaction bracketing.

v A value of false indicates that all connections use explicit transaction bracketing.

This method is useful before obtaining a connection to see whether the current

transaction programming model is appropriate for that connection.

Note: You can override the transaction programming model for a particular

connection with the getDBConnection() method.

Examples

The following example ensures that map instance uses explicit transaction

bracketing for the database associated with the conn connection:

if (implicitDBTransactionBracketing())

 CwDBConnection conn = getDBConnection("ConnPool", false);

See also

getDBConnection()

isTraceEnabled()

Compares the specified trace level with the current trace level of the map.

Syntax

Boolean isTraceEnabled(int traceLevel)

Parameters

traceLevel The trace level to compare with the current trace level.

Return values

Returns true if the current system trace level is set to the specified trace level;

returns false if the two trace levels are not the same.

Chapter 9. BaseDLM class 319

Notes

The isTraceEnabled() method is useful in determining whether or not to log a

trace message. Because tracing can decrease performance, this method is useful in

the development phase of a project.

Examples

if (isTraceEnabled(3))

 {

 trace("Print this level-3 trace message");

 }

logError(), logInfo(), logWarning()

Sends an error, information, or warning message to the InterChange Server Express

log file.

Syntax

void logError(String message)

void logError(int messageNum)

void logError(int messageNum, String param [,...])

void logError(int messageNum, Object[] paramArray)

void logInfo(String message)

void logInfo(int messageNum)

void logInfo(int messageNum, String param [,...])

void logInfo(int messageNum, Object[] paramArray)

void logWarning(String message)

void logWarning(int messageNum)

void logWarning(int messageNum, String param [,...])

void logWarning(int messageNum, Object[] paramArray)

Parameters

message The message text.

messageNum The number of a message in a message text file.

param A single parameter. There can be up to five parameters, separated

by commas. Each is sequentially resolved to a parameter in the

message text.

paramArray An array of parameters.

Return values

None.

Exceptions

None.

Notes

This method sends a message to the InterChange Server Express logging

destination. The logging destination can be a file, a window, or both.

By default, the logging destination is the file InterchangeSystem.log. You can

change the logging destination by entering a value for the LOG_FILE parameter in

320 Map Development Guide

the configuration file, InterchangeSystem.cfg. The parameter value can be a file

name, STDOUT (which writes the log to the server’s command window), or both.

Within each set of methods:

v The first form is self-contained and includes all of the text necessary to generate

a message.

v The second form generates a message that does not have parameters.

v The third form contains a message number and a set of parameter values.

v The fourth form uses an array of parameters.

All forms of the method that take a messageNum parameter require the use of a

message file that is indexed by message number. For information on how to set up

a message text file, refer to Chapter 27, “Message files,” on page 495.

Examples

The following example logs an informational message, using getString() to obtain

an attribute value to log in the message.

logInfo("Item shipped. CustomerID: "

 + fromCustomerBusObj.getString("CustomerID"));

The following example logs an error message whose text is contained in the map

message file. The message, which is number 10 in the message file, takes two

parameters: customer last name (LName attribute) and customer first name (FName

attribute).

logError(10, customer.get(“LName”), customer.get("FName");

The following example logs an error message using an array of parameters. For the

purpose of illustration, the example uses an array with just two parameters. The

example declares the array args, which has two elements, the customer ID and the

customer name. The logError() method then logs an error, using message number

12 and the values in the args array.

Object[] args = {

 fromCustomerBusObj.getString("CustomerID"),

 fromCustomerBusObj.getString("CustomerName");

}

logError(12, args);

See also

trace()

raiseException()

Raises an exception.

Syntax

void raiseException(String exceptionType, String message)

void raiseException(String exceptionType, int messageNum,

 String parameter[,...])

void raiseException(RunTimeEntityException exception)

Chapter 9. BaseDLM class 321

Parameters

exceptionType One of the following IBM WebSphere Business Integration Server

Express-defined constants:

AnyException Any type of exception

AttributeException Attribute access problem. For

example, the collaboration called

getDouble() on a String attribute

or called getString() on a

nonexistent attribute.

JavaException Problem with Java code that is not

part of the IBM WebSphere

Business Integration Server Express

API.

ObjectException Business object passed to a method

was invalid or a null object was

accessed.

OperationException Service call was improperly set up

and could not be sent.

ServiceCallException Service call failed. For example, a

connector or application is

unavailable.

SystemException Any internal error within the IBM

WebSphere Business Integration

Server Express system.

message A text string that embeds the exception message in the method

call.

messageNum A reference to a numbered message in the map message file.

parameters A value for the parameter in the message itself. There can be up to

five parameters in the method call.

exception The name of an exception object variable.

Return values

None.

Notes

The raiseException() method has three forms:

v The first form of the method creates a new exception, passing an exception type

and a string. Use it to embed a message into the method call itself.

v The second form creates a new exception, passing an exception type and a

reference to a message in the map message file. The method call can contain up

to five parameters, separated with commas.

v The third form raises an exception object that the map has previously handled.

For example, a transformation step might get an exception, assign it to a

variable, and do some other work. Finally, the transformation step raises the

exception.

322 Map Development Guide

Note: All forms of the method that take a messageNum parameter require the use

of a message file that is indexed by message number. For information on

how to set up a message text file, refer to Chapter 27, “Message files,” on

page 495.

Examples

The following example uses the first form of the method to raise an exception of

ServiceCallException type. The text is embedded in the method call.

raiseException(ServiceCallException,

 "Attempt to validate Customer failed.");

The next example raises an exception of ServiceCallException type. The message

in the message file is as follows:

23

Customer update failed for CustomerID={1} CustomerName={2}

The raiseException() method invokes the message, retrieves the values of the

message parameters from the fromCustomer variable, and passes them to the

raiseException() call.

raiseException(ServiceCallException, 23,

 fromCustomer.getString("CustomerID"),

 fromCustomer.getString("CustomerName"));

The final example raises a previously handled exception. The system-defined

variable currentException is an exception object that contains the exception.

raiseException(currentException);

releaseRelConnection()

Releases a connection to a relationship database.

Syntax

void releaseRelConnection(Boolean doCommit)

Parameters

doCommit The flag that indicates whether this method should call the

DtpConnection.commit() method before it releases the database

connection.

Return values

None.

Exceptions

DtpConnectionException – If an error occurs while trying to release the database

connection or if the requested commit or rollback has failed.

Notes

The releaseRelConnection() method releases the connection for this specific map.

It commits or rolls back the database transactions based on the value of its

doCommit argument, as follows:

Chapter 9. BaseDLM class 323

v If doCommit is true, releaseRelConnection() assumes it was called after the

successful completion of the operation on a database and therefore it is safe to

commit the transaction.

v If doCommit is false, releaseRelConnection() assumes it was called as the result

of an exception and therefore the transaction must be rolled back.

Once releaseRelConnection() has performed the chosen action on the database

transaction, it releases the database connection that the current thread is

exclusively using.

See also

getRelConnection(), release()

trace()

Generates a trace message.

Syntax

void trace(String traceMsg)

void trace(int traceLevel, String traceMsg)

void trace(int traceLevel, int messageNum)

void trace(int traceLevel, int messageNum, String param [,...])

void trace(int traceLevel, int messageNum, Object[] paramArray)

Parameters

traceLevel The tracing level that causes the message to be generated.

traceMsg A string that prints to the trace file.

messageNum A number that represents a message in the map message file.

param A single parameter. You can add additional single parameters,

separated by commas, up to a total of five.

paramArray An array of parameters.

Notes

The trace() method generates a message that the map prints if tracing is turned

on. This method has five forms:

v The first form takes just a string message that appears when tracing is set to any

level.

v The second form takes a trace level and a string message that appears when

tracing is set to the specified level or a higher level.

v The third form takes a trace level and a number that represents a message in the

map message file. The entire message text appears in the message file and is

printed as it is, without parameters, when tracing is set to the specified level or

a higher level.

v The fourth form takes a trace level, a number that represents a message in the

map message file, and one or more parameters to be used in the message. You

can send up to five parameter values to be used with the message by separating

the values with commas.

v The fifth form takes a trace level, a number that represents a message in the

map message file, and an array of parameter values.

324 Map Development Guide

Note: All forms of the method that take a messageNum parameter require the use of

a message file that is indexed by message number. For information on how

to set up a message text file, refer to Chapter 27, “Message files,” on page

495.

You can set the trace level for a map as part of the Map Properties.

Examples

The following example generates a Level 2 trace message and supplies the text of

the message:

trace (2, "Starting to trace at Level 2");

The following example prints message 201 in the map message file if the trace

level is 2 or higher. The message has two parameters, a name and a year, for which

this method call passes values.

trace(2, 201, "DAVID", "1961");

See also

logError(), logInfo(), logWarning()

Chapter 9. BaseDLM class 325

326 Map Development Guide

Chapter 10. BusObj class

The methods documented in this chapter operate on objects of the BusObj class.

Note: The BusObj class is used for both collaboration development and mapping;

check the Notes section for each method’s usage issues.

The first two sections of this chapter explain the exceptions listed with these

methods and how to specify attributes and child business objects in a hierarchical

business object. The rest of the sections describe the methods listed in Table 123.

 Table 123. BusObj method summary

Method Description Page

copy() Copy all attribute values from the input

business object to this one.

329

duplicate() Create a business object (BusObj object)

exactly like this one.

330

equalKeys() Compare this business object’s key

attribute values with those in the input

business object.

330

equals() Compare this business object’s attribute

values with those in the input business

object, including child business objects.

331

equalsShallow() Compare this business object’s attribute

values with those in the input business

object, excluding child business objects

from the comparison.

332

exists() Check for the existence of a business

object attribute with a specified name.

332

getBoolean(), getDouble(),

getFloat(), getInt(),

getLong(), get(), getBusObj(),

getBusObjArray(),

getLongText(), getString()

Retrieve the value of a single attribute

from a business object.

333

getLocale() Retrieve the locale of the business

object’s data.

335

getType() Retrieve the name of the business object

definition on which this business object

was based.

335

getVerb() Retrieve this business object’s verb. 336

isBlank() Find out whether the value of an

attribute is set to a zero-length string.

336

isKey() Find out whether a business object’s

attribute is defined as a key attribute.

336

isNull() Find out whether the value of a business

object’s attribute is null.

337

isRequired() Find out whether a business object’s

attribute is defined as a required

attribute.

338

keysToString() Retrieve the values of a business object’s

primary key attributes as a string.

338

set() Set a business object’s attribute to a

specified value of a particular data type.

339

© Copyright IBM Corp. 2004, 2005 327

Table 123. BusObj method summary (continued)

Method Description Page

setContent() Set the contents of this business object to

another business object.

340

setDefaultAttrValues() Set all attributes to their default values. 341

setKeys() Set the values of this business object’s

key attributes to the values of the key

attributes in another business object.

341

setLocale() Set the locale of the current business

object.

342

setVerb() Set the verb of a business object. 342

setVerbWithCreate() Create the instance of the child business

object and set its verb.

343

setWithCreate() Set a business object’s attribute to a

specified value of a particular data type,

creating an object for the value is one

does not already exist.

343

toString() Return the values of all attributes in a

business object as a string.

344

validData() Checks whether a specified value is a

valid type for a specified attribute.

345

Exceptions and exception types

Methods for which exceptions or exception types are listed throw the

CollaborationException exception. Some methods have both exceptions and

exception types listed. Both of these relate to a CollaborationException object and

differ as follows:

v An Exception is a class that is subclassed from CollaborationException. If there

is a subclassed exception, you can use it in mapping to determine more closely

the cause of the problem.

v An Exception type is a piece of data in a CollaborationException object.

Collaboration developers use this exception type to catch exceptions through the

Designer user interface. In addition, all users of BusObj can use this field to

determine the reason for a failure if there is no exception class thrown that is

more detailed than CollaborationException.

Syntax for traversing hierarchical business objects

When you are writing code that requires that you traverse hierarchical business

objects, you need to use the syntax that lets you specify attributes in elements in

child business object arrays that are elements of child business object arrays, and

other such complexities. This chapter specifies the syntax to use.

An attribute specification can be:

[[attributeName[index].]...]attributeName

This syntax expands to any of the following formats:

attributeName

attributeName[index].attributeName

attributeName[index]... .attributeName

Note: Do not use the period (.) when creating a business object attribute name. If a

business object attribute has a period within its name, an IBM WebSphere

328 Map Development Guide

Business Integration Server Express map interprets the period as Java’s dot

operator and imparts special meaning to it. For example,

“attribute.name”will be interpreted as “name” being a field or method for

the “attribute” object.

Specifying an attribute of basic type

The following example uses the busObj.get() method to retrieve a basic type

attribute named OrderID from the business object orderObj.

orderObj.get("OrderID");

Specifying an attribute in a child business object

The following example assumes that orderObj is a hierarchical business object. One

of its attributes is CustomerInfo, a single-cardinality child business object. The

example retrieves the customer name from the CustomerName attribute of

CustomerInfo.

orderObj.get("CustomerInfo.CustomerName");

Specifying an attribute in a child of a child business object

If there is a chain of child business objects, in which CustomerInfo is a child of

orderObj and AddressInfo is a child of CustomerInfo, you can retrieve city

information from AddressInfo as follows:

orderObj.get("CustomerInfo.AddressInfo.City");

Specifying an attribute in an element of an array of child

business objects

You can also refer to a child business object in an array by specifying its index in

the array. The first element in the array always begins with zero. For example, the

following example retrieves the value of the Quantity attribute from the third child

business object in an array.

orderObj.get("LineItem[2].Quantity");

copy()

Copy all attribute values from the input business object to this one.

Syntax

void copy(BusObj inputBusObj)

Parameters

inputBusObj The name of the business object whose attributes values are copied

into the current business object.

Notes

The copy() method copies the entire business object, including all child business

objects and child business object arrays. This method does not set a reference to

the copied object. Instead, it clones all attributes; that is, it creates separate copies

of the attributes.

Examples

The following example copies the values contained in sourceCustomer to

destCustomer.

Chapter 10. BusObj class 329

destCustomer.copy(sourceCustomer);

The following example creates three business objects (myBusObj, myBusObj2, and

mysettingBusObj) and sets the attr1 attribute of myBusObj with the value in

mysettingBusObj. It then clones all attributes of myBusObj to myBusObj2.

BusObj myBusObj = new BusObj();

BusObj myBusObj2 = new BusObj();

BusObj mySettingBusObj = new BusObj();

myBusObj.set("attr1", mySettingBusObj);

myBusObj2.copy(myBusObj);

After this code fragment executes, myBusObj.attr1 and myBusObj2.attr1 are both

set to the mySettingBusObj business object. However, if mySettingBusObj is

changed in any way, myBusObj.attr1 changes but myBusObj2.attr1 does not.

Because the attributes of myBusObj2 were set with copy(), their values were cloned.

Therefore, the value of attr1 in myBusObj2 is still the original

mySettingBusObj.attr1 value before the change.

duplicate()

Create a business object (BusObj object) exactly like this one.

Syntax

BusObj duplicate()

Return values

The duplicate business object.

Exceptions

CollaborationException—The duplicate() method can set the following exception

type for this exception: ObjectException.

Notes

This method makes a clone of the business object and returns it. You must

explicitly assign the return value of this method call to a declared variable of

BusObj type.

Examples

The following example duplicates sourceCustomer in order to create destCustomer.

BusObj destCustomer = sourceCustomer.duplicate();

equalKeys()

Compare this business object’s key attribute values with those in the input

business object.

Syntax

boolean equalKeys(BusObjinputBusObj)

330 Map Development Guide

Parameters

inputBusObj A business object to compare with this business object.

Return values

Returns true if the values of all key attributes are the same; returns false if they

are not the same.

Exceptions

CollaborationException—The equalKeys() method can set the following exception

type for this exception:

v ObjectException – Set if the business object argument is invalid.

See also

equalsShallow(), equals()

Notes

This method performs a shallow comparison; that is, it does not compare the keys

in child business objects.

Examples

The following example compares the key values of order2 to those in order1.

boolean areEqual = order1.equalKeys(order2);

equals()

Compare this business object’s attribute values with those in the input business

object, including child business objects.

Syntax

-boolean equals(Object inputBusObj)

Parameters

inputBusObj A business object to compare with this business object.

Return values

Returns true if the values of all attributes are the same; otherwise, returns false.

Exceptions

CollaborationException—The equals() method can set the following exception

type for this exception:

v ObjectException – Set if the business object argument is invalid.

Notes

This method compares this business object’s attribute values with those in the

input business object. If the business objects are hierarchical, the comparison

includes all attributes in the child business objects.

Note: Passing in the business object as an Object ensures that this equals()

method overrides the Object.equals() method.

Chapter 10. BusObj class 331

In the comparison, a null value is considered equivalent to any value to which it is

compared and does not prevent a return of true.

See also

equalsShallow(), equalKeys()

Examples

The following example compares all attributes of order2 to all attributes of order1

and assigns the result of the comparison to the variable areEqual. The comparison

includes the attributes of child business objects, if any.

boolean areEqual = order1.equals(order2);

equalsShallow()

Compare this business object’s attribute values with those in the input business

object, excluding child business objects from the comparison.

Syntax

boolean equalsShallow(BusObj inputBusObj)

Parameters

inputBusObj A business object to compare with this business object.

Return values

Returns true if the values of all attributes are the same; otherwise, returns false.

Exceptions

CollaborationException—The equalsShallow() method can set the following

exception type for this exception:

v ObjectException – Set if the business object argument is invalid.

See also

equals(), equalKeys()

Examples

The following example compares attributes of order2 with attributes of order1,

excluding the attributes of child business objects, if any.

boolean areEqual = order1.equalsShallow(order2);

exists()

Check for the existence of a business object attribute with a specified name.

Syntax

boolean exists(String attribute)

Parameters

attribute The name of an attribute.

332 Map Development Guide

Return values

Returns true if the attribute exists; otherwise, returns false if the attribute does

not exist.

Examples

The following example checks whether business object order has an attribute

called Notes.

boolean notesAreHere = order.exists(“Notes”);

getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(),

getBusObj(), getBusObjArray(), getLongText(), getString()

Retrieve the value of a single attribute from a business object.

Syntax

Object get(String attribute)

Object get(int position)

boolean getBoolean(String attribute)

double getDouble(String attribute)

float getFloat(String attribute)

int getInt(String attribute)

long getLong(String attribute)

Object get(String attribute)

BusObj getBusObj(String attribute)

BusObjArray getBusObjArray(String attribute)

String getLongText(String attribute)

String getString(String attribute)

Parameters

attribute The name of an attribute.

position an integer that specifies the ordinal position of an attribute in the

business object’s attribute list.

Return values

The value of the specified attribute.

Exceptions

CollaborationException—These get methods can set the following exception type

for this exception:

v AttributeException - Set if an attribute access problem occurs. For example, this

exception can be caused if the collaboration calls getDouble() on a String

attribute that does not consist of digits or calls getString() on a nonexistent

attribute.

Notes

The get() method retrieves an attribute value from the current business object. It

returns a copy of the attribute value. It does not return an object reference to this

attribute in the source business object. Therefore, any change to attribute value in

the source business object is not made to the value that get() returns. Each time

this method is called, it returns a new copy (clone) of the attribute.

The get() method provides the following forms:

Chapter 10. BusObj class 333

v The first form returns a value of the type specified in the method name. For

example, getBoolean() returns a boolean value, getBusObj() returns a BusObj

value, getDouble() returns a double value, and so on. However, getLongText()

returns a String object because the InterChange Server Express longtext type is a

String object with no maximum size. Use these forms to retrieve attributes with

specific basic or InterChange Server Express-defined data types.

These methods provide the ability to access an attribute value by specifying the

name of the attribute.

v The second form, get() retrieves the value of an attribute of any type. You can

cast the returned value to the appropriate value of the attribute type.

This method provides the ability to access an attribute value by specifying either

the name of the attribute or the attribute’s index position within the business

object attribute list.

Examples

The following example illustrates how get() returns a copy (clone) of the attribute

value instead of an object reference:

BusObj mySettingBusObj = new BusObj();

BusObj myBusObj = new BusObj();

myBusObj.set("attr1", mySettingBusObj);

BusObj Extract = myBusObj.get("attr1");

After this code fragment executes, if you change the Extract business object,

mySettingBusObj does not change because the get() call returned a copy of the

attr1 attribute.

The following example uses getBusObj() to retrieve a child business object

containing a customer address from the customer business object and assign it to

the variable address.

BusObj address = customer.getBusObj("Address");

The following example uses getString() to retrieve the value of the CustomerName

attribute. The business object variable is sourceCustomer.

String customerName = sourceCustomer.getString("CustomerName");

The following example uses getInt() to retrieve the Quantity values from two

business objects whose variables are item1 and item2. The example then computes

the sum of both quantities.

int sumQuantity = item1.getInt("Quantity") + item2.getInt("Quantity");

The following example retrieves the attribute Item from the business object

variable order. The attribute Item is a business object array.

BusObjArray items = order.getBusObjArray("Item");

The following example gets the CustID attribute value from the source business

object and sets the Customer value in the destination business object to match.

destination.set("Customer", source.get("CustID"));

The following example accesses an attribute value using the attribute’s ordinal

position within the attribute list:

334 Map Development Guide

for i=0; i<maxAttrCount; i++)

{

 String strValue = (String)myBusObj.get(i);

 ...

getLocale()

Retrieve the locale associated with the business object’s data.

Syntax

java.util.Locale getLocale()

Parameters

None.

Return values

A Java Locale object that contains information about the business object’s locale.

This Locale object must be an instance of the java.util.Locale class.

Notes

The getLocale() method returns the locale associated with the data in a business

object. This locale is often different from the collaboration locale in which the

collaboration is executing.

See also

getLocale() (BaseCollaboration class), setLocale()

getType()

Retrieve the name of the business object definition on which this business object

was based.

Syntax

String getType()

Return values

The name of a business object definition.

Notes

The type of a business object, in terms of this method, is the name of the business

object definition from which the business object was created.

Returns

The following example retrieves the type of a business object called sourceShipTo.

String typeName = sourceShipTo.getType();

The following example copies a triggering event into a new business object of the

appropriate type.

BusObj source = new BusObj(triggeringBusObj.getType());

Chapter 10. BusObj class 335

getVerb()

Retrieve this business object’s verb.

Syntax

String getVerb()

Return values

The name of a verb, such as Create, Retrieve, Update, or Delete.

Notes

In collaboration development, this method is useful for scenarios that handle

multiple types of incoming events. The first action node in a scenario calls

getVerb(). The outgoing transition links from that action node then test the

contents of the returned string, so that each outgoing transition link is the start of

an execution path that handles one of the possible verbs.

Examples

The following example obtains the verb from a business object called orderEvent

and assigns it to a variable called orderVerb.

String orderVerb = orderEvent.getVerb();

isBlank()

Find out whether the value of an attribute is set to a zero-length string.

Syntax

boolean isBlank(String attribute)

Parameters

attribute The name of an attribute.

Returns

Returns true if the attribute value is a zero-length string; returns false otherwise.

Notes

A zero-length string can be compared to the string ″″. It is different from a null,

whose presence is detected by the isNull() method.

If a collaboration needs to retrieve an attribute value and then do something with

it, it can call isBlank() and isNull() to check that it has a value before retrieving

the value.

Examples

The following example checks whether the Material attribute of the

sourcePaperClip business object is a zero-length string.

boolean key = sourcePaperClip.isBlank(“Material”);

isKey()

Find out whether a business object’s attribute is defined as a key attribute.

336 Map Development Guide

Syntax

boolean isKey(String attribute)

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute is a key attribute; returns false if it is not a key

attribute.

Examples

The following example determines whether the CustID attribute of the customer

business object is a key attribute.

boolean keyAttr = (customer.isKey("CustID"));

isNull()

Find out whether the value of a business object’s attribute is null.

Syntax

boolean isNull(String attribute)

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute value is null; returns false if it is not null.

Notes

A null indicates no value, in contrast to a zero-length string value, which is

detected by calling isBlank(). Test an object with isNull() before using it, because

if the object is null, the operation could fail.

An attribute value can be null under these circumstances:

v The attribute value was explicitly set to null.

An attribute value can be set to null using the set() method.

v The attribute value was never set.

At instantiation of a new business objects, all attribute values are initialized with

a null. If the attribute value has not been set between the time of creation and

the time of the isNull() call, the value is still null.

v The null was inserted during mapping.

When a collaboration is processing a business object received from a connector,

the mapping process might have inserted the null. The mapping process

converts the application-specific business object received from the connector to

the generic business object handled by the collaboration. For each attribute in

the generic business object that has no equivalent in the application-specific

object, the map inserts a null value.

Chapter 10. BusObj class 337

Tip: Always call isNull() before performing an operation on an attribute that is a

child business object or child business object array, because Java does not

allow operations on null objects.

Examples

The following example checks whether the Material attribute of the

sourcePaperClip business object has a null value.

boolean key = sourcePaperClip.isNull(“Material”);

The following example checks whether the CustAddr attribute of the contract1

business object is null before retrieving it. The attribute retrieval proceeds only if

the isNull() check is false, showing that the attribute is not null.

if (! contract1.isNull("CustAddr“))

 {

 BusObj customerAddress = contract1.getBusObj(“CustAddr”);

 //do something with the “customerAddress” business object

 }

isRequired()

Find out whether a business object’s attribute is defined as a required attribute.

Syntax

boolean isRequired(String attribute)

Parameters

attribute The name of an attribute.

Return values

Returns true if the attribute is required; returns false if it is not required.

Notes

If an attribute is defined as required, it must have a value and the value must not

be a null.

Examples

The following example logs a warning if a required attribute has a null value.

if ((customer.isRequired(“Address”))

 && (customerBusObj.isNull(“Address)))

 {

 logWarning(12, “Address is required and cannot be null.“);

 }

else

 {

 //do something else

 }

keysToString()

Retrieve the values of a business object’s primary key attributes as a string.

Syntax

String keysToString()

338 Map Development Guide

Return values

A String object containing all the key values in a business object, concatenated, and

ordered by the ordinal value of the attributes.

Notes

The output from this method contains the name of the attribute and its value.

Multiple values are primary key attribute values, concatenated and separated by

spaces. For example, if there is one primary key attribute, SS#, this could be the

output:

SS#=100408394

If the primary key attributes are FirstName and LastName, this could be the

output:

FirstName=Nina LastName=Silk

Examples

The following example returns the values of key attributes of the business object

represented by the variable name fromOrder.

String keyValues = fromOrder.keysToString();

set()

Set a business object’s attribute to a specified value of a particular data type.

Syntax

void set(String attribute, Object value)

void set(int position, Object value)

void set(String attribute, boolean value)

void set(String attribute, double value)

void set(String attribute, float value)

void set(String attribute, int value)

void set(String attribute, long value)

void set(String attribute, Object value)

void set(String attribute, String value)

Parameters

attribute The name of the attribute to set.

position An integer that specifies the ordinal position of an attribute in the

business object’s attribute list.

value An attribute value.

Exceptions

CollaborationException—The set() method can set the following exception type

for this exception:

v AttributeException—Set if an attribute access problem occurs.

Notes

The set() method sets an attribute value in the current business object. This

method sets an object reference to the value parameter when it assigns the value to

the attribute. It does not clone the attribute value from the source business object.

Chapter 10. BusObj class 339

Therefore, any changes to value in the source business object are also made to the

attribute in the business object that calls set().

The set() method provides the following forms:

v The first form sets a value of the type specified by the method’s second

parameter type. For example, set(String attribute, boolean value) sets an attribute

with a boolean value, set(String attribute, double value) sets an attribute with a

double value, and so on. Use this form to set attributes with specific basic or

InterChange Server Express-defined data types.

These methods provide the ability to access an attribute value by specifying the

name of the attribute.

v The second form sets the value of an attribute of any type. You can send in any

data type as the attribute value because the attribute-value parameter is of type

Object. For example, to set an attribute that is of BusObj or LongText object, use

this form of the method and pass in the BusObj or LongText object as the

attribute value.

This form of the set() method provides the ability to access an attribute value by

specifying either the name of the attribute or the attribute’s index position within

the business object attribute list.

Examples

The following example sets the LName attribute in toCustomer to the value Smith.

toCustomer.set("LName", "Smith");

The following example illustrates how set() assigns an object reference instead of

cloning the value:

BusObj BusObj myBusObj = new BusObj();

BusObj mySettingBusObj = new BusObj();

myBusObj.set("attr1", mySettingBusObj);

After this code fragment executes, the attr1 attribute of myBusObj is set to the

mySettingBusObj business object. If mySettingBusObj is changed in any way,

myBusObj.attr1 is changed in the exact manner because set() makes an object

reference to mySettingBusObj when it sets the attr1 attribute; it does not create a

static copy of mySettingBusObj.

The following example sets an attribute value using the attribute’s ordinal position

within the attribute list:

for i=0; i<maxAttrCount; i++)

{

 myBusObj.set(i, strValue);

 ...

setContent()

Set the contents of this business object to another business object. Where both

business objects sharethe content.

Syntax

void setContent(BusObj BusObj)

340 Map Development Guide

Notes

Using setContent() is similar to using copy() in that both functions copy the

content from one business object to another. But setContent() shares the content of

both business objects. For example, if the content in BusObjA is shared with

BusObjB, then if the content in BusObjA changes, then the content in BusObjB also

changes at the same time.

Parameters

BusObj The business object whose values are used to set values of this

business object.

Exceptions

CollaborationException—The setContent() method can set one of the following

exception types for this exception:

v AttributeException – Set if an attribute access problem occurs.

v ObjectException – Set if the business object argument is invalid.

Examples

The following example sets the contents of the instance variable for the output

object ObjOutput1 to the contents of the business object rDstBO[0].

ObjOutput1.setContent(rDstBO[0]);

setDefaultAttrValues()

Set all attributes to their default values.

Syntax

void setDefaultAttrValues()

Notes

A business object definition can include default values for attributes. The method

sets the values of this business object’s attributes to the values specified as defaults

in the definition.

Examples

The following example sets the values of the PaperClip business object to their

default values:

PaperClip.setDefaultAttrValues();

setKeys()

Set the values of this business object’s key attributes to the values of the key

attributes in another business object.

Syntax

void setKeys(BusObj inputBusObj)

Parameters

inputBusObj The business object whose values are used to set values of another

business object

Chapter 10. BusObj class 341

Exceptions

CollaborationException—The setKeys() method can set one of the following

exception types for this exception:

v AttributeException – Set if an attribute access problem occurs.

v ObjectException – Set if the business object argument is invalid.

Examples

The following example sets the key values in the business object helpdeskCustomer

to the key values in the business object ERPCustomer.

helpdeskCustomer.setKeys(ERPCustomer);

setLocale()

Set the locale of the current business object.

Syntax

void setLocale(java.util.Locale locale

Parameters

locale The Java Locale object that contains the information about the locale to

assign to the business object. This Locale object must be an instance of the

java.util.Locale class.

Return values

None.

Notes

The setLocale() method assigns a locale to the data associated with a business

object. The locale might be different from the collaboration locale in which the

collaboration executes.

See also

getLocale()

setVerb()

Set the verb of a business object.

Syntax

void setVerb(String verb)

Parameters

verb The verb of the business object.

Notes

The setVerb() method is used only in mapping.

342 Map Development Guide

Note: Do not use this method in collaboration development, where you must set

the verb of an outgoing business object interactively by filling in the

properties of a service call.

Examples

The following example sets the verb Delete on the business object contactAddress.

contactAddress.setVerb("Delete");

setVerbWithCreate()

Create the instance of the child business object and set its verb.

Syntax

void setVerbWithCreate(String attributeName, String verb)

Parameters

attributeName The name of the child business object created

verb The verb to be set.

Exceptions

CollaborationException—The setVerbWithCreate() method can set the following

exception type for this exception:

v AttributeException—Set if an attribute access problem occurs.

Notes

If the attribute specified by the attributeName parameter is of type BusObj and it is

null, the new instance of that child business object is created and its verb set to the

value of the verb parameter. If the instance of this child business object already

exists, only its verb is set. If the child business object is of multi-cardinality, the

attributeName parameter should specify the subscript.

Examples

The following example creates an instance of the childBO child business object and

sets its verb to Create:

myBO.setVerbWithCreate("childBO", "Create");

setWithCreate()

Set a business object’s attribute to a specified value of a particular data type,

creating an object for the value is one does not already exist.

Syntax

void setWithCreate(String attributeName, BusObj busObj)

void setWithCreate(String attributeName, BusObjArray busObjArray)

void setWithCreate(String attributeName, Object value)

Parameters

attributeName The name of the attribute to set.

busObj The business object to insert into the target attribute.

Chapter 10. BusObj class 343

busObjArray The business object array to insert into the target attribute.

value The object to insert into the target attribute. This object needs to be

one of the following types: BusObj, BusObjArray, Object.

Exceptions

CollaborationException—The setWithCreate() method can set the following

exception type for this exception:

v AttributeException—Set if an attribute access problem occurs.

Notes

If the object provided is a BusObj and the target attribute contains multi-cardinality

child business object, the BusObj is appended to the BusObjArray as its last element.

If the target attribute contains a BusObj, however, this business object replaces the

previous value.

Examples

The following example sets an attribute called ChildAttrAttr to the value 5. The

attribute is found in a business object contained in myBO’s attribute, ChildAttr. If

the childAttr business object does not exist at the time of the call, this method call

creates it.

myBO.setWithCreate("childAttr.childAttrAttr", "5");

toString()

Return the values of all attributes in a business object as a string.

Syntax

String toString()

Return values

A String object containing all attribute values in a business object.

Notes

The string that results from a call to this method is similar to the following

example:

Name: GenEmployee

Verb: Create

Type: AfterImage

Attributes: (Name, Type, Value)

LastName:String, Davis

FirstName:String, Miles

SS#:String, 041-33-8989

Salary:Float, 15.00

ObjectEventId:String, MyConnector_922323619411_1

Examples

The following example returns a string containing the attribute values of the

business object variable fromOrder.

String values = fromOrder.toString();

344 Map Development Guide

validData()

Checks whether a specified value is a valid type for a specified attribute.

Syntax

boolean validData(String attributeName, Object value)

boolean validData(String attributeName, BusObj value)

boolean validData(String attributeName, BusObjArray value)

boolean validData(String attributeName, String value)

boolean validData(String attributeName, long value)

boolean validData(String attributeName, int value)

boolean validData(String attributeName, double value)

boolean validData(String attributeName, float value)

boolean validData(String attributeName, boolean value)

Parameters

attributeName The attribute.

value The value.

Returns

true or false (boolean return)

Notes

Checks the compatibility of the value passed in with the target attribute (as

specified by attributeName). These are the criteria:

 for primitive types (String, long, int,

double, float, boolean)

the value must be convertible to the data type of

the attribute

for a BusObj the value must have the same type as that of the

target attribute

for a BusObjArray the value must point to a BusObj or BusObjArray

with the same (business object definition) type as

that of the attribute

for an Object the value must be of type String, BusObj, or

BusObjArray. The corresponding validation rules are

then applied.

Deprecated methods

Some methods in the BusObj class were supported in earlier versions but are no

longer supported. These deprecated methods will not generate errors, but

CrossWorlds recommends that you avoid their use and migrate existing code to

the new methods. The deprecated methods might be removed in a future release.

Table 124 lists the deprecated methods for the BusObj class. If you have not used

Map Designer Express before, ignore this section.

 Table 124. Deprecated methods, BusObj Class

Former Method Replacement

getCount() BusObjArray.size()

getKeys() keysToString()

getValues() toString()

not standard Java NOT operator, “!”

Chapter 10. BusObj class 345

Table 124. Deprecated methods, BusObj Class (continued)

Former Method Replacement

set(BusObj inputBusObj) copy()

All methods that took a child business object

or child business object array as an input

argument

Get a handle to the child business object or

business object array and use the methods of

the BusObj or BusObjArray class

The setVerb() method, which was previously listed as deprecated, is now restored

for use in mapping. Do not use it within a collaboration.

346 Map Development Guide

Chapter 11. BusObjArray class

The methods documented in this chapter operate on objects of the IBM WebSphere

Business Integration Server Express-defined class BusObjArray. The BusObjArray

class encapsulates an array of business objects. In a hierarchical business object, an

attribute is a reference to an array of child business objects when its cardinality is

equal to n. Operations on the BusObjArray class can return either a BusObjArray

object or an actual array of business objects.

Note: The BusObjArray class is used for both collaboration development and

mapping; check the Notes section for each method’s usage issues.

Table 125 lists the methods of the BusObjArray class.

 Table 125. BusObjArray method summary

Method Description Page

addElement() Add a business object to this business object

array.

348

duplicate() Create a business object array (BusObjArray

object) exactly like this one.

348

elementAt() Retrieve a single business object by

specifying its position in this business object

array.

349

equals() Compare another business object array with

this one.

349

getElements() Retrieve the contents of this business object

array.

350

getLastIndex() Retrieve the last available index from a

business object array.

350

max() Retrieve the maximum value for the

specified attribute among all elements in this

business object array.

350

maxBusObjArray() Returns the business objects that have the

maximum value for the specified attribute,

as a business object array (BusObjArray

object).

351

maxBusObjs() Returns the business objects that have the

maximum value for the specified attribute,

as an array of BusObj objects.

352

min() Retrieve the minimum value for the

specified attribute among the business

objects in this array.

353

minBusObjArray() Returns the business objects that have the

minimum value for the specified attribute,

as a BusObjArray object.

354

minBusObjs() Returns the business objects that have the

minimum value for the specified attribute,

as an array of BusObj objects.

355

removeAllElements() Remove all elements from this business

object array.

356

removeElement() Remove a business object element from a

business object array.

356

removeElementAt() Remove an element at a particular position

in this business object array.

357

© Copyright IBM Corp. 2004, 2005 347

Table 125. BusObjArray method summary (continued)

Method Description Page

setElementAt() Set the value of a business object in a

business object array.

357

size() Return the number of elements in this

business object array.

358

sum() Adds the values of the specified attribute for

all business objects in this business object

array.

358

swap() Reverse the positions of two business objects

in this business object array. Keep in mind

that the first element in the array is zero (0),

the second is 1, the third is 2, and so on.

358

toString() Retrieve the values in this business object

array as a single string.

359

Note: See “Exceptions and exception types” on page 328 for an important

clarification on exception handling with this class. The section applies to

exceptions in BusObjArray and BusObj only.

addElement()

Add a business object to this business object array.

Syntax

void addElement(BusObj element)

Parameters

element A business object to add to the array.

Exceptions

CollaborationException—The addElement() method can set the following

exception type for this exception:

v AttributeException – Set if the element is not valid.

Examples

The following example uses the getBusObjArray() method to retrieve an array of

business objects called itemList from the business object order. The array is

assigned to items, and then a new business object is added to items.

BusObjArray items = order.getBusObjArray("itemList");

items.addElement(new BusObj("oneItem"));

duplicate()

Create a business object array (BusObjArray object) exactly like this one.

Syntax

BusObjArray duplicate()

Return values

A business object array.

348 Map Development Guide

Examples

The following example duplicates the items array, creating newItems.

BusObjArray newItems = items.duplicate();

elementAt()

Retrieve a single business object by specifying its position in this business object

array.

Syntax

BusObj elementAt(int index)

Parameters

index The array element to retrieve. The first element in the array is zero

(0), the second is 1, the third is 2, and so on.

Exceptions

CollaborationException—The elementAt() method can set the following exception

type for this exception:

v AttributeException – Set if the element is not valid.

Examples

The following example retrieves the 11th business object in the items array and

assigns it to the Item variable.

BusObj Item = items.elementAt(10);

equals()

Compare another business object array with this one.

Syntax

boolean equals(BusObjArray inputBusObjArray)

Parameters

inputBusObjArray

A business object array to compare with this business object array.

Notes

The comparison between the two business object arrays checks the number of

elements and their attribute values.

Examples

The following example uses equals() to set up a conditional loop, the inside of

which is not shown.

if (items.equals(newItems))

 {

...

 }

Chapter 11. BusObjArray class 349

getElements()

Retrieve the contents of this business object array.

Syntax

BusObj[] getElements()

Exceptions

CollaborationException—The getElements() method can set the following

exception type for this exception:

v ObjectException – Set if one of the elements is not valid.

Examples

The following example prints the elements of the items array.

BusObj[] elements = items.getElements();

for (int i=0, i<elements.length; i++)

 {

 trace(1, elements[i].toString());

 }

getLastIndex()

Retrieve the last available index from a business object array.

Syntax

int getLastIndex()

Returns

The last index to the last element in this BusObjArray.

Notes

Previously, the size() method was used to do this. That is, the user would use the

size() of the business object array to retrieve the last index available in a

BusObjArray. Unfortunately, this approach yields incorrect data if the BusObjArray

contains gaps.

Like all Java arrays, BusObjArray is a zero relative array. This means that the

size() method will return 1 greater than the getLastIndex() method.

Examples

The following example retrieves the last index in the business object array.

int lastElementIndex = items.getLastIndex();

max()

Retrieve the maximum value for the specified attribute among all elements in this

business object array.

Syntax

String max(String attr)

350 Map Development Guide

Parameters

attr A variable that refers to an attribute in the business object. The

attribute must be one of these types: String, LongText, Integer,

Float, and Double.

Returns

The maximum value of the specified attribute in the form of a string, or null if the

value for that attribute is null for all elements in this BusObjArray.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

max() method can set the following exception type for these exceptions:

AttributeException.

Notes

The max() method looks for the maximum value for the specified attribute among

the business objects in this BusObjArray. For example, if three employee objects are

used, and the attribute is “Salary” which is of type “Float,” it will return the string

representing the largest salary.

If the value of the specified attribute for an element in BusObjArray is null, then

that element is ignored. If the value of the specified attribute is null for all

elements, then null is returned.

When the attribute type is of type String, max() returns the attribute value that is

the longest string lexically.

Examples

String maxSalary = items.max("Salary");

maxBusObjArray()

Returns the business objects that have the maximum value for the specified

attribute, as a business object array (BusObjArray object).

Syntax

BusObjArray maxBusObjArray(String attr)

Parameters

attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in a business object in the business object array.

Returns

A list of business objects in the form of BusObjArray or null.

Chapter 11. BusObjArray class 351

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

maxBusObjArray() method can set the following exception type for these

exceptions: AttributeException.

Notes

The maxBusObjArray() method finds one or more business objects with the

maximum value for the specified attribute, and returns these business objects in a

BusObjArray object.

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The

method determines the largest value for Salary in all the Employee business objects

and returns the business object that contains that value. If multiple business objects

have that largest Salary value, the method returns all of those business objects.

A business object is ignored if the specified attribute contains null. If the value is

null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the longest string lexically.

Examples

BusObjArray boarrayWithMaxSalary = items.maxBusObjArray("Salary");

maxBusObjs()

Returns the business objects that have the maximum value for the specified

attribute, as an array of BusObj objects.

Syntax

BusObj[] maxBusObjs(String attr)

Parameters

attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in the business object.

Returns

A list of business objects in the form of a BusObj[] or null.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

352 Map Development Guide

All of the above exceptions are subclassed from CollaborationException. The

maxBusObjs() method can set the following exception type for these exceptions:

AttributeException.

Notes

The maxBusObjs() method finds one or more business objects with the maximum

value for the specified attribute, and returns these business objects as an array of

BusObj objects.

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The

method determines the largest value for Salary in all the Employee business objects

and returns the business object that contains that value. If multiple business objects

have that largest Salary value, the method returns all of those business objects.

A business object is ignored if the specified attribute contains null. If the value is

null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the longest string lexically.

Examples

BusObj[] bosWithMaxSalary = items.maxBusObjs("Salary");

min()

Retrieve the minimum value for the specified attribute among the business objects

in this array.

Syntax

String min(String attr)

Parameters

attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in the business object.

Returns

The minimum value of the specified attribute in the form of a string, or null if the

value for that attribute is null for all elements in this BusObjArray.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

min() method can set the following exception type for these exceptions:

AttributeException.

Chapter 11. BusObjArray class 353

Notes

The min() method looks for the minimum value for the specified attribute among

the business objects in this business object array.

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The

method determines the smallest value for Salary in all the Employee business

objects and returns the business object that contains that value. If multiple business

objects have that lowest Salary value, the method returns all of those business

objects.

A business object is ignored if the specified attribute contains null. If the value is

null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string

lexically.

Examples

String minSalary = items.min("Salary");

minBusObjArray()

Returns the business objects that have the minimum value for the specified

attribute, as a BusObjArray object.

Syntax

BusObjArray minBusObjArray(String attr)

Parameters

attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in the business object.

Returns

A list of business objects in the form of BusObjArray or null.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

minBusObjArray() method can set the following exception type for these

exceptions: AttributeException.

Notes

The minBusObjArray() method finds one or more business objects with the

minimum value for the specified attribute, and returns these business objects in a

BusObjArray object.

354 Map Development Guide

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The

method determines the smallest value for Salary in all the Employee business

objects and returns the business object that contains that value. If multiple business

objects have that smallest Salary value, the method returns all of those business

objects.

A business object is ignored if the specified attribute contains null. If the value is

null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string

lexically.

Examples

BusObjArray boarrayWithMinSalary = items.minBusObjArray("Salary");

minBusObjs()

Returns the business objects that have the minimum value for the specified

attribute, as an array of BusObj objects.

Syntax

BusObj[] minBusObjs(String attr)

Parameters

attr A String, LongText, Integer, Float, or Double variable that refers

to an attribute in the business object.

Returns

A list of business objects in the form of a BusObj[] or null.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

minBusObjs() method can set the following exception type for these exceptions:

AttributeException.

Notes

The minBusObjs() method finds one or more business objects with the maximum

value for the specified attribute, and returns these business objects as an array of

BusObj objects.

For example, suppose that this is a business object array containing Employee

business objects and that the input argument is the attribute Salary, a Float. The

method determines the smallest value for Salary in all the Employee business

Chapter 11. BusObjArray class 355

objects and returns the business object that contains that value. If multiple business

objects have that smallest Salary value, the method returns all of those business

objects.

A business object is ignored if the specified attribute contains null. If the value is

null in all business objects in the array, null is returned.

When the attribute is of type String, the method returns the shortest string

lexically.

Examples

BusObj[] bosWithMinSalary = items.minBusObjs("Salary");

removeAllElements()

Remove all elements from this business object array.

Syntax

void removeAllElements()

Examples

The following example removes all elements of the array items.

items.removeAllElements();

removeElement()

Remove a business object element from a business object array.

Syntax

void removeElement(BusObj element)

Parameters

elementReference

A variable that refers to an element of the array.

Exceptions

CollaborationException—The removeElement() method can set the following

exception type for this exception:

v AttributeException – Set if the element is not valid.

Notes

After you delete an element from the array, the array resizes, changing the indexes

of existing elements.

Examples

The following example deletes the element Child1 from the business object array

items.

items.removeElement(Child1);

356 Map Development Guide

removeElementAt()

Remove an element at a particular position in this business object array.

Syntax

void removeElementAt(int index)

Notes

After an element is removed from the array, the array resizes, possibly changing

the indexes of existing elements.

Parameters

index The element index.

Exceptions

CollaborationException—The removeElementAt() method can set the following

exception type for this exception:

v AttributeException – Set if the element is not valid.

Examples

The following example deletes the sixth business object in the array items.

items.removeElementAt(5);

setElementAt()

Set the value of a business object in a business object array.

Syntax

void setElementAt (int index, BusObj element)

Parameters

index An integer representing the array position. The first element in the

array is zero (0), the second is 1, the third is 2, and so on.

inputBusObj The business object containing the values to which you want to set

the array element.

Exceptions

CollaborationException—The setElementAt() method can set the following

exception type for this exception:

v AttributeException – Set if the element is not valid.

Notes

This method sets the values of the business object at a specified array position to

the values of an input business object.

Examples

The following example creates a new business object of type Item and adds it to

the array items, as the fourth element.

items.setElementAt(5, new BusObj("Item"));

Chapter 11. BusObjArray class 357

size()

Return the number of elements in this business object array.

Syntax

int size()

Notes

Like all Java arrays, BusObjArray is a zero relative array. This means that the

size() method will return 1 greater than the getLastIndex() method.

Examples

The following example returns the number of elements in the array items.

int size = items.size();

sum()

Adds the values of the specified attribute for all business objects in this business

object array.

Syntax

double sum(String attrName)

Parameters

attr A variable that refers to an attribute in the business object. The

attribute must be of type Integer, Float, or Double.

Returns

The sum of the specified attribute from the list of the business objects.

Exceptions

UnknownAttributeException – When the specified attribute is not a valid attribute

in the business objects passed in.

UnsupportedAttributeTypeException – When the type of the specified attribute is

not one of the supported attribute types listed in the note section.

All of the above exceptions are subclassed from CollaborationException. The

sum() method can set the following exception type for these exceptions:

AttributeException.

Examples

double sumSalary = items.sum("Salary");

swap()

Reverse the positions of two business objects in this business object array. Keep in

mind that the first element in the array is zero (0), the second is 1, the third is 2,

and so on.

358 Map Development Guide

Syntax

void swap(int index1, int index2)

Parameters

index1 The array position of one element you want to swap.

index2 The array position of the other element you want to swap.

Examples

The following example uses swap() to reverse the positions of BusObjA and

BusObjC in the following array:

BusObjA BusObjB BusObjC

swap(0,2);

The result of the swap() call is the following array:

BusObjC BusObjB BusObjA

toString()

Retrieve the values in this business object array as a single string.

Syntax

String toString()

Examples

The following example uses toString() to retrieve the contents of the items

business object array and then uses logInfo() to write the contents to the log file.

logInfo(items.toString());

Chapter 11. BusObjArray class 359

360 Map Development Guide

Chapter 12. CwBidiEngine class

The CxBidiEngine class provides methods for transforming business objects and

strings from one bidirectional format to the other.

Table 126 summarizes the methods in the CxBidiEngine class.

 Table 126. CwBidiEngine method summary

Method Description Page

BiDiBOTransformation() Transforms BusinessObject type business objects from

one bidirectional format to the other format.

361

BiDiBusObjTransformation() Transforms BusObj type business objects from one

bidirectional format to the other format.

362

BiDiStringTransformation() Transforms strings from one bidirectional format to the

other.

363

BiDiBOTransformation()

The BiDiTransformation() method transforms BusinessObject type business objects

from one bidirectional format to the other format. Use this method when you

develop controllers, connectors and maps.

Syntax

BusinessObject BiDiBOTransformation(BusinessObject boIn, String formatIn,

 String formatOut, boolean replace)

Parameters

boIn The business object to transform. The object must be of the

BusinessObject type.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 127 on page 362 for the valid

values of this string. If this parameter is null, the method defaults

to the standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 127 on page 362 for the valid

values of this string. If this parameter is null, the method defaults

to the standard Windows bidirectional format.

replace A value that specifies whether the input business object is to be

replaced. The valid value is either true or false.

Return values

The return value is a transformed business object. If the method is unsuccessful, it

returns a null value.

Exceptions

None.

© Copyright IBM Corp. 2004, 2005 361

Examples

See the example in “BiDiStringTransformation()” on page 363.

BiDiBusObjTransformation()

The BiDiBusObjTransformation() method transforms BusObj type business objects

from one bidirectional format to the other. Use this method within collaborations.

Syntax

BusObj BiDiBusObjTransformation(BusObj busObjIn, String formatIn,

 String formatOut, boolean replace)

Parameters

busObjIn The business object to transform. The object must be of the BusObj

type.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 127 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 127 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

replace A value that specifies whether the input business object is to be

replaced. The valid value is either true or false.

 Table 127. Values for format strings

Letter position Purpose Values Description Default

1 Type I Implicit (Logical) I

V Visual

2 Direction L Left to Right L

R Right to Left

3 Symmetric

swapping

Y Symmetric swapping is on Y

N Symmetric swapping is off

4 Shaping Y Text is shaped N

N Text is not shaped

5 Numeric

shaping

H Hindi N

C Contextual

N Nominal

Return values

The return value is a transformed business object. If the method is unsuccessful, it

returns a null value.

Exceptions

None.

362 Map Development Guide

Examples

This example transforms InputBOBusObj from the standard Windows bidirectional

format to the visual bidirectional format.

BusObj dummyBusObj = null;

dummyBusObj = CwBidiEngine.BiDiBusObjTransformation(

 InputBOBusObj,

 "ILYNN",

 "VLYNN",true);

BiDiStringTransformation()

The BiDiStringTransformation() method transforms strings from one bidirectional

format to the other.

Syntax

BiDiStringTransformation(String strIn, String formatIn, String formatOut

Parameters

strIn The string to transform.

formatIn A string that represents the bidirectional format of the input

business object content. See Table 128 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format.

formatOut A string that represents the bidirectional format of the output

business object content. See Table 128 for the valid values of this

string. If this parameter is null, the method defaults to the

standard Windows bidirectional format

 Table 128. Values for format strings

Letter position Purpose Values Description Default

1 Type I Implicit (Logical) I

V Visual

2 Direction L Left to Right L

R Right to Left

3 Symmetric

swapping

Y Symmetric swapping is on Y

N Symmetric swapping is off

4 Shaping Y Text is shaped N

N Text is not shaped

5 Numeric

shaping

H Hindi N

C Contextual

N Nominal

Return values

The return value is a transformed string.

Exceptions

None.

Chapter 12. CwBidiEngine class 363

Examples

The following example applies the BiDiStringTransformation() methodto the

attribute values of a business object.

for (int i = 0; i < bo.getAttrCount();i++) {

 intAttrType = bo.getAttributeType(i);

 Object attrValue = bo.getAttrValue(i);

 String attrName = bo.getAttrName(i);

 if (attrValue != null {

 // We handle only String or Long Text Attribute and not

 // the ObjectEventId attribute

 if (((attrType == CxObjectAttrType.STRING)

 || (attrType == CxObjectAttrType.LONGTEXT))

 && (!(attrName.equals(OBJECT_EVENT_ID)))) {

 String strOut = BidiStringTransformation(attrValue.toString(),

 bo.setAttrValue(i, strOut);

 } else if (attrType == CxObjectAttrType.OBJECT) {

 CxObjectAttr attrDesc = bo.getAttrDesc(i);

 if (attrDesc.getCardinality().equals(CxObjectAttr.CARD_Single)) {

 BiDiTransformation((BusinessObject) attrValue, "ILYNN",

 "VLYNN",

 true);

 } else {

 // multiple cardinality

 CxObjectContainer cont = (CxObjectContainer) attrValue;

 int objCount = cont.getObjectCount();

 for (int j = 0; j < objCount; j++) {

 BiDiBOTransformation((BusinessObject) (cont.getObject(j)),

 "ILYNN",

 "VLYNN",

 true);

 }

 }

 }

364 Map Development Guide

Chapter 13. CwDBConnection class

The CwDBConnection class provides methods for executing SQL queries in a

database. Queries are performed through a connection, which is obtained from a

connection pool. To instantiate this class, you must call getDBConnection() in the

BaseDLM class. All maps are derived or subclassed from BaseDLM so they have access

to getDBConnection().

Table 126 summarizes the methods in the CwDBConnection class.

 Table 129. CwDBConnection method summary

Method Description Page

beginTransaction() Begins an explicit transaction for the current connection. 365

commit() Commits the active transaction associated with the

current connection.

366

executeSQL() Executes a static SQL query by specifying its syntax and

an optional parameter array.

368

executePreparedSQL() Executes a prepared SQL query by specifying its syntax

and an optional parameter array.

367

executeStoredProcedure() Executes an SQL stored procedure by specifying its name

and parameter array.

370

getUpdateCount() Returns the number of rows affected by the last write

operation to the database.

371

hasMoreRows() Determines whether the query result has more rows to

process.

371

inTransaction() Determines whether a transaction is in progress in the

current connection.

372

isActive() Determines whether the current connection is active. 372

nextRow() Retrieves the next row from the query result. 373

release() Releases use of the current connection, returning it to its

connection pool.

373

rollBack() Rolls back the active transaction associated with the

current connection.

374

beginTransaction()

Begins an explicit transaction for the current connection.

Syntax

void beginTransaction()

Parameters

None.

Return values

None.

Exceptions

CwDBConnectionException – If a database error occurs.

© Copyright IBM Corp. 2004, 2005 365

Notes

The beginTransaction() method marks the beginning of a new explicit transaction

in the current connection. The beginTransaction(), commit() and rollBack()

methods together provide management of transaction boundaries for an explicit

transaction. This transaction contains SQL queries, which include the SQL

statements INSERT, DELETE, or UPDATE, and a stored procedure that includes

one of these SQL statements.

If you do not use beginTransaction() to specify the beginning of the explicit

transaction, the database executes each SQL statement as a separate transaction.

Important: Only use beginTransaction() if the connection uses explicit transaction

bracketing. If the connection uses implicit transaction bracketing, use of

beginTransaction() results in a CwDBTransactionException exception.

Before beginning an explicit transaction, you must create a CwDBConnection object

with the getDBConnection() method from the BaseDLM class. Make sure that this

connection uses explicit transaction bracketing.

Examples

The following example uses a transaction to execute a query for inserting rows into

a table in the database associated with connections in the CustDBConnPool.

CwDBConnection connection = getDBConnection("CustDBConnPool", false);

// Begin a transaction

connection.beginTransaction();

// Insert a row

connection.executeSQL("insert...");

// Commit the transaction

connection.commit();

// Release the connection

connection.release();

See also

commit(), getDBConnection(), inTransaction(), rollBack()

commit()

Commits the active transaction associated with the current connection.

Syntax

void commit()

Parameters

None.

Return values

None.

Exceptions

CwDBConnectionException – If a database error occurs.

366 Map Development Guide

Notes

The commit() method ends the active transaction by committing any changes made

to the database associated with the current connection. The beginTransaction(),

commit() and rollBack() methods together provide management of transaction

boundaries for an explicit transaction. This transaction contains SQL queries, which

include the SQL statements INSERT, DELETE, or UPDATE, and a stored procedure

that includes one of these SQL statements.

Important: Only use commit() if the connection uses explicit transaction

bracketing. If the connection uses implicit transaction bracketing, use of

commit() results in a CwDBTransactionException exception. If you do

not end an explicit transaction with commit() (or rollback()) before

the connection is released, InterChange Server Express implicitly ends

the transaction based on the success of the map. If the map is

successful, InterChange Server Express commits this database

transaction. If the map is not successful, InterChange Server Express

implicitly rolls back the database transaction. Regardless of the success

of the map, InterChange Server Express logs a warning.

Before beginning an explicit transaction, you must create a CwDBConnection object

with the getDBConnection() method from the BaseDLM class. Make sure that this

connection uses explicit transaction bracketing.

Examples

For an example of committing a transaction, see the example for

beginTransaction().

See also

beginTransaction(), getDBConnection(), inTransaction(), rollBack()

executePreparedSQL()

Executes a prepared SQL query by specifying its syntax and an optional parameter

array.

Syntax

void executePreparedSQL(String query)

void executePreparedSQL(String query, Vector queryParameters)

Parameters

query A string representation of the SQL query to execute in the

database.

queryParameters

A Vector object of arguments to pass to parameters in the SQL

query.

Return values

None.

Exceptions

CwDBSQLException – If a database error occurs.

Chapter 13. CwDBConnection class 367

Notes

The executePreparedSQL() method sends the specified query string as a prepared

SQL statement to the database associated with the current connection. The first

time it executes, this query is sent as a string to the database, which compiles the

string into an executable form (called a prepared statement), executes the SQL

statement, and returns this prepared statement to executePreparedSQL(). The

executePreparedSQL() method saves this prepared statement in memory. Use

executePreparedSQL() for SQL statements that you need to execute multiple times.

The executeSQL() method does not save the prepared statement and is therefore

useful for queries you need to execute only once.

Important: Before executing a query with executePreparedSQL(), you must obtain

a connection to the desired database by generating a CwDBConnection

object with the getDBConnection() method from the BaseDLM class.

The SQL statements you can execute include the following (as long as you have

the necessary database permissions):

v The SELECT statement to request data from one or more database tables

Use the hasMoreRows() and nextRow() methods to access the retrieved data.

v SQL statements that modify data in the database

– INSERT

– DELETE

– UPDATE

If the connection uses explicit transaction bracketing, you must explicitly start

each transaction with beginTransaction() and end it with either commit() or

rollback().

v The CALL statement to execute a prepared stored procedures with the limitation

that this stored procedure cannot use any OUT parameters

To execute stored procedures with OUT parameters, use the

executeStoredProcedure() method.

See also

beginTransaction(), commit(), executeSQL(), executeStoredProcedure(),

getDBConnection(), hasMoreRows(), nextRow(), rollBack()

executeSQL()

Executes a static SQL query by specifying its syntax and an optional parameter

array.

Syntax

void executeSQL(String query)

void executeSQL(String query, Vector queryParameters)

Parameters

query A string representation of the SQL query to execute in the

database.

queryParameters

A Vector object of arguments to pass to parameters in the SQL

query.

368 Map Development Guide

Return values

None.

Exceptions

CwDBSQLException – If a database error occurs.

Notes

The executeSQL() method sends the specified query string as a static SQL

statement to the database associated with the current connection. This query is sent

as a string to the database, which compiles the string into an executable form and

executes the SQL statement, without saving this executable form. Use executeSQL()

for SQL statements that you need to execute only once. The executePreparedSQL()

method saves the executable form (called a prepared statement) and is therefore

useful for queries you need to execute multiple times.

Important: Before executing a query with executeSQL(), you must obtain a

connection to the desired database by generating a CwDBConnection

object with the getDBConnection() method from the BaseDLM class.

The SQL statements you can execute include the following (as long as you have

the necessary database permissions):

v The SELECT statement to request data from one or more database tables

Use the hasMoreRows() and nextRow() methods to access the retrieved data.

v SQL statements that modify data in the database

– INSERT

– DELETE

– UPDATE

If the connection uses explicit transaction bracketing, you must explicitly start

each transaction with beginTransaction() and end it with either commit() or

rollback().

v The CALL statement to statically execute a stored procedures with the limitation

that this stored procedure cannot use any OUT parameters

To execute stored procedures with OUT parameters, use the

executeStoredProcedure() method.

Examples

The following example executes a query for inserting rows into an accounting

database whose connections reside in the AccntConnPool connection pool.

CwDBConnection connection = getDBConnection("AccntConnPool");

// Begin a transaction

connection.beginTransaction();

// Insert a row

connection.executeSQL("insert...");

// Commit the transaction

connection.commit();

// Release the database connection

connection.release();

For a more complete code sample that selects data from a relationship table, see

Chapter 13. CwDBConnection class 369

See also

executePreparedSQL(), executeStoredProcedure(), getDBConnection(),

hasMoreRows(), nextRow()

executeStoredProcedure()

Executes an SQL stored procedure by specifying its name and parameter array.

Syntax

void executeStoredProcedure(String storedProcedure,

 Vector storedProcParameters)

Parameters

storedProcedure

The name of the SQL stored procedure to execute in the database.

storedProcParameters

A Vector object of parameters to pass to the stored procedure. Each

parameter is an instance of the CwDBStoredProcedureParam class.

Return values

None.

Exceptions

CwDBSQLException – If a database error occurs.

Notes

The executeStoredProcedure() method sends a call to the specified

storedProcedure to the database associated with the current connection. This

method sends the stored-procedure call as a prepared SQL statement; that is, the

first time it executes, this stored-procedure call is sent as a string to the database,

which compiles the string into an executable form (called a prepared statement),

executes the SQL statement, and returns this prepared statement to

executeStoredProcedure(). The executeStoredProcedure() method saves this

prepared statement in memory.

Important: Before executing a stored procedure with executeStoredProcedure(),

you must create a CwDBConnection object with the getDBConnection()

method from the BaseDLM class.

To handle any data that the stored procedure returns, use the hasMoreRows() and

nextRow() methods.

You can also use the executeSQL() or executePreparedSQL() method to execute a

stored procedure as long as this stored procedure does not contain OUT

parameters. If the stored procedure uses OUT parameters, you must use

executeStoredProcedure() to execute it. Unlike with executeSQL() or

executePreparedSQL(), you do not have to pass in the full SQL statement to

execute the stored procedure. With executeStoredProcedure(), you need to pass in

only the name of the stored procedure and a Vector parameter array of

CwDBStoredProcedureParam objects. The executeStoredProcedure() method can

determine the number of parameters from the storedProcParameters array and

builds the calling statement for the stored procedure.

370 Map Development Guide

See also

executePreparedSQL(), executeSQL(), getDBConnection(), hasMoreRows(),

nextRow()

getUpdateCount()

Returns the number of rows affected by the last write operation to the database.

Syntax

int getUpdateCount()

Parameters

None.

Return values

Returns an int representing the number of rows affected by the last write

operation.

Exceptions

CwDBConnectionException – If a database error occurs.

Notes

The getUpdateCount() method indicates how many rows have been modified by

the most recent update operation in the database associated with the current

connection. This method is useful after you send an UPDATE or INSERT statement

to the database and you want to determine the number of rows that the SQL

statement has affected.

Important: Before using this method, you must create a CwDBConnection object

with the getDBConnection() method from the BaseDLM class and send a

query that updates the database with either the executeSQL() or

executePreparedSQL() method from the CwDBConnection class.

See also

executePreparedSQL(), executeSQL(), getDBConnection()

hasMoreRows()

Determines whether the query result has more rows to process.

Syntax

boolean hasMoreRows()

Parameters

None.

Return values

Returns true if more rows exist.

Chapter 13. CwDBConnection class 371

Exceptions

CwDBSQLException – If a database error occurs.

Notes

The hasMoreRows() method determines whether the query result associated with

the current connection has more rows to be processed. Use this method to retrieve

results from a query that returns data. Such queries include a SELECT statement

and a stored procedure. Only one query can be associated with the connection at a

time. Therefore, if you execute another query before hasMoreRows() returns false,

you lose the data from the initial query.

See also

executePreparedSQL(), executeSQL(), nextRow()

inTransaction()

Determines whether a transaction is in progress in the current connection.

Syntax

boolean inTransaction()

Parameters

None.

Return values

Returns true if a transaction is currently active in the current connection; returns

false otherwise.

Exceptions

CwDBConnectionException – If a database error occurs.

Notes

The inTransaction() method returns a boolean value that indicates whether the

current connection has an active transaction; that is, a transaction that has been

started but not ended.

Important: Before beginning a transaction, you must create a CwDBConnection

object with the getDBConnection() method from the BaseDLM class.

See also

beginTransaction(), commit(), getDBConnection(), rollBack()

isActive()

Determines whether the current connection is active.

Syntax

boolean isActive()

372 Map Development Guide

Parameters

None.

Return values

Returns true if the current connection is active; returns false if this connection has

been released.

Exceptions

None.

See also

getDBConnection(), release()

nextRow()

Retrieves the next row from the query result.

Syntax

Vector nextRow()

Parameters

None.

Return values

Returns the next row of the query result as a Vector object.

Exceptions

CwDBSQLException – If a database error occurs.

Notes

The nextRow() method returns one row of data from the query result associated

with the current connection. Use this method to retrieve results from a query that

returns data. Such queries include a SELECT statement and a stored procedure.

Only one query can be associated with the connection at a time. Therefore, if you

execute another query before nextRow() returns the last row of data, you lose the

query result from the initial query.

See also

hasMoreRows(), executePreparedSQL(), executeSQL(), executeStoredProcedure()

release()

Releases use of the current connection, returning it to its connection pool.

Syntax

void release()

Parameters

None.

Chapter 13. CwDBConnection class 373

Return values

None.

Exceptions

CwDBConnectionException

Notes

The release() method explicitly releases use of the current connection by the map

instance. Once released, the connection returns to its connection pool, where it is

available for other components (maps or collaborations) that require a connection

to the associated database. If you do not explicitly release a connection, the map

instance implicitly releases it at the end of the current map run. Therefore, you

cannot save a connection in a static variable and reuse it.

Attention: Do not use the release() method if a transaction is currently active.

With implicit transaction bracketing, InterChange Server Express does

not end the database transaction until it determines the success or

failure of the map. Therefore, use of this method on a connection that

uses implicit transaction bracketing results in a

CwDBTransactionException exception. If you do not handle this

exception explicitly, it also results in an automatic rollback of the active

transaction. You can use the inTransaction() method to determine

whether a transaction is active.

See also

getDBConnection(), inTransaction(), isActive()

rollBack()

Rolls back the active transaction associated with the current connection.

Syntax

void rollBack()

Parameters

None.

Return values

None.

Exceptions

CwDBConnectionException – If a database error occurs.

Notes

The rollback() method ends the active transaction by rolling back any changes

made to the database associated with the current connection. The

beginTransaction(), commit() and rollBack() methods together provide

management of transaction boundaries for an explicit transaction. This transaction

contains SQL queries, which include the SQL statements INSERT, DELETE, or

374 Map Development Guide

UPDATE, and a stored procedure that includes one of these SQL statements. If the

roll back fails, rollback() throws the CwDBTransactionException exception and

logs an error.

Important: Only use rollback() if the connection uses explicit transaction

bracketing. If the connection uses implicit transaction bracketing, use of

rollback() results in a CwDBTransactionException exception. If you do

not end an explicit transaction with rollback() (or commit()) before

the connection is released, InterChange Server Express implicitly ends

the transaction based on the success of the map. If the map is

successful, InterChange Server Express commits this database

transaction. If the map is not successful, InterChange Server Express

implicitly rolls back the database transaction. Regardless of the success

of the map, InterChange Server Express logs a warning.

Before beginning an explicit transaction, you must create a CwDBConnection object

with the getDBConnection() method from the BaseDLM class. Make sure that this

connection uses explicit transaction bracketing.

See also

beginTransaction(), commit(), getDBConnection(), inTransaction()

Chapter 13. CwDBConnection class 375

376 Map Development Guide

Chapter 14. CwDBStoredProcedureParam class

A CwDBStoredProcedureParam object describes a single parameter for a stored

procedure. Table 130 summarizes the methods in the CwDBStoredProcedureParam

class.

 Table 130. CwDBStoredProcedureParam method summary

Method Description Page

CwDBStoredProcedureParam() Constructs a new instance of

CwDBStoredProcedureParam that holds argument

information for the parameter of a stored procedure.

377

getParamType() Retrieves the in/out type of the current

stored-procedure parameter as an integer constant.

378

getValue() Retrieves the value of the current stored-procedure

parameter.

379

CwDBStoredProcedureParam()

Constructs a new instance of CwDBStoredProcedureParam that holds argument

information for the parameter of a stored procedure.

Syntax

CwDBStoredProcedureParam(int paramType, String paramValue);

CwDBStoredProcedureParam(int paramType, int paramValue);

CwDBStoredProcedureParam(int paramType, Integer paramValue);

CwDBStoredProcedureParam(int paramType, Long paramValue);

CwDBStoredProcedureParam(int paramType, double paramValue);

CwDBStoredProcedureParam(int paramType, Double paramValue);

CwDBStoredProcedureParam(int paramType, float paramValue);

CwDBStoredProcedureParam(int paramType, Float paramValue);

CwDBStoredProcedureParam(int paramType, BigDecimal paramValue);

CwDBStoredProcedureParam(int paramType, boolean paramValue);

CwDBStoredProcedureParam(int paramType, Boolean paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Date paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Time paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Timestamp paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Blob paramValue);

CwDBStoredProcedureParam(int paramType, java.sql.Clob paramValue);

CwDBStoredProcedureParam(int paramType, byte[] paramValue);

CwDBStoredProcedureParam(int paramType, Array paramValue);

CwDBStoredProcedureParam(int paramType, Struct paramValue);

Parameters

paramType The in/out parameter type of the associated stored-procedure

parameter.

paramValue The argument value to send to the stored procedure. This value is

one of the following Java data types

© Copyright IBM Corp. 2004, 2005 377

Return values

Returns a new CwDBStoredProcedureParam object to hold the argument information

for one argument in the declaration of the stored procedure.

Exceptions

None.

Notes

The CwDBStoredProcedureParam() constructor creates a CwDBStoredProcedureParam

instance to describe one parameter for a stored procedure. Parameter information

includes the following:

v The parameter’s in/out type

The constructor’s first argument initializes this in/out parameter type. For a list

of valid in/out parameter types, see Table 131.

v The parameter value

The constructor’s second argument initializes this parameter value. The

CwDBStoredProcedureParam class provides one form of its constructor for each of

the parameter-value data types it supports.

You provide a Java Vector of stored-procedure parameters to the

executeStoredProcedure() method, which creates a stored-procedure call from a

stored-procedure name and the parameter vector, and sends this call to the

database associated with the current connection.

See also

executeStoredProcedure()

getParamType()

Retrieves the in/out type of the current stored-procedure parameter as an integer

constant.

Syntax

int getParamType()

Parameters

None.

Return values

Returns the in/out type of the associated CwDBStoredProcedureParam parameter.

Exceptions

None.

Notes

The getParamType() method returns the in/out parameter type of the current

stored-procedure parameter. The in/out parameter type indicates how the stored

procedure uses the parameter. The CwDBStoredProcedureParam class represents each

in/out type as a constant, as Table 131 shows.

378 Map Development Guide

Table 131. Parameter In/Out Types

Parameter in/out type Description In/Out type constant

IN parameter An IN parameter is input only; that is, the stored

procedure accepts its value as input but does not use

the parameter to return a value.

PARAM_IN

OUT parameter An OUT parameter is output only; that is, the stored

procedure does not read its value as input but does use

the parameter to return a value.

PARAM_OUT

INOUT parameter An INOUT parameter is input and output; that is, the

stored procedure accepts its value as input and also

uses the parameter to return a value.

PARAM_INOUT

See also

CwDBStoredProcedureParam(), getValue()

getValue()

Retrieves the value of the current stored-procedure parameter.

Syntax

Object getValue()

Parameters

None.

Return values

Returns the value of the associated CwDBStoredProcedureParam parameter as a Java

Object.

Exceptions

None.

Notes

The getValue() method returns the parameter value as a Java Object (such as

Integer, Double, or String). If the value returned to an OUT parameter is the JDBC

NULL, getParamValue() returns the null constant.

See also

CwDBStoredProcedureParam(), getParamType()

Chapter 14. CwDBStoredProcedureParam class 379

380 Map Development Guide

Chapter 15. DtpConnection class

The DtpConnection class is part of the Data Transformation Package (DTP). It

provides methods for executing SQL queries on the relationship database. To

instantiate this class, you must call getRelConnection() in the BaseDLM class. All

maps are derived or subclassed from BaseDLM so they have access to

getRelConnection().

Important: The DtpConnection class and its methods are supported for backward

compatibility only. These deprecated methods will not generate errors, but

you should avoid using them and migrate existing code to the new

methods. The deprecated methods might be removed in a future

release. In new map development, use the CwDBConnection class and its

methods to establish a database connection.

Table 132 summarizes the methods in the DtpConnection class.

 Table 132. DtpConnection method summary

Method Description Page

beginTran() Begins an SQL transaction for the relationship database. 381

commit() Commits the current transaction in the relationship

database.

382

executeSQL() Executes a SQL query in the relationship database by

specifying a CALL statement.

383

execStoredProcedure() Executes an SQL stored procedure in the relationship

database by specifying its name and parameter array.

384

getUpdateCount() Returns the number of rows affected by the last write

operation to the relationship database.

385

hasMoreRows() Determines whether the query result has more rows to

process.

385

inTransaction() Determines whether a transaction is in progress in the

relationship database.

386

nextRow() Retrieves the next row in the query result vector. 386

rollBack() Rolls back the current transaction in the relationship

database.

387

beginTran()

Begins an SQL transaction for the relationship database.

Syntax

void beginTran()

Parameters

None.

Return values

None.

© Copyright IBM Corp. 2004, 2005 381

Exceptions

DtpConnectionException – If a database error occurs.

Notes

The beginTran(), commit() and rollBack() methods together provide transaction

support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the

getRelConnection() method from the BaseDLM class.

Examples

The following example uses a transaction to execute a query for inserting rows into

a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction

connection.beginTran();

// insert a row

connection.executeSQL("insert...");

// commit the transaction

connection.commit();

See also

commit(), getRelConnection(), inTransaction(), rollBack()

commit()

Commits the current transaction in the relationship database.

Syntax

void commit()

Parameters

None.

Return values

None.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

The beginTran(), commit() and rollBack() methods together provide transaction

support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the

getRelConnection() method from the BaseDLM class.

382 Map Development Guide

Examples

The following example uses a transaction to execute a query for inserting rows into

a table in the SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction

connection.beginTran();

// insert a row

connection.executeSQL("insert...");

// commit the transaction

connection.commit();

See also

beginTran(), getRelConnection(), inTransaction(), rollBack()

executeSQL()

Executes a SQL query in the relationship database by specifying a CALL statement.

Syntax

void executeSQL(String query)

void executeSQL(String query, Vector queryParameters)

Parameters

query The SQL query to run in the relationship database.

queryParameters

A Vector object of arguments to pass to parameters in the SQL

query.

Return values

None.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

Before executing a query with executeSQL(), you must create a DtpConnection

object with the getRelConnection() method from the BaseDLM class.

The SQL statements you can execute include INSERT, SELECT, DELETE, and

UPDATE. You can also execute stored procedures with the limitation that this

stored procedure cannot use any OUT parameters. To execute stored procedures

with OUT parameters, use the execStoredProcedure() method.

Examples

The following example executes a query for inserting rows into a table in the

SapCust relationship.

DtpConnection connection = getRelConnection("SapCust");

// begin a transaction

connection.beginTran();

Chapter 15. DtpConnection class 383

// insert a row

connection.executeSQL("insert...");

// commit the transaction

connection.commit();

// release the database connection

releaseRelConnection(true);

See also

execStoredProcedure(), getRelConnection(), hasMoreRows(), nextRow()

execStoredProcedure()

Executes an SQL stored procedure in the relationship database by specifying its

name and parameter array.

Syntax

void execStoredProcedure(String storedProcedure,

 Vector storedProcParameters)

Parameters

storedProcedure

The name of the SQL stored procedure to run in the relationship

database.

storedProcParameters

A Vector object of parameters to pass to the stored procedure. Each

parameter is an instance of the UserStoredProcedureParam class.

Return values

None.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

Before executing a stored procedure with execStoredProcedure(), you must create

a DtpConnection object with the getRelConnection() method from the BaseDLM

class.

You can also use the executeSQL() method to execute a stored procedure as long as

this stored procedure does not contain OUT parameters. If the stored procedure

uses OUT parameters, you must use execStoredProcedure() to execute it. Unlike

with executeSQL(), you do not have to pass in the full SQL statement to execute

the stored procedure. With execStoredProcedure(), you need to pass in only the

name of the stored procedure and a Vector parameter array of

UserStoredProcedureParam objects. The execStoredProcedure() method can

determine the number of parameters from the storedProcParameters array and

builds the calling statement for the stored procedure.

See also

executeSQL(), getRelConnection(), hasMoreRows(), nextRow()

384 Map Development Guide

getUpdateCount()

Returns the number of rows affected by the last write operation to the relationship

database.

Syntax

int getUpdateCount()

Parameters

None.

Return values

Returns an int representing the number of rows affected by the last write

operation.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

Before using this method, you must create a DtpConnection object with the

getRelConnection() method from the BaseDLM class.

This method is useful after you send an UPDATE or INSERT statement on the

relationship database and you want to determine the number of rows that the SQL

statement has affected.

See also

executeSQL(), getRelConnection()

hasMoreRows()

Determines whether the query result has more rows to process.

Syntax

boolean hasMoreRows()

Parameters

None.

Return values

Returns true if more rows exist.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

The hasMoreRows() method determines whether the query associated with the

current relationship database has more rows to be processed. Use this method to

retrieve results from a query that returns data. Such queries include a SELECT

statement and a stored procedure. Only one query can be associated with the

Chapter 15. DtpConnection class 385

connection at a time. Therefore, if you execute another query before hasMoreRows()

returns false, you lose the data from the initial query.

See also

nextRow(), executeSQL(), getUpdateCount()

inTransaction()

Determines whether a transaction is in progress in the relationship database.

Syntax

boolean inTransaction()

Parameters

None.

Return values

Returns “True” if a transaction is in progress.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

Before beginning a transaction, you must create a DtpConnection object with the

getRelConnection() method from the BaseDLM class.

See also

beginTran(), commit(), getRelConnection(), rollBack()

nextRow()

Retrieves the next row in the query result vector.

Syntax

Vector nextRow()

Parameters

None.

Return values

Returns the next row of the query result as a Vector object.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

The nextRow() method returns one row of data from the query associated with the

current relationship database. Use this method to retrieve results from a query that

returns data. Such queries include a SELECT statement and a stored procedure.

386 Map Development Guide

Only one query can be associated with the connection at a time. Therefore, if you

execute another query before nextRow() returns the last row of data, you lose the

data from the initial query.

See also

hasMoreRows(), executeSQL(), getUpdateCount()

rollBack()

Rolls back the current transaction in the relationship database.

Syntax

void rollBack()

Parameters

None.

Return values

None.

Exceptions

DtpConnectionException – If a database error occurs.

Notes

The beginTran(), commit() and rollBack() methods together provide transaction

support for SQL queries.

Before beginning a transaction, you must create a DtpConnection object with the

getRelConnection() method from the BaseDLM class.

See also

beginTran(), commit(), getRelConnection(), inTransaction()

Chapter 15. DtpConnection class 387

388 Map Development Guide

Chapter 16. DtpDataConversion class

One of the most common tasks in business object mapping is the conversion of

attribute values from one data type to another, a process called data conversion. The

DtpDataConversion class provides a simple way to perform data conversions.

The data type classes in the java.lang package contain some conversion methods,

but all possible conversions are not supported. The DtpDataConversion class

consolidates many data conversion methods into one class and it supports the

most common conversions that you perform in maps. The getType() and

isOKToConvert() methods make it easy to determine whether specific conversions

are possible.

All methods in this class are declared as static. Table 133 summarizes the methods

of the DtpDataConversion class.

 Table 133. DtpDataConversion method summary

Method Description Page

getType() Determines the data type of a value. 389

isOKToConvert() Determines whether it is possible to convert

a value from one data type to another.

390

toBoolean() Converts a Java object to a Boolean object. 392

toDouble() Converts an object or primitive data type to a

Double object.

393

toFloat() Converts an object or primitive data type to a

Float object.

393

toInteger() Converts an object or primitive data type to

an Integer object.

394

toPrimitiveBoolean() Converts a String or Boolean object to the

primitive boolean data type.

395

toPrimitiveDouble() Converts an object or primitive data type to

the primitive double data type.

395

toPrimitiveFloat() Converts an object or primitive data type to

the primitive float data type.

396

toPrimitiveInt() Converts an object or primitive data type to

the primitive int data type.

397

toString() Converts an object or primitive data type to a

String object.

398

getType()

Determines the data type of a value.

Syntax

int getType(Object objectData)

int getType(int integerData)

int getType(float floatData)

int getType(double doubleData)

int getType(boolean booleanData)

Parameters

objectData Any Java object.

© Copyright IBM Corp. 2004, 2005 389

integerData Any primitive int variable.

floatData Any primitive float variable.

doubleData Any primitive double variable.

booleanData Any primitive boolean variable.

Return values

Returns an integer representing the data type of the parameter you pass. You can

interpret the return value by comparing it to one of these constants which are

declared as static and final in the DtpDataConversion class:

INTEGER_TYPE The data is a primitive int value or Integer object.

STRING_TYPE The data is a String object.

FLOAT_TYPE The data is a primitive float value or Float object.

DOUBLE_TYPE The data is a primitive double value or Double object.

BOOL_TYPE The data is a primitive boolean value or Boolean object.

DATE_TYPE The data is a Date object.

LONGTEXT_TYPE The data is a LongText object.

UNKNOWN_TYPE The data is of an unknown type.

Exceptions

None.

Notes

You can use the return values from getType() in the OKToConvert() method to

determine whether a conversion is possible between two given data types.

Examples

int conversionStatus = DtpDataConversion.isOKToConvert(

 DtpDataConversion.getType(srcObject),

 DtpDataConversion.getType(destObject));

switch(conversionStatus)

 {

 case DtpDataConversion.OKTOCONVERT:

 // go ahead and convert

 break;

 case DtpDataConversion.POTENTIALDATALOSS:

 // convert, then check value

 break;

 case DtpDataConversion.CANNOTCONVERT:

 // return an error

 break;

}

See also

isOKToConvert()

isOKToConvert()

Determines whether it is possible to convert a value from one data type to another.

390 Map Development Guide

Syntax

int isOKToConvert(int srcDatatype, int destDataType)

int isOKToConvert(String srcDataTypeStr, String destDataTypeStr)

Parameters

srcDataType Integer returned by getType(), which represents the data type of

the source value that you want to convert.

destDataType Integer returned by getType(), which represents the data type to

which you want to convert the source value.

srcDataTypeStr

String containing the data type name for the source value that you

want to convert. Possible values are: Boolean, boolean, Double,

double, Float, float, Integer, int, and String.

destDataTypeStr

String containing the data type name to which you want to convert

the source value. Possible values are: Boolean, boolean, Double,

double, Float, float, Integer, int, and String.

Return values

Returns an integer specifying whether it is possible to convert a value of the source

data type to a value of the destination data type. You can interpret the return value

by comparing it to one of these constants, which are declared as static and final in

the DtpDataConversion class:

OKTOCONVERT You can convert from the source to the destination data type.

POTENTIALDATALOSS

You can convert, but there is a potential for data loss if the source

value contains unconvertable characters or must be truncated to fit

the destination data type.

CANNOTCONVERT The source data type cannot be converted to the destination data

type.

Exceptions

None.

Notes

The getType() method returns an integer representing the data type of the value

you pass as a parameter. You use the first form of isOKToConvert() together with

getType() to determine whether a data conversion between two attributes is

possible. In your isOKToConvert() method call, use getType() on both the source

and destination attributes to generate the srcDataType and destDataType

parameters.

The second form of the method accepts String values containing the data type

names for the source and destination data. Use this form of the method if you

know what the data types are, and you want to check whether you can perform a

conversion.

Table 134 shows the possible conversions for each combination of source and

destination data type. In the table:

Chapter 16. DtpDataConversion class 391

v OK means you can convert the source type to the destination type with no data

loss.

v DL means you can convert, but data loss might occur if the source contains

unconvertable characters or must be truncated to fit the destination type.

v NO means you cannot convert the a value from source data type to the

destination data type.

 Table 134. Possible Conversions Between Data Types

D E S T I N A T I O N

SOURCE int,

Integer

String float,

Float

double,

Double

boolean

Boolean

Date Longtext

int Integer OK OK OK OK NO NO OK

String DL1 OK DL1 DL1 DL2 DL OK

float, Float DL3 OK OK OK NO NO OK

double,

Double

DL3 OK DL3 OK NO NO OK

boolean,

Boolean

NO OK NO NO OK NO OK

Date NO OK NO NO NO OK OK

Longtext DL1 DL3 DL1 DL1 DL2 DL OK

1When converting a String or Longtext value to any numeric type, the String or

Longtext value can contain only numbers and decimals. You must remove any other

characters, such as currency symbols, from the String or Longtext value before

converting. Otherwise, a DtpIncompatibleFormatException will be thrown.

2When converting a String or Longtext value to Boolean, the value of the String or

Longtext should be “true” or “false”. Any string that is not “true” (case does not

matter) will be considered false.

3Because the source data type supports greater precision than the destination data

type, the value might be truncated.

Examples

if (DtpDataConversion.isOKToConvert(getType(mySource),

 getType(myDest))== DtpDataConversion.OKTOCONVERT)

 // map these attributes

else

 // skip these attributes

See also

getType()

toBoolean()

Converts a Java object to a Boolean object.

Syntax

Boolean toBoolean(Object objectData)

Boolean toBoolean(boolean booleanData)

Parameters

objectData A Java object that you want to convert to Boolean. The only object

currently supported is String.

booleanData Any primitive boolean variable.

392 Map Development Guide

Return values

Returns a Boolean object.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

Boolean.

Examples

Boolean MyBooleanObj = DtpDataConversion.toBoolean(MyStringObj);

See also

getType(), isOKToConvert(), toPrimitiveBoolean()

toDouble()

Converts an object or primitive data type to a Double object.

Syntax

Double toDouble(Object objectData)

Double toDouble(int integerData)

Double toDouble(float floatData)

Double toDouble(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Float, Integer,

and String.

integerData Any primitive int variable.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns a Double object.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

Double.

Examples

Double myDoubleObj = DtpDataConversion.toDouble(myInteger);

See also

getType(), isOKToConvert(), toPrimitiveDouble()

toFloat()

Converts an object or primitive data type to a Float object.

Chapter 16. DtpDataConversion class 393

Syntax

Float toFloat(Object objectData)

Float toFloat(int integerData)

Float toFloat(float floatData)

Float toFloat(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Integer,

and String.

integerData Any primitive int variable.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns a Float object.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

Float.

Examples

Float myFloatObj = DtpDataConversion.toFloat(myInteger);

See also

getType(), isOKToConvert(), toPrimitiveFloat()

toInteger()

Converts an object or primitive data type to an Integer object.

Syntax

Integer toInteger(Object objectData)

Integer toInteger(int integerData)

Integer toInteger(float floatData)

Integer toInteger(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,

and String.

integerData Any primitive int variable.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns an Integer object.

394 Map Development Guide

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

Integer.

Examples

Integer myIntegerObj = DtpDataConversion.toInteger(myFloat);

See also

getType(), isOKToConvert(), toPrimitiveInt()

toPrimitiveBoolean()

Converts a String or Boolean object to the primitive boolean data type.

Syntax

boolean toPrimitiveBoolean(Object objectData)

Parameters

objectData A String or Boolean object that you want to convert to the

primitive boolean data type.

Return values

Returns a primitive boolean value.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

boolean.

Notes

This method can only handle String and Boolean objects.

Examples

boolean MyBoolean = DtpDataConversion.toPrimitiveBoolean(MyStringObj);

See also

getType(), isOKToConvert(), toBoolean()

For more information, see the Java Language Specification.

toPrimitiveDouble()

Converts an object or primitive data type to the primitive double data type.

Syntax

double toPrimitiveDouble(Object objectData)

double toPrimitiveDouble(int integerData)

double toPrimitiveDouble(float floatData)

Chapter 16. DtpDataConversion class 395

Parameters

objectData A Java object. The objects currently supported are: Double, Float,

Integer, and String.

integerData Any primitive int variable.

floatData Any primitive float variable.

Return values

Returns a primitive double value.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

double.

Notes

This method can only handle String, Integer, Float, and Double objects; and the

return value may not equal the input value accurately.

The limitation of this method is the same as the limitation of the double type in

Java.

The largest positive finite double literal is 1.79769313486231570e+308. The smallest

positive finite nonzero literal of type double is 4.94065645841246544e-324, with 15

significant decimal digits (on order of 999,999,999,999.99, in the range of billions).

Examples

double myDouble = DtpDataConversion.toPrimitiveDouble(myObject);

See also

getType(), isOKToConvert(), toDouble()

For more information, see the Java Language Specification.

toPrimitiveFloat()

Converts an object or primitive data type to the primitive float data type.

Syntax

float toPrimitiveFloat(Object objectData)

float toPrimitiveFloat(int integerData)

float toPrimitiveFloat(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,

Integer, and String.

integerData Any primitive int variable.

doubleData Any primitive double variable.

396 Map Development Guide

Return values

Returns a primitive float value.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

float.

Notes

This method can only handle String, Integer, Float, and Double objects; and there

will be some data loss when the input type is Double.

The limitation of this method is the same as the limitation of the float type in Java.

The largest positive finite float literal is 3.40282347e+38f. The smallest positive

finite nonzero literal of type float is 1.40239846e-45f, with 6-7 significant figures.

Values above 99,999.99 should not be used with this data type.

Examples

float myFloat = DtpDataConversion.toPrimitiveFloat(myInteger);

See also

getType(), isOKToConvert(), toFloat()

For more information, see the Java Language Specification.

toPrimitiveInt()

Converts an object or primitive data type to the primitive int data type.

Syntax

int toPrimitiveInteger(Object objectData)

int toPrimitiveInteger(float floatData)

int toPrimitiveInteger(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,

Integer, and String.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns a primitive int value.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

integer.

Chapter 16. DtpDataConversion class 397

Notes

This method can only handle String, Integer, Float, and Double objects; and there

will be some data loss when the input type is Fload or Double.

The limitation of this method is the same as the limitation of the int type in Java.

The largest positive hexidecimal and octal literals of type int are 0xfffffff and

017777777777, respectively, which equal 2147483647 (231-1). The most negative

hexadecimal and octal literals of type int are 0x80000000and 020000000000,

respectively, each of which represents the decimal value -2147483648 (-231). The

hexadecimal and octal literals 0xfffffff and 037777777777, respectively, represent

the decimal value -1.

Examples

int myInt = DtpDataConversion.toPrimitiveInt(myObject);

See also

getType(), isOKToConvert(), toInteger()

For more information, see the Java Language Specification.

toString()

Converts an object or primitive data type to a String object.

Syntax

String toString(Object objectData)

String toString(int integerData)

String toString(float floatData)

String toString(double doubleData)

Parameters

objectData A Java object. The objects currently supported are: Double, Float,

and Integer.

integerData Any primitive int variable.

floatData Any primitive float variable.

doubleData Any primitive double variable.

Return values

Returns a String object.

Exceptions

DtpIncompatibleFormatException – If the source data type cannot be converted to

String.

Examples

String myString = DtpDataConversion.toString(myObject);

See also

getType(), isOKToConvert()

398 Map Development Guide

Chapter 17. DtpDate class

The DtpDate class compares time and date values, sets their formats, and returns

components of a time and date value.

The static (class) methods operate on the class name. The static methods take a set

of business objects and return the earliest or latest dates or the business objects

that contain the earliest or latest dates.

Instance methods operate on a date object. You pass a date value to the DtpDate

constructor and you can then manipulate the resulting date object. Instance

methods let you retrieve, format, and change the values associated with the date.

You can also set the formats in which you want to handle dates.

The data conversion methods are useful when one application stores dates in one

format and another application stores dates in another format. For example, SAP

might send a date in the format 26/8/1999 15:23:20 but Clarify might need the

date in the format August 26, 1999 15:23:20.

The values passed to the DtpDate class must follow these rules:

 Day A number from 1 to 30. If a separator between the month, year, and date

is not present in the date-time string and the date is in a numeric

format, single characters must be preceded by a zero (0), as in 01

Month A number from 1 to 12, a name such as January or February, or an

abbreviated (3 character) month name such as Jan or Feb. If a separator

between the month, year, and date is not present in the date-time string

and the date is in a numeric format, single characters must be preceded

by a zero (0), as in 01.

Year A 4-digit number.

Hour A value in the range 01 to 23, representing 24-hour format. AM or PM

designations are not allowed.

Minutes A number in the range 01 to 59.

Seconds A number in the range 01 to 59.

Table 135 summarizes the methods in the DtpDate class. Note that static and

instance methods are separated in this table but are in alphabetical order in the

chapter.

 Table 135. DtpDate method summary

Method Description Page

Constructor

DtpDate() Parse the date according to the format specified. 401

Static methods

getMaxDate() From a list of business objects, return the latest

date as a DtpDate object.

413

getMinDate() From a list of business objects, return the earliest

date as a DtpDate object.

415

getMaxDateBO() From a list of business objects, return those that

contain the latest date.

414

getMinDateBO() From a list of business objects, return those that

contain the earliest date.

417

© Copyright IBM Corp. 2004, 2005 399

Table 135. DtpDate method summary (continued)

Method Description Page

Instance methods

addDays() Add the specified number of days to this date. 402

addWeekdays() Add the specified number of weekdays to this

date.

403

addYears() Add the specified number of years to this date. 404

after() Check whether this date follows the date passed

in as the input parameter.

405

before() Check whether this date precedes the date passed

in as the parameter.

406

calcDays() Calculate the number of days between this date

and another date.

406

calcWeekdays() Calculate the number of weekdays between this

date and another date.

407

get12MonthNames() Return the current short-name representation of

the twelve months for this date.

408

get12ShortMonthNames() Return the current full-name representation of the

twelve months for this date.

408

get7DayNames() Return the current names for the seven days in

the week for this date.

408

getCWDate() Reformats this date into the IBM generic date

format.

409

getDayOfMonth() Return the day of the month for this date. 409

getDayOfWeek() Return the day of the week for this date. 410

getHours() Return the hours value for this date. 410

getIntDay() Return the day of the week in this date as an

integer.

410

getIntDayOfWeek() Return the day of the week for this date. 411

getIntMilliSeconds() Return the milliSeconds value from this date. 411

getIntMinutes() Return the minutes value in this date as an

integer.

411

getIntMonth() Return the month in this date as an integer. 412

getIntSeconds() Return the seconds in this date as an integer. 412

getIntYear() Return the year in this date as an integer. 412

getMSSince1970() Return the number of milliseconds between

January 1, 1970 00:00:00 and this date.

413

getMinutes() Return the minutes value from this date. 418

getMonth() Return the full name representation of the month

in this date.

418

getNumericMonth() Return the month value from this date in numeric

format.

418

getSeconds() Return the seconds value from this date as a

string.

419

getShortMonth() Return the short name representation of the

month name from this date.

419

getYear() Return the year value in this date. 420

set12MonthNames() Change the full-name representation for the

twelve month names for this date.

420

set12MonthNamesToDefault() Restore the full-name representation for the

twelve month names to the default values for this

date.

421

set12ShortMonthNames() Change the short-name representation of the

twelve month names for this date.

421

set12ShortMonthNamesToDefault() Restore the short-name representation of the

twelve month names to the default values for this

date.

421

400 Map Development Guide

Table 135. DtpDate method summary (continued)

Method Description Page

set7DayNames() Change the names of the seven days in the week

for this date.

422

set7DayNamesToDefault() Restore the names of the seven days in the week

to the default values for this date.

422

toString() Return the date in a specified format or the

default format.

422

DtpDate()

Parse the date according to the format specified.

Syntax

public DtpDate()

public DtpDate(String dateTimeStr, String format)

public DtpDate(String dateTimeStr, String format, String[] monthNames,

 String[] shortMonthNames)

public DtpDate(long msSince1970, boolean isLocalTime)

Parameters

dateTimeStr The date-time in the form of a string.

format The date format. See Notes for details.

monthNames An array of strings representing the full 12 month names. If null,

the default value is January, February, March, and so on.

shortMonthNames

An array of strings representing the short month name. If this is

null but monthNames is not null, this value is the first 3 letters of

the full month names, such as Jan, Feb, Mar, Apr, and so on.

msSince1970 The number of milliseconds since January 1, 1970 00:00:00.

isLocalTime Set this to true if the time is already a local time, or to false

otherwise.

Return values

None

Exceptions

DtpDateException - When the constructor encounters parsing errors. This may

occur if the date is not in the specified format.

Notes

The first form of the constructor does not take any parameters. It assigns the

current date on the system to the new DtpDate object. It does not throw

DtpDateException.

Chapter 17. DtpDate class 401

The second and the third forms of the constructor parse the date according to the

specified date format and extract out the day, month, year, hour, minute, and

second values. These can be retrieved and reformatted later with other DtpDate

methods.

For example, a month can be retrieved in one of the following formats:

v The full-name representation (the default format): January, February, March,

April, May, June, July, August, September, October, November, and December

v The numeric format: 1-12

v The short-name representation, which consists of the first three letters of each

month name: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The retrieved data does not depend of the context of the other data.

You can change the full-name and short-name representations of the month in the

following ways:

v With the set12MonthNames() and set12ShortMonthNames()methods respectively

v By passing the representation as a parameter into the third form of the

DtpDate() constructor

The fourth form of the constructor takes the number of milliseconds since January

1, 1970 00:00:00. Many applications represent the date in this manner.

Date format

In the date format, the date always precedes the time. The time is optional. If it is

missing in a date-time string, the hours, minutes, and seconds have a default value

of 00.

The date format uses the following case sensitive key letters:

 D day

M month

Y year

h hours

m minutes

s seconds

These key letters may be separated by a separator such as “/” or “-”.

Examples

The following examples show the DtpDate() constructor creating new date objects

aDate, date2, and date3:

Dtpdate aDate = new DtpDate("5/21/1997 15:23:01", "M/D/Y h:m:s");

DtpDate date2 = new DtpDate("05211997 152301", "MDY hms");

DtpDate date3 = new DtpDate("Jan 10, 1999 10:00:00", "M D, Y h:m:s");

The following date format results in the DtpDateException being thrown:

h:m:s D/M/Y

addDays()

Add the specified number of days to this date.

402 Map Development Guide

Syntax

public DtpDate addDays(int numberOfDays)

Parameters

numberOfDays An integer number. If it is a negative number, the new date will be

the date numberOfDays days before the current instance of DtpDate.

Return values

A new DtpDate object.

Exceptions

DtpDateException

Notes

The addDays() method adds the specified number of days to this date. You can use

the get() methods to retrieve information about the resulting new date. The

DtpDate object returned inherits all the properties of the current object of DtpDate,

such as month names, date format, and so on.

The new date will be adjusted to be a valid date. For example, adding five days to

January 29, 1999 00:00:00 results in February 03, 1999 00:00:00, and adding -30 days

results in December 30, 1998 00:00:00.

Adding days does not affect the time of day.

Examples

try

 {

 DtpDate toDay = new DtpDate();

 DtpDate tomorrow = toDay.addDays(1);

 System.out.println("Tomorrow is "

 + tomorrow.getDayOfMonth() + "/"

 + tomorrow.getNumericMonth() + "/"

 + tomorrow.getYear() + " "

 + tomorrow.getHours() + ":"

 + tomorrow.getMinutes() + ":"

 + tomorrow.getSeconds());

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

addWeekdays(), addYears()

addWeekdays()

Add the specified number of weekdays to this date.

Syntax

public DtpDate addWeekdays(int numberOfWeekdays)

Chapter 17. DtpDate class 403

Parameters

numberOfWeekdays

An integer number. If it is a negative number, the new date will be

the date that is numberOfWeekdays weekdays before the date

represented by the current DtpDate object.

Return values

A new DtpDate object.

Exceptions

DtpDateException

Notes

The addWeekdays() method adds the specified number of weekdays to this date.

You can then use the get methods to retrieve the information of the resulting new

date. The DtpDate returned will inherit all the properties of the current instance of

DtpDate, such as month names, date format, and so on.

Only Monday, Tuesday, Wednesday, Thursday, and Friday, or the equivalent

values, are considered to be weekdays. Monday is considered to be the first day of

the week.

Examples

try

 {

 DtpDate toDay = new DtpDate("8/2/1999 00:00:00", "M/D/Y h:m:s");

 DtpDate fiveWeekdaysLater = toDay.addWeekdays(5);

 // The new date should be 8/9/1999 00:00:00

 System.out.println("Next month is "

 + fiveWeekdaysLater.getDayOfMonth() + "/"

 + fiveWeekdaysLater.getNumericMonth() + "/"

 + fiveWeekdaysLater.getYear() + " "

 + fiveWeekdaysLater.getHours() + ":"

 + fiveWeekdaysLater.getMinutes() + ":"

 + fiveWeekdaysLater.getSeconds());

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

addDays(), addYears()

addYears()

Add the specified number of years to this date.

Syntax

public DtpDate addYears(int numberOfYears)

404 Map Development Guide

Parameters

numberOfYears An integer number. If it is a negative number, the new date will be

the date that is numberOfYears years before the current DtpDate

object.

Return values

A new DtpDate object.

Notes

The addYears() method adds the specified number of years to this date. You can

then use the get() methods to retrieve the information of the resulting new date.

The DtpDate returned inherits all the properties of the current instance of DtpDate,

such as month names, date format, and so on.

Examples

DtpDate toDay = new DtpDate();

DtpDate lastYear= toDay.addYears(-1);

System.out.println("Next month is "

 + lastYear.getDayOfMonth() + "/"

 + lastYear.getNumericMonth() + "/"

 + lastYear.getYear() + " "

 + lastYear.getHours() + ":"

 + lastYear.getMinutes() + ":"

 + lastYear.getSeconds());

See also

addDays(), addWeekdays()

after()

Check whether this date follows the date passed in as the input parameter.

Syntax

public boolean after(DtpDate date)

Parameters

date The date to compare with this date.

Return values

Return true if this date follows the date passed in, and false if this date precedes

the data passed in.

Exceptions

DtpDateException

Examples

try

 {

 DtpDate toDay = new DtpDate();

 DtpDate tomorrow = yesterday.addDays(-1);

 // isAfter should be false.

 boolean isAfter = yesterday.after(today)

 }

Chapter 17. DtpDate class 405

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

before()

before()

Check whether this date precedes the date passed in as the parameter.

Syntax

public boolean before(DtpDate date)

Parameters

date The date to compare with this date.

Return values

Return true if this date precedes the date passed in, and false if this date follows

the data passed in.

Exceptions

DtpDateException

Examples

try

 {

 DtpDate toDay = new DtpDate();

 DtpDate tomorrow = yesterday.addDays(-1);

 // isBefore should be true.

 boolean isBefore = yesterday.before(today)

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

after()

calcDays()

Calculate the number of days between this date and another date.

Syntax

public int calcDays(DtpDate date)

Parameters

date The date to compare with this date.

406 Map Development Guide

Return values

An int representing the number of days. This is always a positive number.

Exceptions

DtpDateException

Notes

The calcDays() method calculates the difference in the number of days between

this date and another date. The result is always a whole number of days.

The difference between 19990615 00:30:59 and 19990615 23:59:59 is 0 days, and the

difference between 19990615 23:59:59 and 19990616 00:01:01 is 1 day.

Examples

try

 {

 DtpDate toDay = new DtpDate();

 DtpDate tomorrow = toDay.addDays(1);

 int days = today.caldDays(tomorrow);

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

calcWeekdays()

calcWeekdays()

Calculate the number of weekdays between this date and another date.

Syntax

public int calcWeekdays(DtpDate date)

Parameters

date The date to compare with this date.

Return values

An int representing the number of weekdays. This is always a positive number.

Exceptions

DtpDateException

Notes

The calcWeekdays() method calculates the number of weekdays between this date

and another date. The difference between Friday and Saturday is 0, and between

Friday and Monday is 1. Weekdays are assumed to be Monday through Friday or

the equivalent values. A weekday is not the same as a business day, since a

holiday can fall on a weekday.

Chapter 17. DtpDate class 407

Examples

try

 {

 DtpDate toDay = new DtpDate();

 DtpDate tomorrow = toDay.addDays(1);

 int days = today.caldWeekdays(tomorrow);

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

calcDays()

get12MonthNames()

Return the current full-name representation of the twelve months for this date.

Syntax

public String[] get12MonthNames()

Return values

An array of String objects containing the effective names of the twelve months.

Examples

DtpDate toDay = new DtpDate();

String[] toDay.get12MonthNames();

See also

set12MonthNames(), set12MonthNamesToDefault()

get12ShortMonthNames()

Return the current short-name representation of the twelve months for this date.

Syntax

public String[] get12ShortMonthNames()

Return values

An array of String objects containing the effective short names of the twelve

months.

Examples

DtpDate toDay = new DtpDate();

String[] toDay.get12ShortMonthNames();

See also

set12ShortMonthNames(), set12ShortMonthNamesToDefault()

get7DayNames()

Return the current names for the seven days in the week for this date.

408 Map Development Guide

Syntax

public String[] get7DayNames()

Return values

An array of String objects containing the effective names for the seven days of the

week.

Examples

DtpDate toDay = new DtpDate();

String[] toDay.get7DayNames();

See also

set7DayNames(), set7DayNamesToDefault()

getCWDate()

Reformats this date into the IBM generic date format.

Syntax

public String getCWDate()

Return values

A string representing the date in the IBM WebSphere Business Integration Server

Express generic business object format. The format is YMD hms. Examples of this

format are:

v 19990615 150701

v 19990831 114122

Notes

The IBM generic date format takes the form:

YYYYMMDD HHMMSS

Examples

DtpDate toDay = new DtpDate();

String genericDate = toDay.getCWDate();

getDayOfMonth()

Return the day of the month for this date.

Syntax

public String getDayOfMonth()

Return values

The string representing the day of the month, such as 01, 20, 30, and so on.

Examples

DtpDate toDay = new DtpDate();

String dayOfMonth = toDay.getDayOfMonth();

Chapter 17. DtpDate class 409

See also

getIntDay()

getDayOfWeek()

Return the day of the week for this date.

Syntax

public String getDayOfWeek()

Return values

A string indicating day of the week, such as Monday, Tuesday, and so on.

Examples

DtpDate toDay = new DtpDate();

String dayOfWeek = toDay.getDayOfWeek();

See also

getIntDayOfWeek()

getHours()

Return the hours value for this date.

Syntax

public String getHours()

Return values

The string representing the hour value which will be between 00 and 23.

Examples

DtpDate toDay = new DtpDate();

String hours = toDay.getHours();

getIntDay()

Return the day of the month in this date as an integer.

Syntax

public int getIntDay()

Return values

An int value which is the day of the month.

Examples

DtpDate toDay = new DtpDate();

int day = toDay.getIntDay();

See also

getDayOfMonth()

410 Map Development Guide

getIntDayOfWeek()

Return the day of the week in this date as an integer.

Syntax

public int getIntDayOfWeek()

Return values

An int value which is the day of the week. The possible values are 0 (Monday), 1

(Tuesday), 2 (Wednesday), 3 (Thursday), 4 (Friday), 5 (Saturday), or 6 (Sunday).

Examples

DtpDate toDay = new DtpDate();

int dayOfWeek = toDay.getIntDayOfWeek();

See also

getDayOfWeek()

getIntMilliSeconds()

Return the milliSeconds value from the date.

Syntax

public int getIntMilliSeconds()

Return values

An int value which is the milliseconds The range is 0-999.

Examples

DtpDate toDay = new DtpDate();

int millisecs = toDay.getIntMilliSeconds();

getIntMinutes()

Return the minutes value in this date as an integer.

Syntax

public int getIntMinutes()

Return values

An int value which is the minutes. The range is 0-59.

Examples

DtpDate toDay = new DtpDate();

int mins = toDay.getIntMinutes();

See also

getMinutes()

Chapter 17. DtpDate class 411

getIntMonth()

Return the month in this date as an integer.

Syntax

public int getIntMonth()

Return values

An int value which is the month. The range is 1 (January) - 12 (December).

Examples

DtpDate toDay = new DtpDate();

int month = toDay.getIntMonth();

See also

getMonth(), getNumericMonth()

getIntSeconds()

Return the seconds in this date as an integer.

Syntax

public int getIntSeconds()

Return values

An int value which is the seconds. The range is 0-59.

Examples

DtpDate toDay = new DtpDate();

int secs = toDay.getIntSeconds();

See also

getSeconds(), getMSSince1970()

getIntYear()

Return the year in this date as an integer.

Syntax

public int getIntYear()

Return values

An int value which is the year.

Examples

DtpDate toDay = new DtpDate();

int year = toDay.getIntYear();

See also

getYear()

412 Map Development Guide

getMSSince1970()

Return the number of milliseconds between January 1, 1970 00:00:00 and this date.

Syntax

public long getMSSince1970()

Return values

An integer number. It may be negative if this date is before January 1, 1970

00:00:00.

Exceptions

DtpDateException

Examples

try

 {

 DtpDate toDay = new DtpDate();

 long ms = toDay.getMSSince1970();

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

See also

getSeconds()

getMaxDate()

From a list of business objects, return the latest date as a DtpDate object.

Syntax

public static DtpDate getMaxDate(BusObjArray boList, String attr,

 String dateFormat)

Parameters

boList A list of business objects.

attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.

dateFormat This is the date format. See DtpDate() for more details. If this is

null, it is assumed that the date is the number of milliseconds since

1970.

Return values

A DtpDate object that contains the max date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the

same business object type.

Chapter 17. DtpDate class 413

DtpUnknownAttributeException - When the specified attribute is not a valid

attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute

is not one of the supported attribute types listed above.

All of these exceptions are subclasses of RunTimeEntityException.

Notes

The getMaxDate() method scans through the list of business objects looking for the

business object with the latest date, and returns that date in the form of a DtpDate

object.

Tip: This method is a static method.

In the date evaluation, Jan 1, 2004 000000 is later than Jan 1, 2002 000000, which is

later than Jan 1, 1999 000000

The date information is assumed to be stored in the attribute name passed into the

method. If an object has null date information, it is ignored. If all of the objects

have null date information, null is returned.

Examples

try

 {

 DtpDate maxDate = DtpDate.getMaxDate(bos, "Start Date",

 "D/M/Y h:m:s");

 }

catch (RunTimeEntityException err)

 {

 System.out.println(err.getMessage());

 }

See also

getMinDate(), getMaxDateBO()

getMaxDateBO()

From a list of business objects, return those that contain the latest date.

Syntax

public static BusObj[] getMaxDateBO(BusObj[] boList, String attr,

 String dateFormat)

public static BusObj[] getMaxDateBO(BusObjArray boList, String attr,

 String dateFormat)

Parameters

boList A list of business objects. It can be either an array of BusObj or an

instance of BusObjArray. These business objects must be of the

same business object type.

attr The attribute of the business object to compare with. The attribute

must be of type Date.

414 Map Development Guide

dateFormat This is the date format. See DtpDate() for more details. If this is

null, it is assumed that the date is the number of milliseconds since

1970.

Return values

An array of business objects that have the latest date.

Exceptions

All of these three exceptions are subclasses of RunTimeEntityException.

DtpIncompatibleBOTypeException - When the business objects in the list are not the

same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid

attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute

is not one of the supported attribute types listed above.

DtpDateException - When the date format is invalid.

Notes

The getMaxDateBO() method scans through the list of business objects looking for

the business object with the latest date and returns that business object. If multiple

business objects have the same max date, all objects with that date are returned.

Tip: This method is a static method.

In the evaluation of which date is earliest, Jan 1, 2004 000000 is later than Jan 1,

2002 000000, which is later than Jan 1, 1999 000000.

The date information is assumed to be stored in the attribute name passed into the

method. If an object has null date information, that object is ignored. If all of the

objects have null date information, null is returned.

Examples

try

 {

 BusObj[] max = DtpDate.getMaxDateBO(bos, "Start Date",

 "D/M/Y h:m:s");

 }

catch (RunTimeEntityException err)

 {

 System.out.println(err.getMessage());

 }

See also

getMaxDate(), getMinDateBO()

getMinDate()

From a list of business objects, return the earliest date as a DtpDate object.

Chapter 17. DtpDate class 415

Syntax

public static DtpDate getMinDate(BusObjArray boList, String attr,

 String dateFormat)

Parameters

boList A list of business objects.

attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.

dateFormat The date format. See DtpDate() for more details. If this is null, it is

assumed that the date is the number of milliseconds since 1970.

Return values

A DtpDate object which contains the earliest date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the

same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid

attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute

is not one of the supported attribute types listed above.

All of these exceptions are subclasses of RunTimeEntityException.

Notes

The getMinDate() method scans through the list of business objects looking for the

business object with the earliest date, and return that date in the form of a DtpDate

object.

Tip: This method is a static method.

In the evaluation of dates, Jan 1, 1999 000000 is earlier than Jan 1, 2002 000000,

which is earlier than Jan 1, 2004 000000.

The date information is assumed to be stored in the attribute name passed into the

method. If an object has null date information, it is ignored. If all objects have null

date information, null is returned.

Examples

try

 {

 DtpDate minDate = DtpDate.getMinDate(bos, "Start Date",

 "D/M/Y h:m:s");

 }

catch (RunTimeEntityException err)

 {

 System.out.println(err.getMessage());

 }

See also

getMaxDate(), getMinDateBO()

416 Map Development Guide

getMinDateBO()

From a list of business objects, return those that contain the earliest date.

Syntax

public static BusObj[] getMinDateBO(BusObj[] boList, String attr,

 String dateFormat)

public static BusObj[] getMinDateBO(BusObjArray boList, String attr,

 String dateFormat)

Parameters

boList A list of business objects.

attr The attribute of the business object to use when doing the

comparison. The attribute must be of type Date.

dateFormat The date format. See DtpDate() for more details. If this is null, it is

assumed that the date is the number of milliseconds since 1970.

Return values

An array of business objects that have the date.

Exceptions

DtpIncompatibleBOTypeException - When the business objects in the list are not the

same business object type.

DtpUnknownAttributeException - When the specified attribute is not a valid

attribute in the business objects passed in.

DtpUnsupportedAttributeTypeException - When the type of the specified attribute

is not one of the supported attribute types listed above.

DtpDateException - When the date format is invalid.

All of these exceptions are subclass of RunTimeEntityException.

Notes

The getMinDateBO() method scans through the list of business objects looking for

the business object with the earliest date and returns that date in the form of a

DtpDate object.

Tip: This method is a static method.

In the evaluation of the earliest date, Jan 1, 2004 000000 is later than Jan 1, 2002

000000 which is later than Jan 1, 1999 000000.

The date information is assumed to be stored in the attribute name passed into the

method. If an object has null date information, it is ignored. If all of the objects

have null date information, null is returned.

Examples

try

 {

 BusObj[] min = DtpDate.getMinDateBO(bos, "Start Date",

 "D/M/Y h:m:s");

Chapter 17. DtpDate class 417

}

catch (RunTimeEntityException err)

 {

 System.out.println(err.getMessage());

 }

See also

getMinDate(), getMaxDateBO()

getMinutes()

Return the minutes value from this date.

Syntax

public String getMinutes()

Return values

The string representing the minutes. The return value is between 00 and 59.

See also

getIntMinutes()

getMonth()

Return the full name representation of the month in this date.

Syntax

public String getMonth()

Return values

The name of the month, such as January, February, and so on.

See also

getIntMonth(), getNumericMonth(), getShortMonth()

getNumericMonth()

Return the month value from this date in numeric format.

Syntax

public String getNumericMonth()

Return values

The string in the numeric form for the month, such as 01, 02, and so on.

Examples

DtpDate toDay = new DtpDate();

System.out.println("Today is "

 + toDay.getDayOfMonth() + "/"

 + toDay.getNumericMonth() + "/"

418 Map Development Guide

+ toDay.getYear() + " "

 + toDay.getHours() + ":"

 + toDay.getMinutes() + ":"

 + toDay.getSeconds());

See also

getIntMonth(), getMonth()

getSeconds()

Return the seconds value from this date as a string.

Syntax

public String getSeconds()

Return values

The string representing the seconds. The return value is between 00 and 59.

Examples

DtpDate toDay = new DtpDate();

System.out.println("Today is "

 + toDay.getDayOfMonth() + "/"

 + toDay.getNumericMonth() + "/"

 + toDay.getYear() + " "

 + toDay.getHours() + ":"

 + toDay.getMinutes() + ":"

 + toDay.getSeconds());

See also

getIntSeconds()

getShortMonth()

Return the short name representation of the month name from this date.

Syntax

public String getShortMonth()

Return values

The name of the month in the short format, such as Jan, Feb, and so on.

Examples

DtpDate toDay = new DtpDate();

DtpDate lastYear= toDay.addYears(-1);

System.out.println("Next month is "

 + lastYear.getShortMonth() + " "

 + lastYear.getDayOfMonth() + ", "

 + lastYear.getYear() + " "

 + lastYear.getHours() + ":"

 + lastYear.getMinutes() + ":"

 + lastYear.getSeconds());

See also

getMonth(), set12ShortMonthNames(), set12ShortMonthNamesToDefault()

Chapter 17. DtpDate class 419

getYear()

Return the year value in this date.

Syntax

public String getYear()

Return values

The string representing the year. The year value includes the century. Examples are

1998 and 2004.

Examples

DtpDate toDay = new DtpDate();

DtpDate lastYear= toDay.addYears(-1);

System.out.println("Next month is "

 + lastYear.getDayOfMonth() + "/"

 + lastYear.getNumericMonth() + "/"

 + lastYear.getYear() + " "

 + lastYear.getHours() + ":"

 + lastYear.getMinutes() + ":"

 + lastYear.getSeconds());

See also

getIntYear()

set12MonthNames()

Change the full-name representation for the twelve month names for this date.

Syntax

public void set12MonthNames(String[] monthNames,

 boolean resetShortMonth)

Parameters

monthNames An array of String containing the twelve month names. The first

element is the first month of the year and the last element is the

last month of the year.

resetShortMonthNames

By default, the short month names are the first three characters of

the full month names. If this flag is set to true, the short month

names will change based on the new full month names. If it is set

to false, this method will not change the short month names.

Return values

None.

Exceptions

DtpDateException - When the month names passed in are not exactly 12 names.

See also

get12MonthNames(), set12MonthNamesToDefault()

420 Map Development Guide

set12MonthNamesToDefault()

Restore the full-name representation for the twelve month names to the default

values for this date.

Syntax

public void set12MonthNamesToDefault()

Return values

None.

Notes

The default names are January, February, March, and so on.

See also

get12MonthNames(), set12MonthNames()

set12ShortMonthNames()

Change the short-name representation of the twelve month names for this date.

Syntax

public void set12ShortMonthNames(String[] shortMonths)

Parameters

shortMonths A list of business objects.

Return values

None.

Exceptions

DtpDateException - When the month names passed in are not exactly 12 names.

See also

get12ShortMonthNames(), set12ShortMonthNamesToDefault()

set12ShortMonthNamesToDefault()

Restore the short-name representation of the twelve month names to the default

values for this date.

Syntax

public void set12ShortMonthNamesToDefault()

Return values

None

Notes

The short month names are Jan, Feb, Mar, and so on.

Chapter 17. DtpDate class 421

See also

get12ShortMonthNames(), set12ShortMonthNames()

set7DayNames()

Change the names of the seven days in the week for this date.

Syntax

public void set7DayNames(String[] dayNames)

Parameters

dayNames An array of strings containing the seven days in a week. The first

element should be the equivalent of Monday.

Return values

None.

Exceptions

DtpDateException - When exactly seven days are not specified.

See also

get7DayNames(), set7DayNamesToDefault()

set7DayNamesToDefault()

Restore the names of the seven days in the week to the default values for this date.

Syntax

public void set7DayNamesToDefault()

Return values

None.

Notes

The default names are Monday, Tuesday, Wednesday, and so on.

See also

get7DayNames(), set7DayNames()

toString()

Return the date in a specified format or the default format.

Syntax

public String toString()

public String toString(String format)

public String toString(String format boolean twelveHr)

422 Map Development Guide

Parameters

format The date format. See DtpDate() for more details.

twelveHr A boolean that, if set to true, specifies that the method returns

12-hour time instead of 24-hour time.

Return values

A string containing the date information, such as:

19990930 053029 PM

Regardless of the format of the month position, the output string is always a 2

character integer representation (that is, 01 for January, 12 for December, and so

forth).

Exceptions

DtpDateException - When the date format is invalid.

Examples

try

 {

 DtpDate toDay = new DtpDate();

 String date = toDay.toString("Y/M/D h:m:s");

 }

catch (DtpDateException date_e)

 {

 System.out.println(date_e.getMessage());

 }

Chapter 17. DtpDate class 423

424 Map Development Guide

Chapter 18. DtpMapService class

A submap is a map that you call from within another map. The DtpMapService

class provides a method for running submaps. Table 136 summarizes the method

in the DtpMapService class.

 Table 136. DtpMapService method summary

Method Description Page

runMap() Runs the map you specify. 425

runMap()

Runs the map you specify.

Syntax

BusObj[] runMap(String mapName, String mapType,

 BusObj[] srcBOs, cwExecCtx)

Parameters

mapName The name of the map to run.

mapType The type of the map to run. Use the following constant only, which

is defined in the DtpMapService class: CWMAPTYPE – an IBM

WebSphere Business Integration Server Express map

srcBOs An array of business objects that are the source business objects for

mapName.

cwExecCtx A variable that contains the execution context for the current map.

This variable is defined in the code that Map Designer Express

generates for every map.

Return values

Returns an array of business objects that are the destination business objects of

mapName.

Exceptions

MapFailureException – If an error occurs while attempting to run mapName.

MapNotFoundException – If mapName is not found in the repository.

CxMissingIDException – See maintainSimpleIdentityRelationship().

Notes

Use the runMap() method to call a submap from within another map. For more

information on calling submaps, see “Transforming with a submap” on page 45.

Examples

The following code calls a submap to map an application-specific Address business

object to the generic Address business object:

© Copyright IBM Corp. 2004, 2005 425

// Create the BusObj Array

BusObj[] rSrcBOs = new BusObj[1];

rSrcBOs[0] = MyCustomerObj.MyAddressObj[0];

// Make the call to the map service

OutObjName = DtpMapService.runMap(MyAppAddressToGenAddress,

 DtpMapService.CWMAPTYPE,rSrcBOs,cwExecCtx);

See also

“Transforming with a submap” on page 45

426 Map Development Guide

Chapter 19. DtpSplitString class

The DtpSplitString class provides a way to split or parse a string into tokens and

retrieve the results. This class is useful for manipulating formatted strings such as

composite keys, dates, or telephone numbers.

DtpSplitString is similar to the StringTokenizer class in the java.util package.

However, when working with IBM WebSphere Business Integration Server Express

maps, DtpSplitString provides these advantages over StringTokenizer:

v The tokens in a DtpSplitString object are indexed. This makes it easy to extract

the specific tokens you are interested in. For example, if you parse a telephone

number (such as 650-555-1111) into three tokens using the dash (-) as a

delimiter, you can extract the area code by referencing element 0 and build the

rest of the telephone number by concatenating element 1 and element 2.

v A DtpSplitString object allows bidirectional scrolling of the tokens. As you

navigate the elements using nextElement() and prevElement() all the elements

remain available.

Table 137 summarizes the methods in the DtpSplitString class.

 Table 137. DtpSplitString method summary

Method Description Page

DtpSplitString() Constructs a new instance of DtpSplitString and

parses a string into tokens.

427

elementAt() Returns an element in the DtpSplitString object

at the position you specify.

428

firstElement() Returns the element in the DtpSplitString object

at position zero.

428

getElementCount() Returns an integer containing the total number

of elements.

429

getEnumeration() Returns an Enumeration of String objects where

each String is one of the parsed tokens.

430

lastElement() Returns the last element in the DtpSplitString

object.

430

nextElement() Returns the next element in the DtpSplitString

object.

430

prevElement() Returns the previous element in the

DtpSplitString object.

431

reset() Resets the current position number in the

DtpSplitString object to zero.

432

DtpSplitString()

Constructs a new instance of DtpSplitString and parses a string into tokens.

Syntax

DtpSplitString(String str, String delimiters)

Parameters

str The string to parse.

© Copyright IBM Corp. 2004, 2005 427

delimiters A String containing the delimiters used in str. There can be more

than one delimiter, but each delimiter can be only one character in

length.

Notes

DtpSplitString() parses str into tokens, called elements, based on the specified

delimiters. After calling DtpSplitString(), you can call any of the DtpSplitString

class methods to select and retrieve specific elements.

Examples

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

elementAt()

Returns an element in the DtpSplitString object at the position you specify.

Syntax

String elementAt(int nth)

Parameters

nth The position of the element to extract from the DtpSplitString

object. The position of the first element is zero.

Return values

Returns a String containing the element at the nth position.

Exceptions

DtpNoElementAtPositionException – If you specify an invalid position for nth.

Notes

Elements are numbered from first to last beginning with zero. For example, if the

delimiters are commas and spaces, then the element at position two in the string,

"This,is a test" is "a".

The elementAt() method returns the element at the specified position but does not

change the current element position.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

//This call returns "a"

public String MyString.elementAt(2);

See also

getElementCount()

firstElement()

Returns the element in the DtpSplitString object at position zero.

428 Map Development Guide

Syntax

String firstElement()

Return values

Returns a String containing the element at position zero.

Exceptions

DtpNoElementAtPositionException – If there are no elements.

Notes

Elements in the DtpSplitString object are numbered from first to last beginning

with zero. Therefore, the first element is at position zero.

The firstElement() method returns the element at position zero but does not

change the current element position.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the first element containing "This"

String anElement = MyString.firstElement();

See also

lastElement()

getElementCount()

Returns the total number of elements in the DtpSplitString object.

Syntax

int getElementCount()

Return values

Returns an integer containing the total number of elements.

Notes

Elements are numbered from first to last beginning with zero. If

getElementCount() returns 6, the highest-numbered element is 5.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the integer 4

String numElements = MyString.getElementCount();

See also

firstElement(), lastElement()

Chapter 19. DtpSplitString class 429

getEnumeration()

Returns an Enumeration of String objects where each String is one of the parsed

tokens.

Syntax

Enumeration getEnumeration()

Return values

Returns an Enumeration object.

Notes

The getEnumeration() method provides another way to process the parsed tokens

in a DtpSplitString object. For more information on working with Enumeration

objects, see the Java.Util package.

lastElement()

Returns the last element in the DtpSplitString object.

Syntax

String lastElement()

Return values

Returns a String containing the last element.

Exceptions

DtpNoElementAtPositionException – If there are no elements.

Notes

Elements are numbered from first to last beginning with zero. The last element is

the highest-numbered element. The position number of the last element is

equivalent to getElementCount()-1.

The lastElement() method returns the last element but does not change the

current element position.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns the last element, containing "test"

String anElement = MyString.lastElement();

See also

firstElement(), getElementCount()

nextElement()

Returns the next element in the DtpSplitString object.

430 Map Development Guide

Syntax

String nextElement()

Return values

Returns a String containing the next element.

Exceptions

DtpNoElementAtPositionException – If there is no next element.

Notes

The first time you call nextElement(), it returns the element at position zero. In

subsequent method calls, nextElement() returns the element at position one, two,

three, and so on. You can use nextElement(), along with prevElement(), to

navigate the elements (tokens) in a DtpSplitString object.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"

String firstElement = MyString.nextElement()

// This call returns element 1 containing "is"

String secondElement = MyString.nextElement()

See also

prevElement(), reset()

prevElement()

Returns the previous element in the DtpSplitString object.

Syntax

String prevElement()

Return values

Returns a String containing the previous element.

Exceptions

DtpNoElementAtPositionException – If there is no previous element.

Notes

You can use prevElement(), along with nextElement(), to navigate the elements

(tokens) in a DtpSplitString object. The first time you call nextElement(), the

element position is zero. Subsequent calls to nextElement()increment the position

by one. The prevElement() method returns the previous element and decrements

the element position by one.

Chapter 19. DtpSplitString class 431

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"

String firstElement = MyString.nextElement()

// This call returns element 1 containing "is"

String secondElement = MyString.nextElement()

// This call returns element 0 containing "This"

String anotherElement = MyString.prevElement()

See also

nextElement()

reset()

Resets the current position number in the DtpSplitString object to zero.

Syntax

void reset()

Return values

None.

Notes

The default element position is zero. Each time you call nextElement(), the

element position increments by one. The prevElement() method returns the

previous element and decrements the element position by one. You can use

reset() to reset the current position back to zero.

Examples

// Create a DtpSplitString object

DtpSplitString MyString = new DtpSplitString("This,is a test",", ");

// This call returns element 0 containing "This"

String firstElement = MyString.nextElement()

// This call returns element 1 containing "is"

String secondElement = MyString.nextElement()

// Reset the position to zero

MyString.reset()

// This call returns element 0 containing "This"

String firstElement = MyString.nextElement()

See also

nextElement(), prevElement()

432 Map Development Guide

Chapter 20. DtpUtils class

The DtpUtils class performs several general-purpose operations.

Table 138 summarizes the methods of the DtpUtils class.

 Table 138. DtpUtils method summary

Method Description Page

padLeft() Pads the string with the specified character. 433

padRight() Pads the string with the specified character. 433

stringReplace() Replaces all occurrences of a pattern within

a string with another pattern.

433

truncate() Truncates this number. 435

padLeft()

Pads the string with the specified character.

Syntax

public static String padLeft(String src, char padWith, int totalLen)

Parameters

src The string to be padded.

padWith The character used in padding.

totalLen The new size of the string, a positive number. If the value is 0,

smaller than the size of the original string, or a negative number,

the original string is returned.

Return values

A new padded string.

Notes

Pads the string with a specified character.

Examples

The following call returns 0000012345:

padLeft("12345", ’0’, 10);

The following call returns 123456:

padLeft("123456", ’0’, 5);

padRight()

Pads the string with the specified character.

Syntax

public static String padLeft(String src, char padWith, int totalLen)

© Copyright IBM Corp. 2004, 2005 433

Parameters

src The string to be padded.

padWith The character used in padding.

totalLen The new size of the string, a positive number. If the value is 0,

smaller than the size of the original string, or a negative number,

the original string is returned.

Return values

A new padded string.

Notes

Pads the string with a specified character.

Examples

The following call returns 1234500000:

padRight("12345", ’0’, 10);

The following call returns 123456:

padRight("123456", ’0’, 5);

stringReplace()

Replaces all occurrences of a pattern within a string with another pattern.

Syntax

public static String stringReplace(String src, String oldpattern,

 String newPattern)

Parameters

src The string to change.

oldPattern The character used in padding.

newPattern The string pattern to use in replacement.

Return values

A new string with the new pattern.

Notes

The method replaces all occurrences of the value specified by oldPattern with the

value specified by newPattern. For single character replacement, use the replace()

in the Java String class. If oldPattern is not found, the original, unmodified string

is returned.

Examples

The following results in youoyou and dad.

stringReplace("momomom and dad", "mom", "you");

434 Map Development Guide

truncate()

Truncates this number.

Syntax

public static double truncate(Object aNumber, int precision)

 throws DtpIncompatibleFormatException

public static double truncate(float aNumber, int precision)

public static double truncate(double aNumber, int precision)

public static int truncate(Object aNumber)

 throws DtpIncompatibleFormatException

public static int truncate(float aNumber)

public static int truncate(double aNumber)

Parameters

aNumber A number. The valid types are String, float, and double.

precision The number of digits to the right of the decimal to be removed.

Return values

A double or int number.

Notes

This method removes digits from this number, starting from the right.

The first three forms of the methods truncate the number by removing the digits to

the right of the decimal place, starting from the right. If the input number is an

integer, it will not get truncated. The number of type Object must be either String,

Double or Float.

The last three forms of the methods truncate the number by removing all digits to

the right of the decimal and return the int value.

Examples

The following returns 123.45:

truncate("123.4567", 2);

The following returns 123:

truncate(123.456, 4)

Chapter 20. DtpUtils class 435

436 Map Development Guide

Chapter 21. IdentityRelationship class

The methods documented in this chapter operate on objects of the

IdentityRelationship class. These objects represent instances of identity

relationships. The IdentityRelationship class provides additional functionality

needed when accessing the repository database. It combines a set of existing APIs

into methods that provide ease of use for the map developer.

The source code for the methods in the IdentityRelationship class is provided

and can be used as is in the IBM WebSphere Business Integration Server Express

environment, or can be customized to fit other environments.

Table 139 lists the methods of the IdentityRelationship class.

 Table 139. IdentityRelationship method summary

Method Description Page

addMyChildren() Adds the specified child instances to a

parent/child relationship for an identity

relationship.

437

deleteMyChildren() Removes the specified child instances to a

parent/child relationship for an identity

relationship belonging to the specified parent.

439

foreignKeyLookup() Performs a lookup in a foreign relationship

table based on the foreign key of the source

business object, failing to find a relationship

instance if the foreign key does not exist in the

foreign relationship table.

440

foreignKeyXref() Performs a lookup in the relationship table in

the relationship database based on the foreign

key of the source business object, adding a new

relationship instance in the foreign relationship

table if the foreign key does not exist.

442

maintainChildVerb() Sets the child business object verb based on the

map execution context and the verb of the

parent business object.

444

maintainCompositeRelationship() Maintains a composite identity relationship

from within the parent map.

446

maintainSimpleIdentityRelationship() Maintains a simple identity relationship from

within either a parent or child map.

448

updateMyChildren() Adds and deletes child instances in a specified

parent/child relationship of an identity

relationship as necessary.

450

Note: All methods in the IdentityRelationship class are declared as static. You

can call any of the methods in this class from an existing relationship

instance or by referencing the IdentityRelationship class:

IdentityRelationship.method, where method is the name of a method in

Table 139.

addMyChildren()

Adds the specified child instances to a parent/child relationship for an identity

relationship.

© Copyright IBM Corp. 2004, 2005 437

Syntax

public static void addMyChildren(String parentChildRelDefName,

 String parentParticpntDefName, BusObj parentBusObj,

 String childParticpntDefName, Object childBusObjList,

 CxExecutionContext map_ctx)

Parameters

parentChildRelDefName

The name of the parent/child relationship definition.

parentParticpntDefName

The name of the participant definition that represents the parent

business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName

The name of the participant definition that represents the child

business object in the parent/child relationship.

childBusObjList

The variable that contains child business object or objects to be

added to the relationship. This parameter can be either a single

generic business object (BusObj) or an array of generic business

objects (BusObjArray).

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The addMyChildren() method adds the child instances in childBusObjList to the

relationship tables of the parentChildRelDefName relationship definition. This

method is useful in a custom relationship involving a parent business object with a

unique key. When a parent business object has the addition of new child objects,

use addMyChildren() to compare the after-image (in parentBusObj) with the

before-image (information in the relationship tables) to determine which child

objects in the after-image are new. For each new child object, addMyChildren()

adds a child instance to the relationship tables for the parent and child participants

(parentParticpntDefName and childParticpntDefName, respectively). If the parent

business object does not exist in the relationship table, addMyChildren() inserts a

relationship instance for this parent object.

The addMyChildren() method requires that a parent/child relationship be defined

with Relationship Designer Express. For information on how to create this kind of

relationship, see “Creating the parent/child relationship definition” on page 282.

438 Map Development Guide

See also

deleteMyChildren(), updateMyChildren()

“Managing child instances” on page 282.

deleteMyChildren()

Removes the specified child instances to a parent/child relationship for an identity

relationship belonging to the specified parent.

Syntax

void deleteMyChildren(String parentChildRelDefName,

 String parentParticpntDefName, BusObj parentBusObj,

 String childParticpntDefName, Object childBusObjList,

 CxExecutionContext map_ctx)

void deleteMyChildren(String parentChildRefDefName,

 String parentParticpntDefName, BusObj parentBusObj,

 String childParticpntDefName, CxExecutionContext map_ctx)

Parameters

parentChildRelDefName

The name of the parent/child relationship definition.

parentParticpntDefName

The name of the participant definition that represents the parent

business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName

The name of the participant definition that represents the child

business object in the parent/child relationship.

childBusObjList

The variable that contains child business object or objects to be

deleted from the relationship. This parameter can be either a single

generic business object (BusObj) or an array of generic business

objects (BusObjArray).

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deleteMyChildren() method deletes child instances from a parent/child

parentChildRelDefName relationship definition. It supports the following forms:

v The first form of the method removes from the relationship tables for the parent

and child participants those child instances that correspond to each of the child

Chapter 21. IdentityRelationship class 439

business objects in childBusObjList. It locates a child instance to delete by

matching the child object’s value and name, as well as the parent object’s value

and name.

v The second form of the method removes from relationship tables for the parent

and child participants all child instances for the parentBusObj parent object. It

locates the child instance to delete by matching the parent object’s value and

name.

This method is useful in a custom relationship involving a parent business object

with a unique key. When a parent business object has removed child objects, use

deleteMyChildren() to compare the after-image (in parentBusObj) with the

before-image (information in the relationship tables) to determine which child

objects in the after-image have been removed. For each child object,

deleteMyChildren() removes the corresponding child instance from the

relationship tables for the parent and child participants (parentParticpntDefName

and childParticpntDefName, respectively).

The deleteMyChildren() method requires that a parent/child relationship be

defined with Relationship Designer Express. For information on how to create this

kind of relationship, see “Creating the parent/child relationship definition” on

page 282.

See also

addMyChildren(), updateMyChildren()

“Managing child instances” on page 282

foreignKeyLookup()

Performs a lookup in a foreign relationship table based on the foreign key of the

source business object, failing to find a relationship instance if the foreign key does

not exist in the foreign relationship table.

Syntax

public static void foreignKeyLookup(String relDefName,

 String appParticpntDefName, BusObj

 appSpecificBusObj, String appForeignAttr,

 BusObj genericBusObj,

String genForeignAttr, CwExecutionContext map_ctx)

Parameters

relDefName The name of the simple identity relationship that manages the

foreign business object.

appParticpntDefName

The name of the participant definition that represents the

application-specific business object in the simple identity

relationship. The type of this participant is the foreign

application-specific business object.

appSpecificBusObj

The variable that contains the application-specific business object,

which contains the reference to the foreign business object.

440 Map Development Guide

appForeignAttr

The name of the attribute in the application-specific business object

that contains a key value for the foreign business object.

genericBusObj The variable that contains the generic business object to or from

which the appSpecificObject is being mapped.

genForeignAttr

The name of the attribute name in the generic business object that

contains the generic reference to a foreign business object.

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The foreignKeyLookup() method performs a foreign key lookup on the relationship

table for the AppParticpntDefName participant; that is, it checks the foreign

relationship table for a relationship instance that matches the value in the foreign

key of the appSpecificBusObj business object. If this lookup fails, the

foreignKeyLookup() method just sets the foreign key in the destination business

object to null; it does not insert a row in the foreign relationship table (as

the foreignKeyXref() method does). This method can be used in both inbound

and outbound maps.

Examples

On the Clarify_PartRequest to Requisition object, the VendorId field is a foreign

key lookup. This is because Purchasing does not call Vendor Wrapper. We do not

use the foreignKeyXref() method here because we do not want to insert a row if

the lookup fails.

if (ObjCustomerRole.isNull("RoleId"))

 {

 logError(5003, "OrderAssociatedCustomers.RoleId");

 // throw new MapFailureException("OrderAssociatedCustomers.RoleId

 // is null");

 }

try

 {

 IdentityRelationship.foreignKeyLookup("Customer", "SAPCust",

 ObjSAP_OrderPartners, "PartnerId", ObjCustomerRole,

 "RoleId", cwExecCtx);

 }

catch (RelationshipRuntimeException re)

 {

 logWarning(re.getMessage());

 }

if (ObjSAP_OrderPartners.get("PartnerId") == null)

 {

 logError(5007, "SAP_OrderPartners.PartnerId",

Chapter 21. IdentityRelationship class 441

"OrderAssociatedCustomers.RoleId", "Customer", "SAPCust",

 strInitiator);

 throw new MapFailureException("ForeignKeyLookup failed");

 }

See also

foreignKeyXref()

“Performing foreign key lookups” on page 290

foreignKeyXref()

Performs a lookup in the relationship table in the relationship database based on

the foreign key of the source business object, adding a new relationship instance in

the foreign relationship table if the foreign key does not exist.

Syntax

public static void foreignKeyXref(String relDefName,

 String appParticpntDefName, String genParticpntDefName,

 BusObj appSpecificBusObj, String appForeignAttr,

 BusObj genericBusObj, String genForeignAttr,

 CxExecutionContext map_ctx)

Parameters

relDefName The name of the simple identity relationship name that manages

the foreign business object.

appParticpntDefName

The name of the participant definition for the application-specific

business object in the simple identity relationship. The type of this

participant is the foreign application-specific business object.

genParticpntDefName

The name of the participant definition for the generic business

object in the simple identity relationship. The type of this

participant is the foreign generic business object.

appSpecificBusbj

The application-specific business object that contains the reference

to the foreign object.

appForeignAttr

The name of the attribute in the application-specific business object

that contains a key value for the foreign business object.

genericObject The generic business object to or from which the

appSpecificObject is being mapped.

genForeignAttr

The name of the attribute name in the generic business object that

contains the generic reference to a foreign business object.

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

442 Map Development Guide

Exceptions

RelationshipRuntimeException

Notes

The foreignKeyXref() method performs a foreign key lookup on the relationship

table for the AppParticpntDefName participant; that is, it checks the foreign

relationship table for a relationship instance that matches the value in the foreign

key of the appSpecificBusObj business object. If this lookup fails, the

foreignKeyXref() method adds a new relationship instance for the

application-specific key to the foreign relationship table; it does not just set the

foreign key in the destination business object to null (as the foreignKeyLookup()

method does). This method can be used in both inbound and outbound maps.

The foreignKeyXref() method performs the following validations on arguments

that are passed in:

v Validate the name of the relDefName relationship definition.

v Validate the name of the particpntDefName participant definition for the

application-specific business object.

v Make sure that the relDefName relationship is an identity relationship. In

addition, the participant definition in relDefName that represents the generic

business object must be defined asIBM WebSphere Business Integration Server

Express-managed. For more information on how to specify these settings, see

“Defining identity relationships” on page 244.

If any of these validations fails, foreignKeyXref() throws the

RelationshipRuntimeException exception.

Once the arguments are validated, the action that foreignKeyXref() takes depends

on the following information:

v The calling context—in the map execution context, passed in as part of the

map_ctx argument (cwExecCtx)

v The verb—in the source business object

– Application-specific business object (appSpecificBusObj) for calling contexts

EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE_CALL_RESPONSE

– Generic business object (genericBusObj) for calling contexts

SERVICE_CALL_REQUEST and ACCESS_RESPONSE

The foreignKeyXref() method handles all of the basic adding of relationship

instances in the foreign relationship table for the appropriate combination of

calling context and verb. For more information on the actions that

foreignKeyXref() takes, see “Using the Foreign Key Cross-Reference function

block” on page 291.. Table 110 and Table 111 provide the actions for each of the

calling contexts.

Examples

On the Clarify_SFAQuote to Order map, the CustomerId field is a foreign key

lookup. This is because Sales Order Processing Collab calls Customer Wrapper.

if (ObjSAP_OrderLineItem.get("SAP_OrderLineObjectIdentifier[0]")

 != null)

 {

 if (ObjSAP_OrderLineItem.getString(

"SAP_OrderLineObjectIdentifier[0].ObjectQualifier").equals("002"))

 {

 BusObj temp = ObjSAP_OrderLineItem.getBusObj(

Chapter 21. IdentityRelationship class 443

"SAP_OrderLineObjectIdentifier[0]");

 if (temp.isNull("ItemId"))

 {

 logWarning(5003,

 "SAP_OrderLineItem.SAP_OrderLineObjectIdentifier[1].ItemId");

 }

 else

 {

 try

 {

 IdentityRelationship.foreignKeyXref(

 "Item",

 "SAPMbasc",

 "CWItba",

 temp,

 "ItemId",

 ObjOrderLineItem,

 "ItemId",

 cwExecCtx);

 }

 catch (RelationshipRuntimeException re)

 {

 logWarning(re.getMessage());

 }

 if (ObjOrderLineItem.get("ItemId") == null)

 {

 logError(5009, "OrderLineItem.ItemId",

 "SAP_OrderLineItem.SAP_OrderLineObjectIdentifier.ItemId",

 "Item",

 "SAPMbasc",

 strInitiator);

 throw new MapFailureException("ForeignKeyXref() failed");

 }

 }

 }

 }

See also

foreignKeyLookup()

“Performing foreign key lookups” on page 290

maintainChildVerb()

Sets the child business object verb based on the map execution context and the

verb of the parent business object.

Syntax

public static void maintainChildVerb (String relDefName,

 String appSpecificParticpntName,

String genericParticpntName,

 BusObj appSpecificObj,

String appSpecificChildObj,

 BusObj genericObj,

String genericChildObj,

 CxExecutionContext map_ctx,

boolean to_Retrieve,

boolean is_Composite)

444 Map Development Guide

Parameters

relDefName The name of the identity relationship name that manages the child

business object.

appSpecificParticpntName

The name of the application-specific participant definition.

genericParticpntName

The name of the generic participant definition.

appSpecificObj

The application-specific object that contains the child object.

appSpecificChildObj

The name of the application child business object.

genericObj The generic business object to or from which the

appSpecificObject is being mapped.

genericChildObj

The name of the generic child business object.

ctx The execution context.

to_Retrieve The flag for the SERVICE_CALL_RESPONSE logic. When the

condition is true, update the verbs of the child business objects. If

false, do nothing.

isComposite The flag that indicates whether the child participant uses

composite keys. If the condition is true, keys are used; if false, keys

are not used.

Return values

None.

Exceptions

RelationshipRuntimeException—see the Notes section for more information on

when this exception is thrown

ClassCastException

Notes

The maintainChildVerb() method performs the following validations on arguments

that are passed in:

v Validate the name of the relDefName relationship definition.

v Validate the name of the participant definitions for the application-specific

business object (appSpecificParticpntName) and the generic business object

(genericParticpntName).

v Make sure that the application-specific (appSpecificObject) and generic business

objects (genericObject) are not null.

v Make sure that the relDefName relationship is an identity relationship. In

addition, the participant definition in relDefName that represents the generic

business object must be defined as IBM WebSphere Business Integration Server

Express-managed. For more information on how to specify these settings, see

“Defining identity relationships” on page 244.

Chapter 21. IdentityRelationship class 445

If any of these validations fails, maintainChildVerb() throws the

RelationshipRuntimeException exception.

Once the arguments are validated, the action that maintainChildVerb() takes

depends on the following information:

v The calling context—in the map execution context, passed in as part of the

map_ctx argument (cwExecCtx)

v The verb—in the source business object

– Application-specific business object (appSpecificObj) for calling contexts

EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE_CALL_RESPONSE

– Generic business object (genericObj) for calling context SERVICE_CALL_REQUEST

For more information on the actions that maintainChildVerb() takes, see

“Determining the child verb setting” on page 287. Table 105 through Table 108

provide the actions for each of the calling contexts.

You call this method in the transformation step for the child attribute of a parent

object. This child object can participant in either

v In the transformation step for the key attribute of a submap that transforms

child business objects if the child business objects are related using a unique key.

You usually use maintainChildVerb() to set the verb of a child object that

participates in a composite identity relationship

(maintainCompositeRelationship()). However, you can also call it to set the verb

of a child object that participates in a simple identity relationship

(maintainSimpleIdentityRelationship()).

Examples

For an example involving maintainChildVerb(), see “Customizing map rules for a

composite identity relationship” on page 277.

See also

maintainCompositeRelationship(), maintainSimpleIdentityRelationship()

“Setting the source child verb” on page 287

maintainCompositeRelationship()

Maintains a composite identity relationship from within the parent map.

Syntax

public static void maintainCompositeRelationship(String relDefName,

 String particpntDefName, BusObj appSpecificBusObj,

 Object genericBusObjList, CxExecutionContext map_ctx)

Parameters

relDefName The name of the composite identity relationship (as defined in

Relationship Designer Express) in which the parent attribute

participates.

particpntDefName

The name of the participant that includes the composite key. This

participant is always application-specific.

446 Map Development Guide

appSpecificBusObj

The variable that contains the application-specific business object

used in this map. This business object is the parent business object.

genericBusObjList

The variable that contains the generic business object or objects

used in this map, each generic business object is a contained child

business object of the generic parent object. This parameter can be

either a single generic business object (BusObj) or an array of

generic business objects (BusObjArray).

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

CxMissingIDException

If a participant does not exist in the relationship tables during a

map execution with a verb of Retrieve and an calling context of

SERVICE_CALL_REQUEST. The connector sends a “service call request

failed” message to the collaboration without sending the business

object to the application.

Notes

The maintainCompositeRelationship() method maintains the relationship table

associated with the particpntDefName participant of the relDefName composite

identity relationship. This method maintains a relationship whose participant uses

keys from multiple business objects at different levels (a composite key).

Note: The maintainCompositeRelationship() method cannot handle the case where

the child’s composite key depends on its grandparents. For more

information, see “Actions of General/APIs/Identity Relationship/Maintain

Composite Relationship” on page 275.

This method iterates through all the child business objects in the appSpecificObj

parent business object, maintaining the relationship instances in the partDefName

participant’s relationship table. The method obtains the relationship instance IDs

from the array of generic business objects that it receives (genericObjs). For each

child instance, maintainCompositeRelationship() calls the

maintainSimpleIdentityRelationship() method to perform the actual

relationship-table management. The action that

maintainSimpleIdentityRelationship() takes depends on the following

information:

v The calling context—in the map execution context, passed in as part of the

map_ctx argument (cwExecCtx)

v The verb—in the source business object, which is either:

– Application-specific business object (appSpecificBusObj) for calling contexts

EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE_CALL_RESPONSE

– Generic business object (one element of the genericBusObjList array) for

calling contexts SERVICE_CALL_REQUEST and ACCESS_RESPONSE

Chapter 21. IdentityRelationship class 447

For more information on the actions that maintainSimpleIdentityRelationship()

takes, see “Accessing identity relationship tables” on page 263. Table 95 through

Table 99 provide the actions for each of the calling contexts.

Use maintainCompositeRelationship() in conjunction with the

maintainChildVerb() and updateMyChildren() methods to maintain a composite

relationship. For more information, see “Customizing map rules for a composite

identity relationship” on page 277.

Examples

// This is an example of a code fragment in a parent map. It maintains

// the relationship table for all instances of a child object type for

// this application-specific parent object.

BusObjArray secondLevel2 =

 (BusObjArray)ObjFirstLevelBusObj2.get("MultiCardChild");

IdentityRelationship.maintainCompositeRelationship(

 "CmposRel",

 "AppSpPrt",

 ObjFirstLevelBusObj2,

 secondLevel2,

 cwExecCtx);

IdentityRelationship.updateMyChildren(

 "PCRel",

 "Parent",

 ObjFirstLevelBusObj2,

 "Child",

 "MultiCardChild",

 "CmposRel",

 "AppSpPrt",

 cwExecCtx);

For more examples involving maintainCompositeRelationship(), see “Customizing

map rules for a composite identity relationship” on page 277.

See also

updateMyChildren(), maintainChildVerb(), maintainSimpleIdentityRelationship()

“Using composite identity relationships” on page 274

maintainSimpleIdentityRelationship()

Maintains a simple identity relationship from within either a parent or child map.

Syntax

public static void maintainSimpleIdentityRelationship(

 String relDefName, String particpntDefName,

 BusObj appSpecificBusObj, BusObj genericBusObj,

 CxExecutionContext map_ctx)

Parameters

relDefName The name of the simple identity relationship (as defined in

Relationship Designer Express) in which this attribute participates.

448 Map Development Guide

particpntDefName

The name of the participant definition that represents the

application-specific business object.

appSpecificBusObj

The variable that contains the application-specific business object

used in this map.

genericBusObj The variable that contains the generic business object used in this

map.

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

see the Notes section for more information on when this exception

is thrown.

CxMissingIDException

If a participant does not exist in the relationship tables during a

map execution with a verb of Retrieve and an calling context of

SERVICE_CALL_REQUEST. The connector sends a “service call request

failed” message to the collaboration without sending the business

object to the application.

Notes

The maintainSimpleIdentityRelationship() method maintains the relationship

table associated with the particpntDefName participant of the relDefName simple

identity relationship. This method maintains a relationship whose participant uses

unique keys from multiple business objects at the same level.

The maintainSimpleIdentityRelationship() method performs the following

validations on arguments that are passed in:

v Validate the name of the relDefName relationship definition.

v Validate the name of the particpntDefName participant definition for the

application-specific business object.

v Make sure that the application-specific (appSpecificBusObj) and generic business

objects (genericBusObj) are not null.

v Make sure that the relDefName relationship is an identity relationship. In

addition, the participant definition in relDefName that represents the generic

business object must be defined as IBM WebSphere Business Integration Server

Express-managed. For more information on how to specify these settings, see

“Defining identity relationships” on page 244.

v Make sure the calling context is valid (see Table 94 for a list of valid calling

contexts).

v Make sure that the application-specific business object’s verb is supported. It

must be one of the following: Create, Update, Delete, Retrieve.

If any of these validations fails, maintainSimpleIdentityRelationship() throws the

RelationshipRuntimeException exception.

Chapter 21. IdentityRelationship class 449

Once the arguments are validated, the action that

maintainSimpleIdentityRelationship() takes depends on the following

information:

v The calling context—in the map execution context, passed in as part of the

map_ctx argument (cwExecCtx)

v The verb—in the source business object

– Application-specific business object (appSpecificBusObj) for calling contexts

EVENT_DELIVERY (or ACCESS_REQUEST) and SERVICE_CALL_RESPONSE

– Generic business object (genericBusObj) for calling contexts

SERVICE_CALL_REQUEST and ACCESS_RESPONSE

The maintainSimpleIdentityRelationship() method handles all of the basic

adding and deleting of participants and relationship instances for each combination

of calling context and verb. For more information on the actions that

maintainSimpleIdentityRelationship() takes, see “Accessing identity relationship

tables” on page 263. Table 95 through Table 99 provide the actions for each of the

calling contexts.

You can call this method in either of the following cases:

v In the transformation step for the key attribute of a parent object

v In the transformation step for the key attribute of a submap that transforms

child business objects if the child business objects are related using a unique key.

Use maintainSimpleIdentityRelationship() in conjunction with the

maintainChildVerb() method to maintain a simple identity relationship. For more

information, see “Defining transformation rules for a simple identity relationship”

on page 273.

Examples

The following example maintains the simple identity relationship between the

Clarify_BusOrg and generic Customer business objects in an inbound

Clarify_BusOrg-to-Customer map:

IdentityRelationship.maintainSimpleIdentityRelationship(

 "CustIdentity",

 "ClarBusOrg",

 ObjClarify_BusOrg,

 ObjCustomer,

 cxExecCtx);

For more examples involving maintainSimpleIdentityRelationship(), see

“Defining transformation rules for a simple identity relationship” on page 273.

See also

maintainChildVerb()

“Using simple identity relationships” on page 263

updateMyChildren()

Adds and deletes child instances in a specified parent/child relationship of an

identity relationship as necessary.

450 Map Development Guide

Syntax

void updateMyChildren(String parentChildRelDefName,

 String parentParticpntDef, BusObj parentBusObj,

 String childParticpntDef, String childAttrName,

 String childIdentityRelDefName,

 String childIdentityParticpntDefName,

 CxExecutionContext map_ctx)

Parameters

parentChildRelDefName

The name of the parent/child relationship definition.

parentParticpntDefName

The name of the participant definition that represents the parent

business object in the parent/child relationship.

parentBusObj The variable that contains the parent business object.

childParticpntDefName

The name of the participant definition that represents the child

business object in the parent/child relationship.

childAttrName The name of the attribute in the parent business object whose type

is the child object name that participates in the parent/child

relationship. For example, in a customer-address relationship, if the

parent object contains an Address1 attribute, which is a child

business object of type Address, the childAttrName attribute name

is Address1.

childIdentityRelDefName

The name of the identity relationship in which the child business

object participates.

childIdentityParticpntDefName

The name of the participant definition that represents the child

business object in the identity relationship.

map_ctx The map execution context. To pass the map execution context, use

the cwExecCtx variable, which Map Designer Express defines for

every map.

Return values

None.

Exceptions

RelationshipRuntimeException

see the Notes section for more information on when this exception

is thrown

Notes

The updateMyChildren() method updates the child instances in the relationship

tables of the parentChildRelDefName and childIdentityRelDefName relationship

definitions. This method is useful in an identity relationship when a parent

business object has been updated as a result of the addition or removal of child

objects. Use updateMyChildren() to compare the after-image (in parentBusObj) with

the before-image (information in the relationship tables) to determine which child

objects in the after-image are new or deleted.

Chapter 21. IdentityRelationship class 451

Note: The updateMyChildren() method cannot handle the case where the child’s

composite key depends on its grandparents. For more information, see “Tips

on using Update My Children” on page 284.

The updateMyChildren() method performs the following validations on arguments

that are passed in:

v Validate the name of the parentChildrelDefName relationship definition (first

argument).

v Make sure that the parentChildRelDefName relationship is a parent/child

relationship and that the parentParticpntDefName and childParticpntDefName

are part of the parentChildRefDefName relationship definition.

v Make sure that the childIdentityRelDefName relationship is an identity

relationship. In addition, the participant definition in childIdentityRelDefName

that represents the generic business object must be defined as IBM WebSphere

Business Integration Server Express-managed. For more information on how

to specify these settings, see “Defining identity relationships” on page 244.

v Make sure that the childIdentityParticpntDefName is part of the

childIdentityRefDefName relationship definition

If any of these validations fails, updateMyChildren() throws the

RelationshipRuntimeException exception.

Once the arguments are validated, the updateMyChildren() method adds children

or deletes children from the list of child business objects that belong to the

specified parent business object as appropriate. This method performs one of the

following tasks to the relationship tables for the parent and child participants

(parentParticpntDefName and childParticpntDefName, respectively):

v For each new child object, updateMyChildren() adds a child instance.

This method does not add to the child’s relationship table because all the

business objects that are currently associated with the parent object have already

been maintained when maintainCompositeRelationship() was called.

v For each deleted child object, updateMyChildren() removes the corresponding

child instance.

This method removes from the child’s cross-reference table in addition to the

parent/child relationship table.

The updateMyChildren() method requires that a parent/child relationship is

defined with Relationship Designer Express. For information on how to create this

kind of relationship, see “Creating the parent/child relationship definition” on

page 282.

Note: If the child business object has a unique key, the child participant’s attribute

is the unique key of the child object. If the child object does not have a

unique key, the child participant’s attribute is this nonunique key.

Examples

For an example involving updateMyChildren() in conjunction with the

maintainCompositeRelationship() method, see the Examples section of

maintainCompositeRelationship().

For more examples involving updateMyChildren(), see “Customizing map rules for

a composite identity relationship” on page 277.

452 Map Development Guide

See also

addMyChildren(), deleteMyChildren(), maintainCompositeRelationship(),

maintainSimpleIdentityRelationship()

“Handling updates to the parent business object” on page 283

Chapter 21. IdentityRelationship class 453

454 Map Development Guide

Chapter 22. CxExecutionContext class

The CxExecutionContextclass provides methods for operating on the global

execution context, which is a holder for user-accessible context information that is

associated with a given flow. Currently, only the map-specific execution

information is shown as the map execution context. Map Designer Express

automatically declares a special variable in the map code to access the map

execution context, cwExecCtx. When you call a map from within a collaboration,

however, you must instantiate your own global execution context and map

execution context.

Table 140 summarizes the methods of the CxExecutionContext class.

 Table 140. CxExecutionContext method summary

Method Description Page

CxExecutionContext() Constructs a new instance of a global

execution context.

455

getContext() Retrieves the specified execution

context from the global execution

context.

456

setContext() Sets a particular execution context to

be part of the global execution

context.

456

Static constants

The CxExecutionContext class defines the static constants that Table 141 shows.

 Table 141. Static constants defined in the CxExecutionContext class

Constant name Meaning

MAPCONTEXT A string constant to indicate that the

execution context is map-specific

CxExecutionContext()

Constructs a new instance of a global execution context.

Syntax

CxExecutionContext()

Parameters

None

Return values

Returns the new instance of the global execution context.

© Copyright IBM Corp. 2004, 2005 455

Notes

The CxExecutionContext() constructor returns a global execution context, which is

needed to hold the map execution context before calling a map from a

collaboration.

getContext()

Retrieve the specified execution context from the global execution context.

Syntax

Object getContext(String contextName)

Parameters

contextName The name of an execution context to obtain from the global

execution context.

Return values

Returns an instance of the specified execution context.

Examples

The following example obtains a map execution context from a global execution

context.

(MapExeContext) mapExeContext = globalExeContext.getContext(

 CxExecutionContext.MAPCONTEXT);

setContext()

Sets a particular execution context to be part of the global execution context.

Syntax

void setContext(String contextName, Object context)

Parameters

contextName The name of the specific execution context to assign to the global

execution context. Currently, MAPCONTEXT is the only valid value.

context An object that contains the information for the execution context.

For map execution contexts, this Object is of type MapExeContext.

Return values

None

Notes

You might explicitly set the map execution context if you want to execute a

submap with a relationship transformation. In this case, you would choose to

create a new context with its own calling context (initiator) in the map context so

that the relationship behaves correctly.

Currently, you can only use the CxExecutionContext() to set the map execution

context, and only save one MapExeContext() instance in the CxExecutionContext().

456 Map Development Guide

If you use setContext()to set a new MapExeContext()into the

CxExecutionContext(), the old one will be gone.

Examples

The following example shows the use of setContext():

 mapExeContext originalMapExeContext = (MapExeContext)

cwExecCtx.getContext(CxExecutionContext.MAPCONTEXT);

 MapExeContext newMapExeContext = new MapExeContext();

newMapExeContext.setInitiator(originalMapExeContext.getInitiator());

 newMapExeContext.setConnName(originalMapExeContext.getConnName());

 newMapExeContext.setLocale(originalMapExeContext.getLocale());

 cwExecCtx.setContext(CxExecutionContext.MAPCONTEXT,

newMapExeContext);

The following example saves a map execution context into a global execution

context:

globalExeContext.setContext(CxExecutionContext.MAPCONTEXT,

 mapExeContext);

The following example shows how to set the map execution context:

CxExecutionContext cwCtx = new CxExecutionContext();

MapExeContext mapCtx = new MapExeContext();

cwCtx.setContext(CxExecutionContext.MAPCONTEXT, mapCtx);

// do some work involving execution context

 cwExecCtx.setContext(CxExecutionContext.MAPCONTEXT,

originalMapExeContext);

Chapter 22. CxExecutionContext class 457

458 Map Development Guide

Chapter 23. MapExeContext class

The MapExeContext class provides methods for querying and setting various

runtime values that are in effect during map execution.

Table 142 summarizes the methods of the MapExeContext class.

 Table 142. MapExeContext method summary

Method Description Page

getConnName() Retrieves the connector name associated with the current

map instance.

459

getInitiator() Retrieves the calling context associated with the current

map instance.

459

getLocale() Retrieves the locale associated with the map execution

context.

460

getOriginalRequestBO() Retrieves the original-request business object associated

with the current map instance.

461

setConnName() Sets the connector name associated with the current map

instance.

462

setInitiator() Sets the calling context associated with the current map

instance.

462

setLocale() Sets the locale associated with the map execution

context.

462

getConnName()

Retrieves the connector name associated with the current map instance.

Syntax

String getConnName()

Parameters

None.

Return values

Returns a String containing the connector name.

Exceptions

None.

See also

setConnName()

getInitiator()

Retrieves the calling context associated with the current map instance.

Syntax

String getInitiator()

© Copyright IBM Corp. 2004, 2005 459

Parameters

None.

Return values

Returns a static constant variable representing the calling context for the execution

of the current map instance. Calling contexts are one of the following values:

EVENT_DELIVERY

The source business objects being mapped are sent from an

application to InterChange Server Express through a connector.

ACCESS_REQUEST

The source objects being mapped are sent from an application to

InterChange Server Express through an access client.

SERVICE_CALL_REQUEST

The source objects being mapped are sent from InterChange Server

Express to an application through a connector.

SERVICE_CALL_RESPONSE

The source objects being mapped are sent back to InterChange

Server Express from an application through a connector after a

successful service call request.

SERVICE_CALL_FAILURE

The source objects being mapped are sent back to InterChange

Server Express from an application through a connector after a

failed service call request.

ACCESS_RESPONSE

The source objects being mapped are sent back from InterChange

Server Express to the application through an access client.

Exceptions

None.

Notes

The calling context is part of the map execution context. For more information on

how calling contexts are used in maps, see “Understanding map execution

contexts” on page 189.

Examples

In the following example, compare the map run-time initiator with the constants

defined in the MapExeContext class:

cwMapCtx =

(MapExeContext)cwExecCtx.getContext (CxExecutionContext.MAPCONTEXT);

String sInitiator = null;

sInitiator = cwMapCtx.getInitiator();

 logInfo("**************Initiator = + sInitiator);

See also

getOriginalRequestBO(), setInitiator()

getLocale()

Retrieves the locale associated with the map execution context.

460 Map Development Guide

Syntax

Locale getLocale()

Parameters

None.

Return values

Returns a Locale object that contains the language and country code for the map

execution context.

Exceptions

None.

Notes

This method must be run on the map variable of MapExeContext type, which is

named cwMapCtx when generated by the system, or which you name when calling

a map in an environment that does not automatically generate map code (such as

within a collaboration).

Examples

The following example retrieves the locale of the map execution context into a

variable and then reports it with a trace statement:

Locale mapLocale = cwMapCtx.getLocale();

String mapLocaleToString = mapLocale.toString();

trace(3, "THE MAP LOCALE IS: " + mapLocaleToString);

See also

setLocale()

getOriginalRequestBO()

Retrieves the original-request business object associated with the current map

instance.

Syntax

BusObj getOriginalRequestBO()

Parameters

None.

Return values

Returns the original-request business object for the map, as the following table

shows:

 Calling Contexts Original-Request Business Object

EVENT_DELIVERY, ACCESS_REQUEST Application-specific business object that came

in from the application

SERVICE_CALL_REQUEST,

SERVICE_CALL_FAILURE

Generic business object that was sent down

from InterChange Server Express

SERVICE_CALL_RESPONSE Generic business object that was sent down

by the SERVICE_CALL_REQUEST

Chapter 23. MapExeContext class 461

Calling Contexts Original-Request Business Object

ACCESS_RESPONSE Application-specific business object that came

in from the access request initially

Exceptions

None.

Notes

The original-request business object is part of the map execution context. The

getOriginalRequestBO() method returns the original-request business object, which

depends on the map’s calling context. For more information on how this business

object is used in maps, see “Original-request business objects” on page 191.

See also

getInitiator()

setConnName()

Sets the connector name associated with the current map instance.

Syntax

void setConnName(String connectorName)

Parameters

connectorName Name of the connector

Return values

None.

Exceptions

None.

Notes

The controller for the connector you specify must be running in InterChange

Server Express.

See also

getConnName()

setInitiator()

Sets the calling context associated with the current map instance.

Syntax

void setInitiator(String callingContext)

462 Map Development Guide

Parameters

callingContext

String containing one of the following values:

EVENT_DELIVERY The source objects being mapped

are sent from an application

through a connector to InterChange

Server Express.

ACCESS_REQUEST The source objects being mapped

are sent from an application to

InterChange Server Express

through an access client.

SERVICE_CALL_REQUEST The source objects being mapped

are sent from InterChange Server

Express to an application through a

connector.

SERVICE_CALL_RESPONSE The source objects being mapped

are sent back to InterChange Server

Express from an application

through a connector after a

successful service call request.

SERVICE_CALL_FAILURE The source objects being mapped

are sent back to InterChange Server

Express from an application

through a connector after a failed

service call request.

ACCESS_RESPONSE The source objects being mapped

are sent back from InterChange

Server Express to the application

through an access client.

Return values

None.

Exceptions

None.

Notes

The calling context is part of the map execution context. The calling context

indicates the direction in which the source business object is being mapped. For

more information on how calling contexts are used in maps, see “Understanding

map execution contexts” on page 189.

See also

getInitiator()

setLocale()

Sets the locale associated with the map execution context.

Chapter 23. MapExeContext class 463

Syntax

void setLocale(Locale newLocale)

Parameters

newLocale The new Locale object to set the map execution context to.

Return values

None.

Exceptions

None.

Notes

This method must be run on the map variable of MapExeContext type, which is

named cwMapCtx when generated by the system, or which you name when calling

a map in an environment that does not automatically generate map code (such as

within a collaboration).

The locale of the business object produced by a map is affected by the local of the

map’s execution context. If you change the locale of the map execution context as

part of the map’s logic, therefore, the new locale is copied to the business object.

This is done when the user-modifiable logic is finished executing (that is, when the

transformations visible in the diagram of the Map Designer Express are finished).

You can use this API to change the business object to a different locale than the

one it had when it entered the map.

Examples

The code below defines a new Locale object, sets the map execution context to that

new Locale value, and then reports the map execution context locale:

Locale newLocale = new Locale("ja", "JP");

cwMapCtx.setLocale(newLocale);

trace(3, "THE MAP LOCALE IS NOW: " + cwMapCtx.getLocale().toString());

See also

getLocale()

Deprecated methods

Some methods in the MapExeContext class were supported in earlier versions but

are no longer supported. These deprecated methods will not generate errors, but

CrossWorlds recommends that you avoid their use and migrate existing code to

the new methods. The deprecated methods might be removed in a future release.

Table 143 lists the deprecated method for the MapExeContext class. If you have not

used Map Designer Express before, ignore this section.

 Table 143. Deprecated Method, MapExeContext Class

Former method Replacement

getGenericBO() getOriginalRequestBO()

464 Map Development Guide

Chapter 24. Participant class

The methods documented in this chapter operate on objects of the Participant

class. Participant instances are used in relationship instances. Each Participant

instance contains the following information:

v name of the relationship definition

v relationship instance ID

v name of the participant definition

v data to associate with the participant

The Participant class provides methods for setting and retrieving each of these

values for a given participant.

Table 144 summarizes the methods of the Participant class.

 Table 144. Participant method summary

Method Description Page

Participant() Creates a new Participant

instance.

465

getBusObj(), getString(), getLong(),

getInt(), getDouble(),
getFloat(), getBoolean()

Retrieves the data associated with

the Participant instance.

467

getInstanceId() Retrieves the relationship instance

ID of the relationship in which the

Participant instance is

participating.

467

getParticipantDefinition() Retrieves the participant definition

name from which the Participant

instance is created.

468

getRelationshipDefinition() Retrieves the name of the

relationship definition in which

the Participant instance is

participating.

468

set() Sets the data associated with the

Participant instance.

469

setInstanceId() Sets the instance ID of the

relationship in which the

Participant instance is

participating.

469

setParticipantDefinition() Sets the participant definition

name from which the Participant

instance is created.

470

setRelationshipDefinition() Sets the relationship definition in

which the Participant instance is

participating.

470

Participant()

Creates a new Participant instance.

© Copyright IBM Corp. 2004, 2005 465

Syntax

To add a new participant instance to an existing participant in a relationship

instance:

Participant(String relDefName,String partDefName,

int instanceId,BusObj partData)

Participant(String relDefName,String partDefName,

int instanceId,String partData)

Participant(String relDefName,String partDefName,

int instanceId,long partData)

Participant(String relDefName,String partDefName,

int instanceId,int partData)

Participant(String relDefName,String partDefName,

int instanceId,double partData)

Participant(String relDefName,String partDefName,

int instanceId,float partData)

Participant(String relDefName,String partDefName,

int instanceId,boolean partData)

To create a new participant instance with no relationship instance:

Participant(String relDefName,String partDefName, BusObj partData)

Participant(String relDefName,String partDefName, String partData)

Participant(String relDefName,String partDefName, long partData)

Participant(String relDefName,String partDefName, int partData)

Participant(String relDefName,String partDefName, double partData)

Participant(String relDefName,String partDefName, float partData)

Participant(String relDefName,String partDefName, boolean partData)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition that describes the participant.

instanceId The relationship instance ID for the relationship instance to receive

the new participant instance.

participantData

Data to associate with the participant instance. Can be one of the

following data types: BusObj, String, long, int, double, float,

boolean.

Return values

Returns new participant instance.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

Notes

This method is the Participant class constructor. It takes the following forms:

v The first form of the constructor adds a new participant instance to the

relationship instance identified by instanceId.

v The second form creates a new participant instance with no associated

relationship instance. You can use this participant instance as an argument to

IdentityRelationship.addMyChildren() or Relationship.create() to create a

new relationship instance. With the Relationship.create() method, having no

relationship instance ID is a requirement.

466 Map Development Guide

The data to associate with the participantData parameter depends on the kind of

relationship:

v To create a participant instance for an identity relationship, use a business object

as the participantData parameter.

v To create a participant for a lookup relationship, use any of the following data

types for the participantData parameter: String, long, int, double, float,

boolean.

Examples

// create a participant instance with no relationship instance ID

participant p = new Participant(myRelDef,myPartDef,myBusObj);

// create a relationship instance

int relInstanceId = Relationship.addParticipant(p);

See also

addMyChildren(), Chapter 7, “Creating relationship definitions,” on page 237,

“Transforming with a submap” on page 45

getBusObj(), getString(), getLong(), getInt(), getDouble(),
getFloat(), getBoolean()

Retrieves the data associated with the Participant instance.

Syntax

BusObj getBusObj()

String getString()

long getLong()

int getInt()

double getDouble()

float getFloat()

boolean getBoolean()

Return values

Returns the data associated with this participant instance. This data value is of the

type included in the method name. For example, getBoolean() returns a boolean

value, getBusObj() returns a BusObj value, getDouble() returns a double value, and

so on.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

See also

set(), Chapter 7, “Creating relationship definitions,” on page 237, “Transforming

with a submap” on page 45

getInstanceId()

Retrieves the relationship instance ID of the relationship in which the Participant

instance is participating.

Chapter 24. Participant class 467

Syntax

int getInstanceId()

Return values

Returns an integer representing the instance ID of the relationship instance in

which this Participant instance is participating. If the Participant instance is not

a member of a relationship instance, this method returns the constant,

INVALID_INSTANCE_ID.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

See also

setInstanceId(), Chapter 7, “Creating relationship definitions,” on page 237,

“Transforming with a submap” on page 45

getParticipantDefinition()

Retrieves the participant definition name from which the Participant instance is

created.

Syntax

String getParticipantDefinition()

Return values

Returns a String containing the name of the participant definition associated with

this participant instance.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

See also

setParticipantDefinition(), Chapter 7, “Creating relationship definitions,” on

page 237, “Transforming with a submap” on page 45

getRelationshipDefinition()

Retrieves the name of the relationship definition in which the Participant instance

is participating.

Syntax

String getRelationshipDefinition()

Return values

Returns a String containing the name of the relationship definition in which this

participant instance participates.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

468 Map Development Guide

See also

setRelationshipDefinition(), Chapter 7, “Creating relationship definitions,” on

page 237, “Transforming with a submap” on page 45

set()

Sets the data associated with the Participant instance.

Syntax

void set(BusObj partData)

void set(String partData)

void set(long partData)

void set(int partData)

void set(double partData)

void set(float partData)

void set(boolean partData)

Parameters

partData Data to associate with the Participant instance. Can be one of the

following data types: BusObj, String, long, int, double, float,

boolean.

Return values

None.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

Notes

If you set the participant data to be a business object (BusObj type), the relationship

definition and participant definition must already be set. If you set the participant

data to any other data type, it does not matter which setting you specify first.

See also

getBusObj(), getString(), getLong(), getInt(), getDouble(),
getFloat(), getBoolean(), Chapter 7, “Creating relationship definitions,” on page

237, “Transforming with a submap” on page 45

setInstanceId()

Sets the instance ID of the relationship in which the Participant instance is

participating.

Syntax

void setInstanceId(int id)

Parameters

id Instance ID of the relationship.

Chapter 24. Participant class 469

Return values

None.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

Notes

One use of setInstanceId() is to remove the relationship instance ID when you

want to pass a participant instance as a parameter to the Participant() or

create() methods. In this case, you set the instance ID to the constant

INVALID_INSTANCE_ID.

Examples

// wipe out the relationship instance ID

myParticipant.setInstanceId(Participant.INVALID_INSTANCE_ID);

// pass the participant instance to the create() method

int newRelId = create(myParticipant);

See also

getInstanceId(), Chapter 7, “Creating relationship definitions,” on page 237,

“Transforming with a submap” on page 45

setParticipantDefinition()

Sets the participant definition name from which the Participant instance is

created.

Syntax

void setParticipantDefinition(String partDefName)

Parameters

partDefName Name of the participant definition from which the Participant

instance is created.

Return values

None.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

See also

setParticipantDefinition(), Chapter 7, “Creating relationship definitions,” on

page 237, “Transforming with a submap” on page 45

setRelationshipDefinition()

Sets the relationship definition in which the Participant instance is participating.

470 Map Development Guide

Syntax

void setRelationshipDefinition(String relDefName)

Parameters

relDefName Name of the relationship definition.

Return values

None.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

See also

getRelationshipDefinition(), Chapter 7, “Creating relationship definitions,” on

page 237, “Transforming with a submap” on page 45

Chapter 24. Participant class 471

472 Map Development Guide

Chapter 25. Relationship class

The methods documented in this chapter operate on objects of the IBM WebSphere

Business Integration Server Express-defined class Relationship. The Relationship

class provides methods for manipulating the runtime instances of relationships,

called relationship instances. You typically use these methods in transformation steps

for business object attributes that are mapped as identity relationships or static

lookups. For more information on programming relationship attributes using the

methods in this class, see “Transforming with a submap” on page 45.

Most methods in this class support variations in the parameters you specify. The

variations generally follow these guidelines:

v To identify a specific participant in a relationship instance, you usually specify

the relationship definition name, the participant definition name, the relationship

instance ID, and the business object associated with the participant.

v Alternatively, you can specify a Participant instance which contains the

relationship definition name, participant definition name, instance ID and

business object, as its attributes.

v For some operations, you can omit the relationship instance ID (for example,

when creating a new relationship) or the business object name.

In most cases, if you have a Participant instance (for example, as the result of a

retrieve() call), it is easier to pass it as a parameter to a Relationship class

method instead of specifying each attribute individually.

All methods in this class are declared as static. You can call them from existing

relationship instances or by referencing the Relationship class.

Table 145 summarizes the methods in the Relationship class.

 Table 145. Relationship method summary

Method Description Page

Static methods

addParticipant() Adds a new participant to a relationship

instance.

474

create() Creates a new relationship instance. 476

deactivateParticipant() Deactivates a participant from one or more

relationship instances.

477

deactivateParticipantByInstance() Deactivates a participant from a specific

relationship instance.

478

deleteParticipant() Removes a participant instance from one or

more relationship instances.

479

deleteParticipantByInstance() Removes a participant from a specific

relationship instance.

480

getNewID() Returns the next available relationship instance

ID for a relationship, based on the relationship

definition name.

481

retrieveInstances() Retrieves only the relationship instance IDs for

zero or more relationship instances which

contain a given participant instance.

482

retrieveParticipants() Retrieves zero or more participants from a

relationship instance.

484

© Copyright IBM Corp. 2004, 2005 473

Table 145. Relationship method summary (continued)

Method Description Page

updateParticipant() Updates a participant in one or more

relationship instances.

485

addParticipant()

Adds a new participant to a relationship instance.

Syntax

To add a new participant to an existing relationship instance:

int addParticipant

 (String relDefName,

String partDefName,

int instanceId,BusObj partData)

int addParticipant

 (String relDefName,

String partDefName,

 int instanceId,String partData)

int addParticipant

 (String relDefName,

String partDefName,int instanceId,

long partData)

int addParticipant

 (String relDefName,

String partDefName,int instanceId,

int partData)

int addParticipant

 (String relDefName,

String partDefName,

int instanceId,

double partData)

int addParticipant

 (String relDefName,

String partDefName,

int instanceId, float partData)

int addParticipant

 (String relDefName,

String partDefName,

int instanceId,

boolean partData)

To add a participant to a new relationship instance:

int addParticipant

 (String relDefName,

String partDefName,

 BusObj partData)

int addParticipant

 (String relDefName,

String partDefName,

 String partData)

int addParticipant

 (String relDefName,

String partDefName,

 long partData)

474 Map Development Guide

int addParticipant

 (String relDefName,

String partDefName,

 int partData)

int addParticipant

 (String relDefName,

String partDefName,

 double partData)

int addParticipant

 (String relDefName,

String partDefName,

 float partData)

int addParticipant

 (String relDefName,

String partDefName,

 boolean partData)

To add an existing participant instance to a relationship instance:

int addParticipant(Participant participant)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

instanceId Relationship instance ID of the relationship instance to receive the

new participant.

partData Data to associate with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

participant Participant to add to the relationship.

Return values

Returns an integer representing the instance ID of the relationship to receive the

new participant.

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

Notes

The first form of the method adds a new participant to the relationship instance

you specify. Each variation supports a different data type for the data to associate

with the participant.

The second form, since it does not specify a relationship instance, creates a new

relationship instance and adds the new participant. In this case, the return value is

the instance ID of the newly created relationship instance. Each variation supports

a different data type for the data to associate with the participant.

The third form adds the participant instance you pass to the relationship instance

specified in the participant instance. If the participant instance has no relationship

instance ID, a new relationship instance is created and the new instance ID is

returned.

The addParticipant() method is a class method declared as static. You can call

this method from an existing relationship instance or by referencing the

Relationship class.

Chapter 25. Relationship class 475

See also

create()

create()

Creates a new relationship instance.

Syntax

int create(String relDefName, String partDefName, BusObj partData)

int create(String relDefName, String partDefName, String partData)

int create(String relDefName, String partDefName, long partData)

int create(String relDefName, String partDefName, int partData)

int create(String relDefName, String partDefName, double partData)

int create(String relDefName, String partDefName, float partData)

int create(String relDefName, String partDefName, boolean partData)

int create(Participant participant)

Parameters

relDefName Name of the relationship definition.

partDefName The name of the participant definition.

partData Data to associate with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

participant First participant in the relationship.

Return values

Returns an integer representing the relationship instance ID of the new

relationship.

Exceptions

RelationshipRuntimeException

Notes

The create() method creates a new relationship instance with one participant

instance of the partDefName participant definition. You can specify the data for this

new participant instance with the partData argument. After calling this method,

you can call addMyChildren() to add more participants to the relationship instance.

In the last form of the method, the participant parameter cannot have a

relationship instance ID. Normally, participant instances do have relationship

instance IDs. Because this method creates a new relationship instance, you must

make sure that the participant instance does not already have an instance

associated with it. To do this, use the setInstanceId() method (in the Participant

class) to set the instance ID to the INVALID_INSTANCE_ID constant.

The create() method is a class method declared as static. You can call this method

from an existing relationship instance or by referencing the Relationship class.

See also

addMyChildren(), setInstanceId()

476 Map Development Guide

deactivateParticipant()

Deactivates a participant from one or more relationship instances.

Syntax

void deactivateParticipant(String relDefName,

String partDefName,

 BusObj partData)

void deactivateParticipant(String

relDefName,

String partDefName,

 String partData)

void deactivateParticipant(String relDefName,

String partDefName,

 long partData)

void deactivateParticipant(String relDefName,

String partDefName,

 int partData)

void deactivateParticipant(String relDefName,

String partDefName,

 double partData)

void deactivateParticipant(String relDefName,

String partDefName,

 float partData)

void deactivateParticipant(String relDefName,

String partDefName,

 boolean partData)

void deactivateParticipant(Participant participant)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

partData Data associated with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

participant Participant to deactivate in the relationship.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deactivateParticipant() method deactivates the participant from all instances

of relDefName where partData is associated with partDefName. This method does

not remove the participant from the relationship tables. Use this method to remove

a participant while preserving a record of its existence in the relationship tables.

Chapter 25. Relationship class 477

To view deactivated participants, you can query the relationship tables directly. To

find the table names and access information for a given relationship, open the

relationship definition using Relationship Designer Express and choose Advanced

Settings from the Edit menu. See “Specifying advanced relationship settings” on

page 249 for more information on these settings.

Attention: Because deactivateParticipant() does not actually remove participant

rows from your relationship tables, you should not use this method

routinely to delete participants. Doing so can cause your relationship

tables to become unnecessarily large.

The deactivateParticipant() method is a class method declared as static. You can

call this method from an existing relationship instance or by referencing the

Relationship class.

See also

deleteParticipant(), deactivateParticipantByInstance(), Chapter 7, “Creating

relationship definitions,” on page 237, “Transforming with a submap” on page 45

deactivateParticipantByInstance()

Deactivates a participant from a specific relationship instance.

Syntax

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, BusObj partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, String partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, long partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, int partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, double partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, float partData])

void deactivateParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, boolean partData])

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

instanceId ID of the relationship instance to which the participant belongs.

partData Data associated with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean. This is

an optional parameter

Return values

None.

478 Map Development Guide

Exceptions

RelationshipRuntimeException – See “Handling exceptions” on page 185.

Notes

The deactivateParticipantByInstance() method deactivates the specified

participant from the relationship instance that relationship instance ID instanceID

identifies. However, the method does not remove the participant from the

relationship tables. Use this method when you want to remove a participant while

preserving a record of its existence in the relationship tables.

To view deactivated participants, you can query the relationship tables directly. To

find the table names and access information for a given relationship, open the

relationship definition using Relationship Designer Express and choose Advanced

Settings from the Edit menu. See “Specifying advanced relationship settings” on

page 249 for more information on these settings.

Attention: Since deactivateParticipantByInstance() does not actually remove

participant rows from your relationship tables, you should not use this

method routinely to delete participants. Doing so can cause your

relationship tables to become unnecessarily large.

The deactivateParticipantByInstance() method is a class method declared as

static. You can call this method from an existing relationship instance or by

referencing the Relationship class.

See also

deleteParticipant(), deactivateParticipant()

deleteParticipant()

Removes a participant instance from one or more relationship instances.

Syntax

void deleteParticipant(String relDefName, String partDefName,

BusObj partData)

void deleteParticipant(String relDefName, String partDefName,

String partData)

void deleteParticipant(String relDefName, String partDefName,

long partData)

void deleteParticipant(String relDefName, String partDefName,

int partData)

void deleteParticipant(String relDefName, String partDefName,

double partData)

void deleteParticipant(String relDefName, String partDefName,

float partData)

void deleteParticipant(String relDefName, String partDefName,

boolean partData)

void deleteParticipant(Participant participant)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

partData Data associated with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

Chapter 25. Relationship class 479

participant A Participant instance representing the participant to remove from

the relationship.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deleteParticipant() method deletes the specified participant from all

instances of relDefName where partData is associated with partDefName and deletes

it from the underlying relationship tables.

The deleteParticipant() method is a class method declared as static. You can call

this method from an existing relationship instance or by referencing the

Relationship class.

See also

deactivateParticipant(), deleteParticipantByInstance()

deleteParticipantByInstance()

Removes a participant from a specific relationship instance.

Syntax

void deleteParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, BusObj partData])

void deleteParticipantByInstance(String relDefName,

String partDefName, int instanceId [, String partData])

void deleteParticipantByInstance(String relDefName,

String partDefName, int instanceId [, long partData])

void deleteParticipantByInstance(String relDefName,

String partDefName, int instanceId [, int partData])

void deleteParticipantByInstance(String relDefName,

String partDefName, int instanceId [, double partData])

void deleteParticipantByInstance(String relDefName,

String partDefName, int instanceId [, float partData])

void deleteParticipantByInstance(String relDefName,

 String partDefName, int instanceId [, boolean partData])

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

instanceId ID of the relationship instance to which the participant belongs.

480 Map Development Guide

partData Data associated with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean. This

is an optional parameter.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The deleteParticipantByInstance() method deletes a participant instance from

the relationship identified by the instanceId relationship instance ID. The method

removes the participant from the relationship instance and from the underlying

relationship tables.

If you supply the optional partData parameter, deleteParticipantByInstance()

deletes the participant instance only if partData is the data associated with the

partDefName participant definition.

The last form of the method accepts a participant instance as the only parameter.

The participant instance must contain the relationship definition name, participant

definition name, and either the instance ID or the participant data.

The deleteParticipantByInstance() method is a class method declared as static.

You can call this method from an existing relationship instance or by referencing

the Relationship class.

See also

deactivateParticipant()

getNewID()

Returns the next available relationship instance ID for a relationship, based on the

relationship definition name.

Syntax

public static int getNewID(String relDefName)

Parameters

relDefName Name of the relationship definition.

Return values

Returns a relationship instance ID, based on the relationship definition name.

Exceptions

RelationshipRuntimeException

Chapter 25. Relationship class 481

Notes

Because the relationship instance ID can be used as the generic ID for the typical

IBM WebSphere Business Integration Server Express identity relationships, this

new ID can be used as the generic ID for generic-to-generic relationships.

retrieveInstances()

Retrieves only the relationship instance IDs for zero or more relationship instances

which contain a given participant instance.

Syntax

int[] retrieveInstances(String relDefName,

String partDefName,

 BusObj partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 String partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 long partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 int partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 double partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 float partData)

int[] retrieveInstances(String relDefName,

String partDefName,

 boolean partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 BusObj partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 String partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 long partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 int partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 double partData)

int[] retrieveInstances(String relDefName,

String[] partDefList,

 float partData)

int[] retrieveInstances(String relDefName,

482 Map Development Guide

String[] partDefList,

 boolean partData)

int[] retrieveInstances(String relDefName, BusObj partData)

int[] retrieveInstances(String relDefName, String partData)

int[] retrieveInstances(String relDefName, long partData)

int[] retrieveInstances(String relDefName, int partData)

int[] retrieveInstances(String relDefName, double partData)

int[] retrieveInstances(String relDefName, float partData)

int[] retrieveInstances(String relDefName, boolean partData)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

partDefList List of participant definitions.

partData Data to associate with the participant. Can be one of the following

data types: BusObj, String, long, int, double, float, boolean.

Return values

Returns an array of integers that are the instance IDs of relationships containing

the participant.

Exceptions

RelationshipRuntimeException

Notes

The retrieveInstances() method implements a lookup relationship in an inbound

map. It obtains the relationship instance IDs from the relationship table that are

associated with the specified participant instances (partDefList and partData or

only partData). The method retrieves only those attributes that are associated with

the relDefName relationship definition. It does not fill in any of the other attributes

in the business object. Attributes associated with the relationship definition

typically are the key attributes and any others that you explicitly select. See

Chapter 7, “Creating relationship definitions,” on page 237 for more information on

relationship definitions.

If retrieveInstances() does not find a relationship instance for the specified data,

it does not raise an exception. Absence of data in the relationship table does not

mean that the lookup was performed improperly. If you want to raise an exception

when retrieveInstances() does not find a value, you must check the value of the

instance IDs that the method returns and explicitly raise a MapFailureException if

the value is null.

The retrieveInstances() method is a class method declared as static. You can call

this method from an existing relationship instance or by referencing the

Relationship class.

See also

addMyChildren(), deactivateParticipant(), deleteParticipant(),

retrieveParticipants()

“Customizing map transformations for a lookup relationship” on page 261

Chapter 25. Relationship class 483

retrieveParticipants()

Retrieves zero or more participants from a relationship instance.

Syntax

Participant[] retrieveParticipants(String relDefName,

 String partDefName, int instanceId)|

Participant[] retrieveParticipants(String relDefName,

 String[] partDefList, int instanceId)

Participant[] retrieveParticipants(String relDefName,

 int instanceId)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition.

partDefList List of participant definitions.

instanceId The relationship instance ID of the relationship instance to which

the participant belongs.

Return values

Returns an array of Participant instances.

Exceptions

RelationshipRuntimeException

Notes

The retrieveParticipants() method implements a lookup relationship in an

outbound map. It obtains the participant instances from the relationship table that

are associated with the specified instanceID relationship instance ID. The method

retrieves only those attributes that are associated with the relDefName relationship

definition. It does not fill in any of the other attributes in the business object.

Attributes associated with the relationship definition typically are the key

attributes and any others that you explicitly select. See Chapter 7, “Creating

relationship definitions,” on page 237 for more information on relationship

definitions.

If retrieveParticipants() raises the RelationshipRuntimeException if it receives a

null-valued instanceId. If you are not guaranteed that the retrieveInstances()

method has returned a matching instance ID, check the value of instanceId for a

null value before the call to retrieveParticipants().

The retrieveParticipants() method is a class method declared as static. You can

call this method from an existing relationship instance or by referencing the

Relationship class.

See also

addMyChildren(), deactivateParticipant(), deleteParticipant(),

retrieveInstances()

“Customizing map transformations for a lookup relationship” on page 261

484 Map Development Guide

updateParticipant()

Updates a participant in one or more relationship instances.

Syntax

void updateParticipant(String relDefName, String partDefName,

BusObj partData)

Parameters

relDefName Name of the relationship definition.

partDefName Name of the participant definition that participates in the

relDefName relationship.

partData Data to associate with the participant. Can be one of the following

data types: BusObj.

Return values

None.

Exceptions

RelationshipRuntimeException

Notes

The updateParticipant() method updates partData in instances of relDefName

where partData is associated with partDefName. This method updates the non-key

attributes of the business object that is associated with the specified participant.

Only the attributes that are associated with the relationship definition are updated.

The updateParticipant() method updates all participant instances in the

relDefName relationship that have:

v A participant definition of partDefName

v Key value(s) that matches the key value(s) of the partData business object

This method updates the non-key attributes of the participant instances with the

values in the partData business object. Only the attributes that are associated with

the relationship definition are updated.

To modify a key attribute or a participant type that is not a business object (such as

String, long, int, double, float, or boolean), you must first delete the participant

using deleteParticipant() or deactivateParticipant() and then add a new

participant using addMyChildren().

The updateParticipant() method is a class method declared as static. You can call

this method from an existing relationship instance or by referencing the

Relationship class.

See also

deleteParticipant(), deactivateParticipant(), addMyChildren()

Chapter 25. Relationship class 485

Deprecated methods

Some methods in the Relationship class have been moved to the

IdentityRelationship class. These deprecated methods will not generate errors, but

IBM recommends that you avoid their use and migrate existing code to the new

methods. The deprecated methods might be removed in a future release.

Table 146 lists the deprecated methods for the Relationship class.

 Table 146. Deprecated methods, Relationship class

Former method Replacement

addMyChildren() addMyChildren() in the

IdentityRelationship class

deleteMyChildren() deleteMyChildren() in the

IdentityRelationship class

maintainCompositeRelationship() maintainCompositeRelationship()

in the IdentityRelationship class

maintainSimpleIdentityRelationship() maintainSimpleIdentity

Relationship() in the

IdentityRelationship class

updateMyChildren() updateMyChildren() in

the IdentityRelationship class

486 Map Development Guide

Chapter 26. UserStoredProcedureParam class

The UserStoredProcedureParam class provides methods for handling argument

values to stored procedures, which you execute on the relationship database. A

UserStoredProcedureParam object describes a single parameter for a stored

procedure.

Important: The UserStoredProcedureParam class and its methods are supported for

backward compatibility only. These deprecated methods will not generate

errors, but you should avoid using them and migrate existing code to

the new methods. The deprecated methods might be removed in a

future release. In new map development, use the

CwDBStoredProcedureParam class and its methods to provide arguments

to a stored procedure.

Table 147 summarizes the methods in the UserStoredProcedureParam class.

 Table 147. UserStoredProcedureParam method summary

Method Description Page

UserStoredProcedureParam() Constructs a new instance of

UserStoredProcedureParam that holds argument

information for the parameter of a stored procedure.

487

getParamDataTypeJavaObj() Retrieves the data type of this stored-procedure

parameter as a Java Object, such as Integer, Double,

or String.

488

getParamDataTypeJDBC() Retrieves the data type of this stored-procedure

parameter as an integer JDBC data type.

489

getParamIndex() Retrieves the index position of this stored-procedure

parameter.

489

getParamIOType() Retrieves the in/out parameter type for this

stored-procedure parameter.

490

getParamName() Retrieves the name of this stored-procedure

parameter.

491

getParamValue() Retrieves the value of this stored-procedure

parameter.

491

setParamDataTypeJavaObj() Sets the data type as a Java Object for this

stored-procedure parameter.

492

setParamDataTypeJDBC() Sets the data type as a JDBC data type for this

stored-procedure parameter.

492

setParamIndex() Sets the index position of this stored-procedure

parameter.

493

setParamIOType() Sets the in/out parameter type of this

stored-procedure parameter.

493

setParamName() Sets the name of this stored-procedure parameter. 494

setParamValue() Sets the value of this stored-procedure parameter. 494

UserStoredProcedureParam()

Constructs a new instance of UserStoredProcedureParam that holds argument

information for the parameter of a stored procedure.

© Copyright IBM Corp. 2004, 2005 487

Syntax

UserStoredProcedureParam(int paramIndex, String paramType,

 Object paramValue, String ParamIOType, String paramName)

Parameters

paramIndex The index position of the associated parameter in the declaration of

the stored procedure. Index numbering begins with one (1).

paramType The data type (as a Java Object) of the associated parameter.

paramValue The argument value to send to the stored procedure.

ParamIOType The in/out type of the associated parameter. Valid types are: “IN”

- parameter value is input only. “INOUT” - parameter value is input

and output. “OUT” - parameter value is output only.

paramName The name of the argument, to be used in later statements that

build the Vector array.

Return values

Returns a new UserStoredProcedureParam object to hold the argument information

for the argument at position argIndex in the declaration of the stored procedure.

Exceptions

DtpConnectionException – If a parameter is invalid.

getParamDataTypeJavaObj()

Retrieves the data type of this stored-procedure parameter as a Java Object, such

as Integer, Double, or String.

Syntax

String getParamDataTypeJavaObj()

Parameters

None.

Return values

Returns the data type of the associated UserStoredProcedureParam parameter as a

Java Object.

Exceptions

None.

Notes

A Java Object is one of two representations of the parameter data type stored in

the UserStoredProcedureParam object. Use getParamDataTypeJavaObj() to obtain the

Java Object data type, you should work with the Java Object data type because:

v For IN (and INOUT) parameters, you must provide the parameter value as a

Java Object. Therefore, providing the parameter data type as a Java Object is

more consistent.

488 Map Development Guide

v The execStoredProcedure() method sends parameters in a Vector parameter

array. The Vector object can contain only elements that are Java Objects.

See also

getParamDataTypeJDBC(), setParamDataTypeJavaObj()

getParamDataTypeJDBC()

Retrieves the data type of this stored-procedure parameter as an integer JDBC data

type.

Syntax

int getParamDataTypeJDBC()

Parameters

None.

Return values

Returns the data type of the associated UserStoredProcedureParam parameter as a

JDBC data type.

Exceptions

None.

Notes

The JDBC data type is one of two representations of the parameter data type

stored in the UserStoredProcedureParam object. JDBC data types are integer values

and include the following:

v java.sql.Types.INTEGER

v java.sql.Types.VARCHAR

v java.sql.Types.DOUBLE

v java.sql.Types.DATE

These data types are defined in java.sql.Types.

Recommendation: You should use the Java Object data type instead of the JDBC

data type. However, the Mapping API uses the JDBC internally

so you can obtain its value from the UserStoredProcedureParam

object with getParamDataTypeJDBC().

See also

getParamDataTypeJavaObj(), setParamDataTypeJDBC()

getParamIndex()

Retrieves the index position of this stored-procedure parameter.

Syntax

int getParamIndex()

Chapter 26. UserStoredProcedureParam class 489

Parameters

None.

Return values

Returns the index position of the associated UserStoredProcedureParam parameter.

Exceptions

None.

Notes

The index position of a stored-procedure parameter is its position in the parameter

list of the stored-procedure declaration. The first parameter has an index position

of one (1). The index position does not refer to literal parameters that might be

supplied to the stored procedure.

See also

setParamIndex()

getParamIOType()

Retrieves the in/out parameter type for this stored-procedure parameter.

Syntax

String getParamIOType()

Parameters

None.

Return values

Returns the in/out type of the associated UserStoredProcedureParam parameter.

Exceptions

None.

Notes

The in/out parameter type indicates how the stored procedure uses the parameter.

It can be the string representation of one of the following:

v IN parameter

An IN parameter is input only; that is, the stored procedure accepts its value as

input but does not use the parameter to return a value. The getParamIOType()

returns the in/out parameter type as “IN”.

v INOUT parameter

An INOUT parameter is input and output; that is, the stored procedure accepts its

value as input and also uses the parameter to return a value. The

getParamIOType() returns the in/out parameter type as “INOUT”.

v OUT parameter

An OUT parameter is output only; that is, the stored procedure does not read its

value as input but does use the parameter to return a value. The

getParamIOType() returns the in/out parameter type as “OUT”.

490 Map Development Guide

See also

setParamIOType()

getParamName()

Retrieves the name of this stored-procedure parameter.

Syntax

String getParamName()

Parameters

None.

Return values

Returns the name of the parameter from the associated UserStoredProcedureParam

object.

Exceptions

None.

Notes

The name of the parameter is informational only. It is used only for error messages

and debugging. The parameter name is not needed to access the stored-procedure

parameter because stored procedures are accessed by their index position in the

stored-procedure declaration.

See also

setParamName()

getParamValue()

Retrieves the value of this stored-procedure parameter.

Syntax

Object getParamValue()

Parameters

None.

Return values

Returns the value of the associated UserStoredProcedureParam parameter as a Java

Object.

Exceptions

None.

Notes

The getParamValue() method returns the parameter value as a Java Object (such as

Integer, Double, or String). If the value returned to an OUT parameter is the JDBC

NULL, getParamValue() returns the null constant.

Chapter 26. UserStoredProcedureParam class 491

See also

setParamValue()

setParamDataTypeJavaObj()

Sets the data type as a Java Object for this stored-procedure parameter.

Syntax

void setParamDataTypeJavaObj(String paramDataType)

Parameters

paramDataType The data type of the parameter as a Java Object.

Exceptions

DtpConnectionException – If the input data type is not supported.

Notes

A Java Object is one of two representations of the parameter data type stored in

the UserStoredProcedureParam object. Use setParamDataTypeJavaObj() to set the

data type as a Java Object. You should work with the Java Object data type

because:

v For IN (and INOUT) parameters, you must provide the parameter value as a

Java Object. Therefore, providing the parameter data type as a Java Object is

more consistent.

v The execStoredProcedure() method sends parameters in a Vector parameter

array. The Vector object can contain only elements that are Java Objects.

See also

getParamDataTypeJavaObj(), setParamDataTypeJDBC()

setParamDataTypeJDBC()

Sets the data type as a JDBC data type for this stored-procedure parameter.

Syntax

void setParamDataTypeJDBC(int paramDataType)

Parameters

paramDataType The data type of the parameter as a JDBC type.

Exceptions

DtpConnectionException – If the input data type is not supported.

Notes

Every UserStoredProcedureParam object contains two representations of its data

type: Java Object and JDBC data type. You should use the Java Object data type

because:

492 Map Development Guide

v For IN (and INOUT) parameters, you must provide the parameter value as a

Java Object. Therefore, providing the parameter data type as a Java Object is

more consistent.

v The execStoredProcedure() method sends parameters in a Vector parameter

array. The Vector object can contain only elements that are Java Objects.

See also

getParamDataTypeJDBC(), setParamDataTypeJavaObj()

setParamIndex()

Sets the index position of this stored-procedure parameter.

Syntax

void setParamIndex(int paramIndex)

Parameters

paramIndex The index position of the stored-procedure parameter

Notes

The index position of a stored-procedure parameter is its position in the parameter

list of the stored-procedure declaration. The first parameter has an index position

of one (1). The index position does not refer to literal parameters that might be

supplied to the stored procedure.

See also

getParamIndex()

setParamIOType()

Sets the in/out parameter type of this stored-procedure parameter.

Syntax

void setParamIOType(String paramIOType)

Parameters

paramIOType The I/O type of the stored-procedure parameter

Notes

The in/out parameter type indicates how the stored procedure uses the parameter.

It can be any of the following:

v IN parameter

An IN parameter is input only; that is, the stored procedure accepts its value as

input but does not use the parameter to return a value. For an IN parameter, set

the in/out parameter type to “IN”.

v INOUT parameter

An INOUT parameter is input and output; that is, the stored procedure accepts its

value as input and also uses the parameter to return a value. For an INOUT

parameter, set the in/out parameter type to “INOUT”.

v OUT parameter

Chapter 26. UserStoredProcedureParam class 493

An OUT parameter is output only; that is, the stored procedure does not read its

value as input but does use the parameter to return a value. For an OUT

parameter, set the in/out parameter type to “OUT”.

See also

getParamIOType()

setParamName()

Sets the name of this stored-procedure parameter.

Syntax

void setParamName(String paramName)

Parameters

paramName The name of the stored-procedure parameter

Notes

The name of the parameter is informational only. It is used only for error messages

and debugging. The parameter name is not needed to access the stored-procedure

parameter because stored procedures are accessed by their index position in the

stored-procedure declaration.

See also

getParamName()

setParamValue()

Sets the value of this stored-procedure parameter.

Syntax

void setParamValue(Object paramValue)

Parameters

paramValue The value of the stored-procedure parameter. The value must be a

Java Object (such as Integer, Double, or String).

Notes

You must set the parameter value as a Java Object.

See also

getParamValue()

494 Map Development Guide

Chapter 27. Message files

Each map can have an associated message file. The message file contains the text for

the map’s exception and logging messages. A unique number identifies each

message in the message file. The text of the message may also include placeholder

variables, called parameters.

The methods that generate map messages provide two ways of generating the

message text that a user sees. The coding of the method call can:

v Include the text of the message.

v Contain a reference to message text that is contained in an external message file.

It is generally a better practice for a map to refer to a message file than to generate

the text itself, for ease of maintenance, administration, and internationalization.

This chapter describes message files, how they work, and how to set them up. It

covers the following topics:

 “Message location” 495

“Format for map messages” on page 498 498

“Message parameters” on page 499 499

“Maintaining the files” on page 500 500

“Operations that use message files” on page 500 500

Message location

All message file sare located in the following directory of the IBM WebSphere

Business Integration Server Express product directory:

DLMs\messages

Note: In this document backslashes (\) are used as the convention for directory

paths. For Linux installations, substitute slashes (/) for backslashes. All

WebSphere Business Integration Server Express product path names are

relative to the directory where the WebSphere Business Integration Server

Express product is installed on your system.

Three types of message files can be used to generate messages for a map:

v A map-specific message file, mapName_locale.txt where mapName corresponds to

the name of the map and locale corresponds to the locale that the map is defined

in.

Map messages appear in the Messages tab of Map Designer Express and are

stored as part of the map definition in the repository. When you compile the

map, Map Designer Express extracts the message content and creates (or

updates) the message file for run-time use. The name of the message file has the

following format:

MapName_locale.txt

Example: For the LegacyAddress_to_CwAddress map, if it is created in an English

locale in the United States, Map Designer Express creates the message file called

LegacyAddress_to_CwAddress_en_US.txt and places it in the

© Copyright IBM Corp. 2004, 2005 495

ProjectName\Maps\Messages directory. After the map is deployed to InterChange

Server Express, it will be placed in the DLMs\messages directory.

v The UserMapMessages.txt message file

To this file, you can add new message numbers that fall into a “safe” range, as

defined by WebSphere Business Integration Server Express (see Table 148). You

can also use a message number that is already defined in the WebSphere

Business Integration Server Express generic message file (CwMapMessages.txt,

described next) and change the existing message text to text of your choice.

Since the UserMapMessaages.txt file is searched before the WebSphere Business

Integration Server Express message file, your additions override those messages.

v The WebSphere Business Integration Server Express generic message file,

CwMapMessages.txt (which WebSphere Business Integration Server Express

provides).

If your map does not reference one of the other two message files, it must

reference this one. Table 148 lists the message numbers that WebSphere

InterChange Server has assigned and that are contained in the generic message

file.

 Attention: Do not change the contents of the WebSphere Business Integration

Server Express generic message file CwMapMessages.txt! Make changes to a

generic message by copying it into the UserMapMessage.txt message file and

customizing it.

These files range from map-specific to general purpose. Messages that can be used

by any map are located in a generic file, provided by WebSphere Business

Integration Server Express. The other two files provide you with the option to

customize messages for your maps, as needed.

Important: InterChange Server Express reads the UserMapMessages.txt and

CwMapMessages.txt files into memory when it starts up. If you make

changes to UserMapMessages.txt, you must restart InterChange Server

Express for these changes to be available to maps.

 Table 148. CwMapMessages.txt messages

Message

number Message text Message usage

5000 Mapping - Value of the primary key in

the source object is null. Map execution

stopped.

Used if the primary key of the source object is null. The

check for the source primary key = null should always be

performed before any of the relationship methods are called

that are based on the source object’s primary key. If the key

is null, the error should display and the map should stop

execution.

5001 Mapping -

RelationshipRuntimeException.

Map execution stopped.

Used if RelationshipRuntimeException is caught in one of

the following:

v Function blocks

– General/APIs/Identity Relationship/Maintain Simple

Identity Relationship

– General/APIs/Identity Relationship/Maintain

Composite Relationship

v Mapping APIs

– maintainSimpleIdentityRelationship()

– maintainCompositeRelationship()

496 Map Development Guide

Table 148. CwMapMessages.txt messages (continued)

Message

number Message text Message usage

5002 Mapping - CxMissingIDException.

Map execution stopped.

Used if CxMissingIDException is caught in one of the

following:

v Function blocks

– General/APIs/Identity Relationship/Maintain Simple

Identity Relationship

– General/APIs/Identity Relationship/Maintain

Composite Realtionship

v Mapping APIs

– maintainSimpleIdentityRelationship()

– maintainCompositeRelationship()

5003 Mapping - Data in the {1} attribute is

missing.

Used when the source attribute is null before using the

function block Foreign Key Lookup (foreignKeyLookup()) or

Foreign Key Cross-Reference (foreignKeyXref()). The check

for the source attribute = null should always be performed

before these relationship methods are called. If the key is

null, the error should be displayed and the map might stop

execution.

5007 Mapping - ForeignKeyLookup() of ’{1}’

with Source Value of ’{2}’ failed for the

’{3}’ relationship and ’{4}’ participant on

Initiator ’{5}’. Map execution stopped.

Used if the destination attribute is null after using the

function block Foreign Key Lookup (foreignKeyLookup()).

Map has to stop execution.

5008 Mapping - ForeignKeyLookup() of ’{1}’

with Source Value of ’{2}’ failed for the

’{3}’ relationship and ’{4}’ participant on

Initiator ’{5}’. Map execution continued.

Used if the destination attribute is null after using the

function block Foreign Key Lookup (foreignKeyLookup()).

Map has to continue execution.

5009 Mapping - ForeignKeyXref() of ’{1}’

with Source Value of ’{2}’ failed for the

’{3}’ relationship and ’{4}’ participant on

Initiator ’{5}’. Map execution stopped.

Used if the destination attribute is null after using the

function block Foreign Key Cross-Reference

(foreignKeyXref()). Map has to stop execution.

When a map references a message number, the message files are searched in the

following order:

1. The map-specific message file mapName_locale.txt where mapName corresponds

to the name of the map, is searched.

2. The file UserMapMessages.txt is searched.

3. The WebSphere Business Integration Server Express generic message

CwMapMessages.txt is searched.

Table 149 shows code examples that demonstrate situations in which each of the

messages in the CwMapMessages.txt file might be used.

 Table 149. Code Examples for CwMapMessages.txt Messages

Message

number Code example

5000 ObjContract.setVerb(ObjSAP_Contract.getVerb()); if (ObjSAP_Contract.get("ContractId") ==

null) { logError(5000); throw new MapFailureException("Data in the primary

key is missing"); }

Chapter 27. Message files 497

Table 149. Code Examples for CwMapMessages.txt Messages (continued)

Message

number Code example

5001 try { IdentityRelationship.maintainSimpleIdentityRelationship("Contract",

"SAPCntr", ObjSAP_Contract, ObjContract, cwExecCtx); } catch

(RelationshipRuntimeException e1) { logError(5001); throw new MapFailureException(

 "RelationshipRuntimeException"); } catch (CxMissingIDException e2) {

logError(5002); throw new MapFailureException("CxMissingIDException"); }

5002 See code example above.

5003 if (ObjSAP_Contract.get("CustomerId") == null) { logError(5003, "CustomerId");

throw new MapFailureException("CustomerId is null"); }

5007 try

 {

 IdentityRelationship.foreignKeyLookup ("Customer",

 "OracCust", ObjOracle_OrderImport, "customer_id",

 ObjOrder, "CustomerId", cwExecCtx);

 }

catch (RelationshipRuntimeException e)

 {

 logWarning(e.toString());

 }

if (ObjOracle_OrderImport.get("customer_id") == null)

 {

 logError(5007, "customer_id", "CustomerId", "Customer",

 "OracCust", strInitiator);

 throw new MapFailureException(

 "foreignKeyLookup() failed.");

 }

5008 try

 {

 IdentityRelationship.foreignKeyLookup ("Customer",

 "OracCust", ObjOracle_OrderImport, "customer_id",

 ObjOrder, "CustomerId", cwExecCtx);

 }

catch (RelationshipRuntimeException e)

 {

 logWarning(e.toString());

 }

if (ObjOracle_OrderImport.get("customer_id") == null)

 {

 logError(5008, "customer_id", "CustomerId", "Customer",

 "OracCust", strInitiator);

 }

5009 try { IdentityRelationship.foreignKeyXref ("Customer", "OracCust", "CWCust",

ObjOracle_OrderImport, "customer_id", ObjOrder, "CustomerId", cwExecCtx); } catch

(RelationshipRuntimeException e) { logWarning(e.toString()); } if

(ObjOracle_OrderImport.get("customer_id") == null({ logError(5009, "customer_id",

"CustomerId", "Customer", "OracCust", strInitiator); throw new MapFailureException(

 "foreignKeyXref() failed."); }

Format for map messages

To ensure consistency of messages, WebSphere Business Integration Server Express

has developed a message format. This section describes that format, including:

v “Message format” on page 499

v “Message parameters” on page 499

v “Comments” on page 500

498 Map Development Guide

Note: The map-specific message file should be modified from the message tab in

Map Designer Express and should not be modified directly. Map Designer

Express will overwrite any custom modification in the map-specific message

file with the messages saved in the map. However, for the message files

UserMapMessages.txt and CwMapMessages.txt, it is safe to modify the file

directly.

Message format

The format for each message is:

MessageNum

Message

The message number (MessageNum) and the message itself (Message) must be on

different lines, with a carriage return at the end of each line.

Example: A map’s messages might include a message identified as number 23,

whose text includes two placeholder variables, marked as {1} and {2}, as shown in

Figure 141..

Message parameters

When the map calls a method that displays a particular message, it passes to the

method the message’s identifying number and potentially additional parameters.

The method uses the identifying number to locate the correct message in the

message file, and it inserts the values of the additional parameters into the

message text’s placeholder variables.

It is not necessary to write separate messages for each possible situation. Instead,

use parameters to represent values that change at run time. The use of parameters

allows each message to serve multiple situations and helps to keep the message

file small.

A parameter always appears as a number surrounded by curly braces: {number}.

For each parameter you want to add to the message, insert the number within

curly braces into the text of the message, as follows:

message text {number} more message text.

Example: Consider message 23 in Figure 141 again. When the map wants to

display or log this message, it passes to the appropriate method the identifying

number of the message (23) and two additional parameters:

v Parameter 1 becomes the customer ID number (6701)

v Parameter 2 becomes a String variable containing some additional explanatory

text, such as greater than maximum length.

The method locates the correct message, substitutes the parameter values for the

message’s placeholders, and displays or logs the following message:

Customer ID 6701 could not be changed: greater

than maximum length

23

Customer ID {1} could not be changed: {2}

Figure 141. Sample Message

Chapter 27. Message files 499

Because the message text takes the description of the missing entry and its ID as

parameters, rather than including them as hardcoded strings, you can use the same

message for any pair of customer ID and explanatory text.

Comments

Precede each comment line in a message file with a pound sign (#).

Example: A comment might look like this:

Message file for the Address business object map.

Recommendation: It is good practice to start the file with a series of comment

lines to form a short header. Include in the header data the name of the map and

such information as the file creator and file creation date.

Maintaining the files

At a user site, an administrator might set up a procedure for filtering map

messages and notifying someone who can resolve problems, by e-mail or e-mail

pager. This means that the error numbers and the meanings associated with the

numbers must remain the same after the first release of a map.

Recommendation: You can change the text associated with an error number, but

you should avoid changing the meaning of the text or reassigning error numbers.

If you do change the meanings associated with error numbers, you should

document the change and notify users of the map.

Operations that use message files

Message files hold text for messages used in several types of operations. Table 9 on

page 25 lists the types of operations that use message files and the methods of the

BaseDLM class that perform those operations.

 Table 150. Message-generating operations

Operation Function block Method

Raising exceptions General/APIs/Maps/Exception/

Raise Map Exception

raiseException()

Logging General/Logging and Tracing/Log

Information ID

General/Logging and Tracing/Log

error ID

General/Logging and Tracing/Log

warning ID

logInfo()

logError()

logWarning()

Tracing General/Logging and Tracing/Trace/Trace on

Level

trace()

This section describes message-generating operations that affect map execution.

Raising exceptions

The raiseException() method has several forms. One commonly used syntax is:

raiseException(String exceptionType,

 int messageNum, String param[,...])

With this syntax, you can have from one to three param String parameters. Thus,

there can be up to five comma-separated parameters in a call to raiseException().

500 Map Development Guide

This example raises a new exception, using message number 23, and passes in two

parameters to the message, the customer ID value and a string:

raiseException(AttributeException, 23,

 fromCustomer.getString("CustomerID"),

 "greater than maximum length");

Figure 141 shows the text for message 23 as it appears in the message file.

Logging messages

A map can log a message whenever something occurs that might be of interest to

an administrator. To log a message, a map uses the logInfo(), logWarning(), and

logError() methods of the BaseDLM class. Each method is associated with a

different message severity level.

Severity levels

To log a message, you must call the method associated with the message’s severity

level. Table 151 lists the severity levels and their associated methods.

 Table 151. Message levels

Severity

level Method Description

Info logInfo() Informational only. The user does not need to take action.

Warning logWarning() Represents information about a problem. Do not use this

level for problems that the user must resolve.

Error logError() Indicates a serious problem that the user needs to

investigate.

Using a message file

Every map has at least one message file associated with it. If a map does not use

custom messages, its messages come from the system map message file,

CwMapMessages.txt. If a map uses customized messages, it has a map-specific

message file (which is generated from the messages entered in the Messages tab of

Map Designer Express). For more information, see “Message location” on page 495.

When a map logs an error, the text of the error message comes from the map’s

message file.

Example: The following example logs an error message whose text is contained in

the map’s message file. The text of error message 10 appears as follows in the

message file:

10

Credit report error for {1}, {2}.

The code to log the message looks like this:

logError(10, customer.get("LName"), customer.get("FName");

When the logError() method executes, the text for message 10 is written to the log

file, with the customer’s last name and first name substituted for parameters 1 and

2.

Example: The logged message for a customer named John Davidson looks like this:

Credit report error for Davidson, John.

Chapter 27. Message files 501

Principles of good message logging

When creating messages, be sensitive to the way that administrators use the

logging feature.

Assigning severity levels: It is important to be precise when assigning error

levels to messages. The IBM system e-mail notification feature sends a message to

a designated person, usually the administrator, when it detects the generation of an

error message or fatal error message. Administrators use this IBM system e-mail

notification feature, and they additionally might link it to an e-mail pager to send a

page when an error occurs. By being precise when assigning error levels to

messages, you can reduce the number of critical messages.

Revising messages: You can revise the text of a message at any time, such as to

clarify or expand the text. However, once you assign a message number to a

certain type of error, it is important that you do not reassign the number. Many

administrators depend on scripts to filter log messages, and these scripts rely on

the message numbers. Thus, it is important that the numbers in the message file

do not change meaning. If they do, users can lose messages or receive inadvertent

messages.

When to use informational messages: You can use the logInfo() method to

create temporary messages for your own debugging. However, be sure to remove

these debugging method calls when you are finished with development.

Resist the temptation to use the logInfo() method to document the normal

operation of the collaboration. Doing so fills the administrator’s log files with

messages that are not of interest. Instead, use the trace() method to give the

administrator detailed information for debugging.

Adding trace messages

You can add trace messages to your map so that when a map instance runs, it

generates a detailed description of its actions. Trace messages are useful for your

own debugging and for on-site troubleshooting by administrators.

Trace messages differ from log messages in that trace messages are suppressed by

default, whereas log messages cannot be suppressed. Trace messages are generally

more detailed and are meant to be viewed only under certain circumstances, such

as when someone intentionally configures the map’s trace level to a number higher

than zero. You can send trace messages and log messages to different files.

You can add trace messages to a map to report operations that are specific to that

map. These are some types of information that the map can write to the trace file:

v Key values of a business object at the point that the map begins or ends a

particular transformation step.

v The decision to take a particular branch in the execution path.

Assigning trace levels

Each trace message must be associated with a trace level between 1 and 5. The

trace level usually correlates to a level of detail: messages at level 1 typically

contain less detail than messages at level 2, which contain less detail than those at

level 3, and so forth. Thus, if you turn on tracing at level 1, you see messages that

contain less detail than the messages at level 5. However, you can assign levels in

any way that is useful to you.

Recommendations: Here are some suggestions:

502 Map Development Guide

v You can assign the same level to all of your trace messages.

v You can assign trace levels according to level of detail.

v You can assign message levels according to the business object involved: level 1

traces messages relating to a certain business object, level 2 traces messages

relating to another business object, and so on.

When you turn on tracing at a particular level, the messages associated with the

specified level and those associated with all lower levels appear. For example,

tracing at level 2 displays messages associated with both level 2 and level 1.

Tip: Make sure to note the tracing levels with your documentation, so users know

what level to use when they need to trace.

Generating a trace message

Example: The following is an example of a message and the method call that

generates the message. The message appears in the message file as follows:

20

Begin transformation on {1} attribute: value = {2}

The method call obtains the value of the attribute LName, then uses the value to

replace the parameter in the message. The code appears in the map as follows, and

the message appears when the user sets tracing to level 3:

trace(3, 20, "LName", customer.get("LName"));

Setting the trace level

Figure 142 shows the General tab of the Map Properties dialog in Map Designer

Express. (For information on how to display the Map Properties dialog, see

“Specifying map property information” on page 58.) Notice that you can set the

trace level for trace messages in this dialog.

Chapter 27. Message files 503

As the map developer, you create the levels for which map-generated tracing can

be requested, as described in “Assigning trace levels” on page 502.

Note: If you change the trace level for an activated map, you must stop and restart

the map before the new trace level takes effect. Use the Component menu of

System Manager to stop and start a map.

By setting the trace level in the Map Properties dialog of Map Designer Express,

you set it for all map instances based on this map definition. You can also set the

trace level for all map instances from the Map Properties window of System

Manager.

Figure 142. Trace level for a map

504 Map Development Guide

Appendix. Attribute properties

Table 152 lists the properties for attributes of business object definitions.

 Table 152. Attribute Properties

Property Description

Name A name that describes what type of data the attribute

contains. The name must be less than or equal to 80

alphanumeric characters and underscores. It cannot contain

spaces or certain punctuation symbols, such as a period, a

left brace ([), a right brace (]), a single quotation mark, or a

double quotation mark.

Type The data type of the attribute. Basic types include String,

Boolean, Double, Float, Integer, and Date. If the attribute

references a child business object, specify the name of a child

business object definition. Attributes that reference child

business objects are called compound attributes.

IsKey A boolean value, true or false, specifying whether this is a

key attribute. Key attributes uniquely identify a business

object created from the definition. Each business object

definition has at least one key attribute.

IsForeignKey A boolean value, true or false, specifying whether this is a

foreign key attribute.

MaxLength An integer representing the maximum number of bytes the

attribute can contain. To specify no limit, enter zero (0).

AppSpecificInfo A string that provides information about the attribute for a

particular application, such as the name of a field in a table

or form that corresponds to the attribute. Connectors use

this information when processing the object.

DefaultValue The value to assign to this attribute if there is no runtime

value.

IsRequired A boolean value, true or false, specifying whether a value

for this attribute is required to create a business object.

ContainedObjectVersion The version number of the child business object definition.

IBM WebSphere System Manager displays this value under

the name Type Version.

Relationship The relationship between the parent business object and the

child business object. In the current release, the only valid

relationship is Containment.

Cardinality The number of child business objects that this attribute

references. If the attribute references only one child business

object, the value is 1. If the attribute can reference many

child business objects, the value is a literal n.

© Copyright IBM Corp. 2004, 2005 505

506 Map Development Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2004, 2005 507

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

508 Map Development Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

 WebSphere Business Integration Server Express and Express Plus include software

developed by the Eclipse Project (http://www.eclipse.org/).

WebSphere Business Integration Server Express, Version 4.4 and WebSphere

Business Integration Server Express Plus, Version 4.4

Notices 509

510 Map Development Guide

Index

Special characters
.bo file extension 13, 87, 88, 92

.class file extension 13, 82

.cwm file extension 13, 52, 57

.jar file extension 79

.java file extension 13, 82, 83, 84

.txt file extension 13, 495

A
Access client 85, 191, 265

ACCESS_REQUEST calling context 190, 191, 265

Create verb and 265, 288, 292, 296

Delete verb and 266, 288, 297

foreignKeyXref() and 291, 443

getOriginalRequestBO() and 461

maintainChildVerb() and 288, 446

maintainCompositeRelationship() and 276, 447

maintainSimpleIdentityRelationship() and 265, 450

original-request business object 191, 461

Retrieve verb and 266, 288, 292

retrieving 460

setting to 463

testing with 94, 97

Update verb and 266, 288, 292

ACCESS_RESPONSE calling context 190, 191, 265

foreignKeyXref() and 294, 443

getOriginalRequestBO() and 462

maintainCompositeRelationship() and 276, 447

maintainSimpleIdentityRelationship() and 272, 450

original-request business object 191, 273, 462

retrieving 460

setting to 463

updateMyChildren() and 284

Activity Editor 101

accessing 29, 30, 40, 42, 44, 48, 102

Add Comment 108

Add Description 108, 153

Add Label 108

Add To do 108

Add To My Collection 108

bidirectional functionality 161

Check for Unmatched Delimiters 81

connection links 111

Content window 104

Context menu 108

Cross-Reference transformation 102

Custom transformation 50

Design mode 103, 105

Document Display Area 103

Edit menu 107

example of using 142, 146, 154

File menu 106

function blocks 110, 114, 282

Graphical view 102, 103

grouping components 113

Help menu 108

Java view 102, 105

Join transformation 42, 102

keyboard shortcuts 106

Activity Editor (continued)
Label 112

layout 102

Library window 103

main menus 106

main views 102

New Constant 108, 113, 152

Preferences dialog 51

Properties window 104

Quick view mode 104, 105

Resize label 112

saving an activity 146, 154

Set Value transformation 40, 102

Split transformation 44, 102

starting 101

Status bar 109

Submap transformation 48, 102

Title Bar 102

toolbars 108

Tools menu 107

using function blocks in 110

using Web services in 157

View menu 107

addDays() method 178, 402

addElement() method 348

addMyChildren() method 186, 296, 437, 466, 486

addParticipant() method 296, 474

addWeekdays() method 178, 403

addYears() method 178, 404

after() method 178, 405

AnyException exception 322

APIs/Business Object Array function block 120

Add Element 120

Duplicate 120

Equals 120

Get Element At 120

Get Elements 120

Get Last Index 120

Is Business Object Array 120

Max attribute value 121

Min attribute value 121

Remove All Elements 121

Remove Element 121

Remove Element At 121

Set Element At 121

Size 121

Sum 121

Swap 121

To String 121

APIs/Business Object function block 116

Copy 116

Duplicate 116

Equal Keys 116

Equals 116

Exists 116

Get Boolean 116

Get Business Object 117

Get Business Object Array 117

Get Business Object Type 117

Get Double 117

Get Float 117

© Copyright IBM Corp. 2004, 2005 511

APIs/Business Object function block (continued)
Get Int 117

Get Long 117

Get Long Text 117

Get Object 117

Get String 117

Get Verb 118

Is Blank 118

Is Business Object 118

Is Key 118

Is Null 118

Is Required 118

Iterate Children 118

Key to String 118

New Business Object 118

Set Content 118

Set Default Attribute Values 118

Set Keys 119

Set Value 119

Set Value with Create 119

Set Verb 119

Set Verb with Create 119

Shallow Equals 119

To String 119

Valid Data 119

APIs/Business Object/Array function block 119

GetBusObj At 119

New Business Object Array 119

Set BusObj At 120

Size 120

APIs/Business Object/Constants function block 120

Verb Create 120

Verb Delete 120

Verb Retrieve 120

Verb Update 120

APIs/Database Connection function block 121

Begin Transaction 121

Commit 122

Execute Prepared SQL 122

Execute Prepared SQL with Parameter 122

Execute SQL 122

Execute SQL with Parameter 122

Execute Stored Procedure 122

Get Database Connection 122

Get Database Connection with Transaction 122

Get Next Row 122

Get Update Count 122

Has More Rows 122

In Transaction 123

Is Active 123

Release 123

Roll Back 123

APIs/Identity Relationship function block 123

Add My Children 123

Delete All My Children 123

Delete My Children 123

Foreign Key Cross-Reference 124

Foreign Key Lookup 124

Maintain Child Verb 124

Maintain Composite Relationship 124

Maintain Simple Identity Relationship 124

Update My Children 125

APIs/Maps function block 125

Get Adapter Name 125

Get Calling Context 125

Get Original Request Business Object 125

APIs/Maps/Constants function block 125

APIs/Maps/Constants function block (continued)
Calling Context ACCESS_REQUEST 125

Calling Context ACCESS_RESPONSE 125

Calling Context EVENT_DELIVERY 125

Calling Context SERVICE_CALL_FAILURE 125

Calling Context SERVICE_CALL_REQUEST 126

Calling Context SERVICE_CALL_RESPONSE 126

APIs/Maps/Exception function block 126

Raise Map Exception 126

Raise Map Exception 1 126

Raise Map Exception 2 126

Raise Map Exception 3 126

Raise Map Exception 4 126

Raise Map Exception 5 127

Raise Map RunTimeEntity Exception 127

APIs/Participant function block 127

Get Boolean Data 127

Get Business Object Data 127

Get Double Data 127

Get Float Data 127

Get Instance ID 127

Get Int Data 127

Get Long Data 127

Get Participant Name 127

Get Relationship Name 128

Get String Data 128

New Participant 128

New Participant in Relationship 128

Set Data 128

Set Instance ID 128

Set Participant Definition 128

Set Relationship Definition 128

APIs/Participant/Array function block 129

Get Participant At 129

New Participant Array 129

Set Participant At 129

Size 129

APIs/Participant/Constants function block 129

APIs/Participant/Constants function block, Participant

INVALID_INSTANCE_ID 129

APIs/Relationship function block 129, 257

Add Participant 129

Add Participant Data 129

Add Participant Data to New Relationship 129

Create Relationship 130

Create Relationship with Participant 130

Deactivate Participant 130

Deactivate Participant By Data 130

Deactivate Participant By Instance 130

Deactivate Participant By Instance Data 130

Delete Participant 130

Delete Participant By Instance 130

Delete Participant By Instance Data 130

Delete Participant with Data 131

Get Next Instance ID 131

Retrieve Instances 131

Retrieve Instances for Participant 131

Retrieve Participants 131

Retrieve Participants with ID 131

Update Participant 131

Application-specific business objects 3

AppSpecificInfo attribute property 505

Attribute
addressing in transformations 168

advanced settings 251

application-specific information 505

checking for key 336

512 Map Development Guide

Attribute (continued)
column name 252

comments for 19, 37, 54, 62, 75

creating synonyms for automatic mapping 71

data type 18, 37, 345, 505

dependencies of 77

destination 5, 18

finding 39, 53, 72

joining 41

mapping across instances 21

mapping automatically 65

maximum length 505

name 18, 37, 505

properties 505, 507

relationship 50, 54, 189, 257, 258

required 338, 505

source 18

specifying 328

splitting 43

unlinked 20, 53, 64, 72

validating 56, 82

Attribute value
adding together 358

blank 336

copying 40, 54

default 39, 86, 341, 505

null 297, 337

retrieving 333

retrieving as string 344

retrieving maximum 350, 351, 352

retrieving minimum 353, 354, 355

setting 339, 343

setting default value for 341

validating 187

validating data type 345

zero-length string 336

AttributeException exception 322

Automatic mapping
adding prefix or suffix 65

attribute 65

business objects 65

creating maps 65

creating synonyms for 71

example of 67

Reverse Map 69

setting preferences 65

using synonyms, example 72

B
BaseCollaboration class

method summary 455

BaseDLM class 7, 10, 315, 325

defined 315

getDBConnection() 315

getName() 317

getRelConnection() 318

implicitDBTransactionBracketing() 319

isTraceEnabled() 319

logError() 320

logInfo() 320

logWarning() 320

method summary 315

releaseRelConnection() 323

trace() 324

before() method 178, 406

beginTran() method (deprecated) 303, 381

beginTransaction() method 216, 365

BiDiBOTransformation() 361

BiDiBusObjTransformation() 362

Bidirectional functionality
Activity Editor 161

languages 161

Web services 161

Bidirectional languages, designing maps for 60

BiDiStringTransformation() 363

Blank attribute value 336

BOOL_TYPE constant 390

Boolean class 505

as stored-procedure parameter type 215, 308, 377

converting to 392

converting to Boolean 395

determining data type 390

valid conversions 392

boolean data type
as stored-procedure parameter type 215, 377

checking for valid data 345

converting to 395

converting to Boolean 392

determining data type 390

getting attribute value 333

setting attribute to 339

valid conversions 392

Breakpoints 88, 91

Browsing a Project 238

Business object
adding 16, 239

adding to an array 348

addressing in transformations 168

business object definition for 335

comparing attribute values 331, 332

comparing key attribute values 330

copying 329

deleting 16, 75, 239

duplicating 330

generic 3, 179, 191

instance name 37, 168

key attribute in 336

mapping automatically 65

null attribute in 337

number in a business object array 358

properties 169

refreshing list of 20

removing from business object array 356, 357

required attribute in 338

retrieving attribute value 333, 344

retrieving from business object array 349

retrieving key attribute value 338

retrieving verb 336

setting attribute value 339, 340, 343

setting key values 341

setting value of 357

swapping in an array 358

temporary 170

transversing hierarchical 328

validating attribute data type 345

variable for 168

Business object array
adding attribute values together 358

adding business object to 348

comparing with another 349

duplicating 348

index 82, 87, 168

removing all elements from 356

Index 513

Business object array (continued)
removing element from 356, 357

retrieving a business object from 349

retrieving contents of 350

retrieving last index of 350

retrieving maximum attribute value from 350, 351, 352

retrieving minimum attribute value from 353, 354, 355

retrieving size of 358

retrieving values as string 359

reversing position of elements in 358

setting element of 357

Business object definition, retrieving name of 335

BusObj class 10, 327, 346

copy() 329

defined 327

deprecated methods 345

duplicate() 330

equalKeys() 330

equals() 331

equalsShallow() 332

exists() 332

getCount() 345

getKeys() 345

getLocale() 335, 342

getType() 335

getValues() 345

getVerb() 336

isBlank() 336

isKey() 336

isNull() 337

isRequired() 338

keysToString() 338

method summary 327

not() 345

set() 339, 346

setContent() 340

setDefaultAttrValues() 341

setKeys() 341

setVerb() 342

setVerbWithCreate() 343

setWithCreate() 343

toString() 344

validData() 345

BusObjArray class 10, 347, 359

addElement() 348

defined 347

duplicate() 348

elementAt() 349

equals() 349

getElements() 350

getLastIndex() 350

max() 350

maxBusObjArray() 351

maxBusObjs() 352

method summary 347

min() 353

minBusObjArray() 354

minBusObjs() 355

removeAllElements() 356

removeElement() 356

removeElementAt() 357

setElementAt() 357

size() 358

sum() 358

swap() 358

toString() 359

C
calcDays() method 178, 406

calcWeekdays() method 178, 407

CALL statement 210, 211, 304, 368, 369, 383

Call-triggered flow 191

Calling contexts 189

ACCESS_REQUEST 190, 265

ACCESS_RESPONSE 190, 265

checking value of 175

custom relationship and 295

EVENT_DELIVERY 189, 265

example of 192

identity relationship and 265

logic based on 175

retrieving 459

SERVICE_CALL_FAILURE 190, 265

SERVICE_CALL_REQUEST 190, 265

SERVICE_CALL_RESPONSE 190, 265

setting 462

strInitiator 175

testing with 93

CANNOTCONVERT constant 391

Cardinality attribute property 505

catch statement 100, 196, 297

Child business objects
adding to parent/child relationship 437, 450

addressing 170

attribute comment for 54

cardinality of 246, 505

customizing for relationships 277

example of customizing for relationships 277

identity relationships 246

mapping 192

mapping attributes 20

multiple-cardinality 45, 170, 193

removing from parent/child relationship 439, 450

setting verb for 444

single-cardinality 170, 192, 193

submaps for 45, 47

testing 87

verb 287

version number 505

CLASSPATH environment variable 166, 167

Classpath preference 166

Collaboration API
CxExecution 455

CollaborationException class 328

CollabUtils.jar file 166

commit() method (CwDBConnection) 216, 366

commit() method (DtpConnection) 303, 323, 382

Comparing
business object arrays 349

business object attribute values 331, 332

key attribute values 330

Composite identity relationship 227, 229, 244, 274, 284

customizing map rules for 277

defining 245, 246, 274

main map 277

maintainChildVerb() and 278, 290

maintainCompositeRelationship() and 275, 446

managing child instances 282

participant type for 274

submap 281

Connection
determining if active 218, 372

obtaining 203, 315

opening 203, 300

514 Map Development Guide

Connection (continued)
releasing 218, 373

transaction programming model 215, 315, 316

Connection links, adding to function blocks 145, 150

Connection pool 203, 218, 316, 373

Connector
initiating mapping request 85, 190, 265

retrieving name of 459

setting name of 462

ContainedObjectVersion attribute property 505

Content-based logic 173

Context menu (Activity Editor)
accessing 108

Add Comment 108

Add Description 108

Add Label 108

Add To do 108

Add To My Collection 108

Check for Unmatched Delimiters 81

Expression Builder 181, 199

Goto Line 82

New Constant 108

Context menu (business object browser)
Copy 37

Refresh All 20

Context menu (business object pane)
Add Business Object 36

Delete Business Object 75

Context menu (business object window)
Delete 37

Properties 169

Context menu (dest. data, attribute)
Clear Breakpoint 90

Set Breakpoint 88

Context menu (dest. data, main object)
Collapse 89

Save To 92

Context menu (Map Designer Express), accessing 29

Context menu (map workspace)
Add Business Object 36

Delete 75

Map Properties 58

Paste As Input Object 37

Paste As Output Object 37

Context menu (Relationship Designer Express)
accessing 242

Change Index 246

Context menu (source data, child object)
Add Instance 86, 87, 88

Remove All Instances 88

Remove Instance 88

Context menu (source data, main object)
Load From 88

Reset 86

Save To 87

Context menu (Transformations)
Open 29

Open in New Window 29

View Source 30

copy() method 329, 346

Copying
attributes 40, 54

business object 329

participant definitions 248, 249

relationship definitions 248

Create verb
conditionally set 285

Create verb (continued)
foreignKeyXref() and 292, 293

maintainChildVerb() and 288, 289

maintainCompositeRelationship() and 276

maintainSimpleIdentityRelationship() and 265, 267, 269,

272

relationship instance 296

create() method 186, 296, 466, 470, 476

Cross-Reference transformation 19, 25, 38, 49, 82, 102

and ACCESS_REQUEST calling context 265

and ACCESS_RESPONSE calling context 272

and EVENT_DELIVERY calling context 265

and SERVICE_CALL_ FAILURE calling context 272

and SERVICE_CALL_ REQUEST calling context 267

and SERVICE_CALL_ RESPONSE calling context 269

behavior with calling contexts 265

defining for relationships 263

validating 56

Custom transformation 19, 25, 38, 49, 50, 54, 102, 173, 257

CwBidiEngine method summary 361

CwDBConnection class 10, 365, 375

beginTransaction() 365

commit() 366

creating object of 203, 315

executePreparedSQL() 367

executeSQL() 368

executeStoredProcedure() 370

getUpdateCount() 371

hasMoreRows() 371

inTransaction() 372

isActive() 372

method summary 365

methods for calling stored procedures 210

methods for row access 205

methods for transaction management 216

nextRow() 373

release() 373

rollBack() 374

CwDBStoredProcedureParam class 10, 212, 377, 379

constructor 377

getParamType() 378

getValue() 379

method summary 377

CwDBStoredProcedureParam() constructor 212, 377

CwDBTransactionException exception 216, 218, 316, 366, 367,

374, 375

cwExecCtx variable 189, 425, 438, 439, 441, 442, 447, 449, 451

CWMapMessages.txt message file 177, 496

CWMAPTYPE constant 425

CxExecutionContext class 455

CxExecutionContext() 455

defined 455

getContext() 456

MAPCONTEXT 455

setContext() 456

CxExecutionContext() constructor 455

CxMissingIDException exception 497

D
Data conversion 40, 389

class for 389

Java.lang methods 389

to boolean data type 395

to Boolean object 392

to double data type 395

to Double object 393

Index 515

Data conversion (continued)
to float data type 396

to Float object 393

to int data type 397

to Integer object 394

to String object 398

valid conversions 392

Data Transformation Package 10

Data type
attribute 505

determining 389

determining if conversion is possible 390

Data validation 184, 187

Database
connecting to 203, 218, 315

executing a query in 203, 368, 369, 370

handling data from 204

modifying 207, 208

querying 204, 208, 371, 373

rows affected by last write 371

DataValidationLevel map property 99, 188

Date class 215, 377, 390, 392, 505

Date formatting
adding days to date 402

adding weekdays to date 403

adding years to date 404

calculating days between dates 406

calculating weekdays between dates 407

comparing dates 405, 406

current date 181, 401

example of 178

generic format 179, 409

getting day of the month 409, 410

getting day of the week 410, 411

getting earliest date from a list 415, 417

getting hour value 410

getting in specified or default format 422

getting milliseconds between 1/1/70 and date 413

getting minutes value 411, 418

getting month name 418, 419

getting month value 412, 418

getting most recent date from a list 413, 414

getting seconds value 412, 419

getting year 412, 420

parsing date according to format 401

using full names of months 408, 420, 421

using short names of months 408, 421

using weekday names 408, 422

Date function block 131

Add Day 131

Add Month 132

Add Year 132

Date After 132

Date Before 132

Date Equals 132

example of using 148

Format Change 132, 148

Get Day 132

Get Month 132

Get Year 133

Get Year Month Day 133

Now 133

DATE_TYPE constant 390

Date/Formats function block 133

yyyy-MM-dd 133

yyyyMMdd 133

yyyyMMdd HHmmss 133

deactivateParticipant() method 296, 477

deactivateParticipantByInstance() method 297, 478

Debug menu (Map Designer Express) 29

Advanced 29

Attach 29, 92

Breakpoints 29, 89

Clear All Breakpoints 29, 90

Continue 29, 91

Detach 29, 92

Run Test 29, 90

Step Over 29, 91

Stop Test Run 29

Toggle Breakpoint 29, 89

Default attribute value 39, 341, 505

DefaultValue attribute property 505

DELETE statement 207, 302, 368, 369

Delete verb
foreignKeyXref() and 293

maintainChildVerb() and 288, 289

maintainCompositeRelationship() and 276

maintainSimpleIdentityRelationship() and 266, 268, 269,

272

relationship instance 297

deleteMyChildren() method 439

deleteParticipant() method 296, 479

deleteParticipantByInstance() method 296, 480

Deprecated methods
BusObj class 345, 464

DtpConnection class 299, 381

Relationship class 486

UserStoredProcedureParam class 487

Design mode (Activity Editor) 103

Designer toolbar (Map Designer Express) 26

Add Business Object 36

All Attributes 26

Clear All Breakpoints 90

Compile 83

Continue 91

displaying 26, 28

Linked Attributes 26

Run Test 91

Step Over 91

Toggle Breakpoint 89

Unlinked Attributes 26

Validate 82

Designing maps for bidirectional languages 60

Destination business object 3, 5, 15, 184

adding to map 34, 36

business object window 37

displaying 10, 19, 28, 60

execution order 18, 56, 77, 82

relationship and 223

setting verb of 37

variable for 168

verb 37, 285

Diagram tab (Map Designer Express) 19

adding business object 36

business object browser 20, 26, 28

business object variables 168

business object window 20, 28, 37, 168

calling a submap 47

creating instances 20

custom transformation 50

default display 26

deleting a transformation 75

displaying attributes 39

joining attributes 41

516 Map Development Guide

Diagram tab (Map Designer Express) (continued)
key mappings 24

map workspace 20, 172

moving attribute 40

setting attribute value 39

splitting attribute 43

temporary business object 172

Double class 505

as stored-procedure parameter type 214, 308, 377

converting to 393

converting to Double 396

converting to Float 394, 396

converting to Integer 394, 397

converting to String 398

determining data type 390

obtaining maximum value 351, 352

obtaining minimum value 353, 354, 355

valid conversions 392

double data type
as stored-procedure parameter type 214, 377

checking for valid data 345

converting to 395

converting to Double 393

converting to Float 394, 396

converting to Integer 394, 397

converting to String 398

determining data type 390

getting attribute value 333

setting attribute to 339

valid conversions 392

DOUBLE_TYPE constant 390

DtpConnection class (deprecated) 10, 381, 387

beginTran() 381

commit() 382

creating object of 318

execStoredProcedure() 384

executeSQL() 383

getUpdateCount() 385

hasMoreRows() 385

inTransaction() 386

method summary 381

methods for calling stored procedures 304

methods for row access 301

methods for transaction management 303

nextRow() 386

rollBack() 387

DtpDataConversion class 10, 389, 398

CANNOTCONVERT 391

defined 389

getType() 389

isOKToConvert() 390

method summary 389

OKTOCONVERT 391

POTENTIALDATALOSS 391

toBoolean() 392

toDouble() 393

toFloat() 393

toInteger() 394

toPrimitiveBoolean() 395

toPrimitiveDouble() 395

toPrimitiveFloat() 396

toPrimitiveInt() 397

toString() 398

DtpDate class 10, 399, 423

addDays() 402

addWeekdays() 403

addYears() 404

DtpDate class (continued)
after() 405

before() 406

calcDays() 406

calcWeekdays() 407

DtpDate() 401

get12MonthNames() 408

get12shortMonthNames() 408

get7DayNames() 408

getCWDate() 409

getDayOfMonth() 409

getDayOfWeek() 410

getHours() 410

getIntDay() 410

getIntDayOfWeek() 411

getIntMilliSeconds() 411

getIntMinutes() 411

getIntMonth() 412

getIntSeconds() 412

getIntYear() 412

getMaxDate() 413

getMaxDateBO() 414

getMinDate() 415

getMinDateBO() 417

getMinutes() 418

getMonth() 418

getMSSince1970() 413

getNumericMonth() 418

getSeconds() 419

getShortMonth() 419

getYear() 420

method summary 399

rules for 399

set12MonthNames() 420

set12MonthNamesToDefault() 421

set12ShortMonthNames() 421

set12ShortMonthNamesToDefault() 421

set7DayNames() 422

set7DayNamesToDefault() 422

toString() 422

DtpDate() constructor 178, 181, 401

DtpDateException exception 179

DtpMapService class 10, 425, 426

method summary 425

runMap() 425

DtpSplitString class 10, 427, 432

defined 427

DtpSplitString() 427

elementAt() 428

firstElement() 428

getElementCount() 429

getEnumeration() 430

lastElement() 430

method summary 427

nextElement() 430

prevElement() 431

reset() 432

DtpSplitString() constructor 427

DtpUtils class 10, 433, 435

method summary 433

padLeft() 433

padRight() 433

stringReplace() 434

truncate() 435

duplicate() method 330, 348

Duplicating
business object 330

Index 517

Duplicating (continued)
business object array 348

Dynamic relationship 254

E
Edit menu (Activity Editor) 107

Copy 107

Cut 107

Delete 107

Find 107

Goto Line 82, 107

Paste 107

Redo 107

Replace 107

Select All 107

Undo 107

Edit menu (Map Designer Express) 28

Add Business Object 28, 36, 169, 170

Delete Business Object 28, 75

Delete Current Selection 28, 37, 75

Find 28, 39, 53, 72

Insert Row 28

Map Properties 28, 58, 99, 166, 169, 188

Replace 28, 73

Select All 28

Edit menu (Relationship Designer Express) 242

Advanced Settings 242, 245, 247, 249, 252

Copy 242, 248, 249

Cut 242

Delete 253

Paste 242, 249

Rename 242

elementAt() method 349, 428

Enumeration class 205, 301

Environment variable
CLASSPATH 166, 167

JCLASSES 166

PATH 11

equalKeys() method 330

equals() method 331, 349

equalsShallow() method 332

Error
compilation 81, 84

run-time 98

Error message 320, 501

EVENT_DELIVERY calling context 189, 190, 265

Create verb and 265, 288, 292, 296

Delete verb and 266, 288, 297

foreignKeyXref() and 291, 443

getOriginalRequestBO() and 461

maintainChildVerb() and 288, 446

maintainCompositeRelationship() and 276, 447

maintainSimpleIdentityRelationship() and 265, 450

original-request business object 191, 461

Retrieve verb and 266, 288, 292

retrieving 460

setting to 463

testing with 94, 97

Update verb and 266, 288, 292

updateMyChildren() and 284

Event-triggered flow 189, 190

Exception handling 185, 186

Exception types 328

Exceptions
CollaborationException class 328

Exceptions (continued)
CwDBTransactionException 216, 218, 316, 366, 367, 374,

375

defined 185, 328

raising 321, 500

RelationshipRuntimeException class 185

relationships 185

type 328

execStoredProcedure() method (deprecated) 304, 305, 384

executePreparedSQL() method 208, 210, 211, 367

executeSQL() method (CwDBConnection) 204, 210, 211, 368

executeSQL() method (DtpConnection) 300, 304, 383

executeStoredProcedure() method 210, 211, 370

execution context 455

exists() method 332

Explicit transaction bracketing 215

releasing the connection 218

scope of transaction 216

Expression Builder 181, 199

F
File menu (Activity Editor) 106

Close 106

Print 106

Print Preview 106

Print Setup 106

Save 106, 175, 182

File menu (Map Designer Express) 27

Close 27, 57

Compile 27, 57, 83, 86, 194, 198, 201

Compile All 28, 83

Compile with Submap(s) 27, 83

Create Map Document 28, 63

Delete 27, 76

Exit 28, 57

New 27, 33

Open 27, 56, 57

Print 28, 74

Print Preview 28, 74

Print Setup 28, 74

Save 27, 51, 53

Save As 27, 51, 53

Validate Map 27, 82

View Map Document 28, 64

File menu (Relationship Designer Express) 241

Add Participant Definition 241, 243

New 241

New Relationship Definition 243

Save 241

Save All 241

Save Relationship Definition 244, 248, 249

Switch to Project 241

Find and Replace text 73

Find text 72

Find unlinked attribute 72

firstElement() method 428

Float class 505

as stored-procedure parameter type 214, 308, 377

converting to 393

converting to Double 393, 396

converting to Float 396

converting to Integer 394, 397

converting to String 398

determining data type 390

obtaining maximum value 351, 352

obtaining minimum value 353, 354, 355

518 Map Development Guide

Float class (continued)
valid conversions 392

float data type
as stored-procedure parameter type 214, 377

checking for valid data 345

converting to 396

converting to Double 393, 396

converting to Float 394

converting to Integer 394, 397

converting to String 398

determining data type 390

getting attribute value 333

setting attribute to 339

valid conversions 392

FLOAT_TYPE constant 390

Foreign key 290, 440, 442, 505

Foreign Key Cross-Reference function block 291, 294

Foreign key lookup 54, 290

Foreign Key Lookup function block 290, 294

foreignKeyLookup() method 54, 290, 297, 298, 440, 497

foreignKeyXref() method 54, 291, 297, 298, 299, 442, 497

Function blocks 110, 114

adding connection links 144, 149

adding custom Jar libraries as 163

customizing Jar library properites 164

dragging and dropping 144, 148

example of using 142, 148, 154

General/APIs/Business Object 116

General/APIs/Business Object Array 120

General/APIs/Business Object/Array 119

General/APIs/Business Object/Constants 120

General/APIs/Database Connection 121

General/APIs/Identity Relationship 123

General/APIs/Maps 125

General/APIs/Maps/Constants 125

General/APIs/Maps/Exception 126

General/APIs/Participant 127

General/APIs/Participant/Array 129

General/APIs/Participant/Constants 129

General/APIs/Relationship 129

General/Date 131

General/Date/Formats 133

General/Logging and Tracing 133

General/Logging and Tracing/Log Error 134

General/Logging and Tracing/Log Information 134

General/Logging and Tracing/Log Warning 135

General/Logging and Tracing/Trace 135

General/Mapping 136

General/Math 136

General/Properties 138

General/Relationship 138

General/String 139

General/Utilities 141

General/Utilities/Vector 142

moving 144, 149

using directly in Map Designer Express 110

using to implement relationships 257

Web services 157

G
get12MonthNames() method 178, 408

get12ShortMonthNames() method 178, 408

get7DayNames() method 178, 408

getConnName() method 459

getContext() method 456

getCount() method (deprecated) 345

getCWDate() method 178, 179, 409

getDayOfMonth() method 178, 409

getDayOfWeek() method 178, 410

getDBConnection() method 203, 215, 315, 316

getElementCount() method 429

getElements() method 350

getEnumeration() method 430

getGenericBO() method (deprecated) 464

getHours() method 178, 410

getInitiator() method 189, 459

getInstanceId() method 186, 467

getIntDay() method 178, 410

getIntDayOfWeek() method 178, 411

getIntMilliSeconds() method 411

getIntMinutes() method 178, 411

getIntMonth() method 178, 412

getIntSeconds() method 178, 412

getIntYear() method 178, 412

getKeys() method (deprecated) 345

getLastIndex() method 350

getLocale() method 335, 342, 460

getMaxDate() method 178, 413

getMaxDateBO() method 178, 414

getMinDate() method 178, 415

getMinDateBO() method 178, 417

getMinutes() method 178, 418

getMonth() method 178, 418

getMSSince1970() method 178, 413

getName() method 317

getNewID() method 481

getNumericMonth() method 178, 418

getOriginalRequestBO() method 189, 461, 464

getParamDataTypeJavaObj() method (deprecated) 305, 308,

488

getParamDataTypeJDBC() method (deprecated) 305, 308, 489

getParamIndex() method (deprecated) 305, 489

getParamIOType() method (deprecated) 305, 490

getParamName() method (deprecated) 305, 491

getParamType() method 212, 378

getParamValue() method (deprecated) 305, 491

getParticipantDefinition() method 468

getRelationshipDefinition() method 468

getRelConnection() method (deprecated) 300, 318, 383, 384

getSeconds() method 178, 419

getShortMonth() method 178, 419

getType() method 335, 389

getUpdateCount() method (CwDBConnection) 207, 371

getUpdateCount() method (DtpConnection) 303, 385

getValue() method 212, 379

getValues() method (deprecated) 345

getVerb() method 336

getYear() method 178, 420

Graphical view (Activity Editor) 102, 103

Content window 104

Design mode 103

Library window 103

Properties window 104

Quick view mode 104

Graphics toolbar (Activity Editor) 108

Back 109

Forward 109

Home 109

Up One Level 109

Zoom In 109

Zoom Out 109

Index 519

H
hasMoreRows() method (CwDBConnection) 205, 210, 371

hasMoreRows() method (DtpConnection) 301, 385

Help menu (Activity Editor) 108

documentation 108

Help Topics 108

Help menu (Map Designer Express) 29

About Map Designer Express 29

Documentation 29

Help Topics 29

Help menu (Relationship Designer Express) 242

About Relationship Designer Express 242

Documentation 242

Help topics 242

Hierarchical business object
comparing all 331

comparing top-level 332

transversing 328

I
Identity relationship 225, 229

adding child business objects 437, 450

child business objects 246

class for 437

creating participant for 467

defined 224, 225, 244

defining 244, 246, 263, 273, 274

deleting child business objects 439, 450

kinds of 225, 244

maintaining child verb 287

relationship instance IDs 232

static 255

static lookup 285

testing 93

IdentityRelationship class 10, 231, 437, 453

addMyChildren() 437, 486

deleteMyChildren() 439

foreignKeyLookup() 440

foreignKeyXref() 442

maintainChildVerb() 444

maintainCompositeRelationship() 446, 486

maintainSimpleIdentityRelationship() 448, 486

method summary 437

updateMyChildren() 450, 486

Implementing relationships using function blocks 257

Composite identity relationship 275

Foreign Key Cross-Reference 291, 294

Foreign Key Lookup 290, 294

Identity relationship 273

Maintain Child Verb 273, 276, 278, 287, 289

Update My Children 279, 284

Implicit transaction bracketing 215

as default 215

releasing the connection 218

scope of transaction 216

implicitDBTransactionBracketing() method 216, 319

import statement 166

IN parameter 212, 213, 379

Inbound map 3, 4

example of customizing 285

foreign key lookup in 293, 441, 443

in map document 62

lookup relationship in 261, 262, 483

testing 94, 95, 97

Informational message 320, 501, 502

INOUT parameter 212, 379

INSERT statement 207, 260, 302, 368, 369, 371

int data type
as stored-procedure parameter type 214, 377

checking for valid data 345

converting to 397

converting to Double 393, 396

converting to Float 394, 396

converting to Integer 394

converting to String 398

determining data type 390

getting attribute value 333

setting attribute to 339

valid conversions 392

Integer class 505

as stored-procedure parameter type 214, 308, 377

converting to 394

converting to Double 393, 396

converting to Float 394, 396

converting to Integer 397

converting to String 398

determining data type 390

obtaining maximum value 351, 352

obtaining minimum value 353, 354, 355

valid conversions 392

INTEGER_TYPE constant 390

inTransaction() method (CwDBConnection) 216, 218, 372

inTransaction() method (DtpConnection) 303, 386

INVALID_INSTANCE_ID constant 468, 470, 476

isActive() method 218, 372

isBlank() method 336

IsForeignKey attribute property 505

IsKey attribute property 505

isKey() method 336

isNull() method 337

isOKToConvert() method 390

IsRequired attribute property 505

isRequired() method 338

isTraceEnabled() method 319

J
Jar libraries

customizing display settings 164

importing as function blocks 163

Java class
Boolean 392, 505

Date 390, 505

Double 393, 396, 505

Enumeration 205, 301

Float 393, 396, 505

Integer 394, 397, 505

java.sql.Types 214, 307

Object 333, 339, 345

StringTokenizer 427

Vector 205, 212, 301, 368, 373, 378

Java compiler (javac) 83

Java Development Kit (JDK) 11, 165

Java operator, NOT 345

Java statements
catch 100, 297

import 166

try 100, 297

Java toolbar (Activity Editor) 109

Edit Java Code 109

Expression Builder 109

Find Text 109

520 Map Development Guide

Java toolbar (Activity Editor) (continued)
Goto Line 109

Redo 109

Undo 109

Java view (Activity Editor) 102

Design mode 105

Quick view mode 105

WordPad 105

java.lang package 389

java.sql.Types class 214, 307

java.util package 205, 301, 427

JavaException exception 322

JCLASSES environment variable 166

Join transformation 19, 25, 38, 41, 54, 56, 82, 102

K
Key attribute 225, 505

composite 227, 245, 274, 447

foreign 290, 440, 442, 505

identity relationships and 245

single 225, 245, 449

Key attribute values
checking for 336

comparing 330

retrieving as string 338

setting 341

Keyboard shortcut 31

keysToString() method 338, 345

L
Languages, designing maps for bidirectional 60

lastElement() method 430

logError() method 177, 320, 500, 501

Logging 99, 177, 501, 502

example 501

levels 502

methods that send message 320, 500, 501

principles of 502

severity levels 501

Logging and Tracing function block 133

Log error 133

Log error ID 133

Log information 133

Log information ID 133

Log warning 133

Log warning ID 133

Trace 133

Logging and Tracing/Log Error function block 134

Log error ID 1 134

Log error ID 2 134

Log error ID 3 134

Logging and Tracing/Log Information function block 134

Log information ID 1 134

Log information ID 2 134

Log information ID 3 134

Logging and Tracing/Log Warning function block 135

Log warning ID 1 135

Log warning ID 2 135

Log warning ID 3 135

Logging and Tracing/Trace function block 135

Trace ID 1 135

Trace ID 2 135

Trace ID 3 136

Trace on Level 136

Logical operator 345

logInfo() method 99, 100, 202, 320, 500, 501, 502

logWarning() method 320, 501

long data type 214, 333, 339, 345, 377

LongText class
determining data type 390

getting attribute value 333

obtaining maximum value 351, 352

obtaining minimum value 353, 354, 355

setting attribute 340

valid conversions 392

LONGTEXT_TYPE constant 390

Lookup relationship 224, 258, 262

code for 261, 483, 484

creating participant for 467

defined 224, 247, 258

defining 247, 259

example of 224, 259

participant type for 234, 247, 259

relationship instance IDs 232

static 155, 255

testing 96

M
Maintain Child Verb function block 276, 287, 289

Maintain Composite Identity Relationship function block 275

maintainChildVerb() method 276, 287, 290, 444

validations performed 445

maintainCompositeRelationship() method 446

actions of 275

attribute comment for 54

deprecated version 486

error messages 298, 496, 497

maintainSimpleIdentityRelationship() method 448

attribute comment for 54

deprecated version 486

error messages 297, 298, 496, 497

validations performed 449

Managing child instances function blocks 282

Map automation
creating maps automatically 65

creating reverse maps 69

creating synonyms for 71

Map definition 5, 7

creating 33

defined 5

in map definition file 52

loading 79

location of 5

naming conventions 5

New Map wizard 33

unloading 79

Map Designer Express 8, 15, 55

Add Business Object dialog 36

Automatic mapping 65

Breakpoint dialog 90

business object browser 20, 26, 28

business object pane 19, 26, 36, 75, 172

business object window 20, 28, 37, 168

Condition for calling Submap dialog 198

Context menu 29

data conversion by 40

Debug menu 29

Delete Business Object dialog 75

Delete Map dialog 76

Edit menu 28

Index 521

Map Designer Express (continued)
exiting 28, 57

File menu 27

files generated 12

Find control pane 27, 53, 72

functionality of 27

Help menu 29

launching 15

layout of 16

main components 17

main window 17, 25

map workspace 20, 36, 172

menus of 27

Messages tab 21, 26, 495

Multiple Attributes dialog 18, 41

New Map wizard 33, 36

Open file with map dialog 57

Open Map from Project dialog 56

output window 17, 22, 26, 27, 28, 84, 85

overview 15

preferences 22

Programs toolbar 26, 28

Reverse map 65

Save Map As dialog 35, 51

search facility 72

starting 15

status bar 17, 26, 28

Submap dialog 47, 194, 197, 198

tab window 8, 55

Tab window 17

Test tab 22, 26, 85

toolbars 26, 30

Tools menu 29

View menu 28

working in projects 16

Map development 11, 15

Map document 60

Map execution
continuing 91

execution order 18, 56, 77, 82

map instances and 7

pausing 88, 91

purpose of 189

relationship instances and 230, 234

test run and 85

transactions and 218, 309, 316, 318

viewing 85, 91

Map execution context 189

calling context 189, 460, 461, 463, 464

class for 189, 459

cxExecCtx 189

original-request business object 191, 268, 269, 273, 292,

293, 462

Map instance 7

calling context 459, 462

class for 7, 315

connector name 459, 462

contents of 7

data validation level 188

defined 7

execution context 7, 189

original-request business object 461

reusing 171, 184

starting 188, 504

stopping 188, 504

trace level 504

transaction programming model 215, 319

Map properties 10, 58

DataValidationLevel 99, 188

Map file declaration block 166

Map local declaration block 166

run-time 59

Trace level 325, 503

updating from server component management view 59,

185, 188

Map Properties dialog (Map Designer Express)
Business Objects tab 168, 169, 172

General tab 59, 165, 172, 184, 188, 215, 316, 503

Map repository file 79

Map Utilities package 165, 166

MAPCONTEXT constant 455

MapExeContext class 10, 459, 465

calling-context constants 190

deprecated methods 464

getConnName() 459

getGenericBO() 464

getInitiator() 459

getLocale() 460

getOriginalRequestBO() 461

method summary 459

setConnName() 462

setInitiator() 462

setLocale() 463

MapFailureException exception 297

mapName._locale.txt message file 495

mapName.txt message file 497

Mapping
across instances 21

automatic 65

defined 3

overview 3

polymorphic 78

reverse 65

simple 5

standards 53, 99, 297

support for 3

tools for 8, 9

Mapping API 10, 54

BaseDLM class 10

business object classes 10

BusObj class 10

BusObjArray class 10, 347

CwDBConnection class 10, 365

CwDBStoredProcedureParam class 10, 377

DTP classes 10

DtpConnection class 10, 381

DtpDataConversion class 10, 389

DtpDate class 10, 399

DtpMapService class 10, 425

DtpSplitString class 10, 427

DtpUtils class 10, 433

IdentityRelationship class 10, 437

MapExeContext class 10, 459

Participant class 10, 465

Relationship class 10, 473

relationship classes 10

UserStoredProcedureParam class 10, 487

utility classes 10

Mapping function block 136

Run Map 136

Run Map with Context 136

Mapping role 59

Maps
base class for 315

522 Map Development Guide

Maps (continued)
closing 57

coding 101, 218

compiling 17, 22, 52, 82, 84, 86, 166

creating 32

creating automatically 65

creating reverse maps 69

current 51, 55, 83, 172, 317

debugging 92, 98

defined 3, 8, 15

deleting 76

designing for bidirectional languages 60

development files 12

exceptions and 185

execution context 189

HTML version 60

improving modularity of 45

map documents 60

name of 5, 35, 59, 317

naming 35

opening 55

polymorphic 78

printing 74

renaming 52

saving 21, 35, 51, 75

saving to file 53

saving to project 51

testing 85, 92

using Web services in 157

validating 23, 51, 55, 82

viewing execution 85, 91

working with 55

XML version 52

Math function block 136

Absolute value 136

Ceiling 136

Divide 136

Equal 137

Floor 137

Greater than 137

Greater than or Equal 137

Less than 137

Less than or equal 137

Maximum 137

Minimum 137

Minus 137

Multiply 138

Not a Number 138

Not Equal 138

Number to String 138

Plus 138

Round 138

String to Number 138

MAX_CONNECTION_POOLS configuration parameter 250,

253

max() method 350

maxBusObjArray() method 351

maxBusObjs() method 352

MaxLength attribute property 505

Message 21

5000 297, 496, 497

5001 298, 496, 498

5002 298, 497, 498

5003 297, 497, 498

5007 298, 497, 498

5008 298, 497, 498

5009 298, 299, 497, 498

Message (continued)
format 498

location of 21, 495

number 499

parameters in 495, 499

revising 502

severity 501, 502

text 499

Message file 495, 504

choosing which one to use 495

comments 500

CWMapMessages.txt 177, 496

defined 495

displaying 22

format 498

location of 13, 495

maintaining 500

mapName_locale.txt 495

mapName.txt 497

operations that use 500

overview 495

UserMapMessages.txt 496, 497

using 177, 499, 501

Message logging 365

method summary, CwBidiEngine 361

min() method 353

minBusObjArray() method 354

minBusObjs() method 355

Move transformation 19, 25, 38, 40, 54, 56, 82

Multiple-map map table 62

N
Name attribute property 505

Naming conventions
maps 5

participant definitions 233, 243

relationship definitions 230, 243

New Constant 108, 113, 151, 152

nextElement() method 430

nextRow() method (CwDBConnection) 205, 210, 373

nextRow() method (DtpConnection) 301, 386

Non-identity relationships 224

NOT operator 345

not() 345

Null attribute value 297, 337

Numbers, truncating 435

O
Object class 333, 339, 345

ObjectEventId attribute 54, 82, 86, 93

ObjectException exception 322

OKTOCONVERT constant 391

OperationException exception 322

Original-request business object 191, 268, 269, 273, 292, 293,

461

OUT parameter 211, 212, 213, 379

Outbound map 3, 4

example of customizing 286

foreign key lookup in 441, 443

in map document 62

lookup relationship in 261, 262, 484

testing 94, 97

Index 523

P
Package

Data Transformation 10

importing Java packages 163

java.lang 389

java.util 205, 301, 427

Map Utilities 165, 166

padLeft() method 433

padRight() method 433

PARAM_IN constant 213, 379

PARAM_INOUT constant 379

PARAM_OUT constant 213, 379

Parent/child relationship 282

adding child instance 437, 450

defined 282

defining 246

deleting child instance 439, 450

Participant class 10, 231, 235, 465, 471

defined 465

getInstanceId() 467

getParticipantDefinition() 468

getRelationshipDefinition() 468

method summary 465

Participant() 465

set() 469

setInstanceId() 469

setParticipantDefinition() 470

setRelationshipDefinition() 470

Participant definition 233

advanced settings 246, 250

copying 248, 249

creating 243

defined 233

location of 233

name of 468, 470

naming conventions 233, 243

renaming 249

Participant instance 234

adding to relationship instance 474

class for 235, 465

constructor for 465

contents of 234

creating 296, 465, 476

data 235, 251, 465, 467, 469

deactivating 477, 478

defined 234, 465

deleting 296, 479, 480

identifier 234

participant definition 235, 465, 468, 470

relationship definition 234, 465, 468, 470

relationship instance ID 235, 465, 467, 469, 482

retrieving from relationship instance 484

updating 485

Participant instance identifier 234

Participant type 233, 243

business object 234, 243, 245, 263, 274

Data 224, 234, 243, 247, 259

Participant Types window 240, 241, 243, 247

Participant() constructor 465, 470

Participants 233, 235

defined 223

naming conventions 233, 243

PATH environment variable 11, 83

Polymorphic maps 78

POTENTIALDATALOSS constant 391

Preferences dialog (Map Designer Express) 28

Automatic Mapping tab 25, 67

Preferences dialog (Map Designer Express) (continued)
Custom Mapping tab 25

General tab 18, 23, 52, 55, 76, 77, 78, 83, 169

Key Mapping tab 24, 40, 42, 43, 47, 50

Validation tab 24

prevElement() method 431

Project 16, 238

browsing a 239

opening a map from 16

saving map to 51

saving the map in 16, 238

working in 16

working with 238

Properties function block 138

Properties function block, Get Property 138

Q
Quick view mode (Activity Editor) 104

R
Relationship attribute property 505

Relationship class 10, 231, 473, 487

addParticipant() 474

create() 476

deactivateParticipant() 477

deactivateParticipantByInstance() 478

defined 473

deleteParticipant() 479

deleteParticipantByInstance() 480

deprecated methods 486

getNewID) 481

guidelines 473

method summary 473

retrieveInstances() 482

retrieveParticipants() 484

updateParticipant() 485

Relationship database 230

connecting to 300, 309, 318

determining if transaction is in progress 386

disconnecting from 323

executing a query in 300

location of 12, 230, 231, 250, 252, 253

modifying 302

queries for more rows to process 385

retrieving next row 386

rows affected by last write 385

SQL queries 10, 383

type of 250, 252

user account for 249, 250, 252

Relationship definition 229, 230

advanced settings 245, 249

changing 244

copying 248

creating 243

defined 8, 229, 237

deleting 253

dependent objects 311

identity 244, 246, 263, 273, 274

list 239

loading 310

location of 229

lookup 247, 259

name of 468, 470

naming conventions 230, 243

524 Map Development Guide

Relationship definition (continued)
parent/child 282

renaming 249

saving 244

unloading 309

viewing 239

Relationship Designer Express 8

Advanced Settings dialog 245, 249, 252, 254, 255

Edit menu 242

File menu 241

functionality of 241

Global Default Settings dialog 252

Help menu 242

launching 237

layout of 239

main window 240

menus of 241

overview 237

Programs toolbar 238

starting 237

status bar 240, 242

toolbar 242

toolbars 240

Tools menu 242

View menu 242

working with projects 238

Relationship development 235

Relationship function block 138, 257

example of using 156

Maintain Identity Relationship 138

Static Lookup 139, 156

Relationship instance 230, 233

adding a participant to 474

class for 7, 231, 437, 473

creating 296, 476

creating participant for 296, 466

deactivating participant 296, 477, 478

defined 230

deleting child objects 439

deleting participant 296, 479, 480

location of 231

retrieving instance ID 481, 482

retrieving participants from 484

run-time data 248

updating participants 485

Relationship instance ID 232

deactivating participant by 479

defined 232

deleting participant by 481

duplicate 186

identity relationship and 232

in participant instance 467, 469

lookup relationship and 232

retrieving for participant 482

retrieving next 481

Relationship Manager 261

Relationship repository file 309

Relationship tables 230, 231

caching 254

changes to 192

composite identity relationships 275

contents of 233

creating 246, 248, 251

defined 231

foreign 290, 441, 443

foreign key lookups and 440, 442

identity relationships 263

Relationship tables (continued)
index size 275

location of 230, 231, 250, 252, 253, 254

lookup relationships 155, 247, 259

MaxLength attribute 275

modifying 302, 442

name of 231, 251, 259

participants in 477, 479

performing lookup in 285

querying 300

table schemas 248, 249, 252

RelationshipRuntimeException class 95, 185, 298, 496

Relationships 229, 233

custom 295

defined 223

dynamic 254

exceptions 185

implementing code for 257

introduction 223, 236

naming conventions 230, 243

non-identity 224

optimizing 254

starting 244

static 254

static lookup 155

stopping 244

testing 93

transformations for 50, 54, 257

types of 223, 250

working with 257

release() method 218, 373

releaseRelConnection() method (deprecated) 323

removeAllElements() method 356

removeElement() method 356

removeElementAt() method 357

Replace text 73

repos_copy utility 79, 309

Repository
exporting a map from 79

exporting a relationship 309

location of relationship tables 300

relationship database and 230, 231

Required attribute 338, 505

reset() method 432

Retrieve verb 447, 449

foreignKeyXref() and 292, 293

maintainChildVerb() and 288, 289

maintainCompositeRelationship() and 276

maintainSimpleIdentityRelationship() and 266, 268, 269,

272

retrieveInstances() method 54, 262, 285, 482

retrieveParticipants() method 54, 262, 285, 484

Retrieving 455

business object array contents 350

business object array maximum value 350, 351, 352

business object array minimum value 353, 354, 355

business object array values as string 359

business object attribute 333

business object from array 349

business object key attribute value as string 338

business object type 335

business object verb 336

configuration property value 456

last index from business object array 350

map name 317

number of elements in business object array 358

Index 525

Reverse map
creating automatically 69

example of 69

providing delimiters 69

transformation rules 69

rollBack() method (CwDBConnection) 216, 374

rollBack() method (DtpConnection) 303, 387

runMap() method 48, 78, 189, 194, 197, 199, 201, 295, 425

S
SELECT statement 204, 208, 300, 368, 369, 372, 373

Server component management view
updating map properties 59, 185, 188

SERVICE_CALL_FAILURE calling context 190, 265

generic business object and 191

getOriginalRequestBO() and 461

maintainCompositeRelationship() and 276

maintainSimpleIdentityRelationship() and 272

original-request business object 191, 461

retrieving 460

setting to 463

SERVICE_CALL_REQUEST calling context 190, 265

Create verb and 267, 288, 293

Delete verb and 268, 288, 293

foreignKeyXref() and 293, 443

generic business object and 191

getOriginalRequestBO() and 461

maintainChildVerb() and 288, 446

maintainCompositeRelationship() and 276, 447

maintainSimpleIdentityRelationship() and 267, 449, 450

original-request business object 191, 461

Retrieve verb and 268, 288, 293

retrieving 460

setting to 463

testing with 95, 97

Update verb and 268, 288, 293

updateMyChildren() and 284

SERVICE_CALL_RESPONSE calling context 190, 265

Create verb and 269, 289, 292, 296

Delete verb and 269, 289, 297

foreignKeyXref() and 291, 443

generic business object and 95, 191

getOriginalRequestBO() and 461

identity relationships and 95

maintainChildVerb() and 288, 446

maintainCompositeRelationship() and 276, 447

maintainSimpleIdentityRelationship() and 269, 450

original-request business object 191, 271, 461

Retrieve verb and 269, 289, 292

retrieving 460

setting to 463

testing with 96, 98

Update verb and 269, 289, 292

updateMyChildren() and 284

ServiceCallException exception 322

Set Value transformation 19, 38, 39, 54, 56, 82, 102

set() method 339, 346, 469

set12MonthNames() method 178, 420

set12MonthNamesToDefault() method 178, 421

set12ShortMonthNames() method 178, 421

set12ShortMonthNamesToDefault() method 178, 421

set7DayNames() method 178, 422

set7DayNamesToDefault() method 178, 422

setConnName() method 462

setContent() method 340

setContext() method 456

setDefaultAttrValues() method 341

setElementAt() method 357

setInitiator() method 189, 462

setInstanceId() method 469

setKeys() method 341

setLocale() method 463

setParamDataTypeJavaObj() method (deprecated) 305, 308,

492

setParamDataTypeJDBC() method (deprecated) 305, 308, 492

setParamIndex() method (deprecated) 305, 493

setParamIOType() method (deprecated) 305, 493

setParamName() method (deprecated) 305, 494

setParamValue() method (deprecated) 305, 494

setParticipantDefinition() method 470

setRelationshipDefinition() method 470

Setting
business object attribute 339, 343

business object attribute default value 341

business object contents 340

business object key attribute value 341

business object value in an array 357

business object verb 342

verb of child business object attribute 343

setVerb() method 195, 281, 342, 346

setVerbWithCreate() method 343

setWithCreate() method 343

Simple identity relationship 225, 226, 244, 263

child-level 273

defining 245, 246, 263, 273

defining Cross-Reference transformation 263

defining transformation rules 273

example of 225

main map 273

maintainChildVerb() 273, 290

maintainSimpleIdentityRelationship() 263, 448

parent map 273

participant type for 263

submap 274

Single-map map table 61

size() method 350, 358

Source business object 3, 5, 184

adding to map 33, 36

business object window 37

displaying 10, 19, 28, 60

testing 86

variable for 168

Split transformation 19, 25, 38, 43, 54, 56, 82, 102

Splitting strings
creating the parsed string 427

getting element at specified position 428

getting first element from string 428

getting last element from string 430

getting next element from string 430

getting number of elements in string 429

getting previous element from string 431

processing the parsed tokens into an object 430

resetting current position number 432

SQL query 10, 202, 218, 299, 309

checking for more rows 205, 371, 385

executing 203, 300, 367, 368, 370, 383

prepared 208, 367

retrieving next row 205, 373

static 204, 368

Standard toolbar (Activity Editor) 108

Copy 108

Cut 108

Delete 108

526 Map Development Guide

Standard toolbar (Activity Editor) (continued)
Help 108

Paste 108

Print Activity 108

Save Activity 108

Standard toolbar (Map Designer Express) 26

displaying 26, 28

Find 72

New Map 33

Open Map from File 57

Open Map from Project 56

Print 74

Save Map to File 53

Save Map to Project 51

Standard toolbar (Relationship Designer Express) 241

displaying 240, 242

New Participant 243

New Relation 243

Save Relation 244

start_server.bat file 166, 168

Static lookup 285

Static Lookup function block, example of using 156

Static Lookup relationship 155

Static relationship 254

Status bar (Activity Editor) 109

Stored procedure
executing 210, 303, 368, 369, 370, 384

for relationship instance 248, 251

query result 210, 372, 373

Stored-procedure parameter 212

creating object for 212, 305, 377, 487

in/out parameter type 212, 305, 378, 490, 493

index position 305, 489, 493

Java Object type 305, 488, 492

JDBC data type 305, 489, 492

mappings from Java Object to JDBC 214, 308

mappings from JDBC to Java Object 308

name 305, 491, 494

value 212, 305, 379, 491, 494

String class 505

as stored-procedure parameter type 214, 308, 377

checking for valid data 345

converting to 398

converting to Boolean 392, 395

converting to Double 393, 396

converting to Float 394, 396

converting to Integer 394, 397

determining data type 390

getting attribute value 333

obtaining maximum value 351, 352

obtaining minimum value 353, 354, 355

setting attribute to 339

valid conversions 392

String function block 139

Append Text 139

example of using 144

If 139

Is Empty 139

Is NULL 139

Left Fill 139

Left String 139

Lower Case 139

Object To String 139

Repeat 140

Replace 140

Right Fill 140

Right String 140

String function block (continued)
Substring by position 140

Substring by value 140

Text Equal 140

Text Equal Ignore Case 140

Text Length 140

Trim Left 141

Trim Right 141

Trim Text 141

Upper Case 141, 144

String transformations 182

checking for blank 184

checking for null 184

converting to uppercase text 182

manipulating strings 182

STRING_TYPE constant 390

stringReplace() method 434

Strings
padding with specified character 433

replacing one pattern with another 434

StringTokenizer class 427

strInitiator built-in variable 175

Submap transformation 38

Submaps 45, 48, 197, 202

accessing code for 102

attribute comment for 54

calling 46, 194, 197, 198, 199, 201, 425

child business objects 45, 47

compiling 47, 83, 194, 198, 201

conditions 48, 197

creating 46, 194, 198, 201

defined 45

execution context and 189

Expression Builder and 199

identity relationships and 274, 281

key mapping for 25

many-to-one 200

multiple-cardinality 193

naming conventions 47

transformation code for 19

uses for 45

validating 56, 82

sum() method 358

summary, CwBidiEngine method 361

swap() method 358

Switch to Project (Relationship Designer Express) 238

Synonym creation
editing 71

for automatic mapping 71

System Manager 10

compiling a map 83

Component menu 83, 244, 504

connection pools 203

Map Properties window 59, 185, 188, 215, 504

opening map from project in 56

relationship categories 254

starting Map Designer Express from 15

starting Relationship Designer Express from 237

SystemException exception 322

T
Table tab (Map Designer Express) 17, 19

adding business object 36

attribute transformation table 17, 74

business object pane 19, 26, 28, 36, 75, 172

business object variables 168

Index 527

Table tab (Map Designer Express) (continued)
calling a submap 47

custom transformation 50

default display 26

deleting a transformation 75

deleting business object 75

joining attributes 41

moving attribute 40

output window 17

setting attribute value 39

specifying execution order 78

splitting attribute 43

temporary business object 172

Temporary variables 170

Test run 85

breakpoints 88, 91

creating test data 86

initial 86

pausing 88, 91

preparing for 86

starting 92

subsequent 88

viewing results 91

toBoolean() method 392

toDouble() method 393

toFloat() method 393

toInteger() method 394

Tools menu (Activity Editor) 107

Check for Unmatched Delimiters 107

Edit Code 107

Expression Builder 108

Translate 107

Tools menu (Map Designer Express) 29

Automatic Mapping 29

Business Object Designer Express 29

Process Designer Express 29

Relationship Designer Express 29

Reverse Map 29

Tools menu (Relationship Designer Express) 242

Business Object Designer 242

Map Designer 242

Relationship Manager 242

toPrimitiveBoolean() method 395

toPrimitiveDouble() method 395

toPrimitiveFloat() method 396

toPrimitiveInt() method 397

toString() method 178, 344, 345, 359, 398, 422

Trace level 319, 502, 503

Trace message 324, 500, 502, 504

adding 502

assigning trace level to 502

generating 503

setting trace level for 503

trace() method 324, 500, 502

Tracing 502, 504

code example 503

generating message 503

level for 502

Transactions
beginning 216, 303, 365, 381

committing 216, 218, 303, 309, 366, 382

defined 215, 303

determining if in progress 218, 372, 386

explicit 215

implicit 215

managing 207, 215

rolling back 216, 303, 374, 387

Transactions (continued)
scope 216

Transformation code
auto-update mode 50, 102

checking 81

deleting 74

finding text in 72

generating 44

handling exceptions in 185

importing packages into 165

location of 82

missing 53

programming considerations 295

unmatched delimiters 81

viewing 64

Transformation step 5, 19, 32, 37, 74, 82

Transformations 6, 19, 38, 51, 172, 184

addressing attributes 168

checking code 81

checking completeness of 53

content-based logic 173

Context menu 29

Cross-Reference 19, 38, 49

Custom 19, 38, 49

date formatting 178

defining for relationships 257, 277

destination attribute 18

execution order 18, 56, 77, 82

in map definition file 52

introduction 5

Join 19, 38, 41

map document for 60

Move 19, 38, 40

relationship attributes 50, 54, 257

Reverse map 69

selecting 28

Set Value 19, 38, 39

source attribute 18

Split 19, 38, 43

standard 19, 38, 102

string 182

Submap 19, 38

validating 56, 82

validating source data 187

variables 170

truncate() method 435

try statement 100, 196, 297

Type attribute property 505

U
UNKNOWN_TYPE constant 390

Update My Children function block 283

UPDATE statement 207, 302, 368, 369, 371

Update verb
conditionally set 285

foreignKeyXref() and 292, 293

maintainChildVerb() and 288, 289

maintainCompositeRelationship() and 276

maintainSimpleIdentityRelationship() and 266, 268, 269,

272

updateMyChildren() method 284, 450, 486

updateParticipant() method 485

Upper Case function block, example of using 144

UserMapMessages.txt message file 496, 497

UserStoredProcedureParam class (deprecated) 10, 487, 494

constructor 487

528 Map Development Guide

UserStoredProcedureParam class (deprecated) (continued)
getParamDataTypeJavaObj() 488

getParamDataTypeJDBC() 489

getParamIndex() 489

getParamIOType() 490

getParamName() 491

getParamValue() 491

method summary 487

setParamDataTypeJavaObj() 492

setParamDataTypeJDBC() 492

setParamIndex() 493

setParamIOType() 493

setParamName() 494

setParamValue() 494

UserStoredProcedureParam() constructor (deprecated) 305,

487

Utilities function block 141

Catch Error 141

Catch Error Type 141

Condition 141

Loop 141

Move Attribute in Child 141

Raise Error 141

Raise Error Type 141

Utilities/Vector function block 142

Add Element 142

Get Element 142

Iterate Vector 142

New Vector 142

Size 142

To Array 142

V
validData() method 345

Variable 168, 172

cwExecCtx 189, 425, 438, 439, 441, 442, 447, 449, 451

declaring 172

for business object 168

global 170, 172, 184

strInitiator 175

temporary 170

Vector class 301

with executeStoredProcedure() 212, 368, 378

with nextRow() 205, 373

Verb
defined 37

retrieving 336

setting 37, 54, 194, 195, 201, 285, 342, 444

test run 86, 87

verb-based logic 175

Verb-based logic 175

View menu (Activity Editor) 107

Content window 107

Design mode 107

GoTo 107

Library window 107

Preferences 107

Properties window 107

Quick view mode 107

Status Bar 107

Toolbars 107

Zoom In 107

Zoom Out 107

Zoom To 107

View menu (Map Designer Express) 26, 28

Business Object Pane 19, 26, 28

View menu (Map Designer Express) (continued)
Clear Output 17, 26, 28, 84

Diagram 20, 26, 28, 39

Output Window 17, 26, 28

Preferences 22, 28

Server Pane 20, 26, 28

Status Bar 17, 26, 28

Toolbars 26, 28

View menu (Relationship Designer Express) 240, 242

Collapse Tree 242

Expand Tree 242

Participant Types 242, 243

Status Bar 240

Toolbar 240

W
Warning message 320, 501

Web services
example of using in a map 158

exporting into Activity Editor 157

using in a map 157

using in Activity Editor 157

Z
Zero-length string 336

Index 529

530 Map Development Guide

����

Printed in USA

	Contents
	About this document
	Audience
	How to use this manual
	Related documents
	Typographic conventions

	New in this release
	New in release 4.4
	New in release 4.3.1
	New in release 4.3

	Part 1. Maps
	Chapter 1. Introduction to map development
	About data mapping
	Maps: A closer look
	Map definition
	Map instance

	Tools for map development
	Map Designer Express
	Relationship Designer Express
	Mapping API
	System Manager

	Overview of map development
	Requirements for setting up the development environment
	Designing and implementing the map
	Map development files

	Chapter 2. Creating maps
	Overview of Map Designer Express
	Starting Map Designer Express
	Working in projects
	Layout of Map Designer Express
	Assigning preferences
	Customizing the main window
	Using Map Designer Express functionality

	Creating a map: Basic steps
	Steps for creating the map definition
	Creating the source and destination business objects
	Setting the destination business object verb
	Specifying standard attribute transformations
	Saving maps
	Checking completion

	Mapping standards
	Tips on mapping individual attributes
	Setting comments in the comment field of the attribute

	Chapter 3. Working with maps
	Opening and closing a map
	Opening a map
	Closing a map

	Specifying map property information
	Defining General Property information
	Defining business objects

	Designing maps for bidirectional languages
	Using map documents
	What is a map document?
	Steps for creating a map document
	Viewing a map document
	Printing a map document

	Using map automation
	Creating maps automatically
	Creating reverse maps automatically
	Using synonyms for automation

	Finding information in a map
	Steps for finding information in a map

	Finding and replacing text
	Steps for finding and replacing text

	Printing a map
	Deleting objects
	Steps for deleting map transformation steps
	Steps for deleting business objects
	Steps for deleting maps

	Using execution order
	Creating polymorphic maps
	Importing and exporting maps from InterChange Server Express

	Chapter 4. Compiling and testing maps
	Checking the transformation code
	Finding unmatched delimiters

	Validating a map
	Compiling a map
	Steps for compiling a map from Map Designer Express
	Steps for compiling a map from System Manager
	A successful map compilation
	An unsuccessful map compilation

	Compiling a set of maps
	Steps for compiling a set of maps

	Testing maps
	Steps for preparing to run the test
	Creating test data
	Setting breakpoints
	Running the test map
	Viewing test run results
	Steps for changing the map and re-executing

	Doing advanced debugging
	Testing maps that contain relationships
	Testing an identity relationship
	Testing a lookup relationship

	Debugging maps
	Resolving run-time errors
	Debugging tips

	Chapter 5. Customizing a map
	Overview of Activity Editor
	Starting Activity Editor
	Layout of Activity Editor
	Using Activity Editor functionality

	Working with activity definitions
	Using function blocks
	Using connection links
	Using label, description, comment, and to-do tags
	Using the New Constant function block
	Steps for defining activity group blocks
	Identifying supported function blocks
	Example 1: Steps for changing a value to uppercase
	Example 2: Steps for changing a date format
	Example 3: Using Static Lookup for conversion

	Exporting Web services into Activity Editor
	Using Web services in Activity Editor
	Example of using a Web service in a map

	Using bidirectional functionality in Activity Editor
	Steps for deploying Bidi API in a Web service

	Importing Java packages and other custom code
	Importing Jar libraries as activity function blocks
	Importing through the Map Properties dialog
	Importing third-party classes to InterChange Server Express

	Using variables
	Using generated business object variables and attributes
	Creating temporary variables
	Declaring variables

	More attribute transformation methods
	Content-based logic
	Date formatting
	Using Expression Builder for string transformations

	Reusing map instances
	Handling exceptions
	Relationship exceptions
	Example: Handling duplicate relationship instance IDs

	Creating custom data validation levels
	Coding a data validation level
	Steps for testing the data validation level

	Understanding map execution contexts
	Calling contexts
	Original-request business objects

	Mapping child business objects
	Mapping single-cardinality source and destination
	Mapping single-cardinality source to multiple-cardinality destination
	Mapping multiple-cardinality source and destination

	More on using submaps
	Providing conditions when calling the submap
	Using Expression Builder to call a submap
	Passing business objects of different types to submaps

	Executing database queries
	Obtaining a connection
	Executing the query
	Managing the transaction
	Releasing a connection

	Part 2. Relationships
	Chapter 6. Introduction to relationships
	What is a relationship?
	Lookup relationships
	Identity relationships

	Relationships: A closer look
	Relationships
	Participants

	Overview of the relationship development process

	Chapter 7. Creating relationship definitions
	Overview of Relationship Designer Express
	Starting Relationship Designer Express
	Working with projects
	Layout of Relationship Designer Express
	Customizing the main window
	Using Relationship Designer Express functionality

	Creating a relationship definition
	Defining identity relationships
	Steps for defining identity relationships
	Relating child business objects

	Defining lookup relationships
	Steps for defining lookup relationships

	Creating the relationship table schema
	Copying relationship and participant definitions
	Steps for copying relationship definitions in the current project
	Steps for copying participant definitions in the current project

	Renaming relationship or participant definitions
	Specifying advanced relationship settings
	Advanced settings for relationship definitions
	Advanced settings for participant definitions
	Advanced settings for attributes
	Global default settings

	Deleting a relationship definition
	Optimizing a relationship
	Defining a dynamic relationship
	Defining a static relationship

	Chapter 8. Implementing relationships
	Implementing a relationship
	Using lookup relationships
	Creating lookup relationship definitions
	Populating lookup tables with data
	Customizing map transformations for a lookup relationship

	Using simple identity relationships
	Creating simple identity relationship definitions
	Accessing identity relationship tables
	Defining transformation rules for a simple identity relationship

	Using composite identity relationships
	Creating composite identity relationship definitions
	Determining the relationship action
	Customizing map rules for a composite identity relationship

	Managing child instances
	Creating the parent/child relationship definition
	Handling updates to the parent business object

	Setting the verb
	Conditionally setting the destination verb
	Setting the source child verb

	Performing foreign key lookups
	Using the Foreign Key Lookup function block
	Using the Foreign Key Cross-Reference function block
	Tips for using the Foreign Key Cross-Reference and Foreign Key Lookup function blocks

	Maintaining custom relationships
	Creating a new relationship instance
	Creating participant instances
	Deleting participant instances

	Writing safe relationship code
	Checking for null source attribute
	Handling exceptions from the mapping API method

	Executing queries in the relationship database
	Opening a connection
	Executing the query
	Closing a connection

	Loading and unloading relationships
	Unloading a relationship definition
	Loading a relationship definition

	Part 3. Mapping API Reference
	Chapter 9. BaseDLM class
	getDBConnection()
	getName()
	getRelConnection()
	implicitDBTransactionBracketing()
	isTraceEnabled()
	logError(), logInfo(), logWarning()
	raiseException()
	releaseRelConnection()
	trace()

	Chapter 10. BusObj class
	Exceptions and exception types
	Syntax for traversing hierarchical business objects
	Specifying an attribute of basic type
	Specifying an attribute in a child business object
	Specifying an attribute in a child of a child business object
	Specifying an attribute in an element of an array of child business objects

	copy()
	duplicate()
	equalKeys()
	equals()
	equalsShallow()
	exists()
	getBoolean(), getDouble(), getFloat(), getInt(), getLong(), get(), getBusObj(), getBusObjArray(), getLongText(), getString()
	getLocale()
	getType()
	getVerb()
	isBlank()
	isKey()
	isNull()
	isRequired()
	keysToString()
	set()
	setContent()
	setDefaultAttrValues()
	setKeys()
	setLocale()
	setVerb()
	setVerbWithCreate()
	setWithCreate()
	toString()
	validData()
	Deprecated methods

	Chapter 11. BusObjArray class
	addElement()
	duplicate()
	elementAt()
	equals()
	getElements()
	getLastIndex()
	max()
	maxBusObjArray()
	maxBusObjs()
	min()
	minBusObjArray()
	minBusObjs()
	removeAllElements()
	removeElement()
	removeElementAt()
	setElementAt()
	size()
	sum()
	swap()
	toString()

	Chapter 12. CwBidiEngine class
	BiDiBOTransformation()
	BiDiBusObjTransformation()
	BiDiStringTransformation()

	Chapter 13. CwDBConnection class
	beginTransaction()
	commit()
	executePreparedSQL()
	executeSQL()
	executeStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	isActive()
	nextRow()
	release()
	rollBack()

	Chapter 14. CwDBStoredProcedureParam class
	CwDBStoredProcedureParam()
	getParamType()
	getValue()

	Chapter 15. DtpConnection class
	beginTran()
	commit()
	executeSQL()
	execStoredProcedure()
	getUpdateCount()
	hasMoreRows()
	inTransaction()
	nextRow()
	rollBack()

	Chapter 16. DtpDataConversion class
	getType()
	isOKToConvert()
	toBoolean()
	toDouble()
	toFloat()
	toInteger()
	toPrimitiveBoolean()
	toPrimitiveDouble()
	toPrimitiveFloat()
	toPrimitiveInt()
	toString()

	Chapter 17. DtpDate class
	DtpDate()
	addDays()
	addWeekdays()
	addYears()
	after()
	before()
	calcDays()
	calcWeekdays()
	get12MonthNames()
	get12ShortMonthNames()
	get7DayNames()
	getCWDate()
	getDayOfMonth()
	getDayOfWeek()
	getHours()
	getIntDay()
	getIntDayOfWeek()
	getIntMilliSeconds()
	getIntMinutes()
	getIntMonth()
	getIntSeconds()
	getIntYear()
	getMSSince1970()
	getMaxDate()
	getMaxDateBO()
	getMinDate()
	getMinDateBO()
	getMinutes()
	getMonth()
	getNumericMonth()
	getSeconds()
	getShortMonth()
	getYear()
	set12MonthNames()
	set12MonthNamesToDefault()
	set12ShortMonthNames()
	set12ShortMonthNamesToDefault()
	set7DayNames()
	set7DayNamesToDefault()
	toString()

	Chapter 18. DtpMapService class
	runMap()

	Chapter 19. DtpSplitString class
	DtpSplitString()
	elementAt()
	firstElement()
	getElementCount()
	getEnumeration()
	lastElement()
	nextElement()
	prevElement()
	reset()

	Chapter 20. DtpUtils class
	padLeft()
	padRight()
	stringReplace()
	truncate()

	Chapter 21. IdentityRelationship class
	addMyChildren()
	deleteMyChildren()
	foreignKeyLookup()
	foreignKeyXref()
	maintainChildVerb()
	maintainCompositeRelationship()
	maintainSimpleIdentityRelationship()
	updateMyChildren()

	Chapter 22. CxExecutionContext class
	Static constants
	CxExecutionContext()
	getContext()
	setContext()

	Chapter 23. MapExeContext class
	getConnName()
	getInitiator()
	getLocale()
	getOriginalRequestBO()
	setConnName()
	setInitiator()
	setLocale()
	Deprecated methods

	Chapter 24. Participant class
	Participant()
	getBusObj(), getString(), getLong(), getInt(), getDouble(),getFloat(), getBoolean()
	getInstanceId()
	getParticipantDefinition()
	getRelationshipDefinition()
	set()
	setInstanceId()
	setParticipantDefinition()
	setRelationshipDefinition()

	Chapter 25. Relationship class
	addParticipant()
	create()
	deactivateParticipant()
	deactivateParticipantByInstance()
	deleteParticipant()
	deleteParticipantByInstance()
	getNewID()
	retrieveInstances()
	retrieveParticipants()
	updateParticipant()
	Deprecated methods

	Chapter 26. UserStoredProcedureParam class
	UserStoredProcedureParam()
	getParamDataTypeJavaObj()
	getParamDataTypeJDBC()
	getParamIndex()
	getParamIOType()
	getParamName()
	getParamValue()
	setParamDataTypeJavaObj()
	setParamDataTypeJDBC()
	setParamIndex()
	setParamIOType()
	setParamName()
	setParamValue()

	Chapter 27. Message files
	Message location
	Format for map messages
	Message format
	Message parameters
	Comments

	Maintaining the files
	Operations that use message files
	Raising exceptions
	Logging messages
	Adding trace messages

	Appendix. Attribute properties
	Notices
	Programming interface information
	Trademarks and service marks

	Index

