
WebSphere Business Integration

Server Express and Express Plus

Adapter for Web Services User Guide

Adapter Version 3.4.x

���

WebSphere Business Integration

Server Express and Express Plus

Adapter for Web Services User Guide

Adapter Version 3.4.x

���

Note!

Before using this information and the product it supports, read the information in “Notices” on page 231.

15July2005

This edition of this document applies to IBM WebSphere Business Integration Adapter for Web Services (5724-H09),

version 3.4.x.

To send us your comments about IBM WebSphere Business Integration Server Express documentation, email

doc-comments@us.ibm.com. We look forward to hearing from you.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2004, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Document v

Audience v

Prerequisites for This Document v

Related Documents v

Eclipse Technology v

Typographic Conventions vi

New in this release vii

New in release 3.4.x vii

Chapter 1. Overview of the connector . . 1

Adapter for Web Services environment 2

Terminology 5

Components of connector for web services 7

Architecture of connector for web services 11

Install, configure, and design checklist 12

Limitations 13

Chapter 2. Installation and startup . . . 15

Overview of Installation Tasks 15

Installing the connector and related files 15

Installed file structure 15

Overview of configuration tasks 18

Running multiple instances of the adapter 19

Starting the connector 21

Stopping the connector 22

Chapter 3. Business object

requirements 25

Business object meta-data 25

Connector business object structure 25

Developing business objects 58

Chapter 4. Web services connector . . 59

Connector processing 59

SOAP/HTTP(S) web services 62

SOAP/JMS web services 62

Event processing 63

Request processing 74

Connector and JMS 82

SSL 84

Configuring the connector 86

Connector at startup 106

Logging 107

Tracing 107

Chapter 5. SOAP data handler 109

Configuring the SOAP data handler 109

SOAP data handler processing 115

Using application-specific information functionality 121

Specifying a pluggable name handler 139

Limitations 141

Chapter 6. Enabling collaborations for

request processing 143

Request processing collaboration checklist 143

Chapter 7. Exposing collaborations as

web services 145

Procedure checklist 145

Identifying or developing Business Objects . . . 146

Choosing or developing a collaboration template 146

Binding the port of a new collaboration object . . 146

WSDL Configuration Wizard 148

Chapter 8. Using the WSDL ODA . . . 157

Starting the WSDL ODA 157

Running the WSDL ODA 158

Configuring the agent 159

Specifying the WSDL document 161

Confirming selections 163

Generating the objects 163

Limitations 164

Chapter 9. Troubleshooting 167

Start-up problems 167

Run-time errors 169

Appendix A. Standard configuration

properties for connectors 171

New properties 171

Standard connector properties overview 171

Standard properties quick-reference 173

Standard properties 178

Appendix B. Connector Configurator

Express 193

Overview of Connector Configurator Express . . 193

Starting Connector Configurator Express 194

Running Configurator from System Manager . . . 194

Creating a connector-specific property template 195

Creating a new configuration file 197

Using an existing file 199

Completing a configuration file 200

Setting the configuration file properties 200

Saving your configuration file 207

Changing a configuration file 207

Completing the configuration 207

Using Connector Configurator Express in a

globalized environment 208

Appendix C. Adapter for Web Services

tutorial 209

About the tutorial 209

Before you start 210

Installing and configuring 211

© Copyright IBM Corp. 2004, 2005 iii

Running the asynchronous scenario 216

Running the synchronous scenario 218

Appendix D. Migrating to 3.0.x 223

Backward compatibility 223

Upgrade tasks 223

Appendix E. Configuring HTTPS/SSL 227

Keystore setup 227

TrustStore setup 228

Generating a certificate signing request (CSR) for

public key certificates 228

Notices 231

Programming interface information 232

Trademarks and service marks 233

Index 235

iv Adapter for Web Services User Guide

About This Document

The products IBM

(R) WebSphere(R) Business Integration Server Express and IBM

(R)

WebSphere (R) Business Integration Server Express Plus are made up of the following

components: InterChange Server Express, the associated Toolset Express,

CollaborationFoundation, and a set of software integration adapters. The tools in

the Toolset Express help you to create, modify, and manage business processes.

You can choose from among the prepackaged adapters for your business processes

that span applications. The standard process template--CollaborationFoundation--
allows you to quickly create customized processes.

This document describes installation, connector property configuration, business

object development, and troubleshooting for the Adapter for Web Services.

Except where noted, all the information in this guide applies to both IBM

WebSphere Business Integration Server Express and IBM WebSphere Business

Integration Server Express Plus. The term ″WebSphere Business Integration Server

Express″ and its variants refer to both products.

Audience

This document is for WebSphere customers, consultants, developers, and anyone

who is implementing the adapter for web services.

Prerequisites for This Document

A variety of prerequisites are cited throughout this book. Many of these consist of

references to Web sites that contain information about, or resources for, web

services. You should also be familiar with implementing the WebSphere Business

Integration Server Express system. A good place to start is the System

Implementation Guide, which contains cross-references to more detailed

documentation.

Related Documents

The complete set of documentation available with this product describes the

features and components common to all WebSphere Business Integration Server

Express installations, and includes reference material on specific components.

You can download, install, and view the documentation from the following site:

http://www.ibm.com/websphere/wbiserverexpress/infocenter

Eclipse Technology

The WebSphere Business Integration Server Express Adapter for Web Services

includes Eclipse Technology. Eclipse is an award-winning, open-source framework

for the construction of powerful software development tools and rich desktop

applications. Leveraging the Eclipse plug-in framework to integrate technology on

the desktop saves technology providers time and money by enabling them to focus

their efforts on delivering differentiation and value for their offerings.

© Copyright IBM Corp. 2004, 2005 v

Eclipse is a multi-language, multi-platform, multi-vendor supported environment

that is built by an open-source community of developers and is provided royalty

free by the Eclipse Foundation. Eclipse is written in the JavaTM language, includes

extensive plug-in construction toolkits and examples, and can be deployed on a

range of desktop operating systems, including WindowsR, Linux, QNX and

Macintosh OS X. Full details on Eclipse and the Eclipse Foundation are available at

http://eclipse.org.

Typographic Conventions

This document uses the following conventions:

 courier font Indicates a literal value, such as a command name, filename,

information that you type, or information that the system

prints on the screen.

bold Indicates a new term the first time that it appears.

italic, italic Indicates a variable name or a cross-reference.

blue outline A blue outline, which is visible only when you view the

manual online, indicates a cross-reference hyperlink. Click

inside the outline to jump to the object of the reference.

{ } In a syntax line, curly braces surround a set of options from

which you must choose one and only one.

[] In a syntax line, square brackets surround an optional

parameter.

... In a syntax line, ellipses indicate a repetition of the previous

parameter. For example, option[,...] means that you can

enter multiple, comma-separated options.

< > In a naming convention, angle brackets surround individual

elements of a name to distinguish them from each other, as

in <server_name><connector_name>tmp.log.

/, \ In this document, backslashes (\) are used as the convention

for directory paths. For Linux and i5/OS installations,

substitute slashes (/) for backslashes. All WebSphere

Business Integration Server Express product pathnames are

relative to the directory where the product is installed on

your system.

%text% and $text Text within percent (%) signs indicates the value of the

Windows text system variable or user variable. The

equivalent notation in a Linux environment is $text,

indicating the value of the text Linux environment variable.

ProductDir Represents the directory where the WebSphere Business

Integration Server Express Adapters product is installed. The

defaults for each platform are as follows:

Windows: IBM\WebSphereServer

i5/OS: /QIBM/ProdData/WBIServer44/product

Linux: /home/${username}/IBM/WebSphereServer

” Indicates a choice from a menu such as: Choose File ”

Update ” SGML References

vi Adapter for Web Services User Guide

New in this release

New in release 3.4.x

Updated in September 2004. The release of this document for adapter version 3.4.x

contains the following new or corrected information.

This release adds support for the processing of bidirectional script data on

Windows platforms only.

This release adds support for the following platforms and platform updates:

v Microsoft Windows 2003 (Standard Edition or Enterprise Edition)

v Linux:

RedHat Enterprise Linux WS/AS/ES3.0 Update 2, Intel (IA32)

SuSE Linux ES 8.1 SP3, Intel (IA32)

SuSE Linux ES 9.0, Intel (IA32)

v IBM i5/OS V5R3 and OS/400 V5R2

v Java compiler IBM JDK 1.4.2 for Windows 2000 for compiling custom adapters

These jar files have been omitted from the installed file structure: ibmjsse.jar,

xercesImpl.jar, and xmlParserAPIs.jar.

This release supports the following new versions of APIs or API requirements, and

omits an API:

v Required by Apache SOAP APIs: Java Activation Framework 1.0.2 (activation.jar)

and JavaMailTM API 1.3.1 (mail.jar)

v WSDL4J 1.4

v IBM JSSE 1.0.3

v XML4J 4.3.0

v Omitted API: Xerces Java parser

© Copyright IBM Corp. 2004, 2005 vii

viii Adapter for Web Services User Guide

Chapter 1. Overview of the connector

v “Adapter for Web Services environment” on page 2

v “Terminology” on page 5

v “Components of connector for web services” on page 7

v “Architecture of connector for web services” on page 11

v “Install, configure, and design checklist” on page 12

v “Limitations” on page 13

The connector is a runtime component of the WebSphere Business Integration

Server Express Adapter for Web Services. The connector allows businesses to

aggregate, publish, and consume web services for use either within their

organization or by trading partners. The connector and other components

described in this document provide the functionality needed to exchange business

object information in the body of a Simple Object Access Protocol (SOAP) message.

The Adapter for Web Services supports SOAP 1. 1 and 1.2 in conformance with

Web Services-Interoperability Organization (WS-I). This adapter exposes

WebSphere Business Integration Server Express business processes, in the form of

collaborations, as web services. You get a set of self-contained, dynamic

applications that can be described, published, located, or invoked over the network

to create innovative products, processes and value chains. This adapter can also

communicate to externally hosted web services with enhanced configurability.

The Adapter for Web Services enables true bidirectional support for event and

request processing from within the adapter. Event processing can be synchronous

or asynchronous, and listeners within the adapter provide support for SOAP over

HTTP, HTTPS, and JMS transports. Integration with the Web Services Gateway

product exposes/invokes external services on behalf of the adapter. A Web Services

Description Language (WSDL) Object Discovery Agent (ODA) eases the generation

and deployment of business objects. The ODA can retrieve WSDL from a local file

or connect to a remote URL or Universal Description, Discovery and Integration

(UDDI) registry.

This chapter describes the scope, components, design tools, and architecture used

to implement the adapter for Web Services. It also provides an overview of tasks

you must complete to install and configure the web services components described

in this document. For information about installing and configuring the

components, see “Install, configure, and design checklist” on page 12.

Note: The adapter for Web Services implements the standard Adapter Framework

API. For this reason, the adapter can operate with any integration broker

that the Framework supports. However, the functionality provided by the

adapter has been designed specifically to support the InterChange Server

Express integration broker. Accordingly, when you select the Expose as Web

Service option in System Manager, this refers to InterChange Server Express,

and not to any other integration broker.

© Copyright IBM Corp. 2004, 2005 1

Adapter for Web Services environment

Before installing, configuring, and using the adapter, you must understand its

environmental requirements:

v “Software prerequisites”

v “Adapter platforms”

v “Standards and APIs”

v “Locale-dependent data” on page 3

Software prerequisites

Review the following assumptions and software requirements before you install

the connector for web services:

v The design of the connector and other components is based on the specifications

published for SOAP 1.1 and 1.2.

v If you are using SOAP/JMS web services, you must install your own JMS and

JNDI implementation.

v If you are using HTTPS/SSL, you need your own third-party software for

creating keystore and truststore.

Adapter platforms

In addition to a broker, the adapter requires one of the following operating

systems:

v Microsoft Windows 2003 (Standard Edition or Enterprise Edition)

v Linux:

RedHat Enterprise Linux WS/AS/ES 3.0 with Update 2, Intel (IA32)

SuSE Linux ES 8.1 SP3, Intel (IA32)

SuSE Linux ES 9.0, Intel (IA32)

v IBM i5/OS V5R3 and OS/400 V5R2

Note: i5/OS refers to OS/400 and i5/OS unless explicitly stated.

v All operating system environments require the Java compiler (IBM JDK 1.4.2 for

Windows 2000) for compiling custom adapters

Standards and APIs

The Adapter for Web Services (the connector, the WSDL ODA, and the SOAP data

handler) is in compliance with the WS-I Basic Profile 1.0 specifications released in

August 2003.

A variety of standards and technologies give web services access to their

functionality over a network.

The standards used by the adapter are as follows:

v SOAP versions 1.2 and 1.1

v WSDL 1.1 SOAP bindings

v HTTP 1.0

v JMS 1.0.2

The APIs used by the adapter are as follows:

2 Adapter for Web Services User Guide

v Apache SOAP 2.3.1 APIs: The connector incorporates the SOAP APIs from

Apache Foundation. Apache SOAP APIs are an open source implementation of

the SOAP version 1.1. Apache SOAP APIs have the following requirements:

– Java Activation Framework 1.0.2 (activation.jar)

– JavaMail(TM) API 1.3.1 (mail.jar)
v JMS API version 1.0.2

v WSDL4J 1.4 - The Web Service Description Language for Java API (WSDL4J)

provides an object model for WSDL documents

v UDDI4J-WSDL 2.1.0 - The UDDI4J-WSDL API encapsulate classes present in the

UDDI4J API, as well as some defined by the WSDL4J API

v JNDI 1.2.1

v IBM JSSE 1.0.3

v XML4J 4.3.0

Depending on your configuration, you may need to install additional software. The

sections below discuss these contingencies.

JMS protocol

If you are using JMS protocol, you must install a JMS provider and create queues.

The queue creation really depends on your requirements. You may use JMS

Protocol for both exposing a collaboration as a web service and also for invoking

external web services. For further information, see “Connector and JMS” on page

82.

JNDI: You must configure the JNDI and then enter appropriate parameters in the

JNDI configuration properties for the connector. You also must ensure that the

Connection factory and JMS destination (queue) object are made available in the

JNDI. If you want to use JNDI and do not have JNDI implementation, you can

download the reference implementation of File System JNDI from Sun

Microsystems. For further information, see “Connector and JMS” on page 82.

SSL

If you plan to use SSL, you must use third-party software for managing your

keystores, certificates, and key generation. No tooling is provided to set up

keystores, certificates, or for key generation. You may choose to use keytool

(shipped with IBM JRE) to create self-signed certificates and to manage keystores.

For further information, see “SSL” on page 84.

Locale-dependent data

The connector has been globalized so that it can support double-byte character

sets. When the connector transfers data from a location that uses one character

code to a location that uses a different code set, it performs character conversion to

preserves the meaning of the data.

This adapter supports the processing of bidirectional script data for languages such

as Arabic, Hebrew, Urdu, Farsi and Yiddish. To use the bidirectional capacity, you

must configure the bidirectional standard properties. For more information, refer to

the standard configuration properties for connectors in Appendix A.

The Java runtime environment within the Java Virtual Machine (JVM) represents

data in the Unicode character code set. Unicode contains encodings for characters

in most known character code sets (both single-byte and multibyte). Most

components in the WebSphere Business Integration Server Express system are

Chapter 1. Overview of the connector 3

written in Java. Therefore, when data is transferred between most integration

components, there is no need for character conversion.

Note: The connector has not been internationalized. This means that the trace and

log messages are not translated.

Web services connector

This section discusses localization and the connector.

Event notification: The connector uses pluggable protocol listeners for event

notification. The protocol listeners extract the SOAP message from the transport

and invoke the SOAP data handler. This section describes how each of the listeners

encode SOAP messages over the transport:

v SOAP/HTTP and SOAP/HTTPS Listeners These listeners read the body of the

HTTP request message as bytes. The encoding of the body is given by the

charset parameter of the HTTP Content-Type header. If the charset parameter is

missing, ISO-8859-1(ISO Latin 1) is assumed. The listener uses this encoding to

convert the body of the request message into a Java String. This Java String is

used to invoke the SOAP data handler. For synchronous (request-response) web

services, the SOAP data handler is invoked using the business object returned by

the collaboration. The Java String returned by the SOAP data handler is

converted into bytes using the encoding from the HTTP request message.

v SOAP/JMS Listener This listener supports JMS text messages as well as JMS

byte messages.

Request processing: The connector uses pluggable protocol handlers for request

processing. The protocol handlers invoke the SOAP data handler. This section

describes how each of the handlers encodes SOAP message over the transport:

v SOAP/HTTP-HTTPS handlers These handlers invoke the SOAP data handler.

To compose the web services request, the string returned by the data handler is

converted into bytes using UTF 8 encoding. For synchronous (request-response)

web services, the protocol handler reads the body of the HTTP response

message. The encoding of the body is given by the charset parameter of HTTP

Content-Type header. If the charset parameter is missing, ISO-8859-1 is assumed.

The handler uses this encoding to convert the body of the response message into

Java String. The SOAP data handler is invoked using this String.

v SOAP/JMS handler This handler supports JMS text messages as well as JMS

byte messages.

SOAP data handler

This section discusses localization and the SOAP data handler.

SOAP character limitations: XML element names and attributes names must be

legal ascii characters that are allowed by either business object names, business

object attribute names or business object application-specific information.

Internationalized characters are not supported in business object names or business

object attribute names. Only attribute values can be internationalized.

SOAP data handler processing: When transforming a SOAP message into a

business object, the data handler can receive a string only. The data handler simply

populates the business object with string values and returns the business object.

Java strings are UCS2, and therefore double-byte enabled characters are transferred

without problem. Only XML element and attribute values can be non-ascii

characters (see character limitations). When transforming a business object to a

4 Adapter for Web Services User Guide

SOAP message, the data handler uses the XML4J parser to convert a business

object to a string. Java strings are UCS2, so double-byte enabled characters are

transferred without problem. Only XML element and attribute values can be

non-ascii characters (see character limitations).

WSDL ODA

This section discusses localization and the WSDL ODA.

In the WSDL file, the WSDL ODA supports file names and URLs in any character

set. The WSDL file content must be in legal ASCII only, due to the restriction of

non-ASCII character sets in business object names and attributes.

Properties in the Configuring Agent table of the WSDL ODA are globalized as

follows:

v WSDL_URL URL can be in native language

v UDDI_InquiryAPI_URL Check UDDI registry support

v WebServiceProvider Legal ASCII characters only

v WebService Legal ASCII characters only

v MimeType Legal ASCII characters only

v BOPrefix Legal ASCII characters only

v BOVerb Legal ASCII characters only

v Collaboration Legal ASCII characters only

v GenerateUniqueBOs Legal ASCII characters only

v SOAPVersion Legal ASCII characters only

v BiDi.ExtApplicationMetaData Legal ASCII characters only

Terminology

The following terms are used in this Guide:

v ASI (Application-Specific Information) is code tailored to a particular

application or technology. ASI exists at both the attribute level and business

object level of a business object definition.

v ASBO (Application-Specific Business Object) A business object that can have

ASI.

v Bidirectional (BiDi) languages are used mainly in the Middle East. They

include Arabic, Urdu, Farsi, Hebrew and Yiddish. In a bidirectional language,

the general flow of text proceeds horizontally from right to left, but numbers are

written from left to right, the same way as they are written in English. In

addition, if an English or another left-to-right language text is embedded (for

example, an address, acronym or quotation), that text is also written from left to

right.

v BO (Business Object) A set of attributes that represent a business entity (such as

Customer) and an action on the data (such as a create or update operation).

Components of the system use business objects to exchange information and

trigger actions.

v Content-Type The HTTP protocol header that includes the type/subtype and

optional parameters. For example, in the Content-Type

value text/xml;charset=ISO-8859-1, text/xml is the type/subtype and

charset=ISO-8859-1 is the optional Charset parameter.

v ContentType refers to the type/subtype portion of the Content-Type header value

only. For example, in the Content-Type valuetext/xml;charset=ISO-8859-1,

text/xml is referred to in this document as the ContentType.

Chapter 1. Overview of the connector 5

v MO_DataHandler_DefaultSOAPConfig Child data handler meta-object

specifically for the SOAP data handler.

v GBO (Generic Business Object) A business object with no ASI and not tied to

any application.

v MO_DataHandler_Default Data handler meta-object used by the connector

agent to determine which data handler to instantiate. This is specified in the

DataHandlerMetaObjectName configuration property of the connector.

v Non-Top Level Business Object (Non-TLO)A non-TLO is any business object

that does not adhere to the web services TLO structure.

v Protocol Config MO During request processing, the SOAP/JMS,

SOAP/HTTP-HTTPS protocol handlers use a Protocol Config MO to determine

the destination of the target web service. If during event processing you are

exposing collaborations as SOAP/JMS web services, the connector uses the

Protocol Config MO to convey the JMS message header information from the

SOAP/JMS protocol listener to the collaboration.

v SOAP (Simple Object Access Protocol) defines a model of using simple request

and response messages, written in XML, as the basic protocol for electronic

communication. SOAP messaging is a platform-neutral remote procedure call

(RPC) mechanism, but it can be used for the exchange of any kind of XML

information (document exchange).

v SOAP Business Object A SOAP business object is a child of a TLO and can be a

SOAP Request, a SOAP Response or a SOAP Fault business object. SOAP

business objects contain information necessary for processing by the SOAP data

handler, including SOAP ConfigMOs, which are children of SOAP business

objects, and also contain SOAP header container business objects.

v SOAP Config MO (Configuration Meta Object) The data handler requires an

object that contains configuration information about a single transformation, for

example, from a SOAP message to a SOAP business object. This information is

stored as meta-data in the child of a SOAP business object. This child object is

the SOAP Config MO

v SOAP Header Child Business Object A business object that represents a single

header element in a SOAP message. The header element is an immediate child

of the SOAP-Env:Header element of the SOAP message. All attributes of a

header container business object must be of this type. These business objects

may have an actor and a mustUnderstand attribute. These attributes correspond

to the actor and mustUnderstand attributes of the SOAP header element.

v SOAP Header Container Business Object A business object that contains

information about the headers in a SOAP message. This business object contains

one or more child business objects. Each child business object represents a

header entry in the SOAP message. The SOAP data handler business object may

have an attribute, which is of type SOAP header container business object. This

attribute is also referred to as the SOAP header attribute. Such an attribute has

special application-specific information requirements as described in Chapter 5,

“SOAP data handler,” on page 109. This attribute must be an immediate child of

a SOAP business object.

v Top-Level Business Object (TLO) A web services top-level business object

contains a SOAP Request, a SOAP Response (optional) and one or more SOAP

Fault (optional) business objects. A TLO is used by the connector for both event

processing and request processing.

v Web services are self-contained, modular, distributed, dynamic applications that

can be described, published, located, or invoked over the network to create

products, processes, and supply chains. They can be local, distributed, or

Web-based. Web services are built on top of open standards such as TCP/IP,

6 Adapter for Web Services User Guide

HTTP, Java, HTML, and XML. Web services use new standard technologies such

as SOAP (Simple Object Access Protocol) for messaging, and UDDI (Universal

Description, Discovery and Integration) and WSDL (Web Service Description

Language) for publishing.

v UDDI (Universal Description, Discovery and Integration) is a specification that

defines a way to publish and discover information about web services. UDDI

specification provides for XML-based interfaces (APIs) that allow programmatic

access to the UDDI registry information. SOAP is the underlying RPC

mechanism for these APIs.

v WSDL (Web Services Description Language) is an XML vocabulary that defines

the software interfaces for web services. It organizes all of the web service

technical details required for automatic integration at the programming level,

and is used to publish WebSphere collaborations as web services. WSDL is to

web services as IDL is to CORBA objects.

For more information on WSDL, go to:

http://www.w3.org/TR/wsdl

Components of connector for web services

Figure 1 illustrates the connector for web services, including its protocol handler

and listener frameworks and the SOAP data handler.

Note: The Web Services Adapter comes with a limited use license of the XML data

handler. The adapter, however, does not require the XML data handler to

function.

 The following components interact to enable data exchanges across the Internet:

v Web services connector, including the SOAP data handler and protocol listeners

and handlers

v Web services-enabled collaborations

v Business objects and SOAP messages

v InterChange Server Express

Protocol listener
framework

Protocol handler
framework

SOAP/HTTP
protocol
listener

SOAP/JMS
protocol
handler

SOAP/HTTP-HTTPS
protocol
handler

SOAP/HTTPS
protocol
listener

SOAP/JMS
protocol
listener

SOAP
data

handler

Connector for Web Services

Figure 1. The connector for web services

Chapter 1. Overview of the connector 7

http://www.w3.org/TR/wsdl

Web services connector

During request processing, the web services connector responds to collaboration

service calls by converting business objects to SOAP request messages and

conveying them to destination web services. Optionally (for synchronous request

processing) the connector converts SOAP response messages to SOAP Response

business objects and returns these to the collaboration.

During event processing, the connector processes SOAP request messages from

client web services by converting them into SOAP Request business objects and

passing them on to collaborations (that have been exposed as web services) for

processing. The connector optionally receives SOAP Response business objects

from the collaboration, which are converted to SOAP response messages and then

returned to client web services.

For further information, see Chapter 4, “Web services connector,” on page 59

Note: In this document, any mention of a connector is a reference to the web

services connector, unless specified otherwise.

Protocol listeners and handlers

The connector includes the following protocol listeners and handlers:

v SOAP/HTTP protocol listener

v SOAP/HTTPS protocol listener

v SOAP/JMS protocol listener

v SOAP/HTTP-HTTPS protocol handler

v SOAP/JMS protocol handler

Protocol listeners detect events from internal or external web service clients in

SOAP/HTTP, SOAP/HTTPS, or SOAP/JMS formats. They notify the connector of

events that require processing by a collaboration that has been exposed as a web

service. Protocol listeners then read the business-object-level and attribute-level

ASI, connector properties, and transformation rules embedded in protocol

configuration objects to determine the collaboration, data handler, processing mode

(synchronous/asynchronous) and transport-specific aspects of the web services

transaction. For a detailed account of protocol listener processing, see “Protocol

listeners” on page 63.

Protocol handlers invoke web services in SOAP/HTTP, SOAP/HTTPS, or

SOAP/JMS formats on behalf of a collaboration. Protocol handlers read TLO ASI

and transformation rules embedded in protocol configuration objects to determine

how to process the request (synchronously or asynchronously), which data handler

to use to convert SOAP messages to SOAP business objects and vice versa, and to

determine the target address of the web service (from the Destination attribute of

the SOAP Request business object Protocol Config MO). For synchronous

transactions, the protocol handler processes SOAP response messages, converting

them into SOAP Response business objects and passing them back to the

collaboration.

For further information on protocol handlers, see “Protocol handlers” on page 75.

SOAP data handler

The SOAP data handler converts SOAP business objects to SOAP messages and

vice versa. For further information on the SOAP data handler, see Chapter 5,

“SOAP data handler,” on page 109.

8 Adapter for Web Services User Guide

Web services configuration tools

You can deploy web service solutions with collaborations that invoke, or are

exposed as, web services.

When you enable a collaboration for request processing, you use the WSDL Object

Discovery Agent (ODA) to generate web service TLOs. For further information on

request processing and the WSDL ODA, see Chapter 6, “Enabling collaborations for

request processing,” on page 143.

When you expose a collaboration as a web service, you use the WSDL

Configuration Wizard, which helps you generate a WSDL document for the

collaboration that you then publish, for example, via a UDDI registry. The

connector provides no tools for publishing this information. For information on

exposing collaborations as web services, see Chapter 7, “Exposing collaborations as

web services,” on page 145.

Deploying the connector

There are two ways to deploy the web services connector:

v Behind the firewall as an intranet-based solution (see Figure 2) within an

enterprise whose business processes communicate in SOAP/HTTP,

SOAP/HTTPS, or SOAP/JMS web service formats.

Chapter 1. Overview of the connector 9

v Behind the firewall with a front-end or gateway server to process, filter, and

otherwise manage communications with web services that are external to the

enterprise.

Note: The web services connector does not include a gateway or front-end for

managing incoming or outgoing messages from or to external web services.

You must configure and deploy your own gateway. The connector must be

deployed within the enterprise only, not in the demilitarized zone (DMZ) or

outside of the firewall.

Web
service

web
service
client

ICS

Connector for web services

Firewall

web
service
(WS2)

Client of web
service
(WS1)

Figure 2. Web services adapter as an intranet solution

10 Adapter for Web Services User Guide

Architecture of connector for web services

To illustrate the architecture of the components at a high level, this section

describes two data flows. Figure 3 illustrates the two scenarios. These two

scenarios are described below.

Request processing illustrates the sequence of events that occurs when a

collaboration makes a service call request to the connector to invoke a web service.

In this scenario, the collaboration plays the role of a client, sending a request to a

server.

A The collaboration sends a service call request to the connector, which calls

the SOAP data handler to convert the business object to a SOAP request

message.

B The connector invokes the web service WS2 by sending the SOAP message.

If the destination is an external web service, the connector sends the SOAP

WS1
Client
of
WS2

ICS

4 3 A

F

Connector for web services

Enterprise gateway/web server

Internet

5

5

1
C

2 B

E

D

Firewall

web
service
(WS2)

Client of web
service
(WS1)

Ws1 Ws2

Figure 3. Flow of a web services message

Chapter 1. Overview of the connector 11

message to a gateway. The gateway sends the SOAP message to the

endpoint corresponding to the destination web service. This invokes the

web service.

C The invoked web service receives the SOAP request message and performs

the requested processing.

D The invoked web service sends a SOAP response (or fault) message. If the

web service is external to the enterprise, a gateway receives and routes the

SOAP response message.

E The SOAP response (or fault) message is routed back to the connector,

which calls the data handler to convert it to a response or fault business

object.

F The connector returns the SOAP response or fault business object to the

collaboration.

Event processing illustrates the sequence of events that occurs when a

collaboration is called as a web service. In this scenario, the collaboration, which is

exposed as a web service, plays the role of the server, accepting a request from a

client, external or internal, and responding as required.

1 The client web service (WS1) sends a SOAP request message to the

destination specified in the WSDL document generated for the

collaboration.

2 If the client web service is external, the gateway receives and routes the

message to the connector.

3 The connector sends the SOAP message to the SOAP data handler to

convert the SOAP message to a business object. The connector invokes the

collaboration exposed as a web service.

4 The collaboration returns a SOAP Response (or Fault) business object.

5 The connector calls the SOAP data handler to convert the SOAP Response

(or Fault) business object to a SOAP response message. The connector

returns the response to the gateway.

6 If the client web service is external, the gateway routes the SOAP response

message to the client web service (WS1).

Install, configure, and design checklist

This section summarizes the tasks you must perform to install, configure, and

design your web services solution. Each section briefly describes the tasks and then

provides links to sections in this document (and cross references to related

documents) that describe how to perform the task or provide background

information.

Installing the adapter

See Chapter 2, “Installation and startup,” on page 15 for a description of what and

where you must install.

Configuring connector properties

Connectors have two types of configuration properties: standard configuration

properties and connector-specific configuration properties. Some of these properties

have default values that you do not need to change. You may need to set the

12 Adapter for Web Services User Guide

values of some of these properties before running the connector. For more

information, see Chapter 4, “Web services connector,” on page 59.

Configuring protocol handlers and listeners

You configure protocol handlers and listeners when you assign values to connector

configuration properties that govern the behavior of these components. For more

information, see Chapter 4, “Web services connector,” on page 59.

Enabling collaborations for web services

When you enable collaborations for web services, you create collaborations that

can invoke, or be exposed as, web services. You also create or adapt business

objects. For an overview of the tasks involved, see “Web services configuration

tools” on page 9.

Exposing collaborations as web services

For a step-by-step description see Chapter 7, “Exposing collaborations as web

services,” on page 145.

Enabling collaborations to invoke web services

For a step-by-step description, see Chapter 6, “Enabling collaborations for request

processing,” on page 143.

Configuring the SOAP data handler

You configure information in data handler meta-objects after you install the

product files, but before startup. Unless you are adding a custom name handler,

you can use the default SOAP data handler configuration to save time. You must,

however, configure specific meta-object information for each data handler

transformation. This information is contained in SOAP Config MOs. You specify

SOAP Config MOs when you create business objects. Much of this work is

automated when you are developing collaborations that invoke web services

(request processing): when you use the WSDL ODA to generate business objects

for SOAP messages, the SOAP Config MOs are automatically generated for you.

For further information on configuring the data handler, see Chapter 5, “SOAP

data handler,” on page 109.

Limitations

v The WSDL ODA automatically generates business objects. If the results do not

meet your requirements, you must manually update or create business objects

using Business Object Designer Express.

See describes WSDL ODA support for various combinations of attributes style,

use, and part definitions using type and element.

v For XML limitations on style (rpc, document) use (literal, encoded), and how

parts are defined, see Chapter 5, “SOAP data handler,” on page 109 and

Chapter 6, “Enabling collaborations for request processing,” on page 143.

v The connector supports SOAP/HTTP and SOAP/JMS bindings only.

v The connector’s SOAP/JMS protocol listener supports queue destinations only;

topics are not supported. JMS text and byte messages are supported.

v HTTP POST Request and Response are supported. No other HTTP method is

supported. HTTP 1.1 persistent connection is not supported.

Chapter 1. Overview of the connector 13

14 Adapter for Web Services User Guide

Chapter 2. Installation and startup

v “Overview of Installation Tasks”

v “Installing the connector and related files”

v “Overview of configuration tasks” on page 18

v “Running multiple instances of the adapter” on page 19

v “Starting the connector” on page 21

This chapter describes how to install components for implementing the connector

for web services. For information regarding installation of a WebSphere Business

Integration Server Express, see the WebSphere Business Integration Server Express

installation guide for Windows, for Linux or for i5/OS appropriate for your platform.

Overview of Installation Tasks

For information on broker compatibility, adapter framework, software

prerequisites, dependencies, and standards and APIs, see “Adapter for Web

Services environment” on page 2.

To install the connector for web services, you must perform the following tasks:

Install InterChange Server Express

This task, which includes installing the system and starting InterChange Server

Express, is described in the WebSphere Business Integration Server Express

installation guide for Windows, for Linux or for i5/OS. You must install

WebSphere Business Integration Server Express version 4.4.

To load files into the repository, consult the System Implementation Guide .

Install the connector and related files

This task includes installing the files for the connector (and related components)

from the software package onto your system. See “Installing the connector and

related files.”

Installing the connector and related files

For information on installing WebSphere Business Integration Server Express

adapter products, refer to the Websphere Business Integration Server Express

installation guide for Windows, for Linux or for i5/OS. The guide is located in the

WebSphere Business Integration Server Express Adapters Infocenter at the

following site: http://www.ibm.com/websphere/wbiserverexpress/infocenter.

Installed file structure

The tables in this section show the installed file structure.

Windows connector file structure

The Installer copies the standard files associated with the connector into your

system.

© Copyright IBM Corp. 2004, 2005 15

The utility installs the connector and adds a shortcut for the connector agent to the

Start menu.

Table 1 describes the Windows file structure used by the connector, and shows the

files that are automatically installed when you choose to install the connector

through Installer.

 Table 1. Installed Windows file structure for the adapter

Subdirectory of ProductDir Description

connectors\WebServices\CWWebServices.jar The web services connector

connectors\WebServices\start_WebServices.bat The startup file for the connector service

connector\WebServices\start_WebServices_service.bat The startup script for the connecctor service.

connectors\WebServices\README.htm License

DataHandlers\CwSOAPDataHandler.jar The SOAP data handler

repository\DataHandlers\MO_DataHandler_DefaultSOAPConfig.xsd SOAP data handler-related files

bin\Data\App\WebServicesConnectorTemplate Web services connector template

ODA\WSDL\WSDLODA.jar The WSDL ODA

ODA\WSDL\start_WSDLODA.bat The WSDL ODA startup file

connectors\WebServices\dependencies\soap.jar Apache SOAP API required by the SOAP

connector, SOAP data handler, WSDL

Configuration Wizard, and WSDL ODA.

connectors\WebServices\dependencies\LICENSE Apache license file

connectors\WebServices\dependencies\mail.jar The JavaMail API

connectors\WebServices\dependencies\activation.jar The Java Activation Framework

connectors\WebServices\dependencies\jms.jar The Java Messaging Service

connectors\WebServices\dependencies\uddi4j-wsdl_2_1_0_040127.jar Required by WSDL ODA

connectors\WebServices\dependencies\uddi4jv2.jar Required by WSDL ODA

connectors\WebServices\dependencies\IPL10.txt License file required by WSDL ODA

connectors\WebServices\dependencies\wsdl4j-1.4SR3.jar Required by WSDL ODA

connectors\WebServices\dependencies\CPL10.txt License file required by WSDL ODA

connectors\WebServices\dependencies\qname.jar Required by WSDL ODA

connectors\WebServices\dependencies\j2ee.jar Required by WSDL ODA

connectors\WebServices\dependencies\wswb3.0\common.jar Required by WSDL ODA

connectors\WebServices\dependencies\wswb3.0\ecore.jar Required by WSDL ODA

connectors\WebServices\dependencies\wswb3.0\xsd.jar Required by WSDL ODA

connectors\WebServices\dependencies\wswb3.0\xsd.resources.jar Required by WSDL ODA

connectors\WebServices\dependencies\IBMReadme_de_DE.txt German readme file.

connectors\WebServices\dependencies\IBMReadme_en_US.txt English readme file.

connectors\WebServices\dependencies\IBMReadme_ex_ES.txt Spanish readme file.

connectors\WebServices\dependencies\IBMReadme_fr_FR.txt French readme file.

connectors\WebServices\dependencies\IBMReadme_it_IT.txt Italian readme file.

connectors\WebServices\dependencies\IBMReadme_ja_JA.txt Japanese readme file.

connectors\WebServices\dependencies\IBMReadme_ko_KR.txt Korean readme file.

connectors\WebServices\dependencies\IBMReadme_pt_BR.txt Portuguese_Brazilian readme file.

connectors\WebServices\dependencies\IBMReadme_zh_CN.txt Simplified Chinese readme file.

connectors\WebServices\dependencies\IBMReadme_zh_TW.txt Traditional Chinese readme file.

connectors\WebServices\samples\WebSphereICS\CLIENT_SYNCH_TLO_OrderStatus.bo Sample (synchronous) business object for test

connector

connectors\messages\WebServicesConnector.txt Connector message file

ODA\messages\WSDLODAAgent.txt Message file for WSDL ODA

Note: All product pathnames are relative to the directory where the product is

installed on your system.

i5/OS connector file structure

The Installer copies the standard files associated with the connector into your

system.

16 Adapter for Web Services User Guide

Table 2 describes the i5/OS file structure used by the connector, and shows the

files that are automatically installed when you choose to install the connector

through Installer.

 Table 2. Installed i5/OS file structure for the adapter

Subdirectory of ProductDir Description

/lib/WBIA.jar WebSphere Business Integration Server Express

Adapter jar file

/bin/CWConnEnv.sh Generic connector startup file

/bin/CWODAEnv.sh Generic ODA startup file

/connectors/WebServices/README.htm License

connectors/WebServices/CWWebServices.jar The web services connector

connectors/WebServices/start_WebServices.sh The startup file for the connector

DataHandlers/CwSOAPDataHandler.jar The SOAP data handler

DataHandlers/CwSOAPNameHandler.jar The SOAP name handlers

bin/Data/App/WebServices Web services connector template

ODA/WSDL/WSDLODA.jar The WSDL ODA

ODA/WSDL/start_WSDLODA.sh The WSDL ODA startup file

connectors/WebServices/dependencies/soap.jar Apache SOAP API required by the SOAP

connector, SOAP data handler, WSDL

Configuration Wizard, and WSDL ODA.

connectors/WebServices/dependencies/LICENSE Apache license file

connectors/WebServices/dependencies/mail.jar The JavaMail API

connectors/WebServices/dependencies/activation.jar The Java Activation Framework

connectors/WebServices/dependencies/ibmjsse.jar JSSE (Java Secure Socket Extension) API from

IBM

connectors/WebServices/dependencies/jms.jar The Java Messaging Service

connectors/WebServices/dependencies/uddi4j-wsdl_2_1_0_040127.jar Required by WSDL ODA

connectors/WebServices/dependencies/uddi4jv2.jar Required by WSDL ODA

connectors/WebServices/dependencies/IPL10.txt License file required by WSDL ODA

connectors/WebServices/dependencies/wsdi4j.jar Required by WSDL ODA

connectors/WebServices/dependencies/CPL10.txt License file required by WSDL ODA

connectors/WebServices/dependencies/qname.jar Required by WSDL ODA

connectors/WebServices/dependencies/j2ee.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/common.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/ecore.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.resources.jar Required by WSDL ODA

connectors/WebServices/dependencies/IBMReadme_de_DE.txt German readme file.

connectors/WebServices/dependencies/IBMReadme_en_US.txt English readme file.

connectors/WebServices/dependencies/IBMReadme_ex_ES.txt Spanish readme file.

connectors/WebServices/dependencies/IBMReadme_fr_FR.txt French readme file.

connectors/WebServices/dependencies/IBMReadme_it_IT.txt Italian readme file.

connectors/WebServices/dependencies/IBMReadme_ja_JA.txt Japanese readme file.

connectors/WebServices/dependencies/IBMReadme_ko_KR.txt Korean readme file.

connectors/WebServices/dependencies/IBMReadme_pt_BR.txt Portuguese_Brazilian readme file.

connectors/WebServices/dependencies/IBMReadme_zh_CN.txt Simplified Chinese readme file.

connectors/WebServices/dependencies/IBMReadme_zh_TW.txt Traditional Chinese readme file.

connectors/messages/WebServicesConnector.txt Connector message file

ODA/messages/WSDLODAAgent.txt Message file for WSDL ODA

Note: All product pathnames are relative to the directory where the product is

installed on your system.

A fast way to start the connector is to use the WebSphere Business Integration

Server Express Console. For information about the Console, see the online help

provided with the Console.

For more information on installation, see the WebSphere Business Integration Server

Express Installation Guide for i5/OS.

Chapter 2. Installation and startup 17

Linux connector file structure

The Installer copies the standard files associated with the connector into your

system.

Table 3 describes the Linux file structure used by the connector, and shows the files

that are automatically installed when you choose to install the connector through

Installer.

 Table 3. Installed Linux file structure for the adapter

Subdirectory of ProductDir Description

connectors/WebServices/CWWebServices.jar The web services connector

connectors/WebServices/start_WebServices.sh The startup file for the connector

connectors/WebServices/README.htm License

DataHandlers/CwSOAPDataHandler.jar The SOAP data handler

repository/DataHandlers/MO_DataHandler_DefaultSOAPConfig.xsd SOAP data handler-related files

bin/Data/App/WebServicesConnectorTemplate Web services connector template

ODA/WSDL/WSDLODA.jar The WSDL ODA

ODA/WSDL/start_WSDLODA.sh The WSDL ODA startup file

connectors/WebServices/dependencies/soap.jar Apache SOAP API required by the SOAP

connector, SOAP data handler, WSDL

Configuration Wizard, and WSDL ODA.

connectors/WebServices/dependencies/LICENSE Apache license file

connectors/WebServices/dependencies/mail.jar The JavaMail API

connectors/WebServices/dependencies/activation.jar The Java Activation Framework

connectors/WebServices/dependencies/jms.jar The Java Messaging Service

connectors/WebServices/dependencies/uddi4j-wsdl_2_1_0_040127.jar Required by WSDL ODA

connectors/WebServices/dependencies/uddi4jv2.jar Required by WSDL ODA

connectors/WebServices/dependencies/IPL10.txt License file required by WSDL ODA

connectors/WebServices/dependencies/wsdl4j-1.4SR3.jar Required by WSDL ODA

connectors/WebServices/dependencies/CPL10.txt License file required by WSDL ODA

connectors/WebServices/README.htm License.

connectors/WebServices/dependencies/qname.jar Required by WSDL ODA

connectors/WebServices/dependencies/j2ee.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/common.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/common.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/ecore.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.resources.jar Required by WSDL ODA

connectors/WebServices/dependencies/IBMReadme_de_DE.txt German readme file.

connectors/WebServices/dependencies/IBMReadme_en_US.txt English readme file.

connectors/WebServices/dependencies/IBMReadme_ex_ES.txt Spanish readme file.

connectors/WebServices/dependencies/IBMReadme_fr_FR.txt French readme file.

connectors/WebServices/dependencies/IBMReadme_it_IT.txt Italian readme file.

connectors/WebServices/dependencies/IBMReadme_ja_JA.txt Japanese readme file.

connectors/WebServices/dependencies/IBMReadme_ko_KR.txt Korean readme file.

connectors/WebServices/dependencies/IBMReadme_pt_BR.txt Portuguese_Brazilian readme file.

connectors/WebServices/dependencies/IBMReadme_zh_CN.txt Simplified Chinese readme file.

connectors/WebServices/dependencies/IBMReadme_zh_TW.txt Traditional Chinese readme file.

connectors/WebServices/dependencies/wswb3.0/ecore.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.jar Required by WSDL ODA

connectors/WebServices/dependencies/wswb3.0/xsd.resources.jar Required by WSDL ODA

connectors/messages/WebServicesConnector.txt Connector message file

ODA/messages/WSDLODAAgent.txt Message file for WSDL ODA

Note: All product pathnames are relative to the directory where the product is

installed on your system.

Overview of configuration tasks

After installation and before startup, you must configure components as follows:

18 Adapter for Web Services User Guide

Configure the connector

This task includes setting up and configuring the connector. See “Configuring the

connector” on page 86.

Configure business objects

The steps for configuring business objects depend on how you elect to implement

the product suite:

v Request Processing You must create the business objects that correspond to:

– The request messages to be sent to each web service

– Each possible response, including faults

For further information, review Chapter 3, “Business object requirements,” on

page 25 and then see Chapter 6, “Enabling collaborations for request

processing,” on page 143.

v Event Processing You can use TLO or non-TLO business objects.

For further information, review Chapter 3, “Business object requirements,” on

page 25 and then see Chapter 7, “Exposing collaborations as web services,” on

page 145.

Configure the data handler

The SOAP data handler meta-object must be configured after installation. In

addition, SOAP Config MOs must be configured for each SOAP business object. To

configure the data handler, see Chapter 5, “SOAP data handler,” on page 109

Configure collaborations

v Request processing For collaborations that invoke web services as part of their

processing, you generate business objects using the WSDL ODA and then bind

collaboration object ports to the connector. For further information including a

step-by-step procedure, see Chapter 6, “Enabling collaborations for request

processing,” on page 143.

v Event processing For a collaboration that is exposed as a web service, you must

generate a WSDL document using the WSDL Configuration Wizard, make the

document available to potential clients, and then configure the ports of the

collaboration object so that clients can invoke the collaboration. For further

information including a step-by-step procedure, see Chapter 7, “Exposing

collaborations as web services,” on page 145.

Running multiple instances of the adapter

Creating multiple instances of a connector is in many ways the same as creating a

custom connector. You can set your system up to create and run multiple instances

of a connector by following the steps below. You must:

v Create a new directory for the connector instance

v Make sure you have the requisite business object definitions

v Create a new connector definition file

v Create a new start-up script

Create a new directory

v For Windows Platforms:

ProductDir\connectors\connectorInstance

Chapter 2. Installation and startup 19

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file,

create this directory and store the file here:

ProductDir\repository\connectorInstance

where connectorInstance uniquely identifies the connector instance.

You can specify the InterChange Server Express server name as a parameter of

startup.bat; an example is: start_WEBSERVICES.bat connName serverName.

v For i5/OS Platforms:

/QIBM/UserData/WBIServer44/WebShereICSName/connectors/connectorInstance

where connectorInstance uniquely identifies the connector instance and where

WebSphereICSName is the name of the Interchange Server Express instance with

which the connector runs.

If the connector has any connector-specific meta-objects, you must create a

meta-object for the connector instance. If you save the meta-object as a file,

create this directory and store the file here:

/QIBM/UserData/WBIServer44/WebSphereICSName

/repository/connectorInstance where WebSphereICSName is the name of the

Interchange Server Express instance with which the connector runs.

v For Linux Platforms:

ProductDir/connectors/connectorInstancewhere connectorInstance uniquely

identifies the connector instance. If the connector has any connector-specific

meta-objects, you must create a meta-object for the connector instance. if you

save the meta-object as a file, create this directory and store the file here:

ProductDir/repository/connectorInstance.You can specify the InterChange

Server Express servername as a parameter of connector_manager; an example is

connector_manager -start connName WebSphereICSName [-cConfigFile].

Create business object definitions

If the business object definitions for each connector instance do not already exist

within the project, you must create them.

1. If you need to modify business object definitions that are associated with the

initial connector, copy the appropriate files and use Business Object Designer

Express to import them. You can copy any of the files for the initial connector.

Just rename them if you make changes to them.

2. Files for the initial connector should reside in the following directory:

ProductDir\repository\initialConnectorInstance

Any additional files you create should be in the appropriate connectorInstance

subdirectory of ProductDir\repository.

Create a connector definition

You create a configuration file (connector definition) for the connector instance in

Connector Configurator Express. To do so:

1. Copy the initial connector’s configuration file (connector definition) and rename

it.

2. Make sure each connector instance correctly lists its supported business objects

(and any associated meta-objects).

3. Customize any connector properties as appropriate.

Create a start-up script

To create a startup script:

20 Adapter for Web Services User Guide

1. Copy the initial connector’s startup script and name it to include the name of

the connector directory:

dirname

2. Put this startup script in the connector directory you created in “Create

business object definitions” on page 20.

3. (For Windows only.) Create a startup script shortcut.

4. (For Windows only.) Copy the initial connector’s shortcut text and change the

name of the initial connector (in the command line) to match the name of the

new connector instance.

5. (For i5/OS only.) Create a job description for the connector using the

information below:

CRTDUPOBJ(QWBIWEBSERVICES)

FROMLIB(QWBISVR44)OBJTYPE(*JOBD)TOLIB (QWBISVR44)

NEWOBJ(newwebservicesname) where newwebservicesname is a 10-character

name that you use for the job description for your new connector.

6. (For i5/OS only.) Add the new connector to the WebSphere Business

Integration Server Express Console. For information about the WebSphere

Business Integration Server Express console, refer to the online help provided

with the Console.

Starting the connector

Important: As noted earlier in this chapter, the connector, business objects, the

SOAP data handler meta-objects, and collaborations must be

configured after installation and before starting the connector to assure

proper operation. For a summary of these tasks, see “Overview of

configuration tasks” on page 18. In addition, connector polling should

not be disabled (connector polling is enabled by default).

A connector must be explicitly started using its connector start-up script. On

Windows systems the startup script should reside in the connector’s runtime

directory:ProductDir\connectors\connNamewhere connName identifies the connector.

On Linux systems the startup script should reside in the ProductDir/bin directory.

On i5/OS systems the startup script should reside in the

/QIBM/UserData/WBIServer44/<instance>/connectors/<ConnInstance/ with which

the connector runs.

The name of the startup script depends on the operating-system platform, as

Table 4 shows.

 Table 4. Startup scripts for a connector

Operating system Startup script

Linux connector_manager

i5/OS start_connName.sh

Windows start_connName.bat

When the startup script runs, it expects by default to find the configuration file in

the Productdir (see the commands below). This is where you place your

configuration file.

Note: You need a local configuration file if the adapter is using JMS transport.

Chapter 2. Installation and startup 21

v Starting the connector on a Windows system:

– From the Start menu, select Programs>IBM WebSphere Business Integration

Server Express>Adapters>Connectors. By default, the program name is “IBM

WebSphere Business Integration Server Express”. However, it can be

customized. Alternatively, you can create a desktop shortcut to your

connector.

– From the Windows command line: start_connName connName brokerName

{-cconfigFile}.

– On Windows systems, you can configure the connector to start as a Windows

service. In this case, the connector starts when the Windows system boots (for

an Auto service) or when you start the service through the Windows Services

window (for a Manual service).
v Starting the connector on a Linux system:

– From the command line type:

connector_manager -start connName brokerName [-cconfigFile]

where connName is the name of the connector and brokerName identifies your

integration broker.

– For InterChange Server Express, specify for brokerName the name of the

InterChange Server Express instance.
v Starting the connector on an i5/OS system:

– From the Windows system where the WebSphere Business Integrations Server

Express Console is installed, select IBM WebSphere Business Integration

Server Express>Toolset Express>

Administrative>Console. Then specify the OS/400 or i5/OS system name or

IP address and a user profile and password that has *JOBCTL special

authority. Select the connector from the list of connectors, and click Start

– To automatically start the adapter using the Console, use the

submit_adapter.sh script. This is the only way the adapter will start using the

subsystem within the autostart job entry for the server.

– In Batch mode, from the i5/OS command line, you need to run the CL

command QSH and from the QSHELL environment. Run

/QIBM/ProdData/WBIServer44/bin/submit_adapter.sh connName

WebSphereICSName pathToConnNameStartScript jobDescriptionName, where

connName is the connector name, WebSphereICSName is the Interchange Server

Express server name (default is QWBIDFT44), pathToConnNameStartScript is

the full path to the connector start script, jobDescriptionName is the name of

the job description to use in the QWBISVR44 library.

– In interactive mode, you need to run the CL command QSH and from the

QSHELL environment. Run

/QIBM/UserData/WBIServer44/WebSphereICSName/connectors/connName/

start_connName.sh connNameWebsphereICSName [-cConfigFile] where connName

is the name of your connector and WebSphereICSName is the name of the

InterChange Server Express instance.

For more information on how to start a connector, including the command-line

startup options, refer to the System Administration Guide.

Stopping the connector

The way to stop a connector depends on the way that the connector was started.

v Windows:

22 Adapter for Web Services User Guide

– You can invoke the startup script which creates a separate “console” window

for the connector. In this window, type “q” and press Enter to stop the

connector.

– You can configure the connector to start as a Windows service. In this case,

the connector stops when the Windows system shuts down.
v i5/OS:

– If you started the connector using the Console, or using the

″submit_adapter.sh″ script in QSHELL, then you can use one of two methods

to stop the connector:

– From the Windows system where the WebSphere Business Integration Server

Express Console is installed, select IBM WebSphere Business Integration

Express> Toolset Express>Administrative>Console. Then specify the OS/400

or i5/OS system name or IP address and a user profile and password that has

*JOBCTL special authority. Select the web services adapter from the list and

select the Stop button. Use the CL Command WRKACTJOB SBS

(QWBISVR44) to display the jobs to the Server Express Product. Scroll the list

to find the job with the jobname that matches the job description for the

connector. For example, for the web services connector the jobname is

QWBIWEBSVC. Select Option 4 on this job, and press F4 to get the prompt

for the ENDJOB command. Then specify *IMMED for the Option parameter

and press enter.

Note: The connector will end when the QWBISVR44 subsystem has ended.

– If you used the start_connName.sh script to start the adapter from QSHELL,

press F3 to end the connector. You can also stop the agent, by using a script

named stop_adapter.sh located in the /QIBM/ProdData/WBIServer44/bin

directory.
v Linux:

Connectors run in the background so they have no separate window. Instead,

run the following command to stop the connector:

connector_manager -stop connName

where connName is the name of the connector.

Chapter 2. Installation and startup 23

24 Adapter for Web Services User Guide

Chapter 3. Business object requirements

v “Business object meta-data”

v “Connector business object structure”

v “Synchronous event processing TLOs” on page 26

v “Asynchronous event processing TLOs” on page 39

v “Event processing non-TLOs” on page 42

v “Synchronous request processing TLOs” on page 43

v “Synchronous request processing TLOs” on page 43

v “Asynchronous request processing TLOs” on page 54

v “Developing business objects” on page 58

This chapter describes the structure, requirements, and attributes of connector

business objects.

Business object meta-data

The connector for web services is a meta-data-driven connector. In business objects,

meta-data is data about the application, which is stored in a business object

definition and which helps the connector interact with an application. A

meta-data-driven connector handles each business object that it supports based on

meta-data encoded in the business object definition rather than on instructions

hard-coded in the connector.

Business object meta-data includes the structure of a business object, the settings of

its attribute properties, and the content of its application-specific information.

Because the connector is meta-data-driven, it can handle new or modified business

objects without requiring modifications to the connector code. However, the

connector’s configured data handler makes assumptions about the structure of its

business objects, object cardinality, the format of the application-specific text, and

the database representation of the business object. Therefore, when you create or

modify a business object for web services, your modifications must conform to the

rules the connector is designed to follow, or the connector cannot process new or

modified business objects correctly.

For more information on meta-data, meta-objects, and their configuration and

interaction with business objects and SOAP messages, see Chapter 5, “SOAP data

handler,” on page 109.

Connector business object structure

The connector processes two kinds of business objects:

v TLOs A web services top-level business object (TLO) contains a Request

business object and, optionally, Response and Fault business objects. These child

objects contain content data as well as SOAP Config MOs, and, optionally,

Protocol Config MOs. The TLO, Request, Response, and Fault objects as well as

application-specific information, attributes, and requirements with regard to

request versus event processing are described and illustrated in the sections

below.

Note: TLOs are used for request processing and event processing.

© Copyright IBM Corp. 2004, 2005 25

v Non-TLOs These are generic business objects (GBOs) and application-specific

business objects (ASBOs) that are not TLOs, but which have been used by the

WSDL Configuration Wizard in WSDL generation. The connector can process

non-TLOs during event processing. These objects are discussed below in “Event

processing non-TLOs” on page 42. For further information, see “WSDL

Configuration Wizard” on page 148.

Note: Non-TLOs are used for event processing only.

Note: SOAP header container and header business objects, which are included in

Request, Response, and Fault business objects, are not discussed in this

chapter. For information on SOAP header container and header business

objects, see Chapter 5, “SOAP data handler,” on page 109.

Synchronous event processing TLOs

For event processing the connector allows two kinds of TLOs—synchronous and

asynchronous. This section discusses synchronous event processing TLOs.

Figure 4 shows the business object hierarchy for synchronous event processing.

Request and Response objects are required, Fault objects are optional.

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below.

Object-level ASI for synchronous event processing TLOs

Object-level ASI provides fundamental information about the nature of a TLO and

the objects it contains. Figure 5 shows the object-level ASI for

SERVICE_SYNCH_OrderStatus, a sample TLO for synchronous event processing.

op

Web Services TLO

Request BO required

Response BO required

Fault BO optional

Header container optional

Header container optional

Header BO

Header BO

Header BO

Header BO

SOAP Config MO

SOAP Config MO

SOAP Config MO

Protocol Config MO optional

Protocol Config MO optional

Protocol Config MO optional

HeaderFault container optional

HeaderFault BO

HeaderFault BOMimeType optional

Charset optional

Figure 4. Business object hierarchy for synchronous event processing

26 Adapter for Web Services User Guide

Table 5 below describes the object-level ASI for a synchronous event processing

TLO.

 Table 5. Synchronous event processing TLO object ASI

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO for event processing only.

Note that the WSDL Configuration Wizard uses this

ASI to determine whether a business object is a

TLO. For more on this see “WSDL Configuration

Wizard” on page 148.

ws_collab=collabname This ASI tells the connector which collaboration to

invoke. Its value is the name of the collaboration.

(This ASI is also used during WSDL generation to

determine the TLO for a collaboration. For more on

this see “WSDL Configuration Wizard” on page

148.) In the sample shown inFigure 5, the

collaboration name is

SERVICE_SYNCH_OrderStatus_Collab)

ws_verb=verb Before delivering the TLO to the collaboration, the

connector uses this ASI to set the verb on the TLO.

In the sample shown inFigure 5, the verb is

Retrieve.

ws_mode=synch During event notification, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For synchronous

processing, this ASI must be set to synch.

The default is asynch.

Attribute-level ASI for synchronous event processing TLOs

Each synchronous event processing TLO has attributes and attribute-level ASI.

Figure 6 shows the attributes of SERVICE_SYNCH_OrderStatus, a sample TLO. It

also shows the attribute-level ASI in the App Spec Info column.

Figure 5. Top-level business object for synchronous event processing

Chapter 3. Business object requirements 27

Table 6 summarizes the attribute-level ASI for the Request, Response, Fault,

MimeType, and Charset attributes of an synchronous event processing TLO.

 Table 6. Synchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

MimeType None Optional attribute; if

specified, its value is used as

the mime type of the data

handler to invoke for the

synchronous response. The

type is String and the default

is xml/soap.

Charset None This optional parameter of

type String specifies the

charset to be set on the data

handler when transforming

an outgoing business object

to the message. NOTE: the

charset value specified in this

attribute will not be

propagated in the

Content-Type protocol

header of the response

message.

Request ws_botype=request This attribute corresponds to

a web service request. The

connector uses its ASI to

determine whether this TLO

attribute is of type SOAP

Request BO. This ASI, not

the attribute name,

determines the attribute type.

If there is more than one

request attribute, the

connector uses the ASI of the

first one.

This attribute is required for

synchronous event

processing TLOs.

Figure 6. TLO attributes for synchronous event processing

28 Adapter for Web Services User Guide

Table 6. Synchronous event processing TLO attribute ASI (continued)

TLO attribute Attribute-level ASI Description

Response ws_botype=response This attribute corresponds to

the response returned by a

web service. The connector

uses this ASI to determine

whether this TLO attribute is

of type SOAP Response BO.

This ASI, not the attribute

name, determines the

attribute type. If there is

more than one response

attribute, the connector uses

the ASI of the first one.

This attribute is required for

synchronous event

processing TLOs.

Fault ws_botype=fault

ws_botype=defaultfault

This attribute, optional for

synchronous event

processing, corresponds to a

fault message returned by a

collaboration when it cannot

successfully populate a

response. The connector uses

this ASI, not the attribute

name, to determine if the

attribute is of type SOAP

Fault BO.If

ws_botype=defaultfault,then

the WSDL Configuration

Wizard uses this Fault

business object for header

processing. For further

information, see “Header

fault processing” on page

120.

Request business object for synchronous event processing

A Request business object is a child of a TLO and is required for synchronous

event processing. A Request business object has object-level ASI. For example, if

you open SERVICE_SYNCH_OrderStatus_Request in Business Object Designer

Express and click the General tab, the object level ASI is displayed as shown in

Figure 7 on page 30.

Chapter 3. Business object requirements 29

The object-level ASI for a Request business object for synchronous event processing

is described in Table 7. As shown in Figure 7, you can specify a default verb for the

Request business object. You do so by specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the

Request business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the business object is returned

without a verb.

 Table 7. Synchronous event processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the meta-object that defines the data

handler transformation for the Request business

object. For further information, see “SOAP Config

MO” on page 31.

cw_mo_jms=SOAPJMSCfgMO

or

cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The first ASI designates the SOAP/JMS

protocol listener; the second designates the

SOAP/HTTP or SOAP/HTTPS protocol listener.

Both the ASI and the Protocol Config MO are

optional. For further information, see “Protocol

Config MO” on page 32.

ws_tloname=tloname This ASI specifies the name of the web services

TLO that this object belongs to. During event

processing, the connector uses this ASI to

determine whether the Request business object

delivered by the data handler is a child of the

TLO. If so, the connector creates the specified

TLO, sets the Request business object as its child,

and uses the TLOs object-level ASI to deliver it to

the subscribing collaboration.

Response business object for synchronous event processing

A Response business object is a child of a TLO and is required for synchronous

event processing. The object-level ASI for a Response business object for

synchronous event processing is described in Table 8.

Figure 7. Object-level ASI for synchronous event processing request object

30 Adapter for Web Services User Guide

Table 8. Synchronous event processing: object-level ASI for Response business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the

data handler transformation for the Response

business object. For further information, see

“SOAP Config MO.”

Note: You can optionally include a Protocol Config MO object-level ASI for the

Response BO.

Fault business object for synchronous event processing

A Fault business object is a child of a TLO and is optional for synchronous event

processing. The object-level ASI for a Fault business object for synchronous event

processing is described in Table 9.

 Table 9. Synchronous event processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the

data handler transformation for the Fault business

object. For further information, see “SOAP Config

MO.”

Note: You can optionally include a Protocol Config MO object-level ASI for the

Fault BO.

SOAP Config MO

Figure 8 shows a sample SOAP Config MO, expanded in Business Object Designer

Express.

Chapter 3. Business object requirements 31

The SOAP Config MO defines the formatting behavior for one data handler

transformation — either a SOAP-message-to-business-object or

business-object-to-SOAP-message transformation. Each Request, Response, and

Fault attribute has a SOAP Config MO. Its attributes, BodyName, BodyNS, Style,

Use, TypeInfo, TypeCheck and BOVerb, are always of type String. They

correspond to SOAP message elements and their values determine how messages

and objects are read and validated by the SOAP data handler. For more

information on SOAP Config MOs and attributes, see “SOAP configuration

meta-object: child of every SOAP business object” on page 111.. All SOAP Config

MOs, whether for a request, response, or fault object, must have unique entries for

default values of BodyName and BodyNS.

Protocol Config MO

Figure 9 shows a JMS Protocol Config MO, whose attributes correspond to headers

in the inbound SOAP message.

Figure 8. SOAP Config MO attributes for synchronous event processing

32 Adapter for Web Services User Guide

This MO is optionally included as a child of the request, response, or fault business

objects for event processing. Typically you specify it when you need to read (from

request messages) or propagate (to response or fault messages) the protocol

headers and custom properties. As noted above, the request business object

optionally declares the name of the Protocol Config MO as business-object-level

ASI:

v cw_mo_jms=JMSProtocolListenerConfigMOAttribute

v cw_mo_http=HTTPProtocolListenerConfigMOAttribute

During event processing, the connector uses protocol listeners (SOAP/HTTP,

SOAP/HTTPS or SOAP/JMS) to retrieve events from the transport. These events

are messages from internal or external web service clients requesting service from

collaborations that have been exposed as web services. Each transport has its own

header requirements. The connector uses the Protocol Config MO to convey the

protocol-specific header information from the protocol listener to the collaboration.

The Protocol Config MO attributes correspond to headers in the inbound

SOAP/JMS message. The connector sets the value of these attributes in the

business object using inbound SOAP message content. For SOAP/JMS protocol, the

Protocol Config MO attributes for event and request processing are as follows:

 Table 10. SOAP JMS Protocol Config MO attributes:event and request processing

SOAP/JMS Protocol Config

MO attribute JMSHeaderName Description

CorrelationID JMSCorrelationID Inbound messages: this

attribute will be populated

with the value from

JMSCorrelationID header.

Outbound messages: : the

value from this attribute will

be set as the

JMSCorrelationID header of

outgoing message.

Figure 9. JMS Protocol Config MO attributes for synchronous event processing

Chapter 3. Business object requirements 33

Table 10. SOAP JMS Protocol Config MO attributes:event and request

processing (continued)

SOAP/JMS Protocol Config

MO attribute JMSHeaderName Description

MessageId JMSMessageId Inbound messages: this

attribute will be populated

with the value from the

JMSMessageId header.

Outbound messages: this

attribute is not used for

outbound messages.

Priority JMSPriority Inbound messages: this

attribute will be populated

with the value from the

JMSPriority header.

Outbound messages: the

value from this attribute will

be set in the JMSPriority

header of outgoing message.

Expiration JMSExpiration Inbound messages: this

atrribute will be populated

with the value from the

JMSExpiration header.

Outbound messages: the

value from this attribute will

be set in the JMSExpiration

header of outgoing message.

DeliveryMode JMSDeliveryMode Inbound messages: : this

attribute will be populated

with the value from the

JMSDeliveryMode header.

Outbound messages: the

value from this attribute will

be set in the

JMSDeliveryMode header of

outgoing message.

Destination JMSDestination Inbound messages: this

attribute will be populated

with the value from the

JMSDestination header.

Outbound messages:

Request processing the

value from this attribute will

be used as the destination

queue name and will

indirectly be set in the

JMSDestination header of

outgoing messages to the

derived destination path.
Synchronous response in

event notification: this

attribute is not used.

34 Adapter for Web Services User Guide

Table 10. SOAP JMS Protocol Config MO attributes:event and request

processing (continued)

SOAP/JMS Protocol Config

MO attribute JMSHeaderName Description

Redelivered JMSRedelivered Inbound messages: this

attribute will be populated

with the value from the

JMSRedelivered header.

Outbound messages: the

value from this attribute will

be set in the JMSRedelivered

header of outgoing message..

ReplyTo JMSReplyTo Inbound messages: this

attribute will be populated

with the value from the

JMSReplyTo header.

Outbound messages: the

value from this attribute will

be set in the JMSReplyTo

header of outgoing message

TimeStamp JMSTimeStamp Inbound messages: this

attribute will be populated

with the value from the

JMSTimeStamp header.

Outbound messages: the

value from this attribute will

be set in the JMSTimeStamp

header of outgoing message..

Type JMSType Inbound messages: this

attribute will be populated

with the value from the

JMSType header.

Outbound messages: the

value from this attribute will

be set in the JMSType header

of outgoing message.

UserDefinedProperties See “User-defined properties

for event processing” on

page 36.

This optional read/write

attribute will hold the

user-defined protocol

properties business object.

For further information,

see“User-defined properties

for event processing” on

page 36.

Note: It is the responsibility of the collaboration to ensure that the header values

passed to the JMS Protocol Config MO are logically correct in the context of

a request-response event.

Chapter 3. Business object requirements 35

For SOAP/HTTP(S) protocol, the Protocol Config MO attributes are as follows:

 Table 11. HTTP/HTTPS Protocol Config MO Attributes for Event Processing

Attribute Required Type Description

Content-Type No String The value of this attribute

defines the Content-Type

header of the outgoing message

(which includes message

ContentType and 0 or more

parameters --the charset-- for

the outgoing message). The

syntax is the same as that for

the Content-Type header in the

HTTP Protocol, for example:

text/html;

charset=ISO-8859-4. If there is

no Content-Type attribute

defined, the connector uses the

ContentType of the request as

the ContentType of the

response/fault message.

UserDefinedProperties No Business object This attribute holds the

user-defined protocol properties

business object.

One or more HTTP

headers

No String This attribute allows the

handler to pass or retrieve the

value for the specified HTTP

header.

Authorization_UserID No String This attribute corresponds to

the userID of the HTTP basic

authentication.

Authorization_Password No String This attribute corresponds to

the password of the HTTP basic

authentication

These attributes are described in:

v “User-defined properties for event processing”

v “HTTP credential propagation for event processing” on page 37

For further information on protocol listeners, see “Protocol listeners” on page

63.(For information describing the Protocol Config MO for request processing, see

“Synchronous request processing TLOs” on page 43).

User-defined properties for event processing: You can optionally specify custom

properties in the HTTP(S) Protocol Config MO. You do so by including the

UserDefinedProperties attribute. This attribute corresponds to a business object that

has one or more child attributes with property values. Every attribute in this

business object must define a single property to be read (or, for synchronous

responses, written) in the variable portion of the message header as follows:

v The type of the attribute should always be String regardless of the protocol

property type. The application-specific information of the attribute can contain

two name-value pairs defining the name and format of the protocol message

property to which the attribute maps.

36 Adapter for Web Services User Guide

Table 12summarizes the application-specific information for these attributes.

 Table 12. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name Value Description

ws_prop_name

(case-insensitive; if not

specified the attribute name

will be used as the property

name

Any valid protocol property

name

This is the name of the

protocol property. Some

vendors reserve certain

properties to provide

extended functionality. In

general, you should not

define custom properties that

begin with JMS (for JMS

protocol) unless you are

seeking access to these

vendor-specific features.

ws_prop_type (case

insensitive, optional for JMS

- if not specified String is

assumed; irrelevant for

HTTP(S) since only String

types make sense)

String, Integer, Boolean,

Float, Double, Long, Short

The type of the protocol

property. For JMS protocol,

the JMS API provides a

number of methods for

setting property values in the

JMS Message: setIntProperty,

setLongProperty,

setStringProperty, etc. The

type of the JMS property

specified here dictates which

of these methods will be

used for setting the property

value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is

invalid and there is no logical way to process this header (such as ignoring the

property type for HTTP processing), the connector logs a warning and ignores this

property. If the value of the custom property can neither be set nor retrieved after

the necessary check against ws_prop_name or ws_prop_type has been performed,

the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified, the connector will create an

instance of a UserDefinedProperties business object. The connector then attempts

to extract property values from the message and store them in the business object.

If at least one property value is successfully retrieved, the connector will set a

modified UserDefinedProperties attribute in the Protocol Config MO.

For synchronous event processing, if a UserDefinedProperties attribute is specified

and its business object is instantiated, the connector will process each attribute of

this child business object and set the message property value accordingly.

HTTP credential propagation for event processing: For the purpose of credential

propagation, the connector supports the Authorization_UserID and

Authorization_Password attributes in the HTTP Protocol Config MO. The support

is limited to the propagation of these credentials as part of the HTTP Basic

authentication scheme.

If a SOAP/HTTP or SOAP/HTTPS protocol listener processes a SOAP/HTTP web

service request that includes an authorization header, the listener will parse the

header to determine whether it conforms to HTTP Basic authentication. If so, the

Chapter 3. Business object requirements 37

listener extracts and decodes (using Base64) the username and password. This

decoded string consists of a username and password separated by a colon. If the

protocol listener finds the Authorization_UserID and Authorization_Password

attributes in the Protocol Config MO, the listener sets these values with those

extracted from the event authorization header.

Header container business objects

Figure 10 shows the expanded header container attribute, OrderHeader.

The header container attribute, also known as the SOAP header attribute,

corresponds to a business object that contains only child business objects. Each

child represents a header entry in the SOAP message. In the example shown in

Figure 10, the request header container is OrderHeader. SOAP header attributes

have application-specific information (ASI) required by the SOAP data handler. For

example, a header container business object is identified by its ASI:

soap_location=SOAPHeader. For information on header processing, see “SOAP data

handler processing” on page 115.

All SOAP business objects, whether a Request, Response, or Fault object, have one

and only one header container.

Header child business objects

In the example shown Figure 10, the two child attributes of the request header

container (OrderHeader) are 1) transaction of type

SERVICE_SYNCH_OrderStatus_TransactionHeaderChild and 2) affiliate of type

Figure 10. Header container and child business objects

38 Adapter for Web Services User Guide

SERVICE_SYNCH_OrderStatus_TradingPartnerHeaderChild. These attributes

correspond to header child business objects. Each represents a single header

element in a SOAP message. The header element is an immediate child of the

SOAP-Env:Header element of the SOAP message. As shown Figure 10, the header

child business objects may have an actor and a mustUnderstand attribute. These

attributes correspond to the actor and mustUnderstand attributes of the SOAP

header element. For information on header processing, see “SOAP data handler

processing” on page 115.

There may be as many header child objects as are needed to represent the SOAP

header message elements.

Asynchronous event processing TLOs

Figure 11 shows the business object hierarchy for asynchronous event processing. A

request object only is required.

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below. For information on the header container

and header child business objects, see “Header container business objects” on page

38.

Object-level ASI for asynchronous event processing TLOs

Object-level ASI provides fundamental information about the nature of a TLO and

the objects it contains. Figure 12 shows the object-level ASI for

SERVICE_ASYNCH_TLO_Order, a sample TLO for asynchronous event processing.

Web Services TLO

Request BO required

SOAP Config MO

Protocol Config MO optional

Header BO

Header BO

Header container optional

Figure 11. Business object hierarchy for asynchronous event processing

Chapter 3. Business object requirements 39

Table 5 below describes the object-level ASI for an asynchronous event processing

TLO.

 Table 13. Asynchronous event processing TLO object ASI

Object-level ASI Description

ws_eventtlo=true If this ASI property is set to true, the connector

treats this object as a TLO for event processing.

Note that the WSDL Configuration Wizard uses this

ASI to determine whether a business object is a

TLO. For more on this see “WSDL Configuration

Wizard” on page 148.

ws_verb=verb Before delivering the TLO to the collaboration, the

connector uses this ASI to set the verb on the TLO.

In the sample shown inFigure 12, the verb is

Create.

ws_mode=asynch During event notification, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For asynchronous

processing, this ASI must be set to asynch.

The default is asynch.

Note: Unlike synchronous event processing, no collaboration name ASI is required

at the TLO level for asynchronous event processing. Instead the integration

broker assures that application events reach all subscribing collaborations.

Attribute-level ASI for asynchronous event processing TLOs

Each asynchronous event processing TLO has a single attribute that corresponds to

a Request business object. Figure 13 shows the request attribute of

SERVICE_ASYNCH_TLO_Order, a sample TLO, and the attribute’s ASI.

Figure 12. Top-level business object for asynchronous event processing

40 Adapter for Web Services User Guide

Table 14 summarizes the attribute-level ASI for the request attribute of an

asynchronous event processing TLO.

 Table 14. Asynchronous event processing TLO attribute ASI

TLO attribute Attribute-level ASI Description

Request ws_botype=request This attribute corresponds to

a web service request. The

connector uses its ASI to

determine whether this TLO

attribute is of type SOAP

Request BO. This ASI, not

the attribute name,

determines the attribute type.

If there is more than one

request attribute, the

connector uses the ASI of the

first one.

This attribute is required for

synchronous event

processing TLOs.

Request business object for asynchronous event processing

A Request business object is a child of a TLO and is required for asynchronous

event processing. You can specify a default verb for the Request business object.

You do so by specifying:

DefaultVerb=true;

in the ASI field for the verb in the Supported Verbs list at the top-level of the

Request business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the business object is returned

without a verb. The object-level ASI for a Request business object for asynchronous

event processing is described in Table 15.

 Table 15. Asynchronous event processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the

data handler transformation for the Request

business object. For further information, see

“SOAP Config MO” on page 31.

Figure 13. TLO attribute for asynchronous event processing

Chapter 3. Business object requirements 41

Table 15. Asynchronous event processing: object-level ASI for Request business

objects (continued)

Object-level ASI Description

cw_mo_jms=SOAPJMSCfgMO

or

cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. The first ASI designates the SOAP/JMS

protocol listener; the second designates the

SOAP/HTTP or SOAP/HTTPS protocol listener.

Both the ASI and the Protocol Config MO are

optional. For further information, see “Protocol

Config MO” on page 32.

ws_tloname=tloname This ASI specifies the name of the web services

TLO that this object belongs to. During event

processing, the connector uses this ASI to

determine whether the Request business object

delivered by the data handler is a child of the

TLO. If so, the connector creates the specified

TLO, sets the Request business object as its child,

and uses the TLOs object-level ASI to deliver it to

the subscribing collaboration.

In the sample shown in Figure 14, the Request attribute contains a SOAP Config

MO and header container (OrderHeader), as well as a content-related attribute

(OrderLineItems). The requirements and characteristics of the SOAP Config MO,

Protocol Config MO, SOAP header container, and header child business objects are

the same for asynchronous event processing as they are for synchronous event

processing. For further information, see these topics above in “Synchronous event

processing TLOs” on page 26.

Event processing non-TLOs

If the object-level ASI ws_eventtlo=true is not present in a business object, the

connector concludes that the object is not a TLO. During event processing, the

connector can process non-TLOs—generic business objects and application specific

business objects. With non-TLOs, the same business object represents the Request

and Response business object.

Figure 14. Request attributes for asynchronous event processing

42 Adapter for Web Services User Guide

Non-TLOs do not have SOAP Config MOs. When you expose a collaboration as a

web service, the WSDL Configuration Wizard configures the WSCollaborations

property of the connector. The connector uses the WSCollaborations property to

determine the BodyName and BodyNS of the request message. Note that for

non-TLOs, the WSCollaborations property is used for business object resolution.

The advantage to using non-TLOs is that you need not develop new,

TLO-structured business objects for use with your web services solution. TLOs,

however, allow a more precise and economical exposure of data—customer,

company, or otherwise. TLO business objects also lend themselves to more

customization than do non-TLOs.

For further information on requirements when using non-TLOs as input to the

WSDL Configuration Wizard, see “Identifying or developing Business Objects” on

page 146.

Synchronous request processing TLOs

For request processing the connector allows two kinds of TLOs—synchronous and

asynchronous. This section discusses synchronous request processing TLOs.

Figure 15 shows the TLO business object hierarchy for synchronous request

processing. Request and Response objects are required, Fault objects are optional.

Unlike event processing, a Protocol Config MO is required for the Request objects,

and optional for the Response and Fault objects. For information on the header

container and header child business objects, see “Header container business

objects” on page 38.

Chapter 3. Business object requirements 43

Object-level ASI for synchronous request processing TLOs

Object-level ASI provides important information about the nature of a TLO and the

objects it contains. Figure 16 shows CLIENT_SYNCH_TLO_OrderStatus, a sample

TLO for synchronous request processing.

Web Services TLO

Request BO

SOAP Config MO

Header BO

Header BO

Header BO

Header BO

SOAP Config MO

Request BO required

Response BO required

Fault BO optional

MimeType optional

JMS Protocol Config MO HTTP Protocol Config MO

JMS Protocol Config MO optional

SOAP Config MO

JMS Protocol Config MO optional

Header BO

Header BO

Header container optional

Header container optional

HeaderFault container optional

HTTP Protocol Config MO optional

HTTP Protocol Config MO optional

Charset optional

BOPrefix optional

Figure 15. Business object hierarchy for synchronous request processing

44 Adapter for Web Services User Guide

Table 16 describes the object-level ASI for a synchronous request processing TLO.

Unlike the ASI for synchronous event processing TLOs, no ws_collab, ws_verb or

ws_eventtlo ASI is required at this level for request processing.

 Table 16. Synchronous request processing TLO object ASI

Object-level ASI Description

ws_mode=synch During request processing, the connector uses this

ASI property to determine whether to invoke the

web service synchronously (synch) or

asynchronously (asynch). If synch is indicated, then

the connector expects a response, and the TLO must

include request and response business objects and,

optionally, one or more fault objects.

The default is asynch.

Attribute-level ASI for synchronous request processing TLOs

Figure 17 shows the attributes of the CLIENT_SYNCH_TLO_OrderStatus TLO as

well as attribute-level ASI.

Figure 16. Top-level business object for synchronous request processing

Figure 17. TLO attributes for synchronous request processing

Chapter 3. Business object requirements 45

Table 17 describes the attributes and ASI shown in Figure 17.

 Table 17. Request processing TLO attributes

TLO attribute Attribute-level ASI Description

MimeType None This attribute specifies the mime

type of the data handler that the

connector invokes for transforming

a Request business object into a

request message. This value may be

used for transforming synchronous

response/fault messages into

business objects, depending on the

Message Transformation Rules

configuration.

BOPrefix None This attribute of type String is

passed to the data handler.

Handler None This attribute specifies the protocol

handler to use to process the web

service request and is for request

processing only. It takes one of the

following values:

v soap/jms The connector uses the

SOAP/JMS protocol handler to

process the request

v soap/http The connector uses the

SOAP/HTTP, SOAP/HTTPS

protocol handler to process this

web service request.

The default is soap/http

Charset None This optional parameter of type

String specifies the charset to be set

on the data handler when

transforming the Request business

object to a message. NOTE: the

charset value specified in this

attribute will not be propagated in

the Content-Type protocol header of

the request message.

Request ws_botype=request This attribute corresponds to a web

service request business object. The

connector uses this attribute ASI to

determine whether this TLO

attribute is of type SOAP Request

BO. This ASI, not the attribute

name, determines the attribute type.

If there is more than one request

attribute, the connector uses the ASI

of the first populated attribute.

Response ws_botype=response This attribute corresponds to the

response returned to a collaboration

and is required for synchronous

request processing. The connector

uses this attribute ASI to determine

whether this TLO attribute is of type

SOAP Response BO. This ASI, not

the attribute name, determines the

attribute type.

46 Adapter for Web Services User Guide

Table 17. Request processing TLO attributes (continued)

TLO attribute Attribute-level ASI Description

Fault ws_botype=fault

or

ws_botype=defaultfault

This attribute, optional for

synchronous request processing,

corresponds to a fault message

returned by a web service when it

cannot successfully populate a

response.

The connector uses this ASI to

determine if the attribute of TLO is

of type SOAP Fault BO. This ASI,

not the attribute name, determines

the attribute type. A defaultfault

business object is returned if the

fault message is a detail element.

defaultfault is used in default

business object resolution. For

further information, see Chapter 5,

“SOAP data handler,” on page 109.

Request business object for synchronous request processing

A Request business object is a child of a TLO and is required for synchronous

request processing. A Request business object has object-level ASI.

For example, if you open CLIENT_SYNCH_OrderStatus_Request and click the

General tab, the object-level ASI is displayed as shown in Figure 18.

Table 18 describes the object-level ASI for a Request business object for

synchronous request processing.

 Table 18. Synchronous request processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the

data handler transformation for the Request

business object. For further information, see

“SOAP Config MO” on page 31.

Figure 18. Request object ASI for synchronous request processing

Chapter 3. Business object requirements 47

Table 18. Synchronous request processing: object-level ASI for Request business

objects (continued)

Object-level ASI Description

cw_mo_jms=SOAPJMSCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This is the Protocol Config MO that specifies

the destination web service for the JMS protocol

handler. For further information, see “JMS

Protocol Config MO of request business object for

request processing” on page 49.

cw_mo_http=SOAPHTTPCfgMO The value of this optional ASI must match the

name of the attribute that corresponds to the

Protocol Config MO. This is a separate Protocol

Config MO that specifies the destination for the

SOAP/HTTP-HTTPS protocol handler. This ASI is

used by the SOAP/HTTP and SOAP/HTTPS

Protocol Handler. Note that the TLO request

attribute must have either a JMS or an HTTP

Protocol Config MO for request processing,

depending on the type of web service protocol

you are using. For further information, see “HTTP

Protocol Config MO for request processing” on

page 50.

SOAPAction=SOAPActionURI The connector uses this ASI to determine whether

to set a SOAPAction header on the request

message. Specify this ASI only if the target web

service requires a SOAPAction header. Note that

this ASI is used for request processing but not for

event notification.

Response business object for synchronous request processing

A Response business object is a child of a TLO and is required for synchronous

request processing. The object-level ASI for a Response business object for

synchronous request processing is described in Table 19.

 Table 19. Synchronous request processing: object-level ASI for response business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Protocol

Config MO. This is the SOAP Config MO that

defines the data handler transformation for the

Response business object. For further information,

see “SOAP Config MO” on page 31.

cw_mo_jms=SOAPJMSCfg MO

or

cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This is the Protocol Config MO, optional for

a Response business object, that specifies the

headers in the response SOAP message for the

JMS or HTTP(s) protocol handler. For further

information, see “Protocol Config MO” on page

32

You can specify a default verb for the Response business object. You do so by

specifying:

DefaultVerb=true;

48 Adapter for Web Services User Guide

in the ASI field for the verb in the Supported Verbs list at the top-level of the

Response business object. If DefaultVerb ASI is not specified and the data handler

processes a business object with no verb set, the Response business object is

returned without a verb.

Fault business object for synchronous request processing

A Fault business object is a child of a TLO and is optional for synchronous request

processing. The object-level ASI for a Fault business object for synchronous request

processing is described in Table 9.

 Table 20. Synchronous request processing: object-level ASI for Fault business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Protocol

Config MO. This is the SOAP Config MO that

defines the data handler transformation for the

Fault business object. For further information, see

“SOAP Config MO” on page 31.

cw_mo_jms=SOAPJMSCfg MO

or

cw_mo_http=SOAPHTTPCfgMO

The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This is the Protocol Config MO, optional for

a Fault business object, that specifies the headers

in the response SOAP message for the JMS

protocol handler. For further information, see

“Protocol Config MO” on page 32

SOAP Config MO

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the

event processing SOAP Config MO. For further information, see “SOAP Config

MO” on page 31.as well as “SOAP configuration meta-object: child of every SOAP

business object” on page 111.

JMS Protocol Config MO of request business object for request

processing

The JMS Protocol Config MO is required in a Request business object when you

are using JMS web services, and optional for Response and Fault objects. Table 21

on page 50 describes the request processing JMS Protocol Config MO—Destination

is the most important and only required attribute. The JMS protocol handler uses

this attribute to locate the requested web service. In addition, all the attributes

described for the JMS Config MO in “Protocol Config MO” on page 32 are

optional.

Chapter 3. Business object requirements 49

Table 21. JMS Protocol Config MO Attributes for Request Processing

Attribute Required Type Description

Destination Yes String The destination queue name of

the target web service. The JMS

Protocol Handler uses this

attribute to determine the

destination of the web service.

If the connector-specific JNDI

property

LookupQueuesUsingJNDI is set

to true, the JMS Protocol

Handler looks up this queue

using JNDI. Make sure that this

attribute gives the JNDI name

of the destination queue.

HTTP Protocol Config MO for request processing

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the

HTTP Protocol Config MO to determine the destination of the target web service.

This Protocol Config MO is required for a Request business object. The

SOAP/HTTP-HTTPS protocol handlers support HTTP 1.0 POST request only. As

shown in Table 22 the sole required attribute (Destination) is the full URL of the

target web service. The optional authorization attributes are described in the

sections below.

 Table 22. HTTP Protocol Config MO Attributes for Request Processing

Attribute Required Type Description

Destination Yes String The destination URL of the target web service.

The SOAP/HTTP-HTTPS protocol handler uses

this attribute to determine the destination of the

web service.

Content-Type Required for

the Request

business object,

otherwise

optional.

String The value of this attribute defines the

Content-Type header of the outgoing message

(which includes message ContentType and

optionally charset for the outgoing message).

The syntax is the same as that for the

Content-Type header in the HTTP Protocol, for

example: text/html; charset=ISO-8859-4. If

there is no Content-Type attribute defined, the

connector uses text/xml as the ContentType of

the message.

Authorization_UserID No String This attribute corresponds to the userID of the

HTTP basic authentication. For further

information, see “HTTP credential propagation

for request processing” on page 53

Authorization_Password No String This attribute corresponds to the password of

the HTTP basic authentication. For further

information, see “HTTP credential propagation

for request processing” on page 53

One or more HTTP headers No String This attribute allows the handler to pass or

retrieve the value for the specified HTTP

header.

50 Adapter for Web Services User Guide

Table 22. HTTP Protocol Config MO Attributes for Request Processing (continued)

Attribute Required Type Description

UserDefinedProperties No Business object This attribute holds the user-defined protocol

properties business object. For further

information, see “User-defined properties for

request processing.”

MessageTransformationMap No Single cardinality

business object

This is the attribute that points to business

object holding 0 or more message

transformation rules. The rules hold

information regarding the mime type and

charset to apply to the incoming message that

is specified in the rule. For further information,

see “Message transformation maps” on page 52.

Figure 19 shows some of the HTTP Protocol Config MO attributes in Business

Object Designer Express.

The HTTP Protocol Config MO attributes are described in:

v “User-defined properties for request processing”

v “Message transformation maps” on page 52

v “HTTP credential propagation for request processing” on page 53

User-defined properties for request processing: You can optionally specify

custom properties in the HTTP Protocol Config MO. You do so by including the

UserDefinedProperties attribute. This attribute corresponds to a business object that

has one or more child attributes with property values. Every attribute in this

business object must define a single property to be read (or, for synchronous

responses, written) in the variable portion of the message header as follows:

v The type of the attribute should always be String regardless of the protocol

property type. The application-specific information of the attribute can contain

two name-value pairs defining the name and format of the protocol message

property to which the attribute maps.

Figure 19. HTTP Protocol Config MO attributes for request processing

Chapter 3. Business object requirements 51

Table 23 summarizes the application-specific information for these attributes.

 Table 23. Application-specific information for user-defined protocol property attributes:

name=value pair content

Name Value Description

ws_prop_name

(case-insensitive; if not

specified the attribute name

will be used as the property

name

Any valid protocol property

name

This is the name of the

protocol property. Some

vendors reserve certain

properties to provide

extended functionality. In

general, you should not

define custom properties that

begin with JMS (for JMS

protocol) unless you are

seeking access to these

vendor-specific features.

ws_prop_type (case

insensitive, optional for JMS

- if not specified String is

assumed; irrelevant for

HTTP(S) since only String

types make sense)

String, Integer, Boolean,

Float, Double, Long, Short

The type of the protocol

property. For JMS protocol,

the JMS API provides a

number of methods for

setting property values in the

JMS Message: setIntProperty,

setLongProperty,

setStringProperty, etc. The

type of the JMS property

specified here dictates which

of these methods will be

used for setting the property

value in the message.

If the given custom property ASI (either the ws_prop_name or ws_prop_type) is

invalid and there is no logical way to process this header (such as ignoring the

property type for HTTP processing), the connector logs a warning and ignores this

property. If the value of the custom property can neither be set nor retrieved after

the necessary check against ws_prop_name or ws_prop_type has been performed,

the connector logs the error and fails the event.

If the UserDefinedProperties attribute is specified and its business object is

instantiated, the connector processes each attribute of this child business object and

sets the message properties values accordingly.

For synchronous request processing, upon receipt of a response message from the

web service/url, if the UserDefinedProperties attribute is specified, the connector

creates an instance of a UserDefinedProperties business object and attempts to

extract property values from the message and then stores them in the new business

object. If at least one property value was successfully retrieved, the connector will

set modified UserDefinedProperties business object in the Protocol Config MO.

Message transformation maps: The Message Transformation Map (MTM) feature

is supported for request processing HTTP(S) protocol handlers only.

MessageTransformationMap is an optional attribute in the Protocol Config MO that

points to a business object. The business object contains rules for transforming

messages with mime types and charsets that are specified in the rules. If it finds

the (case-sensitive) attribute name MessageTransformationMap and this attribute is

of the business object type (see Figure 19), the connector uses the rules in that

object to transform a message.

52 Adapter for Web Services User Guide

As shown inFigure 19, the MTM attribute must have one cardinality N child

business object attribute that is named TransformationRule. When trying to find

TransformationRule for a message, the SOAP/HTTP(s) Protocol Handler first

attempts to match the message exactly by the ContentType specified in all

TransFormationRules. If unsuccessful, the connector attempts to find the rule that

applies to multiple types of messages. For further information on protocol handler

processing, see “SOAP/HTTP-HTTPS protocol handler processing” on page 76.

Each instance of a TransformationRule business object must have attributes

specified as shown in Table 24.

 Table 24. TransformationRule attributes for MessageTransformationMaps in HTTP Protocol Config MO

Attribute name Required Type Default value Description

TransformationRule No Business object,

cardinality N

None This is the attribute that holds 1

rule for message transformation.

There can be 0 or more instances of

this attribute under the

MessageTranformationMap

attribute.

+ContentType Yes String */* The value of this property specifies

the HTTP ContentType of the

message for which this

transformation rule applies. The

default value */* for this attribute

enables the connector to apply this

rule to any ContentType. For

further information on protocol

handler processing, see

“SOAP/HTTP-HTTPS protocol

handler processing” on page

76.Note that if Protocol Handler

finds more than one rule that has

the same ContentType as the other

rule, Protocol Handler will log the

warning and ignore all duplicate

rules, but will use unique rules

+MimeType No String None The mime type to use when calling

a data handler while processing

messages of the ContentType

specified in this business object.

+Charset No String None The charset to use when

transforming a request of the

ContentType specified in this

business object.

HTTP credential propagation for request processing: For the purpose of

credential propagation, the connector supports the Authorization_UserID and

Authorization_Password attributes in the HTTP Protocol Config MO. The support

is limited to the propagation of these credentials as part of the HTTP Basic

authentication scheme.

If credential propagation is desired during request processing, you must manually

add the Authorization_UserID and Authorization_Password attributes to the

Protocol Config MO generated by the WSDL ODA. You do this in Business Object

Designer Express after generating the business object and meta-object definitions.

Chapter 3. Business object requirements 53

(For further information on the WSDL ODA, see Chapter 6, “Enabling

collaborations for request processing,” on page 143.)

The collaboration sets the values of the Authorization_UserID and

Authorization_Password attributes in the Protocol Config MO. If these attributes

are neither null nor empty, the connector creates an authorization header on the

request its sends to the to the target web service. The SOAP HTTP/HTTPS

protocol handler follows HTTP Authentication: Basic and Digest Access Authentication

(RFC 2617) when creating the authorization header.

Note: The digest authentication scheme is not be supported, nor is the optional

challenge-response mechanism for HTTP authentication defined in Rfc2617.

If the HTTP(s) protocol handler is invoking a server that requires a

credential, the connector does not wait for the challenge response from the

server. Instead, it sends the credentials continuously.

Asynchronous request processing TLOs

Figure 20 shows the business object hierarchy for asynchronous request processing.

A request object only is required, and this object contains a SOAP Config MO for

the SOAP data handler as well as two Protocol Config MOs, one each for the

SOAP/JMS and SOAP/HTTP/HTTPS protocol handlers. These are described in

the sections below.

The TLO contains object-level ASI as well as attributes with attribute-level ASI.

Both kinds of ASI are discussed below. For information on the header container

and header child business objects, see “Header container business objects” on page

38.

Object-level ASI for asynchronous event processing TLOs

Figure 21 shows CLIENT_ASYNCH_Order_TLO, a sample TLO for asynchronous

request processing.

Web Services TLO

Request BO required

SOAP Config MO

JMS Protocol Config MO

HTTP Protocol Config MO

Header BO

Header BO

Header container optional

Figure 20. Business object hierarchy for asynchronous request processing

54 Adapter for Web Services User Guide

Table 25 below describes the object-level ASI for an asynchronous request

processing TLO.

 Table 25. Asynchronous request processing TLO object ASI

Object-level ASI Description

ws_mode=asynch During request processing, the connector uses this

ASI property to determine whether to invoke the

collaboration synchronously (synch) or

asynchronously (asynch). For asynchronous request

processing, this ASI must be set to asynch.

The default is asynch.

Attribute-level ASI for asynchronous request processing TLOs

Figure 22 shows the attributes of the CLIENT_ASYNCH_TLO_Order, a sample

request processing TLO.

Table 26 summarizes the attribute-level ASI for the request attribute of an

asynchronous request processing TLO.

Figure 21. Top-level business object for asynchronous request processing

Figure 22. TLO attributes for asynchronous request processing

Chapter 3. Business object requirements 55

Table 26. Asynchronous request processing TLO attributes

TLO attribute Attribute-level ASI Description

MimeType None This attribute specifies the mime

type of the data handler that the

connector invokes. Note that this

attribute is used only for Request

Processing. (For event processing,

protocol listeners use the

SOAPDHMimeType

connector-specific configuration

property.) The default is xml/soap.

BOPrefix None This attribute of type String is

reserved for future development and

not required.

Handler None This attribute specifies the protocol

handler to use to process the web

service request and is for request

processing only. It takes one of the

following values:

v soap/jms The connector uses the

SOAP/JMS protocol handler to

process the request

v soap/http The connector uses the

SOAP/HTTP-HTTPS protocol

handler to process this web

service request.

The default is soap/http

Request ws_botype=request This attribute corresponds to a web

service request business object. The

connector uses this attribute ASI to

determine whether this TLO

attribute is of type SOAP Request

BO. This ASI, not the attribute

name, determines the attribute type.

If there is more than one request

attribute, the connector uses the ASI

of the first one.

Request business object for asynchronous request processing

A Request business object is a child of a TLO and is required for asynchronous

request processing. The object-level ASI for a Request business object for

asynchronous request processing is described inTable 27.

 Table 27. Asynchronous request processing: object-level ASI for Request business objects

Object-level ASI Description

cw_mo_soap=SOAPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the SOAP Config

MO. This is the SOAP Config MO that defines the

data handler transformation for the Request

business object. For further information, see

“SOAP Config MO” on page 31.

56 Adapter for Web Services User Guide

Table 27. Asynchronous request processing: object-level ASI for Request business

objects (continued)

Object-level ASI Description

cw_mo_jms=SOAPJMSCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This is the Protocol Config MO that specifies

the destination web service for the JMS protocol

handler. For further information, see “JMS

Protocol Config MO of request business object for

request processing” on page 49.

cw_mo_http=SOAPHTTPCfgMO The value of this ASI must match the name of the

attribute that corresponds to the Protocol Config

MO. This is a separate Protocol Config MO that

specifies the destination for the

SOAP/HTTP-HTTPS protocol handler. This ASI is

used by the SOAP/HTTP-HTTPS Protocol

Handler. Note that the TLO request attribute must

have both JMS and HTTP Protocol Config MOs

for request processing. For further information,

see “HTTP Protocol Config MO for request

processing” on page 50.

SOAPAction=SOAPActionURI The connector uses this ASI to determine whether

to set a SOAPAction header on the request

message. Specify this ASI only if the target web

service requires a SOAPAction header. Note that

this ASI is used for request processing but not for

event notification.

In the sample shown in Figure 14, the Request attribute contains a SOAP Config

MO and header container (OrderHeader), as well as a content-related attribute

(OrderLineItems). The requirements and characteristics of the SOAP Config MO,

Protocol Config MO, SOAP header container, and header child business objects are

the same for asynchronous request processing as they are for synchronous request

processing. For further information, see these topics above in “Synchronous request

processing TLOs” on page 43..

Figure 23. Request attributes for asynchronous event processing

Chapter 3. Business object requirements 57

Config MOs for asynchronous request processing

The SOAP Config MO (SOAPCfgMO) has the same attributes as those for the

event processing SOAP Config MO. For further information, see “SOAP Config

MO” on page 31. as well as “SOAP configuration meta-object: child of every SOAP

business object” on page 111.

The JMS Protocol Config MO is required in a Request business object when you

are using JMS web services. For further information, see “JMS Protocol Config MO

of request business object for request processing” on page 49.

During request processing, the SOAP/HTTP-HTTPS protocol handlers use the

HTTP Protocol Config MO to determine the destination of the target web service.

This Protocol Config MO is required for a Request business object. For further

information, see “HTTP Protocol Config MO for request processing” on page 50.

Developing business objects

You use Business Object Designer Express to create business objects and Connector

Configurator Express to configure the connector to support them. For more

information on the Business Object Designer Express tool, see the Business Object

Development Guide and Chapter 7, “Exposing collaborations as web services,” on

page 145. For further information on Connector Configurator Express, see

Appendix B, “Connector Configurator Express,” on page 193.

58 Adapter for Web Services User Guide

Chapter 4. Web services connector

v “Connector processing”

v “SOAP/HTTP(S) web services” on page 62

v “SOAP/JMS web services” on page 62

v “Event processing” on page 63

v “Request processing” on page 74

v “SSL” on page 84

v “Connector and JMS” on page 82

v “Configuring the connector” on page 86

v “Connector at startup” on page 106

v “Logging” on page 107

v “Tracing” on page 107

This chapter describes the web services connector and how to configure it.

All WebSphere business integration connectors operate with an integration broker.

The web services connector operates with the InterChange Server Express

integration broker, which is described in the System Implementation Guide.

A connector is a runtime component of an adapter. Connectors consist of an

application-specific component and the connector framework. The

application-specific component contains code tailored to a particular application.

The connector framework, whose code is common to all connectors, acts as an

intermediary between the integration broker and the application-specific

component. The connector framework provides the following services between the

integration broker and the application-specific component:

v Receives and sends business objects

v Manages the exchange of startup and administrative messages

This document contains information about the application-specific component and

connector framework. It refers to both of these components as the connector.

For more information about the relationship of the integration broker to the

connector, see the System Administration Guide.

Connector processing

The connector includes a protocol listener framework for event processing and a

protocol handler framework for request processing. This bi-directional functionality

enables the connector framework to:

v Expose collaborations as web services and then process calls from web service

clients

v Process a request by a collaboration that invokes a web service

For further information on the SOAP data handler, see Chapter 5, “SOAP data

handler,” on page 109.

Note: The connector supports SOAP/HTTP and SOAP/JMS bindings only.

© Copyright IBM Corp. 2004, 2005 59

Event processing overview

Connector event processing (or event notification) is used to handle requests from

web service clients. This event processing capability encompasses a protocol

listener framework, including the following components, which are discussed in

greater detail later in this chapter:

v SOAP/HTTP protocol listener

v SOAP/HTTPS protocol listener

v SOAP/JMS protocol listener

The connector uses the listeners to expose collaborations as web services, and to

listen on the transport for calls from web services clients to exposed collaborations.

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a

SOAP/HTTP web service. The SOAP/JMS protocol listener exposes a collaboration

as a SOAP/JMS web service.

When requests from web service clients arrive, the listener converts the SOAP

request message into a business object and invokes the collaboration. If it is a

synchronous request, the connector receives a Response business object of the same

type as the Request business object. The listener converts the Response business

object into a SOAP response message. The listener then transports the SOAP

response message to the web service client. Note that event sequencing is not a

requirement for this connector; the connector may deliver the events in any order.

The web services connector utilizes the SOAP data handler to convert incoming

SOAP request messages into business objects. To aid the data handler in

determining which business object to resolve for the incoming SOAP request

message, the connector provides meta information regarding its supported

business objects to the data handler. From its supported business objects, the

connector first makes a list of all business objects that are potential candidates for

the conversion. This list may be comprised of both TLOs and non-TLOs. Supported

TLO business objects are those that have object-level ASI ws_eventtlo=true.

If TLOs are used, the protocol listener reads the object-level ASI of the TLO as

follows:

v ws_collab= This determines which collaboration to invoke

v ws_mode= This determines how to invoke the collaboration, synchronously

(synch) or asynchronously (asynch)

If non-TLOs, are used, then the protocol listener reads the collaboration and

processing mode from the WSCollaborations configuration property values

generated by the WSDL Configuration Wizard.

The connector compares and attempts to match the BodyName and

BodyNamespace in the SOAP request to the names of potential business objects. In

the case of TLOs, this BodyName/BodyNamespace pair is found using the SOAP

Config MO properties of the SOAP Request business object. For non-TLOs, the

BodyName/BodyNamespace pair is found using the WSCollaborations connector

configuration property. (Note that the connector considers only those non-TLOs

that have an entry in the WSCollaborations property.) The data handler uses the

BodyName/BodyNamespace pair to determine the business object to use for the

SOAP request to business object conversion.

60 Adapter for Web Services User Guide

The connector inspects the Request business object returned by the SOAP data

handler. If this business object has ws_tloname ASI, the connector sets the Request

business object in this TLO. This TLO is used to invoke the collaboration.

However, if this ASI is not set, the connector invokes the collaboration using the

Request business object returned by the SOAP data handler.

For synchronous collaboration execution, the connector utilizes the SOAP data

handler to create a SOAP response or fault message to send back to the client. In

this case, the connector simply passes either a SOAP business object (child of TLO),

or a non-TLO to the data handler. The SOAP data handler returns a SOAP message

based on the business object that it is passed to it.

Request processing overview

On behalf of a collaboration, the connector can invoke web services over

SOAP/HTTP(S) and SOAP/JMS. This request processing functionality is supported

by a WSDL Object Discovery Agent (ODA) and by a protocol handler framework.

The WSDL ODA is a design-time tool you use to generate SOAP business objects

that include information about the target web services. For further information, see

Chapter 6, “Enabling collaborations for request processing,” on page 143. The

protocol handler framework is a configurable run-time module that consists of the

following components, which are discussed in detail later in this chapter:

v SOAP/HTTP-HTTPS protocol handler

v SOAP/JMS protocol handler

Upon receipt of a collaboration Request business object, which is always (via the

WSDL ODA) set in a TLO, the protocol handler framework loads the appropriate

protocol handler. The protocol handlers manage transport-level details required for

invoking the web service and (optionally) securing a response, performing three

main tasks: converting a collaboration Request business object into a SOAP request

message, invoking the endpoint web service with the request message, and, if in

Request/Response (synchronous) mode, converting the SOAP response message

into a business object and returning that object to the collaboration. The connector

uses the SOAP/HTTP-HTTPS protocol handler to invoke SOAP/HTTP(S) web

services, and the SOAP/JMS protocol handler to invoke SOAP/JMS web services.

The web services connector is always called from a collaboration using TLOs. The

connector determines the SOAP Request business object from the TLO, and

invokes the SOAP data handler with this business object. The data handler returns

a request message which is sent on by the connector to the web service.

For synchronous web service execution, the connector utilizes the SOAP data

handler to convert SOAP response and fault messages into SOAP Response and

Fault business objects. To aid the data handler in determining which business

object to resolve for these SOAP response/faults to business object conversions, the

connector provides the data handler with specific meta information. Specifically,

the connector makes a list of all Response and Fault business objects that are

children of the invoking TLO. There should be only one response business object

and, optionally, many Fault business objects. There may also be one and only one

defaultfault business object. The connector attempts to match, and then map, the

SOAP BodyName and BodyNamespace to a business object name that appears in

the list of all Response business objects. In the case of SOAP Response business

objects, this pair is found using the SOAP Config MO properties of the SOAP

Response business object. In the case of SOAP Fault business objects, this pair is

found using the elem_name and elem_ns attribute-level ASI properties for the first

child of the detail element. For the defaultfault business object, the connector

Chapter 4. Web services connector 61

simply notifies the data handler of the name of the defaultfault business object.

The defaultfault business object should be resolved by the data handler as a last

resort if no other fault business objects are resolved for this transformation.

SOAP/HTTP(S) web services

Web services support the HTTP transport protocol. HTTP embodies a client-server

model in which an HTTP client opens a connection and sends a request message to

an HTTP server. The client request message is to invoke a web service. The HTTP

server dispatches the message containing the invocation and closes the connection.

The connector’s SOAP/HTTP and SOAP/HTTPS protocol listeners make use of the

HTTP client-server and the Request/Response models when handling client

requests to a collaboration exposed as a web service. However, the SOAP/HTTP

listener is not intended to function as an HTTP server— proxy, intermediary, or

otherwise. Rather the SOAP/HTTP listener functions as an endpoint for use within

an enterprise and behind a firewall. Accordingly, a separate web server or gateway

must be deployed in the firewall to route client requests to the listener. For further

information, see Chapter 1, “Overview of the connector,” on page 1.

The SOAP/HTTP and SOAP/HTTPS protocol listeners expose a collaboration as a

SOAP/HTTP(S) web service. The connector uses the SOAP/HTTP-HTTPS protocol

handler to invoke SOAP/HTTP(S) web services.

Synchronous SOAP/HTTP(S) web service

From the perspective of connector processing, a synchronous HTTP web service is

one that follows a Request/Response path. If the SOAP/HTTP or SOAP/HTTPS

protocol listener successfully processes an HTTP request message, the body will

contain the web service response and an HTTP status code of 200 OK. If a fault is

returned, then the body contains the fault message and a status code of 500.

Asynchronous SOAP/HTTP(S) web service

From the perspective of connector processing, an asynchronous HTTP web service

is one that follows a request-only path. If the SOAP/HTTP or SOAP/HTTPS

protocol listener successfully receives and processes a request-only web service

operation, an HTTP status code of 202 Accepted is generated. You can also

configure the connector to generate an HTTP status code of 200 OK —for further

information see the HTTPAsyncResponseCode property inTable 41. If a fault

occurs, an HTTP status code of 500 is generated. There is no response, although a

fault body may be returned.

SOAP/JMS web services

JMS is a transport level API that enterprises can combine with web service

solutions for messaging, data persistence, and access to Java-based applications. A

SOAP/JMS web service is a web service that implements a JMS queue-based

transport.

A web service solution may implement a JMS destination for a queue or a topic.

The connector’s SOAP/JMS protocol listener supports queue destinations only;

topics are not supported. JMS text messages only are supported.

During event processing, a SOAP/JMS web service client wraps a request message

with a JMS message and publishes it to the queue whose JMS destination is a

connector. The JMS destination retrieves the JMS message containing the web

62 Adapter for Web Services User Guide

service request and extracts the SOAP request message from the JMS message. It

then processes the SOAP request message.

Synchronous SOAP/JMS web service

For synchronous connector processing (Request/Response), a response message is

wrapped with a JMS message (like that of the request message). The JMS message

containing the web service response is then sent to the JMSReplyTo queue from the

incoming request. JMS headers in the response message are set to the values of the

headers in the JMS request message as follows:

v The JMSCorrelationID of the response message must be set to the value of

JMSMessageID from the JMS request message

v The JMS DeliveryMode of the response message is set to the JMSDeliveryMode

of the request.

v The JMSPriority of the response message is set to the JMSPriority of the request.

v JMSExpiration of the request message is set to the JMSExpiration of the request

This processing is discussed in detail in “SOAP/JMS protocol listener processing”

on page 68.

Asynchronous SOAP/JMS web service

From the perspective of connector processing, an asynchronous SOAP/JMS web

service is one that follows a request-only path. If the SOAP/JMS protocol listener

successfully receives and processes a request-only web service message, no JMS

message containing a response is returned to the client. If a ReplyToQueue is

configured and a fault occurs upon receipt of a JMS message, a fault message is

returned to the web service client. In addition, if an ErrorQueue is specified in the

SOAP/JMS listener, the fault message is archived there.

Event processing

The first step in implementing an event processing capability is exposing a

business process -- a collaboration -- as a web service. You then publish this web

service, in a UDDI registry, for example, and configure the connector to respond to

web service clients that invoke the collaboration.

During event processing, the connector uses protocol listeners and the SOAP data

handler to convert SOAP request messages from web service clients to business

objects that can be manipulated by collaborations that have been exposed as web

services. Protocol listeners play a crucial role in event processing.

Protocol listeners

Web Service requests may come over variety of transports, including HTTP,

HTTPS, and JMS. The Web Services protocol listener monitors the arrival of such

requests on its transport channel. There are three protocol listeners and

corresponding channels:

v SOAP/HTTP protocol listener

v SOAP/HTTPS protocol listener

v SOAP/JMS protocol listener

Each of these consists of a thread that listens on its transport. When it receives a

SOAP request message from a client, the listener registers the event with the

protocol listener framework.

Chapter 4. Web services connector 63

The protocol listener framework manages the protocol listeners, scheduling

requests as resources are available. You configure the listeners and aspects of the

protocol listener framework when you set values to connector-specific properties.

Among the protocol listener framework properties you can configure are the

following:

v WorkerThreadCount Total number of threads available to the protocol listener

framework, which is the number of requests that it can process in parallel.

v RequestPoolSize Maximum number of requests that can be registered with the

protocol listener framework. If it receives more than this maximum requests, it

will no longer register new requests.

These two connector-specific properties control memory allocation in a way that

prevents protocol listeners from clogging the connector with infinite web service

events. The allocation algorithm is as follows: At any time, the connector can

receive a total number of events equal to WorkerThreadCount + RequestPoolSize.

It can process WorkerThreadCount number of requests in parallel.

You can plug additional protocol listeners into the protocol listener framework. For

further information, see “Creating multiple protocol listeners” on page 105

and“Connector-specific configuration properties” on page 87.

SOAP/HTTP and SOAP/HTTPS protocol listener processing

The SOAP/HTTP(S) protocol listener consists of a thread that continuously listens

for HTTP(S) requests from web service clients. The listener thread binds the host

and port that are specified in the Host and Port connector-specific configuration

(listener) properties. Another configuration

property—RequestWaitTimeout—defines the interval during which the listener

waits for a request before checking whether the connector has shut down.

Figure 24 illustrates SOAP/HTTP protocol listener processing for a synchronous

operation.

Figure 25 shows SOAP/HTTP protocol listener processing for an asynchronous

operation.

SOAP data
handler

Client

Connector

SOAP/HTTP
protocol
listener

Response

Request

(single connection)

200 OK

HTTP or HTTPS

Figure 24. SOAP/HTTP protocol listener: synchronous event processing

64 Adapter for Web Services User Guide

When a web services client initiates a SOAP/HTTP or SOAP/HTTPS request, it

posts a SOAP request message to the URL of the SOAP/HTTP or SOAP/HTTPS

listener. The client should use the HTTP POST method to invoke the protocol

listener URL.

When an HTTP(S) request arrives, the listener registers the request with protocol

listener framework, which schedules the event for processing as resources become

available. The listener then extracts the protocol headers and the payload from the

request.

Table 28 summarizes the order of precedence of rules used by the listener to

determine the Charset, MmeType, ContentType and Content-Type header for

inbound messages.

 Table 28. SOAP/HTTP(s) protocol listener processing rules for inbound message

Order of

Precedence

Charset MimeType ContentType Content-Type

header

1 Charset parameter value

from the incoming HTTP

message Content-Type

header value

URLsConfiguration connector

property value for this

listener

Incoming HTTP

message

type/subtype value

from the

Content-Type header

value

Incoming HTTP

message

Content-Type header

2 URLsConfiguration

property value for this

listener

SOAPDHMimeType

connector property value

3 If the type of the request

message ContentType is

text with any subtype

(for example, text/xml,

text/plain, etc.), default

to ISO-8859-1. Otherwise,

charset will not be used.

Default to ContentType

As shown in Table 28:

v The protocol listener determines the Charset of the inbound message according

to the following rules:

1. The listener attempts to extract the Charset from the charset parameter of

HTTP message Content-Type header value.

Figure 25. SOAP/HTTP protocol listener: asynchronous event processing

Chapter 4. Web services connector 65

2. If no Charset value is obtained from the Content-Type header, then the

protocol listener attempts to read the URLsConfiguration property value for

this listener.

3. If a Charset value is not obtained using methods described in the previous

steps, and if type of the message ContentType is text with any subtype (for

example, text/xml, text/plain, etc.), the listener uses a default Charset value

of ISO-8859-1. Otherwise, Charset value is not used.
v The listener determines the MimeType for the response message according to

these rules:

1. If you have configured the TransformationRules for the URL used by the

incoming request message, and if the request ContentType matches the

ContentType of a TransformationRule, then the listener uses the

TransformationRule to extract the MimeType for conversion of the request

message into a SOAP Request business object. The listener attempts to find

the exact TransformationRule match based on the ContentType value (for

example, text/xml) in the URLsConfiguration property for the requested

URL.

2. If that fails, the listener attempts to find a TransformationRule that applies to

more than one ContentType under the request URL (for example */*).

3. If there is no TransformationRule match for the MimeType, then the listener

uses the SOAPDHMimeType connector configuration property as the

MimeType value.

4. If all previous steps fail to determine the MimeType, the value of

ContentType will be used as the MimeType to invoke the SOAP data handler

and convert the request message into a SOAP Request business object.
v The listener determines the ContentType by extracting type/subtype from the

incoming HTTP message Content-Type header.

v The listener determines the Content-Type header from that of the incoming

HTTP message Content-Type header.

If the collaboration is invoked asynchronously, the listener delivers the request

business object to the integration broker and responds to the web services client

with the HTTP status code 202 Accepted. This concludes listener processing.

If it is a synchronous invocation, the listener invokes the collaboration

synchronously. The collaboration responds with a SOAP Response business object.

Table 29 summarizes the order of precedence for rules used by the listener when

determining the Charset, MimeType, ContentType, and Content-Type header for

response messages.

 Table 29. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message

Order of

Precedence

Charset MimeType ContentType Content-Type

header

1 Protocol ConfigMO

Content-Type Header

MimeType property in

the TLO

Protocol ConfigMO

Content-Type header

Protocol ConfigMO

Content-Type header

2 The Charset property value in

the TLO

The request message

MimeType, but only if

the request and

response ContentType

match.

Request message

ContentType

Construct

Content-Type

Header using

ContentType and

Charset

66 Adapter for Web Services User Guide

Table 29. SOAP/HTTP(s) protocol listener processing rules for outbound synchronous response message (continued)

3 The request message Charset,

but only if the request and

response ContentType match.

SOAPDHMimeType

connector property

value

4 If the ContentType is text/*,

default to ISO-8859-1.

Otherwise, charset will not be

used.

Use ContentType value

as the MimeType

As shown in Table 29:

v The listener determines the Charset for the response message according to these

rules:

1. If Charset is specified in the Response business object Protocol Config MO,

its value is used.

2. If there is no Charset value specified in the Response business object Protocol

Config MO header and if the Request and Response business object are

children of TLOs, the listener checks if Charset is specified in the TLO.

3. If there is no Charset specified in the TLO, or if the Response business object

is not a TLO, then if the response has the same ContentType as the request,

the Charset of the request will be used for the response.

4. If the previous steps fail to determine the response Charset value, and if the

type portion of the message ContentType is text with a subtype of anything

(for example, text/xml, text/plain, etc.), the listener uses a default Charset

value of ISO-8859-1. Otherwise, the Charset value is not used.
v The listener determines the MimeType for the response message according to

these rules:

1. The TLO’s MimeType attribute

2. If the TLO MimeType attribute is missing, and if the request and response

ContentType match, the listener uses the request MimeType for the response

message.

3. If the previous steps fail, then the listener uses the value of the

SOAPDHMimeType connector property.

4. Otherwise the listener uses the ContentType value as the MimeType.
v The listener determines the ContentType for the response message according to

these rules:

1. If the Content-Type header is specified in the Response business object

Protocol Config MO, the type/subtype portion of the Content-Type header

will used as the ContentType.

2. If the Content-Type header is not specified in the Response business object

Protocol Config MO, the listener constructs a Content-Type header using the

determined ContentType and Charset (if the Charset was determined for the

response message).

The listener processes the HTTP Protocol Config MO. It is the responsibility of

collaboration to ensure that the header values passed in the HTTP Protocol Config

MO are correct in the context of the request-response event. The listener populates

standard headers and custom properties according to the following rules:

1. The listener will investigate each item of the HTTP Protocol Config MO in

order to ignore special attributes (such as ObjectEventId).

2. Each non-empty header will be put on the outgoing message and additional

processing (for example, the Content-Type header) may take place.

Chapter 4. Web services connector 67

3. Please note that with the above approach, the listener may set non-standard

headers on the message, but will not check that the message is logically or

semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO

UserDefinedProperties attribute, the listener will add them in the Entity

Headers Section (the last headers section). For more on custom properties, see

“User-defined properties for event processing” on page 36.

Note: Specifying any of the following headers in the HTTP Protocol Config MO is

very likely to result in an incorrect HTTP message: Connection, Trailer,

Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,

Content-Range.

The listener then invokes the SOAP data handler to convert the Response business

object returned by the Collaboration into a SOAP response message.

The listener delivers the response message to the web service client and includes a

200 OK HTTP status code. If the collaboration returns a SOAP Fault business object,

it is converted to a Fault message. This fault message is delivered to the web

service client with a 500 Internal Server Error HTTP code.

The listener then closes the connection and the thread that processed the event

becomes available.

Unsupported SOAP/HTTP protocol listener processing

features

The SOAP/HTTP protocol listener does not support the following:

v Caching: The protocol listener does not perform any caching functions as

defined in HTTP specifications (RFC2616)

v Proxy: The protocol listener does not perform any proxy functions as defined in

HTTP specifications (RFC2616).

v Persistent Connection: The protocol listener does not support persistent

connections as defined in HTTP specifications (RFC2616). Instead, the protocol

listener assumes that the scope of each HTTP connection is a single client

request. and closes the connection when the service request is completed. The

protocol listener does not attempt to reuse the connection across the service

invocations.

v Redirections: The protocol listener does not support redirections.

v Large file transfer: The protocol listener cannot be used for large file transfers.

Alternatively, you may consider passing large files by reference instead.

v State management: The protocol listener does not support the HTTP state

management mechanism described by RFC2965.

v Cookies: The protocol listener does not support cookies.

SOAP/HTTPS listener processing using secure sockets

SOAP/HTTPS protocol listener processing is the same as that described in the

SOAP/HTTP protocol listener processing section except that HTTPS uses secure

sockets. For further information, see “SSL” on page 84.

SOAP/JMS protocol listener processing

The SOAP/JMS protocol listener consists of a thread that continuously listens on

the InputQueue, which is the JMS destination for requests from web service clients.

68 Adapter for Web Services User Guide

The RequestWaitTimeout connector configuration property defines how long the

listener will wait for a request before checking whether the connector has shut

down.

Figure 26 shows SOAP/JMS protocol listener processing for a synchronous

operation. The figure does not show JMS provider information.

Figure 27 shows SOAP/JMS protocol listener processing for an asynchronous

operation.

Note: If the LookupQueueUsingJNDI configuration property is set to true, the

SOAP/JMS protocol listener uses the JNDI to look up the queue. The JNDI

properties are specified in connector properties. For further information, see

“Connector and JMS” on page 82 and the JNDI-related properties in

“Connector-specific configuration properties” on page 87.

When a web service client initiates a SOAP/JMS request, it sends a SOAP request

message to the InputQueue on which the SOAP/JMS listener is listening. When it

receives the SOAP request message from the InputQueue, the SOAP/JMS protocol

listener registers the request with the protocol listener framework. The protocol

listener framework schedules the request as and when resources are available.

SOAP data
handler

Client

Connector

SOAP/JMS
protocol
listener

Request

Response

InputQueue

ReplyToQueue

Unsubscribed
Queue

Archive
Queue

Optional JMS
Queues

Error
Queue

InputQueue

ReplyToQueue

Figure 26. SOAP/JMS protocol listener: synchronous event processing

SOAP data
handler

Client

Connector

SOAP/JMS
protocol
listener

Request

InputQueue

Unsubscribed
Queue

Archive
Queue

Optional JMS
Queues

Error
Queue

InputQueue

Figure 27. SOAP/JMS protocol listener: asynchronous event processing

Chapter 4. Web services connector 69

Note: If the connector configuration property InDoubtEvents is set to Reprocess,

the protocol listener framework will schedule JMS messages from the

InProgressQueue before scheduling messages from the InputQueue.

The listener then dispatches this message—the body as well as the required JMS

headers (JMSCorrelationID, JMSMessageID, JMSPriority, JMSExpiration,

JMSDeliveryMode, JMSReplyTo, JMSTimeStamp, JMSType)— to the

InProgressQueue. The protocol listener framework then registers the event.

The listener then reads the JMS message from the InProgressQueue, extracting the

body of the message and the following headers:

v JMSDestination

v JMSRedelivered

v JMSCorrelationID

v JMSMessageID

v JMSPriority

v JMSExpiration

v JMSDeliveryMode

v JMSReplyTo

v JMSTimeStamp

v JMSType

v JMS Message Payload Type (not a header, but information from the message)

JMS Message Payload Type The listener will determine the payload type of the

incoming message and store the information in the MessageType attribute of the

JMS Protocol Config MO. The payload can be a TextMessage or BytesMessage. In

TextMessage format, the listener invokes the data handler through String APIs with

the web service request message extracted as a String. In the case of BytesMessage,

the listener invokes the data handler via the Bytes Data Handler APIs with the

web service request message extracted as a byte array.

Using the SOAPDHMimeType connector configuration property, the listener

invokes the SOAP data handler to convert the request message into a SOAP

Request business object. If errors occur during conversion and the JMSReplyTo JMS

header is specified, the listener responds with a SOAP fault message, setting the

faultcode to Client and the faultstring to Cannot Parse. The fault message

provides no other detail.

The listener uses the object-level cw_mo_jms ASI of the SOAP Request business

object returned by the data handler to determine the Protocol Config MO. Note

that both the ASI and the Protocol Config MO are optional for event processing. If

it finds a Protocol Config MO, the listener populates it with the JMS message

headers extracted earlier. Table 43 shows the mapping between the attributes in the

Protocol Config MO and the JMS message headers.

 Table 30. JMS header-Protocol Config MO attribute mapping

Protocol Config MO

attribute

JMS header name Description

CorrelationID JMSCorrelationID The JMSCorrelationID header from the

request message

MessageId JMSMessageId The JMSMessageID header from the

request message

70 Adapter for Web Services User Guide

Table 30. JMS header-Protocol Config MO attribute mapping (continued)

Priority JMSPriority The JMSPriority header from the request

message

Expiration JMSExpiration The JMSExpiration header from the

request message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the

request message

ReplyTo JMSReplyTo The JMSReplyTo header from the request

message. The JMS API returns this

header as JMSDestination, but the

SOAP/JMS protocol listener returns the

queue name.

Timestamp JMSTimestamp The JMSTimestamp header from the

request message

Redelivered JMSRedelivered The JMSRedelivered header from the

request message

Type JMSType The JMSType header from the request

message

Destination JMSDestination The JMSDestination header from the

request message

MessageType na The type of the request message

payload. The value of this attribute is

Text for TextMessage payloads, and

Bytes for BytesMessage payloads.

If there are one or more custom properties in the SOAP/JMS Protocol Config MO

UserDefinedProperties attribute, the listener will try to extract their values from

the message and populate the UserDefinedProperties business object. For more on

custom properties, see “User-defined properties for event processing” on page 36.

If the TLO (in the case of a non-TLO SOAP Request business object) is not

subscribed by the integration broker, the listener logs an error. If the JMSReplyTo

header is specified in the request message, the listener creates a SOAP fault

message and places it on the JMSReplyTo queue. The faultcode is set to Client and

the faultString is set to Not subscribed to this message. No other detail is

provided in the fault message. If configured to do so, the listener also archives the

original JMS request message including its JMS headers to the UnsubscribedQueue.

If the collaboration is invoked asynchronously, the listener delivers the Request

business object to the integration broker. The listener then removes the message

from the InProgressQueue. If configured to do so, the listener also archives the

original JMS request message including its JMS headers to the ArchiveQueue.

If errors occur during asynchronous processing and JMSReplyTo is specified, the

listener responds with a fault message. Its faultcode is set to Server and its

faultstring is set to Internal Error. If configured to do so, the listener also

archives the original JMS request message, including its JMS headers, to

ErrorQueue.

If it is a synchronous invocation, the listener invokes the collaboration

synchronously. The collaboration responds with a SOAP Response business object.

The listener invokes the SOAP data handler to convert the Response business

object returned by the Collaboration into a SOAP/JMS response message. The type

Chapter 4. Web services connector 71

of the response payload depends on the value of the MessageType attribute in the

JMS Protocol Config MO of the SOAP Response business object. If the

MessageType is Text, the listener converts the SOAP Response business object into

a String through String data handler APIs. If the MessageType is Bytes, the listener

converts the SOAP Response business object into a bytes array via the Bytes data

handler APIs. (The default message payload type is that of the corresponding

synchronous request.) The listener delivers the response message to the ReplyTo

queue (this is provided by the JMSReplyTo header on the original request

message). The listener then sets the response message returned by the data handler

as a TextMessage or BytesMessage (depending on the MessageType determined

earlier), setting the headers shown in Table 31.

 Table 31. Header values set by SOAP/JMS protocol listener in response message

JMS header name Value

JMSCorrelationId The JMSMessageId of the request message

JMSDeliveryMode The JMSDeliveryMode of the request message

JMSPriority The JMSPriority of the request message

JMSExpiration The JMSExpiration of the request message

JMSRedelivered The JMSRedelivered of the request message

JMSReplyTo The JMSReplyTo of the request message

JMSTimestamp The JMSTimestamp of the request message

JMSType The JMSType of the request message

The listener will set JMS Custom Properties in the response message if they are

present in the Response or Fault business objects’ JMS Protocol Config MO

UserDefinedProperties attribute.

If configured to do so, the listener then moves the original JMS message (request

from the web service client), including its headers, from the InProgressQueue to

the ArchiveQueue.

If errors occur and JMSReplyTo is specified, the listener responds with a fault

message, and, if configured to do so, also archives the original JMS request

message to the ErrorQueue.

Event persistence and delivery

Event persistence is protocol contingent:

v SOAP/HTTP protocol listener no persistence and therefore no guaranteed

delivery

v SOAP/HTTPS protocol listener no persistence and therefore no guaranteed

delivery

v SOAP/JMS protocol listener JMS queue event persistence and at-least-once

guaranteed delivery. For more on the JMS queues, see “Connector-specific

configuration properties” on page 87.

Event sequencing

The connector may deliver events in any sequence.

72 Adapter for Web Services User Guide

Event triggering

The event triggering mechanism depends on how the protocol listener is

configured.

v SOAP/HTTP protocol listener Listening occurs over a ServerSocket for HTTP

connection requests

v SOAP/HTTPS protocol listener Listening occurs over a secure ServerSocket

layer for HTTPS connection requests

v SOAP/JMS protocol listener Listening occurs over the input queue for incoming

JMS messages carrying web service requests.For more on the JMS queues, see

“Connector-specific configuration properties” on page 87.

Note: Connector does not distinguish between Create or Update or Retrieve or

Delete. All such events follow the same approach.

Event detection

Event detection is performed by each protocol listener. The event detection

mechanism depends utterly on the transport and how you configure the

connector-specific properties for each listener. For more on these properties, see

“Connector-specific configuration properties” on page 87.

Event status

Event status is managed by the protocol listener and depends on the transport and

also on how you configure the listener.

v SOAP/HTTP protocol listener HTTP is inherently non-persistent and

synchronous in nature. Accordingly, event status is not maintained.

v SOAP/HTTPS protocol listener HTTP is inherently non-persistent and

synchronous in nature. Accordingly, event status is not maintained.

v SOAP/JMS protocol listener JMS is a persistent transport. Event status is

maintained using queues. For more on the JMS queues, see “Connector-specific

configuration properties” on page 87.

Event retrieval

Event retrieval is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

v SOAP/HTTP protocol listener Events are retrieved by extracting HTTP requests

from the socket.

v SOAP/HTTPS protocol listener Events are retrieved by extracting HTTP

requests from the socket.

v SOAP/JMS protocol listener Events are retrieved using the JMS API. The JMS

protocol listener retrieves events from the JMS input queue and moves them to

the in-progress queue. For more on the JMS queues, see “Connector-specific

configuration properties” on page 87.

Event archiving

Event archiving is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

v SOAP/HTTP protocol listener Because of the non-persistent and synchronous

nature of the transport, archiving is not performed.

v SOAP/HTTPS protocol listener Because of the non-persistent and synchronous

nature of the transport, archiving is not performed.

Chapter 4. Web services connector 73

v SOAP/JMS protocol listener You can configure the connector to archive events

into a JMS queues including those for unsubscribed events, successful events,

and failed events. For more on the JMS queues, see “Connector-specific

configuration properties” on page 87.

Event recovery

Event recovery is managed by the protocol listener and depends on the transport

and also on how you configure the listener.

v SOAP/HTTP protocol listener Because of the non-persistent nature of the

transport, event recovery is not performed.

v SOAP/HTTPS protocol listener Because of the non-persistent nature of the

transport, event recovery is not performed.

v SOAP/JMS protocol listener JMS is a persistent transport. If the connector shuts

down while events are being processed, they remain available in the

InProgressQueue. You can configure the connector to process these events at

startup, thereby enabling event recovery. The InDoubtEvents connector

configuration property determines the event recovery mechanism.

Note: The SOAP/JMS listener assures at-least once delivery to the integration

broker. The listener cannot assure once and only once delivery. Also,

events received by the listener may be delivered in any order to the

integration broker.

At startup, the JMS protocol listener first attempts to retrieve events from the

InProgressQueue. What happens next is determined by the value you assign to

the InDoubtEvents configuration property. The recovery scenarios are illustrated

in table. For more on the JMS queues, see “Connector-specific configuration

properties” on page 87.

 Table 32. Header values set by SOAP/JMS protocol listener in response message

InDoubtEvents value Event recovery processing

FailOnStartup If it finds events in the InProgressQueue, the listener logs a

fatal error and immediately shuts down.

Reprocess If it finds events in the InProgressQueue, the listener processes

those events first. The listener can trace the number of

messages found in the InProgressQueue.

Ignore Events in the InProgressQueue are ignored. The listener can

trace the events found in the InProgressQueue and the ignoring

of those events by the listener.

LogError If it finds events in the InProgressQueue, the listener logs error

and continues processing.

Request processing

You use the request processing capability of the connector to enable a collaboration

to invoke a web service. The development tasks include using the WSDL ODA to

generate a web services top-level object (TLO) and configuring a collaboration to

deploy it. For further information, see Chapter 6, “Enabling collaborations for

request processing,” on page 143. You must also configure the connector and its

request processing components: the protocol handler framework and protocol

handlers.

At run time, the connector receives requests from the collaboration in the form of

business objects. The business objects— SOAP Request, and optionally SOAP

74 Adapter for Web Services User Guide

Response and SOAP Fault business objects— are contained by the TLO generated

by the WSDL ODA and issued by a collaboration that is configured to use web

services. The TLO and its child business objects contain attributes and ASI that

specify the processing mode (synchronous or asynchronous), the data handler

mime type, which protocol handler to use, as well as the address of the target web

service. The protocol handler uses this information to invoke an instance of the

SOAP data handler, convert the Request business object to a SOAP request

message, and invoke the target web service. If the mode is synchronous, the

protocol handler again invokes the data handler to convert the response message

into a SOAP Response business object and returns this to the collaboration.

In response to a SOAP request message, the connector can receive any of the

following from the remote trading partner:

v A SOAP response message that contains data

v A SOAP response message that contains fault information

Protocol handlers play a key role in request processing.

Protocol handlers

A collaboration can invoke a web service over HTTP, HTTPS, or JMS transports.

The connector has two protocol handlers and corresponding channels:

v A SOAP/HTTP-HTTPS protocol handler for invoking SOAP/HTTP and

SOAP/HTTPS web services

v A SOAP/JMS protocol handler for invoking SOAP/JMS web services

The protocol handler framework manages the protocol handlers, loading them at

startup time. When the connector receives a Request business object, the request

thread (note that each collaboration request comes in a thread of its own) invokes

the protocol handler framework to process the request.

The protocol handler framework reads the TLOs Handler attribute ASI to

determine which protocol handler to use. Applying a series of rules (see

“SOAP/HTTP-HTTPS protocol handler processing” on page 76 and “SOAP/JMS

protocol handler processing” on page 79), the protocol handler invokes a data

handler to convert the Request business object into a SOAP request message. The

protocol handler packages the request message into the transport—HTTP(S) or

JMS— message. If it finds SOAPAction ASI in the Request business object, the

protocol handler adds this to the request message header.

The protocol handler then reads the Destination attribute of the Request business

object Protocol Config MO to determine the target address. The protocol handler

then invokes the target web service with the request message.

Reading the ws_mode TLO ASI, the protocol handler determines whether the

processing mode is synchronous or asynchronous. If this ASI is set to asynch, the

protocol handler processing is completed. Otherwise the protocol handler waits for

a response message. If a response message arrives, the protocol handler extracts

the protocol headers and the payload. It then invokes the data handler (indicated

by the MimeType TLO attribute) to convert the message into a Response or Fault

business object. Again using the Protocol Config MO, the protocol handler sets the

protocol headers in the business object. The protocol handler then returns the

Response or Fault business object to the collaboration.

Chapter 4. Web services connector 75

Depending on connector configuration, there may be one or more protocol

handlers plugged into the connector. Connector-specific properties allow you to

configure protocol handlers.

SOAP/HTTP-HTTPS protocol handler processing

The SOAP/HTTP(S) protocol handler performs as described in “Protocol handlers”

on page 75 with exceptions noted in this section. Figure 28 shows the

SOAP/HTTP-HTTPS protocol handler for a synchronous operation.

Figure 29 shows the SOAP/HTTP-HTTPS protocol handler for an asynchronous

request process

Note: This section describes SOAP/HTTP protocol handling only.

The SOAP/HTTP-HTTPS protocol handler uses the object-level ASI (cw_mo_http) of

the SOAP Request business object to determine the Protocol Config MO. The

SOAP/HTTP-HTTPS protocol handler determines the URL of the target web

service by reading the Destination attribute in the HTTP Protocol Config MO. If

the URL is missing or is incomplete, the protocol handler fails the service call. For

further information on the HTTP Protocol Config MO and its attributes, see “HTTP

Protocol Config MO for request processing” on page 50.

The SOAP/HTTP-HTTPS protocol handler invokes the web service using the

SOAP request message returned by the SOAP data handler. If HTTP Proxy

connector configuration properties are specified, the SOAP/HTTP(S) protocol

handler behaves accordingly. If a response is returned, the SOAP/HTTP(S) protocol

handler reads it.

SOAP data
handler

Web
service

Connector

SOAP/HTTP
protocol
handler

Response

Request

(single connection)

200 OK

HTTP or HTTPS

Figure 28. SOAP/HTTP-HTTPS protocol handler: synchronous request processing

SOAP data
handler

Web
service

Connector

SOAP/HTTP
protocol
handler

Response

Request

(single connection)

200 OK

HTTP or HTTPS

Figure 29. SOAP/HTTP-HTTPS protocol handler: asynchronous request processing

76 Adapter for Web Services User Guide

Table 33 summarizes the order of precedence of rules used by the

SOAP/HTTP-HTTPS protocol handler to determine the Charset, MimeType,

ContentType, and ContentType header for outgoing request messages.

 Table 33. SOAP/HTTP-HTTPS protocol handler processing rules for outbound messages

Order of

Precedence

Charset MimeType ContentType ContentType header

1 Protocol Config MO’s

Content-Type Header

MimeType property in

TLO attribute

Protocol Config MO’s

Content-Type Header

Protocol Config MO’s

Content-Type Header

2 Charset property in TLO

attribute

Default to ContentType Default to text/xml Construct Content-Type

header using

ContentType and

Charset

3 If the ContentType is

text/*, default to

ISO-8859-1. Otherwise,

charset will not be used.

As shown in Table 33:

v The SOAP/HTTP-HTTPS protocol handler determines the Charset for the

response message according to these rules:

1. If specified in the Request business object Protocol Config MO headers, the

Charset value is used.

2. If Charset is not determined by the previous step, the protocol handler

attempts to extract the Charset from the TLO attribute.

3. If the operation described in the previous step is unsuccessful, the table is

used to determine the Charset:

 Table 34. Default request processing Charsets

ContentType Default Charset

text/* ISO-8859-1

For further information, see RFC2616,

application/* No default

All others No default

4. If Charset was determined by the previous step, the Charset is set on the

data handler.

5. The data Handler is invoked with Stream or Byte array APIs, depending on

the data structure needed for writing out the request.
v The SOAP/HTTP-HTTPS protocol handler determines the MimeType for the

request according to these rules:

1. The TLO MimeType attribute.

2. If the TLO MimeType attribute is missing, the protocol handler uses the

ContentType to determine the MimeType.
v The SOAP/HTTP-HTTPS protocol handler determines the ContentType for the

request message according to these rules:

1. If the Content-Type header is specified in the Request business object

Protocol Config MO, the type/subtype of the header will be used as

ContentType.

2. Otherwise, the handler uses the default ContentType: text/xml.

Chapter 4. Web services connector 77

v The SOAP/HTTP-HTTPS protocol handler determines the Content-Type header

for the request message according to these rules:

1. If the Content-Type header is specified in the Request business object

Protocol Config MO, its value is set on the outgoing message.

2. If the Content-Type header is not specified in the Request business object

Protocol Config MO, the listener constructs a Content-Type header using the

ContentType and Charset parameter (if the Charset was determined for the

request message).

Table 35 summarizes the order of precedence for rules used by the handler when

determining the Charset, MimeType, ContentType, and ContentType header for

response messages.

 Table 35. SOAP/HTTP(s) protocol handler processing rules for inbound synchronous response message

Order of

Precedence

Charset MimeType ContentType ContentType header

1 Charset parameter value

from the incoming HTTP

message Content-Type

header value

Message

TransformationMap

child business object in

the Request business

object’s Protocol Config

MO

Incoming HTTP

message type/subtype

value from the

Content-Type header

value

Incoming HTTP

message Content-Type

header

2 Message

TransformationMap child

business object in the

Request business object’s

Protocol Config MO

The request message

MimeType, but only if

the request and

response ContentType

match.

3 The request message

Charset, but only if the

request and response

ContentType match.

MimeType property in

TLO

4 Charset property in TLO. Default to ContentType

5 If the Content-Type is

text/*, default to

ISO-8859-1. Otherwise,

Charset is not used.

As shown in Table 35:

v The protocol handler determines the Charset of the synchronous response

message according to the following rules:

1. If the Charset parameter is set in the Content-Type header of the incoming

response message, the protocol handler uses the Charset value to set on the

data handler.

2. If there is no Charset value in the response message header, then the protocol

handler attempts to read the collaboration-defined Charset from the TLO

Request Protocol Config MO MessageTranformationMap.

3. If there is no Charset value specified in the TLO, or if there is no TLO, then

if the response has the same ContentType as the request, the Charset of the

request will be used for the response.

4. If the previous step fails to yield a Charset value, then the protocol handler

attempts to read the TLO Charset attribute.

78 Adapter for Web Services User Guide

5. If a Charset value is not obtained using methods described in the previous

steps, and if type of the message ContentType is text with any subtype (for

example, text/xml, text/plain, etc.),default ISO-8859-1. Otherwise, charset

value is not used.
v The protocol handler determines the MimeType of the synchronous response

message according to the following rules:

1. The protocol handler first attempts to extract the MimeType from the TLO

Request Protocol Config MO’s MessageTransformationMap. Specifically, the

protocol handler tries to find an exact ContentType match in the MTM to

extract MessageTransformationRule and then use the MimeType property

value from it. Otherwise, the protocol handler looks for a

MessageTransformationRule that applies to more than one ContentType

(ContentType is */*).

2. If the MimeType is not determined by using a MessageTransformationMap,

the protocol handler uses the request MimeType for that of the response if

and only if the request and response ContentTypes match.

3. If the MimeType cannot be extracted using the previous steps, the protocol

handler uses the MimeType attribute of the TLO. or the default MimeType, if

available to the protocol handler.

4. If all previous steps fail, the protocol handler uses the ContentType to set the

MimeType.
v The handler determines the ContentType by extracting type/subtype from the

incoming HTTP message Content-Type header.

The handler processes the HTTP Protocol Config MO. It is the responsibility of the

collaboration to ensure that the header values passed in the HTTP Protocol Config

MO are correct in the context of the request-response event. The handler populates

standard headers and custom properties according to the following rules:

1. The handler will investigate each item of the HTTP Protocol Config MO in

order to ignore special attributes (such as ObjectEventId).

2. Each non-empty header will be put on the outgoing message and additional

processing (for example, the Content-Type header) may take place.

3. Please note that with the above approach, the handler may set non-standard

headers on the message, but will not guarantee that the message is logically or

semantically correct.

4. If there are one or more custom properties in the HTTP Protocol Config MO

UserDefinedProperties attribute, the handler will add them in the Entity

Headers Section (the last headers section). For more on custom properties, see

“User-defined properties for request processing” on page 51.

Note: Specifying any of the following headers in the HTTP Protocol Config MO is

very likely to result in incorrect HTTP messages: Connection, Trailer,

Transfer-Encoding, Content-Encoding, Content-Length, Content-MD5,

Content-Range.

SOAP/JMS protocol handler processing

The SOAP/JMS protocol handler performs as described in “Protocol handlers” on

page 75 with exceptions noted in this section.

Note: If the LookupQueueUsingJNDI configuration property is set to true, the

SOAP/JMS protocol handler uses the JNDI to look up the destination queue.

The JNDI properties are specified in connector properties. For further

information, see “Connector and JMS” on page 82 and the JNDI-related

properties in “Connector-specific configuration properties” on page 87.

Chapter 4. Web services connector 79

The SOAP/JMS protocol handler creates a JMS transport message using the body

of the web service request message returned by the SOAP data handler and with

JMS headers set as shown in Table 36. The type of the response payload depends

on the value of MessageType attribute in the JMS Protocol Config MO of the SOAP

Request business object. If the MessageType is Text, the handler converts the SOAP

Request business object into a String via the String data handler APIs. If the

MessageType is Bytes, the handler converts the SOAP Request business object into

a bytes array via the Bytes data handler APIs. (The default message payload type

is TextMessage.).

 Table 36. Header values set by SOAP/JMS protocol handler in request message

JMS header name Default value if not set in SOAP/JMS Protocol Config

MO

JMSPriority 4

JMSExpiration 0

JMSDeliveryMode PERSISTENT

JMSReply

JMSCorrelationId

JMSRedelivered

JMSTimestamp

JMSType

If the target web service is invoked asynchronously, the JMSReplyTo header is not

set. Otherwise (for synchronous processing), the SOAP/JMS protocol handler sets

the JMSReplyTo header. Using the ReplyToQueue configuration property, the

SOAP/JMS protocol handler obtains the JMSDestination—the return destination for

a response or fault from the target web service— and sets it on the JMSReplyTo

header on the JMS transport message.

Figure 30 shows SOAP/JMS protocol handler processing for a synchronous request

operation.

Figure 31 shows SOAP/JMS protocol handler processing for an asynchronous

request operation.

SOAP data
handler

Web
service

Connector

SOAP/JMS
protocol
handler

Request

Request

InputQueue

ReplyToQueue ReplyToQueue

InputQueue

Figure 30. SOAP/JMS protocol handler: synchronous request processing

80 Adapter for Web Services User Guide

The SOAP/JMS protocol handler uses object-level ASI (cw_mo_jms) of the SOAP

Request business object to determine the Protocol Config MO. The Destination

attribute of the Protocol Config MO gives the queue name of the target web

service. If JNDI is enabled, the SOAP/JMS protocol handler obtains the

JMSDestination for the SOAP request message by looking up the JNDI object.

Otherwise it uses the Destination attribute in the SOAP Protocol Config MO.

If the response does not arrive in the interval specified in the

ResponseWaitTimeout property, the SOAP/JMS protocol handler fails the

collaboration request. On arrival of the SOAP response (or fault) message, the

SOAP/JMS protocol handler extracts the JMS headers and payload for conversion

by the SOAP data handler. The handler determines the payload type of the

incoming message and stores the information in the MessageType attribute of JMS

Protocol Config MO. The payload can be a TextMessage or BytesMessage. In

TextMessage format, the handler invokes the data handler through the String APIs

with the web service response message extracted as a String. In the case of a

BytesMessage, the handler invokes the data handler via the Bytes data handler

APIs with the web service response message extracted as a byte array. The

SOAP/JMS protocol handler then sets the SOAP Response (or Fault) business

object in the TLO, using the Protocol Config MO in the Response (or Fault)

business object to map the JMS headers. Table 37 shows this mapping.

 Table 37. Protocol Config MO—JMS header attribute mapping for response during

synchronous request processing

Protocol Config MO

attribute

JMS header name Description

Destination JMSDestination The JMSDestination header from the

response message.

MessageId JMSMessageId The JMSMessageId header from the

response message

Priority JMSPriority The JMSPriority header from the

response message

Expiration JMSExpiration The JMSExpiration header from the

response message

DeliveryMode JMSDeliveryMode The JMSDeliveryMode header from the

response message

ReplyTo JMSReplyTo The JMSReplyTo header from the

response message. The JMS API returns

this header as JMSDestination, but the

SOAP/JMS protocol listener returns the

queue name.

SOAP data
handler

Web
service

Connector

SOAP/JMS
protocol
handler

Request

InputQueue InputQueue

Figure 31. SOAP/JMS protocol handler: asynchronous request processing

Chapter 4. Web services connector 81

Table 37. Protocol Config MO—JMS header attribute mapping for response during

synchronous request processing (continued)

CorrelationId JMSCorrelationId The JMSCorrelationId header from the

response message

Redelivered JMSRedelivered The JMSRedelivered header from the

response message

TimeStamp JMSTimeStamp The JMSTimeStamp header from the

response message

Type JMSType The JMSType header from the response

message

MessageType n/a The type of the response message

payload. The value of this attribute is

Text for TextMessage payload; Bytes for

BytesMessage payload.

The SOAP/JMS protocol handler then returns the TLO to the collaboration.

Connector and JMS

Note: This section assumes that you are familiar with JMS and JNDI, especially

how JMS works. For further information, refer to your JMS and JNDI source

documentation.

The connector can expose collaborations as SOAP/JMS web services as well as

enable collaborations to invoke SOAP/JMS web services. The requirements for

using SOAP/JMS with the web services connector are as follows:

1. You have installed and configured your JMS service provider.

2. You have installed and configured your JNDI.

3. Your JMS provider supports JMS API version 1.0.2.

4. All required jar files are in the classpath of the connector. (See your JMS

provider documentation to determine all required jar files.)

5. All required libraries are in the path of the connector. (See your JMS provider

documentation to determine all required libraries.)

JNDI

For SOAP/JMS, the connector uses JNDI to look up the connection factory using

the JNDI context. During initialization, the connector reads the JNDI

connector-specific property to connect to JNDI. If you do not configure a JNDI

property, you will be unable to use SOAP/JMS. You can specify the following

JNDI connector-specific properties:

v JNDIProviderURL

v InitialContextFactory

v JNDIConnectionFactoryName

v CTX_ObjectFactories

v CTX_StateFactories

v CTX_URLPackagePrefixes

v CTX_DNS_URL

v CTX_Authoritative

v CTX_Batchsize

82 Adapter for Web Services User Guide

v CTX_Referral

v CTX_SecurityProtocol

v CTX_SecurityAuthentication

v CTX_SecurityPrincipal

v CTX_SecurityCredentials

v CTX_Language

v LookupQueuesUsingJNDI

Refer to your JNDI documentation for guidance in specifying these properties. To

use SOAP/JMS with the connector, the following JNDI connector-specific

properties are required:

v JNDIProviderURL Set this property to the URL of the JNDI Service provider.

For the value of this property, refer to your JNDI provider documentation.

v InitialContextFactory Set this property to the fully qualified class name of the

factory class that will create the JNDI initial context. For the value of this

property, refer to your JNDI provider documentation. Make sure that this class

and its dependencies are in the classpath of the connector.

v JNDIConnectionFactoryName Set this property to the JNDI name of the

Connection factory to lookup (using JNDI context). Make sure that this name

can be looked up using the JNDI.

If you set LookupQueuesUsingJNDI to true, make sure all the queues used by the

connector can be looked up using JNDI.

Exposing collaborations as SOAP/JMS web services

To expose collaborations as SOAP/JMS web services, you must use the SOAP/JMS

protocol listener. Using the SOAP/JMS protocol listener requires that you specify

JNDI connector properties.

Your JMS provider configuration should reflect the requirements of the SOAP/JMS

protocol listener. Make sure all the queues required by the SOAP/JMS protocol

listener are defined by your JMS service provider. Be sure to check your JMS

provider documentation— the task of defining queues varies by provider. You

must define six queues for the SOAP/JMS protocol listener. You must set the

queue names in SOAP/JMS listener configuration properties and, if you have set

JNDI ” LookupQueuesUsingJNDI to true, you also must specify the JNDI names

of the queues in the SOAP/JMS listener configuration properties.

You should specify the queues names as the values of the following SOAP/JMS

Listener configuration properties:

v InputQueue

v InProgressQueue

v ArchiveQueue

v UnsubscribedQueue

v ErrorQueue

v ReplyToQueue

InputQueue and InProgressQueue are required properties. Make sure that you

have correctly configured these queues.

ArchiveQueue, UnsubscribedQueue and ErrorQueue are optional properties. These

queues are used to archive web service requests. If you plan to use any of these

Chapter 4. Web services connector 83

properties, make sure you have configured the corresponding JMS queues

correctly. When defining these queues with your JMS provider, you should

carefully specify the capacity of these queues.

Collaborations invoking SOAP/JMS web services

To enable collaborations to invoke SOAP/JMS web services, you use the

SOAP/JMS protocol handler. The SOAP/JMS protocol handler requires that you

specify JNDI connector properties. Work with your web service provider to

determine the JMS and JNDI requirements.

To invoke SOAP/JMS web services, the connector requires that the value of the

Destination attribute in the SOAP/JMS Protocol Config MO be set to the input

queue o f the target web service. If you have set JNDI ” LookupQueuesUsingJNDI

to true, you must specify the JNDI name of the input queue.

If you are invoking request-reply web services, you must work with your web

service provider to determine the requirements for the ReplyTo queue. Make sure

that the ReplyTo queue is defined. Also make sure that you have specified the

name of the ReplyTo queue in the ReplyToQueue configuration property of the

SOAP/JMS protocol handler. If JNDI ” LookupQueuesUsingJNDI is set to true, the

value of the ReplyToQueue configuration property should give the JNDI name of

this queue.

It is important to note that, unlike protocol listeners, protocol handlers are not

pluggable to the web services connector. As a result, the connector uses the same

ReplyTo queue for all the request-reply web services that the connector invokes.

SSL

This section discusses the how the connector implements an SSL capability. For

background information, see your SSL documentation. This section assumes a

familiarity with SSL technology.

JSSE

The connector can expose collaborations as SOAP/HTTPS web services and enable

collaborations to invoke SOAP/HTTPS web services. The connector uses JSSE to

provide support for HTTPS and SSL. IBM JSSE is shipped with the connector. To

enable this capability, make sure you have the following entry in the

java.security file that is among the files installed with the connector:

security.provider.5=com.ibm.jsse.IBMJSSEProvider

Note that java.security is located in the $ProductDir\lib\security directory of

your connector installation. The connector uses the value of the

JavaProtocolHandlerPackages connector property to set the system property

java.protocol.handler.pkgs. Note that for the IBM JSSE that is shipped with the

connector, the value of this property should be set to

com.ibm.net.ssl.internal.www.protocol. The JavaProtocolHandlerPackages

configuration property defaults to this value. However, if your system has a

java.protocol.handler.pkgs system property with a non-empty value, the connector

would overwrite it only if the JavaProtocolHandlerPackages connector property is

also set.

During initialization, the connector disables all anonymous cipher suites supported

by JSSE.

84 Adapter for Web Services User Guide

KeyStore and TrustStore

To use SSL with the connector, you must set up keystores and truststores. No tool

is provided to set up keystores, certificates, and key generation. You must use third

party software tools to complete these tasks.

SSL Properties

You can specify the following SSL connector-specific properties:

v SSLVersion

v SSLDebug

v KeyStore

v KeyStoreAlias

v KeyStorePassword

v TrustStore

v TrustStorePassword

Note that these properties apply to a connector instance. The same set of SSL

property values are used by all of the SOAP/HTTPS protocol listeners plugged

into the connector and by the SOAP/HTTP-HTTPS protocol handler for each

connector instance. For further information on HTTPS/SSL setup, see Appendix E,

“Configuring HTTPS/SSL,” on page 227.

Exposing collaborations as SOAP/HTTPS web services

When you expose collaborations as SOAP/HTTPS web services, you use the

SOAP/HTTPS protocol listener. To use the SOAP/HTTPS protocol listener, you

must specify SSL connector-specific properties. The values you assign to these

properties should reflect your SSL requirements:

v SSLVersion Make sure that the SSLVersion you want to use is supported by

JSSE.

v KeyStore Because the SOAP/HTTPS protocol listener acts as a server in SSL

communications, you must specify the keystore. The listener uses the keystore

specified in the SSL ” KeyStore configuration property. The value of this

property must be the complete path to your keystore file. Make sure that the

keystore has key pair (private key and public key) for the connector. The alias of

the private key should be specified as the SSL ” KeyStoreAlias property. You

must specify the password required to access the keystore as the SSL ”

KeyStorePassword property. Also make sure that the password required to

access keystore and the private key (in the keystore) are same. Finally, you must

distribute the digital certificate of the connector to your web service clients so

that they can authenticate the connector.

v TrustStore If you want the SOAP/HTTPS protocol listener to authenticate web

service clients, you must activate client authentication. You do this by setting the

SSL ” UseClientAuth property to true. You must also specify:

– the location of your truststore as the value of the SSL ” TrustStore

configuration property

– the password required to access the truststore as the value of the SSL ”

TrustStorePassword property

Make sure that your truststore contains the digital certificate of your web service

clients. Digital certificates used by your Web Service clients may be self-signed

or issued by CA. Note that if your truststore trusts the root certificate of the CA,

JSSE will authenticate all the digital certificates issued by that CA.

Chapter 4. Web services connector 85

For further information on HTTPS/SSL setup, see Appendix E, “Configuring

HTTPS/SSL,” on page 227.

Collaborations invoking SOAP/HTTPS web services

To enable collaborations to invoke SOAP/HTTPS web services, you use the

SOAP/HTTP-HTTPS protocol handler. If you are using SSL with the

SOAP/HTTP-HTTPS protocol handler, you must specify SSL connector-specific

properties. The values you assign to these properties should reflect the HTTPS/SSL

requirements of your web services provider:

v SSLVersion Make sure that the SSLVersion you want to use is supported by

your web service provider and by JSSE.

v TrustStore Because the SOAP/HTTP-HTTPS protocol handler acts as a client in

SSL communications, you must set up a truststore. The handler uses the

truststore specified in the SSL -> Truststore configuration property. The value of

this property must be the complete path to your truststore file. You must specify

the password required to access the truststore in the SSL -> TrustStorePassword

property. Make sure that your truststore contains the digital certificate of your

web service provider. Digital certificates used by your web service provider may

be self-signed or they may be issued by CA. Note that if your truststore trusts

the root certificate of the CA, JSSE will authenticate all the digital certificates

issued by that CA.

v KeyStore If your web service provider requires client authentication, you must

set up a keystore. The SOAP/HTTP-HTTPS protocol handler uses the keystore

specified in the SSL ” KeyStore configuration property. This value must be the

complete path to your keystore file. Make sure that keystore has a key pair

(private key and public key) configured for the connector. The alias of the

private key must be specified in the SSL ” KeyStoreAlias property. The password

required to access the keystore must be specified in the SSL ” KeyStorePassword

property. Finally, make sure that the password required to access the keystore

and the private key (in the keystore) are the same. You must distribute the

connector’s digital certificate to your web service provider for authentication.

For further information on HTTPS/SSL setup, see Appendix E, “Configuring

HTTPS/SSL,” on page 227.

Configuring the connector

After using the Installer to install the connector files to your system, you must set

the standard and application-specific connector configuration properties.

Setting configuration properties

Connectors have two types of configuration properties: standard configuration

properties and connector-specific configuration properties. You must set the values

of these properties using System Manager (SM) before running the connector.

Standard configuration properties

Standard configuration properties provide information that all connectors use. See

Appendix A, “Standard configuration properties for connectors,” on page 171 for

documentation of these properties. The table below provides information specific

to this connector about configuration properties in the appendix.

 Property Description

CharacterEncoding This connector does not use this property.

86 Adapter for Web Services User Guide

Property Description

Locale Because this connector has not been internationalized, you

cannot change the value of this property. See release notes

for the connector to determine currently supported locales.

Because this connector supports only InterChange Server Express as the integration

broker, the only configuration properties relevant to it are for InterChange Server

Express.

You must set at least the following standard connector configuration properties:

v AgentTraceLevel

v ApplicationName

v ControllerTraceLevel

v DeliveryTransport

Connector-specific configuration properties

Connector-specific configuration properties provide information needed by the

connector agent at runtime. Connector-specific properties also provide a way of

changing static information or logic within the connector agent without having to

recode and rebuild the agent.

Table 38 lists the connector-specific configuration properties. See the sections that

follow for explanations of the properties. Note that some of the properties contain

other properties. The + character indicates the entry’s position in the property

hierarchy.

Note: If you do not intend to use the SOAP/JMS protocol listener or SOAP/JMS

protocol handler with the connector, be sure to delete SOAP/JMS-related

connector-specific properties or to leave them blank.

 Table 38. Connector-specific configuration properties

Name Possible values Default value Required

ConnectorType Any valid connector type WebService Yes

DataHandlerMetaObjectName Data handler meta-object name MO_DataHandler_ Default Yes

JavaProtocolHandlerPackages Valid Java protocol handler packages com.ibm.net.ssl.

internal.www.protocol

No

ProtocolHandlerFramework This is a hierarchical property and has

no value

None No

+ProtocolHandlers This is a hierarchical property and has

no value

No

++SOAPHTTPHTTPSHandler This is a hierarchical property. For

information on its sub-properties, see

“SOAPHTTPHTTPSHandler” on

page 89.

Yes

++SOAPJMSHandler This is a hierarchical property. For

information on its sub-properties, see

“SOAPJMSHandler” on page 90.

ProtocolListenerFramework This is a hierarchical property and has

no value.

No

+WorkerThreadCount An integer of 1 or greater that gives

the number of available listener

threads.

10 No

Chapter 4. Web services connector 87

Table 38. Connector-specific configuration properties (continued)

Name Possible values Default value Required

+RequestPoolSize Integer greater than

WorkerThreadCount that gives the

resource pool size.

20 No

+ProtocolListeners This is a hierarchical property and has

no value

++Listener1 Uniquely named protocol listener Yes

+++Protocol soap/http, soap/https, soap/jms Yes

+++SOAPDHMimeType Any valid mime type of a SOAP data

handler

xml/soap

+++ListenerSpecific Properties unique to or required by the

listener See “ListenerSpecific” on

page 92.

ProxyServer This is a hierarchical property and has

no value

No

+HttpProxyHost Host name for the HTTP proxy server No

+HttpProxyPort Port number for the HTTP proxy

server

80 No

+HttpNonProxyHosts HTTP host(s) requiring direct

connection

No

+HttpsProxyHost Host name for the HTTPS proxy

server

No

+HttpsProxyPort Port number for the HTTPS proxy

server

443 No

+HttpsNonProxyHosts HTTPS host(s) requiring direct

connection

No

+SocksProxyHost Socks proxy server name No

+SocksProxyPort Socks proxy server port No

+HttpProxyUsername Http proxy server username No

+HttpProxyPassword Http proxy server password No

+HttpsProxyUsername Https proxy server username No

+HttpsProxyPassword Https proxy server password No

SSL This is a hierarchical property and has

no value

No

+SSLVersion SSL, SSLv2, SSLv3, TLS, TLSv1 SSL No

+SSLDebug true, false false No

+KeyStoreType Any valid keystore type JKS No

+KeyStore Path to KeyStore file. No

+KeyStorePassword Password for private key in KeyStore No

+KeyStoreAlias Alias for key pair in KeyStore No

+TrustStore Path to TrustStore file No

+TrustStorePassword Password for TrustStore No

+UseClientAuth true false false No

WSCollaborations This is a hierarchical property creating

by the WSDL Configuration Wizard

and has no value See

“WSCollaborations” on page 102.

+Collaboration1 This is a hierarchical property and has

no value

++CollaborationPort1 Name of the collaboration port Yes

+++WebServiceOperation1 This is a hierarchical property and has

no value

Yes

++++BodyName Name of web service method; must be

valid XML element name

Yes

88 Adapter for Web Services User Guide

Table 38. Connector-specific configuration properties (continued)

Name Possible values Default value Required

++++BodyNS Namespace of web service method;

must be valid XML namespace

Yes

++++BOName Name of Request business object for

operation

Yes

++++Mode synch asynch asynch No

JNDI This is a JMS-related hierarchical

property and has no value

No

+LookupQueuesUsingJNDI true false false No

+JNDIProviderURL Valid JNDI URL No

+InitialContextFactory Name of factory class for initial

context

No

+JNDIConnectionFactoryName Name of connection factory to look up

using JNDI context.

No

+CTX Properties

+CTX_properties

Properties specifying additional

information about security and object

lookup in the JNDI context

N

ConnectorType: If this property is set to WebService, when binding the

collaboration port, System Manager displays the connector as a web services

connector. Otherwise it is displayed as a normal connector.

Default = WebService.

DataHandlerMetaObjectName: This is the name of the meta-object that the data

handler uses to set configuration properties.

Default = MO_DataHandler_Default.

JavaProtocolHandlerPackages: The value of this property gives the Java Protocol

Handler packages. The connector uses the value of this property to set the system

property java.protocol.handler.pkgs.

Default = com.ibm.net.ssl.internal.www.protocol.

ProtocolHandlerFramework: The Protocol Handler Framework uses this property

to load and configure its protocol handlers. This is a hierarchical property and has

no value.

Default = none.

ProtocolHandlers: This hierarchical property has no value. Its first-level children

represent discrete protocol handlers.

Default = none.

SOAPHTTPHTTPSHandler: The name of a SOAP/HTTP-HTTPS protocol

handler. Note that this is a hierarchical property. Unlike listeners, protocol handlers

may not be duplicated, and there can be only one handler for each protocol.

Table 39 below shows the sub-properties for the SOAP/HTTP-HTTPS protocol

handler. The + character indicates the entry’s position in the property hierarchy.

Chapter 4. Web services connector 89

Table 39. SOAP/HTTP-HTTPS protocol handler configuration properties

Name Possible values

Default

value Required

++SOAPHTTPHTTPSHandler This is a hierarchical property and has no value. Yes

+++Protocol The kind of protocol the handler is implementing. For

SOAP/HTTP and SOAP/HTTPS, the value is

soap/http.

Note: If you do not specify a value for this

property, the connector will not initialize this

protocol handler.

Yes

+++HTTPReadTimeout A SOAP/HTTP-specific property that specifies the

timeout interval (in milliseconds) while reading from

the remote host (web service).If this property is not

specified or if set to 0, the SOAP/HTTP protocol

handler blocks indefinitely while reading from the

remote host.

0 No

Figure 32 shows the properties as displayed in Connector Configurator Express.

SOAPJMSHandler: The name of a SOAP/JMS protocol handler. Note that this is

a hierarchical property. Unlike listeners, protocol handlers may not be duplicated,

and there can be only one handler for each protocol. Table 40 below shows the

sub-properties for the SOAP/JMS protocol handler. The + character indicates the

entry’s position in the property hierarchy.

 Table 40. SOAP/JMS protocol handler configuration properties

Name Possible values

Default

value Required

++SOAPJMSHandler This is a hierarchical property and has no value. Yes

+++Protocol The kind of protocol the handler is implementing. For

SOAP/JMS, the value is soap/jms.

Note: If you do not specify a value for this

property, the connector will not initialize this

protocol handler.

Yes

Figure 32. SOAP/HTTP-HTTPS protocol handler properties

90 Adapter for Web Services User Guide

Table 40. SOAP/JMS protocol handler configuration properties (continued)

Name Possible values

Default

value Required

+++ResponseWaitTimeout This is a JMS protocol handler-specific property that

specifies the timeout interval (in milliseconds) that the

protocol handler waits on ReplyToQueue for

synchronous request processing. If the response does

not arrive during this interval, the handler fails the

collaboration request. If this property is not specified or

if set to 0, the protocol handler waits on ReplyToQueue

indefinitely.

0 No

+++ReplyToQueue This is a required JMS protocol handler-specific

property that names the ReplyTo queue. For

synchronous request processing, the handler sets the

JMSReplyTo field to this JMS destination.

If LookupQueuesUsingJNDI = true, the SOAP/JMS

protocol handler looks up this queue using JNDI.

none Yes

Figure 33 shows the properties as displayed in Connector Configurator Express.

ProtocolListenerFramework: The protocol listener framework uses this property

to load protocol listeners. This is a hierarchical property and has no value.

WorkerThreadCount: This property, which must be an integer of 1 or greater,

establishes the number of protocol listener worker threads available to the protocol

listener framework. For further information, see “Protocol listeners” on page

63.Default = 10.

RequestPoolSize: This property, which must be an integer greater than

WorkerThreadCount, sets the resource pool size of the protocol listener framework.

The framework can process a maximum of WorkerThreadCount + RequestPoolSize

requests concurrently.

Default = 20.

Figure 33. SOAP/JMS protocol handler properties

Chapter 4. Web services connector 91

ProtocolListeners: This is a hierarchical property and has no value. Each

first-level child of this property represents a discrete protocol listener.

Listener1: The name of a protocol listener. There may be multiple protocol

listeners. Note that this is a hierarchical property. You can create multiple instances

of this property and create additional, uniquely named listeners. When doing so,

you can change the listener-specific properties but not the protocol property. The

names of multiple listeners must be unique. Possible names (not values):

SOAPHTTPListener1, SOAPHTTPSListener1, SOAPJMSListener1

Protocol: This property specifies the protocol this listener is implementing.

Possible values: soap/http, soap/https, soap/jms.

Note: If you do not specify a value for this property, the connector will not

initialize this protocol listener.

SOAPDHMimeType: The SOAP data handler mime type to use for the requests

received by this listener.

Default = xml/soap

ListenerSpecific: Listener specific properties are unique to, or required by, the

specified protocol listener. For example, the HTTP listener has a listener-specific

property Port, which represents the Port number on which Listener monitors

requests. Table 41 summarizes the HTTP-HTTPS listener specific properties. The +

character indicates the entry’s position in the property hierarchy.

 Table 41. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties

Name Possible values Default value Required

+++SOAPHTTPListener1 Unique name of an HTTP protocol listener. This is a

child of the ProtocolListenerFramework ->

ProtocolListeners hierarchical property.

There can be multiple listeners: you may

plug-in additional HTTP listeners by

creating another instance of this property

and its hierarchy.

Yes

++++Protocol soap/http if SOAP/HTTP protocol listener

soap/https if SOAP/HTTPS protocol listener

Note: If you do not specify a value for this

property, the connector will not

initialize this protocol listener.

Yes

++++SOAPDHMimeType xml/soap xml/soap No

++++BOPrefix The value of this property is passed to the data handler. No

++++Host The listener will listen at the IP address specified

by value of this property. If Host is not specified,

it defaults to localhost. Note that you may either

specify a host name (DNS name) or an IP address

for the machine on which the listener is running.

A machine may have multiple IP addresses or

multiple names.

localhost No

++++Port The port on which the listener listens for

requests. If unspecified, the port defaults

to 80 for SOAP/HTTP and 443 for

SOAP/HTTPS. If you clone the listener

within a connector, then the combination

of Host and Port properties is unique or

the listener may be unable to bind to

the port to accept requests.

80 for

SOAP/HTTP

listener

443 for

SOAP/HTTPS

listener

No

92 Adapter for Web Services User Guide

Table 41. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value Required

++++SocketQueueLength Length of the queue (socket queue) for

incoming connection requests. Specifies

how many incoming connections can

be stored at one time before the host

refuses connections. The maximum queue

length isoperating system dependent.

5 No

++++RequestWaitTimeout The time interval in milli-seconds that

the listenerthread will block on the

host and port while waiting for

web service requests to arrive.

If it receives a webservice request

before this interval, the listener

will process it. Otherwise the

listener thread checks whether

the connector shutdown flag

is set. If it is set, the connector will

terminate. Otherwise it will continue

to block for RequestWaitTimeout interval.

If this property is set to 0, it will block

for ever. If unspecified, it defaults

to 60000ms.

60000 (ms) No

++++HTTPReadTimeout The time interval in milli-seconds that

the listener will be blocked while

reading a web service request

from a client. If this parameter is set

to 0, the listener indefinitely blocks

until it receives the entire request

message.

0 No

++++HttpAsyncResponseCode The HTTP response code for

asynchronous requests to the

listener: 200 (OK)

202 (ACCEPTED)

202

(ACCEPTED)

No

++++URLsConfiguration This is a hierarchical property and has

no value. It contains 1 or more

configurations for URLs supported

by this listener and, optionally,

mime type and charset values.

Note that this is child property of

ProtocolListenerFramework->

ProtocolListeners->

SOAPHTTPListener1

hierarchical property. If this property

is not specified, the listener assumes

default values.

ContextPath: /

Enabled:

true Data

handler

MimeType:

equal to the

ContentType of

the request

Charset:

NONE. For

further

information,

see ″SOAP

/HTTP and

SOAP/

HTTPS

protocol

listener.

No

Chapter 4. Web services connector 93

Table 41. SOAP/HTTP and SOAP/HTTPS protocol listener-specific configuration properties (continued)

Name Possible values Default value Required

+++++URL1 This is a hierarchical property and

has no value. Its children provide

the name of the URL supported by

this listener. There can be

multiple supported URLs.

Note that you can plug in additional

URLs by cloning this property and

its hierarchy.

No

++++++ContextPath The URI for the HTTP requests received by

the listener. This value must be unique among

ContextPath values under the

URLsConfiguration property. Otherwise

the connector will log an error and fail to

start. ContextPath is case sensitive. However

it may contain protocol, host name and port

which are case-insensitive. If protocol is

specified in ContextPath, it should be http.

If host is specified, it should be equal to the

value of the Host listener property. If port

is specified, it should be equal to the value of

Port listener property. This property is

enabled for transformation of bidirectional

languages.

No

++++++Enabled The value of this property determines if the

parent URL hierarchical property is enabled

for the connector.

True No

++++++TransformationRules This is a hierarchical property and has

no value. It holds one or more transformation

rules.

+++++++TransformationRule1 This is a hierarchical property and has no

value. It holds the transformation rule.

No

++++++++ContentType The value of this property specifies the

ContentType of the incoming request for

which special handling (data handler mime

type or charset) should be applied. If

ContentType is not specified by the

TransformationRuleN hierarchical property

, the connector logs a warning message and

ignores the TransformationRuleN property.
Specifying the special value */* for this

property enables the protocol listeners to

apply this rule to any ContentType. Note

that if a listener finds more than one rule

for the same context path that shares a

ContentType, the listener logs an error

and fails to initialize.

No

++++++++MimeType The mime type to use when calling a

data handler to process requests of the

specified ContentType.

No

++++++++Charset Charset to use when transforming the

request of the specified ContentType

into a business object.

No

Figure 34 shows the properties as displayed in Connector Configurator Express.

94 Adapter for Web Services User Guide

Table 42 summarizes the SOAP/JMS protocol listener-specific properties. The +

character indicates the entry’s position in the property hierarchy.

 Table 42. SOAP/JMS protocol listener-specific configuration properties

Name Possible values

Default

value Required

+++SOAPJMSListener1 Unique name of a JMS protocol listener. This is a child

of the ProtocolListenerFramework -> ProtocolListeners

hierarchical property. There can be multiple listeners:

you may plug-in additional JMS listeners by creating

another instance of this property and its hierarchy.

Yes

++++Protocol soap/jms Yes

++++SOAPDHMimeType xml/soap xml/soap No

++++BOPrefix The value of this property is passed to the data handler

specified by SOAPDHMimeType property.

No

Figure 34. SOAP/HTTP protocol listener properties

Chapter 4. Web services connector 95

Table 42. SOAP/JMS protocol listener-specific configuration properties (continued)

Name Possible values

Default

value Required

++++RequestWaitTimeout This property sets the time interval that the

SOAP/JMS listener thread blocks the InputQueue while

waiting for a web service request. If it receives a web

service request within this interval, the listener

processes it. If it does not receive the request within

this interval, the listener thread first checks if the

connector shutdown flag is set. If the connector

shutdown flag is set, the connector will terminate.

Otherwise it will continue to block for

RequestWaitTimeout interval. If this property is set to

0, it will block indefinitely.

60000

milliseconds

No

++++SessionPoolSize Maximum number of sessions that can be allocated for

a given listener and its worker threads. The minimum

number of sessions (and default) is 2. For larger session

pool sizes, the connector requires more memory.

2 No

++++InputQueue This property gives the name of the input queue that

the listener polls for inbound messages from web

services. If LookupQueuesUsingJNDI = true, the

listener looks up this queue using JNDI and the value

of the InputQueue property is set to the

jndiDestinationName attribute of the jms:address

element of the SOAP/JMS binding. The jms:address

element is specified in the wsdl:port section of the

WSDL document. If during WSDL generation you

select the SOAP/JMS listener, System Manager

automatically creates the jndiDestinationName attribute

using the value of this property. If

LookupQueueUsingJNDI = false, then System

Manager creates the jmsProviderDestinationName

attribute instead.

Yes

++++InProgressQueue This property gives the name of the in-progress queue.

The listener sends copies of inbound messages from the

InputQueue to InProgressQueue. If

LookupQueuesUsingJNDI = true, the listener looks up

this queue using JNDI.

Yes

++++ArchiveQueue This property gives the name of the archival queue. The

listener sends copies of successfully processed messages

from the InProgressQueue to ArchiveQueue. If

LookupQueuesUsingJNDI = true, the listener looks up

this queue using JNDI.

No

++++UnsubscribedQueue This property gives the name of the unsubscribed

queue. The listener sends copies of unsubscribed

messages from the InProgressQueue to

UnsubscribedQueue. If LookupQueueUsingJNDI =

true, the listener looks up this queue using JNDI.

No

++++ErrorQueue This property gives the name of the error queue. The

listener sends copies of failed messages to the

ErrorQueue. If LookupQueueUsingJNDI = true, the

listener looks up this queue using JNDI.

No

96 Adapter for Web Services User Guide

Table 42. SOAP/JMS protocol listener-specific configuration properties (continued)

Name Possible values

Default

value Required

++++InDoubtEvents This property specifies how to handle messages in the

InProgressQueue that are not fully processed due to

unexpected connector termination. It can take one of

the following values:

v FailOnStartup Log an error and immediately

shutdown

v Reprocess Process the remaining messages in the

InProgressQueue

v Ignore Disregard any messages in the in-progress

queue

v LogError Log an error but do not shutdown

Ignore No

++++ReplyToQueue This property gives the name of the ReplyTo queue. The

WSDL Configuration Wizard reads this property and

writes it to the WSDL document. If this property is not

specified, the utility does not create a ReplyTo JMS

header in the SOAP/JMS binding in the WSDL

document. (The listener does not use this property.) If

JNDI properties are specified and

LookupQueueUsingJNDI = false, the WSDL

Generation Utility still create JNDI specific attributes

in the WSDL document. Note that these JNDI-specific

attributes are required because the SOAP/JMS binding

does not provide any way to specify a ReplyTo attribute

without JNDI. Though JNDI lookup for the

InputQueue is not required, JNDI-specific properties

are required for the ReplyTo queue. If the WSDL utility

does not find JNDI-specific properties, the utility

cannot create a ReplyTo attribute in the SOAP/JMS

binding.

++++ JMSVendorURI A string that uniquely identifies the JMS

implementation and that corresponds to the

jmsVendorURI attribute of the jms:address element of

the SOAP/JMS binding. The jms:address element is

specified in wsdl:port section of the WSDL document.

The listener does not use this property. This property is

enabled for transformation of bidirectional languages.

No

Figure 35 shows the properties as displayed in Connector Configurator Express.

Chapter 4. Web services connector 97

Note: Make sure that queue names specified in following properties are unique:

v InputQueue

v InProgressQueue

v ArchiveQueue

v UnsubscribedQueue

v ErrorQueue

ProxyServer: Configure the values under this property when the network uses a

proxy server. This is a hierarchical property and has no value. The values specified

under this property are used by the SOAP/HTTP/HTTPS protocol handlers.

Figure 36 shows the ProxyServer properties as displayed in Connector

Configurator Express and discussed below.

Figure 35. SOAP/JMS protocol listener properties

98 Adapter for Web Services User Guide

HttpProxyHost: The host name for the HTTP proxy server. Specify this property if

the network uses a proxy server for HTTP protocol.

Default = none

HttpProxyPort: The port number that the connector uses to connect to the HTTP

proxy server.

Default = 80

HttpNonProxyHosts: The value of this property gives one or more hosts (for

HTTP) that must be connected not through the proxy server but directly. The value

can be a list of hosts, each separated by a ″|″.

Default = none

HttpsProxyHost: The host name for the HTTPS proxy server.

Default = none

HttpsProxyPort: The port number that the connector uses to connect to the

HTTPS proxy server.

Figure 36. ProxyServer properties

Chapter 4. Web services connector 99

Default = 443

HttpsNonProxyHosts: The value of this property gives one or more hosts (for

HTTPS) that must be connected not through the proxy server but directly. The

value can be a list of hosts, each separated by a ″|″.

Default = none

SocksProxyHost: The host name for the Socks Proxy server. Specify this property

when the network uses a socks proxy.

Note: The underlying JDK must support socks.

Default = none

SocksProxyPort: The port number to connect to the Socks Proxy server. Specify

this property when the network uses a socks proxy.

Default = none

HttpProxyUsername: The username for the HTTP proxy server. If the destination

for the web service request is an HTTP URL and you specify ProxyServer

->HttpProxyUsername, the SOAP HTTP/HTTPS protocol handler creates a

Proxy-Authorization header when authenticating with the proxy. The handler uses

the CONNECT method for authentication.

The proxy-authentication header is base64 encoded and has the following

structure:
Proxy-Authorization: Basic

Base64EncodedString

The handler concatenates the username and the password property values,

separated by a colon (:), to create the base64 encoded string.

Default = none

HttpProxyPassword: The password for the HTTP proxy server. For more on how

this value is used, see “HttpProxyUsername.”

Default = none

HttpsProxyUsername: The username for the HTTPS proxy server. If the

destination for the web service request is an HTTPS URL and you specify

ProxyServer ->HttpsProxyUsername, the SOAP HTTP/HTTPS protocol handler

creates a Proxy-Authorization header for authentication with the proxy. The

handler concatenates the HttpsProxyUsername and HttpsProxyPassword

configuration property values, separated by colon (:), to create the base64 encoded

string.

Default = none

HttpsProxyPassword: The password for the HTTPS proxy server. For more on

how this value is used, see “HttpsProxyUsername.”

Default = none

100 Adapter for Web Services User Guide

SSL: Specify values under this property to configure SSL for the connector. This is

a hierarchical property and has no value.

Figure 37 shows the SSL properties as displayed in Connector Configurator Express

and discussed below.

SSLVersion: The SSL version to be used by the connector. For further information,

see IBM JSSE documentation for the supported SSL versions.

Default = SSL

SSLDebug: If value of this property is set to true, the connector sets the value of

thejavax.net.debug system property to true. IBM JSSE uses this property to turn

on the trace facility. For further information, refer to IBM JSSE documentation.

Default = false

KeyStoreType: The value of this property gives the type of the KeyStore and

TrustStore. For further information, see IBM JSSE documentation for valid keystore

types.

Default = JKS

KeyStore: This property gives the complete path to keystore file. If KeyStore

and/or KeyStoreAlias properties are not specified, KeyStorePassword,

KeyStoreAlias, TrustStore, TrustStorePassword properties are ignored. The

connector will fail to startup if it cannot load the keystore using the path specified

in this property. The path must be the complete path to the keystore file.

Default = None

Figure 37. SSL properties

Chapter 4. Web services connector 101

KeyStorePassword: This property gives the password for the private key in the

Keystore.

Default = None

KeyStoreAlias: This property gives the alias for the key pair in the KeyStore.

SOAP/HTTPS listeners use this private key from the KeyStore. Also, the

SOAP/HTTP-HTTPS protocol handler uses this alias from the KeyStore when

invoking web services that require client authentication. The property must be set

to a valid JSSE alias.

Default = None

TrustStore: This property gives the complete path to the TrustStore. TrustStore is

used for storing the certificates that are trusted by the connector. TrustStore must

be of the same type as KeyStore. You must specify the complete path to the

TrustStore file.

Default = None

TrustStorePassword: This property gives the password for the Truststore.

Default = None

UseClientAuth: This property specifies whether SSL client authentication is used.

When it is set to true, SOAP/HTTPS listeners use client authentication.

Default = false

WSCollaborations: This property is created automatically when you expose a

collaboration object as a web services and is used for non-TLOs. This is a

hierarchical property and has no value. Each first-level child of this property

represents a collaboration exposed as a web service. For information on the tools

used to automatically create these properties, see Chapter 7, “Exposing

collaborations as web services,” on page 145.

Note: If you delete a collaboration or its port in System Manager, the connector

will not automatically delete the properties representing the collaboration.

You must delete these properties using Connector Configurator Express.

Figure 38 shows WSCollaborations properties as displayed in Connector

Configurator Express and discussed below.

102 Adapter for Web Services User Guide

Collaboration1: This property names the collaboration object that is exposed as

web service via this connector. This is a hierarchical property and has no value.

There can be multiple such properties, one for each of collaboration object that is

exposed as a web service. Each first-level child of this property represents a port of

this collaboration object.

CollaborationPort1: This property names the collaboration port. This is a

hierarchical property and has no value. There can be multiple such properties, one

for each of the ports of this collaboration that are bound to the connector. Each

first- level child of this property represents a web services operation.

WebServiceOperation1: This property represents a web services operation for the

collaboration object. This is a hierarchical property and has no value. There may be

one or more such properties, one for each of the web services operation defined by

the user at the time of WSDL document generation.

BodyName: This property gives the name of the web service method and must be

a valid XML element name.

Default = none

BodyNS: This property gives the namespace of the web service method and must

be a valid XML namespace.

Default = none

BOName: This property gives the name of the Request business object for this

operation.

Default = none

Mode: This property specifies the processing mode for the operation. It it is set to

synch, the connector synchronously invokes the collaboration. Otherwise and by

default, the connector asynchronously invokes the collaboration as a request only

operation.

Figure 38. WSCollaborations properties

Chapter 4. Web services connector 103

Default = asynch

JNDI: The connector maintains one set of JNDI (Java Naming and Directory

Interface) provider properties that are used by the SOAP/JMS protocol handler

and JMS protocol listener when connecting to JNDI. This is a hierarchical property

and has no value. The connector uses JNDI to lookup the JMS connection factory

object. Note that the WSDL Configuration Wizard uses this property when

generating SOAP/JMS bindings.

Figure 39 shows JNDI properties as displayed in Connector Configurator Express

and discussed below.

LookupQueuesUsingJNDI: If the value of this property is set to true, the

connector’s SOAP/JMS listeners and SOAP/JMS protocol handler will look up

queues using JNDI.

Default = false

JNDIProviderURL: This property gives the URL of the JNDI service provider,

which corresponds to jndiProviderURL attribute of the jms:address element of the

SOAP/JMS binding. The jms:address element is specified in the wsdl:port section.

This is used as the default JNDI provider and must be a valid JNDI URL. For

further information, see JNDI specifications.

This property is enabled for transformation of bidirectional languages.

Figure 39. JNDI properties

104 Adapter for Web Services User Guide

Default = none

InitialContextFactory: This property gives the fully qualified class name of the

factory class (for example, com.ibm.NamingFactory)that creates an initial context.

Note that this corresponds to the initialContextFactory attribute of the jms:address

element of the SOAP/JMS binding. The jms:address element is specified in the

wsdl:port section.

Default = none

JNDIConnectionFactoryName: This property gives the name of the connection

factory to look up using JNDI context. Note that this corresponds to the

jndiConnectionFactoryName attribute of the jms:address element of the SOAP/JMS

binding. The jms:address element is specified in the wsdl:port section.

Default = none

CTX Properties: Properties specifying additional information about security and

object lookup in the JNDI context. Table 43 summarizes these properties. The +

character indicates the entry’s position in the property hierarchy.

The +CTX_DNS_URL property is enabled for transformation of bidirectional

languages.

 Table 43. Java Naming and Directory Interface (JNDI) provider properties

Property Name Description

+CTX_ObjectFactories

+CTX_StateFactories

+CTX_URLPackagePrefixes

+CTX_DNS_URL

+CTX_Authoritative

+CTX_Batchsize

+CTX_Referral

+CTX_SecurityProtocol

+CTX_SecutiryAuthentication

+CTX_SecurityPrincipal

+CTX_SecurityCredentials

+CTX_Language

Properties specifying additional information about

security and object lookup in the JNDI context. See

J2EE documentation for more information. These

properties reflect those used by the Adapter for

JMS.

Creating multiple protocol listeners

You can create multiple instances of protocol listeners. Protocol listeners are

configured as child properties of the ProtocolListenerFramework ->

ProtocolListeners connector property. Each child (of ProtocolListenerFramework ->

ProtocolListeners) identifies a distinct protocol listener for the connector.

Accordingly, you can create additional protocol listeners by configuring new child

properties under the ProtocolListeners property. Make sure that you specify all of

the child properties of the newly created listener property. Each listener must be

uniquely named. However, you do not change the listener Protocol property

(soap/http, soap/https, or soap/jms), which remains the same for multiple

instances of a listener.

Note: The Protocol property is very important because it serves as a switch. If you

do not want to use a listener or a handler, leave this property empty.

Chapter 4. Web services connector 105

If you are creating multiple instances of a SOAP/HTTP or SOAP/HTTPS listener,

be sure to specify different Port and Host properties for each instance. If you are

specifying multiple SOAP/JMS listeners, be sure to use a different set of queues

for each instance.

You cannot create multiple instances of a handler. There can be only one handler

for each protocol.

Connector at startup

When you start the connector, the init() method reads the configuration

properties that were set using System Manager’s Connector Configurator Express.

For proper functioning, be sure not to disable connector polling (connector polling

is enabled by default). The sections below describe what occurs.

Proxy setup

If you specify the ProxyServer connector-specific property, the connector sets up

the proxy system properties. A proxy server is used with the SOAP/HTTP-HTTPS

protocol handler for request processing only. The connector also traces each of the

system properties it sets up. For more on the ProxyServer property, see

“Connector-specific configuration properties” on page 87.

JNDI initialization

The connector-specific property JNDI specifies the JNDI to be used by the

connector. The connector uses JNDI to lookup the JMS Connection Factory object.

If JNDI ” LookupQueuesUsingJNDI is set to true, the connector looks up JMS

queue objects using JNDI.

If you do not want to use SOAP/JMS (the SOAP/JMS protocol listener and

SOAP/JMS protocol handler), you need not specify JNDI properties. If you specify

JNDI properties and the connector cannot initialize JNDI, the connector terminates.

Note that the connector will not initialize JNDI unless all of the following

connector-specific JNDI properties are specified:

v JNDIProviderURL

v InitialContextFactory

v JNDIConnectionFactoryName

Note: JNDI implementation is not provided with the connector

Protocol listener framework initialization

During startup the connector instantiates the protocol listener framework and

initializes it. This framework reads the connector-specific property

ProtocolListenerFramework, The connector then reads the value of WorkerThreads

and RequestPoolSize connector properties. If the ProtocolListenerFramework

property is unspecified or missing, the connector cannot receive requests from web

service clients and logs a warning.

The connector next reads the ProtocolListenerFramework -> ProtocolListeners

property. All the first-level properties of the ProtocolListeners property represent

protocol listeners. The protocol listener framework attempts to load and initialize

each of the listeners and traces them. If persistent event capable, the listener

attempts an event recovery.

106 Adapter for Web Services User Guide

Protocol handler framework initialization

The connector reads the connector-specific property ProtocolHandlerFramework

and instantiates and initializes the protocol handler framework. If this property is

missing or not set properly, the connector cannot perform request processing and

logs a warning. Next the connector reads all the ProtocolHandlerFramework ”

ProtocolHandlers properties, which correspond to protocol handlers, and attempts

to load, initialize, and trace them. Note that the protocol handlers are loaded

during connector initialization and are not instantiated when a collaboration makes

a service request. The protocol handlers are multi-thread safe.

Logging

The connector logs a warning when:

v the ProtocolListenerFramework property is not specified. The connector warns

that it cannot perform event notification. (Collaborations exposed as web

services cannot be invoked by the connector.)

v the ProtocolHandlerFramework property is not specified. The connector warns

that it cannot perform (collaboration) request processing.

Tracing

Tracing is an optional debugging feature you can turn on to closely follow

connector behavior. Trace messages, by default, are written to STDOUT. See the

connector configuration properties for more on configuring trace messages.

Connector trace levels are as follows:

Level 0 This level is used for trace messages that identify the connector

version.

Level 1 Trace each time the pollForEvents method is called. Trace the TLO

name created by listeners for delivery to InterChange Server

Express. Trace the Request business object name and the

corresponding attribute name in the TLO.

Level 2 Use this level for trace messages that log each time a business

object is posted to InterChange Server Express, either from

gotApplEvent() or executeCollaboration(). Also, trace which

protocol handler is processing the request.

Level 3 Trace the ASI of the business object being processed. Trace

attributes of the business object being processed. Trace the TLO of

the SOAP Request business object during event notification. Trace

the business object returned by the data handler.

Level 4 Trace the transport headers associated with:

v a SOAP request message retrieved by the protocol listener from

the transport

v a response message sent to the client by the protocol listener.

Trace the spawning of threads, all ASI that is processed, and all

entries and exits of important functions.

Level 5 Trace the following:

v the entries and exits for each important method

v all of the configuration-specific properties

v the loading of each of the protocol listeners

Chapter 4. Web services connector 107

v the request message retrieved by the protocol listener from the

transport

v the response message sent on the transport to the client by the

protocol listener

v the loading of each protocol handler

v the messages returned by the SOAP data handler

v business object dumps of the TLO sent to the collaboration

v dumps of the business objects returned by the data handler.

108 Adapter for Web Services User Guide

Chapter 5. SOAP data handler

v “Configuring the SOAP data handler”

v “SOAP data handler processing” on page 115

v “SOAP style and use guidelines” on page 141

v “XML limitations” on page 142

The SOAP data handler is a data-conversion module whose primary roles are to

convert business objects into SOAP messages and SOAP messages into business

objects. The SOAP data handler performs the following functions:

v Request Processing

– SOAP request business object to SOAP request message

– SOAP response message to SOAP response business object

– SOAP fault message to SOAP fault business object
v Event Processing

– SOAP request message to SOAP request business object

– SOAP response business object to SOAP response message

– SOAP fault business object to SOAP fault message

This chapter describes how to configure the SOAP data handler, how the SOAP

data handler processes messages and objects, and how to customize the data

handler.

Configuring the SOAP data handler

The SOAP data handler is a pivotal component in the connector for web services.

The connector calls the SOAP data handler to transform business objects into web

services-compliant SOAP messages.

When collaborations are exposed as web services, the connector also calls the

SOAP data handler. The data handler then transforms SOAP messages sent from a

remote trading partner (or internal client) into business objects. The connector

passes the business objects to collaborations that have been configured for web

services.

The information in data handler meta-objects plays a crucial role in these

transformations. You configure this information after you install the product files,

but before startup. Unless you are adding a custom name handler, you can use the

default SOAP data handler configuration to save time. You must, however,

configure specific meta-object information for each data handler transformation.

Data handler meta-objects are discussed in the sections below.

Meta-object requirements

Meta-objects are business objects that contain configuration information. The

connector uses meta-objects at runtime to configure the data handler and create

instances of it. The SOAP data handler also uses meta-objects to locate the body of

a SOAP message, to determine the business object and verb that the body

corresponds to, to encode a business object in a SOAP message, and to perform a

number of other tasks discussed in this chapter. This section describes

requirements for these meta-objects.

© Copyright IBM Corp. 2004, 2005 109

Meta-object hierarchy and terminology

Figure 28 shows the meta-object structure for the adapter for web services product.

The meta-objects are named in bold in the illustration and discussed below.

The following terminology is used throughout this document when discussing

meta-objects:

v MO_DataHandler_Default Data handler meta-object used by the connector agent

to determine which data handler to instantiate. This is specified in the

DataHandlerMetaObjectName property of the connector.

v MO_DataHandler_DefaultSOAPConfig Child data handler meta-object specifically

for the SOAP data handler.

v SOAP Configuration Meta-Object (SOAP Config MO) A meta-object specified as

child of each SOAP business object and that contains the configuration

information for a single transformation from business object to SOAP message or

vice-versa.

MO_DataHandler_Default

The MO_DataHandler_Default is the top-level meta-object for all data handlers

that are called from connectors. The MIME type contained in these meta-objects

determines which data handler to use. The connector agent uses this meta-object to

create instances of the SOAP data handler. Accordingly, the

MO_DataHandler_Default object must include an attribute named xml_soap that is

of type MO_DataHandler_DefaultSOAPConfig.

You can configure the MO_DataHandler_Default object after installing it. You must

add xml_soap of type MO_DataHandler_DefaultSOAPConfig.

MO_DataHandler_DefaultSOAPConfig

The connector agent uses this meta-object to create and configure the SOAP data

handler at runtime. The MO_DataHandler_DefaultSOAPConfig has two attributes

of type string that designate:

v The class name for the SOAP data handler

v The SOAP name handler

v A default name resolution when the custom name handler fails

v The SOAP version (1.1 or 1.2)

These attributes are shown in Table 44.

Unless you wish to implement a custom name handler, which is discussed later in

this chapter, you can use the MO_DataHandler_DefaultSOAPConfig as delivered

MO_DataHandler_Default

ClassName

SOAPNameHandler

MO_DataHandler_DefaultSO APConfig

DefaultNameResolution

SOAPVersion

Figure 40. Meta-object structure

110 Adapter for Web Services User Guide

and installed. No configuration is needed.

 Table 44. Meta-object attributes for MO_DataHandler_DefaultSOAPConfig

Name Type Default value Description

ClassName String com.ibm.adapters

.dataHandlers.xml. soap

Standard attribute used by the

data handler base class to find

the class name based on a MIME

type passed into the

createHandler method.

SOAPName

Handler

String Name of the SOAP name handler

to use.

DefaultName

Resolution

String false Determines whether default

name resolution is used if the

custom name handler fails.

SOAPVersion String 1.1 Determines the SOAP standard

(1.1 or 1.2) that the data handler

uses to read and write SOAP

messages.

SOAP configuration meta-object: child of every SOAP business

object

A SOAP Config MO defines the data formatting behavior for one data handler

transformation — either a SOAP-message-to-business-object or

business-object-to-SOAP-message transformation. A SOAP Config MO is a child of

a SOAP business object. These child SOAP Config MOs are critical for default

business object resolution. When using default business object resolution, all child

SOAP Config MOs, whether for a request, response, or fault object, must have

unique entries for default values of BodyName and BodyNS. Table 45 shows these

and other attributes of a SOAP Config MO.

 Table 45. Attributes for SOAP Config MOs

Name Required Description

BodyNS Yes Namespace to be used for SOAP body.

BodyName Yes Name of the body of the SOAP message. For SOAP fault,

set the default value to soap:fault.

BOVerb Yes Verb of the business object that contains the SOAP Config

MO.

TypeInfo No True or false attribute that dictates whether type

information (xsi:type) is written to and read from a SOAP

element. Default = false

TypeCheck No This property is read only if TypeInfo is set to true.

Possible values are none and strict. If none, type

validation is skipped when reading SOAP messages into

this business object. If strict, the data handler will

strictly validate all SOAP type names and namespaces

against the business object’s application-specific

information. Default = none

Style No This property dictates the SOAP message style and has

implications for other attributes such as BodyName and

BodyNS. The possible values for this attribute are rpc and

document. Default = rpc

Use No This property dictates the SOAP message’s use and affects

how the SOAP body is constructed from a business object.

The possible values are literal and encoded. The default

is literal.

Chapter 5. SOAP data handler 111

Figure 41 shows the relationship between a SOAP business object and a SOAP

Config MO.

Figure 41 shows a SOAP response business object and its child business object. The

child business object, SOAPCfgMO, is a SOAP Config MO that specifies the

behavior for the SOAP data handler for a transformation from a business object

response to a SOAP response message. The attribute indicating the child SOAP

Config MO must use the name-value pair beginning cw_mo_soap.

By convention, when reading business object level application-specific information

beginning with cw_mo_, the data handler recognizes that the child object specified

in the name-value pair contains transformation meta-object information and

therefore does not include this child as content in the body of the message it is

transforming. In the example, the child objects indicated by the name-value pairs

cw_mo_jms and cw_mo_soap are recognized as meta-objects and not written into the

SOAP response message. In addition, the SOAP data handler ignores all business

object level application-specific information beginning with cw_mo_ except for

cw_mo_soap. Accordingly, the SOAP data handler ignores the application-specific

information such as cw_mo_tpi. But the SOAP data handler reads and uses the

SOAP Config MO specified in cw_mo_soap to execute the SOAP response

transformation from business object to SOAP message.

All SOAP business objects must have child SOAP Config MOs and these must be

specified as application-specific information at the business object level. Much of

this is automated: when you use the WSDL ODA to generate business objects for

SOAP messages, the SOAP Config MOs are automatically generated for you.

SOAP Business Object

BO Level ASI
cw_mo_soap = SOAPCfgMO
cw_mo_jms = SOAPJMSCfgMO

OrderId string
OrderNum string
SOAPCfgMO SOAP Config MO

SOAPCfgMO

BodyName

BodyNS

BOVerb

TypeInfo

TypeCheck

Style

Use

Figure 41. SOAP configuration meta-object

112 Adapter for Web Services User Guide

Style and Use impact on SOAP messages

The SOAP Config MO optional properties, Style and Use, affect the way that SOAP

messages are created. The possible values for Style are rpc and document, and for

Use are literal and encoded. The sections below discuss how the Style and Use

combinations impact SOAP message creation.

rpc/literal: When the Style property is set to rpc and the Use property to literal,

the Body Name and Body Namespace for a SOAP Message are read from the

SOAP ConfigMO’s BodyName and BodyNS properties, respectively.

The following is an example of an rpc/literal style message where the Body

Name and Body Namespace have been resolved to getOrderStatus and

OrderStatusNS respectively:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=îhttp://schemas.xmlsoap.org/soap/envelope/ì

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getOrderStatus xmlns:ns1="http://www.ibm.com/">

 <Part1>

 <ns2:Elem1 xmlns:ns2="http://www.ibm.com/elem1">

 <Child1>1</Child1>

 <Child2>2</Child2>

 </ns2:Elem1>

 <ns3:Elem1 xmlns:ns3="http://www.ibm.com/elem1">

 <Child1>3</Child1>

 <Child2>4</Child2>

 </ns2:Elem1>

 <Elem2>10</Elem2>

 </Part1>

 </ns1:getOrderStatus>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 42 shows the corresponding business object for this rpc/literal message.

 Note: You must configure these properties and business object attributes

appropriately so that a corresponding SOAP message is created.

Figure 42. rpc/literal SOAP Config MO

Chapter 5. SOAP data handler 113

rpc/encoded: When the Style property is set to rpc and Use is set to encoded, the

Body Name and Body Namespace for a SOAP Message are read from the Child

ConfigMO’s BodyName and BodyNS properties respectively. Also, the

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" attribute

is added to the Body tag.

The following is an example of an rpc/encoded message where the Body Name

and Body Namespace have been resolved to getOrderStatus and OrderStatusNS

respectively.

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">

 <ns1:getOrderStatus xmlns:ns1="http://www.ibm.com/">

 <Part1 xsi:type="ns1:SOAP_Part1Type">

 <ns2:Elem1 SOAP-ENC:arrayType="ns2:SOAP_MaxType[2]"

 xsi:type="SOAP-ENC:Array" xmlns:ns2="http://www.ibm.com/elem1">

 <item>

 <Child1 xsi:type="xsd:string">1</Child1>

 <Child2 xsi:type="xsd:string">2</Child2>

 </item>

 <item>

 <Child1 xsi:type="xsd:string">3</Child1>

 <Child2 xsi:type="xsd:string">4</Child2>

 </item>

 </ns2:Elem1>

 <Elem2 xsi:type="xsd:string">10</Elem2>

 </Part1>

 </ns1:getOrderStatus>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 43 shows the corresponding business object for this rpc/encoded message.

document/literal: When the Style property is set to document and the Use

property is set to literal, an all encompassing Body Name tag will not exist. This

is an example of a document style SOAP message based on the above BO:

Figure 43. rpc/encoded SOAP Config MO

114 Adapter for Web Services User Guide

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:Elem1 xmlns:ns1="http://www.ibm.com/elem1">

 <Child1>1</Child1>

 <Child2>2</Child2>

 </ns1:Elem1>

 <ns2:Elem1 xmlns:ns2="http://www.ibm.com/elem1">

 <Child1>3</Child1>

 <Child2>4</Child2>

 </ns2:Elem1>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 44 shows the corresponding business object for this document/literal

message.

Note that the encodingStyle attribute in the XML code fragment has not been set.

document/encoded: This Style/Use combination is not supported. The data

handler fails if it encounters a SOAP ConfigMO with Style set to document and Use

set to encoded.

SOAP data handler processing

The SOAP data handler performs transformations between SOAP messages and

business objects in the following ways:

v SOAP message to business object processing

– Request-message-to-SOAP-request-business-object data handling occurs at that

stage in event processing when web service clients make calls to

collaborations exposed as web services

– Response-message-to-SOAP-response-business-object data handling occurs

during request processing when a web service returns a SOAP response

message to a collaboration that had invoked it. Alternatively,

fault-message-to-SOAP-business-object data handling may occur at this phase.

For a detailed description of this processing, see “SOAP-body-message-to-
business-object processing” on page 116 later in this section.

v Business object to SOAP message processing

Figure 44. document/literal SOAP Config MO

Chapter 5. SOAP data handler 115

– Business-object-to-SOAP-response-message data handling occurs during event

processing when a response business object is returned by the collaboration

that is exposed as a web service. Alternatively, fault business

object-to-SOAP-fault-message data handling may occur at this phase.

– Business-object-to-SOAP-request-message data handling occurs at that phase

of request processing when a collaboration makes a service call to the

connector to convert a business object to a SOAP request message.

For a detailed description of this processing, see “Business-object-to-SOAP-
message-body processing” on page 118 later in this section.

SOAP-body-message-to-business-object processing

This section provides a step-by-step description of the SOAP-body-message-to-
business-object transformation.

1. The SOAP data handler receives a SOAP message.

2. Using Apache SOAP APIs, the data handler parses the SOAP message.

3. The data handler extracts the components of the SOAP message: envelope,

header, and body.

4. Header processing For more, see “SOAP-header-message-to-business-object

processing” on page 117.

5. Body processing The data handler reads the first element of the SOAP body to

determine if it carries a fault or data. If the body content is not a fault, the data

handler does the following:

a. Performs business object resolution to determine which business object will

be used in the transformation. If you have configured a custom name

handler, the default business object resolution discussed below may not

apply. For more on specifying a pluggable name handler, see “Specifying a

pluggable name handler” on page 139.

b. The data handler also resolves the SOAP Config MO (a child of the SOAP

business object that the data handler is creating) that will be used for the

transformation. If an instance of the SOAP Config MO does not exist, the

data handler creates an instance and reads its default values. From the

ConfigMO attribute values, the data handler reads the business object verb.

The data handler instantiates the SOAP business object and sets the verb

accordingly. This is the business object into which the data handler will

attempt to write the SOAP message.

c. The data handler continues parsing the SOAP message one element at a

time. For rpc, the data handler expects the first element to be the parent.

d. The data handler expects that the attributes of the business object (or its

application-specific information: for further information, see “ASI in

business-object-to-SOAP-message transformations” on page 123) should

have the same name as the child elements. If the attribute is not found in

the business object, the data handler throws an exception. Child elements

may be of simple type or they may be of complex type. Complex elements

are those which have child elements.

e. Simple element If a child element is a simple element, by default, the data

handler expects a business object attribute with the same name (or ASI) as

that of a simple element. The data handler reads the value of the simple

element and sets it in the business object.

f. Complex element If a child element is of complex type, the data handler

expects the business object to have an attribute with the same name (or ASI)

and of type child business object. This attribute may be of single cardinality

or of multiple-cardinality depending on if there will be a complex SOAP

116 Adapter for Web Services User Guide

element or SOAP array. Next the data handler instantiates the child business

object (by default, the type of the attribute gives the name of the child

business object) and reads all the child elements of this complex element,

setting their values in the child business object. The data handler sets this

child business object into the parent business object attribute after verifying

the cardinality of this attribute. If the attribute is cardinality n, the data

handler appends this business object to the container. The complex element

can have either simple or complex child elements. These are also handled in

the same way: if it is simple element, the data handler sets the value in the

child BO; if it is a complex element, the data handler instantiates a child

business object.
6. Fault processing The data handler reads the name of the first element of the

SOAP body to determine if it is a fault. If the name of the first element is

Fault, the data handler concludes that this is a fault message. Fault business

object resolution occurs to determine into which business object this fault

message should be transformed. The data handler then follows the same

processing as that for body processing. The data handler expects that the

business object specified in the child business object should have the following

attributes:

a. faultcode: Required. String attribute

b. faultstring: Required. String attribute

c. faultactor: Not required String attribute

d. detail: Not required. Child BO
7. If fault processing fails for any reason, the exception thrown will contain the

text from the faultcode, faultstring and faultactor elements in the SOAP fault

message

Note: According to SOAP specifications for fault messages, faultcode, faultstring,

and faultactor are simple elements whereas detail is a complex element (an

element with child elements). In addition, faultcode, faultstring, faultactor,

and detail belong to the SOAP envelope namespace, whereas detail child

elements may belong to user-defined namespaces.

SOAP-header-message-to-business-object processing

This section describes how the data handler converts the header of a SOAP

message into a business object.

1. The SOAP data handler processes the body of a SOAP message. Body

processing creates a SOAP business object.

2. If the SOAP message has a SOAP header element, the SOAP data handler

expects a SOAP header attribute in the business object obtained from body

processing. The SOAPHeader attribute is the child attribute of a business object

and has soap_location=SOAPHeader as its application-specific information. If

there is no such attribute, the SOAP data handler throws an error.

The SOAPHeader attribute must be of type SOAP Header Container business

object. The SOAP data handler creates an instance of this attribute in the SOAP

business object obtained in step 1.

3. For each immediate child of the SOAP-Env:Header element:

a. The data handler expects a child attribute in the SOAP Header Container

Business Object. The name of this attribute must be the same as that of the

header element and conform to the SOAP Header Child business object. If

the data handler cannot find such an attribute, it throws an error.

Additionally, the namespace of this element should be the same as specified

Chapter 5. SOAP data handler 117

in the elem_ns application-specific information of this attribute. If it is not

the same, the data handler throws an error.

b. The data handler creates an instance of the SOAP Header Child business

object and places it in the instance of SOAP Header Container business

object created in step 2.

c. If this header element has an actor attribute, the data handler expects an

actor attribute to exist in the child business object created above. If it

cannot find an actor attribute, the data handler throws an error.

Note: If you want to add an actor attribute, see “Specifying SOAP

attributes” on page 126.

d. If this header element has a mustUnderstand attribute, the data handler

expects a mustUnderstand attribute to exist in the child business object

created above. If it cannot find a mustUnderstand attribute, the data handler

throws an error.

Note: If you want to add a mustUnderstand attribute, see “Specifying SOAP

attributes” on page 126.

e. For each child element of this header element, the data handler expects an

attribute in the child business object with the same name. These elements

will be processed in same way as the child elements of SOAP-Env:Body

element.

Business-object-to-SOAP-message-body processing

The following is a step-by-step description of the business-object-to

SOAP-body-message transformation. For special cases involving

application-specific-information, see “ASI in business-object-to-SOAP-message

transformations” on page 123

1. The SOAP data handler looks for a SOAP ConfigMO that corresponds to the

SOAP business object it is transforming.

2. The data handler composes the envelope and header of the SOAP message.

3. The data handler resolves the SOAP ConfigMO. If an instance of the SOAP

ConfigMO does not exist, the data handler will create an instance and read

from the default values. By default, the data handler reads the value of the

BodyName attribute in the SOAP ConfigMO to determine whether it is

processing a fault business object. If it is set to soap:fault the business object is

considered a SOAP fault business object. If it is not a fault business object, the

data handler performs the processing described under composing body below,

else that described under composing fault.

4. Composing body The following steps detail the processing performed by the

data handler to compose the body of the SOAP message from a business object:

v The data handler obtains the BodyName and BodyNS from the SOAP

ConfigMO attributes and then composes the first (parent) element of the

body of the SOAP message. The name of first element is, by default, the

value for the BodyName. In this document, it is also referred to as the body

element. The namespace of the body element is, by default, the value

determined for BodyNS. If the Style attribute of the SOAP ConfigMO is set

to document, this step (creating the first body element) is skipped.

v The data handler then reads the attributes of the business object and

processes them by type. The processing for each type of attribute is described

below.

– Simple attributes If the attribute is of type simple, the data handler

creates a child element from the body element, with the same name as the

118 Adapter for Web Services User Guide

attribute (unless otherwise specified by special application-specific

information). The data handler sets the value of this element to the value

of the attribute in the business object.

– Cardinality 1 child business object attributes

If the attribute is a single cardinality child business object, the data

handler creates a child element of the body element. This is referred to as

a child business object element. The name of the child element created is

the same as that of the attribute (unless otherwise specified by special ASI

properties). The data handler then traverses the attributes of the child

business object, creating the child elements for the attributes in the same

way it processes the attributes of the incoming business object. However,

the child elements are made children not of the body element but of the

child business object element

– Cardinality n child business object attributes If an attribute is a

cardinality n child business object, the data handler creates a SOAP array.

Each attribute is handled the same way that a single cardinality child

business object is handled.
5. Composing fault The following section walks through the process by which

the data handler composes a fault message.

v The data handler expects the following attributes in the business object:

– faultcode: Required, String attribute

– faultstring: Required, String attribute

– faultactor: Not required. String attribute

– detail: Not required. Child BO attribute.

If any required attributes are missing, the data handler errors out.

v The data handler creates an element for faultcode. It sets the value given by

the faultcode attribute of the business object.

v The data handler creates an element for faultstring. It sets the value given

by the faultstring attribute of the business object.

v The data handler creates the faultactor. It sets the value given by the

faultactor attribute of the business object.

v If the detail attribute is present in the business object, the attribute should

be of child business object type. Otherwise the data handler errors out. It

handles the attributes of each detail business object as highlighted in the

section on Composing body above.
6. CxIgnore processing If the data handler finds out that the value of an attribute

is set to CxIgnore, the data handler does not create an element for this

attribute.

7. CxBlank processing If the data handler determines that the value of an

attribute is set to CxBlank, the data handler creates an element for this attribute

but does not set its value.

Business-object-to-SOAP-message-header processing

This section describes the processing of the SOAP header attribute only. All other

attributes are processed as described in “Business-object-to-SOAP-message-body

processing” on page 118.

1. From the business object, the SOAP data handler obtains the SOAPHeader

attribute. This attribute has soap_location=SOAPHeader as its application-specific

information. The SOAP data handler creates a SOAP-Env:Header element if and

Chapter 5. SOAP data handler 119

only if the value of this attribute is not null. If a business object contains more

than one SOAPHeader attribute, the first one is processed and the rest are treated

as part of the body.

2. The SOAP data handler expects that the SOAPHeader attribute is a single

cardinality child representing a SOAP Header Container business object. The

data handler processes the child attributes of the SOAP Header Container

business object that are of type SOAP Header Child business object.

3. For each attribute of the SOAP Header Container business object, the data

handler does the following:

a. Checks the cardinality: if this attribute is NOT a 1 or n cardinality child

object, it is ignored.

b. Checks the value: if the value of this attribute is NULL, it will be ignored.

c. If the attribute is a 1 or n cardinality child object, the SOAP data handler

creates a header element that is the immediate child of the SOAP-Env:Header

element created in step 1. The name of this header element is same as that

of the attribute. The namespace of this element is given by the elem_ns

application-specific information of this attribute.

d. If the attribute is a SOAP Header Child business object, all of the attributes

of this business object are processed. This attribute may have an actor and

a mustUnderstand attribute.

Note: If you want to add a mustUnderstand or actor attribute, see

“Specifying SOAP attributes” on page 126.

e. If a SOAP Header Child business object has a non-null actor attribute, the

data handler creates an actor attribute in the header element that was

created in step c.

f. If a SOAP Header Child business object has a non-null mustUnderstand

attribute, the data handler will create a mustUnderstand attribute in the

header element created in step c.

g. All other non-null attributes of the SOAP Header Child business object

become child elements of this header element. They are composed in the

same manner as the child elements of the SOAP-Env:Body element.

Header fault processing

The SOAP specification states that errors pertaining to headers must be returned in

headers. These headers are returned in the SOAP fault message. Just as message

headers are specified in the SOAPHeader attribute of request and response business

objects, fault headers are specified in the SOAPHeader attribute of fault business

objects.

Each of the possible headers of request or response business objects may cause an

error. Such errors are reported in the headers of the fault message.

WSDL documents have a SOAP binding header fault element that allows you to

specify the fault header. For more information, see the SOAP and WSDL

specifications listed in Chapter 1.

The application-specific information of headerfault allows you to specify header

faults for each of your headers. You may specify headerfault application-specific

information for each of the attributes of the SOAP Header Container business

object. The list of attributes in the SOAP Header Container business object for the

fault business object is as follows:

headerfault=attr1, attr2, attr3...

120 Adapter for Web Services User Guide

If the WSDL Configuration Wizard finds headerfault application-specific

information in the SOAP Header Child business objects of request or response

objects, the utility creates headerfault elements in the WSDL generated for these

headers. Note that WSDL allows you to specify multiple header faults for each of

your request (input) and response (output) headers. Therefore the value of this

application-specific information is a comma-delimited list of attributes.

Using application-specific information functionality

You can specify object- and attribute-level application-specific information (ASI) to

extend and enhance SOAP data handler functionality. Table 46 shows these

attributes, which are discussed in the sections below. All of the entries in the table

are attribute-level ASI unless otherwise noted.

 Table 46. SOAP object ASI summary

ASI Possible values Description

soap_location SOAPHeader Specifies this business object

attribute as the header

attribute

headerfault String Identifies the BO attribute

name of the corresponding

SOAP header in the fault BO

elem_name String Specifies the name for the

SOAP element corresponding

to this BO attribute

elem_ns String Specifies the namespace for

the SOAP element

corresponding to this BO

attribute

type_name String Specifies the type for the

SOAP element corresponding

to this BO attribute

type_ns String Specifies the type namespace

for the element

corresponding to this BO

attribute

xsdtype true Specifies xsd as the

namespace for the element

corresponding to this BO

attribute, overriding older

xsd versions (such as 1999,

2000, etc.) with the latest

version of xsd (for example,

2001).

attr_name String Specifies the name for the

SOAP attribute

corresponding to this BO

attribute

attr_ns String Specifies the namespace for

the SOAP attribute

corresponding to this BO

attribute

Chapter 5. SOAP data handler 121

Table 46. SOAP object ASI summary (continued)

ASI Possible values Description

arrayof String Specifies the name of the n

cardinality child business

object attribute that must be

used as a placeholder for the

simple type array items

dh_mimetype String Specifies the mimeType of

the data handler that will be

used to transform this

attribute of complex type

cw_mo_* String This business object level ASI

specifies the name of a child

config MO that is interpreted

as meta-data, not content, by

the SOAP data handler. Only

cw_mo_soap specifies a child

config MO that is processed

as meta-data; all other

cw_mo_* indicate a different

component and are therefore

excluded from SOAP data

handler processing. All other

cw_mo* is ignored.

cw_mo_soap String This business object level ASI

specifies the name of the

Child Config MO attribute

that should be used when

transforming this business

object

cw_mo_jms String This business-object level ASI

specifies the name of the JMS

Protocol Config MO to use

cw_mo_http String This business-object level ASI

specifies the name of the

HTTP Protocol Config MO to

use

wrapper true Specifies the attribute name

of the wrapper object within

this business object. Wrapper

objects are used for certain

schema indicators, and must

not be serialized

maxoccurs Integer Specifies this business object

attribute’s maximum

occurrence possibility.

Depending on the value of

maxoccurs, the business

object may or may not have

a wrapper.

minoccurs Integer Specifies this business object

attribute’s minimum

occurrence possibility.

Depending on the value of

minoccurs, the object may or

may not have a wrapper.

122 Adapter for Web Services User Guide

Table 46. SOAP object ASI summary (continued)

ASI Possible values Description

all String Specifies the child attribute

that represents the all

indicator in the schema.

choice String Specifies the child attribute

that represents the choice

indicator in the schema.

ASI in business-object-to-SOAP-message transformations

The SOAP data handler uses a business object’s ASI to determine how to construct

a SOAP message. Unless otherwise stated, all ASI discussed in the sections below

refers to attribute level ASI and all string-based comparisons are performed

without regard to case.

elem_name and elem_ns processing

The examples discussed in this section assume that the attribute name is OrderId

and the SOAP element namespace prefix ns0.

1. When neither elem_name nor elem_ns are specified, the elem_name defaults to

the attribute name, and the elem_ns defaults to the namespace of the element’s

parent.The ASI is not specified.

<OrderId>1</OrderId>

2. When the elem_name is specified and the elem_ns is not specified, the

elem_name will be set to the ASI elem_name value, and the elem_ns will be

defaulted to the namespace of the SOAP Body. The ASI is as follows:

elem_name=CustOrderId

<CustOrderId>2</CustOrderId>

3. When elem_ns is specified and elem_name is not, elem_name defaults to the

attribute name and elem_ns is set to the ASI elem_ns value. The xmlns attribute

is explicitly written if and only if the element namespace is not found

elsewhere in the scope of this element. If the element namespace is found, the

already defined namespace prefix is used. Otherwise (if the element namespace

is no found), a unique prefix for the elem_ns is generated. Consider the

following example, which presumes that a prefix is already defined in scope

(ns1 represents a prefix corresponding to a namespace already defined in the

scope of this element). The ASI is as follows:

elem_ns= http://www.w3.org/2001/XMLSchema

<ns1:OrderId>3</ns1:OrderId>

The following example presumes that prefix is not found (ns2 represents a

unique prefix). The ASI is as follows:

elem_ns=CustOrderIdNamespace

<ns2:OrderId xmlns:ns2="CustOrderIdNamespace">3</ns2:OrderId>

4. When both elem_name and elem_ns are specified, elem_name and elem_ns are

set to the ASI values. The same check that is performed in case 3 above

regarding already defined namespaces applies. Just as in case 3, if the

namespace is not already defined, a unique prefix for the elem_ns is generated.

The ASI is as follows:

elem_name=CustOrderId;elem_ns=CustOrderIdNamespace

<ns2:CustOrderId xmlns:ns2="CustOrderIdNamespace">1</ns2:OrderId>

Chapter 5. SOAP data handler 123

type_name and type_ns processing for simple attributes

For the examples in this section, the attribute name is OrderId, the SOAP element

namespace prefix is ns0, and the attribute type is String.

Note: type_name and type_ns processing takes place only when the Config MO

attribute TypeInfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the

simple type and the type_ns defaults to the xml schema-defined namespace

(xsd). The ASI is not specified

<OrderId xsi:type="xsd:string">1</OrderId>

2. When type_name is specified and type_ns is not, type_name is set to the ASI

type_name value and type_ns defaults to the namespace of the element. The

ASI is as follows:

type_name=CustString

<OrderId xsi:type="ns0:CustString">2</OrderId>

3. When type_ns is specified and type_name is not, the type_ns defaults to the

simple type name and type_name is set to the ASI type_ns value. The prefix is

handled in a way that is comparable to elem_ns creation. A unique prefix for

the type namespace is generated unless the namespace already exists in the

element scope. The ASI is as follows:

type_ns=CustStringNamespace

<OrderId xmlns:ns2="CustStringNamespace" xsi:type=

"ns2:String">3</OrderId>

4. When both type_name and type_ns are specified, they are set to the assigned

ASI values. A unique prefix for the type namespace is generated. The ASI is as

follows:

type_name=CustString;type_ns=CustStringNamespace

<OrderId xmlns:ns2="CustStringNamespace" xsi:type=

"ns2:CustString">1</OrderId>

type_name and type_ns processing for single cardinality

attributes

For the examples in this section, the attribute name is OrderStaus, the SOAP

element namespace prefix is ns0, and the attribute type is OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO

attribute TypeInfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the

business object name and the type namespace defaults to the namespace of the

element. The ASI is not specified:

<OrderStatus xsi:type="ns0:OrderStatus">1</OrderStatus>

2. When type_name is specified and type_ns is not, the type_name is set to the

assigned ASI value and type_ns defaults to the namespace of the element. The

ASI is as follows:

type_name=CustOrderStatus

<OrderStatus xsi:type="ns0:CustOrderStatus">1</OrderStatus>

3. When type_ns is specified and type_name is not, type_name defaults to the

business object name and type_ns is set to the assigned type_ns value. A

unique prefix for the type namespace is generated. The ASI is as follows:

type_ns=CustTypeNS

<OrderStatus xsi:type="ns2:SOAP_OrderStatusLine

" xmlns:ns2="CustTypeNS">1</OrderStatus>

124 Adapter for Web Services User Guide

4. When both type_name and type_ns are specified, they are set to the assigned

ASI values. A unique prefix for the type namespace is generated. The ASI is as

follows:

type_name=CustOrderStatus;type_ns=CustTypeNS

<OrderStatus

xsi:type="ns2:CustOrderStatus" xmlns:ns2="CustTypeNS">1</OrderStatus>

type_name and type_ns processing for multiple cardinality

attributes

For all the examples given in this section assume the attribute name to be

MultiLines and the SOAP element namespace prefix to be ns0. Assume the

attribute type to be OrderStatus.

Note: type_name and type_ns processing takes place only when the Config MO

attribute TypeInfo is true.

1. When neither type_name nor type_ns are specified, type_name defaults to the

business object name and type_ns defaults to the namespace of the element.

The ASI is as follows:

<MultiLines SOAP-ENC:arrayType="ns0:OrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

2. When type_name is specified and type_ns is not, type_name is set to the

assigned ASI type_name value and type_ns defaults to the namespace of the

element. The ASI is as follows:

type_name=CustOrderStatus

<MultiLines SOAP-ENC:arrayType="ns0:CustOrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

3. When type_ns is specified and type_name is not, type_name defaults to the

business object name, and the type_ns is set to the assigned ASI type_ns value.

A unique prefix for the type namespace is generated. The ASI is as follows:

type_ns=CustTypeNS

<MultiLines SOAP-ENC:arrayType="ns2:OrderStatus[2]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/

" xmlns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

4. When both type_name and type_ns are specified, they are set to the assigned

ASI values. A unique prefix for the type namespace is generated. The ASI is as

follows:

type_name=CustOrderStatus;type_ns=CustTypeNS

<MultiLines SOAP-ENC:arrayType="ns2:CustOrderStatus[2

]" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns2="CustTypeNS" xsi:type="SOAP-ENC:Array">

Note: The item element representing the parent for each Array element has the

same type and namespace as the arrayType.

xsdtype for simple, single, and multiple cardinality types

For simple, single. and multiple cardinality types, set the xsdtype ASI attribute to

true for the type name to adhere to the current XSD for the SOAP message. The

xsdtype property is read only when both the type_name and type_ns properties

are set. Given the type_name and type_ns, the SOAP data handler first attempts to

map the pair to a Java type using the SOAP API. Then the data handler attempts

to convert the Java type back to a SOAP element type using the current XSD for

the SOAP Message. For example, if the current XSD is

http://www.w3.org/2001/XMLSchema

Chapter 5. SOAP data handler 125

and the following ASI:

type_name=timeInstant;type_ns=http://www.w3.org/1999/XMLSchema;xsdtype=true

The SOAP message type name is written as:

<OrderDate xsi:type="xsd:dateTime">

because dateTime is the 2001 XSD equivalent of the timeInstant in the 1999 XSD.

xsdtype and simple type arrays

For multiple cardinality objects, you can create a simple type array such as the

following:

<MultiLines SOAP-ENC:arrayType="xsd:string[4]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

To achieve this, set the type_name property to the desired simple type (for

example, string) and set the type_ns property to the appropriate XSD

specification. Then, set the xsdtype property to true so that the type is converted

to the current XSD type. Finally, the arrayOf property should be set to the name of

the attribute in the container which should hold the simple type value. This is an

example of what the ASI would look like for a string array:

arrayof=size;type_name=string;type_ns=http://www.w3.org/2001/XMLSchema;xsdtype=true

ASI effects on fault processing

The faultcode, faultactor, faultstring, and detail elements adhere to the following

rules:

1. Any elem_name, elem_ns, type_name and type_ns ASI in these attributes is

ignored.

2. All children of the detail elements are written exactly as described in body

processing.

ASI effects on header processing

You can use all ASI properties (see Table 46) at the header child object level and

below.

Specifying SOAP attributes

attr_name processing for simple types

There is an XML schema case in which complexTypes with simpleContent

extensions or restrictions have have both values and attributes. For example,

consider the following SOAP tag:

<size system="us">10</size>

It is based on the following schema:

<complexType name="SizeType">

 <simpleContent>

 <extension base="int">

 <attribute name="system" type="string"/>

 </extension>

 </simpleContent>

</complexType>

<element name="size" type="ns:SizeType"/>

The business object corresponding to the complex type, with simple content

extension or restriction, must contain one additional attribute besides other

126 Adapter for Web Services User Guide

attributes that correspond to the complex type attributes. The additional attribute

must contain the simple content value (in the example above, 10— the value of

element size). The business object attribute, having the business object

corresponding to such a complex type as its type, will have

elem_value=simpleContentValue as its attribute-level ASI.

Figure 45 shows the corresponding business object.

attr_name processing for single and multiple cardinality types

You can specify ASI that translates business object attributes into soap attributes

instead of into soap elements. The data handler supports adding SOAP attributes

to complex single and n-card types only. Consider the following sample:

<CustInfo City="4" State="5" Street="2" Zip="6">

 <Name xsi:type="xsd:string">1</Name>

 <Street2 xsi:type="xsd:string">3</Street2>

</CustInfo>

Given this business object definition structure (with the attribute level ASI

specified to the right of each attribute in Figure 46), the data handler follows these

processing steps:

1. When traversing a complex attribute, the data handler first generates a

corresponding tag for this complex business object attribute. In this example,

CustInfo represents the complex business object attribute.

2. The data handler iterates through the children of the complex business object.

Only simple type attributes are considered for attribute creation. If a simple

type has an ASI property named attr_name, the data handler writes this simple

type as an attribute to the SOAP element. In this example, the element

(CustInfo) will have four attributes; Street, City, State and Zip.

3. The rest of the attributes of the business object are written using standard

BODY processing. This means that all relevant ASI will also be evaluated for

the business object attributes that do not have attr_name ASI.

Figure 45. attr_name business object for simple types

Figure 46. attr_name business object

Chapter 5. SOAP data handler 127

The logic for processing multiple cardinality types is identical to that for

processing single cardinality types. Specifically, each <item> tag corresponds to

each business object instance in the multiple cardinality object, and will be

processed using ASI. For example, given this multiple cardinality business object

definition structure with corresponding ASI:

If the event sent to the data handler had two instances of this multiple cardinality

object, the SOAP message created may look like this:

<CustInfo>

 <item City="Armonk" Street="Main Street">

 <Name>IBM</Name>

 <Street2>None</Street2>

 </item>

 <item City="Burlingame" State="Ca" Street="577 Airport Blvd" Zip="94010">

 <Name>Burlingame Labs</Name>

 <Street2>Suite 600</Street2>

 </item>

</CustInfo>

Notice that the item tags are treated as the complex element type. Any attributes in

the BO definition will become SOAP attributes of the corresponding item tag.

arrayof processing for simple type arrays

The arrayof ASI property should only be used in the case of SOAP encoded simple

type arrays. For example, a serialization such as the following:

<CustomerNames SOAP-ENC:arrayType="xsd:string[4]" xmlns:SOAP-ENC=

"http://schemas.xmlsoap.org/soap/encoding/" xsi:type="SOAP-ENC:Array">

<item xsi:type="xsd:string">value1</item>

<item xsi:type="xsd:string">value2</item>

<item xsi:type="xsd:string">value3</item>

<item xsi:type="xsd:string">value4</item>

</CustomerNames>

would require a business object definition such as that shown inFigure 48:

Figure 47. attr_name multiple cardinality business object

Figure 48. arrayof business object

128 Adapter for Web Services User Guide

(The business object is shown from the Request level for clarity.)

Note: Although not shown, the SOAP Config MO’s TypeInfo property must be set

to true in this example to derive the above SOAP serialization from the

business object structure.

Also, the arrayof property can be used to create array items with a name other

than item. Using the example above, the <item> tags can be replaced with <name>

tags if both the BO attribute name and the ″arrayof″ asi property value is name.

This would be the serialization:

<CustomerNames SOAP-ENC:arrayType="xsd:string[4]"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xsi:type="SOAP-ENC:Array">

<name xsi:type="xsd:string">value1</name>

<name xsi:type="xsd:string">value2</name>

<name xsi:type="xsd:string">value3</name>

<name xsi:type="xsd:string">value4</name>

</CustomerNames>

attr_name and attr_ns processing

You may need to provide a namespace that corresponds to the SOAP attribute

created. You do this by specifying the attr_ns ASI property for a simple type. The

data handler processes the attr_ns property if and only if attr_name exists in the

same attribute’s ASI. The following rules are followed with attr_name and attr_ns:

1. When neither attr_name nor attr_ns exist, the business object attribute is

translated to a SOAP element.

2. When only attr_name is set, the SOAP attribute’s namespace defaults to the

element’s namespace:

<CustInfo Street="577 Airport"></CustomerInfo>

3. When only attr_ns is set, the property is ignored and the business object

attribute is translated to a SOAP element.

4. When both attr_name and attr_ns exist, the SOAP attribute is created like the

following:

<CustInfo ns2:Street="577 Airport" xmlns:ns2=

"AttrNS"></CustomerInfo>

dh_mimetype: calling a data handler

The SOAP data handler can call another data handler to write business objects into

any format for which a data handler exists. You do this by adding encoded text to

a SOAP message when transferring a SOAP child business object into a SOAP

String.

An RNIF document is one of the formats in which a SOAP element’s value may be

encoded. To make use of this functionality, add an RNIF BO at any level of a

SOAP child business object. To signal the SOAP data handler to call another data

handler when transforming this RNIF business object to a string, add the

dh_mimetype property to the attribute’s ASI. The value of the dh_mimetype ASI

property must be a legal mimeType specified in the MO_DataHandler_Default

meta-object. The mimeType is used to determine which data handler is called to

process the business object.

Figure 49 shows a SOAP child business object in which CustomerInfo is a complex

child and RNET_Pip3A2PriceAndAvailabilityQuery is an RNIF business object:

Chapter 5. SOAP data handler 129

The SOAP message created from this business object may look like this:

<CustomerInfo>

<Name>IBM Corporation</Name>

<CustID>95626</CustID>

<RNIFexample

xsi:type="xsd:base64Binary">1AWERYER238W98EYR9238728374871892787ASRJK23423

JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJK234

34JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJK2

4234JKAWERJ234AWERIJHI423488R4HASF1AWERYER238W98EYR9238728374871892787ASRJ

234234JKAWERJ234AWERIJHI423488R4HASFWR234

</RNIFexample>

</CustomerInfo>

Note that the RNIF example element contains an RNIF encoded string that has

been base64 binary encoded as its element value. Also, note that elem_name,

elem_ns, type_name, type_ns, and xsdtype ASI properties remain relevant for this

business object attribute. In this example, the specified elem_name dictates the

name of the SOAP element upon message creation.

Note: If the element value returned by the called data handler is encoded text, the

type_name property must be set to base64Binary, the type_ns must

correspond to an xsd namespace, and xsdtype must be set to true.

xsd:base64Binary: When you set the type_name and type_ns to resolve to

xsd:base64Binary, the SOAP data handler encodes the value from the business

object before setting the value for the corresponding element. Using the Apache

API, the data handler queries the registry for a base64Binary serializer, serializes

the string returned from the called data handler, and sets the element’s value.

Schema complexType indicators

The following sections discuss the effects of schema complexType Indicators on

business objects. The indicators include:

v maxOccurs

v minOccurs

v all

v sequence

v choice

maxOccurs and minOccurs indicators for simple types: The maxOccurs indicator

specifies the maximum number of times an element can occur within a complex

type. The minOccurs indicator specifies the minimum number of times an element

should occur within a complexType.

Consider this Schema:

<xs:element name="Address" type="Address">

<xs:complexType name="Address">

 <xs:sequence>

Figure 49. RNIF business object with dh_mimetype

130 Adapter for Web Services User Guide

<xs:element name="AddressLine" type="xsd:string" maxOccurs="10"/>

 <xs:element name="SuiteNumber" type="xsd:string" minOccurs="3"

 maxoccurs="unbounded"/>

 <xs:element name="City" type="xsd:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the AddressLine element can occur at most ten

times in an Address element, while the SuiteNumber element must occur at least

three times. The business object that corresponds to this schema must have an N

cardinality wrapper object for each maxoccurs/minoccurs indicator that has the

following ASI:

maxOccurs=N;wrapper=true

or

minOccurs=3;wrapper=true;

The wrapper=true ASI indicates that this object is a wrapper, and therefore not

explicitly written to the SOAP message. Instead, there must be one child of simple

type in this wrapper object. At runtime, for SOAP to business object

transformations, the data handler reads the N child objects of the wrapper and

creates a corresponding element for each one. When performing

business-object-to-SOAP-message transformations, the data handler creates child

objects in the N cardinality wrapper for every element it encounters.

The corresponding SOAP business object resembles that shown in Figure 50.

The SOAP message that corresponds to the business object shown in Figure 50 is as

follows:

<Address xsi:type="ns0:Address">

 <AddressLine xsi:type="xsd:string">Line1</AddressLine>

 <AddressLine xsi:type="xsd:string">Line2</AddressLine>

 <SuiteNumber xsi:type="xsd:string">600</SuiteNumber>

 <SuiteNumber xsi:type="xsd:string">650</SuiteNumber>

 <SuiteNumber xsi:type="xsd:string">700</SuiteNumber>

 <City xsi:type="xsd:string">San Francisco</City>

</Address>

Note: The SOAP data handler processes maxOccurs and minOccurs indicators in

the same way, without validating the maximum or minimum occurrences of

Figure 50. minOccurs and maxOccurs of simple type ASI in a SOAP business object

Chapter 5. SOAP data handler 131

elements. The data handler simply provides a container structure to hold

multiple instances of a particular element with the maxOccurs and

minOccurs indicators. This applies to simple and complex types.

maxOccurs and minOccurs indicators for complex types: The <maxOccurs>

indicator specifies the maximum number of times an element can occur within a

complex type. The <minOccurs> indicator specifies the minimum number of times

an element should occur within a complexType. Consider the maxOccurs indicator

in the following schema:

<xs:element name="Address" type="Address">

<xs:complexType name="Address">

 <xs:sequence>

 <xs:element name="AddressInfo" type="AddressInfo" maxOccurs="3"/>

 <xs:element name="City" type="xsd:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:complexType name="AddressInfo">

 <xs:sequence>

 <xs:element name="StreetLine" type="xsd:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the AddressInfo complex type element can occur

at most three times in an Address element. The corresponding business object for

this schema will not have a wrapper object, since the complexType AddressInfo

itself can be of N cardinality. The following ASI will be placed at the N cardinality

attribute: maxoccurs=3

Figure 51 shows the corresponding SOAP business object.

The SOAP message that corresponds to the business object shown in Figure 51 is as

follows:

<Address xsi:type="ns0:Address">

 <AddressInfo xsi:type="ns0:AddressInfo">

 <StreetLine xsi:type="xsd:string">100 Market St.</ StreetLine>

 <StreetLine xsi:type="xsd:string">Apt 15</ StreetLine>

 </AddressInfo>

 <City xsi:type="xsd:string">San Francisco</City>

</Address>

all indicator: The all indicator specifies by default that the child elements for this

complexType can appear in any order and that each child element must occur zero

or one times. Consider the following Schema:

Figure 51. minOccurs and maxOccurs of complex type ASI in a SOAP business object

132 Adapter for Web Services User Guide

<complexType name="Item">

 <all>

 <element name="quantity" type="xsd:int"/>

 <element name="product" type="xsd:string"/>

 </all>

</complexType>

The example above indicates that the elements quantity and product, can occur in

any order in the SOAP message. The quantity element may occur first and the

product element second, or vice versa.

Figure 52 shows the business object that corresponds to this schema fragment.

The corresponding SOAP message fragment is as follows:

<Item xsi:type="ns0:Item">

 <quantity xsi:type="xsd:string">12</quantity>

 <product xsi:type="xsd:string">2</product>

</Item>

Handling array content with ’all’ content model: The SOAP data handler processes

complex-type array content with the ’all’ content model as described in this

section. In the example, ArrayOfSOAPStruct contains SOAPStruct, which has the ’all’

content model.

<complexType name="SOAPStruct">

 <all>

 <element name="varString" type="string" />

 <element name="varInt" type="int" />

 <element name="varFloat" type="float" />

 </all>

</complexType>

<complexType name ="ArrayOfSOAPStruct’">

 <complexContent>

 <restriction base=’SOAP-ENC:Array’>

 <attribute ref=’SOAP-ENC:arrayType’

 wsdl:arrayType=’typens:SOAPStruct[]’/>

 </restriction>

 </complexContent>

 </complexType>

The SOAP data handler must generate the following SOAP data on serialization:

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

 <ns0:echoStructArray xmlns:ns0="http://soapinterop.org/">

Figure 52. all indicator ASI in a SOAP business object

Chapter 5. SOAP data handler 133

<inputStructArray SOAP-ENC:arrayType="ns1:SOAPStruct[2]"

 xmlns:ns1="http://soapinterop.org/xsd" xsi:type="SOAP-ENC:Array">

 <item>

 <ns1:varFloat xsi:type="xsd:string">1.1</ns1:varFloat>

 <ns1:varInt xsi:type="xsd:string">1</ns1:varInt>

 <ns1:varString xsi:type="xsd:string">hi</ns1:varString>

 <item>

 <item>

 <ns1:varString xsi:type="xsd:string">hello</ns1:varString>

 <ns1:varInt xsi:type="xsd:string">1</ns1:varInt>

 <ns1:varFloat xsi:type="xsd:string">1.1</ns1:varFloat>

 </item>

 </inputStructArray>

 </ns0:echoStructArray>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

In this example, echoStructArray is the name of the operation, and

inputStructArray is the parameter name with type ArrayOfSOAPStruct.

sequence indicator: The sequence indicator specifies that child elements must

appear in the order specified in the complexType.

<complexType name="Item">

 <sequence>

 <element name="quantity" type="int"/>

 <element name="product" type="string"/>

 </sequence>

</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this

indicator. By default, the data handler reads and writes SOAP elements in the

order specified in the business object.

choice indicator: The choice indicator specifies that one and only one of the

elements in a complexType can appear in the SOAP message. Consider the

following schema:

<complexType name="Item">

 <choice>

 <element name="quantity" type="int"/>

 <element name="product" type="string"/>

 </choice>

</complexType>

The SOAP data handler does not require special ASI or wrapper objects for this

indicator. When converting a business object to a SOAP message, the data handler

defers to your choice of which elements should appear in the SOAP message.

When converting a SOAP message to a business object, the data handler reads the

existing element and populates the attribute to which it corresponds.

maxOccurs indicator on sequence, choice, group and all: Model Groups

(sequence, choice, group, and all) have minOccurs and maxOccurs attributes. The

default value for minOccurs and maxOccurs is one. For the all group, the

maxOccurs can take a value of one only. The WSDL ODA and SOAP data handler

support all possible values for maxOccurs on sequence, choice and group.

ASI in SOAP-to-business object transformations

The SOAP data handler uses a business object’s ASI to read and validate an

incoming SOAP message. The following rules apply to ASI validation by the SOAP

data handler:

134 Adapter for Web Services User Guide

v Header and body processing are the same.

v The SOAP ConfigMO property, TypeCheck, must be set to strict and TypeInfo

set to true for the data handler to perform the validation described in the

sections below.

v type_name and type_ns validation are performed concurrently since type

validation is generally dependent on both properties.

Note: Unless otherwise stated, all ASI discussed in the following sections is

attribute-level ASI

elem_name validation

The following rules apply to validation for simple, cardinality 1 and cardinality n

attributes:

1. When encountering an element while parsing a SOAP message, the data

handler first searches all of the ASI at the business object level, attempting to

match the element’s name against the elem_name value.

2. If a match is not found, the data handler attempts to match the element’s

name against each of the attribute names at that business object level.

3. If neither search succeeds, the data handler fails.

elem_ns validation

The following cases apply to validation for simple, cardinality 1 and cardinality n

attributes:

1. When neither elem_ns ASI nor xmlns from the SOAP message for this element

exist, the element is properly validated.

2. When elem_ns ASI does not exist and the corresponding element from the

SOAP message does have an xmlns specified, the data handler defaults the

elem_ns to the last elem_ns read from the business object that was in the scope.

The data handler compares this value with the xmlns value from the SOAP

message. If there is no match, validation fails.

3. When elem_ns ASI does exist and the corresponding element from the SOAP

message does not have xmlns specified, the data handler verifies that the

elem_ns specified in ASI matches one of the namespaces in the current scope of

the SOAP message. If there is no match, validation fails.

type_name and type_ns validation

The sections below discuss type_name and type_ns validation.

Simple attributes: The following rules apply to type_name and type_ns

validation when xsdType is true:

v Both type_name and type_ns are specified Using the type_name and type_ns

pair, the data handler creates a corresponding java Class object. Using the

incoming SOAP message typename and typenamespace, another java Class

object is queried. It the two java Class objects match, validation succeeds.

Otherwise, validation fails.

v Neither type_name nor type_ns are specified The data handler maps the simple

business object attribute to a java Class object. Using the incoming SOAP

message typename and typenamespace, another java Class object is queried. If

the two java Class objects match, validation succeeds. Otherwise, validation fails.

v type_name only is specified Simple Type Validation fails. Both type_name and

type_ns or neither should be specified when xsdType is true.

v type_ns only is specified Simple Type Validation fails. Both type_name and

type_ns or neither should be specified when xsdType is true

Chapter 5. SOAP data handler 135

The following rules apply to type_name and type_ns validation when xsdType is

false:

v Both type_name and type_ns are specified The data handler performs a direct

comparison between the SOAP message typename and typenamespace pair and

the type_name and type_ns values specified in ASI. If the pairs are exactly alike,

validation succeeds. Otherwise, validation fails.

v Neither type_name nor type_ns are specified The data handler maps the simple

business object attribute to a java Class object. Using the incoming SOAP

message typename and typenamespace, another java Class object is queried. If

the two java Class objects match, validation succeeds. Otherwise, validation fails.

v type_name only is specified The type_ns value defaults to the element

namespace found in the business object ASI. Using this default type_ns and the

type_name specified in ASI, the data handler performs a direct comparison

between these values and the SOAP message typename and typenamespace. If

the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

v type_ns only is specified The type_name value defaults to the business object

attribute type. Using this default type_name and the type_ns specified in ASI,

the data handler performs a direct comparison between these values and the

SOAP message typename and typenamespace. If the pairs are exactly alike,

validation succeeds. Otherwise, validation fails.

Complex attributes (cardinality 1 and n): The following rules apply to

type_name and type_ns validation when xsdType is true:

v Both type_name and type_ns are specified xsdType is ignored. The data

handler processes as if xsdType is false.

v Neither type_name nor type_ns are specified xsdType is ignored. The data

handler processes as if xsdType is false.

v type_name only is specified xsdType is ignored. The data handler processes as

if xsdType is false.

v type_ns only is specified xsdType is ignored. The data handler processes as if

xsdType is false.

The following rules apply to type_name and type_ns validation when xsdType is

false:

v Both type_name and type_ns are specified The data handler performs a direct

comparison between the SOAP message typename and typenamespace pair and

the type_name and type_ns values specified in ASI. If the pairs are exactly alike,

validation succeeds. Otherwise, validation fails.

v Neither type_name nor type_ns are specified The type_name value defaults to

the business attribute type. The type_ns value defaults to the element namespace

found in the business object ASI. Using this default behavior, the data handler

performs a direct comparison between these values and the SOAP message

typename and typenamespace pair. If the pairs are exactly alike, validation

succeeds. Otherwise, validation fails.

v type_name only is specified The type_ns value defaults to the element

namespace found in the business object ASI. Using this default type_ns and the

type_name specified in ASI, the data handler performs a direct comparison

between these values and the SOAP message typename and typenamespace. If

the pairs are exactly alike, validation succeeds. Otherwise, validation fails.

v type_ns only is specified The type_name value defaults to the business object

attribute type. Using this default type_name and the type_ns specified in ASI,

the data handler performs a direct comparison between these values and the

136 Adapter for Web Services User Guide

SOAP message typename and typenamespace. If the pairs are exactly alike,

validation succeeds. Otherwise, validation fails.

attr_name and attr_ns validation

While reading SOAP message into a business object, each SOAP element is

searched for SOAP attributes. If found, these attributes are compared to the

attr_name property values from the corresponding BO. For example, consider this

SOAP message:

<CustInfo City="4" State="5" Street="2" Zip="6">

 <Name xsi:type="xsd:string">1</Name>

 <Street2 xsi:type="xsd:string">3</Street2>

</CustInfo>

Now consider the business object definition structure (with the attribute level ASI

specified to the right of each attribute) shown inFigure 53.

The data handler would follow these processing steps:

1. Read the element name CustInfo.

2. Resolve the business object attribute that corresponds to this element name.

3. Read the attributes of the SOAP element and attempt to match them against

the ASI of the child attributes. In this case, the SOAP message Street matches

the business object attribute Street1, City matches the business object attribute

City and so on.

4. The child elements for CustInfo are read and processed in the same manner as

the rest of the body.

Note: attr_ns is not validated.

The data handler loops through the SOAP attributes for a given element. For each

attribute encountered, the data handler searches the business object for a

corresponding attribute. If found, the business object attribute is populated with

the value of the SOAP attribute. If a corresponding business object attribute is not

found, the data handler continues to the next SOAP attribute.

Calling a data handler from within the SOAP data handler

The SOAP data handler can read an encoded element value from a SOAP message

into a business object using another data handler. For example, an RNIF document

may be one of the formats in which a SOAP element value is encoded. To make

use of this functionality, an RNIF business object can be added at any level of a

SOAP Child business object. To signify to the SOAP data handler that another data

handler must be used when transforming this RNIF encoded String to an RNIF

business object, you must add the dh_mimetype property to the attribute’s ASI. The

Figure 53. attr_name and attr_ns validation

Chapter 5. SOAP data handler 137

value of the dh_mimetype ASI should be a legal mimeType specified in the

MO_DataHandler_Default business object. The mimeType is used to determine

which data handler to use on the String. For example, given the following SOAP

message where RNIFExample is the SOAP element that contains an RNIF encoded

String:

<CustInfo>

<Name>IBM Corporation</Name>

<CustID>95626</CustID>

<RNIFexample xsi:type="xsd:base64Binary">

1AWERYER238W98EYR9238728374871892787ASRJK234234JKAWER

J234AWERIJHI423488R4HASF1AWERYER238W98EYR923872837487

1892787ASRJK234234JKAWERJ234AWERIJHI423488R4HASF1AWER

YER238W98EYR9238728374871892787ASRJK234234JKAWERJ234A

WERIJHI423488R4HASF1AWERYER238W98EYR92387283748718927

87ASRJK234234JKAWERJ234AWERIJHI423488R4HASFWR234

</RNIFexample>

</CustomerInfo>

The SOAP business object would look like that shown in Figure 54.

Note that the RNIFExample element contains an RNIF encoded String as its

element value. Also, note that elem_name, elem_ns, type_name, type_ns and

xsdtype ASI properties still remain relevant for this business object attribute.

Note: If the element value returned by the called data handler is encoded text, the

type_name property must be set to base64Binary, the type_ns must

correspond to an xsd namespace, and xsdtype must be set to true.

Default business object resolution

For SOAP to business object transformations, the SOAP data handler and web

services connector adhere to a special contract of exchanging information to resolve

business object names. The connector provides the SOAP data handler with a list

of business object names mapped to BodyName and BodyNamespace pairs. In

addition, if there is a defaultfault business object set in the TLO, this information is

passed to the data handler. Given this information, the SOAP data handler

processes using the following steps:

1. The data handler receives a SOAP message

2. The data handler determines if this is a SOAP request, response or fault

message.

a. If a SOAP request or response message, the data handler reads the

BodyName and BodyNamespace from the first child element of the

SOAP-ENV:Body element.

b. If a SOAP fault message, the data handler reads the BodyName and

BodyNamespace from the first child element of the detail element in the

Figure 54. RNIFExample business object

138 Adapter for Web Services User Guide

fault message. If there is no detail element in the fault message, the data

handler uses the defaultfault business object for this transformation
3. If a defaultfault business object has not already been chosen, the data handler

attempts to match the BodyName and BodyNamespace found in step 2 to the

pairs found in the list provided by the connector. If a match is made, business

object resolution is successful. If no match is made, the data handler fails with

a meaningful error message.

Specifying a pluggable name handler

With default business object resolution, you can specify a pluggable name handler

to determine the business object to be used in SOAP-message-to-business-object

transformations. You do this by changing an

MO_DataHandler_DefaultSOAPConfig attribute.

The MO_DataHandler_DefaultSOAPConfig has, among others, two attributes of

type string that designate:

v ClassName The class name for the SOAP data handler base class. You do not

change this attribute value when specifying a pluggable name handler.

v SOAPNameHandler The SOAPNameHandler attribute dictates which name

handler is called. You can specify a value for a pluggable name handler. The

value of this property should be a class name. The SOAPNameHandler class is

an abstract class with the following signature:

public abstract String getBOName(Envelope msgEnv, SOAPProperty prop)

If the SOAPNameHandler attribute has a value, the SOAP data handler calls the

specified name handler. If the value does not exist, or if the specified name handler

fails to get a business object name, the SOAP data handler is called by default to

perform default business object resolution.

The SOAP DataHandler uses the SOAPNameHandler property specified in the MO

to instantiate the custom-name-handler class. It then calls the getBOName to

resolve the business object name. The SOAP DataHanlder passes the

SOAPProperty object it received from the connector to the custom-name-handler

implementation class.

This SOAPProperty object contains a structured list of potential candidate BOs for

resolution. Contained in the list are BodyName, BodyNamespace and BOName

triplets. These triplets are based on the SOAP Config MO configuration

information. The Default Name Handler uses this object to resolve the BO. A

custom name handler developer may use this object at their discretion.

Using the SOAPProperty object

You use the SOAPPropertyUtils class to extract the business object name from the

SOAPProperty. To do so, use the following method:

/**

 * Retrieve the business object name based on the body name and the body

* namespace

*.

* @param soapProp top level SOAPProperty object that is passed by the

* connector

* @param name body name from the SOAP message

* @param uri body namespace from the SOAP message

* @return business object name from the SOAPProperty object with the body

Chapter 5. SOAP data handler 139

* name and body namespace.

*/

java.lang.String findBOName(SOAPProperty soapProp, String name, String uri);

Sample NameHandler

The following is a sample NameHandler:package

com.ibm.adapters.datahandlers.soap.namehandlers;

// DOM and Parsers

import javax.xml.parsers.DocumentBuilder;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.xml.sax.InputSource;

// Apache SOAP

import org.apache.soap.Envelope;

import org.apache.soap.Header;

import org.apache.soap.Body;

import org.apache.soap.Constants;

import org.apache.soap.util.xml.DOMUtils;

import org.apache.soap.util.xml.XMLParserUtils;

import org.apache.soap.util.xml.QName;

import org.apache.soap.encoding.soapenc.SoapEncUtils;

import org.apache.soap.encoding.soapenc.Base64;

// java

import java.util.Vector;

// SOAP data handler

import com.ibm.adapters.datahandlers.soap.*;

import com.ibm.adapters.datahandlers.soap.exceptions.*;

public class MyCustomNameHandler extends SOAPNameHandler {

 private static final String BOPREFIX = "MyCustomBOPrefix";

 private static final char UNDERSCORE = ’_’;

 private static final char EMPTY_STRING = "";

 public String getBOName(Envelope msgEnv, SOAPProperty prop)

 throws SOAPNameHandlerException

 {

 // Initialize a String Buffer

 StringBuffer boName = new StringBuffer();

 // Determine the "MyCustomBOPrefix" SOAP data handler

 // MO property. If it exists, and is populated append

 // this prefix to the front of the BOName.

 String pref = dh.getOption(BOPREFIX);

 if (pref != null) {

 boName.append(pref.equals(EMPTY_STRING)

 ? EMPTY_STRING : pref + UNDERSCORE);

 }

 // Begin parsing the SOAP msg envelope.

 Element bodyEl, requestEl;

 Body msgBody = msgEnv.getBody();

 Vector bodyEntries = msgBody.getBodyEntries();

 if((bodyEntries == null) || (bodyEntries.size() <= 0))

 throw new SOAPNameHandlerException("No Body Entries exist

 for this SOAP message. Cannot determine BOName to use.");

 // Grab the first <SOAP-ENV:Body> Element

 bodyEl = (Element) bodyEntries.elementAt(0);

 // Grab the first Child Element of the <SOAP-ENV:Body>

 // Element

 requestEl = (Element) DOMUtils.getFirstChildElement(bodyEl);

 // Read the name and namespace of this first child

 String name = bodyEl.getLocalName();

 String uri = bodyEl.getNamespaceURI();

 if (uri == null)

 uri = Constants.NS_URI_SOAP_ENV;

 // Use the SOAPPropertyUtils findBOName() method to search

 // the SOAPProperty object for this messages first element

 // name and namespace. If no match is found, a

 // SOAPDataHandlerException will be thrown. If a match is

140 Adapter for Web Services User Guide

// found, and it’s not an empty string, append to the boname.

String returnedBOName = SOAPPropertyUtils.findBOName(prop, name, uri);

if (returnedBOName != null &&

 !returnedBOName.equals(EMPTY_STRING))

 boName.append(returnedBOName);

 return boName.toString()

 }

}

Limitations

The sections below discuss data handler limitations.

SOAP style and use guidelines

SOAP messages are created using a style and use defined by the web service. The

SOAP data handler provides the levels of support shown in Table 47.

 Table 47. Style and use guidelines

Style Use Parts defined using

Data handler

support

document literal element full

document literal type limited (see below)

document encoded element none

document encoded type limited (see below)

rpc literal element none

rpc literal type full

rpc encoded element none

rpc encoded type full

Part and part element order

When the SOAP data handler is transforming a SOAP message into a business

object and the SOAP message follows either the document/literal/type or

document/encoded/type formats, the message parts must be in the order

described in the WSDL. For example, consider the following WSDL:

<operation name="GetQuote"

 style="document" ...>

<input>

 <soap:body parts="Part1 Part2 Part3 Part4" use="literal">

</input>

</operation>

<definitions

 xmlns:stns="(SchemaTNS)"

xmlns:wtns="(WsdlTNS)"

targetNamespace="(WsdlTNS)">

<schema targetNamespace="(SchemaTNS)"

 elementFormDefault="qualified">

<element name="SimpleElement" type="xsd:int"/>

<element name="CompositElement" type="stns:CompositeType"/>

<complexType name="CompositeType">

<all>

 <element name=’elem_a’ type="xsd:int"/>

 <element name=’elem_b’ type="xsd:string"/>

</all>

</complexType>

</schema>

Chapter 5. SOAP data handler 141

<message...>

<part name=’Part1’ type="stns:CompositeType"/>

<part name=’Part2’ type="xsd:int"/>

<part name=’Part3’ element="stns:SimpleElement"/>

<part name=’Part4’ element="stns:CompositeElement"/>

</message>

Ö

</definitions>

The SOAP message must adhere to the order defined by the parts. In the SOAP

example below, notice that Part1 elements precede Part2, Part3, and Part4 elements.

This order must be maintained for proper BO resolution.

<soapenv:body... xmlns:mns="(MessageNS)"

 xmlns:stns="(SchemaTNS)">

 <stns:elem_a>123</stns:elem_a>

 <stns:elem_b>hello</stns:elem_b>

 <soapenc:int>123</soapenc:int>123</soapenc:int>123</soapenc:int>

 <stns:SimpleElement>123</stns:SimpleElement>

 <stns:CompositeElement>

 <stns:elem_a>123</stns:elem_a>

 <stns:elem_b>hello</stns:elem_b>

 </stns:CompositeElement>

</soapenv:body>

When the SOAP message follows either the document/literal/type or

document/encoded/type formats, part elements must be in order, too. In Part1 of

the example above, the elem_a tag must precede the elem_b tag. This limitation is

dictated by the data handler’s business object resolution process. Since default

business object resolution for document style makes use of the first element’s body

name and namespace, these must be the same element in all SOAP messages of

this particular request, response, or fault so that the same business object is

resolved in each case.

Note: When the SOAP message follows either the document/literal/type or

document/encoded/type formats, elements must not be optional.

XML limitations

The following XML structures, features, and notation are not supported:

v Multi-dimensional arrays

v Partially transmitted arrays

v Sparse arrays

v Mixed content

v Sequence, group, and choice model group components with maxOccurs greater

than one

142 Adapter for Web Services User Guide

Chapter 6. Enabling collaborations for request processing

v “Request processing collaboration checklist”

This chapter describes the steps you must follow to enable collaborations for

request processing. Collaborations use the connector to invoke web services.

Request processing collaboration checklist

Using Business Object Designer Express to generate business objects is part of the

process of developing collaborations. You must perform the following tasks,

described in sections below, to generate business objects that a collaboration can

use to invoke web services:

1. Identify the WSDL document either from a URL, UDDI or a file system. You

use third-party tools for this task—the web services connector provides no tools

for this task.

2. Open Business Object Designer Express and launch the WSDL ODA. For

further information, see “Starting the WSDL ODA” on page 157.

3. Configure the ODA.

4. Confirm your selections.

5. Generate a top-level business object that includes Request and (for synchronous

requests) Response and Fault business objects as well as SOAP Config MOs,

Protocol Config MOs, header container and child objects and

application-specific information appropriate to each object and attribute. The

WSDL ODA automates this process.

After you generate business objects, you must perform tasks to enable a

collaboration to invoke a web service using the connector and the SOAP data

handler. For steps on developing a collaboration, including creating a collaboration

template and object and binding its ports, see Collaboration Development Guide. For

further information on creating maps between generic business objects and the

application-specific business objects generated by the WSDL ODA, see Map

Development Guide.

© Copyright IBM Corp. 2004, 2005 143

144 Adapter for Web Services User Guide

Chapter 7. Exposing collaborations as web services

v “Procedure checklist”

v “Identifying or developing Business Objects” on page 146

v “Choosing or developing a collaboration template” on page 146

v “Binding the port of a new collaboration object” on page 146

v “WSDL Configuration Wizard” on page 148

v “WSDL Configuration Wizard processing of business objects in TLO format” on

page 150

v “Processing requirements and exceptions” on page 153

This chapter describes the design-time procedure of exposing a collaboration as a

web service. This enables the connector to process events when a web service

client invokes a collaboration.

Integrated design tools simplify the task of exposing a collaboration as a web

service. After configuring the collaboration and business objects for web services,

you use the WSDL Configuration Wizard. The wizard creates a WSDL document

and XML schema that represent the collaboration as a web service. The WSDL

outputs not only describe the collaboration but form the basis for its invocation by

a web service client.

Procedure checklist

You must perform the following tasks, described in the sections below, to expose a

collaboration as a web service:

1. Identify or, as needed, develop the business objects for use as request and

optionally (for synchronous event processing) response and fault SOAP

messages. There are two ways to generate these objects: 1) manually, using

Business Object Designer Express, or 2) if a WSDL interface file exists for your

web service, you can use the WSDL ODA to generate the Request and other

(Response or Fault) business objects. If you are following the second approach:

a. Specify the name of the collaboration in the Collaboration WSDL ODA

configuration property. This value dictates the ws_collab ASI in the TLO.

b. Specify either a WSDL_URL or UDDI_InquiryAP

I_URL WSDL ODA configuration property for the WSDL interface file (you

can also specify a directory path to this file, if it resides on your network or

locally).

For further information, see .“Starting the WSDL ODA” on page 157.

2. Develop a collaboration template or choose an existing one to use the business

objects.

3. Create the collaboration object and its ports for the web service.

You first must ensure that the collaboration object properly populates business

objects. For more information and a step-by-step procedure for creating a

collaboration object, see the System Implementation Guide .

Note: The collaboration object must have its maps configured for the

appropriate transformations. Maps convert the business object received

in the SOAP request message to the business object used by the

collaboration. Maps also convert the business object returned by the

© Copyright IBM Corp. 2004, 2005 145

collaboration to the business object that is embedded in the SOAP

response message. For more information about mapping and mapping

procedures, see the Map Development Guide.

4. Use the WSDL Configuration Wizard to create the WSDL document. The utility

also configures the web services connector.

Note: The WSDL Configuration Wizard creates implementation, interface, and

one or more schema files. This document refers to these outputs

collectively as the WSDL document.

5. Publish the WSDL document as required.

Note: The connector provides neither tools nor support for publishing WSDL

documents.

Identifying or developing Business Objects

You use Business Object Designer Express to create business objects and Connector

Configurator Express to configure the connector to support them.

For more information on Business Object Designer Express, see the Business Object

Development Guide. For detailed information on web services business objects, see

Chapter 3, “Business object requirements,” on page 25.

Choosing or developing a collaboration template

The collaboration template you choose or develop must have one or more

scenarios to expose as a web service. For further information on collaboration

templates, see Collaboration Development Guide.

Binding the port of a new collaboration object

After you have configured the port of a collaboration template for a business object

type you must create the collaboration object and bind its port to an instance of a

web services connector.

To create a new collaboration object and bind its port to an instance of the web

services connector:

1. Right click the Collaboration Objects folder and select Create New

Collaboration Object. This displays the Create New Collaboration window,

which displays the list of templates (as shown in Figure 55).

146 Adapter for Web Services User Guide

2. Select a collaboration template from the Template Name and enter a name for

the collaboration object in Collaboration object name field. This displays the

Bind Ports window as shown in Figure 56.

3. Select a port, click the Type arrow to display the pull down menu for the port

and choose WebSerivce (as shown in Figure 56)

All instances of the web services connector have a ConnectorType

application-specific property. By default, this property is set to WebService. The

Figure 55. Create New Collaboration window

Figure 56. Bind Ports window

Chapter 7. Exposing collaborations as web services 147

Bind Collaborations Port window in System Manager uses the value of the

ConnectorType property to determine which connectors are web service

connectors.

4. Click the BindWith arrow to display a list of connector instances. System

Manager displays instances of connectors whose ConnectorType properties

have values set to WebService. Choose an instance of the web services

connector. (An example is shown in Figure 57).

5. Click Finish.

You are now ready to run the WSDL Configuration Wizard.

WSDL Configuration Wizard

After you have created the collaboration object and bound its triggering port to an

instance of a web services connector, you are ready to use the WSDL Configuration

Wizard. Using binding, port name, operation and other data you specified for the

collaboration, business object definition, and connector, the utility produces the a

WSDL implementation file (*.impl.wsdl), a WSDL interface file (*.wsdl), and an

xml schema file (*.xsd). These files are a composite of the collaboration exposed as

a web service, and the utility allows you to specify whether to generate these as

separate files or as one file. The utility supports SOAP over HTTP, HTTPS, and

JMS protocols. Configuration information for the protocol listener framework is

retrieved from the connector-specific property ProtocolListenerFramework. This

property also makes the list of listeners available.

Running the wizard

To run the WSDL Configuration Wizard:

1. Right-click a collaboration object that you have configured for web services and

choose Expose as a web service in the popup menu. The WSDL Configuration

Wizard displays as shown in Figure 58

Figure 57. Selecting an instance of the web services connector

148 Adapter for Web Services User Guide

As shown in Figure 58, the columns are as follows:

v Port (Connector) The triggering port on the collaboration object that is

bound to a web services connector. The wizard gets this information from

the collaboration object.

v Operation If the business object is a TLO, the wizard gets this information

from the Request business object’s SOAP Config Mo BodyName attribute. If

the business object is a non-TLO, then the wizard combines the business

object name and the port name.

v Business Object Used to create the schema. The wizard gets this information

from the connector’s supported business objects for this triggering port.
2. Enter the following as needed:

v Service Name By default, the name you used to describe the collaboration

object

v Directory Name Where the adapter for web services and collaboration

templates and objects reside

v Target NameSpace The URL for the collaboration being exposed as a web

service.

v Collaboration Ports The information in these fields are as specified in the

Bind Ports window of the collaboration object configuration procedure.

v Collaboration Mode for Non-TLO This does not apply if you are using

TLOs. Otherwise, if you using a non-TLO object as input, you must specify

synchronous or asynchronous.

Figure 58. WSDL Configuration Wizard

Chapter 7. Exposing collaborations as web services 149

v Schema and WSDL Specify whether you want these outputs in a single file

or in separate files.
3. Click Finish. The utility generates outputs based on the inputs and

specifications you entered, all of which are summarized in the next section.

WSDL Configuration Wizard processing of business objects in

TLO format

The configuration wizard creates a WSDL operation for each triggering port of a

collaboration object that is bound to a web services connector. The creation of the

operation is based on the business objects that are associated with the invocation of

this collaboration.

The configuration wizard determines that a business object is in the TLO format by

reading the object-level ASI ws_eventtlo. If the ASI property is set to true, the

business object is a TLO. Using the TLO, the following WSDL properties are found:

v Operation Name and BodyNS When the wizard finds business objects in TLO

format, it creates an operation name using the BodyName property of the SOAP

Config MO within the SOAP Request business object of the TLO. Similarly, the

wizard determines the message namespace to be the BodyNS property in the

same SOAP Config MO

v Execution Mode By inspecting the ws_mode property from the business object

level ASI of the TLO, the wizard determines that the mode is either synchronous

or asynchronous, and creates a REQUEST_RESPONSE or ONE_WAY WSDL,

respectively.

To create WSDL operations based on TLOs, a collaboration can be configured in

two ways, with and without maps.

TLOs with maps: A collaboration is generally configured to accept Generic

Business Object (GBO) requests. That is, the collaboration template triggering ports

subscribe to GBOs. To use TLOs in this case, the collaboration must be bound to a

web services connector, and the connector must support the transformation of the

GBO to TLOs via maps. Figure 59 shows this scenario.

 When the collaboration and connector are configured in this way, the wizard

determines that the TLO business object will be used to create the operations

described in the WSDL document. This determination is made by inspecting the

connector-supported business objects and associated maps. It is important for the

run-time processing of the web services connector that the configured maps always

transform the collaboration’s GBO to one and only one TLO. Also, it is important

that the source and destination business objects of the inbound map translate to

the destination and source business objects of the outbound map, respectively.

TLOs without maps: The wizard also supports processing TLOs without maps. In

this case, the collaboration template’s triggering ports subscribe to TLOs directly.

GBO TLO

Collaboration Web services
connector

Figure 59. TLO with map

150 Adapter for Web Services User Guide

Because the web services connector supports the TLOs, maps are not required.

Figure 60 illustrates this scenario.

 When the collaboration and connector have been configured in this way, the

wizard uses the TLO business object found in the collaboration to create the

operations described in the WSDL document. The wizard determines that no maps

are configured for this port.

WSDL Configuration Wizard processing of business objects in

non-TLO format

Support for non-TLO business objects allows you to use pre-existing collaborations

and maps for exposing as web services. For this reason the wizard also supports

creating WSDL operations using business objects that are not in TLO format.

Similar to the TLO process, the wizard determines that a business object is in

non-TLO format by reading the object-level ASI ws_eventtlo. If the ASI property

does not exist or exists but is set to something other than true, this business object

is a non-TLO. A non-TLO is any business object that does not adhere to the web

services TLO structure. Using the non-TLO, the wizard discovers the following

properties:

v Operation Name and BodyNS When the wizard finds business objects in

non-TLO format, it creates an operation name using a combination of the

collaboration name, the business object name, and the port name. The Body

Namespace for the WSDL operation is configured using the Target Namespace

entry in the WSDL Configuration Wizard.

v WSCollaborations The wizard creates a hierarchy of properties in the web

services connector that includes a BO Name, a SOAP Body Name, a SOAP Body

Namespace, and a Mode for each WSDL operation in a port of a collaboration

that is exposed as a web service. Figure 61 shows a sample WSCollaborations

property:

TLO

Collaboration Web services
connector

Figure 60. TLO without map

Chapter 7. Exposing collaborations as web services 151

v Execution Mode The Execution mode for the WSDL operation is configured

using the Collab Mode for Non-TLO selection button in the WSDL

Configuration Wizard.

To create WSDL operations based on non-TLOs, a collaboration can be configured

in two ways, with and without maps.

Non-TLOs with maps: Collaborations are generally configured to accept Generic

Business Object (GBO) requests. At the same time, there may be pre-existing maps

that transform the GBO from the collaboration to a non-TLO business object.

Figure 62 shows this scenario.

 In this case, the wizard uses the non-TLO business object to create WSDL

operations described in the WSDL document. It is important for the run-time

processing of the web services connector that the configured maps always

transform the collaboration’s GBO to one and only one non-TLO. Also, it is

important that the source and destination business objects of the inbound map

translate exactly to the destination and source business objects of the outbound

map respectively.

Non-TLOs without maps: In highly specialized cases, collaborations may be

configured to accept requests from business objects other than GBOs. In this case,

Figure 61. WSCollaborations

Figure 62. Non-TLO with map

152 Adapter for Web Services User Guide

the non-TLO is a direct business object for the collaboration, and no maps exist.

Figure 63 shows this scenario.

 In this case, the wizard determines that no maps are configured for this port, so it

uses the non-TLO business object to create WSDL operations described in the

WSDL document.

Processing requirements and exceptions

The sections below discuss requirements of the WSDL Configuration Wizard that

apply to all types of objects (TLOs and non-TLOs) unless otherwise explicitly

mentioned. For further information on business object requirements for web

services TLOs, see Chapter 3, “Business object requirements,” on page 25.

Note: Among the business object ASI that the WSDL tool reads, only the following

can have internationalized characters:

v elem_name

v elem_ns

v attr_name

v attr_ns

v BodyName

v BodyNS

v type_name

v type_ns

Support for Use property in SOAP Config MO: The WSDL Configuration

Wizard supports the Use property in SOAP Config MOs, but throws an error if the

Use value in a SOAP Request BO and the corresponding SOAP Response BO are

different. You can set the Use value to literal or encoded to generate a WSDL

document. For more information on the Use property and its values, see “Style and

Use impact on SOAP messages” on page 113.

Support for Style in SOAP Config MO: Only rpc style is supported for exposing

collaborations as web services. If the Style is specified as document in the SOAP

Config MO, the wizard will throw an error.

Fault processing: The details attribute inside a SOAP Fault business object can

have one child attribute only. Otherwise, the utility generates an error.

The utility accepts Fault business objects. If it encounters multiple Fault business

objects, the utility processes the header container of the first or default fault

business object. Processing is as follows:

v No Namespace is specified for the soap:fault element inside the binding section.

v Fault is always specified using the document style and use literal.

Figure 63. Non-TLO without map

Chapter 7. Exposing collaborations as web services 153

v Message parts are specified using the element attribute.

Header fault processing: A header fault is processed as soap:headerfault, a child

element of soap:header inside the WSDL document binding section. The header

fault is processed using the headerfault ASI specified in the header child business

object as follows:

v No Namespace is specified for the soap:headerfault element.

v A header fault is always specified using the document style and use literal.

v Message parts are specified using the element attribute instead of the type

attribute.

Header Processing: Multiple header attributes are specified as SOAP header child

business objects inside a SOAP header container business object. A Header

container business object is identified by its ASI: soap_location=SOAPHeader.

During utility processing, a soap:header element is created inside binding section

for each of the attributes inside the header container business object and the

following rules apply:

v The header is always specified using document style and use literal.

v Message parts are specified using the element attribute instead of the type

attribute.

v If no elem_ns is specified, headers are written to the Body Namespace.

Note: The header container business object can be a child of SOAP Request,

Response or Fault business objects. The namespace attribute is not specified

for the soap:header element.

elem_ns ASI processing: The utility ignores elem_ns ASI at the message part

level. Instead, elem_ns is used in second- and lower-level attributes. Second- level

business object attributes can be defined in a separate namespace if elem_ns is

specified.

JMS protocol processing: SOAP/JMS binding in the port section of the WSDL

document contains the jms:address element. The following is an example of

jms:address element. (Attributes suffixed with ″?″ are optional).

 <jms:address

 destinationStyle = "queue"

jmsVendorURI = "http://ibm.com/ns/mqseries"?

initialContextFactory = "com.ibm.NamingFactory"?

jndiProviderURL = "iiop://something:900/wherever"?

 jndiConnectionFactoryName = "orange"

 jndiDestinationName = "fred"

 jmsProviderDestinationName="trash" />

If the LookupQueuesUsingJNDI connector property is set to true, the value of

InputQueue property corresponds to the jndiDestinationName attribute of the

jms:address element of the SOAP/JMS binding. The jms:address element is

specified in the wsdl:port section. If LookupQueueUsingJNDI is set to false, then

the jmsProviderDestinationName attribute is set to InputQueue. InputQueue is the

connector property available under the Listener_JMS hierarchical property. The

initialContextFactory, jndiProviderURL and jndiConnectionFactoryName properties

will be specified only for synchronous processing.

HTTP protocol processing: A sample port section from a WSDL document is

shown below:

154 Adapter for Web Services User Guide

<service name="StockQuoteWebService">

<port name="StockQuoteWebServicePort" binding="intf:StockQuoteBinding">

<soap:address location="http://localhost:8080/wbia/webservices/stockquoteservice"/>

</port>

</service>

The WSDL Configuration Wizard uses the value of host name and the port from

the context path. If the context path contains only the relative path without the

host name and port, then the value of host name and port property located under

the Listener_HTTP configuration property will be used to specify the location

attribute in soap:address xml element.

Chapter 7. Exposing collaborations as web services 155

156 Adapter for Web Services User Guide

Chapter 8. Using the WSDL ODA

v “Starting the WSDL ODA”

v “Running the WSDL ODA” on page 158

v “Configuring the agent” on page 159

v “Specifying the WSDL document” on page 161

v “Confirming selections” on page 163

v “Generating the objects” on page 163

v “Limitations” on page 164

Note: The Web Services Description Language (WSDL) Object Discovery Agent

(ODA) is used for generating business objects for request processing and,

when a WSDL Interface file is available, for event processing.

Collaborations use the connector to invoke web services. Or you can expose

collaborations as web services. Web services are described using WSDL (Web

Services Description Language). This chapter describes how to use the Web

Services Description Language (WSDL) Object Discovery Agent (ODA) to generate

business objects. The connector and SOAP data handler use these business objects

when collaborations invoke a web service and when exposing collaborations as

web services.

You use the WSDL ODA to generate business objects for two purposes:

1. The WSDL ODA can take a WSDL implementation file and generate business

objects for a collaboration to invoke an external web service.

2. The WSDL ODA can take a WSDL interface file and generate business objects

for a collaboration that is exposed as a web service.

You can launch the WSDL ODA when you use the Business Object Designer

Express. The WSDL ODA reads a WSDL document and creates the business objects

required by the connector and SOAP data handler. The WSDL ODA simplifies the

job of business object development.

Note: The WSDL ODA handles SOAP/HTTP and SOAP/JMS bindings in a WSDL.

Starting the WSDL ODA

You can start the WSDL ODA using one of the following scripts:

v Windows

– start_WSDLODA.bat

Note: You can also start the WSDL ODA using the shortcut that the Installer

automatically creates for Windows environments.
v Linux

– start_WSDLODA.sh
v On i5OS, use one of the following methods:

– From the Windows system where WBI SE Console for i5OS is installed, select

Programs>IBM Websphere Business Integration Server Express Console

>Console. Then specify the OS/400 and i5/OS system name or IP address

and a user profile and password that has *JOBCTL special authority. Select

the ODA from the list of ODAs and select the Start ODA button.

© Copyright IBM Corp. 2004, 2005 157

– From the i5/OS command line, to start the ODA as a batch job, run CL

Command QSH and from the QSHELL environment run:

/QIBM/ProdData/WBIServer44/bin/submit_oda.sh pathToODAStartScript

jobDescriptionName

where path ToODAStartScript is the full path to the ODA start script and

jobDescriptionName is the name of the job description to use in the

QWBISVR44 library.

– From the i5/OS command line, to start the ODA as a non-batch job, run the

CL Command QSH and from the QSHELL command entry, run the ODA

startup script directly:

start_ODAName.sh

You select, configure, and run the WSDL ODA using Business Object Designer

Express. Business Object Designer Express locates each ODA by the name specified

in the AGENTNAME variable of each Linux script file (start_WSDLODA.sh) or

Windows batch file (start_WSDLODA.bat).

Running the WSDL ODA

An Object Discovery Agent (ODA) simplifies the work of building business objects

for request processing. Business Object Designer Express provides a graphical

interface to all available ODAs, and helps you find the agent you need. The WSDL

ODA is named, by default, WSDLODA. The name as it appears in the WSDL

Wizard depends on the value of the AGENTNAME variable in the start_WSDLODA.bat

or start_WSDLODA.sh file. For more on ODAs and business object definitions and

how to configure, start and use ODAs, see the Business Object Development Guide .

You are encouraged to consult that document as needed while following the

procedures below.

After starting the Object Discovery Agent, follow these steps to launch the WSDL

ODA:

1. Open Business Object Designer Express.

2. From the File menu, select the New Using ODA... submenu. Business Object

Designer Express displays the Select Agent dialog box in the Business Object

Wizard. Figure 64 illustrates this window.

3. Click the Find Agents button to display all running agents and select the WSDL

ODA.

158 Adapter for Web Services User Guide

If Business Object Designer Express does not locate your WSDL ODA, check

the setup of the ODA.

4. Select the WSDL ODA in the Located Agents pane list and click Next.

This displays the Configure Agent wizard window, which shows the

configuration properties you need to specify.

Configuring the agent

The agent is configured in the Configure Agent window of the WSDL ODA

Business Object Wizard. Table 48 lists the properties you must configure for the

WSDL ODA.

Note: The first time you use the WSDL ODA, you must specify values for each

configuration properties. After doing so, you can save the property values in

a profile by clicking the Save button. The next time you use the WSDL

ODA, you can select the saved profile from the “Current profile” box.

 Table 48. WSDL ODA configuration properties

Property Type Required Default Description

WSDL_URL String Yes, when

not

specifying

a UDDI

None The URL of the WSDL

document. This value

can also be set to the

absolute path to a local

WSDL file. You can

specify the URL in a

native language. This

property is enabled for

transformation of

bidirectional languages.

UDDI_InquiryAP

I_URL

String Yes for

UDDI

None The URL of the UDDI

inquiry API.

Figure 64. Select Agent window

Chapter 8. Using the WSDL ODA 159

Table 48. WSDL ODA configuration properties (continued)

Property Type Required Default Description

WebServiceProvider String Yes for

UDDI

None The name of the target

web service provider.

This is normally the

Business name as

published on the UDDI

registry. This entry is

case sensitive and

requires English

characters only.

WebService String Yes for

UDDI

None The name of the web

service. This entry is

case sensitive and

requires English

characters only.

MimeType String No xml/soap The mime type of the

data handler that the

connector invokes. This

is set in the business

object TLO as the

default value and must

be in English characters

only.

BOPrefix String No SOAP_ This is appended to the

front of every business

object created. User

configurable (English

characters only) up to

eight characters.

BOVerb String Yes Create The verb set in the

SOAP Config MO of the

Request, and, optionally,

Response, and Fault

business objects.

Collaboration String No None This value dictates the

ws_collab ASI in the

TLO and is mandatory

when generating objects

for event processing.

GenerateUniqueBOs String No None If this property is true,

the business object

names will be unique

among all web services.

If this property is false,

you can reuse the

business objects among

operations with the

same part types.

SOAPVersion String No None Determines the SOAP

standard used to

generate BOs. Possible

values are 1.1 and 1.2.

160 Adapter for Web Services User Guide

Table 48. WSDL ODA configuration properties (continued)

Property Type Required Default Description

BiDi.ExtApplicationMetaData String Yes ILYNN Specifies the

bidirectional format of

the WSDL_URL

property, if needed;

otherwise, the use of the

default value will not

activate any bi-di

processing on the

WSDL_URL.

The next section describes how to specify the WSDL document in the Configure

Agent window.

Specifying the WSDL document

Web service business objects are generated from WSDL documents. This section

shows you how to select and specify the source of a WSDL document in the

Configure Agent window of the ODA.

The WSDL document may reside on the local file system or at a URL location on

the web or in a UDDI registry—you specify where the WSDL document resides

and the WSDL ODA retrieves it. (A complete WSDL service description may

consist of more than one document.)

Getting a WSDL document from a URL location

1. Specify the URL for the WSDL document in the configuration property

WSDL_URL.

The ODA then retrieves the list of web services from the WSDL document,

resolving the URLs of imported documents. The WSDL_URL property also

allows you to specify the location of the WSDL file on the local file system

using URL syntax (for example: file:///C:/test.wsdl) or an absolute path (for

example: C:\test.wsdl). You must ensure that the ODA has access to this

document and its dependencies (all the imported documents).

The WSDL_URL property is enabled for transformation of bidirectional

languages.

2. Click Next.

The ODA queries the URL for the web service provider and retrieves the list of

services defined in the WSDL at this URL location and then displays the list of

operations for the expanded port, as shown in Figure 65.

Note: The WSDL ODA displays the ports that have SOAP/JMS or

SOAP/HTTP bindings only and excludes other types of bindings.

Chapter 8. Using the WSDL ODA 161

3. Select one and only one of the operations from the list for the port (the

selectable operations are highlighted). You cannot select the service or port

nodes, which are for display purposes only. Note that WSDL operations may be

of several types: ONE_WAY, REQUEST_RESPONSE, SOLICIT_RESPONSE, and

NOTIFICATION. The WSDL ODA supports and displays only

REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to “Confirming selections” on page 163.

Getting a WSDL document from a UDDI registry

The ODA can also retrieve a WSDL document from a UDDI registry instead of a

URL location. For this to occur:

1. Specify the following properties in the Configure Agent window for your

“search key”:

v UDDI_InquiryAPI_URL (for example: https://uddi.ibm.com/ubr/inquiryapi)

v WebServiceProvider (for example: IBM Corporation)

v WebService (for example: StockQuoteService)

v The WSDL ODA uses exact name match (findQualifier) for inquiry within

the UDDI registry. Ensure that you are entering the right values for the

parameters. You can use a regular UDDI browser to find services provided

by the service provider.

The WSDL ODA uses these properties, which are described in Table 48, to

connect to the UDDI registry.

2. Click Next.

The ODA queries the UDDI registry for the web service provider and retrieves

the list of services matching the web service parameter you specified. The

WSDL ODA displays the list of services offered by the web service provider in

a window like that shown in Figure 65 When the UDDI query returns more

than one match, the WSDL ODA displays them appended with an underscore

(_) and a sequence number. For example: StockQuoteService_1,

StockQuoteService_2, and so on.

Figure 65. Select Source window

162 Adapter for Web Services User Guide

Note: The WSDL ODA displays the ports that have SOAP/JMS or

SOAP/HTTP bindings only.

3. Select one and only one of the operations from the list for the port. You cannot

select the service or port nodes, which are for display purposes only. Note that

WSDL operations may be of several types: ONE_WAY, REQUEST_RESPONSE,

SOLICIT_RESPONSE, and NOTIFICATION. The WSDL ODA supports and

displays only REQUEST_RESPONSE and ONE_WAY operations.

4. Click Next and go to “Confirming selections”

Note: The connector supports the UDDI Version 2 API only. Accordingly, you

cannot retrieve WSDL from UDDI registries that do not support UDDI

Version 2.

Confirming selections

After selecting a web service operation source, the WSDL ODA Business Object

Wizard displays a confirmation screen like that shown in Figure 66:

1. Confirm your selections.

2. Click Next and go to “Generating the objects.”

Generating the objects

After you confirm your WSDL document sources, the WSDL ODA generates the

business objects and meta-objects for the web service you wish to invoke or for the

collaboration you want to expose as a web service. See Figure 67 on page 164 and

follow the steps below for saving objects.

Note: The WSDL ODA cannot automatically select a key attribute for the top-level

business object. For business objects at all other levels, the WSDL ODA sets

the first attribute as the key. Accordingly, when you save WSDL

ODA-generated objects in Business Object Designer Express, an error

message informs you that the top-level object is missing a key attribute.

Assign a key attribute that reflects your business data and business object

Figure 66. Confirm window

Chapter 8. Using the WSDL ODA 163

requirements, then re-save the objects. Use caution when selecting the key

attribute; it is used in event sequencing and may lead to performance issues

if not selected carefully.

1. Check Save business objects to a file, or check Open the business objects in

separate windows. The latter choice launches the Business Object Designer

Express Express and opens the business objects in that application.

2. If you do not want the ODA to continue to run, check Shutdown ODA and

click Finish. Otherwise, just click Finish, and the ODA will be ready for the

next business object generation.

For request processing, the call to the web service must have a request and, if

synchronous, a response and fault messages. For event processing, the

collaboration exposed must have a request and, if synchronous, a response and

fault messages. The WSDL ODA generates business objects for each of these

including the application-specific information (ASI) at every level as well as SOAP

data handler, and protocol Config MOs. The SOAP bindings in WSDL document

determine the structure of SOAP message. For more on business object structure,

see Chapter 3, “Business object requirements,” on page 25.

Limitations

Table 49 describes WSDL ODA support for various combinations of style, use, and

part definitions, using either type or element in the WSDL and XML Schema.

 Table 49. WSDL ODA limitations

Style/Use/Parts Description

rpc/encoded/type Supported

rpc/encoded/element Supported

rpc/literal/type Supported

rpc/literal/element Supported

Figure 67. Save window

164 Adapter for Web Services User Guide

Table 49. WSDL ODA limitations (continued)

Style/Use/Parts Description

doc/encoded/type Not supported

doc/encoded/element Not supported

doc/literal/type Supported

doc/literal/element Supported

The WSDL ODA can retrieve WSDL files that are completely self-contained (in one

file) or are separated into an implementation file containing the service element, an

interface file containing all the other WSDL elements including types, messages,

portTypes, and bindings, and one or more files for the schemas. The WSDL ODA is

not able to successfully retrieve WSDL files that have more than one interface file,

for example, with messages and portTypes in one file and bindings in another file.

The <schema> element in the WSDL document must be self-contained in terms of

namespace prefixes. You cannot use a namespace prefix that is defined in the

<definitions><types>...</types></definitions> element of the WSDL document

in the <schema> element that is a child of the <types> element. You need to

re-define the namespace prefix on the <schema> element if it is to be used in the

sub-elements of the <schema> element. The following example shows a schema that

is incorrect because it is not self-contained:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:NS="NS">

 <types>

 <schema xmlns="http://www.w3.org/1999/XMLSchema">

 <element name="NSElem" type="NS:NSType"/>

 </schema>

 </types>

</definitions>

Namespace prefix NS is defined on the <definitions> element and is used without

re-definition on the <schema> element. Hence the WSDL ODA will throw an error.

To work around this limitation, re-define the namespace prefix NS on the <schema>

element as shown below:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:NS="NS">

 <types>

 <schema xmlns="http://www.w3.org/1999/XMLSchema" xmlns:NS="NS">

 <element name="NSElem" type="NS:NSType"/>

 </schema>

 </types>

</definitions>

Chapter 8. Using the WSDL ODA 165

166 Adapter for Web Services User Guide

Chapter 9. Troubleshooting

The chapter describes problems that you may encounter when starting up or

running the connector.

Start-up problems

 Problem Potential solution / explanation

Algorithm Not Supported/Algorithm ’SSL’ not available This error occurs when the SSL version specified in

Connector Configurator Express is not supported by your

JSSE provider. Solution: check JSSE provider’s

documentation for the supported SSL versions. For IBM

JSSE make sure your java.security file in the

ProductDir/lib/security directory has the following entry

security.provider.<number>=com.ibm.jsse.

IBMJSSEProvider

where <number> is the preference order for loading the

security provider.

Error loading keystore:Keystore file path:″<path>″

incorrectly specified:KeyStore not found

This error occurs if you specify an incorrect path for the

keystore and/or truststore files. Solution: check the

keystore file path specified in the SSL->KeyStore property

in Connector Configurator Express. Also, if you are using

truststore, check the truststore file path specified in

SSL->TrustStore property in Connector Configurator

Express.

KeyManagementError: KeyStore is tampered with,

KeyManagement error

This error occurs if your keystore and/or truststore have

been tampered with or otherwise corrupted. This error

may also occur if you have specified an incorrect value

for the password. Solution: ensure that the keystore has

not been tampered. Try recreating the keystore. Also

make sure you have entered a correct password in the

SSL->KeyStorePassword and SSL->TrustStorePassword

connector properties.

Error loading certificates from keystore This error occurs if your certificates and/or keystore,

truststore have been tampered with. This error may also

occur if you have specified an incorrect value for the

password. Solution: check to see if the certificate, keystore

or truststore have been tampered with. Also, ensure that

you have specified a correct password in the

SSL->KeyStorePassword and SSL->TruststorePassword

connector properties.

Error creating the server socket, terminating: error This error occurs if the SOAP/HTTP or SOAP/HTTPS

protocol listener cannot bind to the port specified in

connector properties. Solution: check the ports specified

for all of the SOAP/HTTP and SOAP/HTTPS protocol

listeners. If the same port is specified for more than one

listener, only one of the listeners can start up.

Additionally, check if you have any other service running

on that port. If so, then you may want to choose a

different port for the protocol listeners.

KeyManagementError:UnrecoverableKeyException, Keys

could not be recovered

This error occurs if the keystore or truststore cannot be

used. Solution: create a new keystore.

© Copyright IBM Corp. 2004, 2005 167

Problem Potential solution / explanation

SSL Handshake Exception: Unknown CA This occurs if you do not have a CA certificate in your

truststore. Solution: check whether the CA’s certificate, as

well as its self-signed certificates, reside in the truststore.

Also, ensure that the DN of the certificate has the host

name (preferably the IP address).

You notice excessive JSSE logging in your log file. If you do not want to see all of the underlying JSSE

details on your console, set the value of SSL->SSLDebug

property in Connector Configurator Express to false.

You have specified a protocol listener but the listener is

not getting initialized; you see the following warning

message in the connector:

Skipping Protocol Listener Property Set

 "SOME_LISTENER_NAME" with protocol property "":

 unable to determine the protocol listener

class.]

The connector was unable to extract a valid value for the

Protocol property of the protocol listener. Valid values are

soap/http, soap/https, or soap/jms. Solution: this is not

an error condition. However, if you want the connector to

use this listener, specify a valid Protocol property value.

You have specified a protocol handler, but it is not

getting initialized; you see following warning

message in the connector.

Unable to determine the type of the

handler; skipping initializing of current

handler. Handler property details:

Name: <Handler Name>;

Value:

 Name: Protocol; Value:

 Name: ResponseWaitTimeout; Value:

 Name: ReplyToQueue; Value: .]

The connector was unable to extract a valid value for the

Protocol property of the handler. Valid values are

soap/http or soap/jms. Solution: This is not an error

condition. However, if you want connector to use this

handler, specify a valid Protocol property value.

java.lang.NoClassDefFoundError:

Javax/jms/JMSException...

The connector cannot find jms.jar Solution: make sure

that jms.jar is in the connector classpath.

Fail to lookup, queue: "InProgressQueue"

for specified queue name: "<queue name>"

queue using JNDI "<queue name>""

javax.naming.NameNotFoundException:

<queue name>

If you are using SOAP/JMS web services with the

connector, then this problem occurs when you do not

create queues. This error may also occur, if you have set

JNDI->LookupQueuesUsingJNDI to true and the

connector is not able to look up the queues using JNDI.

Solution: create the queues required by the connector. If

JNDI->LookupQueuesUsingJNDI is set to true, make sure

queues required by the connector can be looked up using

JNDI.

Error in initializing, JNDI Context is not initialized, user

can not use JMS protocol

If you have configured the connector to use a SOAP/JMS

protocol listener or SOAP/JMS protocol handler, you

must specify JNDI properties. Solution: make sure that

you have specified required JNDI connector-specific

properties. Refer to your JNDI provider documentation to

determine the libraries and jar files required to connect to

your JNDI provider. Make sure all of the required jar files

are in the classpath of the connector. Also, make sure all

of the required libraries are in the path of the connector.

Error in getting initial context If you have configured the connector to use a SOAP/JMS

protocol listener or a SOAP/JMS protocol handler, you

must specify JNDI properties. This error may also occur if

you have not specified JNDI properties correctly. Solution:

check the JNDI properties. Make sure your JNDI is

configured properly. Refer to your JNDI provider

documentation to determine the libraries and jar files

required to connect to your JNDI provider. Make sure all

of the required jar files are in the classpath of the

connector. Also, make sure all of the required libraries are

in the path of the connector.

168 Adapter for Web Services User Guide

Run-time errors

 Problem Potential solution / explanation

Error parsing HTTP response:Reached end of stream

while reading HTTP response header

This error occurs when the connector invokes a

SOAP/HTTP web service. It occurs because your target

web service sent an incorrect HTTP response. Solution:

make sure your target SOAP/HTTP web service end

point address is correct.

Error in the url mentioned , unable to extract host

and port details ,destination is wrong <destination

URL>

This error occurs when the connector invokes an

SOAP/HTTP Web Service. It occurs because you have

specified an incorrect end point address for the

SOAP/HTTP web service. Solution: make sure you have

specified the correct end point address for the web

service.

Failure in sending event business object <BO Name> with

verb <Verb> to the broker. Received execution status ″-1″

and error message:

MapException: Unable to find the map to map

business objects <BO Name> for the connector

 controller WebServicesConnector

.

This error occurs when the integration broker fails to

process the event because the collaboration to which the

connector is sending the event synchronously either does

not exist or does not accept the business object verb.

Solution: if you are using a web services TLO for event

notification, examine the ws_collab object-level ASI of the

TLO. (The name of the TLO is given in the error

message.) Check the value of the ws_collab ASI. Make

sure this collaboration exists and is running. If ws_mode

BO level ASI is set to synch, ws_collab ASI is required.

Check the value of ws_verb object-level ASI. Make sure

the collaboration specified by the ws_collab ASI can be

triggered by the verb specified in the ws_verb ASI. If you

are using a non-TLO for event notification, examine the

WSCollaborations connector property. Find the

collaboration that will be invoked synchronously by this

business object. Make sure this collaboration exists and is

running.

Failed to transform a soap request into a request business

object. Soap Fault:

Failure in generating request object -

no verb could be set on the request bo

This error occurs during event notification when the

connector is unable to determine the verb of the business

object that the connector is attempting to send to the

integration broker. Solution: if you are using a web

services TLO for event notification, make sure you have

specified ws_verb object-level ASI for this TLO. Specify

the verb as the value of this ASI. If you are using a

non-TLO for event notification, the SOAP message sent

by your web service client must contain the verb element.

The SOAP data handler sets the verb of the business

object using the value of the verb element in the SOAP

message.If the web service client does not send the verb

in the SOAP message, the SOAP data handler cannot set

the verb on the business object. In this case, the connector

cannot deliver the business object to the integration

broker. If you suspect that your web service clients may

not include a verb element in the SOAP message, you

may provide a DefaultVerb verb-level ASI for this

business object. If you do so, the connector sets this verb

on the business object before sending it to the integration

broker.

Chapter 9. Troubleshooting 169

170 Adapter for Web Services User Guide

Appendix A. Standard configuration properties for connectors

This appendix describes the standard configuration properties for the connector

component of WebSphere Business Integration Server Express adapters. The

information covers InterChange Server Express.

For information about properties specific to this connector, see the relevant section

in this guide.

New properties

These standard properties have been added in this release:

v AdapterHelpName

v BiDi.Application

v BiDi.Broker

v BiDi.Metadata

v BiDi.Transformation

v ControllerEventSequencing

v jms.ListenerConcurrency

v jms.TransportOptimized

v TivoliTransactionMonitorPerformance

Standard connector properties overview

Connectors have two types of configuration properties:

v Standard configuration properties, which are used by the framework

v Application, or connector-specific, configuration properties, which are used by

the agent

These properties determine the adapter framework and the agent run-time

behavior.

This section describes how to start Connector Configurator Express and describes

characteristics common to all properties. For information on configuration

properties specific to a connector, see its adapter user guide.

Starting Connector Configurator Express

You configure connector properties from Connector Configurator Express, which

you access from System Manager. For more information on using Connector

Configurator Express, refer to the sections on Connector Configurator Express in

this guide.

Connector Configurator Express and System Manager run only on the Windows

system. If you are running the connector on a Linux system, you must have a

Windows machine with these tools installed.

To set connector properties for a connector that runs on Linux, you must start up

System Manager on the Windows machine, connect to the Linux integration broker,

and bring up Connector Configurator Express for the connector.

© Copyright IBM Corp. 2004, 2005 171

Configuration property values overview

The connector uses the following order to determine a property’s value:

1. Default

2. Repository for InterChange Server Express integration broker.

3. Local configuration file

4. Command line

The default length of a property field is 255 characters. There is no limit on the

length of a STRING property type. The length of an INTEGER type is determined

by the server on which the adapter is running.

A connector obtains its configuration values at startup. If you change the value of

one or more connector properties during a run-time session, the property’s update

method determines how the change takes effect.

The update characteristics of a property, that is, how and when a change to the

connector properties takes effect, depend on the nature of the property.

There are four update methods for standard connector properties:

v Dynamic

The new value takes effect immediately after the change is saved in System

Manager. However, if the connector is in stand-alone mode (independently of

System Manager).

v Agent restart (InterChange Server Express only)

The new value takes effect only after you stop and restart the connector agent.

v Component restart

The new value takes effect only after the connector is stopped and then restarted

in System Manager. You do not need to stop and restart the agent or the server

process.

v System restart

The new value takes effect only after you stop and restart the connector agent

and the server.

To determine how a specific property is updated, refer to the Update Method

column in the Connector Configurator Express window, or see the Update Method

column in Table 50 on page 173.

There are three locations in which a standard property can reside. Some properties

can reside in more than one location.

v ReposController

The property resides in the connector controller and is effective only there. If

you change the value on the agent side, it does not affect the controller.

v ReposAgent

The property resides in the agent and is effective only there. A local

configuration can override this value, depending on the property.

v LocalConfig

The property resides in the configuration file for the connector and can act only

through the configuration file. The controller cannot change the value of the

property, and is not aware of changes made to the configuration file unless the

system is redeployed to update the controller explicitly.

172 Adapter for Web Services User Guide

Standard properties quick-reference

Table 50 provides a quick-reference to the standard connector configuration

properties. Not all connectors require all of these properties, and property settings

may differ. .

See the section following the table for a description of each property.

Note: In the Notes column in Table 50, the phrase “RepositoryDirectory is set to

<REMOTE>” indicates that the broker is InterChange Server Express.

 Table 50. Summary of standard configuration properties

Property name Possible values Default value

Update

method Notes

AdapterHelpName One of the valid

subdirectories in

<ProductDir>\bin\Data\

App\Help that has a valid

<Regional Setting>

directory

Template name, if valid,

or blank field

Component

restart

Supported regional

settings.

Include chs_chn,

cht_twn, deu_deu,

esn_esp, fra_fra,

ita_ita, jpn_jpn,

kor_kor, ptb_bra,

and enu_usa (default).

AdminInQueue Valid JMS queue name <CONNECTORNAME>

/ADMININQUEUE

Component

restart

This property is valid

 only when the value

of DeliveryTransport

is JMS

AdminOutQueue Valid JMS queue name <CONNECTORNAME>

/ADMINOUTQUEUE

Component

restart

This property is valid

only when the value

of DeliveryTransport

is JMS

AgentConnections 1 through 4 1 Component

restart

This property is valid

only when the value

of DeliveryTransport

is MQ or IDL, the value

of Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

AgentTraceLevel 0 through 5 0 Dynamic

for ICS;

otherwise

Component

restart

ApplicationName Application name The value specified for

the connector

application name

Component

restart

BiDi.Application Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value

of BiDi.Transforma tion

is true

Appendix A. Standard configuration properties for connectors 173

Table 50. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

BiDi.Broker Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true. If the value of

BrokerType is

ICS, the property

is read-only.

BiDi.Metadata Any valid combination

of these bidirectional

attributes:

 1st letter: I,V

2nd letter: L,R

3rd letter: Y, N

4th letter: S, N

5th letter: H, C, N

ILYNN (five letters) Component

restart

This property is valid

only if the value of

BiDi.Transformation

is true.

BiDi.Transformation true or false false Component

restart

This property is valid

only if the value of

BrokerType is

not WAS

BrokerType ICS ICS Component

restart

CharacterEncoding Any supported code.

The list shows this subset:

ascii7, ascii8, SJIS,

Cp949, GBK, Big5,

Cp297, Cp273, Cp280,

Cp284, Cp037, Cp437

.

ascii7 Component

restart

This property is valid

only for C++ connectors.

CommonEventInfrastruc

ture

true or false false Component

restart

CommonEventInfrastruc

tureURL

A URL string, for

example,

corbaloc:iiop:

host:2809.

No default value. Component

restart

This property is valid

only if the value of

CommonEvent

Infrastructure is true.

ConcurrentEventTrig

geredFlows

1 through 32,767 1 Component

restart

This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ContainerManagedEvents Blank or JMS Blank Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

ControllerEventSequenc

ing

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ControllerStoreAndFor

wardMode

true or false true Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

174 Adapter for Web Services User Guide

Table 50. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

ControllerTraceLevel 0 through 5 0 Dynamic This property is valid

only if the value of

RepositoryDirectory

is set to <REMOTE>

and the value of

BrokerType is ICS.

DeliveryQueue Any valid JMS

queue name

<CONNECTORNAME>

/DELIVERYQUEUE

Component

restart

This property is valid

only when the value

of Delivery Transport

is JMS.

DeliveryTransport IDL or JMS IDL when the value of

RepositoryDirectory is

<REMOTE>, otherwise

JMS

Component

restart

If the value of

RepositoryDirectory is

not <REMOTE>,

the only valid value for

this property is JMS.

DuplicateEventElimina

tion

true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

EnableOidForFlowMoni

toring

true or false false Component

restart

This property is valid

only if the value of

BrokerType is ICS.

FaultQueue Any valid queue name. <CONNECTORNAME>

/FAULTQUEUE

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.FactoryClassName CxCommon.Messaging.jms

.IBMMQSeriesFactory,

CxCommon.Messaging

.jms.SonicMQFactory,

or any Java class name

CxCommon.Messaging.

jms.IBMMQSeriesFactory

Component

restart

This property is

valid only if the value

of DeliveryTransport

is JMS.

jms.ListenerConcurrency 1 through 32767 1 Component

restart

This property is

valid only if the value of

jms.TransportOptimized

is true.

jms.MessageBrokerName If the value of

jms.FactoryClassName

is IBM, use

crossworlds.queue.

manager.

crossworlds.queue.

manager

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.NumConcurrent

Requests

Positive integer 10 Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.Password Any valid password Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

.

jms.TransportOptimized true or false false Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS and the value of

BrokerType is ICS.

jms.UserName Any valid name Component

restart

This property is valid

only if the value of

Delivery Transport is JMS.

Appendix A. Standard configuration properties for connectors 175

Table 50. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

JvmMaxHeapSize Heap size in megabytes 128m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMaxNativeStackSize Size of stack in kilobytes 128k Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

JvmMinHeapSize Heap size in megabytes 1m Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

ListenerConcurrency 1 through 100 1 Component

restart

This property is valid

only if the value of

DeliveryTransport is MQ.

Locale This is a subset of the

supported locales:

en_US, ja_JP, ko_KR,

 zh_CN, zh_TW, fr_FR,

de_DE, it_IT,

es_ES, pt_BR

en_US Component

restart

LogAtInterchangeEnd true or false false Component

restart

This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MaxEventCapacity 1 through 2147483647 2147483647 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

MessageFileName Valid file name InterchangeSystem.txt Component

restart

MonitorQueue Any valid queue name <CONNECTORNAME>

/MONITORQUEUE

Component

restart

This property is valid

only if the value of

DuplicateEventElimination

is true and

ContainerManagedEvents

has no value.

OADAutoRestartAgent true or false false Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

OADMaxNumRetry A positive integer 1000 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

176 Adapter for Web Services User Guide

Table 50. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

OADRetryTimeInterval A positive integer

in minutes

10 Dynamic This property is valid

only if the value of

Repository Directory

is set to <REMOTE>

and the value of

BrokerType is ICS.

PollEndTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

PollFrequency A positive integer

(in milliseconds)

10000 Dynamic

if broker is

ICS;

otherwise

Component

restart

PollQuantity 1 through 500 1 Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

PollStartTime HH = 0 through 23

MM = 0 through 59

HH:MM Component

restart

RepositoryDirectory <REMOTE> if the broker

is ICS; otherwise any

valid local directory.

For ICS, the value is set

to <REMOTE>

Agent restart

RequestQueue Valid JMS queue name <CONNECTORNAME>

/REQUESTQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport

is JMS

ResponseQueue Valid JMS queue name <CONNECTORNAME>

/RESPONSEQUEUE

Component

restart

This property is valid

only if the value of

DeliveryTransport is JMS.

RestartRetryCount 0 through 99 3 Dynamic

if ICS;

otherwise

Component

restart

RestartRetryInterval A value in minutes

from 1 through

2147483647

1 Dynamic

if ICS;

otherwise

Component

restart

RHF2MessageDomain mrm or xml mrm Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS and the value of

WireFormat is CwXML.

SourceQueue Any valid WebSphere

MQ queue name

<CONNECTORNAME>

/SOURCEQUEUE

Agent restart This property is valid

only if the value of

ContainerManagedEvents

is JMS.

SynchronousRequest

Queue

Any valid queue name. <CONNECTORNAME>

/SYNCHRONOUSREQUEST

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

SynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

Appendix A. Standard configuration properties for connectors 177

Table 50. Summary of standard configuration properties (continued)

Property name Possible values Default value

Update

method Notes

SynchronousResponse

Queue

Any valid queue name <CONNECTORNAME>

/SYNCHRONOUSRESPONSE

QUEUE

Component

restart

This property is valid

only if the value

of DeliveryTransport

is JMS.

TivoliMonitorTransaction

Performance

true or false false Component

restart

WireFormat CwXML or CwBO CwXML Agent restart The value of this

property must be CwXML

if the value

of RepositoryDirectory

is not set to <REMOTE>.

The value must

be CwBO if the value of

RepositoryDirectory is set

to <REMOTE>.

WsifSynchronousRequest

Timeout

0 to any number

(milliseconds)

0 Component

restart

This property is not valid

if the value of

BrokerType is ICS..

XMLNameSpaceFormat short or long short Agent restart This property is not valid

if the value of

BrokerType is

ICS.

Standard properties

This section describes the standard connector configuration properties.

AdapterHelpName

The AdapterHelpName property is the name of a directory in which

connector-specific extended help files are located. The directory must be located in

<ProductDir>\bin\Data\App\Help and must contain at least the language

directory enu_usa. It may contain other directories according to locale.

The default value is the template name if it is valid, or it is blank.

AdminInQueue

The AdminInQueue property specifies the queue that is used by the integration

broker to send administrative messages to the connector.

The default value is <CONNECTORNAME>/ADMININQUEUE

AdminOutQueue

The AdminOutQueue property specifies the queue that is used by the connector to

send administrative messages to the integration broker.

The default value is <CONNECTORNAME>/ADMINOUTQUEUE

AgentConnections

The AgentConnections property controls the number of ORB (Object Request

Broker) connections opened when the ORB initializes.

The default value of this property is 1.

178 Adapter for Web Services User Guide

AgentTraceLevel

The AgentTraceLevel property sets the level of trace messages for the

application-specific component. The connector delivers all trace messages

applicable at the tracing level set and lower.

The default value is 0.

ApplicationName

The ApplicationName property uniquely identifies the name of the connector

application. This name is used by the system administrator to monitor the

integration environment. This property must have a value before you can run the

connector.

The default is the name of the connector.

BiDi.Application

The BiDi.Application property specifies the bidirectional format for data coming

from an external application into the adapter in the form of any business object

supported by this adapter. The property defines the bidirectional attributes of the

application data. These attributes are:

v Type of text: implicit or visual (I or V)

v Text direction: left-to-right or right-to-left (L or R)

v Symmetric swapping: on or off (Y or N)

v Shaping (Arabic): on or off (S or N)

v Numerical shaping (Arabic): Hindi, contextual, or nominal (H, C, or N)

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Broker

The BiDi.Broker property specifies the bidirectional format for data sent from the

adapter to the integration broker in the form of any supported business object. It

defines the bidirectional attributes of the data, which are as listed under

BiDi.Application above.

This property is valid only if the BiDi.Transformation property value is set to true.

If the BrokerType property is ICS, the property value is read-only.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

BiDi.Metadata

The BiDi.Metadata property defines the bidirectional format or attributes for the

metadata, which is used by the connector to establish and maintain a link to the

external application. The attribute settings are specific to each adapter using the

bidirectional capabilities. If your adapter supports bidirectional processing, refer to

section on adapter-specific properties for more information.

This property is valid only if the BiDi.Transformation property value is set to true.

The default value is ILYNN (implicit, left-to-right, on, off, nominal).

Appendix A. Standard configuration properties for connectors 179

BiDi.Transformation

The BiDi.Transformation property defines whether the system performs a

bidirectional transformation at run time.

If the property value is set to true, the BiDi.Application, BiDi.Broker, and

BiDi.Metadata properties are available. If the property value is set to false, they

are hidden.

The default value is false.

BrokerType

The BrokerType property identifies the integration broker type that you are using.

The value is ICS, , or .

CharacterEncoding

The CharacterEncoding property specifies the character code set used to map from

a character (such as a letter of the alphabet, a numeric representation, or a

punctuation mark) to a numeric value.

Note: Java-based connectors do not use this property. C++ connectors use the

value ascii7 for this property.

By default, only a subset of supported character encodings is displayed. To add

other supported values to the list, you must manually modify the

\Data\Std\stdConnProps.xml file in the product directory (<ProductDir>). For

more information, see the Connector Configurator Express appendix in this guide.

ConcurrentEventTriggeredFlows

The ConcurrentEventTriggeredFlows property determines how many business

objects can be concurrently processed by the connector for event delivery. You set

the value of this attribute to the number of business objects that are mapped and

delivered concurrently. For example, if you set the value of this property to 5, five

business objects are processed concurrently.

Setting this property to a value greater than 1 allows a connector for a source

application to map multiple event business objects at the same time and deliver

them to multiple collaboration instances simultaneously. This speeds delivery of

business objects to the integration broker, particularly if the business objects use

complex maps. Increasing the arrival rate of business objects to collaborations can

improve overall performance in the system.

To implement concurrent processing for an entire flow (from a source application

to a destination application), the following properties must configured:

v The collaboration must be configured to use multiple threads by setting its

Maximum number of concurrent events property high enough to use multiple

threads.

v The destination application’s application-specific component must be configured

to process requests concurrently.

The ConcurrentEventTriggeredFlows property has no effect on connector polling,

which is single-threaded and is performed serially.

180 Adapter for Web Services User Guide

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1.

ContainerManagedEvents

The ContainerManagedEvents property allows a JMS-enabled connector with a

JMS event store to provide guaranteed event delivery, in which an event is

removed from the source queue and placed on the destination queue as one JMS

transaction.

When this property is set to JMS, the following properties must also be set to

enable guaranteed event delivery:

v PollQuantity = 1 to 500

v SourceQueue = /SOURCEQUEUE

You must also configure a data handler with the MimeType and DHClass (data

handler class) properties. You can also add DataHandlerConfigMOName (the

meta-object name, which is optional). To set those values, use the Data Handler

tab in Connector Configurator Express.

Although these properties are adapter-specific, here are some example values:

v MimeType = text\xml

v DHClass = com.crossworlds.DataHandlers.text.xml

v DataHandlerConfigMOName = MO_DataHandler_Default

The fields for these values in the Data Handler tab are displayed only if you have

set the ContainerManagedEvents property to the value JMS.

Note: When ContainerManagedEvents is set to JMS, the connector does not call its

pollForEvents() method, thereby disabling that method’s functionality.

The ContainerManagedEvents property is valid only if the value of the

DeliveryTransport property is set to JMS.

There is no default value.

ControllerEventSequencing

The ControllerEventSequencing property enables event sequencing in the connector

controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE> (BrokerType is ICS).

The default value is true.

ControllerStoreAndForwardMode

The ControllerStoreAndForwardMode property sets the behavior of the connector

controller after it detects that the destination application-specific component is

unavailable.

If this property is set to true and the destination application-specific component is

unavailable when an event reaches InterChange Server Express (ICS), the connector

Appendix A. Standard configuration properties for connectors 181

controller blocks the request to the application-specific component. When the

application-specific component becomes operational, the controller forwards the

request to it.

However, if the destination application’s application-specific component becomes

unavailable after the connector controller forwards a service call request to it, the

connector controller fails the request.

If this property is set to false, the connector controller begins failing all service

call requests as soon as it detects that the destination application-specific

component is unavailable.

This property is valid only if the value of the RepositoryDirectory property is set

to <REMOTE> (the value of the BrokerType property is ICS).

The default value is true.

ControllerTraceLevel

The ControllerTraceLevel property sets the level of trace messages for the

connector controller.

This property is valid only if the value of the RepositoryDirectory property is set

to set to <REMOTE>.

The default value is 0.

DeliveryQueue

The DeliveryQueue property defines the queue that is used by the connector to

send business objects to the integration broker.

This property is valid only if the value of the DeliveryTransport property is set to

JMS.

The default value is <CONNECTORNAME>/DELIVERYQUEUE.

DeliveryTransport

The DeliveryTransport property specifies the transport mechanism for the delivery

of events. For Java Messaging Service, the value is JMS.

v If the value of the RepositoryDirectory property is set to <REMOTE>, the value

of the DeliveryTransport property can be IDL or JMS, and the default is IDL.

v If the value of the RepositoryDirectory property is a local directory, the value

can be only JMS.

The connector sends service-call requests and administrative messages over

CORBA IIOP if the value of the RepositoryDirectory property is IDL.

The default value is JMS.

JMS

The JMS transport mechanism enables communication between the connector and

client connector framework using Java Messaging Service (JMS).

If you select JMS as the delivery transport, additional JMS properties such as

jms.MessageBrokerName, jms.FactoryClassName, jms.Password, and jms.UserName

182 Adapter for Web Services User Guide

are listed in Connector Configurator Express. The properties

jms.MessageBrokerName and jms.FactoryClassName are required for this transport.

There may be a memory limitation if you use the JMS transport mechanism for a

connector in the following environment when InterChange Server Espress (ICS) is

the integration broker.

In this environment, you may experience difficulty starting both the connector

controller (on the server side) and the connector (on the client side) due to memory

use within the WebSphere MQ client. If your installation uses less than 768MB of

process heap size, set the following variable and property:

v Set the LDR_CNTRL environment variable in the CWSharedEnv.sh script.

This script is located in the \bin directory below the product directory

(<ProductDir>). Using a text editor, add the following line as the first line in the

CWSharedEnv.sh script:

export LDR_CNTRL=MAXDATA=0x30000000

This line restricts heap memory usage to a maximum of 768 MB (3 segments *

256 MB). If the process memory grows larger than this limit, page swapping can

occur, which can adversely affect the performance of your system.

v Set the value of the IPCCBaseAddress property to 11 or 12. For more

information on this property, see the WebSphere Business Integration Server Express

Installation Guide for Windows, for Linux, or for i5/OS.

DuplicateEventElimination

When the value of this property is true, a JMS-enabled connector can ensure that

duplicate events are not delivered to the delivery queue. To use this feature, during

connector development, the connector must have a unique event identifier set as

the business object ObjectEventId attribute in the application-specific code.

Note: When the value of this property is true, the MonitorQueue property must

be enabled to provide guaranteed event delivery.

The default value is false.

EnableOidForFlowMonitoring

When the value of this property is true, the adapter runtime will mark the

incoming ObjectEventID as a foreign key for flow monitoring.

This property is only valid if the BrokerType property is set to ICS.

The default value is false.

FaultQueue

If the connector experiences an error while processing a message, it moves the

message (and a status indicator and description of the problem) to the queue

specified in the FaultQueue property.

The default value is <CONNECTORNAME>/FAULTQUEUE.

jms.FactoryClassName

The jms.FactoryClassName property specifies the class name to instantiate for a

JMS provider. This property must be set if the value of the DeliveryTransport

property is JMS.

Appendix A. Standard configuration properties for connectors 183

The default is CxCommon.Messaging.jms.IBMMQSeriesFactory.

jms.ListenerConcurrency

The jms.ListenerConcurrency property specifies the number of concurrent listeners

for the JMS controller. It specifies the number of threads that fetch and process

messages concurrently within a controller.

This property is valid only if the value of the jms.OptimizedTransport property is

true.

The default value is 1.

jms.MessageBrokerName

The jms.MessageBrokerName specifies the broker name to use for the JMS

provider. You must set this connector property if you specify JMS as the delivery

transport mechanism (in the DeliveryTransport property).

When you connect to a remote message broker, this property requires the following

values:
QueueMgrName:Channel:HostName:PortNumber

where:

QueueMgrName is the name of the queue manager.

Channel is the channel used by the client.

HostName is the name of the machine where the queue manager is to reside.

PortNumberis the port number used by the queue manager for listening

For example:

jms.MessageBrokerName = WBIMB.Queue.Manager:CHANNEL1:RemoteMachine:1456

The default value is crossworlds.queue.manager. Use the default when connecting

to a local message broker.

jms.NumConcurrentRequests

The jms.NumConcurrentRequests property specifies the maximum number of

concurrent service call requests that can be sent to a connector at the same time.

Once that maximum is reached, new service calls are blocked and must wait for

another request to complete before proceeding.

The default value is 10.

jms.Password

The jms.Password property specifies the password for the JMS provider. A value

for this property is optional.

There is no default value.

jms.TransportOptimized

The jms.TransportOptimized property determines if the WIP (work in progress) is

optimized. You must have a WebSphere MQ provider to optimize the WIP. For

optimized WIP to operate, the messaging provider must be able to:

1. Read a message without taking it off the queue

2. Delete a message with a specific ID without transferring the entire message to

the receiver’s memory space

184 Adapter for Web Services User Guide

3. Read a message by using a specific ID (needed for recovery purposes)

4. Track the point at which events that have not been read appear.

The JMS APIs cannot be used for optimized WIP because they do not meet

conditions 2 and 4 above, but the MQ Java APIs meet all four conditions, and

hence are required for optimized WIP.

This property is valid only if the value of DeliveryTransport is JMS and the value of

BrokerType is ICS.

The default value is false.

jms.UserName

the jms.UserName property specifies the user name for the JMS provider. A value

for this property is optional.

There is no default value.

JvmMaxHeapSize

The JvmMaxHeapSize property specifies the maximum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128m.

JvmMaxNativeStackSize

The JvmMaxNativeStackSize property specifies the maximum native stack size for

the agent (in kilobytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 128k.

JvmMinHeapSize

The JvmMinHeapSize property specifies the minimum heap size for the agent (in

megabytes).

This property is valid only if the value for the RepositoryDirectory property is set

to <REMOTE>.

The default value is 1m.

ListenerConcurrency

The ListenerConcurrency property supports multithreading in WebSphere MQ

Listener when ICS is the integration broker. It enables batch writing of multiple

events to the database, thereby improving system performance.

This property valid only with connectors that use MQ transport. The value of the

DeliveryTransport property must be MQ.

Appendix A. Standard configuration properties for connectors 185

The default value is 1.

Locale

The Locale property specifies the language code, country or territory, and,

optionally, the associated character code set. The value of this property determines

cultural conventions such as collation and sort order of data, date and time

formats, and the symbols used in monetary specifications.

A locale name has the following format:

ll_TT.codeset

where:

ll is a two-character language code (in lowercase letters)

TT is a two-letter country or territory code (in uppercase letters)

codeset is the name of the associated character code set (may be optional).

By default, only a subset of supported locales are listed. To add other supported

values to the list, you modify the \Data\Std\stdConnProps.xml file in the

<ProductDir>\bin directory. For more information, refer to the Connector

Configurator Express appendix in this guide.

If the connector has not been internationalized, the only valid value for this

property is en_US. To determine whether a specific connector has been globalized,

refer to the user guide for that adapter.

The default value is en_US.

LogAtInterchangeEnd

The LogAtInterchangeEnd property specifies whether to log errors to the log

destination of the integration broker.

Logging to the log destination also turns on e-mail notification, which generates

e-mail messages for the recipient specified as the value of MESSAGE_RECIPIENT

in the InterchangeSystem.cfg file when errors or fatal errors occur. For example,

when a connector loses its connection to the application, if the value of

LogAtInterChangeEnd is true, an e-mail message is sent to the specified message

recipient.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

MaxEventCapacity

The MaxEventCapacity property specifies maximum number of events in the

controller buffer. This property is used by the flow control feature.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The value can be a positive integer between 1 and 2147483647.

The default value is 2147483647.

186 Adapter for Web Services User Guide

MessageFileName

The MessageFileName property specifies the name of the connector message file.

The standard location for the message file is \connectors\messages in the product

directory. Specify the message file name in an absolute path if the message file is

not located in the standard location.

If a connector message file does not exist, the connector uses

InterchangeSystem.txt as the message file. This file is located in the product

directory.

Note: To determine whether a connector has its own message file, see the

individual adapter user guide.

The default value is InterchangeSystem.txt.

MonitorQueue

The MonitorQueue property specifies the logical queue that the connector uses to

monitor duplicate events.

It is valid only if the value of the DeliveryTransport property is JMS and the value

of the DuplicateEventElimination is true.

The default value is <CONNECTORNAME>/MONITORQUEUE

OADAutoRestartAgent

the OADAutoRestartAgent property specifies whether the connector uses the

automatic and remote restart feature. This feature uses the WebSphere

MQ-triggered Object Activation Daemon (OAD) to restart the connector after an

abnormal shutdown, or to start a remote connector from System Monitor.

This property must be set to true to enable the automatic and remote restart

feature. For information on how to configure the WebSphere MQ-triggered OAD

feature. see the WebSphere Business Integration Server Express Installation Guide for

Windows, for Linux or for i5/OS.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is false.

OADMaxNumRetry

The OADMaxNumRetry property specifies the maximum number of times that the

WebSphere MQ-triggered Object Activation Daemon (OAD) automatically attempts

to restart the connector after an abnormal shutdown. The OADAutoRestartAgent

property must be set to true for this property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 1000.

Appendix A. Standard configuration properties for connectors 187

OADRetryTimeInterval

The OADRetryTimeInterval property specifies the number of minutes in the

retry-time interval for the WebSphere MQ-triggered Object Activation Daemon

(OAD). If the connector agent does not restart within this retry-time interval, the

connector controller asks the OAD to restart the connector agent again. The OAD

repeats this retry process as many times as specified by the OADMaxNumRetry

property. The OADAutoRestartAgent property must be set to true for this

property to take effect.

This property is valid only if the value of the RespositoryDirectory property is set

to <REMOTE> (the value of BrokerType is ICS).

The default value is 10.

PollEndTime

The PollEndTime property specifies the time to stop polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

PollFrequency

The PollFrequency property specifies the amount of time (in milliseconds) between

the end of one polling action and the start of the next polling action. This is not

the interval between polling actions. Rather, the logic is as follows:

v Poll to obtain the number of objects specified by the value of the PollQuantity

property.

v Process these objects. For some connectors, this may be partly done on separate

threads, which execute asynchronously to the next polling action.

v Delay for the interval specified by the PollFrequency property.

v Repeat the cycle.

The following values are valid for this property:

v The number of milliseconds between polling actions (a positive integer).

v The word no, which causes the connector not to poll. Enter the word in

lowercase.

v The word key, which causes the connector to poll only when you type the letter

p in the connector Command Prompt window. Enter the word in lowercase.

The default is 10000.

Important: Some connectors have restrictions on the use of this property. Where

they exist, these restrictions are documented in the chapter on

installing and configuring the adapter.

188 Adapter for Web Services User Guide

PollQuantity

The PollQuantity property designates the number of items from the application

that the connector polls for. If the adapter has a connector-specific property for

setting the poll quantity, the value set in the connector-specific property overrides

the standard property value.

This property is valid only if the value of the DeliveryTransport property is JMS,

and the ContainerManagedEvents property has a value.

An e-mail message is also considered an event. The connector actions are as

follows when it is polled for e-mail.

v When it is polled once, the connector detects the body of the message, which it

reads as an attachment. Since no data handler was specified for this mime type,

it will then ignore the message.

v The connector processes the first BO attachment. The data handler is available

for this MIME type, so it sends the business object to Visual Test Connector.

v When it is polled for the second time, the connector processes the second BO

attachment. The data handler is available for this MIME type, so it sends the

business object to Visual Test Connector.

v Once it is accepted, the third BO attachment should be transmitted.

PollStartTime

The PollStartTime property specifies the time to start polling the event queue. The

format is HH:MM, where HH is 0 through 23 hours, and MM represents 0 through 59

minutes.

You must provide a valid value for this property. The default value is HH:MM

without a value, and it must be changed.

If the adapter runtime detects:

v PollStartTime set and PollEndTime not set, or

v PollEndTime set and PollStartTime not set

it will poll using the value configured for the PollFrequency property.

RepositoryDirectory

The RepositoryDirectory property is the location of the repository from which the

connector reads the XML schema documents that store the metadata for business

object definitions.

If the integration broker is ICS, this value must be set to set to <REMOTE>

because the connector obtains this information from the InterChange Server

Express repository.

When the integration broker is a WebSphere message broker or WAS, this value is

set to <ProductDir>\repository by default. However, it may be set to any valid

directory name.

RequestQueue

The RequestQueue property specifies the queue that is used by the integration

broker to send business objects to the connector.

This property is valid only if the value of the DeliveryTransport property is JMS.

Appendix A. Standard configuration properties for connectors 189

The default value is <CONNECTORNAME>/REQUESTQUEUE.

ResponseQueue

The ResponseQueue property specifies the JMS response queue, which delivers a

response message from the connector framework to the integration broker. When

the integration broker is InterChange Server Express (ICS), the server sends the

request and waits for a response message in the JMS response queue.

This property is valid only if the value of the DeliveryTransport property is JMS.

The default value is <CONNECTORNAME>/RESPONSEQUEUE.

RestartRetryCount

The RestartRetryCount property specifies the number of times the connector

attempts to restart itself. When this property is used for a connector that is

connected in parallel, it specifies the number of times the master connector

application-specific component attempts to restart the client connector

application-specific component.

The default value is 3.

RestartRetryInterval

The RestartRetryInterval property specifies the interval in minutes at which the

connector attempts to restart itself. When this property is used for a connector that

is linked in parallel, it specifies the interval at which the master connector

application-specific component attempts to restart the client connector

application-specific component.

Possible values for the property range from 1 through 2147483647.

The default value is 1.

RHF2MessageDomain

The RHF2MessageDomain property allows you to configure the value of the field

domain name in the JMS header. When data is sent to a WebSphere message

broker over JMS transport, the adapter framework writes JMS header information,

with a domain name and a fixed value of mrm. A configurable domain name lets

you track how the WebSphere message broker processes the message data.

This is an example header:

<mcd><Msd>mrm</Msd><Set>3</Set><Type>

Retek_POPhyDesc</Type><Fmt>CwXML</Fmt></mcd>

This property is not valid if the value of BrokerType is ICS. Also, it is valid only if

the value of the DeliveryTransport property is JMS, and the value of the

WireFormat property is CwXML.

Possible values are mrm and xml. The default value is mrm.

190 Adapter for Web Services User Guide

SourceQueue

The SourceQueue property designates the JMS source queue for the connector

framework in support of guaranteed event delivery for JMS-enabled connectors

that use a JMS event store. For further information, see “ContainerManagedEvents”

on page 181.

This property is valid only if the value of DeliveryTransport is JMS, and a value for

ContainerManagedEvents is specified.

The default value is <CONNECTORNAME>/SOURCEQUEUE.

SynchronousRequestQueue

The SynchronousRequestQueue property delivers request messages that require a

synchronous response from the connector framework to the broker. This queue is

necessary only if the connector uses synchronous execution. With synchronous

execution, the connector framework sends a message to the synchronous request

queue and waits for a response from the broker on the synchronous response

queue. The response message sent to the connector has a correlation ID that

matches the ID of the original message.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is <CONNECTORNAME>/SYNCHRONOUSREQUESTQUEUE

SynchronousRequestTimeout

The SynchronousRequestTimeout property specifies the time in milliseconds that

the connector waits for a response to a synchronous request. If the response is not

received within the specified time, the connector moves the original synchronous

request message (and error message) to the fault queue.

This property is valid only if the value of DeliveryTransport is JMS.

The default value is 0.

SynchronousResponseQueue

The SynchronousResponseQueue property delivers response messages in reply to a

synchronous request from the broker to the connector framework. This queue is

necessary only if the connector uses synchronous execution.

This property is valid only if the value of DeliveryTransport is JMS.

The default is <CONNECTORNAME>/SYNCHRONOUSRESPONSEQUEUE

TivoliMonitorTransactionPerformance

The TivoliMonitorTransactionPerformance property specifies whether IBM Tivoli

Monitoring for Transaction Performance (ITMTP) is invoked at run time.

The default value is false.

WireFormat

The WireFormat property specifies the message format on the transport:

v If the value of the RepositoryDirectory property is a local directory, the value is

CwXML.

Appendix A. Standard configuration properties for connectors 191

v If the value of the RepositoryDirectory property is a remote directory, the value

is CwBO.

192 Adapter for Web Services User Guide

Appendix B. Connector Configurator Express

This appendix describes how to use Connector Configurator Express to set

configuration property values for your adapter.

You use Connector Configurator Express to:

v Create a connector-specific property template for configuring your connector

v Create a configuration file

v Set properties in a configuration file

The topics covered in this appendix are:

v “Overview of Connector Configurator Express”

v “Creating a connector-specific property template” on page 195

v “Creating a new configuration file” on page 197

v “Setting the configuration file properties” on page 200

Overview of Connector Configurator Express

Connector Configurator Express allows you to configure the connector component

of your adapter for use with the InterChange Server Express integration broker.

You use Connector Configurator Express to:

v Create a connector-specific property template for configuring your connector.

v Create a connector configuration file; you must create one configuration file for

each connector you install.

v Set properties in a configuration file.

You may need to modify the default values that are set for properties in the

connector templates. You must also designate supported business object

definitions and, with InterChange Server Express, maps for use with

collaborations as well as specify messaging, logging and tracing, and data

handler parameters, as required.

Connector configuration properties include both standard configuration properties

(the properties that all connectors have) and connector-specific properties

(properties that are needed by the connector for a specific application or

technology).

Because standard properties are used by all connectors, you do not need to define

those properties from scratch; Connector Configurator Express incorporates them

into your configuration file as soon as you create the file. However, you do need to

set the value of each standard property in Connector Configurator Express.

The range of standard properties may not be the same for all brokers and all

configurations. Some properties are available only if other properties are given a

specific value. The Standard Properties window in Connector Configurator Express

will show the properties available for your particular configuration.

For connector-specific properties, however, you need first to define the properties

and then set their values. You do this by creating a connector-specific property

template for your particular adapter. There may already be a template set up in

© Copyright IBM Corp. 2004, 2005 193

your system, in which case, you simply use that. If not, follow the steps in

“Creating a new template” on page 195 to set up a new one.

Running connectors on Linux

Connector Configurator Express runs only in a Windows environment. If you are

running the connector in a Linux environment, use Connector Configurator

Express in Windows to modify the configuration file and then copy the file to your

Linux environment.

Some properties in the Connector Configurator Express use directory paths, which

default to the Windows convention for directory paths. If you use the

configuration file in a Linux environment, revise the directory paths to match the

Linux convention for these paths. Select the target operating system in the toolbar

drop-list so that the correct operating system rules are used for extended

validation.

Starting Connector Configurator Express

You can start and run Connector Configurator Express in either of two modes:

v Independently, in stand-alone mode

v From System Manager

Running Configurator in stand-alone mode

You can run Connector Configurator Express without running System Manager

and work with connector configuration files, irrespective of your broker.

To do so:

v Start>All Programs, click IBM WebSphere Business Integration

Express>Toolset Express>Development>Connector Configurator Express.

v Select File>New>Connector Configuration.

v When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS.

You may choose to run Connector Configurator Express independently to generate

the file, and then connect to System Manager to save it in a System Manager

project (see “Completing a configuration file” on page 200.)

Running Configurator from System Manager

You can run Connector Configurator Express from System Manager.

To run Connector Configurator Express:

1. Open the System Manager.

2. In the System Manager window, expand the Integration Component Libraries

icon and highlight Connectors.

3. From the System Manager menu bar, click Tools>Connector Configurator

Express. The Connector Configurator Express window opens and displays a

New Connector dialog box.

4. When you click the pull-down menu next to System Connectivity Integration

Broker, you can select ICS.

To edit an existing configuration file:

194 Adapter for Web Services User Guide

v In the System Manager window, select any of the configuration files listed in the

Connector folder and right-click on it. Connector Configurator Express opens

and displays the configuration file with the integration broker type and file

name at the top.

v From Connector Configurator Express, select File>Open. Select the name of the

connector configuration file from a project or from the directory in which it is

stored.

v Click the Standard Properties tab to see which properties are included in this

configuration file.

Creating a connector-specific property template

To create a configuration file for your connector, you need a connector-specific

property template as well as the system-supplied standard properties.

You can create a brand-new template for the connector-specific properties of your

connector, or you can use an existing connector definition as the template.

v To create a new template, see “Creating a new template” on page 195.

v To use an existing file, simply modify an existing template and save it under the

new name. You can find existing templates in your \ProductDir\bin\Data\App

directory.

Creating a new template

This section describes how you create properties in the template, define general

characteristics and values for those properties, and specify any dependencies

between the properties. Then you save the template and use it as the base for

creating a new connector configuration file.

To create a template in Connector Configurator Express:

1. Click File>New>Connector-Specific Property Template.

2. The Connector-Specific Property Template dialog box appears.

v Enter a name for the new template in the Name field below Input a New

Template Name. You will see this name again when you open the dialog box

for creating a new configuration file from a template.

v To see the connector-specific property definitions in any template, select that

template’s name in the Template Name display. A list of the property

definitions contained in that template appears in the Template Preview

display.
3. You can use an existing template whose property definitions are similar to

those required by your connector as a starting point for your template. If you

do not see any template that displays the connector-specific properties used by

your connector, you will need to create one.

v If you are planning to modify an existing template, select the name of the

template from the list in the Template Name table below Select the Existing

Template to Modify: Find Template.

v This table displays the names of all currently available templates. You can

also search for a template.

Specifying general characteristics

When you click Next to select a template, the Properties - Connector-Specific

Property Template dialog box appears. The dialog box has tabs for General

characteristics of the defined properties and for Value restrictions. The General

display has the following fields:

Appendix B. Connector Configurator Express 195

v General:

Property Type

Property Subtype

Updated Method

Description

v Flags

Standard flags

v Custom Flag

Flag

The Property Subtype can be selected when Property Type is a String. It is an

optional value which provides syntax checking when you save the configuration

file. The default is a blank space, and means that the property has not been

subtyped.

After you have made selections for the general characteristics of the property, click

the Value tab.

Specifying values

The Value tab enables you to set the maximum length, the maximum multiple

values, a default value, or a value range for the property. It also allows editable

values. To do so:

1. Click the Value tab. The display panel for Value replaces the display panel for

General.

2. Select the name of the property in the Edit properties display.

3. In the fields for Max Length and Max Multiple Values, enter your values.

To create a new property value:

1. Right-click on the square to the left of the Value column heading.

2. From the pop-up menu, select Add to display the Property Value dialog box.

Depending on the property type, the dialog box allows you to enter either a

value, or both a value and a range.

3. Enter the new property value and click OK. The value appears in the Value

panel on the right.

The Value panel displays a table with three columns:

The Value column shows the value that you entered in the Property Value dialog

box, and any previous values that you created.

The Default Value column allows you to designate any of the values as the

default.

The Value Range shows the range that you entered in the Property Value dialog

box.

After a value has been created and appears in the grid, it can be edited from

within the table display.

To make a change in an existing value in the table, select an entire row by clicking

on the row number. Then right-click in the Value field and click Edit Value.

196 Adapter for Web Services User Guide

Setting dependencies

When you have made your changes to the General and Value tabs, click Next. The

Dependencies - Connector-Specific Property Template dialog box appears.

A dependent property is a property that is included in the template and used in

the configuration file only if the value of another property meets a specific

condition. For example, PollQuantity appears in the template only if JMS is the

transport mechanism and DuplicateEventElimination is set to True.

To designate a property as dependent and to set the condition upon which it

depends, do this:

1. In the Available Properties display, select the property that will be made

dependent.

2. In the Select Property field, use the drop-down menu to select the property

that will hold the conditional value.

3. In the Condition Operator field, select one of the following:

== (equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<=(less than or equal to)

4. In the Conditional Value field, enter the value that is required in order for the

dependent property to be included in the template.

5. With the dependent property highlighted in the Available Properties display,

click an arrow to move it to the Dependent Property display.

6. Click Finish. Connector Configurator Express stores the information you have

entered as an XML document, under \data\app in the \bin directory where you

have installed Connector Configurator Express.

Setting pathnames

Some general rules for setting pathnames are:

v The maximum length of a filename in Windows and Linux is 255 characters.

v In Windows, the absolute pathname must follow the format

[Drive:][Directory]\filename: for example,

C:\WebSphereAdapters\bin\Data\Std\StdConnProps.xml

In Linux the first character should be /.

v Queue names may not have leading or embedded spaces.

Creating a new configuration file

When you create a new configuration file, you must name it and select an

integration broker.

You also select an operating system for extended validation on the file. The toolbar

has a droplist called Target System that allows you to select the target operating

system for extended validation of the properties. The available options are:

Windows, Linux, and i5/OS, Other (if not Windows or Linux), and None-no

extended validation (switches off extended validation). The default on startup is

Windows.

To start Connector Configurator Express:

Appendix B. Connector Configurator Express 197

v In the System Manager window, select Connector Configurator Express from

the Tools menu. Connector Configurator Express opens.

v In stand-alone mode, launch Connector Configurator Express.

To set the operating system for extended validation of the configuration file:

v Pull down the Target System: droplist on the menu bar.

v Select the operating system you are running on.

Then select File>New>Connector Configuration. In the New Connector window,

enter the name of the new connector.

You also need to select an integration broker. The broker you select determines the

properties that will appear in the configuration file. To select a broker:

v In the Integration Broker field, select ICS.

v Complete the remaining fields in the New Connector window, as described later

in this chapter.

Creating a configuration file from a connector-specific

template

Once a connector-specific template has been created, you can use it to create a

configuration file:

1. Set the operating system for extended validation of the configuration file using

the Target System: droplist on the menu bar (see “Creating a new configuration

file” above).

2. Click File>New>Connector Configuration.

3. The New Connector dialog box appears, with the following fields:

v Name

Enter the name of the connector. Names are case-sensitive. The name you

enter must be unique, and must be consistent with the file name for a

connector that is installed on the system.

Important: Connector Configurator Express does not check the spelling of

the name that you enter. You must ensure that the name is

correct.

v System Connectivity

Click ICS.

v Select Connector-Specific Property Template

Type the name of the template that has been designed for your connector.

The available templates are shown in the Template Name display. When you

select a name in the Template Name display, the Property Template Preview

display shows the connector-specific properties that have been defined in

that template.

Select the template you want to use and click OK.
4. A configuration screen appears for the connector that you are configuring. The

title bar shows the integration broker and connector name. You can fill in all

the field values to complete the definition now, or you can save the file and

complete the fields later.

5. To save the file, click File>Save>To File or File>Save>To Project. To save to a

project, System Manager must be running. If you save as a file, the Save File

Connector dialog box appears. Choose *.cfg as the file type, verify in the File

Name field that the name is spelled correctly and has the correct case, navigate

198 Adapter for Web Services User Guide

to the directory where you want to locate the file, and click Save. The status

display in the message panel of Connector Configurator Express indicates that

the configuration file was successfully created.

Important: The directory path and name that you establish here must match

the connector configuration file path and name that you supply in

the startup file for the connector.

6. To complete the connector definition, enter values in the fields for each of the

tabs of the Connector Configurator Express window, as described later in this

chapter.

Using an existing file

You may have an existing file available in one or more of the following formats:

v A connector definition file.This is a text file that lists properties and applicable

default values for a specific connector. Some connectors include such a file in a

\repository directory in their delivery package (the file typically has the

extension .txt; for example, CN_XML.txt for the XML connector).

v An ICS repository file. Definitions used in a previous ICS implementation of the

connector may be available to you in a repository file that was used in the

configuration of that connector. Such a file typically has the extension .in or

.out.

v A previous configuration file for the connector.

Such a file typically has the extension *.cfg.

Although any of these file sources may contain most or all of the connector-specific

properties for your connector, the connector configuration file will not be complete

until you have opened the file and set properties, as described later in this chapter.

To use an existing file to configure a connector, you must open the file in

Connector Configurator Express, revise the configuration, and then resave the file.

Follow these steps to open a *.txt, *.cfg, or *.in file from a directory:

1. In Connector Configurator Express, click File>Open>From File.

2. In the Open File Connector dialog box, select one of the following file types to

see the available files:

v Configuration (*.cfg)

v ICS Repository (*.in, *.out)

Choose this option if a repository file was used to configure the connector in

an ICS environment. A repository file may include multiple connector

definitions, all of which will appear when you open the file.

v All files (*.*)

Choose this option if a *.txt file was delivered in the adapter package for

the connector, or if a definition file is available under another extension.
3. In the directory display, navigate to the appropriate connector definition file,

select it, and click Open.

Follow these steps to open a connector configuration from a System Manager

project:

1. Start System Manager. A configuration can be opened from or saved to System

Manager only if System Manager has been started.

2. Start Connector Configurator Express.

Appendix B. Connector Configurator Express 199

3. Click File>Open>From Project.

Completing a configuration file

When you open a configuration file or a connector from a project, the Connector

Configurator Express window displays the configuration screen, with the current

attributes and values.

The title of the configuration screen displays the integration broker and connector

name as specified in the file. Make sure you have the correct broker. If not, change

the broker value before you configure the connector. To do so:

1. Under the Standard Properties tab, select the value field for the BrokerType

property. In the drop-down menu, select the value ICS.

2. The Standard Properties tab will display the connector properties associated

with the selected broker. The table shows Property name, Value, Type, Subtype

(if the Type is a string), Description, and Update Method.

3. You can save the file now or complete the remaining configuration fields, as

described in “Specifying supported business object definitions” on page 203..

4. When you have finished your configuration, click File>Save>To Project or

File>Save>To File.

If you are saving to file, select *.cfg as the extension, select the correct location

for the file and click Save.

If multiple connector configurations are open, click Save All to File to save all

of the configurations to file, or click Save All to Project to save all connector

configurations to a System Manager project.

Before you created the configuration file, you used the Target System droplist

that allows you to select the target operating system for extended validation of

the properties.

Before it saves the file, Connector Configurator Express checks that values have

been set for all required standard properties. If a required standard property is

missing a value, Connector Configurator Express displays a message that the

validation failed. You must supply a value for the property in order to save the

configuration file.

If you have elected to use the extended validation feature by selecting a value

of Windows, Linux, and i5/OS, or Other from the Target System droplist, the

system will validate the property subtype s well as the type, and it displays a

warning message if the validation fails.

Setting the configuration file properties

When you create and name a new connector configuration file, or when you open

an existing connector configuration file, Connector Configurator Express displays a

configuration screen with tabs for the categories of required configuration values.

Connector Configurator Express requires values for properties in these categories

for connectors running on all brokers:

v Standard Properties

v Connector-specific Properties

v Supported Business Objects

v Trace/Log File values

v Data Handler (applicable for connectors that use JMS messaging with

guaranteed event delivery)

200 Adapter for Web Services User Guide

Note: For connectors that use JMS messaging, an additional category may display,

for configuration of data handlers that convert the data to business objects.

For connectors running on InterChange Server Express, values for these properties

are also required:

v Associated Maps

v Security

Important: Connector Configurator Express accepts property values in either

English or non-English character sets. However, the names of both

standard and connector-specific properties, and the names of supported

business objects, must use the English character set only.

Standard properties differ from connector-specific properties as follows:

v Standard properties of a connector are shared by both the application-specific

component of a connector and its broker component. All connectors have the

same set of standard properties. These properties are described in Appendix A of

each adapter guide. You can change some but not all of these values.

v Application-specific properties apply only to the application-specific component

of a connector, that is, the component that interacts directly with the application.

Each connector has application-specific properties that are unique to its

application. Some of these properties provide default values and some do not;

you can modify some of the default values. The installation and configuration

chapters of each adapter guide describe the application-specific properties and

the recommended values.

The fields for Standard Properties and Connector-Specific Properties are

color-coded to show which are configurable:

v A field with a grey background indicates a standard property. You can change

the value but cannot change the name or remove the property.

v A field with a white background indicates an application-specific property. These

properties vary according to the specific needs of the application or connector.

You can change the value and delete these properties.

v Value fields are configurable.

v The Update Method field is displayed for each property. It indicates whether a

component or agent restart is necessary to activate changed values. You cannot

configure this setting.

Setting standard connector properties

To change the value of a standard property:

1. Click in the field whose value you want to set.

2. Either enter a value, or select one from the drop-down menu if it appears.

Note: If the property has a Type of String, it may have a subtype value in the

Subtype column. This subtype is used for extended validation of the

property.

3. After entering all the values for the standard properties, you can do one of the

following:

v To discard the changes, preserve the original values, and exit Connector

Configurator Express, click File>Exit (or close the window), and click No

when prompted to save changes.

Appendix B. Connector Configurator Express 201

v To enter values for other categories in Connector Configurator Express, select

the tab for the category. The values you enter for Standard Properties (or

any other category) are retained when you move to the next category. When

you close the window, you are prompted to either save or discard the values

that you entered in all the categories as a whole.

v To save the revised values, click File>Exit (or close the window) and click

Yes when prompted to save changes. Alternatively, click Save>To File from

either the File menu or the toolbar.

To get more information on a particular standard property, left-click the entry in

the Description column for that property in the Standard Properties tabbed sheet.

If you have Extended Help installed, an arrow button will appear on the right.

When you click on the button, a Help window will open and display details of the

standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

If installed, the Extended Help files are located in

<ProductDir>\bin\Data\Std\Help\<RegionalSetting>\.

Setting connector-specific configuration properties

For connector-specific configuration properties, you can add or change property

names, configure values, delete a property, and encrypt a property. The default

property length is 255 characters.

1. Right-click in the top left portion of the grid. A pop-up menu bar will appear.

Click Add to add a property. To add a child property, right-click on the parent

row number and click Add child.

2. Enter a value for the property or child property.

Note: If the property has a Type of String, you can select a subtype from the

Subtype droplist. This subtype is used for extended validation of the

property.

3. To encrypt a property, select the Encrypt box.

4. To get more information on a particular property, left-click the entry in the

Description column for that property. If you have Extended Help installed, a

hot button will appear. When you click on the hot button, a Help window will

open and display details of the standard property.

Note: If the hot button does not appear, no Extended Help was found for that

property.

5. Choose to save or discard changes, as described for “Setting standard connector

properties” on page 201.

If the Extended Help files are installed and the AdapterHelpName property is

blank, Connector Configurator Express will point to the adapter-specific Extended

Help files located in <ProductDir>\bin\Data\App\Help\<RegionalSetting>\.

Otherwise, Connector Configurator Express will point to the adapter-specific

Extended Help files located in

<ProductDir>\bin\Data\App\Help\<AdapterHelpName>\<RegionalSetting>\. See

the AdapterHelpName property described in the Standard Properties appendix.

The Update Method displayed for each property indicates whether a component or

agent restart is necessary to activate changed values.

202 Adapter for Web Services User Guide

Important: Changing a preset application-specific connector property name may

cause a connector to fail. Certain property names may be needed by

the connector to connect to an application or to run properly.

Encryption for connector properties

Application-specific properties can be encrypted by selecting the Encrypt check

box in the Connector-specific Properties window. To decrypt a value, click to clear

the Encrypt check box, enter the correct value in the Verification dialog box, and

click OK. If the entered value is correct, the value is decrypted and displays.

The adapter user guide for each connector contains a list and description of each

property and its default value.

If a property has multiple values, the Encrypt check box will appear for the first

value of the property. When you select Encrypt, all values of the property will be

encrypted. To decrypt multiple values of a property, click to clear the Encrypt

check box for the first value of the property, and then enter the new value in the

Verification dialog box. If the input value is a match, all multiple values will

decrypt.

Update method

Refer to the descriptions of update methods found in the Standard Properties

appendix, under ″Standard connector properties overview″“Standard connector

properties overview” on page 171.

Specifying supported business object definitions

Use the Supported Business Objects tab in Connector Configurator Express to

specify the business objects that the connector will use. You must specify both

generic business objects and application-specific business objects, and you must

specify associations for the maps between the business objects.

Note: Some connectors require that certain business objects be specified as

supported in order to perform event notification or additional configuration

(using meta-objects) with their applications.

InterChange Server Express as your broker

To specify that a business object definition is supported by the connector, or to

change the support settings for an existing business object definition, click the

Supported Business Objects tab and use the following fields.

Business object name: To designate that a business object definition is supported

by the connector, with System Manager running:

1. Click an empty field in the Business Object Name list. A drop list displays,

showing all the business object definitions that exist in the System Manager

project.

2. Click on a business object to add it.

3. Set the Agent Support (described below) for the business object.

4. In the File menu of the Connector Configurator Express window, click Save to

Project. The revised connector definition, including designated support for the

added business object definition, is saved to an ICL (Integration Component

Library) project in System Manager.

To delete a business object from the supported list:

1. To select a business object field, click the number to the left of the business

object.

Appendix B. Connector Configurator Express 203

2. From the Edit menu of the Connector Configurator Express window, click

Delete Row. The business object is removed from the list display.

3. From the File menu, click Save to Project.

Deleting a business object from the supported list changes the connector definition

and makes the deleted business object unavailable for use in this implementation

of this connector. It does not affect the connector code, nor does it remove the

business object definition itself from System Manager.

Agent support: If a business object has Agent Support, the system will attempt to

use that business object for delivering data to an application via the connector

agent.

Typically, application-specific business objects for a connector are supported by

that connector’s agent, but generic business objects are not.

To indicate that the business object is supported by the connector agent, check the

Agent Support box. The Connector Configurator Express window does not

validate your Agent Support selections.

Maximum transaction level: The maximum transaction level for a connector is

the highest transaction level that the connector supports.

For most connectors, Best Effort is the only possible choice.

You must restart the server for changes in transaction level to take effect.

Associated maps

Each connector supports a list of business object definitions and their associated

maps that are currently active in InterChange Server Express. This list appears

when you select the Associated Maps tab.

The list of business objects contains the application-specific business object which

the agent supports and the corresponding generic object that the controller sends

to the subscribing collaboration. The association of a map determines which map

will be used to transform the application-specific business object to the generic

business object or the generic business object to the application-specific business

object.

If you are using maps that are uniquely defined for specific source and destination

business objects, the maps will already be associated with their appropriate

business objects when you open the display, and you will not need (or be able) to

change them.

If more than one map is available for use by a supported business object, you will

need to explicitly bind the business object with the map that it should use.

The Associated Maps tab displays the following fields:

v Business Object Name

These are the business objects supported by this connector, as designated in the

Supported Business Objects tab. If you designate additional business objects

under the Supported Business Objects tab, they will be reflected in this list after

you save the changes by choosing Save to Project from the File menu of the

Connector Configurator Express window.

v Associated Maps

204 Adapter for Web Services User Guide

The display shows all the maps that have been installed to the system for use

with the supported business objects of the connector. The source business object

for each map is shown to the left of the map name, in the Business Object

Name display.

v Explicit Binding

In some cases, you may need to explicitly bind an associated map.

Explicit binding is required only when more than one map exists for a particular

supported business object. When InterChange Server Express boots, it tries to

automatically bind a map to each supported business object for each connector.

If more than one map takes as its input the same business object, the server

attempts to locate and bind one map that is the superset of the others.

If there is no map that is the superset of the others, the server will not be able to

bind the business object to a single map, and you will need to set the binding

explicitly.

To explicitly bind a map:

1. In the Explicit column, place a check in the check box for the map you want

to bind.

2. Select the map that you intend to associate with the business object.

3. In the File menu of the Connector Configurator Express window, click Save

to Project.

4. Deploy the project to InterChange Server Express.

5. Reboot the server for the changes to take effect.

Security

You can use the Security tab in Connector Configurator Express to set various

privacy levels for a message. You can only use this feature when the

DeliveryTransport property is set to JMS.

By default, Privacy is turned off. Check the Privacy box to enable it.

The Keystore Target System Absolute Pathname is:

v For Windows:

<ProductDir>\connectors\security\<connectorname>.jks

v For Linux and i5/OS:

/ProductDir/connectors/security/<connectorname>.jks

This path and file should be on the system where you plan to start the connector,

that is, the target system.

You can use the Browse button at the right only if the target system is the one

currently running. It is greyed out unless Privacy is enabled and the Target System

in the menu bar is set to Windows.

The Message Privacy Level may be set as follows for the three messages categories

(All Messages, All Administrative Messages, and All Business Object Messages):

v “”: is the default; used when no privacy levels for a message category have

been set.

v none: Not the same as the default: use this to deliberately set a privacy level of

none for a message category.

v integrity

v privacy

Appendix B. Connector Configurator Express 205

v integrity_plus_privacy

The Key Maintenance feature lets you generate, import and export public keys for

the server and adapter.

v When you select Generate Keys, the Generate Keys dialog box appears with the

defaults for the keytool that will generate the keys.

v The keystore value defaults to the value you entered in Keystore Target System

Absolute Pathname on the Security tab.

v When you select OK, the entries are validated, the key certificate is generated

and the output is sent to the Connector Configurator Express log window.

Before you can import a certificate into the adapter keystore, you must export it

from the server keystore. When you select Export Adapter Public Key, the Export

Adapter Public Key dialog box appears.

v The export certificate defaults to the same value as the keystore, except that the

file extension is <filename>.cer.

When you select Import Server Public Key, the Import Server Public Key dialog

box appears.

v The import certificate defaults to <ProductDir>\bin\ics.cer (if the file exists on

the system).

v The import Certificate Association should be the server name. If a server is

registered, you can select it from the droplist.

The Adapter Access Control feature is enabled only when the value of

DeliveryTransport is IDL. By default, the adapter logs in with the guest identity. If

the Use guest identity box is not checked, the Adapter Identity and Adapter

Password fields are enabled.

Setting trace/log file values

When you open a connector configuration file or a connector definition file,

Connector Configurator Express uses the logging and tracing values of that file as

default values. You can change those values in Connector Configurator Express.

To change the logging and tracing values:

1. Click the Trace/Log Files tab.

2. For either logging or tracing, you can choose to write messages to one or both

of the following:

v To console (STDOUT): Writes logging or tracing messages to the STDOUT

display.

Note: You can only use the STDOUT option from the Trace/Log Files tab for

connectors running on the Windows platform.

v To File: Writes logging or tracing messages to a file that you specify. To

specify the file, click the directory button (ellipsis), navigate to the preferred

location, provide a file name, and click Save. Logging or tracing message are

written to the file and location that you specify.

Note: Both logging and tracing files are simple text files. You can use the file

extension that you prefer when you set their file names. For tracing

files, however, it is advisable to use the extension .trace rather than

.trc, to avoid confusion with other files that might reside on the

system. For logging files, .log and .txt are typical file extensions.

206 Adapter for Web Services User Guide

Data handlers

The data handlers section is available for configuration only if you have designated

a value of JMS for DeliveryTransport and a value of JMS for

ContainerManagedEvents. Not all adapters make use of data handlers.

See the descriptions under ContainerManagedEvents in Appendix A, Standard

Properties, for values to use for these properties.

Saving your configuration file

When you have finished configuring your connector, save the connector

configuration file. Connector Configurator Express saves the file in the broker

mode that you selected during configuration. The title bar of Connector

Configurator Express always displays the broker mode that InterChange Server

Express is currently using.

The file is saved as an XML document. You can save the XML document in three

ways:

v From System Manager, as a file with a *.con extension in an Integration

Component Library, or

v In a directory that you specify.

v In stand-alone mode, as a file with a *.cfg extension in a directory folder. By

default, the file is saved to \WebSphereAdapters\bin\Data\App.

For details about using projects in System Manager, and for further information

about deployment, see the System Implementation Guide.

Changing a configuration file

You can change the integration broker setting for an existing configuration file.

This enables you to use the file as a template for creating a new configuration file,

which can be used with a different broker.

Note: You will need to change other configuration properties as well as the broker

mode property if you switch integration brokers.

To change your broker selection within an existing configuration file (optional):

v Open the existing configuration file in Connector Configurator Express.

v Select the Standard Properties tab.

v In the BrokerType field of the Standard Properties tab, select the value that is

appropriate for your broker. When you change the current value, the available

tabs and field selections in the properties window will immediately change, to

show only those tabs and fields that pertain to the new broker you have

selected.

Completing the configuration

After you have created a configuration file for a connector and modified it, make

sure that the connector can locate the configuration file when the connector starts

up.

To do so, open the startup file used for the connector, and verify that the location

and file name used for the connector configuration file match exactly the name you

have given the file and the directory or path where you have placed it.

Appendix B. Connector Configurator Express 207

Using Connector Configurator Express in a globalized environment

Connector Configurator Express is globalized and can handle character conversion

between the configuration file and the integration broker. Connector Configurator

Express uses native encoding. When it writes to the configuration file, it uses

UTF-8 encoding.

Connector Configurator Express supports non-English characters in:

v All value fields

v Log file and trace file path (specified in the Trace/Log files tab)

The drop list for the CharacterEncoding and Locale standard configuration

properties displays only a subset of supported values. To add other values to the

drop list, you must manually modify the \Data\Std\stdConnProps.xml file in the

product directory.

For example, to add the locale en_GB to the list of values for the Locale property,

open the stdConnProps.xml file and add the line in boldface type below:

<Property name="Locale"

isRequired="true"

updateMethod="component restart">

 <ValidType>String</ValidType>

 <ValidValues>

 <Value>ja_JP</Value>

 <Value>ko_KR</Value>

 <Value>zh_CN</Value>

 <Value>zh_TW</Value>

 <Value>fr_FR</Value>

 <Value>de_DE</Value>

 <Value>it_IT</Value>

 <Value>es_ES</Value>

 <Value>pt_BR</Value>

 <Value>en_US</Value>

 <Value>en_GB</Value>

 <DefaultValue>en_US</DefaultValue>

 </ValidValues>

 </Property>

208 Adapter for Web Services User Guide

Appendix C. Adapter for Web Services tutorial

v “About the tutorial”

v “Before you start” on page 210

v “Installing and configuring” on page 211

v “Running the asynchronous scenario” on page 216

v “Running the synchronous scenario” on page 218

This appendix contains step-by-step procedures that:

v demonstrate asynchronous and synchronous event transmission for both request

and event processing

v illustrate how to configure the web services connector for a SOAP/HTTPS

sample

v illustrate how to configure the web services connector for a SOAP/HTTP sample

v illustrate how to configure the web services connector for a SOAP/JMS sample

About the tutorial

This tutorial is intended to demonstrate asynchronous and synchronous event

transmission for both the request and event processing facets of the Adapter for

Web Services with each of the supported protocols: SOAP/HTTP, SOAP/HTTPS

and SOAP/JMS. In each scenario, the adapters act as:

v a web service client for collaborations that invoke a web service

v a proxy that exposes an InterChange Server Express collaboration as a web

service

The tutorial is designed to show the basic functionality of the adapter in sample

scenarios:

v An asynchronous scenario that illustrates an asynchronous (request-only) web

service and its client with the connector. There are two samples in this

scenario—for configuration simplicity, the same Web Services connector is used

to expose a collaboration as a Web Service and invoke a Web Service as a client.

– A collaboration that is exposed as a web service In this sample, the web

service is simply a collaboration SERVICE_ASYNCH_Order_Collab within

InterChange Server Express that is being exposed as a web service by the

connector. The web service is referred to as Asynch Order Service. If the

connector is properly configured, this Web Service can be invoked using any

(one) of the Web Services protocols: SOAP/HTTP, SOAP/HTTPS or

SOAP/JMS. SERVICE_ASYNCH_Order_Collab is a simple pass-through

collaboration that takes SERVICE_ASYNCH_TLO_Order. The triggering port (From)

of this collaboration is bound to the Web Services connector. The service port

(To) is bound to SampleSiebelConnector.

– A collaboration that is invoked by a web services client In this sample, the

web service client is another collaboration CLIENT_ASYNCH_Order_Collab

within InterChange Server Express that will invoke the Web Service Asynch

Order Service using the Web Services connector. If the connector is configured

properly, this web service client can invoke the Web Service over any (one) of

the Web Services protocols: SOAP/HTTP, SOAP/HTTPS or SOAP/JMS.

CLIENT_ASYNCH_Order_Collab is a simple pass-through collaboration which

© Copyright IBM Corp. 2004, 2005 209

takes CLIENT_ASYNCH_TLO_Order. The triggering port (From) of this

collaboration is bound to SampleSAPConnector. The service port (To) is

bound to the Web Services connector.

Both samples in the asynchronous scenario involve two applications:

– SampleSiebel: Creates an order for its clients.

– SampleSAP: Creates an order
v A synchronous scenario that illustrates a synchronous (request-response) web

service and its client with the connector. There are two samples in this

scenario—for configuration simplicity, the same Web Services connector is used

to expose a collaboration as a Web Service and invoke a Web Service as a client.

– A collaboration that is exposed as a web service In this sample, the Web

Service is simply a collaboration SERVICE_SYNCH_OrderStatus_Collab within

InterChange Server Express that is being exposed as a web service by the

connector. In this sample, this web service is referred to as Synch OrderStatus

Service. If the connector is properly configured, the web service can be

invoked using any of the web services protocols: SOAP/HTTP, SOAP/HTTPS

or SOAP/JMS. SERVICE_SYNCH_OrderStatus_Collab is a simple pass-through

collaboration which takes SERVICE_SYNCH_TLO_OrderStatus. The triggering

port (From) of this collaboration is bound to the Web Services connector. The

service port (To) is bound to SampleSiebelConnector.

– A collaboration that is invoked by a web services client In this sample, the

web service client is another collaboration CLIENT_SYNCH_OrderStatus_Collab

within InterChange Server Express that will invoke the web service Synch

OrderStatus Service using the Web Services connector. If the connector is

properly configured, this web service client can invoke the web service over

any of the web services protocols: SOAP/HTTP, SOAP/HTTPS or

SOAP/JMS. CLIENT_SYNCH_OrderStatus_Collab is a simple pass-through

collaboration which takes CLIENT_SYNCH_TLO_OrderStatus. The triggering port

(From) of this collaboration is bound to SampleSAPConnector. The service

port (To) is bound to the Web Services connector.

Both samples in the synchronous scenario involve two applications:

– SampleSiebel: Retrieves the status of orders for its clients.

– SampleSAP: Requests the status of the order

Both scenarios involve simulating the SampleSiebelConnector and

SampleSAPConnector using two Test Connectors.

Before you start

Before you start the tutorial, be sure that:

v You have installed, and are experienced with, InterChange Server Express 4.2.x

or later.

v You have installed the WebSphere Business Integration Adapter For Web

Services in the InterChange Server Express home directory.

v You are experienced with Web Services technology.

v You are experienced with SOAP technology.

210 Adapter for Web Services User Guide

Installing and configuring

In the sections that follow, WBI_folder refers to the folder containing your current

InterChange Server Express installation. All environment variables and file

separators are specified in the Windows NT/2000 format. Please make the

appropriate changes if running on Linux, and i5/OS. (for example,

WBI_folder\connectors would be WBI_folder/connectors).

Start server and tool

1. Start InterChange Server Express from the shortcut.

2. Start the WebSphere Business Integration Server Express System Manager and

open the Component Navigator Perspective.

3. Register and connect your server as a Server Instance in the Interchange Server

Express view.

Load the sample content

From the Component Navigator Perspective:

1. Create a new Integration Component Library.

2. Import the repos file named WebServicesSample.jar located in:

WBI_folder\connectors\WebServices\samples\WebSphereICS\

Compile the collaboration templates

Using WebSphere Business Integration System Manager:

v Compile All of the Collaboration Templates that were imported from the

WebServicesSample.jar repos file.

Configure the connector

1. If you have not done so already, configure the connector as described in this

guide and according to your system.

2. Using WebSphere Business Integration System Manager, open

WebServicesConnector in Connector Configurator Express.

3. You must also configure WebServicesConnector for the protocol you want to

use with the sample:

v If you want to use SOAP/HTTP, see “Configuring for the SOAP/HTTP

protocol scenario” to configure the connector for SOAP/HTTP.

v If you want to use SOAP/HTTPS, see “Configuring for the SOAP/HTTPS

protocol scenario” on page 212 to configure the connector for SOAP/HTTPS.

v If you want to use SOAP/JMS, see “Configuring for the SOAP/JMS protocol

scenario” on page 214 to configure the connector for SOAP/JMS.

Configuring for the SOAP/HTTP protocol scenario

This section shows you how to configure the connector for the SOAP/HTTP

sample scenario. As described in the body of this document, the connector includes

a SOAP/HTTP protocol listener and SOAP/HTTP-HTTPS protocol handler. The

sample scenario exposes SERVICE_ASYNCH_Order_Collab and

SERVICE_SYNCH_OrderStatus_Collab collaborations as SOAP/HTTP web services. To

expose a collaboration as a SOAP/HTTP web service, the connector uses the

SOAP/HTTP protocol listener. The sample scenario comes with the

CLIENT_ASYNCH_Order_Collab and CLIENT_SYNCH_OrderStatus_Collab collaborations,

Appendix C. Adapter for Web Services tutorial 211

which are SOAP/HTTP clients of SOAP/HTTP web services. To invoke a

SOAP/HTTP web service, the connector uses SOAP/HTTPHTTPS Protocol

Handler.

In the steps and descriptions that follow, hierarchical connector configuration

properties are represented with the ” symbol. For example, A” B implies A is a

hierarchical property, and B is child property of A.

To configure the SOAP/HTTP protocol listener for this sample:

1. In Connector Configurator Express, click on Connector-Specific Properties for

the WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the

ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the

SOAPHTTPListener1 child property.

4. Check the value of SOAPHTTPListener1”Host and SOAPHTTPListener1”Port

property. Make sure there is no other process running on your host and

listening on this TCP/IP port. Optionally, you may want to set the value of

SOAHTTPListener1”Host to the machine name on which you will run the

connector.

You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Configuring for the SOAP/HTTPS protocol scenario

This section shows you how to configure the connector for the SOAP/HTTPS

sample scenario. The connector includes a SOAP/HTTPS protocol listener and

SOAP/HTTP-HTTPS protocol handler. The sample scenario exposes the

SERVICE_ASYNCH_Order_Collab and SERVICE_SYNCH_OrderStatus_Collab

collaborations as SOAP/HTTPS web services. To expose a collaboration as a

SOAP/HTTPS web service, the connector uses the SOAP/HTTPS protocol listener.

The sample scenario comes with the CLIENT_ASYNCH_Order_Collab and

CLIENT_SYNCH_OrderStatus_Collab collaborations, which are SOAP/HTTPS clients

of SOAP/HTTPS web services. To invoke a SOAP/HTTPS web service, the

connector uses the SOAP/HTTPHTTPS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration

properties are represented with the ” symbol. For example, A” B implies A is a

hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above in“Before you start” on page

210, you should also have created and tested your keystore and truststore

using your Key and Certificate management software.

Configure SSL connector-specific properties: For SOAP/HTTPS, the connector

requires that you configure the SSL connector-specific hierarchical property.

1. In Connector Configurator Express, click on the Connector-Specific Properties

tab for the WebServicesConnector.

2. Expand the SSL hierarchical property to view all of its children properties.

Additionally, check or change the following child properties of the hierarchical

SSL connector-specific property.

v SSL” KeyStore Set to the complete path to your keystore file, which you

must create using your Key and Certificate management software.

v SSL”KeyStorePassword Set to the password required to access your

KeyStore.

212 Adapter for Web Services User Guide

v SSL”KeyStoreAlias Set to the alias of the private key in your KeyStore.

v SSL”TrustStore Set to the complete path of your truststore file which you

have created using your Key and Certificate management software.

v SSL”TrustStorePassword Set to the password required to access your

TrustStore.

Note: Do not forget to save the changes in Connector Configurator Express.

Configure the SOAP/HTTPS protocol listener:

1. In Connector Configurator Express, click on Connector-Specific Properties for

the WebServicesConnector.

2. Expand the ProtocolListenerFramework property to display the

ProtocolListeners child property.

3. Expand the ProtocolListeners child property to display the

SOAPHTTPSListener1 child property. Check the value of the

SOAPHTTPSListener1”Host and SOAPHTTPSListener1”Port properties. Make

sure no other processes are running on your host and listening on this TCP/IP

port. Optionally, you may want to set the value of SOAHTTPSListener1”Host

to the machine name on which you are running the connector.

You need not configure the SOAP/HTTP-HTTPS protocol handler for the sample.

Setting up KeyStore and TrustStore: You can quickly set up KeyStore and

TrustStore to use with the sample scenario. For production systems, you must use

third-party software for to set up and manage keystores as well as certificate and

key generation. No tool is provided as part of the Adapter for Web Services to set

up and manage these resources.

This section assumes that Java Virtual Machine is installed on your system and

that you are familiar with the keytool shipped with your JVM (Java Virtual

Machine). For more information or for troubleshooting problems with the keytool,

please see the documentation that accompanies your JVM.

To set up KeyStore:

1. You create KeyStore using keytool. You must create a key pair in the KeyStore.

To do so, enter the following at the command line:

keytool -genkey -alias wsadapter -keystore c:\security\keystore

2. keytool immediately prompts for a password. Specify the password that you

entered for the value of SSL”KeyStorePassword connector property.
Note that in the above example if you specified -keystore

c:\security\keystore in the command line, you would enter

c:\security\keystore as the value of the SSL”KeyStore property. Also, if you

specified -alias wsadapter in the command line, you would enter wsadapter as

the value of the SSL”KeyStoreAlias connector property. keytool would then

prompt you for the details of the certificate. The following illustrates what you

may enter at each of the prompts, but is an example only: always refer, and

defer, to keytool documentation.

What is your first and last name?

 [Unknown]: HostName

What is the name of your organizational unit?

 [Unknown]: myunit

What is the name of your organization?

 [Unknown]: myorganization

What is the name of your City or Locality?

 [Unknown]: mycity

Appendix C. Adapter for Web Services tutorial 213

What is the name of your State or Province?

 [Unknown]: mystate

What is the two-letter country code for this unit?

 [Unknown]: mycountryIs <CN=HostName, OU=myunit, O=myorganization,

 L=mycity, ST=mystate, C=mycountry> correct?

 [no]: yes

3. Note that for What is your first and last name?, you should enter the name

of the machine on which you are running the connector. keytool then prompts

you:

Enter key password for <wsadapter> (RETURN if same as keystore password):

4. Press Return to use the same password. If you want to use a self-signed

certificate, you may want to export the certificate created above. To do so, enter

following on the command line:

C:\security>keytool -export -alias wsadapter -keystore c:\security\keystore

-file c:\security\wsadapter.cer

5. keytool now prompts for the keystore password. Enter the password that you

entered above

To set up TrustStore:

1. To import the trusted certificates into the TrustStore, enter the following

command:

keytool -import -alias trusted1 -keystore c:\security\truststore

-file c:\security\wsadapter.cer

2. keytool now prompts for the keystore password. If you entered -keystore

c:\security\truststore, make sure that SSL”TrustStore property is set to

c:\security\truststore. Also, set the value of the SSL”TrustStorePassword

property to the password you entered above.

Configuring for the SOAP/JMS protocol scenario

This section shows you how to configure the connector for the SOAP/JMS sample

scenario. The sample scenario exposes the SERVICE_ASYNCH_Order_Collab and

SERVICE_SYNCH_OrderStatus_Collab collaborations as SOAP/JMS web services. To

expose a collaboration as a SOAP/JMS web service, the connector uses the

SOAP/JMS protocol listener. The sample scenario comes with the

CLIENT_ASYNCH_Order_Collab and CLIENT_SYNCH_OrderStatus_Collab collaborations,

which are SOAP/JMS clients of SOAP/JMS web services. To invoke a SOAP/JMS

web service, the connector uses the SOAP/JMS protocol handler.

In the steps and descriptions that follow, hierarchical connector configuration

properties are represented with the ” symbol. For example, A” B implies A is a

hierarchical property, and B is child property of A.

Note: In addition to the pre-install items listed above in“Before you start” on page

210, you should also have installed a JMS service provider and installed and

configured your JNDI.

Configuring JNDI properties: For SOAP/JMS, you must configure JNDI

connector configuration properties:

1. In Connector Configurator Express, click Connector-Specific Properties for the

WebServicesConnector.

2. Expand the JNDI hierarchical property to display its child properties. Then

check or change the child properties to match the values listed below.

v JNDI”JNDIProviderURL Set this property to the URL of the JNDI Service

provider. Refer to your JNDI provider documentation.

214 Adapter for Web Services User Guide

v JNDI”InitialContextFactory Set this property to fully qualified class name of

the factory class that will create the JNDI initial context. Refer to your JNDI

provider documentation.

v JNDI”JNDIConnectionFactoryName Set this property to the JNDI name of

the connection factory to lookup using JNDI context. Make sure that this

name can be looked up using the JNDI.

v Refer to your JNDI documentation to see if any of the following properties

are required by your JNDI provider:

– JNDI”CTX_ObjectFactories

– JNDI”CTX_ObjectFactories

– JNDI”CTX_StateFactories

– JNDI”CTX_URLPackagePrefixes

– JNDI”CTX_DNS_URL

– JNDI”CTX_Authoritative

– JND”CTX_Batchsize

– JNDI”CTX_Referral

– JNDI”CTX_SecurityProtocol

– JND”CTX_SecurityAuthentication

– JNDI”CTX_SecurityPrincipal

– JNDI”CTX_SecurityCredentials

– JNDI”CTX_Language

3. Save the changes in Connector Configurator Express.

Configure the JMS queues and SOAP/JMS protocol listener: The scenario

requires that six queues be defined with your JMS service provider. Before doing

so, check your JMS provider documentation; defining queues varies between

providers.

1. Define (or make available via JNDI lookup) the following queues:

v ORDER_INPUT

v ORDER_INPROGRESS

v ORDER_ERROR

v ORDER_ARCHIVE

v ORDER_UNSUBSCRIBED

v ORDER_REPLYTO

2. From CSM open WebServicesConnector in Connector Configurator Express. If

you have not done so already, configure the connector as described in the

installation guide for your system.

3. Click Application Config Properties in Connector Configurator Express.

4. Expand the ProtocolListenerFramework property to display the

ProtocolListeners child property.

5. Expand ProtocolListeners property to display the SOAPJMSListener1 child

property.

6. Check or change the values of the SOAPJMSListner1 child properties to

match those listed below:

v SOAPJMSListener”Protocol Set to soap/jms

v SOAPJMSListener1”Protocol Set to soap/jms

v SOAPJMSListener1”InputQueue Set to ORDER_INPUT

v SOAPJMSListener1”InProgressQueue Set to ORDER_INPROGRESS

Appendix C. Adapter for Web Services tutorial 215

v SOAPJMSListener1”ArchiveQueue Set to ORDER_ARCHIVE

v SOAPJMSListener1”UnsubscribedQueue Set to ORDER_UNSUBSCRIBED

v SOAPJMSListener1”ErrorQueue Set to ORDER_ERROR

v SOAPJMSListener1”ReplyToQueue Set to ORDER_REPLYTO

7. Save the changes in Connector Configurator Express.

Configure the SOAP/JMS protocol handler:

1. From System Manager open WebServicesConnector in Connector Configurator

Express. If you have not done so already, configure the connector as described

in the installation guide for your system.

2. Click Connector-Config Properties in Connector Configurator Express.

3. Expand the ProtocolHandlerFramework property to display the

ProtocolHandlers child property.

4. Expand the ProtocolHandlers child property to display the SOAPJMSHandler

child property. Check or change the values of SOAPJMSHandler child

properties to match the those below:

v SOAPJMSHandler”Protocol Set to soap/jms

v SOAPJMSHandler”ReplyToQueue Set to value ORDER_REPLYTO_HANDLER

5. Save the changes in Connector Configurator Express.

Create user project

v Using WebSphere Business Integration System Manager, create a new User

Project. Select all of the components from the Integration Component Library

that was created in “Load the sample content” on page 211.

Add and deploy the project

1. From the Server Instance view, add the User Project created in “Create user

project”to InterChange Server Express.

2. Deploy all of the components from this User Project to the InterChange Server

Express.

Reboot InterChange Server Express

1. Reboot InterChange Server Express to ensure that all changes take effect.

2. Use the System Monitor tool to ensure that all of the collaboration objects,

connector controllers, and maps are in a green state.

Running the asynchronous scenario

This scenario invokes the Asynch Order Service web service. Before running the

scenario, review this step-by-step synopsis of its data flow.

1. A CLIENT_ASYNCH_TLO_Order.Create event originates in the application

SampleSAP running in one instance of the Test Connector.

2. The event is sent from SampleSAP to the collaboration

CLIENT_ASYNCH_Order_Collab.

3. The event is then sent from the collaboration to the Web Services connector.

4. The Web Services connector finds the CLIENT_ASYNCH_Order object that is a child

of the CLIENT_ASYNCH_TLO_Order object.

5. The Request business object is converted into a SOAP message using the SOAP

data handler.

216 Adapter for Web Services User Guide

6. The Web Services connector sends the SOAP Message to the end-point

(Destination) of the web service Asynch Order Service. The end-point is

provided by the Destination attribute of the Protocol Config Meta-Object (MO).

The Protocol Config MO used by the connector depends on the value of the

Handler attribute of CLIENT_ASYNCH_TLO_Order. If it is set to soap/http, the

Destination attribute of CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO will give the

end-point as the URL of the web service. Otherwise if the Handler attribute is

set to soap/jms, the Destination attribute of

CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO gives the end-point as a destination

queue name.

7. The Asynch Order Service web service receives the SOAP request. As

mentioned earlier, the Web Services connector is the end-point for this web

service. The connector’s protocol listener, listening on the end-point (to which

the request was sent), receives the SOAP message.

8. The connector converts the SOAP message into SERVICE_ASYNCH_Order and

then creates a SERVICE_TLO_Order object. The SERVICE_ASYNCH_Order object is set

as a child of the SERVICE_TLO_Order object.

9. The Web Services connector now asynchronously posts the SERVICE_TLO_Order

object to InterChange Server Express. This completes the asynchronous web

service invocation.

Because this is an asynchronous web service (request-only), no response is sent

back to the web service client. When SERVICE_ASYNCH_Order_Collab receives this

object, the collaboration then sends the business object to the application

namedSampleSiebel, which is running as the second instance of Test Connector.

The object is displayed in the Test Connector. When Reply Success is selected from

theSampleSiebel application, the event will be sent back to

SERVICE_ASYNCH_Order_Collab.

To run the asynchronous scenario:

 1. Start your InterChange Server Express integration broker, if it is not already

running.

 2. Start the Web Services connector.

 3. Start two instances of the Test Connector.

 4. Using the Test Connector, define a profile for the SampleSAPConnector and the

SampleSiebelConnector.

 5. Select FILE”CONNECT AGENT from each Test Connector menu to begin

simulating agents.

 6. While simulating the SampleSAPConnector using the Test Connector, select

EDIT”LOAD BO from the menu. Load the following file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus

\CLIENT_ASYNCH_TLO_Order.bo

The Test Connector should show that the CLIENT_ASYNCH_TLO_Order is loaded.

 7. Verify the web services end-point address:

v For SOAP/HTTP web service If you want to use SOAP/HTTP:

a. Make sure you have configured the Web Services connector for

SOAP/HTTP. In your Test Connector, make sure that the value of the

Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set

to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute

is of type CLIENT_ASYNCH_Order business object.

Appendix C. Adapter for Web Services tutorial 217

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This

attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO is set to

http://localhost:8080/wbia/webservices/samples. No quotes are

allowed in this value.
v For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for

SOAP/HTTPS. In your Test Connector, make sure that the value of the

Handler attribute for the CLIENT_ASYNCH_TLO_Order business object is set

to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute

is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_ASYNCH_Order. This

attribute is of type CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

CLIENT_ASYNCH_Order_SOAP_HTTP_CfgMO is set to

https://localhost:8443/wbia/webservices/samples. No quotes are

allowed in this value.
v For SOAP/JMS web service If you want to use SOAP/JMS:

a. Make sure you have configured the Web Services connector for

SOAP/JMS. In your Test Connector, make sure that the value of the

Handler attribute of the CLIENT_ASYNCH_TLO_Order business object is set

to soap/jms. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_ASYNCH_TLO_Order. This attribute

is of type CLIENT_ASYNCH_Order business object.

c. Expand the SOAPJMSCfgMO attribute of CLIENT_ASYNCH_Order. This

attribute is of type CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO.

d. Make sure the value of the Destination attribute of

CLIENT_ASYNCH_Order_SOAP_JMS_CfgMO is set to ORDER_INPUT. No quotes

are allowed in this value.
 8. While simulating the SampleSAPConnector with the Test Connector, click on the

loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step

synopsis earlier in this section for more details regarding the flow of the

event.

 9. While simulating the SampleSiebelConnector with the Test Connector, select

REQUEST”ACCEPT REQUEST. An Event Labeled

SERVICE_ASYNCH_TLO_Order.Create is displayed in the right panel of the Test

Connector.

10. Double-click the business object. The business object opens up in a window.

11. Expand the Request attribute of the business object. The Request attribute is of

type SERVICE_ASYNCH_Order. Inspect the OrderId, Customarily and other

attributes of SERVICE_ASYNCH_Order to verify the Order received. This

completes the execution of asynchronous scenario.

12. Once you have inspected the business object, close the window. Select

REQUEST ”REPLY” SUCCESS.

Running the synchronous scenario

This scenario invokes the Synch OrderStatus Service web service. Before running

the scenario, review this step-by-step synopsis of its data flow.

218 Adapter for Web Services User Guide

1. A CLIENT_SYNCH_TLO_OrderStatus.Retrieve event originates in the application

SampleSAP running in one instance of the Test Connector.

 2. The event is sent from SampleSAP to the collaboration named

CLIENT_SYNCH_OrderStatus_Collab.

 3. The event is then sent from the collaboration to the Web Services connector.

 4. The Web Services connector finds the CLIENT_SYNCH_OrderStatus_Request

object, which is a child of the CLIENT_SYNCH_TLO_OrderStatus object.

 5. The Web Services connector invokes the SOAP data handler to convert the

CLIENT_SYNCH_OrderStatus_Request business object into a SOAP message.

 6. The Web Services connector sends the SOAP message to the end-point

(Destination) of the web service Synch OrderStatus Service. The end-point is

provided by the Destination attribute of the Protocol Config MO. The Protocol

Config MO used by the connector depends on the value of the Handler

attribute of CLIENT_SYNCH_TLO_OrderStatus. If it is set to soap/http, the

Destination attribute of CLIENT_SYNCH_OrderStatus_Request_SOAP_HTTP_CfgMO

will give the end-point as the URL of a web service. Otherwise, if the Handler

attribute is set to soap/jms, the Destination attribute of

CLIENT_SYNCH_OrderStatus_Request_SOAP_JMS_CfgMO will give the end-point as

the destination queue name of the web service).

 7. The Web Service Synch OrderStatus Service receives the SOAP request. As

mentioned earlier, the Web Services connector is the target end-point. The

connector’s protocol listener, listening on the end-point (to which request was

sent), receive the SOAP message.

 8. The connector invokes the SOAP data handler with the SOAP message. The

SOAP message is converted into a SERVICE_SYNCH_OrderStatus_Request object

by the SOAP data handler. The Web Services connector then creates a

SERVICE_TLO_OrderStatus object. The SERVICE_SYNCH_OrderStatus_Request

object is set as the child of the SERVICE_TLO_OrderStatus object.

 9. The Web Services connector now synchronously posts the

SERVICE_TLO_OrderStatus object to the SERVICE_SYNCH_OrderStatus_Collab

collaboration running in InterChange Server Express. Since this is a

synchronous execution, the Web Services connector remains blocked until the

collaboration executes and returns the response.

10. SERVICE_SYNCH_OrderStatus_Collab receives the SERVICE_TLO_OrderStatus

object. The collaboration then sends the business object to the application

SampleSiebel, which is running as the second instance of the Test Connector.

11. When you select Reply Success from the SampleSiebel application, the event is

sent back to the SERVICE_SYNCH_OrderStatus_Collab collaboration.

12. SERVICE_SYNCH_OrderStatus_Collab receives the SERVICE_TLO_OrderStatus

object. The collaboration then sends the business object to Web Services

connector.

13. The Web Services connector finds the SERVICE_SYNCH_OrderStatus_Response

business object (or SERVICE_SYNCH_OrderStatus_Fault, if it is populated) that

is a child of the SERVICE_SYNCH_OrderStatus_TLO. This business object will be

converted into a SOAP response message (or SOAP fault message) by the

SOAP data handler.

14. The Web Services connector returns the SOAP response message (or SOAP

fault message) to the web service client.

15. The web service client, which in this case is the connector, receives the

response. The connector invokes the SOAP data handler with the response

message.

Appendix C. Adapter for Web Services tutorial 219

16. The SOAP data handler converts the response message into either a

CLIENT_SYNCH_OrderStatus_Response or CLIENT_SYNCH_OrderStatus_Fault

business object, depending on what was returned by the Order Synch Service.

The Web Services connector sets this object as the child of

CLIENT_SYNCH_OrderStatus_TLO. CLIENT_SYNCH_OrderStatus_TLO is returned to

the CLIENT_SYNCH_OrderStatus_Collab collaboration.

17) CLIENT_SYNCH_OrderStatus_Collab then sends CLIENT_SYNCH_OrderStatus_TLO

to the SampleSAP application, which is running as the first instance of the Test

Connector. The Test Connector displays this object.

To run the synchronous scenario:

 1. Start your InterChange Server Express integration broker, if it is not already

running.

 2. Start the Web Services connector.

 3. Start two instances of the Test Connector.

 4. Using the Test Connector, define a profile for the SampleSAPConnector and the

SampleSiebelConnector.

 5. Select FILE”CONNECT AGENT from each Test Connector menu to begin

simulating agents.

 6. While simulating the SampleSAPConnector using the Test Connector, select

EDIT”LOAD BO from the menu. Load the following file:

WBI_folder\connectors\WebServices\samples\WebSphereICS\OrderStatus

\CLIENT_SYNCH_TLO_OrderStatus.bo

The Test Connector should show that the CLIENT_SYNCH_TLO_OrderStatus is

loaded.

 7. Verify the web services end-point address:

v For SOAP/HTTP web service If you want to use SOAP/HTTP:

a. Make sure you have configured the Web Services connector for

SOAP/HTTP. In your Test Connector, make sure that the value of the

Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object

is set to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This

attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This

attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

d. Make sure the value of the Destination attribute of

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO is set to

http://localhost:8080/wbia/webservices/samples. No quotes are

allowed in this value.
v For SOAP/HTTPS web service If you want to use SOAP/HTTPS:

a. Make sure that you have configured the Web Services connector for

SOAP/HTTPS. In your Test Connector, make sure that the value of the

Handler attribute for the CLIENT_SYNCH_TLO_OrderStatus business object

is set to soap/http. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This

attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand the SOAPHTTPCfgMO attribute of CLIENT_SYNCH_OrderStatus. This

attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO.

220 Adapter for Web Services User Guide

d. Make sure value of Destination attribute of

CLIENT_SYNCH_OrderStatus_SOAP_HTTP_CfgMO is set to

https://localhost:8443/wbia/webservices/samples. No quotes are

allowed in this value.
v For SOAP/JMS web service If you want to use SOAP/JMS:

a. Make sure you have configured the Web Services connector for

SOAP/JMS. In your Test Connector, make sure that the value of the

Handler attribute of the CLIENT_SYNCH_TLO_OrderStatus business object

is set to soap/jms. No quotes are allowed in this value.

b. Expand the Request attribute of CLIENT_SYNCH_TLO_OrderStatus. This

attribute is of type CLIENT_SYNCH_OrderStatus business object.

c. Expand the SOAPJMSCfgMO attribute of CLIENT_SYNCH_OrderStatus.

This attribute is of type CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO.

d. Make sure the value of the Destination attribute of

CLIENT_SYNCH_OrderStatus_SOAP_JMS_CfgMO is set to ORDER_INPUT. No

quotes are allowed in this value.
 8. While simulating the SampleSAPConnector with the Test Connector, click on the

loaded Test BO. Select REQUEST”SEND from the menu. See the step-by-step

synopsis earlier in this section for more details regarding the data flow.

 9. An event labeled SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in

the right panel of the Test Connector instance that is simulating

SampleSiebelConnector. Double-click the business object to display it in a

window.

10. Expand the Request attribute of the business object. The Request attribute is of

type SERVICE_SYNCH_OrderStatus_Request. Inspect the OrderId, attribute of

SERVICE_ASYNCH_Order to verify that this is the order for which status is

required.

v If you know the status of the order:

a. Click the Response attribute of SERVICE_SYNCH_TLO_OrderStatus. The

Response attribute is of type CLIENT_SYNCH_OrderStatus_Response.

b. Right-click the Response attribute.

c. Click the Add Instance option. A new instance for the

CLIENT_SYNCH_OrderStatus_Response business object is created.

d. Enter values for OrderId, CustomerId and all other details you know

about this order. Once you have entered all the details for this order,

close this window.
v If you do not know the status of the order:

a. Click the Fault attribute of SERVICE_SYNCH_TLO_OrderStatus. The Fault

attribute is of type CLIENT_SYNCH_OrderStatus_Fault.

b. Right-click the Fault attribute.

c. Click the Add Instance option. A new instance of

CLIENT_SYNCH_OrderStatus_Fault is created.

d. Enter values for faultcode, faultstring and all other details you want to

send in the SOAP fault message. Once you have entered all the values

for this fault, close this window.
11. Select REQUEST”REPLY”SUCCESS.An event labeled

SERVICE_SYNCH_TLO_OrderStatus.Retrieve is displayed in the right panel of

the Test Connector that is simulating SampleSAPConnector.

12. Double-click the SERVICE_SYNCH_TLO_OrderStatus.Retrieve business object,

which is then displayed in a window.

Appendix C. Adapter for Web Services tutorial 221

v If your SampleSiebelConnector returned an order status, you should see the

Response attribute of the business object populated. Expand the Response

attribute to verify the order status.

v If your SampleSiebelConnector returned a fault, you should see the Fault

attribute of the business object populated. Expand the Fault attribute to

determine the fault.
13. Once you have inspected the business object, close the window. Select

REQUEST”REPLY”SUCCESS.

This completes the execution of synchronous scenario.

222 Adapter for Web Services User Guide

Appendix D. Migrating to 3.0.x

v “Backward compatibility”

v “Upgrade tasks”

v “Web Services Generation Utility”

v “SOAP data handler” on page 224

v “SOAP connector” on page 224

v “Web services connector” on page 224

This appendix describes the backwards compatibility of the 3.0.x release of the

Adapter for Web Services as well as how to migrate from Web Services Adapter 1.x

and 2.x releases.

Backward compatibility

The Adapter for Web Services, version 3.0.x, is not backward compatible:

v None of the new components (web services connector, SOAP data handler,

WSDL ODA) can be used, either jointly or individually, with components

released in prior versions of this product.

v None of the components (SOAP connector, SOAP data handler, Web Services

Generation Utility) released in prior versions of this product can be used either

jointly or individually with version 3.0.x.

v Artifacts created or used with the prior versions of this product solution may

not be usable with the version 3.0.x.

v The 3.0.x version of this product cannot be used with a release of WebSphere

InterChange Server that is prior to version 4.2

Upgrade tasks

The sections below describe how to upgrade components from versions 1.x and 2.x

of this product.

Web Services Generation Utility

The Web Services Generation Utility is no longer available. Instead, you use

System Manager tools to expose collaborations as web services. None of the

artifacts generated by the Web Services Generation Utility can be used with this

release:

v Proxy class The web services connector now supports event notification.

Therefore proxy classes are no longer required to expose a collaborations as a

web service. A proxy class generated with the Web Services Generation Utility

cannot invoke a collaboration that has been exposed as a web service using

System Manager version 4.2 tools.

v WSDL documents The Web Services Generation Utility cannot be used to

generate WSDL documents for InterChange Server version 4.2 collaborations.

Instead System Manager tools must be used to generate WSDL documents. For

more information see “Running the wizard” on page 148.

When you enable a collaboration for request processing, WSDL documents that

you generated using the Web Services Generation Utility may not be usable with

the WSDL ODA that is available with the 3.0.x release of the connector.

© Copyright IBM Corp. 2004, 2005 223

SOAP data handler

You can use the SOAP data handler with the web services connector only. This

data handler cannot be used by any other connector nor by Server Access Interface.

The sections below discuss additional support issues.

Meta-objects

The top-level SOAP data handler meta-object used with prior releases is no longer

supported. Instead you must create a new top-level meta-object for use with the

3.0.x release SOAP data handler. This meta-object must have Classname and

SOAPNameHandler attributes only.

The new meta-object no longer requires child meta objects for SOAP

message-to-business-object and business-object -to-SOAP-message transformations.

Accordingly, make sure that your top-level meta-object does not have

SOAPToBOConfigMO and BOToSOAPConfigMO attributes.

The child meta-objects that previously described SOAP message-to-business-object

and business-object -to-SOAP-message transformations must now be added as

children of the SOAP Request, SOAP Response and SOAP Fault business objects.

For further information, see Chapter 5, “SOAP data handler,” on page 109 and

Chapter 3, “Business object requirements,” on page 25.

Application-Specific Information

The new SOAP data handler features new application-specific information (ASI)

functionality. You can take advantage of this enhancement by adding specific ASI

to SOAP business objects, but doing so is not required. With the exception of

adding child SOAP Config MOs to business objects, you can deploy SOAP

business objects that you created with prior releases of the connector for use with

the 3.0.x version.

Connector compatibility

You can use the new SOAP data handler with the 3.0.x web services connector

only. The new SOAP data handler cannot be used with components from prior

releases such as the SOAP connector or Server Access Interface.

You cannot use the old SOAP data handler with the 3.0.x web services connector.

SOAP connector

The SOAP connector is not supported with release 3.0.x. Instead, you must use the

web services connector to invoke web services.

Web services connector

With release 3.0.x, you use the web services connector for both exposing

collaborations as web services and invoking web services. New event notification

functionality is used to expose collaborations as web services. New request

processing features are now used to invoke web services. The sections below

highlight the migration tasks that you must complete to use the web services

connector.

Note: The migration tasks discussed below may not be exhaustive. Also, you can

complete the tasks in any order.

Event notification

The 3.0.x connector can invoke collaborations synchronously or asynchronously

with no requirement for creating and deploying a proxy class on a web server. The

224 Adapter for Web Services User Guide

connector now has a listener framework that notifies the connector of events. The

listener framework supports SOAP/HTTP, SOAP/HTTPS and SOAP/JMS

bindings. If you configure the listeners properly, the connector can detect and

respond to web service clients on behalf of collaborations that have been exposed

as web services. For further information on the listener framework and how to

configure it, see “Protocol listeners” on page 63.

Business objects for event notification: You must create an event notification

top-level object (TLO). The TLO is a container for a SOAP Request business object

and, optionally (for synchronous request processing), a SOAP Response and SOAP

Fault business object. The TLO’s structural components anticipate a single web

services operation: the SOAP Request business object corresponds to a SOAP

request message, the SOAP Response business object corresponds to a SOAP

response message, and the SOAP Fault business object corresponds to a SOAP

fault message. For further information, see “Synchronous event processing TLOs”

on page 26.

Event notification and SOAP business objects: The SOAP business objects used

with Server Access Interface in prior releases may be used, with modifications

described in “SOAP data handler” on page 224 above, with the 3.0.x release. Note

that you must specify SOAP business objects as children in the event notification

TLO.

Request Processing

Like the SOAP connector in prior releases, the 3.0.x web services connector can

invoke web services. In addition, the new connector supports invocation of web

services with SOAP/JMS bindings. The sections below discuss further the changes

in connector request processing.

Top-level objects request processing: You must create a request processing TLO.

The TLO is a container for a SOAP Request business object and, optionally (for

synchronous request processing), a SOAP Response and SOAP Fault business

object. The TLO’s structural components anticipate a single web services operation:

the SOAP Request business object corresponds to a SOAP request message, the

SOAP Response business object corresponds to a SOAP response message, and the

SOAP Fault business object corresponds to a SOAP fault message. In this sense the

3.0.x request processing TLO corresponds to the TLO used with the SOAP

connector from prior releases. For further information on request processing TLOs,

see “Synchronous request processing TLOs” on page 43.

SOAP business objects: The SOAP business objects used with the SOAP

connector of prior releases may be used with modifications as described in“SOAP

data handler” on page 224. You must specify these business objects as children of a

request processing TLO. Note that in previous releases these business objects were

children of a TLO used with SOAP connector.

The 3.0.x web services connector has an additional requirement for SOAP Request

business objects. Each SOAP Request business object must have an attribute of

type Protocol Config MO (meta-object). The connector uses the Protocol Config

MO to determine the destination of the request message. Each Protocol Config MO

has a Destination attribute that gives the address of the target web service. If you

are using SOAP/HTTP or SOAP/HTTPS to invoke the target web service, then the

Destination attribute corresponds to the URL attribute of the TLO used with the

SOAP connector from prior releases.For further information, see “Protocol Config

MO” on page 32.

Appendix D. Migrating to 3.0.x 225

226 Adapter for Web Services User Guide

Appendix E. Configuring HTTPS/SSL

v “Keystore setup”

v “TrustStore setup” on page 228

v “Generating a certificate signing request (CSR) for public key certificates” on

page 228

If you are planning to use SSL, you must use third-party software to manage your

keystores, certificates, and key generation. The web services connector does not

come with tooling for these tasks. However, you may choose to use keytool, which

ships with IBM JRE, to create self-signed certificates and to manage your keystores.

A key and certificate management utility, keytool enables you to administer your

own public/private key pairs and associated certificates. These are intended for

use in self-authentication (where you authenticate yourself to other users or

services) or data integrity and authentication services that use digital signatures.

The keytool utility also allows you to store the public keys (in the form of

certificates) of peers with whom you communicate.

This appendix describes how to set up keystores using keytool. Note that this

appendix is intended for illustration purposes only; it is not intended as a

substitute for documentation for keytool or related products. Always refer to

source documentation for the tools you use to set up keystores. For further

information on keytool, see:

v http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#security

Keystore setup

To create KeyStore using keytool, you first must create a key pair in the KeyStore.

For example, if you enter the following command line:

keytool -genkey -alias wsadapter -keystore c:\security\keystore

keytool immediately prompts you for a password. You may enter the password of

your choice (within keytool parameters), but you should specify the password

entered in keytool as the value of the SSL ” KeyStorePassword connector property.

For further information, see “KeyStorePassword” on page 102.

The sample command creates the keystore named keystore in the

c:\security\keystore directory. Accordingly, you would enter

c:\security\keystore as the value of the SSL ” KeyStore connector hierarchical

property. Also from the command line example above, you would enter -alias

wsadapter as the value of the SSL ” KeyStoreAlias connector hierarchical property.

The keytool utility then prompts you for the details of the certificate. The following

illustrates what you may enter for each of the prompts. (Refer to keytool

documentation.)

What is your first and last name?

 [Unknown]: HostName

What is the name of your organizational unit?

 [Unknown]: wbi

What is the name of your organization?

 [Unknown]: IBM

What is the name of your City or Locality?

 [Unknown]: Burlingame

What is the name of your State or Province?

© Copyright IBM Corp. 2004, 2005 227

[Unknown]: CA

What is the two-letter country code for this unit?

 [Unknown]: US

Is <CN=HostName, OU=wbi, O=IBM, L=Burlingame,

ST=CA, C=US> correct?

 [no]: yes

keytool then prompts you for a password:

Enter key password for <wsadapter> (RETURN if same as keystore password):

Press Return to use the same password. If you want to use a self-signed certificate,

you may want to export the certificate created above. In that case, enter following

on the command line:

keytool -export -alias wsadapter -keystore c:\security\keystore -file wsadapter.cer

keytool now prompts you for the keystore password. Enter the password that you

entered above.

TrustStore setup

You may want to set up TrustStore for the following: If you want the

SOAP/HTTPS protocol listener to authenticate the web service client, set the SSL ”

UseClientAuth connector configuration property to true . In this case, the

SOAP/HTTPS protocol listener expect s TrustStore to contain certificates for all

trusted web service clients. Note that the connector uses the JSSE default

mechanism to trust clients. If you are invoking SOAP/HTTPS web services, the

SOAP/HTTP-HTTPS protocol handler requires that TrustStore trust the web

service. This means that TrustStore must contain the certificates of all trusted web

services. Note that the connector uses the JSSE default mechanism to trust clients.

To import the trusted certificates into the TrustStore, enter a command such as the

following:

keytool -import -alias trusted1 -keystore c:\security\truststore -file

 c:\security\trusted1.cer

keytool now prompts for the keystore password. If you enter -keystore

c:\security\truststore, make sure that the SSL ” TrustStore hierarchical property

is set to c:\security\truststore. Also you must set the value of the SSL ”

TrustStorePassword hierarchical property to the password you entered previously.

Generating a certificate signing request (CSR) for public key

certificates

If the SSL data exchange is among already trusted partners who trust your identity,

self-signed certificates may be adequate. However, a certificate is more likely to be

trusted by others when it is signed by a certifying authority (CA).

To get a certificate signed by the CA using the keytool utility, you first must

generate a Certificate Signing Request (CSR), then give the CSR to a CA. The CA

then signs the certificate and returns it to you.

You generate a CSR by entering the following command:

keytool -certreq -alias wsadapter -file wsadapter.csr

 -keystore c:\security\keystore

In the command, alias is the keystore alias that you created for the private key.

The keytool utility generates the CSR file, which you provide to your CA. Your CA

228 Adapter for Web Services User Guide

then provides you with the signed certificate. You will have to import this

certificate into your keystore. To do so, you would enter the following command:

keytool -import -alias wsadapter -keystore c:\security\keystore -trustcacerts

-file casignedcertificate.cer

Once you import, the self-signed certificate in keystore is replaced by the

CA-signed certificate.

Appendix E. Configuring HTTPS/SSL 229

230 Adapter for Web Services User Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service. IBM may have patents or

pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents.

You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you. This

information could include technical inaccuracies or typographical errors. Changes

are periodically made to the information herein; these changes will be incorporated

in new editions of the publication. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this publication at any time

without notice. Any references in this information to non-IBM Web sites are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials for

this IBM product and use of those Web sites is at your own risk. IBM may use or

distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you. Licensees of this program who wish to

have information about it for the purpose of enabling: (i) the exchange of

information between independently created programs and other programs

(including this one) and (ii) the mutual use of the information which has been

exchanged, should contact:

© Copyright IBM Corp. 2004, 2005 231

IBM Corporation

577 Airport Blvd., Suite 800

Burlingame, CA 94010

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee. The licensed program described in this

document and all licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us. Any performance data

contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some

measurements may have been made on development-level systems and there is no

guarantee that these measurements will be the same on generally available

systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the

applicable data for their specific environment. Information concerning non-IBM

products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those

products and cannot confirm the accuracy of performance, compatibility or any

other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products. All statements

regarding IBM’s future direction or intent are subject to change or withdrawal

without notice, and represent goals and objectives only. This information contains

examples of data and reports used in daily business operations. To illustrate them

as completely as possible, the examples include the names of individuals,

companies, brands, and products. All of these names are fictitious and any

similarity to the names and addresses used by an actual business enterprise is

entirely coincidental. COPYRIGHT LICENSE: This information contains sample

application programs in source language, which illustrate programming techniques

on various operating platforms. You may copy, modify, and distribute these sample

programs in any form without payment to IBM, for the purposes of developing,

using, marketing or distributing application programs conforming to the

application programming interface for the operating platform for which the sample

programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. If you are viewing this information softcopy, the

photographs and color illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you create

application software using this program. General-use programming interfaces

allow you to write application software that obtain the services of this program’s

tools. However, this information may also contain diagnosis, modification, and

tuning information. Diagnosis, modification and tuning information is provided to

help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

232 Adapter for Web Services User Guide

Trademarks and service marks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States or other countries, or both:

i5/OS

IBM

the IBM logo

AIX

CICS

CrossWorlds

DB2

DB2 Universal Database

Domino

IMS

Informix

iSeries

Lotus

Lotus Notes

MQIntegrator

MQSeries

MVS

OS/400

Passport Advantage

SupportPac

WebSphere

z/OS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both. MMX,

Pentium, and ProShare are trademarks or registered trademarks of Intel

Corporation in the United States, other countries, or both. Java and all Java-based

trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both. Linux is a trademark of Linus Torvalds in the United States,

other countries, or both. Other company, product or service names may be

trademarks or service marks of others.

 WebSphere Business Integration Server Express and Express Plus include software

developed by the Eclipse Project (http://www.ecclipse.org/).

WebSphere Business Integration Server Express, Version 4.4, and WebSphere

Business Integration Server Express Plus, Version 4.4

Notices 233

234 Adapter for Web Services User Guide

Index

A
adapter environment 2

application-specific information 121

architecture of the connector 11

ASI effects
on fault processing 126

on header processing 126

ASI in business-object-to-SOAP-message

transformations 123

ASI in SOAP-to-business object

transformations 134

asynchronous event processing
request business object 41

TLOs 39

attribute-level ASI 40

object-level ASI 39, 54

asynchronous request processing
Config MOs 58

request business object 56

TLOs 54

attribute-level ASI 55

B
bidirectional script data 3

bidirectional support for event and

request processing 1

business object
meta-data 25

requirements 25

business objects
developing 58

header container 38

identifying or developing 146

business-object-to-SOAP-message-body

processing 118

business-object-to-SOAP-message-header

processing 119

C
certificate signing request (CSR) 228

collaboration object
binding the port 146

collaboration template
choosing or developing 146

collaborations
enabling for request processing 143

exposing as SOAP/HTTPS web

services 85

exposing as SOAP/JMS web

services 83

exposing as web services 145

for web services
enabling 13

invoking SOAP/HTTPS web

services 86

invoking SOAP/JMS web services 84

Config MOs
for asynchronous request

processing 58

configuration properties
connector-specific 87

setting 86

standard 171

configuration tasks
overview 18

configuring the connector 86

connector
at startup 106

overview 1

processing 59

properties
configuring 12

connector and JMS 82

connector business object structure 25

Connector Configurator 193

connector for web services
components 7

D
data handler

SOAP 8

DataHandlerConfigMO 89

deploying the connector 9

double-byte character sets 3

E
Eclipse technology v

elem_name and elem_ns processing 123

event persistence and delivery 72

event processing 63

non-TLOs 42

overview 60

TLOs
asynchronous 39

synchronous 26

F
fault processing

ASI effects on 126

H
header child business objects 38

header container business objects 38

header fault processing 120

header processing
ASI effects on 126

HTTP Protocol Config MO 50

HTTPS/SSL
configuring 227

keystore setup 227

TrustStore setup 228

I
identifying or developing business

objects 146

install, configure, and design

checklist 12

installation and startup 15

installation tasks
overview 15

installed file structure
UNIX 18

Windows 15

installing the adapter 12

installing the connector and related

files 15

J
JMS protocol 3

JMS Protocol Config MO 49

JNDI 82

configure 3

initialization 106

JSSE 84

K
KeyStore and TrustStore 85

L
locale-dependent data 3

logging 107

M
meta-object

hierarchy and terminology 110

requirements 109

SOAP configuration 111

migrating to 3.0.x version 223

multiple instances of the adapter 19

multiple protocol listeners
creating 105

N
NameHandler

sample 140

O
operating system requirements 2

P
pluggable name handler

specifying 139

© Copyright IBM Corp. 2004, 2005 235

properties
connector-specific 87

standard 86

Protocol Config MO 32

protocol handler framework

initialization 107

protocol handler processing
SOAP/HTTP-HTTPS 76

SOAP/JMS 79

protocol handlers 75

protocol listener framework

initialization 106

protocol listeners 63

protocol listeners and handlers 8

proxy setup 106

public key certificates
generating a CSR 228

R
related documents v

request processing 74

overview 61

TLOs
synchronous 43

request processing TLOs
asynchronous 54

run-time errors 169

running multiple instances of the

adapter 19

S
Secure Sockets Layer 3

SOAP
data handler 8

configuring 13

SOAP attributes
specifying 126

SOAP Config MO 31, 49

SOAP data handler 109

configuring 109

processing 115

SOAP HTTP(S) protocol listener

processing 64

SOAP messages
style and use impact on 113

SOAP style and use guidelines 141

SOAP versions supported 1

SOAP-body-message-to-business-object

processing 116

SOAP-header-message-to-business-object

processing 117

SOAP/HTTP
protocol listener processing 64

unsupported features 68

SOAP/HTTP-HTTPS
protocol handler processing 76

SOAP/HTTP(S) web services 62

asynchronous 62

synchronous 62

SOAP/HTTPS listener processing
using secure sockets 68

SOAP/HTTPS web services
exposing collaborations as 85

SOAP/JMS
protocol handler processing 79

SOAP/JMS protocol listener

processing 68

SOAP/JMS web services 62

asynchronous 63

exposing collaborations as 83

synchronous 63

SOAPProperty object
using 139

software prerequisites 2

SSL 3, 84

properties 85

standard configuration properties 86,

171

standards and APIs 2

start-up problems 167

starting and stopping the connector 21,

22

synchronous event processing
fault business object 31

request process object 29

response business object 30

TLOs
attribute-level ASI 27

object-level ASI 26

synchronous event processing TLOs 26

synchronous request processing
fault business object 49

request business object 47

response business object 48

TLOs 43

attribute-level ASI 45

object-level ASI 44

T
terminology 5

tracing 107

troubleshooting 167

run-time errors 169

start-up problems 167

tutorial 209

installing and configuring 211

running the asynchronous

scenario 216

running the synchronous

scenario 218

type_name and type_ns processing
for multiple cardinality

attributes 125

for simple attributes 124

for single cardinality attributes 124

W
web services configuration tools 9

web services connector 59

Web Services Generation Utility 223

WSDL Configuration Wizard 148

processing business objects in

non-TLO format 151

processing business objects in TLO

format 150

processing requirements and

exceptions 153

WSDL Configuration Wizard (continued)
running 148

WSDL document
getting from a UDDI registry 162

getting from a URL location 161

specifying 161

WSDL ODA
configuration properties 159

configuring the agent 159

generating objects 163

limitations 164

running 158

starting 157

using 157

X
xsdtype

and simple type arrays 126

for simple, single, and multiple

cardinality types 125

236 Adapter for Web Services User Guide

����

Printed in USA

	Contents
	About This Document
	Audience
	Prerequisites for This Document
	Related Documents
	Eclipse Technology
	Typographic Conventions

	New in this release
	New in release 3.4.x

	Chapter 1. Overview of the connector
	Adapter for Web Services environment
	Software prerequisites
	Adapter platforms
	Standards and APIs
	Locale-dependent data

	Terminology
	Components of connector for web services
	Web services connector
	SOAP data handler
	Web services configuration tools
	Deploying the connector

	Architecture of connector for web services
	Install, configure, and design checklist
	Installing the adapter
	Configuring connector properties
	Enabling collaborations for web services
	Configuring the SOAP data handler

	Limitations

	Chapter 2. Installation and startup
	Overview of Installation Tasks
	Install InterChange Server Express
	Install the connector and related files

	Installing the connector and related files
	Installed file structure
	Windows connector file structure
	i5/OS connector file structure
	Linux connector file structure

	Overview of configuration tasks
	Configure the connector
	Configure business objects
	Configure the data handler
	Configure collaborations

	Running multiple instances of the adapter
	Create a new directory
	Create business object definitions
	Create a connector definition
	Create a start-up script

	Starting the connector
	Stopping the connector

	Chapter 3. Business object requirements
	Business object meta-data
	Connector business object structure
	Synchronous event processing TLOs
	Asynchronous event processing TLOs
	Event processing non-TLOs
	Synchronous request processing TLOs
	Asynchronous request processing TLOs

	Developing business objects

	Chapter 4. Web services connector
	Connector processing
	Event processing overview
	Request processing overview

	SOAP/HTTP(S) web services
	Synchronous SOAP/HTTP(S) web service
	Asynchronous SOAP/HTTP(S) web service

	SOAP/JMS web services
	Synchronous SOAP/JMS web service
	Asynchronous SOAP/JMS web service

	Event processing
	Protocol listeners
	SOAP/HTTP and SOAP/HTTPS protocol listener processing
	Unsupported SOAP/HTTP protocol listener processing features
	SOAP/HTTPS listener processing using secure sockets
	SOAP/JMS protocol listener processing
	Event persistence and delivery
	Event sequencing
	Event triggering
	Event detection
	Event status
	Event retrieval
	Event archiving
	Event recovery

	Request processing
	Protocol handlers

	Connector and JMS
	JNDI
	Exposing collaborations as SOAP/JMS web services
	Collaborations invoking SOAP/JMS web services

	SSL
	JSSE
	KeyStore and TrustStore
	SSL Properties
	Exposing collaborations as SOAP/HTTPS web services
	Collaborations invoking SOAP/HTTPS web services

	Configuring the connector
	Setting configuration properties
	Creating multiple protocol listeners

	Connector at startup
	Proxy setup
	JNDI initialization
	Protocol listener framework initialization
	Protocol handler framework initialization

	Logging
	Tracing

	Chapter 5. SOAP data handler
	Configuring the SOAP data handler
	Meta-object requirements

	SOAP data handler processing
	SOAP-body-message-to-business-object processing
	SOAP-header-message-to-business-object processing
	Business-object-to-SOAP-message-body processing
	Business-object-to-SOAP-message-header processing
	Header fault processing

	Using application-specific information functionality
	ASI in business-object-to-SOAP-message transformations
	ASI effects on fault processing
	ASI effects on header processing
	Specifying SOAP attributes
	ASI in SOAP-to-business object transformations

	Specifying a pluggable name handler
	Using the SOAPProperty object
	Sample NameHandler

	Limitations
	SOAP style and use guidelines

	Chapter 6. Enabling collaborations for request processing
	Request processing collaboration checklist

	Chapter 7. Exposing collaborations as web services
	Procedure checklist
	Identifying or developing Business Objects
	Choosing or developing a collaboration template
	Binding the port of a new collaboration object
	WSDL Configuration Wizard
	Running the wizard

	Chapter 8. Using the WSDL ODA
	Starting the WSDL ODA
	Running the WSDL ODA
	Configuring the agent
	Specifying the WSDL document
	Getting a WSDL document from a URL location
	Getting a WSDL document from a UDDI registry

	Confirming selections
	Generating the objects
	Limitations

	Chapter 9. Troubleshooting
	Start-up problems
	Run-time errors

	Appendix A. Standard configuration properties for connectors
	New properties
	Standard connector properties overview
	Starting Connector Configurator Express
	Configuration property values overview

	Standard properties quick-reference
	Standard properties
	AdapterHelpName
	AdminInQueue
	AdminOutQueue
	AgentConnections
	AgentTraceLevel
	ApplicationName
	BiDi.Application
	BiDi.Broker
	BiDi.Metadata
	BiDi.Transformation
	BrokerType
	CharacterEncoding
	ConcurrentEventTriggeredFlows
	ContainerManagedEvents
	ControllerEventSequencing
	ControllerStoreAndForwardMode
	ControllerTraceLevel
	DeliveryQueue
	DeliveryTransport
	DuplicateEventElimination
	EnableOidForFlowMonitoring
	FaultQueue
	jms.FactoryClassName
	jms.ListenerConcurrency
	jms.MessageBrokerName
	jms.NumConcurrentRequests
	jms.Password
	jms.TransportOptimized
	jms.UserName
	JvmMaxHeapSize
	JvmMaxNativeStackSize
	JvmMinHeapSize
	ListenerConcurrency
	Locale
	LogAtInterchangeEnd
	MaxEventCapacity
	MessageFileName
	MonitorQueue
	OADAutoRestartAgent
	OADMaxNumRetry
	OADRetryTimeInterval
	PollEndTime
	PollFrequency
	PollQuantity
	PollStartTime
	RepositoryDirectory
	RequestQueue
	ResponseQueue
	RestartRetryCount
	RestartRetryInterval
	RHF2MessageDomain
	SourceQueue
	SynchronousRequestQueue
	SynchronousRequestTimeout
	SynchronousResponseQueue
	TivoliMonitorTransactionPerformance
	WireFormat

	Appendix B. Connector Configurator Express
	Overview of Connector Configurator Express
	Running connectors on Linux

	Starting Connector Configurator Express
	Running Configurator in stand-alone mode

	Running Configurator from System Manager
	Creating a connector-specific property template
	Creating a new template

	Creating a new configuration file
	Creating a configuration file from a connector-specific template

	Using an existing file
	Completing a configuration file
	Setting the configuration file properties
	Setting standard connector properties
	Setting connector-specific configuration properties
	Specifying supported business object definitions
	Associated maps
	Security
	Setting trace/log file values
	Data handlers

	Saving your configuration file
	Changing a configuration file
	Completing the configuration
	Using Connector Configurator Express in a globalized environment

	Appendix C. Adapter for Web Services tutorial
	About the tutorial
	Before you start
	Installing and configuring
	Start server and tool
	Load the sample content
	Compile the collaboration templates
	Configure the connector
	Create user project
	Add and deploy the project
	Reboot InterChange Server Express

	Running the asynchronous scenario
	Running the synchronous scenario

	Appendix D. Migrating to 3.0.x
	Backward compatibility
	Upgrade tasks
	Web Services Generation Utility
	SOAP data handler
	SOAP connector
	Web services connector

	Appendix E. Configuring HTTPS/SSL
	Keystore setup
	TrustStore setup
	Generating a certificate signing request (CSR) for public key certificates

	Notices
	Programming interface information
	Trademarks and service marks

	Index

