
WebSphere

MQ

Everyplace

MQe

Application

Programming

Version

2

Release

0

���

WebSphere

MQ

Everyplace

MQe

Application

Programming

Version

2

Release

0

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

the

Notices

appendix.

First

Edition

(July

2004)

This

edition

applies

to

IBM

WebSphere®

MQ

Everyplace

Version

2.0.1

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

2000,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

topic

collection

.

.

.

.

.

. ix

Developing

a

basic

application

.

.

.

.

. 1

Introduction

to

the

MQe

development

kit

.

.

.

.

. 1

Setting

up

your

development

environment

.

.

.

. 1

Java

development

.

.

.

.

.

.

.

.

.

.

.

. 1

J2ME

environment

.

.

.

.

.

.

.

.

.

. 3

C

development

.

.

.

.

.

.

.

.

.

.

.

. 3

Using

embedded

Visual

C++

.

.

.

.

.

.

. 5

Threading

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Calling

conventions

.

.

.

.

.

.

.

.

.

. 6

Handles

and

items

.

.

.

.

.

.

.

.

.

. 6

MQe

memory

functions

.

.

.

.

.

.

.

.

. 7

MQeString

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Walkthrough:

creating

a

basic

application

.

.

.

. 10

1.

Create

a

queue

manager

(QM1)

.

.

.

.

.

. 10

2.

Start

the

queue

manager

(QM1)

.

.

.

.

.

. 11

3.

Create

a

local

queue

(Q1)

.

.

.

.

.

.

.

. 12

4.

Create

a

connection

definition

.

.

.

.

.

. 12

5.

Create

a

remote

queue

definition

.

.

.

.

. 12

6.

Create

a

listener

(L1)

.

.

.

.

.

.

.

.

. 13

7.

Start

listener

(L1)

.

.

.

.

.

.

.

.

.

.

. 13

8.

Create

a

second

queue

manager

(QM2)

.

.

. 13

9.

Start

QM2

.

.

.

.

.

.

.

.

.

.

.

.

. 14

10.

Create

a

local

queue

(on

QM2)

called

Q2

.

. 14

11.

Create

a

connection

definition

(on

QM2)

.

. 15

12.

Create

a

remote

queue

definition

(on

QM2)

15

13.

Create

a

listener

(on

QM2)

called

L2

.

.

.

. 15

14.

Start

the

listener

L2

(on

QM2)

.

.

.

.

.

. 16

15.

Send

(PUT)

a

message

from

QM1

to

QM2

.

. 16

16.

Receive

(GET)

the

message

on

QM2

.

.

.

. 16

17.

Displaying

details

of

MQe

objects

.

.

.

.

. 17

An

example

MQe

application

(HelloWorld)

.

.

.

. 17

Java

″HelloWorld″

.

.

.

.

.

.

.

.

.

.

. 17

Designing

the

Java

application

.

.

.

.

.

. 17

Developing

the

Java

application

.

.

.

.

. 18

Overview

of

examples.helloworld.run

.

. 18

Start

the

queue

manager

.

.

.

.

.

.

. 18

Create

a

message

and

put

to

a

local

queue

19

Get

message

from

a

local

queue

.

.

.

. 20

Stopping

and

deleting

the

queue

manager

20

Running

the

Java

application

.

.

.

.

.

. 20

C

″HelloWorld″

.

.

.

.

.

.

.

.

.

.

.

. 21

Designing

the

C

application

.

.

.

.

.

.

. 21

Developing

the

C

application

.

.

.

.

.

. 21

Overview

of

HelloWorld_Runtime.c

.

.

. 21

Start

the

queue

manager

.

.

.

.

.

.

. 22

Create

a

message

.

.

.

.

.

.

.

.

. 23

Put

message

to

a

local

queue

.

.

.

.

. 23

Get

message

from

a

local

queue

.

.

.

. 23

Shutdown

.

.

.

.

.

.

.

.

.

.

.

. 24

Compiling

.

.

.

.

.

.

.

.

.

.

.

. 24

Deploying

the

C

application

.

.

.

.

.

.

. 24

Running

the

C

application

.

.

.

.

.

.

. 25

Using

the

MQe

development

and

administration

tools

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Using

WebSphere

Studio

Device

Developer

(WSDD)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Developing

applications

for

Palm

.

.

.

.

. 26

Developing

applications

for

PocketPC

.

.

. 28

Debugging

applications

.

.

.

.

.

.

.

. 29

Runnable

classes

.

.

.

.

.

.

.

.

.

.

. 30

MIDlets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Cleaning

up

after

applications

.

.

.

.

.

. 31

Constraints

of

SmartLinker

.

.

.

.

.

.

. 31

Further

information

.

.

.

.

.

.

.

.

. 32

Designing

your

real

application

.

.

.

. 33

Messaging

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

What

are

MQe

messages?

.

.

.

.

.

.

.

. 33

Message

properties

.

.

.

.

.

.

.

.

.

. 34

Symbolic

names

.

.

.

.

.

.

.

.

.

. 34

Examples

.

.

.

.

.

.

.

.

.

.

.

. 35

Message

filters

.

.

.

.

.

.

.

.

.

.

. 36

Message

expiry

.

.

.

.

.

.

.

.

.

.

. 37

Checking

for

expired

messages

.

.

.

.

. 37

Assurance

of

expiry

.

.

.

.

.

.

.

. 38

MQeFields

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Storage

and

retrieval

of

values

in

MQeFields

39

Embedding

MQeFields

items

.

.

.

.

.

. 40

Queues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

What

are

MQe

queues?

.

.

.

.

.

.

.

.

. 40

Queue

names

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Queue

properties

.

.

.

.

.

.

.

.

.

.

. 41

Queue

types

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Local

queue

.

.

.

.

.

.

.

.

.

.

.

. 42

Remote

queue

.

.

.

.

.

.

.

.

.

.

. 43

Store-and-forward

queue

.

.

.

.

.

.

.

. 43

Dead-letter

queue

.

.

.

.

.

.

.

.

.

. 44

Administration

queue

.

.

.

.

.

.

.

.

. 44

Home-server

queue

.

.

.

.

.

.

.

.

.

. 45

MQ

bridge

queue

.

.

.

.

.

.

.

.

.

. 45

Queue

persistent

storage

.

.

.

.

.

.

.

.

. 45

MQe

connection

definitions

.

.

.

.

.

.

.

. 45

Using

queue

aliases

.

.

.

.

.

.

.

.

.

. 48

Examples

of

queue

aliasing

.

.

.

.

.

.

. 48

Merging

applications

.

.

.

.

.

.

.

. 48

Upgrading

applications

.

.

.

.

.

.

. 48

Using

different

transfer

modes

to

a

single

queue

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Queue

manager

operations

.

.

.

.

.

.

.

.

. 49

What

is

an

MQe

queue

manager

.

.

.

.

.

. 49

The

queue

manager

life-cycle

.

.

.

.

.

.

. 50

Creating

queue

managers

.

.

.

.

.

.

.

.

. 50

Queue

manager

names

.

.

.

.

.

.

.

. 51

Creating

a

queue

manager

-

step

by

step

.

. 51

Create

and

activate

an

instance

of

MQeQueueManagerConfigure

.

.

.

.

. 51

Set

queue

manager

properties

.

.

.

.

. 52

©

Copyright

IBM

Corp.

2000,

2004

iii

Create

definitions

for

the

default

queues

.

. 53

Close

the

MQeQueueManagerConfigure

instance

.

.

.

.

.

.

.

.

.

.

.

. 54

Persistent

configuration

data

.

.

.

.

.

. 54

Creating

simple

queue

managers

.

.

.

.

. 55

Creating

a

simple

queue

manager

in

Java

55

Creating

a

simple

queue

manager

in

C

.

. 56

Starting

queue

managers

.

.

.

.

.

.

.

.

. 57

Starting

queue

managers

in

Java

.

.

.

.

. 57

Starting

a

simple

queue

manager

in

Java

57

Starting

queue

managers

in

C

.

.

.

.

.

. 58

Starting

a

simple

queue

manager

in

C

.

. 58

Queue

manager

parameters

.

.

.

.

.

.

. 59

Registry

parameters

for

a

queue

manager

.

. 61

Registry

type

.

.

.

.

.

.

.

.

.

.

.

. 61

Client

queue

managers

.

.

.

.

.

.

.

. 61

Example

-

starting

a

client

queue

manager

61

Example

-

MQePrivateClient

.

.

.

.

. 63

Server

queue

managers

.

.

.

.

.

.

.

. 63

Example

-

MQeServer

.

.

.

.

.

.

.

. 63

Example

-

MQePrivateServer

.

.

.

.

. 64

Environment

relationship

.

.

.

.

.

.

.

. 65

Java

code

.

.

.

.

.

.

.

.

.

.

.

.

. 65

C

code

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Stopping

queue

managers

.

.

.

.

.

.

.

. 65

Stopping

a

queue

manager

in

Java

.

.

.

.

. 65

closeQuiesce

.

.

.

.

.

.

.

.

.

.

. 65

closeImmediate

.

.

.

.

.

.

.

.

.

. 66

Stopping

a

queue

manager

in

C

.

.

.

.

. 66

Deleting

queue

managers

.

.

.

.

.

.

.

.

. 66

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

1.

Delete

any

definitions

.

.

.

.

.

.

.

. 67

2.

Create

and

activate

an

instance

of

MQeQueueManagerConfigure

.

.

.

.

.

. 67

3.

Delete

the

standard

queue

and

queue

manager

definitions

.

.

.

.

.

.

.

.

. 67

4.

Close

the

MQeQueueManagerConfigure

instance

.

.

.

.

.

.

.

.

.

.

.

.

. 68

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Messaging

lifecycle

.

.

.

.

.

.

.

.

.

.

. 69

Message

states

.

.

.

.

.

.

.

.

.

.

. 69

Message

events

.

.

.

.

.

.

.

.

.

.

. 70

Message

index

fields

.

.

.

.

.

.

.

.

. 71

Messaging

operations

.

.

.

.

.

.

.

.

.

. 71

Put

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Get

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Delete

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Browse

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

confirmPut

.

.

.

.

.

.

.

.

.

.

.

. 74

confirmGet

.

.

.

.

.

.

.

.

.

.

.

. 74

Listen

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Wait

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Queue

ordering

.

.

.

.

.

.

.

.

.

.

.

. 75

Reading

messages

on

a

queue

.

.

.

.

.

. 75

Java

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

C

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Browse

and

Lock

.

.

.

.

.

.

.

.

.

. 75

Example

-

Java

.

.

.

.

.

.

.

.

.

. 76

Example

-

C

.

.

.

.

.

.

.

.

.

.

. 76

Message

listeners

.

.

.

.

.

.

.

.

.

. 77

Message

polling

.

.

.

.

.

.

.

.

.

.

. 78

Trigger

transmission

.

.

.

.

.

.

.

.

. 78

Trigger

transmission

rules

.

.

.

.

.

.

. 79

Servlet

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Example

-

configuring

a

connection

on

a

servlet

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Example

-

configuring

a

connection

on

a

servlet

using

aliases

.

.

.

.

.

.

.

.

. 79

Differences

between

server

and

servlet

startup

80

Example

-

starting

a

servlet

.

.

.

.

.

.

. 80

Example

-

handling

incoming

requests

.

.

. 81

Running

multiple

servlets

on

a

web

server

.

. 82

Message

delivery

.

.

.

.

.

.

.

.

.

.

.

. 82

Asynchronous

message

delivery

.

.

.

.

.

. 82

Synchronous

message

delivery

.

.

.

.

.

.

. 83

Assured

and

non-assured

message

delivery

.

. 83

Assured

message

delivery

.

.

.

.

.

.

. 83

Non-assured

message

delivery

.

.

.

.

.

. 83

Synchronous

assured

message

delivery

.

.

.

. 84

Put

message

-

assured

put

.

.

.

.

.

.

. 84

Example

(Java)

-

assured

put

.

.

.

.

. 85

Example

(C)

-

assured

put

.

.

.

.

.

. 85

Exception

handling

-

put

message

.

.

.

. 86

Get

message

-

assured

get

.

.

.

.

.

.

. 88

Example

(Java)

-

assured

get

.

.

.

.

.

. 89

Example

(C)

-

assured

get

.

.

.

.

.

. 90

Undo

command

.

.

.

.

.

.

.

.

.

. 91

Network

topologies

and

message

resolution

.

.

. 92

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Local

queue

resolution

.

.

.

.

.

.

.

.

.

. 94

Local

queue

alias

.

.

.

.

.

.

.

.

.

. 94

Queue

manager

alias

.

.

.

.

.

.

.

.

. 96

Remote

queue

resolution

.

.

.

.

.

.

.

.

. 97

Aliases

on

remote

queues

.

.

.

.

.

.

. 100

Parallel

routes

.

.

.

.

.

.

.

.

.

.

. 102

Chaining

remote

queue

references

.

.

.

. 104

Pushing

store

and

forward

queues

.

.

.

.

. 104

S&F

queues

and

remote

queue

references

.

. 106

Chaining

S&F

queues

.

.

.

.

.

.

.

. 107

Home

server

queues

.

.

.

.

.

.

.

.

.

. 108

Via

connections

.

.

.

.

.

.

.

.

.

.

.

. 110

Rerouting

with

queue

manager

aliases

.

.

.

. 113

MQe-MQ

bridge

message

resolution

.

.

.

.

. 117

Pulling

messages

from

MQ

.

.

.

.

.

.

. 118

Single

pull

route

.

.

.

.

.

.

.

.

. 118

Multiple

pull

route

.

.

.

.

.

.

.

. 120

Pushing

messages

to

MQ

.

.

.

.

.

.

. 121

Connecting

a

client

to

MQ

via

a

bridge

.

.

. 123

Pushing

messages

to

MQ

with

a

via

connection

.

.

.

.

.

.

.

.

.

.

.

. 127

Security

considerations

.

.

.

.

.

.

.

.

. 130

Resolution

rules

.

.

.

.

.

.

.

.

.

.

. 130

Rule

1:

Resolve

queue

manager

aliases

.

.

. 130

Queue

resolution

.

.

.

.

.

.

.

.

.

. 130

’Exact’

match

.

.

.

.

.

.

.

.

.

.

. 131

Queue

Alias

Match

.

.

.

.

.

.

.

.

. 131

S&F

queue

.

.

.

.

.

.

.

.

.

.

.

. 131

Queue

Discovery

.

.

.

.

.

.

.

.

.

. 131

Failure

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Push

across

network

.

.

.

.

.

.

.

.

. 132

Normal

.

.

.

.

.

.

.

.

.

.

.

.

. 132

iv

MQe

Application

Programming

Via

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Home

server

pulling

.

.

.

.

.

.

.

.

. 132

Using

aliases

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Using

queue

aliases

.

.

.

.

.

.

.

.

.

. 132

Merging

applications

.

.

.

.

.

.

.

.

. 133

Upgrading

applications

.

.

.

.

.

.

.

. 133

Using

different

transfer

modes

to

a

single

queue

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Using

queue

manager

aliases

.

.

.

.

.

.

. 134

Addressing

a

queue

manager

with

several

different

names

.

.

.

.

.

.

.

.

.

.

. 134

Different

routings

from

one

queue

manager

to

another

.

.

.

.

.

.

.

.

.

.

.

. 135

Aliasing

on

the

sending

side

.

.

.

.

. 135

Virtual

queue

manager

on

the

receiving

side

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Using

adapters

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Storage

adapters

.

.

.

.

.

.

.

.

.

.

. 137

Communications

adapters

.

.

.

.

.

.

.

. 138

How

to

write

adapters

.

.

.

.

.

.

.

.

. 139

An

example

communications

adapter

.

.

.

. 141

An

example

message

store

adapter

.

.

.

.

. 148

The

WebSphere

Everyplace

Suite

(WES)

communications

adapter

.

.

.

.

.

.

.

. 152

The

WebSphere

Everyplace

Suite

(WES)

adapter

files

.

.

.

.

.

.

.

.

.

.

.

. 153

Using

the

WebSphere

Everyplace

Suite

(WES)

adapter

.

.

.

.

.

.

.

.

.

.

.

.

. 154

General

operation

.

.

.

.

.

.

.

.

. 154

Using

the

authentication

dialog

example

156

Using

the

application

example

.

.

.

.

. 157

Using

rules

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Queue

manager

rules

.

.

.

.

.

.

.

.

.

. 158

Loading

and

activating

queue

manager

rules

158

Java

example

queue

manager

rule

.

.

. 158

C

example

queue

manager

rule

.

.

.

. 159

Using

queue

manager

rules

.

.

.

.

.

. 160

Example

put

message

rule

.

.

.

.

.

. 160

Example

get

message

rule

.

.

.

.

.

. 161

Example

remove

queue

rule

.

.

.

.

. 163

Transmission

rules

.

.

.

.

.

.

.

.

.

.

. 163

Trigger

transmission

rule

example

.

.

.

. 163

Transmit

rule

.

.

.

.

.

.

.

.

.

.

. 164

Transmit

rule

-

Java

example

1

.

.

.

. 164

Transmit

rule

-

C

example

1

.

.

.

.

. 165

A

more

complex

transmit

rule

example

.

.

. 165

Transmit

rule

-

Java

example

2

.

.

.

. 165

Transmit

rule

-

C

example

2

.

.

.

.

. 168

Activating

synchronous

remote

queue

definitions

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Queue

rules

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Using

queue

rules

.

.

.

.

.

.

.

.

.

. 172

Queue

rules

-

Java

example

1

.

.

.

.

. 173

Queue

rules

-

C

example

1

.

.

.

.

.

. 173

Queue

rules

-

Java

example

2

.

.

.

.

. 174

Queue

rules

-

C

example

2

.

.

.

.

.

. 175

Java

Message

Service

(JMS)

.

.

.

.

.

.

.

.

. 177

Using

JMS

with

MQe

.

.

.

.

.

.

.

.

.

. 177

Obtaining

jar

files

.

.

.

.

.

.

.

.

.

. 178

Testing

the

JMS

class

path

.

.

.

.

.

.

. 178

Running

other

MQe

JMS

example

programs

179

Writing

JMS

programs

.

.

.

.

.

.

.

.

. 180

The

JMS

model

.

.

.

.

.

.

.

.

.

.

. 180

Building

a

connection

.

.

.

.

.

.

. 181

Using

the

factory

to

create

a

connection

182

Starting

the

connection

.

.

.

.

.

.

. 182

Obtaining

a

session

.

.

.

.

.

.

.

. 182

Sending

a

message

.

.

.

.

.

.

.

. 183

Message

types

.

.

.

.

.

.

.

.

.

. 183

Receiving

a

message

.

.

.

.

.

.

.

. 184

Handling

errors

.

.

.

.

.

.

.

.

. 184

Exception

listener

.

.

.

.

.

.

.

.

. 185

JMS

messages

.

.

.

.

.

.

.

.

.

. 185

Message

selectors

.

.

.

.

.

.

.

.

. 185

Restrictions

in

this

version

of

MQe

.

.

.

.

. 187

Using

Java

Naming

and

Directory

Interface

(JNDI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Storing

and

retrieving

objects

with

JNDI

.

. 188

Using

the

sample

programs

with

JNDI

.

.

. 189

Mapping

JMS

messages

to

MQe

messages

.

.

. 193

Naming

MQeMsgObject

fields

.

.

.

.

.

. 193

MQe

JMS

information

.

.

.

.

.

.

.

. 194

JMS

header

files

.

.

.

.

.

.

.

.

.

. 194

JMS

properties

.

.

.

.

.

.

.

.

.

.

. 195

JMS

message

body

.

.

.

.

.

.

.

. 197

MQe

JMS

classes

.

.

.

.

.

.

.

.

.

. 197

Security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

Levels

of

security

.

.

.

.

.

.

.

.

.

.

. 199

Local

security

.

.

.

.

.

.

.

.

.

.

. 199

Local

security

usage

scenario

.

.

.

.

. 200

Examples

-

Java

.

.

.

.

.

.

.

.

. 202

Examples

-

C

.

.

.

.

.

.

.

.

.

. 203

Message

level

security

.

.

.

.

.

.

.

. 206

Message-level

security

usage

scenario

.

. 206

Examples

-

using

MAttribute

for

Java

.

. 208

Examples

-

using

MAttribute

for

C

.

.

. 209

Examples

-

using

MTrustAttribute

for

Java

210

Non-repudiation

.

.

.

.

.

.

.

.

. 212

Queue-based

security

.

.

.

.

.

.

.

.

. 213

Security

properties

.

.

.

.

.

.

.

. 213

Effects

of

queue

attributes

.

.

.

.

.

. 214

Configuring

queue-based

security

.

.

. 214

Queue

manager

based

security

.

.

.

.

. 226

Configuring

queue

manager

security

.

. 226

Setting

up

the

queue

manager

.

.

.

.

. 226

Setting

up

a

private

registry

.

.

.

.

. 226

Channel

level

security

.

.

.

.

.

.

.

. 230

Channel

attribute

rules

.

.

.

.

.

.

. 231

Certificate

management

.

.

.

.

.

.

.

. 233

Examining

certificates

.

.

.

.

.

.

. 233

Renewing

certificates

.

.

.

.

.

.

.

. 235

Security

services

.

.

.

.

.

.

.

.

.

.

. 236

Private

registry

service

.

.

.

.

.

.

.

. 236

Private

registries

.

.

.

.

.

.

.

.

. 236

Private

registry

usage

guide

.

.

.

.

. 237

Private

registry

usage

scenario

.

.

.

. 238

Private

registry

and

authenticatable

entity

238

Public

registry

service

.

.

.

.

.

.

.

. 240

Public

registry

usage

scenario

.

.

.

.

. 240

Secure

feature

choices

.

.

.

.

.

.

. 240

Selection

criteria

.

.

.

.

.

.

.

.

. 240

Example

-

public

registry

.

.

.

.

.

. 240

Contents

v

Mini-certificate

issuance

service

.

.

.

.

. 241

Renewing

mini-certificates

.

.

.

.

.

. 242

Obtaining

new

credentials

(private

and

public

keys)

.

.

.

.

.

.

.

.

.

.

. 243

Listing

mini-certificates

.

.

.

.

.

.

. 243

Performance

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Errors

and

error

handling

.

.

.

.

.

.

.

.

. 245

Error

handling

in

Java

.

.

.

.

.

.

.

.

. 245

Error

handling

in

C

.

.

.

.

.

.

.

.

.

. 245

Code

structure

.

.

.

.

.

.

.

.

.

.

. 245

Exception

block

.

.

.

.

.

.

.

.

.

. 245

Useful

macros

.

.

.

.

.

.

.

.

.

.

. 246

Java

programming

samples

.

.

.

.

.

.

.

.

. 247

Adapters

(examples.adapters)

.

.

.

.

.

.

. 247

Command

line

administration

(examples.administration.commandline)

.

.

. 247

GUI

administration

(examples.administration.console)

.

.

.

.

. 248

Simple

administration

(examples.administration.simple)

.

.

.

.

.

. 248

Interaction

with

a

queue

manager

(examples.application)

.

.

.

.

.

.

.

.

. 248

Security

(examples.attributes)

.

.

.

.

.

.

. 249

Adding

a

small

GUI

to

an

application

(examples.awt)

.

.

.

.

.

.

.

.

.

.

.

. 250

Managing

mini-certificates

(examples.certificates)

.

.

.

.

.

.

.

.

. 251

Logging

events

(examples.eventlog)

.

.

.

.

. 251

Creating

and

deleting

queue

managers

(examples.install)

.

.

.

.

.

.

.

.

.

.

. 251

Extending

the

MQ

bridge

(examples.mqbridge.awt)

.

.

.

.

.

.

.

. 252

Administering

objects

for

an

MQ

bridge

(examples.mqbridge.administration.commandline)

253

Testing

communication

between

MQ

and

MQe

(examples.mqbridge.application.GetFromMQ)

. 253

MQe

interface

(examples.mqeexampleapp)

.

. 253

JNI

implementation

(examples.nativecode)

.

. 254

Running

a

QM

as

a

client,

server,

or

servlet

(examples.queuemanager)

.

.

.

.

.

.

.

. 254

Rules

classes

(examples.rules)

.

.

.

.

.

.

. 255

Trace

handling

(examples.trace)

.

.

.

.

.

. 255

Deploying

your

application

.

.

.

.

. 257

Packaging

and

deployment

.

.

.

.

.

.

.

.

. 257

Java

deployment

.

.

.

.

.

.

.

.

.

.

. 257

Supplied

jar

files

.

.

.

.

.

.

.

.

.

. 257

Optimizing

footprint

.

.

.

.

.

.

.

.

. 258

JMS

requirements

.

.

.

.

.

.

.

.

.

. 266

MQe

classes

for

Java

requirements

.

.

.

. 266

Using

WSDD

smart

linker

.

.

.

.

.

.

. 266

J2ME

Midp

specifics

.

.

.

.

.

.

.

.

. 267

4690

specifics

.

.

.

.

.

.

.

.

.

.

. 268

Packaging

.

.

.

.

.

.

.

.

.

.

.

. 269

Deployment

to

devices

.

.

.

.

.

.

.

. 270

C

deployment

.

.

.

.

.

.

.

.

.

.

.

. 271

Supplied

DLLs

.

.

.

.

.

.

.

.

.

.

. 271

Open

Services

Gateway

initiative

(OSGi)

.

.

.

. 272

MQe

example

bundle

contents

.

.

.

.

.

. 272

Using

MQe

within

OSGi

.

.

.

.

.

.

.

. 272

Running

the

example

bundles

.

.

.

.

.

.

. 273

Server

application

(MQeServerBundle.jar)

273

Client

application

(MQeClientBundle.jar)

.

. 273

Running

the

example

.

.

.

.

.

.

.

.

. 274

Providing

user-defined

rules

and

dynamic

class

loading

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Problem

solving

.

.

.

.

.

.

.

.

.

. 277

Problem

determination

.

.

.

.

.

.

.

.

.

. 277

Common

problems

.

.

.

.

.

.

.

.

.

.

. 277

Tracing

and

logging

.

.

.

.

.

.

.

.

.

.

. 278

Tracepoints

generated

from

MQe

.

.

.

.

.

. 278

Tracing

and

logging

with

Java

.

.

.

.

.

.

. 278

Generating

trace

information

(Java)

.

.

.

. 278

Capturing

trace

information

(Java)

.

.

.

. 279

Writing

your

own

trace

handler

(Java)

.

.

. 280

Tracing

and

logging

with

C

.

.

.

.

.

.

. 281

Trace

architecture

(C)

.

.

.

.

.

.

.

.

. 281

Configuring

trace

(C)

.

.

.

.

.

.

.

.

. 281

MQe

Diagnostic

tool

.

.

.

.

.

.

.

.

.

.

. 282

Windows

diagnostics

.

.

.

.

.

.

.

.

.

. 283

Unix

diagnostics

.

.

.

.

.

.

.

.

.

.

. 283

Other

systems

diagnostics

.

.

.

.

.

.

.

. 284

Information

required

by

IBM

support

.

.

.

.

. 284

Programming

reference

.

.

.

.

.

.

. 287

JMX

Attributes

and

operations

.

.

.

.

.

.

. 287

Admin

MBean

.

.

.

.

.

.

.

.

.

.

.

. 288

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 288

Operations

.

.

.

.

.

.

.

.

.

.

.

. 289

Queue

manager

.

.

.

.

.

.

.

.

.

.

. 289

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 289

Operations

.

.

.

.

.

.

.

.

.

.

.

. 290

Operations

parameters

.

.

.

.

.

.

.

. 292

Remote

queue

manager

.

.

.

.

.

.

.

.

. 293

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 293

Operations

.

.

.

.

.

.

.

.

.

.

.

. 294

Operations

parameters

.

.

.

.

.

.

.

. 295

Admin

queue

.

.

.

.

.

.

.

.

.

.

.

. 296

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 296

Operations

.

.

.

.

.

.

.

.

.

.

.

. 297

Operations

parameters

.

.

.

.

.

.

.

. 298

Application

queue

.

.

.

.

.

.

.

.

.

.

. 298

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 298

Operations

.

.

.

.

.

.

.

.

.

.

.

. 299

Operations

parameters

.

.

.

.

.

.

.

. 299

Home

Server

queue

.

.

.

.

.

.

.

.

.

. 299

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 299

Operations

.

.

.

.

.

.

.

.

.

.

.

. 300

Asynchronous

Proxy

queue

.

.

.

.

.

.

. 300

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 300

Operations

.

.

.

.

.

.

.

.

.

.

.

. 302

Operations

parameters

.

.

.

.

.

.

.

. 302

Synchronous

Proxy

queue

.

.

.

.

.

.

.

. 302

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 302

Operations

.

.

.

.

.

.

.

.

.

.

.

. 303

Operations

parameters

.

.

.

.

.

.

.

. 303

Store

queue

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 304

Operations

.

.

.

.

.

.

.

.

.

.

.

. 305

Operations

parameters

.

.

.

.

.

.

.

. 305

vi

MQe

Application

Programming

Forward

queue

.

.

.

.

.

.

.

.

.

.

.

. 305

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 306

Operations

.

.

.

.

.

.

.

.

.

.

.

. 307

Operations

parameters

.

.

.

.

.

.

.

. 307

Communications

Listener

.

.

.

.

.

.

.

. 307

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 307

Operations

.

.

.

.

.

.

.

.

.

.

.

. 308

MQ/Alias

connection

.

.

.

.

.

.

.

.

. 308

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 308

Operations

.

.

.

.

.

.

.

.

.

.

.

. 309

Operations

parameters

.

.

.

.

.

.

.

. 309

Direct

connection

.

.

.

.

.

.

.

.

.

.

. 309

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 309

Operations

.

.

.

.

.

.

.

.

.

.

.

. 310

Operations

parameters

.

.

.

.

.

.

.

. 310

Indirect

connection

.

.

.

.

.

.

.

.

.

. 310

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 311

Operations

.

.

.

.

.

.

.

.

.

.

.

. 311

Operations

parameters

.

.

.

.

.

.

.

. 311

MQ

Bridge

queue

.

.

.

.

.

.

.

.

.

.

. 311

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 311

Operations

.

.

.

.

.

.

.

.

.

.

.

. 312

Operations

parameters

.

.

.

.

.

.

.

. 313

MQ

Bridge

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 313

Operations

.

.

.

.

.

.

.

.

.

.

.

. 314

Operations

parameters

.

.

.

.

.

.

.

. 314

MQ

Queue

Manager

Proxy

.

.

.

.

.

.

.

. 314

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 314

Operations

.

.

.

.

.

.

.

.

.

.

.

. 315

Operations

parameters

.

.

.

.

.

.

.

. 315

MQ

Client

Connection

.

.

.

.

.

.

.

.

. 315

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 315

Operations

.

.

.

.

.

.

.

.

.

.

.

. 316

Operations

parameters

.

.

.

.

.

.

.

. 317

MQ

Listener

.

.

.

.

.

.

.

.

.

.

.

.

. 317

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 317

Operations

.

.

.

.

.

.

.

.

.

.

.

. 318

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 319

Appendix.

Notices

.

.

.

.

.

.

.

.

. 325

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 326

Contents

vii

viii

MQe

Application

Programming

About

this

topic

collection

This

PDF

collection

has

been

created

from

the

source

files

used

to

create

the

WebSphere

MQ

Everyplace

Help

Center,

for

when

you

need

a

printed

copy.

The

content

of

these

topics

was

created

for

viewing

on-screen;

you

might

find

that

the

formatting

and

presentation

of

some

figures,

tables,

examples,

and

so

on,

is

not

optimized

for

the

printed

page.

Text

highlighting

might

also

have

a

different

appearance.

In

this

PDF,

links

within

the

topic

content

itself

are

included,

but

are

active

only

if

they

link

to

another

topic

in

the

same

PDF

collection

(when

the

link

includes

a

page

number).

Links

to

topics

outside

this

topic

collection

attempt

to

link

to

a

PDF

that

is

named

after

the

topic

identifier

(for

example,

des10030.pdf)

and

therefore

fail;

you

can

identify

invalid

links

like

this

because

they

have

no

associated

page

number.

Use

the

Help

Center

to

navigate

freely

between

topics.

Please

do

not

provide

feedback

on

this

PDF.

Refer

to

the

help

center,

and

use

the

″Feedback

on

the

documentation″

topic

at

the

end

of

the

table

of

contents

to

report

any

errors

or

suggestions

for

improvement.

©

Copyright

IBM

Corp.

2000,

2004

ix

x

MQe

Application

Programming

Developing

a

basic

application

This

topic

contains

the

information

that

you

need

for

creating

a

simple

MQe

application.

It

introduces

the

MQe

development

toolkit

and

explains

what

you

need

to

do

to

set

up

your

development

environment.

The

walkthrough

then

gives

step-by-step

instructions

on

how

to

create

a

simple

MQe

application,

and

verify

that

it

is

working.

A

simple

example

application

called

HelloWorld

is

also

described.

This

simple

application

demonstrates

how

to

use

some

of

the

features

of

MQe.

Finally,

the

topic

introduces

some

of

the

tools

that

you

can

use

to

develop

and

administer

MQe

applications.

Introduction

to

the

MQe

development

kit

This

topic

introduces

the

MQe

Development

Kit,

which

is

a

development

environment

for

writing

messaging

and

queueing

applications

based

on

Java

and

C.

For

information

on

the

availability

of

development

kits

for

environments

other

than

Java

and

C,

see

the

WebSphere

MQ

web

site

at:

http://www.ibm.com/software/ts/mqseries

The

code

portion

of

the

Java

development

kit

comes

in

two

sections:

Base

WebSphere

MQ

Everyplace

classes

A

set

of

Java

classes

that

provide

all

the

necessary

function

to

build

messaging

and

queueing

applications.

Examples

Java

source

code

and

classes

that

demonstrate

how

to

use

many

features

of

MQe.

Some

examples

are

supplied

in

“Java

programming

samples”

on

page

247.

The

code

portion

of

the

C

development

kit

also

comes

in

two

sections:

Base

WebSphere

MQ

Everyplace

functions

C

code

that

provides

all

the

necessary

function

to

build

messaging

and

queuing

applications.

Examples

C

source

code

that

demonstrates

how

to

use

the

many

features

of

MQe.

Setting

up

your

development

environment

This

topic

provides

information

on

setting

up

your

development

environment

for

Java

and

C.

Java

development

To

develop

programs

in

Java

using

the

MQe

development

kit,

you

must

set

up

the

Java

environment

as

follows:

v

Set

the

CLASSPATH

so

that

the

Java

Development

Kit

(JDK)

can

locate

the

MQe

classes.

Windows

©

Copyright

IBM

Corp.

2000,

2004

1

In

a

Windows®

environment,

using

a

standard

JDK,

you

can

use

the

following:

Set

CLASSPATH=<MQeInstallDir>\Java;%CLASSPATH%

UNIX®

In

a

UNIX

environment

you

can

use

the

following:

CLASSPATH=<MQeInstallDir>/Java:$CLASSPATH

export

CLASSPATH

v

If

you

are

developing

code

that

uses

or

extends

the

MQ–bridge,

the

MQ

Classes

for

Java

must

be

installed

and

made

available

to

the

JDK.

You

can

use

many

different

Java

development

environments

and

Java

runtime

environments

with

MQe.

The

system

configuration

for

both

development

and

runtime

is

dependent

on

the

environment

used.

MQe

includes

a

file

that

shows

how

to

set

up

a

development

environment

for

different

Java

development

kits.

On

Windows

systems

this

is

a

batch

file

called

JavaEnv.bat,

for

UNIX

systems

it

is

a

shell

script

called

JavaEnv.

To

use

this

file,

copy

the

file

and

modify

the

copy

to

match

the

environment

of

the

machine

that

you

want

to

use

it

on.

A

set

of

batch

files

and

shell

scripts

that

run

some

of

the

MQe

examples

use

the

environment

file

described

above,

and,

if

you

wish

to

use

the

example

batch

files,

you

must

modify

the

environment

file

as

follows:

v

Set

the

JDK

environment

variable

to

the

base

directory

of

the

JDK.

v

Set

the

JavaCmd

environment

variable

to

the

command

used

to

run

Java

applications.

v

If

MQ

Classes

for

Java

is

installed,

set

the

MQDIR

environment

variable

to

the

base

directory

of

the

MQ

Classes

for

Java.

Note:

Customized

versions

of

JavaEnv.bat

or

JavaEnv

may

be

overwritten

if

you

reinstall

MQe.

When

you

invoke

JavaEnv.bat

on

Windows

you

must

pass

a

parameter

that

determines

the

type

of

Java

development

kit

to

use.

Possible

values

are:

Sun

-

Sun

JB

-

Borland

JBuilder

MS

-

Microsoft®

IBM

-

IBM

Note:

These

parameters

are

case

sensitive

and

must

be

entered

exactly

as

shown.

If

you

do

not

pass

a

parameter,

the

default

is

IBM.

The

JavaEnv

shell

script

on

UNIX

does

not

use

a

corresponding

parameter.

On

Windows,

by

default,

you

must

run

JavaEnv.bat

from

the

<MQeInstallDir>\java\demo\Windows

directory.

On

UNIX,

by

default,

you

must

run

JavaEnv

from

the

<MQeInstallDir>/Java/demo/UNIX

directory.

Both

files

can

be

modified

to

allow

them

to

be

run

from

other

directories

or

to

use

other

Java

development

kits.

2

MQe

Application

Programming

J2ME

environment

There

are

two

distinct

J2ME

environments:

Connected

Device

Configuration

(CDC)

and

Profile

An

example

is

Foundation

+

Applications

in

the

CDC

environment,

which

can

effectively

be

developed

like

a

normal

Java

2

Platform

Standard

Edition

(J2SE)

application.

The

only

change

required

is

modifying

the

bootclasspath

option

to

point

to

the

relevent

CDC

jar

or

zip

class

file.

Note:

The

’bootclasspath’

option

may

not

be

available

on

all

JVM’s

Connected

Limited

Device

Configuration

(CLDC)

and

Mobile

Information

Device

Profile

(MIDP)

Applications

developed

for

MIDP

can

also

be

compiled

using

a

normal

J2SE

JVM

(again

using

the

bootclasspath

to

point

to

the

required

Midp

class

library),

but

they

normally

have

to

be

run

within

a

Midp

Emulator.

Therefore,

we

recommend

developing

the

application

using

one

of

the

MIDP

Toolkits

available

on

the

Web.

MQe

provides

a

MIDP

jar

that

should

be

used

within

this

environment.

The

MQeMidpBase.jar

is

in

the

<MQeInstallDir>\Java\Jars

directory.

C

development

To

develop

programs

in

C

using

the

MQe

Development

Kit,

you

need

the

following

tools:

Microsoft

eMbedded

Visual

C++

(EVC)

Version

3.0.

This

is

included

in

Microsoft

eMbedded

Visual

Tools

3.0,

which

is

available

as

a

free

download

from

the

Microsoft

web

page:

http://msdn.microsoft.com/mobile/

You

must

use

version

3.0

as

version

4.0

does

not

support

PocketPC.

An

SDK

for

your

chosen

platform

Microsoft

eMbedded

Visual

Tools

3.0

includes

an

SDK

for

PocketPC

2000.

You

can

also

download

an

SDK

for

PocketPC

2002

from

Microsoft:

http://msdn.microsoft.com/mobile/

C

Bindings

For

the

C

Bindings

codebase

see

C

Bindings

Programming

Guide

-

Getting

Started.

Native

C

For

general

information

see

C

API

Programming

Reference,

in

particular

the

page

Compilation

Information.

However,

that

page

is

now

slightly

out

of

date

and

this

topic

provides

an

update.

For

the

native

C

codebase,

support

is

provided

for

four

platforms:

v

PocketPC2000

v

PocketPC2002

v

PocketPC2003

v

Windows

32bit.

Developing

a

basic

application

3

For

PocketPC,

binaries

are

provided

for

both

the

device

and

the

emulator

that

is

available

in

the

Integrated

Development

Environment

Microsoft

eMbedded

Visual

C++.

The

binaries

provided

for

the

devices

are

compiled

for

ARM

processors.

Binary

files

The

root

of

the

binary

files,

as

well

as

the

documentation

and

examples,

is

the

C

directory

below

the

directory

where

you

choose

to

install

MQe.

Then

in

the

C

directory,

the

files

are

located

as

follows:

PocketPC2000

ARM

DLLs

C\PocketPc2000\arm\bin

LIBs

C\PocketPc2000\arm\lib

Emulator

DLLs

C\PocketPc2000\x86emulator\bin

LIBs

C\PocketPc2000\x86emulator\lib

PocketPC2002

ARM

DLLs

C\PocketPc2002\arm\bin

LIBs

C\PocketPc2002\arm\lib

Emulator

DLLs

C\PocketPc2002\x86emulator\bin

LIBs

C\PocketPc2002\x86emulator\lib

PocketPC2003

ARM

DLLs

C\PocketPc2003\arm\bin

LIBs

C\PocketPc2003\arm\lib

Emulator

DLLs

C\PocketPc2003\x86emulator\bin

LIBs

C\PocketPc2003\x86emulator\lib

Windows

32bit

DLLs

C\Win32\Native\bin

LIBs

C\Win32\Native\lib

Header

files

The

header

files

are

common

to

all

the

Native

platforms,

and

can

be

found

in

the

include

directory

below

the

installation

directory.

MQe_API.h

This

is

the

″root″

header

file.

If

this

is

included

all

relevant

header

files

included

for

you.

In

order

to

ensure

the

correct

files

and

definitions

are

included

you

must

indicate

that

you

are

running

the

Native

code

base

as

follows:

4

MQe

Application

Programming

#define

NATIVE

//

or

specify

this

as

an

option

to

the

compiler

#include

<published/MQe_API.h>

Linking

You

need

to

link

against

the

following

two

libraries:-

HMQ_nativeAPI.lib

//

the

API

library

HMQ_nativeCnst.lib

//

the

static

constant

MQeString

library

You

need

to

include

both

these

files.

Then

an

optimizing

linker

removes

links

to

any

functions

and

constants

that

you

have

not

used.

The

other

MQe

libraries

are

statically

and

dynamically

linked

with

the

main

API

library

and

are

included

as

required.

Using

embedded

Visual

C++

You

can

compile

applications

using

the

EVC

Integrated

Development

Environment

(IDE),

or

optionally,

from

the

command

line.

However,

you

must

consider

the

following:

v

Set

the

appropriate

″Active

WCE

Configuration″,

using

the

WCE

Configuration

toolbar.

To

do

this,

under

Target

Operating

System

select

either

PocketPC

or

PocketPC

2002.

Also,

under

Target

Processor

,

select

one

of

the

following:

–

Win32

(WCE

x86em)

Debug

–

Win32

(WCE

x86em)

Release

–

Win32

(WCE

ARM)

Debug

–

Win32

(WCE

ARM)

Release

Note:

Some

of

the

Target

Processor

or

Target

Operating

System

options

may

not

be

available,

depending

on

which

SDKs

you

have

installed.

v

Include

the

header

files

for

the

native

C

codebase.

These

are

shared

between

the

two

versions

of

PocketPC

and

by

the

C

Bindings.

The

header

file

location

is

in

the

installation

directory

under

include.

If

you

include

the

root

header

file,

MQe_API.h,

you

include

all

the

functions

that

you

may

require.

As

header

files

are

shared,

you

need

to

define

which

version

of

the

codebase

you

are

using,

as

shown

in

the

following

example:

#define

NATIVE

#define

MQE_PLATFORM

PLATFORM_WINCE

/*Alternatively,

we

recommened

that

you

add

this

to

the

Preprocessor

Definintions

in

the

Project

Settings

Dialog.

Add

the

following

to

the

start

of

the

list*/

NATIVE,MQE_PLATFORM=PLATFORM_WINCE

#include

<published\MQe_API.h>

v

Include

an

entry

for

the

top

level

MQe

include

directory

in

″Additional

include

directories″.

This

varies

according

to

where

you

install

the

product.

v

Insert

the

following

.lib

file

names

in

the

″Project

Settings″

dialog,

under

Link

—

>

Input

:

–

HMQ_nativeAPI.lib

–

HMQ_nativeCnst.lib

Developing

a

basic

application

5

Note:

There

are

variations

of

these

files

for

each

supported

release,

for

example

one

for

PocketPC

2000

ARM,

one

for

PocketPC

2000

x86em,

and

so

on.

To

ensure

that

you

use

the

correct

verion,

qualify

the

filename

fully

for

each

target

build.

It

is

recommended

that

you

develop

applications

using

the

PocketPC

or

PocketPC2002

emulator

as

this

typically

provides

a

faster

compilation

and

debug

environment.

However,

current

emulators

are

API

emulators,

meaning

that

they

do

not

emulate

ARM

hardware.

They

emulate

PocketPC

API

calls,

but

the

code

is

still

x86,

that

is

running

in

an

x86

virtual

machine

in

the

PocketPC

2002

emulator

case.

Therefore,

we

recommend

that

you

regularly

test

the

application

on

the

real

target

device,

as

many

problems

such

as

byte-alignment

only

becomes

apparent

on

the

real

device.

Note:

MQe

emulator

binaries

are

provided

only

for

development

purposes

and

are

not

suitable

for

deployment

into

a

production

environment.

Threading

The

native

codebase

is

designed

to

be

re-entrant.

The

actual

codebase

does

not

use

threads,

but

this

does

not

preclude

the

use

of

multiple

threads

in

the

application.

For

example,

you

can

create

an

application

thread

to

repeatedly

call

mqeQueueManager_triggerTransmission().

If

you

want

to

use

multiple

threads,

you

do

not

need

to

call

any

specific

APIs.

Although

it

is

not

a

requirement.

we

recommend

that

you

have

an

exception

block

per

thread.

If

you

use

one

exception

block

shared

across

threads,

an

exception

block

for

a

thread

that

fails

can

be

overwritten

by

the

exception

block

for

a

thread

that

succeeds.

Note:

You

must

call

mqeSession_initialize

or

mqeSessuion_terminateonce

only,

before

any

threads

use

an

MQe

API

call.

To

ensure

this,

call

it

in

the

main

thread

before

any

application

threads

are

created.

For

example,

do

not

use

the

following:

mqeSession_initialize();

mqeSession_initialize();

mqeSession_terminate();

mqeSession_terminate();

Calling

conventions

The

calling

convention

for

all

of

the

APIs

has

been

explicitly

set

at

_cdec1.

However,

you

can

use

a

different

default

calling

convention

in

your

application.

Handles

and

items

An

application

needs

a

mechanism

for

accessing

MQe

items

such

as

the

queue

manager,

fields,

strings,

and

so

on.

Handles

use

MQe

items.

The

handle

points

to

an

area

of

memory

used

to

store

the

specific

information

for

that

instance

of

the

item.

Type

information

is

held

for

each

item.

Therefore,

you

must

take

care

to

initialize

the

handle

correctly.

To

use

a

handle,

you

must

initialize

it.

You

can

do

this

by

calling

the

new

function

of

the

associated

item

to

be

used.

For

example,

to

create

an

MQeString,

you

must

first

call

the

mqeString_new()

function

and

pass

a

pointer

to

MQeStringHndl

to

that

function.

The

mqeString_new()

function

allocates

memory

for

the

internal

structure

6

MQe

Application

Programming

and

sets

the

required

default

values

by

MQeString.

Once

completed

successfully,

the

function

returns

the

handle,

which

can

now

be

used

in

subsequent

calls

to

MQeString

functions.

Once

an

item

has

been

finished

with,

it

is

important

to

call

the

free()

function

of

the

item

with

which

the

handle

is

associated.

The

free()

functions

release

all

the

systems

resources

used

by

that

item.

Setting

the

handle

to

NULL

introduces

a

memory

leak

to

the

application

and

the

system

may

run

out

of

resources.

To

avoid

this,

set

the

handle

to

NULL

after

it

has

been

freed.

Note:

We

recommend

that

you

do

not

attempt

to

free

a

handle

more

than

once,

as

this

can

cause

unpredictable

results.

You

must

use

handles

only

with

their

associated

items.

You

must

also

initialize

and

free

them

in

the

correct

manner.

The

only

instances

where

the

application

is

not

responsible

for

initializing

the

handle

is

when

a

pointer

to

a

handle

is

passed

as

an

input

parameter

to

an

MQe

API.

In

such

instances,

a

fully

initialized

handle

is

returned

to

the

application

without

the

user

having

to

invoke

the

relevant

new()

function.

An

example

of

this

is

mqeQueueManager_BrowseMessages(),

which

has

a

pointer

to

an

MQeVectorHndl

as

an

input

parameter.

However,

in

instances

like

this,

the

application

is

still

responsible

for

freeing

the

handle.

MQe

memory

functions

MQe

provides

the

following

functions

for

memory

management:

v

mqeMemory_allocate

v

mqeMemory_free

v

mqeMemory_reallocate

These

functions

use

the

same

memory

management

routines

that

are

used

within

the

MQe

codebase.

These

are

available

for

use

by

application

programs.

An

application

can

generally

use

its

own

choice

of

memory

management.

However,

some

API

calls,

for

example

mqeAdministrator_QueueManager_inquire,

need

to

return

blocks

of

memory

containing

information.

In

this

case,

the

memory

must

be

freed

using

the

mqeMemory_free

function.

An

additional

advantage

of

using

the

mqeMemory

functions

is

that

their

use

gets

traced

along

with

mqe

processing.

However,

never

mix

the

memory

allocation

calls.

For

example,

do

not

free

memory

allocation

with

mqeMemory_allocate

with

the

C

runtime

free()

call,

as

the

application

can

become

unstable.

MQeString

The

MQeString

class

contains

user

defined

and

system

strings.

It

is

an

abstraction

of

character

strings

used

throughout

the

C

API

where

a

string

is

required.

MQeString

allows

you

to

create

a

string

in

a

number

of

formats,

such

as

arrays

containing

Unicode

code

points,

with

each

code

point

stored

in

a

1,

2,

or

4

byte

memory

space,

and

UTF-8.

The

current

implementation

of

MQeString

supports

external

formats

only.

Note:

Although

they

are

passed

using

an

MQeString,

some

API

calls

require

the

actual

string

to

lie

within

the

valid

ASCII

range.

Constant

Strings

A

number

of

constant

strings

are

provided.

These

are

defined

in

the

following

header

files:

Developing

a

basic

application

7

v

MQe_Admin_Constants.h

v

MQe_Adapter_Constants.h

v

MQe_Attribute_Constants.h

v

MQe_Connection_Constants.h

v

MQe_MQe_Constants.h

v

MQe_MQeMessage_Constants.h

v

MQe_Queue_Constants.h

v

MQe_Registry_Constants.h

Constructor

MQERETURN

osaMQeString_new(MQeExceptBlock*

pExceptBlock,

MQEVOID*

pInputBuffer,

MQETYPEOFSTRING

type,

MQeStringHndl

*

phNewString

);

This

function

creates

a

new

MQeString

object

from

a

buffer

containing

character

data.

The

data

can

be

in

a

number

of

supported

formats

including,

null

terminated

single

byte

character

arrays

(i.e.

normal

C

char*

strings),

null

terminated

double-byte

Unicode

character

arrays,

null

terminated

quad-byte

Unicode

character

arrays,

and

null

terminated

UTF-8

arrays.

The

type

parameter

tells

the

function

what

format

the

input

buffer

is

in.

Destructor

MQERETURN

osaMQeString_delete(MQeExceptBlock*

pExceptBlock,

MQeString_*

pString

);

This

function

destroys

an

MQeString

object

that

was

created

using

osaMQeString_new,

or

MQeString_duplicate,

or

MQeString_getMQeSubstring

Getter

MQERETURN

osaMQeString_get(MQeExceptBlock*

pExceptBlock,

MQEVOID*

pOutputBuffer,

MQEINT32*

pBufferLength,

MQETYPEOFSTRING

requiredType,

MQECONST

MQeStringHndl

hString

);

This

function

populates

a

character

buffer

with

the

contents

of

an

MQeString

performing

conversion

wherever

necessary.

Only

simple

conversions

are

carried

out.

No

codepage

conversion

is

attempted.

For

example,

if

an

SBCS

string

has

been

put

into

the

string,

then

trying

to

get

the

data

out

as

DBCS

(Unicode)

data

works

correctly.

If

the

data

was

put

in

as

DBCS

however,

and

you

try

to

get

the

data

out

as

SBCS,

this

only

works

if

the

data

does

not

have

any

values

that

cannot

be

represented

with

a

single

byte.

When

get()

is

used

for

SBCS,

DBCS,

or

QBCS,

each

character

is

represented

by

its

Unicode

code

point

value.

MQERETURN

osaMQeString_getSubstring(MQeExceptBlock*

pExceptBlock,

MQEVOID*

pOutputBuffer,

MQEINT32*

pBufferLength,

MQETYPEOFSTRING

requiredType,

MQECONST

MQeStringHndl

hString,

MQEINT32

from,

MQEINT32

to

);

8

MQe

Application

Programming

This

function

is

very

similar

to

osaMQeString_get

except

that

it

only

gets

a

substring

(from

from

to

to

inclusive).

MQERETURN

osaMQeString_getMQeSubstring(MQeExceptBlock*

pExceptBlock,

MQeStringHndl

*

phOutput,

MQECONST

MQeStringHndl

hString,

MQEINT32

from,

MQEINT32

to

);

This

function

is

very

similar

to

osaMQeString_getSubstring

except

it

returns

its

result

as

an

MQeString.

MQERETURN

osaMQeString_duplicate(MQeExceptBlock

*

pExceptBlock,

MQeStringHndl

*

phNewString,

MQECONST

MQeStringHndl

hString

);

This

function

duplicates

an

MQeString.

MQERETURN

osaMQeString_codePointSize(MQeExceptBlock*

pExceptBlock,

MQEINT32

*

pSize,

MQECONST

MQeStringHndl

hString

);

This

function

finds

the

memory

size

(in

bytes)

required

for

the

largest

character

in

the

string.

MQERETURN

osaMQeString_getCharLocation(

MQeExceptBlock*

pExceptBlock,

MQEINT32*

pOutIndex,

MQECONST

MQeStringHndl

hString,

MQECHAR32

charToFind,

MQEINT32

startFrom,

MQEBOOL

searchForward

);

This

function

returns

the

location

index

(starting

from

0)

of

the

first

appearance

of

a

specified

character,

specified

as

its

Unicode

code

point

value.

You

can

specify

the

starting

point

of

your

search

and

the

direction

of

the

search.

Tester

MQERETURN

osaMQeString_isAsciiOnly(MQeExceptBlock*

pExceptBlock,

MQEBOOL*

pIsAsciiOnly,

MQECONST

MQeString_*

pString

);

This

function

determines

whether

the

string

contains

any

non-invariant

ASCII

characters.

MQERETURN

osaMQeString_equalTo(MQeExceptBlock*

pExceptBlock,

MQEBOOL*

pIsEqual,

MQECONST

MQeString_*

pString,

MQECONST

MQeString_*

pEqualToString

);

This

function

determines

whether

two

strings

are

equivalent.

MQERETURN

osaMQeString_isNull(MQeExceptBlock

*

pExceptBlock,

MQEBOOL

*

pIsNull,

MQECONST

MQeStringHndl

hString

);

This

function

determines

if

a

string

is

a

null

string.

A

a

NULL

handle

is

considered

as

a

null

string

as

well.

Developing

a

basic

application

9

The

Single

Byte

Character

Set

(SBCS)

is

the

standard

mode

of

operating

with

C

on

an

ASCII

code

page.

Java

works

in

Unicode

only

and

there

may

be

platforms

to

support,

that

do

not

load

an

SBCS

code

page,

for

example

in

some

countries

languages

are

represented

in

DBCS.

As

it

does

not

include

the

character

pointer,

the

string

item

allows

you

to

create

strings

on

an

ASCII

machine

without

considering

Unicode

requirements.

MQe

carries

out

any

necessary

conversions.

Use

the

UTF-8

representation

of

the

string

as

this

can

cope

with

any

character

representation

and

does

the

conversion

for

you.

Once

created,

an

MQeString

cannot

be

altered.

However,

a

number

of

functions

facilitate

the

use

of

the

MQeString

type.

You

can

also

create

constant

MQeStrings

in

a

similar

manner

to

using

#define

NAME

"mystring".

Using

MQeString

ensures

portability

of

the

application.

Walkthrough:

creating

a

basic

application

This

topic

contains

step-by-step

instructions

for

creating

a

simple

MQe

application.

It

describes

the

steps

you

need

to

perform

to

create

and

configure

your

first

queue

manager,

and

then

to

verify

that

it

can

send

and

receive

messages

from

another

queue

manager.

As

well

as

describing

what

you

need

to

do,

it

also

tells

you

which

MQe_Script

commands

you

can

use

to

perform

each

task

simply.

MQe_Script

uses

defaults

for

many

attributes,

which

you

would

otherwise

have

to

specify

if

you

were

writing

equivalent

code.

MQe_Script

is

available

as

a

SupportPac

from

the

IBM

web

site

(see

MQe

SupportPacs)

.

The

MQe_Script

SupportPac

includes

full

documentation

on

the

use

of

all

MQe_Script

commands,

including

details

of

the

defaults

and

explanations

of

how

to

change

them

if

necessary.

You

can

also

perform

many

of

the

steps

involved

in

this

process

using

the

MQe_Explorer,

which

is

another

SupportPac

available

for

download

from

the

same

web

site.

Finally,

the

walkthrough

provides

links

to

pieces

of

example

code

that

show

you

how

to

perform

many

of

the

steps

programmatically.

Once

a

queue

manager

has

been

created

and

started,

all

of

the

configuration

(including

the

creation

of

queues,

connection

definitions,

remote

queue

definitions,

and

listeners)

is

performed

using

administration

messages.

For

more

information

on

the

use

of

administration

messages,

see

Configuration

by

messages

overview.

1.

Create

a

queue

manager

(QM1)

When

you

create

a

queue

manager,

you

need

to

define

the

following

attributes:

v

Queue

manager

name

v

Public

or

private

registry

v

Registry

location

v

Message

store

adapter

v

Default

queues

–

AdminQ

–

AdminReplyQ

–

DeadLetterQ

10

MQe

Application

Programming

–

System.default.local.Q

You

can

also

set

other

(optional)

attributes

at

this

time,

including

a

description,

channel

timeout,

channel

attribute

rule

name,

and

queue

manager

rule,

but

these

are

not

included

in

this

walkthrough.

For

more

information

about

the

creation

and

configuration

of

queue

managers,

see

Configuration

by

messages

overview.

Creating

QM1

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

queue

manager

called

QM1:

mqe_script_qm

-create

-qmname

QM1

This

command

creates

a

queue

manager

called

QM1,

with

the

following

characteristics:

v

Public

registry

v

A

base

location

of

C:\program

files\mqe\java\mqe_script.

The

default

registry

and

queue

directories

are

in

subdirectories

in

this

path

v

Uses

the

default

message

store

and

saves

the

information

to

disk

v

Contains

4

default

queues

An

ini

file

is

also

created

so

that

the

queue

manager

information

is

saved

and

can

be

started

again

by

passing

the

location

of

this

file

to

an

appropriate

method.

Creating

a

queue

manager

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

queue

manager,

see

“Creating

a

queue

manager

-

step

by

step”

on

page

51.

For

examples

in

Java

and

C,

see

“Creating

a

simple

queue

manager

in

Java”

on

page

55

and

“Creating

a

simple

queue

manager

in

C”

on

page

56.

2.

Start

the

queue

manager

(QM1)

When

you

have

created

the

queue

manager

called

QM1,

you

need

to

start

it.

Starting

QM1

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

start

the

queue

manager

called

QM1:

mqe_script_qm

-load

When

no

name

is

supplied,

this

command

starts

the

queue

manager

that

has

just

been

created.

If

you

want

to

know

how

to

load

a

queue

manager

and

specify

the

INI

file,

see

the

documentation

supplied

with

MQe_Script.

Starting

a

queue

manager

programmatically:

For

more

information

on

using

Java

or

C

to

start

a

queue

manager,

see

“Starting

queue

managers”

on

page

57.

For

examples

in

Java

and

C,

see

“Starting

queue

managers

in

Java”

on

page

57

and

“Starting

queue

managers

in

C”

on

page

58.

Developing

a

basic

application

11

3.

Create

a

local

queue

(Q1)

When

you

have

started

the

QM1

queue

manager,

you

can

create

a

local

queue

called

Q1:

Creating

Q1

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

local

queue

called

Q1:

mqe_script_appq

-create

-qname

Q1

This

command

creates

a

basic

local

queue

called

Q1,

on

the

QM1

queue

manager.

Creating

a

local

queue

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

local

queue,

see

Configuring

local

queues.

For

examples

in

Java

and

C,

see

Java

and

C.

4.

Create

a

connection

definition

When

you

have

created

your

local

queue

(Q1),

you

need

to

create

a

connection

definition,

specifying

the

following:

v

The

name

of

the

queue

manager

that

you

want

to

connect

to

(the

remote

queue

manager)

v

The

port

on

which

the

remote

queue

manager

will

be

listening

v

The

communications

adapter.

Creating

a

connection

definition

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

connection

definition:

mqe_script_condef

-create

-cdname

QM2

-port

1881

This

command

creates

a

connection

definition

to

a

queue

manager

called

QM2,

which

is

listening

on

port

1881.

It

is

not

necessary

for

QM2

to

exist

when

the

connection

is

created,

but

it

must

exist

when

you

try

to

send

a

message

to

a

remote

queue

on

that

queue

manager.

As

no

adapter

is

specified,

the

Http

adapter

is

used

by

default.

Creating

a

connection

definition

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

connection

definition,

see

Configuring

connection

definitions.

For

examples

in

Java

and

C,

see

Creating

a

connection

definition

(Java)

and

Creating

a

connection

definition

(C).

5.

Create

a

remote

queue

definition

When

you

have

created

a

connection

definition,

you

need

to

create

a

remote

definition

of

a

local

queue

on

queue

manager

QM2.

Creating

a

remote

queue

definition

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

remote

queue

definition:

mqe_script_sproxyq

-create

-qname

Q2

-destination

QM2

12

MQe

Application

Programming

This

command

creates

a

synchronous

proxy

queue,

which

is

a

remote

definition

of

a

local

queue

on

QM2.

It

is

not

necessary

for

QM2

to

exist

when

the

remote

queue

definition

is

created.

However,

you

must

create

a

connection

definition

(see

“4.

Create

a

connection

definition”

on

page

12)

before

you

can

create

this

remote

queue

definition.

Creating

a

remote

queue

definition

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

remote

queue

definition,

see

Configuring

remote

queues.

For

examples

in

Java

and

C,

see

Java

and

C.

6.

Create

a

listener

(L1)

When

you

have

created

a

remote

queue

definition,

you

need

to

create

a

listener.

Creating

a

listener

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

listener

called

L1

(on

queue

manager

QM1):

mqe_script_listen

-create

-listenname

L1

-port

1882

Creates

a

listener

for

queue

manager

QM1

and

listens

on

port

1882.

The

default

communications

adapter

is

used,

which

is

the

Http

adapter.

Creating

a

listener

programmatically:

For

more

information

on

using

Java

to

create

a

listener,

see

Configuring

a

listener.

For

an

example,

see

Java.

7.

Start

listener

(L1)

When

you

have

created

a

listener,

you

need

to

start

it.

Starting

a

listener

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

start

the

listener

L1:

mqe_script_listen

-start

-listenname

L1

Starting

a

listener

programmatically:

For

more

information

on

using

Java

to

start

a

listener,

see

Configuring

a

listener.

For

an

example,

see

Java.

8.

Create

a

second

queue

manager

(QM2)

When

you

have

finished

configuring

QM1

(as

shown

in

the

previous

steps

in

this

walkthrough),

you

need

to

create

a

second

queue

manager

called

QM2:

Creating

QM2

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

queue

manager

called

QM2:

mqe_script_qm

-create

-qmname

QM2

Developing

a

basic

application

13

This

command

creates

a

queue

manager

called

QM2,

with

the

following

characteristics:

v

Public

registry

v

A

base

location

of

C:\program

files\mqe\java\mqe_script.

The

default

registry

and

queue

directories

are

in

subdirectories

in

this

path

v

Uses

the

default

message

store

and

saves

the

information

to

disk

v

Contains

4

default

queues

An

ini

file

is

also

created

so

that

the

queue

manager

information

is

saved

and

can

be

started

again

by

passing

the

location

of

this

file

to

an

appropriate

method.

Creating

a

queue

manager

programmatically:

To

find

out

more

about

creating

and

configuring

queue

managers,

see

Configuration

by

messages

overview.

For

more

information

on

using

Java

or

C

to

create

a

queue

manager,

see

“Creating

a

queue

manager

-

step

by

step”

on

page

51.

For

examples

in

Java

and

C,

see

“Creating

a

simple

queue

manager

in

Java”

on

page

55

and

“Creating

a

simple

queue

manager

in

C”

on

page

56.

9.

Start

QM2

When

you

have

created

the

queue

manager

called

QM2,

you

need

to

start

it.

Starting

QM2

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

start

the

queue

manager

called

QM2:

mqe_script_qm

-load

When

no

name

is

supplied,

this

command

starts

the

queue

manager

that

has

just

been

created.

If

you

want

to

know

how

to

load

a

queue

manager

and

specify

the

INI

file,

see

the

documentation

supplied

with

MQe_Script.

Starting

a

queue

manager

programmatically:

For

more

information

on

using

Java

or

C

to

start

a

queue

manager,

see

“Starting

queue

managers”

on

page

57.

For

examples

in

Java

and

C,

see

“Starting

queue

managers

in

Java”

on

page

57

and

“Starting

queue

managers

in

C”

on

page

58.

10.

Create

a

local

queue

(on

QM2)

called

Q2

When

you

have

started

the

QM2

queue

manager,

you

can

create

a

local

queue

called

Q2.

Creating

Q2

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

local

queue

called

Q2:

mqe_script_appq

-create

-qname

Q2

This

command

creates

a

basic

local

queue

called

Q2,

on

the

QM2

queue

manager.

14

MQe

Application

Programming

Creating

a

local

queue

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

local

queue,

see

Configuring

local

queues.

For

examples

in

Java

and

C,

see

Java

and

C.

11.

Create

a

connection

definition

(on

QM2)

When

you

have

created

your

local

queue

(Q2),

you

need

to

create

a

connection

definition,

specifying

the

following:

v

The

name

of

the

queue

manager

that

you

want

to

connect

to

(the

remote

queue

manager)

v

The

port

on

which

the

remote

queue

manager

will

be

listening

v

The

communications

adapter.

Creating

a

connection

definition

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

connection

definition:

mqe_script_condef

-create

-cdname

QM1

-port

1882

This

command

creates

a

connection

definition

to

a

queue

manager

called

QM1,

which

is

listening

on

port

1882.

It

is

not

necessary

for

QM1

to

exist

when

the

connection

is

created,

but

it

must

exist

when

you

try

to

send

a

message

to

a

remote

queue

on

that

queue

manager.

As

no

adapter

is

specified,

the

Http

adapter

is

used

by

default.

Creating

a

connection

definition

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

connection

definition,

see

Configuring

connection

definitions.

For

examples

in

Java

and

C,

see

Creating

a

connection

definition

(Java)

and

Creating

a

connection

definition

(C).

12.

Create

a

remote

queue

definition

(on

QM2)

When

you

have

created

a

connection

definition,

you

need

to

create

a

remote

definition

of

a

local

queue

on

queue

manager

QM1.

Creating

a

remote

queue

definition

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

remote

queue

definition:

mqe_script_sproxyq

-create

-qname

Q1

-destination

QM1

This

command

creates

a

synchronous

proxy

queue,

which

is

a

remote

definition

of

a

local

queue

on

QM1.

It

is

not

necessary

for

QM1

to

exist

when

the

remote

queue

definition

is

created,

but

it

must

exist

before

a

message

is

put

to

it.

Creating

a

remote

queue

definition

programmatically:

For

more

information

on

using

Java

or

C

to

create

a

remote

queue

definition,

see

Configuring

remote

queues.

For

examples

in

Java

and

C,

see

Java

and

C.

13.

Create

a

listener

(on

QM2)

called

L2

When

you

have

created

a

remote

queue

definition,

you

need

to

create

a

listener.

Developing

a

basic

application

15

Creating

a

listener

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

create

a

listener

called

L2

(on

queue

manager

QM2):

mqe_script_listen

-create

-listenname

L2

-port

1881

Creates

a

listener

for

queue

manager

QM2

and

listens

on

port

1881.

The

default

communications

adapter

is

used,

which

is

the

Http

adapter.

Creating

a

listener

programmatically:

For

more

information

on

using

Java

to

create

a

listener,

see

Configuring

a

listener.

For

an

example,

see

Java.

14.

Start

the

listener

L2

(on

QM2)

When

you

have

created

a

listener,

you

need

to

start

it.

Starting

a

listener

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

start

the

listener

L2:

mqe_script_listen

-start

-listenname

L2

Starting

a

listener

programmatically:

For

more

information

on

using

Java

to

start

a

listener,

see

Configuring

a

listener.

For

an

example,

see

Java.

15.

Send

(PUT)

a

message

from

QM1

to

QM2

Now

that

you

have

created

and

started

the

two

queue

managers,

created

your

queues

and

connection

definitions,

and

created

and

started

your

listeners,

you

are

in

a

position

to

send

messages

between

the

two

queue

managers.

Sending

a

message

using

MQe_Script:

On

QM1,

you

can

use

the

following

MQe_Script

command

to

send

a

message

from

QM1

to

QM2:

mqe_script_msg

-put

-qname

Q2

-qmname

QM2

This

command

puts

a

message

to

queue

Q2

on

queue

manager

QM2.

Sending

a

message

programmatically:

For

more

information

on

using

Java

or

C

to

put

a

message

to

a

queue,

see

“Messaging

operations”

on

page

71.

For

examples

in

Java

and

C,

see

“Put

message

-

assured

put”

on

page

84

and

“Put

message

-

assured

put”

on

page

84.

16.

Receive

(GET)

the

message

on

QM2

Now

that

a

message

has

been

put

to

the

queue

from

QM1,

you

can

get

the

message

from

QM2.

16

MQe

Application

Programming

Receiving

a

message

using

MQe_Script:

You

can

use

the

following

MQe_Script

command

to

get

the

message

from

the

queue:

mqe_script_msg

-get

-qname

Q2

-qmname

QM2

Receiving

a

message

programmatically:

For

more

information

on

using

Java

or

C

to

get

a

message

from

a

queue,

see

“Messaging

operations”

on

page

71.

For

examples,

see

“Get

message

-

assured

get”

on

page

88

and

“Get

message

-

assured

get”

on

page

88.

17.

Displaying

details

of

MQe

objects

You

can

display

details

of

the

MQe

objects

that

you

have

created

by

issuing

the

inquireall

MQe_Script

command.

For

example,

to

see

information

about

the

local

queue

manager,

use

the

following

command:

mqe_script_qm

-inquireall

This

displays

all

the

information

about

the

local

queue

manager,

and

shows

you

any

defaults

that

MQe_Script

has

used.

You

can

also

display

information

about

other

objects,

by

specifying

the

object

name.

For

example:

mqe_script_condef

-inquireall

-cdname

QM2

An

example

MQe

application

(HelloWorld)

This

topic

describes

how

to

create

a

basic

application

(called

HelloWorld)

using

the

MQe

Java

and

C

APIs.

It

contains

information

on

designing,

developing,

deploying,

and

running

the

application.

Java

″HelloWorld″

This

section

describes

how

to

design,

develop,

deploy,

and

run

a

basic

″HelloWorld″

application

in

Java.

Designing

the

Java

application

This

application

aims

to

create

and

use

a

single

queue

manager

with

a

local

queue.

It

involves

putting

a

message

to

the

local

queue

and

then

removing

it.

You

can

create

queue

managers

for

use

by

one

program.

Once

this

program

has

completed,

you

can

run

a

second

program

that

reinstates

the

previous

queue

manager

configuration.

Typically,

configuring

new

entities

is

a

separate

process

from

their

actual

use.

Once

configured,

administering

these

entities

also

requires

a

different

process

than

using

them.

This

section

concentrates

on

usage

rather

than

administration.

Assuming

that

the

queue

manager

entity

has

already

been

configured,

the

HelloWorld

application

has

the

following

flow

for

both

the

C

and

Java

codebases:

1.

Start

the

queue

manager

This

starts

the

queue

manager

based

on

information

already

created

Developing

a

basic

application

17

2.

Create

a

message

Creates

a

structure

that

you

can

use

to

send

a

message

from

one

queue

manager

to

another

3.

Put

to

a

local

queuePuts

the

message

on

the

local

queue

4.

Get

from

a

local

queueRetrieves

the

message

from

the

local

queue

and

checks

that

the

message

is

valid

5.

ShutdownClears

and

stops

the

queue

manager

Developing

the

Java

application

The

following

code

is

in

the

examples.helloworld.Run

class

in

its

complete

state.

Solutions

using

MQe

classes

are

often

separated

into

several

separate

tasks:

v

Installation

of

the

solution

v

Configuration

of

the

queue

manager,

leaving

the

configuration

information

on

the

local

hard

disk

v

Use

of

the

queue

manager

v

Removal

of

the

queue

manager

v

Un-install

of

the

solution

Before

reading

the

information

in

this

chapter,

you

need

to

configure

a

queue

manager.

The

examples.helloworld.Configure

program

demonstrates

the

configuration

of

the

queue

manager.

The

examples.helloworld.Unconfigure

program

demonstrates

the

removal

of

the

queue

manager.

This

section

of

the

documentation

describes

how

to

use

the

queue

manager.

Overview

of

examples.helloworld.run:

The

main

method

controls

the

flow

of

the

hello

world

application.

From

this

code,

you

can

see

that

the

queue

manager

is

started,

a

message

is

put

to

a

queue,

a

message

is

got

from

a

queue,

and

the

queue

manager

is

stopped.

Trace

information

can

be

redirected

to

the

standard

output

stream

if

the

MQE_TRACE_ON

symbolic

constant

has

its’

value

changed

to

’true’.

public

static

void

main(String[]

args)

{

try

{

Run

me

=

new

Run();

if

(MQE_TRACE_ON)

{

me.traceOn();

}

me.start();

me.put();

me.get();

me.stop();

if

(MQE_TRACE_ON)

{

me.traceOff();

}

}

catch

(Exception

error)

{

System.err.println("Error:

"

+

error.toString());

error.printStackTrace();

}

}

Start

the

queue

manager:

The

examples.helloworld.Configure

program

creates

an

image

of

the

HelloWorldQM

queue

manager

on

disk.

18

MQe

Application

Programming

Before

a

queue

manager

can

be

used,

it

must

be

instantiated

in

memory,

and

started.

The

start

method

in

the

example

program

does

this.

public

void

start()

throws

Exception

{

System.out.println("Starting

the

queue

manager.");

String

queueManagerName

=

"HelloWorldQM";

String

baseDirectoryName

=

"./QueueManagers/"

+

queueManagerName;

//

Create

all

the

configuration

information

needed

to

construct

the

//

queue

manager

in

memory.

MQeFields

config

=

new

MQeFields();

//

Construct

the

queue

manager

section

parameters.

MQeFields

queueManagerSection

=

new

MQeFields();

queueManagerSection.putAscii(MQeQueueManager.Name,

queueManagerName);

config.putFields(MQeQueueManager.QueueManager,

queueManagerSection);

//

Construct

the

registry

section

parameters.

//

In

this

examples,

we

use

a

public

registry.

MQeFields

registrySection

=

new

MQeFields();

registrySection.putAscii(MQeRegistry.Adapter,

"com.ibm.mqe.adapters.MQeDiskFieldsAdapter");

registrySection.putAscii(MQeRegistry.DirName,

baseDirectoryName

+

"/Registry");

config.putFields("Registry",

registrySection);

System.out.println("Starting

the

queue

manager");

myQueueManager

=

new

MQeQueueManager();

myQueueManager.activate(config);

System.out.println("Queue

manager

started.");

}

To

start

the

queue

manager,

at

a

minimum

you

must

know

its

name,

location,

and

the

adapter

which

should

be

used

to

read

the

queue

manager’s

configuration

information

from

its

registry.

Activating

the

queue

manager

causes

the

configuration

data

from

the

disk

to

be

read

using

the

disk

fields

adapter,

and

the

queue

manager

is

then

started

and

running,

available

for

use.

Create

a

message

and

put

to

a

local

queue:

The

following

code

constructs

a

message,

adds

a

Unicode

field

with

a

value

of

″Hello

World!″

and

the

message

is

then

put

to

the

SYSTEM.DEFAULT.LOCAL.QUEUE

on

the

local

HelloWorldQM

queue

manager.

public

void

put()

throws

Exception

{

System.out.println("Putting

the

test

message");

MQeMsgObject

msg

=

new

MQeMsgObject();

//

Add

my

hello

world

text

to

the

message.

msg.putUnicode("myFieldName"

,

"Hello

World!");

Developing

a

basic

application

19

myQueueManager.putMessage(queueManagerName,

MQe.System_Default_Queue_Name,

msg,

null,

0L);

System.out.println("Put

the

test

message");

}

Get

message

from

a

local

queue:

The

following

code

gets

the

″top″

message

from

the

local

queue,

SYSTEM.DEFAULT.LOCAL.QUEUE,

checks

that

a

message

with

the

field

myFieldName

was

obtained,

and

displays

the

text

held

in

the

Unicode

field.

public

void

get()

throws

Exception

{

System.out.println("Getting

the

test

message.");

MQeMsgObject

msg

=

myQueueManager.getMessage(

queueManagerName,

MQe.System_Default_Queue_Name,

null,

null,

0L

);

if

(msg

!=

null)

{

System.out.println("Got

the

test

message.");

if

(msg.contains("myFieldName"))

{

String

textGot

=

msg.getUnicode("myFieldName");

System.out.println("Message

contained

the

text

’"

+

textGot

+

"’");

}

}

}

Stopping

and

deleting

the

queue

manager:

This

section

describes

how

to

stop

a

queue

manager

and

delete

the

definition

of

the

queue

manager.

Stopping

the

queue

manager

You

can

stop

the

queue

manager

using

a

controlled

shutdown.

public

void

stop()

throws

Exception

{

System.out.println("Stopping

the

queue

manager.");

myQueueManager.closeQuiesce(QUIESCE_TIME);

myQueueManager

=

null;

System.out.println("Queue

manager

stopped.");

}

Deleting

the

definition

of

the

queue

manager

from

the

disk

You

can

use

theexamples.helloworld.Unconfigure

program

to

remove

the

queue

manager

from

disk.

Running

the

Java

application

From

a

command

prompt,

set

up

your

classpath

to

refer

to

the

MQe

class

files.

These

are

available

in

the

Java

directory,

in

which

you

installed

the

MQe

product.

Ensure

that

your

shell

has

the

ability

to

create

and

modify

the

./QueueManagers

directory

on

your

system.

If

it

does

not

have

this

ability,

change

the

source

of

the

examples.helloworld

programs,

such

that

they

refer

to

an

accessible

directory,

and

re-compile

the

java

code.

Invoke

the

Configure

program

to

create

the

queue

manager.

The

syntax

depends

on

the

Java

Virtual

Machine

(JVM)

you

use.

The

IBM

JVM

is

invoked

using

the

″java″

command,

for

example

java

examples.helloworld.Configure.

This

creates

the

queue

manager

on

disk.

20

MQe

Application

Programming

Run

the

java

examples.helloworld.Run

hello

world

program.

This

puts

a

message

to

a

local

queue,

gets

the

message

back

and

displays

part

of

it.

You

can

now

destroy

the

queue

manager

on

the

disk

using

java

examples.helloworld.Unconfigure.

C

″HelloWorld″

This

section

describes

how

to

design,

develop,

deploy

and

run

a

″HelloWorld″

application

in

C.

Designing

the

C

application

This

application

aims

to

create

and

use

a

single

queue

manager

with

a

local

queue.

It

involves

putting

a

message

to

the

local

queue

and

then

removing

it.

You

can

create

queue

managers

for

use

by

one

program.

Once

this

program

has

completed,

you

can

run

a

second

program

that

reinstates

the

previous

queue

manager

configuration.

Typically,

configuring

new

entities

is

a

separate

process

from

their

actual

use.

Once

configured,

administering

these

entities

also

requires

a

different

process

than

using

them.

This

section

concentrates

on

usage

rather

than

administration.

Assuming

that

the

queue

manager

entity

has

already

been

configured,

the

HelloWorld

application

has

the

following

flow

for

both

the

C

and

Java

codebases:

1.

Start

the

queue

manager

This

starts

the

queue

manager

based

on

information

already

created

2.

Create

a

message

Creates

a

structure

that

you

can

use

to

send

a

message

from

one

queue

manager

to

another

3.

Put

to

a

local

queuePuts

the

message

on

the

local

queue

4.

Get

from

a

local

queueRetrieves

the

message

from

the

local

queue

and

checks

that

the

message

is

valid

5.

ShutdownClears

and

stops

the

queue

manager

Note:

The

C

codebase

does

not

have

an

equivalent

of

the

Java

Garbage

Collection

function.

Therefore,

clearing

the

queue

manager

features

more

strongly

in

C.

Developing

the

C

application

This

section

covers

the

high

level

coding

required

for

the

″HelloWorld″

application

in

C.

The

code

in

the

following

examples

is

in

the

example

HelloWorld_Runtime.c

in

its

complete

state.

The

example

contains

code

to

handle

the

specifics

of

running

a

program

on

a

PocketPC,

which

mainly

involves

writing

to

a

file

to

cope

with

the

lack

of

command

line

options.

Use

the

display

function

to

write

to

a

file,

as

shown

in

the

examples

contained

in

the

following

sections.

Overview

of

HelloWorld_Runtime.c:

You

need

to

include

just

one

header

file

to

access

the

APIs.

You

must

include

the

NATIVE

definition

to

indicate

that

this

is

not

the

CBindings.

You

must

also

define

the

MQE_PLATFORM

upon

which

you

intend

to

run

the

application.

Developing

a

basic

application

21

#define

NATIVE

#define

MQE_PLATFORM

=

PLATFORM_WINCE

#include<published/MQe_API.h>

All

of

the

code,

including

variable

declarations,

is

inside

the

main

method.

You

require

structures

for

error

checking.

The

MQeExceptBlock

structure

is

passed

into

all

functions

to

get

the

error

information

back.

In

addition,

all

functions

return

a

code

indicating

success

or

failure,

which

is

cached

in

a

local

variable:

/*

...

Local

return

flag

*/

MQERETURN

rc;

MQeExceptBlock

exceptBlock;

You

must

create

a

number

of

strings,

for

example

for

the

queue

manager

name:

MQeStringHndl

hLocalQMName;

...

if

(

MQERETURN_OK

==

rc

)

{

rc

=

mqeString_newUtf8(&exceptBlock,

&hLocalQMName,

"LocalQM");

}

The

first

API

call

made

is

session

initialize:

/*

...

Initalize

the

session

*/

rc

=

mqeSession_initialize(&exceptBlock);

Start

the

queue

manager:

This

process

involves

two

steps:

1.

Create

the

queue

manager

item.

2.

Start

the

queue

manager.

Creating

the

queue

manager

requires

two

sets

of

parameters,

one

set

for

the

queue

manager

and

one

for

the

registry.

Both

sets

of

parameters

are

initialized.

The

queue

store

and

the

registry

require

directories.

Note:

All

calls

require

a

pointer

to

ExceptBlock

and

a

pointer

to

the

queue

manager

handle.

if

(MQERETURN_OK

==

rc)

{

MQeQueueManagerParms

qmParams

=

QMGR_INIT_VAL;

MQeRegistryParms

regParams

=

REGISTRY_INIT_VAL;

qmParams.hQueueStore

=

hQueueStore;

qmParams.opFlags

=

QMGR_Q_STORE_OP;

/*

...

create

the

registry

parameters

-

minimum

that

are

required

*/

regParams.hBaseLocationName

=

hRegistryDir;

display("Loading

Queue

Manager

from

registry

\n");

rc

=

mqeQueueManager_new(

&exceptBlock,

&hQueueManager,

hLocalQMName,

&qmParams,

®Params);

}

You

can

now

start

the

queue

manager

and

carry

out

messaging

operations:

22

MQe

Application

Programming

/*

Start

the

queue

manager

*/

if

(

MQERETURN_OK

==

rc

)

{

display("Starting

the

Queue

Manager\n");

rc

=

mqeQueueManager_start(hQueueManager,

&exceptBlock);

}

Create

a

message:

To

create

a

message,

firstly

create

a

new

fields

object.

The

following

example

adds

a

single

field.

Note

that

the

field

label

strings

are

passed

in:

MQeFieldsHndl

hMsg;

display("Creating

a

new

message\n");

rc

=

mqeFields_new(&exceptBlock,&hMsg);

if

(

MQERETURN_OK

==

rc

)

{

rc

=

mqeFields_putInt32(hMsg,&exceptBlk,

hFieldLabel,42);

}

Put

message

to

a

local

queue:

Once

you

have

created

the

message,

you

can

put

it

to

a

local

queue

using

the

putMessage

function.

Note

that

the

queue

and

queue

manager

names

are

passed

in.

NULL

and

0

are

passed

in

for

the

security

and

assured

delivery

parameters,

as

they

are

not

required

in

this

example.

Once

the

message

has

been

put,

you

can

free

the

MQeFields

object:

if

(

MQERETURN_OK

==

rc

)

{

display("Putting

a

message

\n");

rc

=

mqeQueueManager_putMessage(hQueueManager,

&exceptBlock,

hLocalQMName,

hLocalQueueName,

hMsg,

NULL,

0);

(void)

mqeFields_free(hMsg,NULL);

}

Get

message

from

a

local

queue:

Once

the

message

has

been

put

to

a

queue,

you

can

retrieve

and

check

it.

Similar

options

are

passed

to

the

getMessage

function.

The

difference

is

that

a

pointer

to

a

field’s

handle

is

passed

in.

A

new

Fields

object

is

created,

removing

the

message

from

the

queue:

MQeFieldsHndl

hReturnedMessage;

display("Getting

the

message

back

\n");

rc

=

mqeQueueManager_getMessage(hQueueManager,

&exceptBlock,

&hReturnedMessage,

hLocalQMName,

hLocalQueueName,

NULL,

NULL,

0);

}

Developing

a

basic

application

23

Once

the

message

has

been

obtained,

you

can

check

it

for

the

value

that

was

entered.

Obtain

this

by

using

the

getInt32

function.

If

the

result

is

valid,

you

can

print

it

out:

if

(MQERETURN_OK

==

rc)

{

MQEINT32

answer;

rc

=

mqeFields_getInt32(hReturnedMessage,

&exceptBlock,

&answer,

hFieldLabel);

if

(MQERETURN_OK

==

rc)

{

display("Answer

is

%d\n",answer);

}

else

{

display("\n\n

%s

(0x%X)

%s

(0x%X)\n",

mapReturnCodeName(EC(&exceptBlock)),

EC(&exceptBlock),

mapReasonCodeName(ERC(&exceptBlock)),

ERC(&exceptBlock)

);

}

}

Shutdown:

Following

the

removal

of

the

message

from

the

queue,

you

can

stop

and

free

the

queue

manager.

You

can

also

free

the

strings

that

were

created.

Finally,

terminate

the

session:

(void)mqeQueueManager_stop(hQueueManager,&exceptBlock);

(void)mqeQueueManager_free(hQueueManager,&exceptBlock);

/*

Lets

do

some

clean

up

*/

(void)mqeString_free(hFieldLabel,&exceptBlock);

(void)mqeString_free(hLocalQMName,&exceptBlock);

(void)mqeString_free(hLocalQueueName,&exceptBlock);

(void)mqeString_free(hQueueStore,&exceptBlock);

(void)mqeString_free(hRegistryDir,&exceptBlock);

(void)mqeSession_terminate(&exceptBlock);

Compiling:

To

simplify

the

process

of

compiling,

the

examples

directory

includes

a

makefile.

This

is

the

makefile

exported

from

eMbedded

Visual

C

(EVC).

A

batchfile

runs

this

makefile.

This

batch

file

will

setup

the

paths

to

the

EVC

directories,

along

with

the

paths

to

the

MQe

installation.

You

might

need

to

edit

the

batch

file,

depending

on

how

you

want

to

install

MQe.

Running

the

batch

file

compiles

the

example.

Bye

default,

the

batch

file

compiles

for

Debug

PocketPC

2000

(either

Emulator

or

ARM

processor).

Deploying

the

C

application

In

order

to

deploy

the

″HelloWorld″

application,

you

need

to

create

a

queue

manager.

There

are

various

ways

to

do

this,

which

are

covered

elsewhere

in

this

information

center.

In

this

case,

the

HelloWorld_Admin

program

is

used.

Run

this

as

described

below.

The

following

instructions

are

applicable

to

both

the

emulator

and

an

actual

device:

24

MQe

Application

Programming

1.

Copy

across

all

the

DLLs

to

the

root

of

the

device.

Take

these

from

either

the

arm

or

x86

emulator

directories.

2.

Build

the

example

code

using

the

supplied

makefile.

Note:

You

need

to

compile

the

HelloWorld_Admin.c

and

HelloWorld_Runtime.c

files.

3.

Copy

across

these

binaries

to

the

device

or

emulator

that

is

running

PocketPC

or

Emulator.

Running

the

C

application

This

section

describes

how

to

run

the

″HelloWorld″

application

in

Java

and

C,

on

the

PocketPC

or

emulator.

This

example

involves

two

steps:

1.

Create

the

queue

manager.

To

do

this,

run

the

HelloWorld_Admin

program.Running

this

creates

the

persistent

disk

representation

of

the

QueueManager.

2.

Run

the

HelloWorld_Runtime

program.

This

starts

a

QueueManager

based

upon

the

established

registry.

To

check

the

program

has

worked

correctly,

look

at

the

log

file

that

has

been

generated.

By

default,

this

is

in

the

root

of

the

device.

Using

the

MQe

development

and

administration

tools

The

following

are

some

of

the

tools

that

you

can

use

to

develop

or

administer

MQe

applications:

MQe_Explorer

The

MQe_Explorer

provides

a

graphical

user

interface

for

the

management

of

an

MQe

network

and

its

interconnection

with

WebSphere

MQ.

It

allows

MQe

queue

managers

and

their

associated

objects,

such

as

queues,

connections,

and

bridges,

to

be

locally

or

remotely

configured.

MQe_Explorer

also

provides

a

simple

way

of

creating

local

queue

managers,

which

can

then

be

further

configured

to

meet

the

needs

of

applications.

It

also

offers

a

launch

and

debug

environment

for

MQe

applications.

MQe_Script

is

available

as

a

SupportPac

that

you

can

download

from

the

WebSphere

MQ

Everyplace

web

site.

For

more

information

see

MQe

SupportPacs.

MQe_Script

MQe_Script

is

a

command-line

based

tool

for

MQe,

and

is

platform

independent.

It

allows

MQe

queue

managers

and

their

associated

objects,

such

as

queues,

connections,

listeners,

and

bridge

objects

to

be

locally

or

remotely

configured.

Test

messages

can

also

be

sent

to

the

queues

to

validate

the

operation

of

the

network.

Like

the

MQe_Explorer,

MQe_Script

provides

a

simple

way

of

creating

local

queue

managers,

which

you

can

then

configure

and

extend

for

use

by

your

application.

MQe_Explorer

is

available

as

a

SupportPac

that

you

can

download

from

the

WebSphere

MQ

Everyplace

web

site.

For

more

information

see

MQe

SupportPacs.

WebSphere

Studio

Application

Developer

WebSphere

Studio

Application

Developer

is

an

integrated

development

environment

for

visually

designing,

constructing,

testing,

and

deploying

Web

services,

portals,

and

Java

2

Enterprise

Edition

(J2EE)

applications.

It

is

built

on

Eclipse,

and

provides

templates,

wizards,

and

drag-and-drop

Developing

a

basic

application

25

tools

that

allow

you

to

create

Java

applications

quickly

and

simply.

For

more

information

on

WebSphere

Studio

Application

Developer,

see:

http://www.ibm.com/software/awdtools/studioappdev

WebSphere

Studio

Device

Developer

WebSphere

Studio

Device

Developer

provides

an

integrated

development

environment

(IDE)

for

building,

testing,

and

deploying

Java

2

Micro

Edition

(J2ME)

applications

that

run

on

wireless

devices

such

as

cellular

telephones,

personal

digital

assistants

(PDA),

and

handheld

computers.

For

more

information

on

WebSphere

Studio

Device

Developer,

see:

http://www.ibm.com/software/wireless/wsdd/

Eclipse

Eclipse

is

an

open

industry-supported

platform

for

software

development

tools.

It

provides

a

plug-in

based

framework

that

facilitates

the

creation,

integration,

and

use

of

software

tools.

For

more

information

on

Eclipse,

see:

http://www.eclipse.org

Using

WebSphere

Studio

Device

Developer

(WSDD)

This

topic

describes

how

to

develop

and

deploy

applications

to

devices

from

WebSphere

Studio

Device

Developer

(WSDD).

To

fully

understand

the

concepts

outlined

here,

you

should

have

Java

programming

skills,

knowledge

of

J2ME

and

MIDlets,

and

basic

knowledge

of

MQe.

The

example

application

aims

to

aid

your

understanding

of

the

MQe

interface.

The

code

can

be

split

into

3

parts:

The

message

service

This

runs

MQe,

controls

a

queue

manager

and

performs

functions

such

as

queue

creation

and

message

sending.

This

is

the

core

of

the

examples

and

allows

them

to

be

written

with

minimal

calls

to

the

MQe

API.

This

also

means

that

to

see

the

code

required

to

create

a

local

queue

for

example,

a

user

can

simply

look

at

the

relevant

function

within

MQeMessageService.

Example

1:

The

message

pump

This

is

a

very

simple

application

consisting

of

a

single

server

and

client.

The

client

is

set

to

send

a

message

to

the

server

every

3

seconds

which,

when

received

by

the

server,

will

be

displayed

to

the

user.

Queues

are

asynchronous.

Implementations

of

the

client

are

available

for

both

MIDP

and

J2SE,

while

the

server

is

only

available

for

J2SE.

Example

2:

The

text

application

This

is

slightly

more

complex

than

the

first

example,

consisting

of

2

servers

and

a

client.

When

initiating,

the

client

is

required

to

register

with

the

registration

server.

The

registration

server

adds

the

client

to

a

store-and-forward

queue

on

the

gateway

server

and

replies

with

a

success

or

failure

message.

The

client

can

then

send

user-defined

messages

to

the

gateway

server

(which

it

will

display).

The

aim

of

this

application

is

to

show

how

a

separate

server

can

be

used

to

create

resources

necessary

for

a

new

client

on

the

system

to

aid

scalability

of

large

MQe

networks.

Developing

applications

for

Palm

This

topic

explains

how

to

set

up

the

Palm

device

and

WebSphere

Studio

Device

Developer

(WSDD)

to

work

together.

26

MQe

Application

Programming

Palm:

What

you

need

to

get

started

The

following

are

prerequisites

required

for

writing

and

testing

applications

for

the

Palm:

v

A

Palm

device

or

Palm

Emulator

(you

can

download

POSE

from

http://www.palmos.com/dev/tools/emulator/)

v

A

copy

of

a

J2ME

virtual

machine

installed

on

the

Palm,

for

example

the

Sun’s

K

Virtual

Machine

(KVM)

and

IBM’s

J9,

available

from

http://java.sun.com

and

http://www.embedded.oti.com

v

A

cradle

to

synchronize

the

palm

with

your

PC

v

Something

to

generate

.prc

files,

that

is

Palm

executables,

to

run

on

the

Palm,

such

as

Sun’s

J2ME

Wireless

Toolkit

(available

at

http://java.sun.com)

and

IBM’s

WSDD,

available

at

http://www.embedded.oti.com,

which

includes

J9

as

standard

v

MQe

JARs/classes

This

documentation

concentrates

on

J9

and

WSDD.

Palm:

Getting

started

with

WSDD

You

must

complete

several

tasks

before

using

the

Palm

device

or

Palm

emulator

to

run

MQe

MIDlets:

1.

Install

the

virtual

machine

onto

the

unit.

The

.prc

files

required

for

this

are

located

in

the

C:\IBM\wsdd\wsdd4.0\ive\runtimes\palmos\68k\ive\bin

directory

or

the

equivalent

location

for

your

installation.

You

need

the

following

files:

v

j9_vm_bundle.prc

v

j9pref.prc

v

midp15.prc

v

j9_dbg_bundle.prc

(only

if

you

are

planning

to

debug

an

application)
2.

Once

you

have

installed

these

files

on

your

palm

device

(it

should

come

with

instructions

on

how

to

do

this),

use

WSDD

to

create

a

new

MIDlet

suite

(in

the

Java

perspective

-

[File][New][Other][J2ME

for

J9][Create

MIDlet

Suite]).

3.

Import

the

source

for

the

example

application

into

the

src

directory.

Include

the

MQe

library

in

the

list

of

libraries

to

use,

that

is

right-click

the

name

of

the

project

in

the

packages

window

and

select

[Properties]

[Java

Build

Path]

and

the

Libraries

tab.

Use

the

’Add

External

JARs’

option

to

add

the

MQe

MIDP

jar

to

the

list.

Note

the

following

files

are

not

meant

for

use

under

MIDP:

v

mqeexampleapp.msgpump.NormalClient

v

mqeexampleapp.msgpump.NormalServer

v

mqeexampleapp.msgpump.InputThread

v

mqeexampleapp.textapp.Client

v

mqeexampleapp.textapp.GatewayServer

v

mqeexampleapp.textapp.RegistrationServer

These

should

be

run

in

Foundation

or

J2SE

to

act

as

command-line

implementations

of

the

clients

and

servers.

There

are

no

MIDP

servers

as

it

is

not

an

environment

that

servers

are

designed

to

run

in.

4.

Set

WSDD

to

run

files

on

that

device.

With

normal

Palms,

an

installation

program

is

provided

to

enable

the

installation

of

new

programs

from

a

desktop

computer

(e.g.

C:\Palm\Instapp.exe).

This

needs

to

be

set

in

WSDD

in

Developing

a

basic

application

27

[Window][Preferences][Device

Developer][PalmOS

Java

Configuration]

under

PalmOS

Install

Tool.

You

also

meed

to

set

the

other

options

in

this

menu:

PalmOS

Emulator

This

is

required

if

you

want

to

use

POSE

or

a

similar

PalmOS

emulator

PilRC

resource

compiler

This

creates

the

PRC

files

from

the

jad

and

jar.

The

WSDD

help

describes

the

java

options

in

more

detail.

Palm:

Building

for

the

Palm

in

WSDD

Once

WSDD

has

been

set

up

to

work

with

the

palm,

try

building

and

running

the

example

application

on

your

palm

device:

1.

Double-click

the

wsddbuild.xml

file

from

within

your

project.

If

you

created

a

J2ME

for

J9

project

and

not

a

normal

Java

one,

it

will

appear

after

all

the

packages.

2.

Select

the

builds

tab

from

the

bottom

of

the

window.

Currently,

your

list

of

builds

should

be

empty.

This

window

specifies

the

platforms

you

are

building

the

project

for,

that

is

Palm,

PocketPC,

Windows,

and

so

on.

3.

Click

Add

Build

and

select

the

palm

option

from

the

pulldown

platforms

menu.

4.

Click

Next

and

enter

any

creator

ID

and

a

name

for

the

application.

5.

Click

Next

again

until

you

reach

the

final

select

launcher

screen.

If

you

are

using

a

palm

device,

select

the

manual

option.

If

you

are

using

the

emulator,

select

the

emulator

option.

6.

Click

Finish

and

select

the

launch

tab.

Your

device

should

now

be

a

launch

option.

Developing

applications

for

PocketPC

This

topic

explains

how

to

set

up

the

PocketPC

device

and

WebSphere

Studio

Device

Developer

(WSDD)

to

work

together.

PocketPC:

What

you

need

to

get

started

To

run

MQe

applications

on

the

PocketPC

you

need:

v

A

Pocket

PC

device.

Emulators

exist,

but

they

are

not

as

true

to

the

original

device

as

the

Palm

emulators

are

to

the

Palm.A

copy

of

a

J2ME

virtual

machine

installed

on

the

device.

A

cradle

to

sync

the

PocketPC

with

your

desktop

v

J9

for

the

PocketPC

comes

with

WSDD

and

is

located

in

C:\IBM\wsdd\wsdd4.0\ive\runtimes\pocketpc\arm\ive.

The

files

required

from

here

are:

–

bin\iverel15.dll

–

bin\j9.exe

–

bin\j9dbg15.dll

–

bin\j9dyn15.dll

–

bin\j9hook15.dll

–

bin\j9midp15.dll

–

bin\j9prt15.dll

–

bin\j9thr15.dll

–

bin\j9vm15.dll

–

bin\j9w.exe

28

MQe

Application

Programming

–

bin\j9zlib15.dll

–

bin\swt-win32-ce-2023.dll

–

lib\jclMidp

–

lib\jclMidp.jxe

These

are

specified

in

the

WSDD

help

file.

Create

a

similar

directory

structure

on

the

device,

for

example,

program

files

or

WSDD

with

bin

and

lib

subdirectories.

Then

copy

the

files

to

the

relevant

places.

Note

that

the

example

application

functions

under

MIDP,

hence

the

need

for

the

jclMidp.jxe

file.

The

section

Palm:

What

you

need

to

get

started

in

“Developing

applications

for

Palm”

on

page

26

provides

details

on

downloading

WSDD.

PocketPC:

Getting

started

with

WSDD

To

run

applications

on

the

PocketPC

from

WSDD,

you

need

to

tell

WSDD

where

the

various

files

you

copied

to

your

device

are

located.

This

is

done

in

[Window][Preferences][Device

Developer][PocketPC

Java

Configuration].

Set

the

three

options

to:

\Program

Files\WSDD

\My

Documents\WSDD

\Windows\Start

Menu,

assuming

that

you

copied

the

J9

files

to

’\Program

Files\WSDD’

earlier

PocketPC:

Building

for

the

Pocket

PC

in

WebSphere

Studio

Device

Developer

This

procedure

is

almost

identical

to

that

described

in

the

Building

for

the

Palm

in

WSDD

section.

However,

with

the

final

choice

for

launcher,

choose

’MIDlet

Suite

on

PocketPC

Device’

rather

than

the

manual

option.

This

means

that

the

application

automatically

copies

to

the

relevant

device

and

runs

automatically.

Debugging

applications

This

section

describes

how

to

set

the

example

application

debugging

using

WSDD,

both

locally

and

remotely,

on

various

devices.

Debugging

on

the

Palm

using

WSDD

To

debug

on

the

palm

using

WSDD:

1.

Install

the

j9_dbg_bundle.prc

file

on

the

target

device

before

attempting

to

debug.

This

is

located

in

C:\IBM\wsdd\wsdd4.0\ive\runtimes\palmos\68k\ive\bin.

2.

On

on

the

target

device,

run

prefs

and

navigate

to

the

J9

Java

VM

section.

Ensure

that

’Enable

Debug’

is

selected,

otherwise

you

cannot

debug

an

application.

3.

When

the

application

launches

(via

wsddbuild.xml

-

launches),

select

debug

rather

than

run.

Debugging

on

the

PocketPC

using

WSDD

The

files

specified

in

the

PocketPC:

What

you

need

to

get

started

section

include

the

necessary

components

to

debug

remotely.

Simply

launch

the

application

using

the

debug

command

rather

than

the

run

command,

as

described

in

Debugging

on

the

palm

using

WSDD.

Debugging

locally

using

WSDD

Select

debug

rather

than

run

to

start

the

application.

Developing

a

basic

application

29

Runnable

classes

The

following

classes

can

be

run

the

prompt:

mqeexampleapp.msgpump.NormalClient

A

J2SE

client

for

the

Message

Pump

mqeexampleapp.msgpump.NormalServer

A

J2SE

server

for

the

Message

Pumpv

mqeexampleapp.textapp.Client

A

J2SE

client

for

the

Text

App

mqeexampleapp.textapp.RegServer

A

J2SE

registration

server

for

the

Text

App

mqeexampleapp.textapp.GatewayServer

A

J2SE

gateway

server

for

the

Text

App

MIDlets

The

following

MIDlets

are

available

in

this

example

application:

mqeexampleapp.msgpump.MidpClient

The

MIDP

client

for

the

Message

Pump

mqeexampleapp.textapp.MidpClient

The

MIDP

client

for

the

Text

App

mqeexampleapp.messageservice.RMSclea

A

simple

utility

to

clear

all

RMS

stores

within

the

MIDlet

suite

Giving

parameters

to

the

MIDlet

A

useful

feature

of

MIDlets

is

that

they

can

retrieve

parameters

from

their

jad

file.

The

example

applications

take

advantage

of

this

to

allow

simple

changes

to

the

MIDP

clients

without

having

to

alter

the

code.

Unfortunately,

you

cannot

perform

the

necessary

changes

to

the

jad

file

in

WSDD.

To

use

this

feature,

open

the

jad

of

your

project

in

a

text

editor.

User

defined

parameters

are

specified

as

follows:

parameter:

value

Use

the

following

parameters

for

the

two

example

applications:

1.

MsgPump

Client

Pump_SecurityLevel

Specifies

the

security

level

that

the

application

should

use:

v

0

for

no

security

v

1

for

message

based

security

v

2

for

queue

based

security

Pump_ServerQueue

Specifies

the

name

of

the

queue

that

messages

should

be

sent

to

Pump_ServerIP

Specifies

the

IP

of

the

server

that

will

sent

messages

Pump_ServerPort

Specifies

the

port

that

the

server

will

be

listening

on

Pump_ServerQueueManager

Specifies

the

name

of

the

queue

manager

that

messages

will

be

sent

to

30

MQe

Application

Programming

2.

TextApp

Client

pp_Registration_ServerIP

The

IP

address

of

the

registration

server

App_Gateway_ServerIP

The

IP

address

of

the

gateway

server

An

example

jad

file

may

look

something

like

this:

MIDlet-Version:

MIDlet-Name:

ExampleAppv2NewestMQe

MIDlet-Jar-Size:

MIDlet-Jar-URL:

MIDlet-1:

pumpclient,,mqeexampleapp.msgpump.MidpClient

MIDlet-2:

clear,,mqeexampleapp.messageservice.RMSclear

MIDlet-3:

textapp,,mqeexampleapp.textapp.MidpClient

MIDlet-Vendor:

Pump_SecurityLevel:

0

Pump_ServerQueue:

A_Queue

Pump_ServerPort:

8083

Pump_ServerQueueManager:

QM_Mr_Server

Pump_ServerIP:

10.0.0.101

App_Registration_ServerIP:

10.0.0.100

App_Gateway_ServerIP:

10.0.0.131

Any

value

not

specified

in

this

manner

defaults

to

its

usual

value.

Cleaning

up

after

applications

As

with

all

MQe

queue

managers,

registries

and

messages

are

left

on

the

system

after

the

queue

manager

has

been

shut

down.

This

design

allows

queue

managers

to

restart

without

losing

their

messages

or

recreating

all

their

queues

and

registry

settings.

If

one

of

the

examples

crashes

on

starting,

the

data

they

leave

behind

should

automatically

be

removed

to

prevent

them

from

being

restarted

with

an

incomplete

registry.

If

the

example

does

not

crash,

or

you

wish

to

start

the

queue

manager

from

scratch,

you

can

use

the

following

methods

to

remove

the

registry

from

the

system:

J2SE

The

example

application

uses

the

MQeDiskFieldsAdapter,

which

will

save

registry

settings

to

the

Hard

Drive.

These

are

located

in

c:/MQe/QM/.

Delete

this

directory

to

remove

the

remaining

information.

MIDP

The

example

application

uses

the

MQeMidpFieldsAdapter

for

MIDP

environments.

This

means

that

the

registry

is

stored

in

the

record

stores

of

the

MIDlet

Suite.

You

can

remove

them

using

the

RMSclear

MIDlet

located

in

the

exampleapp.messageservice

package.

Note:

If

you

delete

a

MIDlet

Suite

from

a

device,

its

record

store

is

also

removed.

Constraints

of

SmartLinker

A

program

called

SmartLinker

is

used

to

strip

unused

classes

and

methods

before

packing

a

project

into

a

.jxe

file.

Although

this

gives

the

benefit

of

a

much

smaller

application,

it

also

causes

dynamically

loaded

classes

to

be

stripped

from

the

application

when

the

.jxe

is

built.

Developing

a

basic

application

31

An

example

of

this

is

the

various

adapters

that

are

dynamically

loaded

for

different

environments.

Because

these

adapters

are

not

explicitly

referred

to

anywhere

in

the

code,

they

are

removed

and

so

a

NoClassDefFoundException

is

thrown.

The

cleanest

way

to

solve

this

problem

is

to

specify

in

the

jxeLinkOptions

file

that

you

wish

to

include

a

specific

class.

You

can

do

this

in

WSDD

in

the

following

manner:

1.

In

the

packages

view

of

your

project,

open

the

directory

for

the

device

you

are

creating

the

jxe

for

(e.g.

palm68k)

and

open

the

jxeLinkOptions

file

(e.g.

ExampleApp.jxeLinkOptions.

2.

Select

the

in

or

exclusion

tab

and

pic

[include

whole

classes]

from

the

pulldown

menu.

This

screen

shows

all

the

classes

that

the

user

has

specified

will

definitely

be

included.

3.

To

add

a

new

class

to

the

list,

select

[new]

and

enter

the

class

in

the

[Rule

pattern]

box,

for

example

.

com.ibm.mqe.adapter.MQeMidpFieldsAdapter.

The

following

files

require

inclusion

in

this

manner

for

the

MIDP

clients

to

work:

v

mqeexampleapp.messageservice.QueueManagerRules

v

com.ibm.mqe.adapters.MQeMidpFieldsAdapter

v

com.ibm.mqe.adapters.MQeMidpHttpAdapter

v

com.ibm.mqe.MQeAttributeRule

v

com.ibm.mqe.messagestore.MQeMessageStore

v

com.ibm.mqe.registry.MQeFileSession

Further

information

WSDD

help

provides

additional

information

under:

Websphere

Studio

Device

Developer

Product

Documentation\WSDD

Product

Documentation

\Tasks\Working

with

Palm

OS

Targets

32

MQe

Application

Programming

Designing

your

real

application

Messaging

Overview

of

MQe

messaging

The

MQe

programming

model

uses

several

entities,

for

example

messages,

queues,

and

queue

managers,

that

work

together

as

a

flexible

toolkit.

Each

entity

has

a

specific

purpose

and

works

together

with

other

entities

to

provide

solutions

for

message

topologies.

What

are

MQe

messages?

Introduction

to

the

use

of

MQe

messages

Messages

are

collections

of

data

sent

by

one

application

and

intended

for

another

application.

MQe

messages

contain

application-defined

content.

When

stored,

they

are

held

in

a

queue

and

such

messages

may

be

moved

across

an

MQe

network.

MQe

messages

are

a

special

type

of

MQeFields

items,

as

described

in

“MQeFields”

on

page

38.

Therefore,

you

can

use

methods

that

are

applicable

to

MQeFields

with

messages.

Therefore,

messages

are

Fields

objects

with

the

addition

of

some

special

fields.

Java

provides

a

subclass

of

MQeFields,

MQeMsgObject

which

provides

methods

to

manage

these

fields.

The

C

codebase

does

not

provide

such

a

subclass.

Instead,

there

are

a

number

of

mqeFieldsHelper_operation

functions.

The

following

fields

form

the

Unique

ID

of

an

MQe

message:

v

In

Java,

the

timestamp,

generated

when

the

message

is

first

created

or,

in

C,

when

the

message

is

first

put

to

a

queue

v

The

name

of

the

queue

manager,

to

which

the

message

is

first

put.

The

Unique

ID

identifies

a

message

within

an

MQe

network

provided

all

queue

managers

within

the

MQe

network

are

named

uniquely.

However,

MQe

does

not

check

or

enforce

the

uniqueness

of

queue

manager

names.

In

Java,

the

message

is

created

when

an

instance

of

MQeMsgObject

is

created.

In

C,

the

Message

is

″created″,

that

is

UniqueID

fields

are

added,

when

the

message

is

put

to

a

queue.

The

getMsgUIDFields()method

or

mqeFieldsHelpers_getMsgUidFields()

function

accesses

the

UniqueID

of

a

message,

for

example:

Java

code

MQeFields

msgUID

=

msgObj.getMsgUIDFields();

C

code

rc

=

mqeFieldsHelpers_getMsgUidFields(hMgsObj,

&exceptBlock,&hUIDFields);

MQe

adds

property

related

information

to

a

message

(and

subsequently

removes

it)

in

order

to

implement

messaging

and

queuing

operations.

When

sending

a

message

between

queue

managers,

you

can

add

resend

information

to

indicate

that

data

is

being

retransmitted.

©

Copyright

IBM

Corp.

2000,

2004

33

Typical

application-based

messages

have

additional

properties

in

accordance

with

their

purpose.

Some

of

these

additional

properties

are

generic

and

common

to

many

applications,

such

as

the

name

of

the

reply-to

queue

manager.

Message

properties

Table

of

MQe

message

properties

MQe

supports

the

following

message

properties:

Table

1.

Message

properties

Property

name

Java

type

C

type

Description

Action

int

MQEINT32

Used

by

administration

to

indicate

actions

such

as

inquire,

create,

and

delete

Correlation

ID

byte[]

MQEBYTE[]

Byte

string

typically

used

to

correlate

a

reply

with

the

original

message

Errors

MQeFields

MQeFieldsHndl

Used

by

administration

to

return

error

information

Expire

time

int

or

long

MQEINT32

or

MQEINT64

Time

after

which

the

message

can

be

deleted

(even

if

it

is

not

delivered)

Lock

ID

long

MQEINT64

The

key

necessary

to

unlock

a

message

Message

ID

byte[]

MQEBYTE[]

A

unique

identifier

for

a

message

Originating

queue

manager

string

MQeStringHndl

The

name

of

the

queue

manager

that

sent

the

message

Parameters

MQeFields

MQeFieldsHndl

Used

by

administration

to

pass

administration

details

Priority

byte

MQEBYTE

Relative

order

of

priority

for

message

transmission

Reason

string

MQeStringHndl

Used

by

administration

to

return

error

information

Reply-to

queue

string

MQeStringHndl

Name

of

the

queue

to

which

a

message

reply

should

be

addressed

Reply-to

queue

manager

string

MQeStringHndl

Name

of

the

queue

manager

to

which

a

message

reply

should

be

addressed

Resend

boolean

MQEBOOL

Indicates

that

the

message

is

a

resend

of

a

previous

message

Return

code

byte

MQEBYTE

Used

by

administration

to

return

the

status

of

an

administration

operation

Style

byte

MQEBYTE

Distinguishes

commands

from

request/reply

for

example

Wrap

message

byte[]

MQEBYTE[]

Message

wrapped

to

ensure

data

protection

Symbolic

names:

Table

of

symbolic

names

corresponding

to

MQe

message

properties

The

following

table

lists

the

symbolic

names

corresponding

to

the

MQe

message

properties:

34

MQe

Application

Programming

Table

2.

Symbolic

names

that

correspond

to

message

property

names

Property

name

Java

constant

C

constant

Action

MQeAdminMsg.Admin_Action

MQE_ADMIN_ACTION

Correlation

ID

MQe.Msg_CorrelID

MQE_MSG_CORRELID

Errors

MQeAdminMsg.Admin_Errors

MQE_ADMIN_ERRORS

Expire

time

MQe.Msg_ExpireTime

MQE_MSG_EXPIRETIME

Lock

ID

MQe.Msg_LockID

MQE_MSG_LOCKID

Message

ID

MQe.Msg_MsgID

MQE_MSG_MSGID

Originating

queue

manager

MQe.Msg_OriginQMgr

MQE_MSG_ORIGIN_QMGR

Parameters

MQeAdminMsg.Admin_Params

MQE_ADMIN_PARAMS

Priority

MQe.Priority

MQE_MSG_PRIORITY

Reason

MQeAdminMsg.Admin_Reason

MQE_ADMIN_REASON

Reply-to-queue

MQe.Msg_ReplyToQ

MQE_MSG_REPLYTO_Q

Reply-to

queue

manager

MQe.Msg_ReplyToQMgr

MQE_MSG_REPLYTO_QMGR

Resend

MQe.Msg_Resend

MQE_MSG_RESEND

Return

code

MQeAdminMsg.Admin_RC

MQE_ADMIN_RC

Style

MQe.Msg_Style

MQE_MSG_STYLE

Wrap

message

MQe.Msg_WrapMsg

MQE_MSG_WRAPMSG

Examples:

Message

Properties

-

Examples

In

all

cases,

a

defined

constant

allows

the

property

name

to

be

carried

in

a

single

byte.

For

example,

priority

(if

present)

affects

the

order

in

which

messages

are

transmitted,

correlation

ID

triggers

indexing

of

a

queue

for

fast

retrieval

of

information,

expire

time

triggers

the

expiry

of

the

message,

and

so

on.

Also,

the

default

message

dump

command

minimizes

the

size

of

the

generated

byte

string

for

more

efficient

message

storage

and

transmission.

The

MQe

Message

ID

and

Correlation

ID

allow

the

application

to

provide

an

identity

for

a

message.

These

are

also

used

in

interactions

with

the

rest

of

the

MQ

family:

Java

MQeMsgObject

msgObj

=

new

MQeMsgObject;

msgObj.putArrayOfByte(

MQe.Msg_ID,

MQe.asciiToByte(

"1234"

));

C

rc

=

mqeFields_putArrayOfByte(hMsg,&exceptBlock,

MQE_MSG_MSGID,pByteArray,sizeByteArray);

Priority

contains

message

priority

values.

Message

priority

is

defined

as

in

other

members

of

the

MQ

family.

It

ranges

from

9

(highest)

to

0

(lowest):

Java

MQeMsgObject

msgObj

=

new

MQeMsgObject();

msgObj.putByte(

MQe.Msg_Priority,

(byte)8

);

Designing

your

real

application

35

C

rc

=

mqeFields_putByte(hsg,&exceptBlock,

MQE_MSG_PRIORITY,

(MQEBYTE)8);

Applications

can

create

fields

for

their

own

data

within

messages:

Java

MQeMsgObject

msgObj

=

new

MQeMsgObject();

msgObj.putAscii(

"PartNo",

"Z301"

);

msgObj.putAscii(

"Colour",

"Blue"

);

msgObj.putInt(

"Size",

350

);

C

MQeFieldsHndl

hPartMsg;

MQeStringHndl

hSize_FieldLabel;

rc

=

mqeFields_new(&exceptBlock,&hPartMsg);

rc

=

mqeString_newUtf8(&exceptBlock,

&hSize_FieldLabel,"Size");

rc

=

mqeFields_putInt32(hPartMsg,

&exceptBlock,hSize_FieldLabel,350);

The

priority

of

the

message

is

used,

in

part,

to

control

the

order

in

which

messages

are

removed

from

the

queue.

If

the

message

does

not

specify

any,

then

the

queue

default

priority

is

used

.

This,

unless

changed,

is

4.

However,

the

application

must

interpret

the

different

levels

of

priority.

In

Java,

you

can

extend

the

MQeMsgObject

to

include

some

methods

that

assist

in

creating

messages,

as

shown

in

the

following

example:

package

messages.order;

import

com.ibm.mqe.*;

/***

This

class

defines

the

Order

Request

format

*/

public

class

OrderRequestMsg

extends

MQeMsgObject

{

public

OrderRequestMsg()

throws

Exception

{

}

/***

This

method

sets

the

client

number

*/

public

void

setClientNo(long

aClientNo)

throws

Exception

{

putLong("ClientNo",

aClientNo);

}

/***

This

method

returns

the

client

number

*/

public

long

getClientNo()

throws

Exception

{

return

getLong("ClientNo");

}

To

find

out

the

length

of

a

message,

you

can

enumerate

on

the

message

as

each

data

type

has

methods

for

getting

its

length.

Message

filters

Introduction

to

MQe

message

filters

Filters

allow

MQe

to

perform

powerful

message

searches.

Most

of

the

major

queue

manager

operations

support

the

use

of

filters.

You

can

create

filters

using

MQeFields.

36

MQe

Application

Programming

Using

a

filter,

for

example

in

a

getMessage()

call,

causes

an

application

to

return

the

first

available

message

that

contains

the

same

fields

and

values

as

the

filter.

The

following

examples

create

a

filter

that

obtains

the

first

message

with

a

message

id

of

″1234″:

Java

MQeFields

filter

=

new

MQeFields();

filter.putArrayOfByte(

MQe.Msg_MsgID,

MQe.AsciiToByte(

"1234"

)

);

C

rc

=

mqeFields_putArrayOfByte(hMsg,,

&exceptBlock,

MQE_MSG_MSGID,

pByteArray,

sizeByteArray);

You

can

use

this

filter

as

an

input

parameter

to

various

API

calls,

for

example

getMessage.

Message

expiry

Overview

of

the

expiry

of

messages

in

queues

Queues

can

be

defined

with

an

expiry

interval.

If

a

message

has

remained

on

a

queue

for

a

period

of

time

longer

than

this

interval

then

the

message

is

automatically

deleted.

When

a

message

is

deleted,

a

queue

rule

is

called.

Refer

to

the

Rules

topic

for

information

on

queue

rules.

This

rule

cannot

affect

the

deletion

of

the

message,

but

it

does

provide

an

opportunity

to

create

a

copy

of

the

message.

Messages

can

also

have

an

expiry

interval

that

overrides

the

queue

expiry

interval.

You

can

define

this

by

adding

a

C

MQE_MSG_EXPIRETIME

or

Java

MQe.Msg_ExpireTime

field

to

the

message.

The

expiry

time

is

either

relative

(expire

2

days

after

the

message

was

created),

or

absolute

(expire

on

November

25th

2000,

at

08:00

hours).

Relative

expiry

times

are

fields

of

type

Int

or

MQEINT32,

and

absolute

expiry

times

are

fields

of

type

Long

or

MQEINT64.

In

the

example

below,

the

message

expires

60

seconds

after

it

is

created

(60000

milliseconds

=

60

seconds).

/*

create

a

new

message

*/

MQeMsgObject

msgObj

=

new

MQeMsgObject();

msgObj.putAscii(

"MsgData",

getMsgData()

);

/*

expiry

time

of

sixty

seconds

after

message

was

created

*/

msgObj.putInt(

MQe.Msg_ExpireTime,

60000

);

In

the

example

below,

the

message

expires

on

15th

May

2001,

at

15:25

hours.

/*

create

a

new

message

*/

MQeMsgObject

msgObj

=

new

MQeMsgObject();

msgObj.putAscii(

"MsgData",

getMsgData()

);

/*

create

a

Date

object

for

15th

May

2001,

15:25

hours

*/

Calendar

calendar

=

Calendar.getInstance();

calendar.set(

2001,

04,

15,

15,

25

);

Date

expiryTime

=

calendar.getTime();

/*

add

expiry

time

to

message

*/

msgObj.putLong(

MQe.Msg_ExpireTime,

expiryTime.getTime()

);

/*

put

message

onto

queue

*/

qmgr.putMessage(

null,

"MyQueue",

msgObj,

null,

0

);

Checking

for

expired

messages:

Explanation

of

when

MQe

checks

for

expired

messages

A

message

is

checked

for

expiry

when:

Designing

your

real

application

37

It

is

added

to

a

queue

Expiry

can

occur

when

a

message

is

added

from

the

local

API,

pulled

down

via

a

Home

Server

Queue,

or

pushed

to

a

queue.

It

is

removed

from

a

queue

Expiry

can

occur

when

a

message

can

be

removed

from

the

local

API,

or

when

a

message

is

pulled

remotely.

A

queue

is

activated

When

a

queue

is

activated,

a

reference

to

the

queue

is

created

in

memory.

Any

message

that

has

expired

is

removed.

The

state

of

the

message

is

irrelevant

to

this

operation.

A

queue

is

deleted

If

an

admin

message

arrives

to

delete

a

queue,

the

queue

must

be

empty

first.

Therefore,

before

this

check

is

done,

any

expired

messages

are

removed

from

the

queue.

The

state

of

the

message

is

irrelevant

to

this

operation.

A

queue

is

checked

for

size

If

an

admin

message

arrives

to

inquire

on

the

size

of

a

queue,

the

queue

is

first

purged

of

admin

messages.

You

can

add

a

queue

rule

to

notify

you

when

messages

expire.

However,

in

a

certain

situation

between

two

queue

managers,

a

message

may

seem

to

expire

twice.

This

is

not

because

the

message

has

been

duplicated,

but

is

outlined

in

the

following

paragraph.

Assume

that

an

asynchronous

queue

has

a

message

on

it

due

to

expire

at

10:00

1st

Jan

2005.

All

messages

on

such

queues

are

transmitted

using

a

2

stage

process.

This

process

is

equivalent

to

a

putMessage

and

confirmPutMessage

pair

of

operations.

Suppose

that

the

first

transmission

stage

occurs

at

09:55.

A

reference

to

the

message

appears

on

the

remote

queue

manager.

However,

it

is

not

yet

available

to

an

application

on

that

queue

manager.

Then,

if

the

network

fails

until

10:05,

the

expiry

time

of

the

message

is

missed.

Therefore,

the

message

expires

on

the

remote

queue

and

the

queue

expiry

rule

gets

fired.

Also,

in

due

course,

the

queue

expiry

rule

gets

fired

on

the

destination

queue

manager.

Assurance

of

expiry:

Explains

how

to

ensure

message

expiry

The

expiry

time

can

be

calculated

to

the

millisecond.

For

correct

operation

the

clocks

of

the

machines

running

the

queue

managers

must

be

accurately

aligned.

Failure

to

do

this

within

accuracy

determined

by

your

choice

of

expiry

times

causes

messages

to

appear

active

on

one

queue

manager,

while

they

have

expired

on

others.

Ensure

that

you

use

the

correct

field

type

for

the

expiry

value.

An

int

(32

bit)

field

is

used

for

relative

expiry

times,

and

a

long

(64

bit)

field

is

used

for

absolute

times.

The

field

name

is

the

same

in

both

cases.

MQeFields

Overview

of

the

MQeFields

container

structure

MQeFields

is

a

container

data

structure

widely

used

in

MQe.

You

can

put

various

types

of

data

into

the

container.

It

is

particularly

useful

for

representing

data

that

needs

to

be

transported,

such

as

messages.

The

following

code

creates

an

MQeFields

structure:

38

MQe

Application

Programming

Java

code

/*

create

an

MQeFields

object

*/

MQeFields

fields

=

new

MQeFields(

);

C

code

MQeFieldsHndl

hFields;

rc

=

mqeFields_new(&exceptBlock,

&hFields);

MQeFields

contains

a

collection

of

orderless

fields.

Each

field

consists

of

a

triplet

of

entry

name,

entry

value,

and

entry

value

type.

MQeFields

forms

the

basis

of

all

MQe

messages.

Use

the

entity

name

to

retrieve

and

update

values.

It

is

good

practice

to

keep

names

short,

because

the

names

are

included

with

the

data

when

the

MQeFields

item

is

transmitted.

The

name

must:

v

Be

at

least

1

character

long

v

Conform

to

the

ASCII

character

set

(characters

with

values

20

<

value

<

128)

v

Exclude

any

of

the

characters

{

}

[

]

#

(

)

:

;

,

’

″

=

v

Be

unique

within

MQeFields

Storage

and

retrieval

of

values

in

MQeFields

Examples

of

storing

values

in

an

MQeFields

item,

and

retrieving

values

from

an

MQeFields

item

The

following

example

shows

how

to

store

values

in

an

MQeFields

item:

Java

code

/*

Store

integer

values

into

a

fields

object

*/

fields.putInt(

"Int1",

1234

);

fields.putInt(

"Int2",

5678

);

fields.putInt(

"Int3",

0

);

C

code

MQeStringHndl

hFieldName;

rc

=

mqeString_newChar8(&errStruct,

&hFieldName,

"A

Field

Name");

rc

=

mqeFields_putInt32(hNewFields,&errStruct,hFieldName,1234);

The

following

example

shows

how

to

retrieve

values

from

an

MQeFields

item:

Java

code

/*

Retrieve

an

integer

value

from

a

fields

object

*/

int

Int2

=

fields.getInt(

"Int2"

);

C

code

MQEINT32

value;

rc

=

mqeFields_getInt32(hNewFields,

&errStruct,

&value,

hFieldName);

MQe

provides

methods

for

storing

and

retrieving

the

following

data

types:

v

A

fixed

length

array

is

handled

using

the

putArrayOftype

and

getArrayOftype

methods,

where

type

can

be

Byte,

Short,

Int,

Long,

Float,

or

Double.

v

The

ability

to

store

variable

length

arrays

is

possible,

but

has

been

deprecated

in

this

release.

You

can

access

these

arrays

using

the

Java

puttypeArray

and

gettypeArray

calls

or

the

C

puttype

calls.

v

The

Java

codebase

has

a

slightly

special

form

of

operations

for

Float

and

Double

types.

This

provides

compatability

with

the

MicroEdition.

Floats

are

put

using

an

Int

representation

and

Doubles

are

put

using

a

Long

representation.

Use

the

Designing

your

real

application

39

Float.floatToIntBits()

and

Double.doubleToLongBits()

to

perform

the

conversion.

However,

this

is

not

required

on

the

C

API.

Embedding

MQeFields

items

Description

of

how

to

embed

an

MQeFields

item

within

another

MQeFields

item

An

MQeFields

item

can

be

embedded

within

another

MQeFields

item

by

using

the

putFields

and

getFields

methods.

The

contents

of

an

MQeFields

item

can

be

dumped

in

one

of

the

following

forms:

binary

Binary

form

is

normally

used

to

send

an

MQeFields

or

MQeMsgObject

object

through

the

network.

The

dump

method

converts

the

data

to

binary.

This

method

returns

a

binary

byte

array

containing

an

encoded

form

of

the

contents

of

the

item.

Note:

This

is

not

Java

serialization.

When

a

fixed

length

array

is

dumped

and

the

array

does

not

contain

any

elements

(its

length

is

zero),

its

value

is

restored

as

null.

encoded

string

(Java

only)

The

string

form

uses

the

dumpToString

method

of

the

MQeFields

item.

It

requires

two

parameters,

a

template

and

a

title.

The

template

is

a

pattern

string

showing

how

the

MQeFields

item

data

should

be

translated,

as

shown

in

the

following

example:

"(#0)#1=#2\r\n"

where

#0

is

the

data

type

(ascii

or

short,

for

example)

#1

is

the

field

name

#2

is

the

string

representation

of

the

value

Any

other

characters

are

copied

unchanged

to

the

output

string.

The

method

successfully

dumps

embedded

MQeFields

objects

to

a

string,

but

due

to

restrictions,

the

embedded

MQeFields

data

may

not

be

restored

using

the

restoreFromString

method.

Queues

Overview

of

MQe

queues

What

are

MQe

queues?

Introduction

to

MQe

queues

MQe

queues

store

messages.

The

queues

are

not

directly

visible

to

an

application

and

all

interactions

with

the

queues

take

place

through

queue

managers.

For

queue

proxies,

in

the

case

of

Java

queue

rules,

refer

the

Rules

topic.

Each

queue

manager

can

have

queues

that

it

manages

and

owns.

These

queues

are

known

as

local

queues.

MQe

also

allows

applications

to

access

messages

on

queues

that

belong

to

another

queue

manager.

These

queues

are

known

as

remote

queues.

Similar

sets

of

operations

are

available

on

both

local

and

remote

queues,

with

the

exception

of

defining

message

listeners.

Refer

to

“Message

listeners”

on

page

77

for

more

information.

The

Queue

types

section

provides

more

information

on

the

different

types

of

queue

you

can

have.

40

MQe

Application

Programming

Messages

are

held

in

the

queue’s

persistent

store.

A

queue

accesses

its

persistent

store

through

a

queue

store

adapter.

These

adapters

are

interfaces

between

MQe

and

hardware

devices,

such

as

disks

or

networks,

or

software

stores

such

as

a

database.

Adapters

are

designed

to

be

pluggable

components,

allowing

the

protocols

available

to

talk

to

the

device

to

be

easily

changed.

Queues

may

have

characteristics,

such

as

authentication,

compression

and

encryption.

These

characteristics

are

used

when

a

message

object

is

stored

on

a

queue.

The

Security

topic

provides

more

information

on

this.

Queue

names

Constraints

of

MQe

queue

names

MQe

queue

names

can

contain

the

following

characters:

v

Numerics

0

to

9

v

Lower

case

a

to

z

v

Upper

case

A

to

Z

v

Underscore

_

v

Period

.

v

Percent

%

There

are

no

inherent

name

length

limitations

in

MQe.

Queues

are

configured

using

administration

messages.

Refer

to

the

MQe

Configuration

Guide

for

more

information

on

configuring

MQe

using

administration

messages.

Queue

properties

Table

of

MQe

queue

properties

Queue

properties

are

shown

in

the

following

table.

Not

all

the

properties

shown

apply

to

all

the

queue

types:

Table

3.

Queue

properties

Property

Explanation

Java

type

C

type

Admin_Class

Queue

class

String

admtype

Admin_Name

ASCII

queue

name

String

admname

Queue_Active

Queue

in

active/inactive

state

boolean

qact

Queue_AttRule

Rule

class

controlling

security

operations

String

qar

Queue_Authenticator

Authenticator

class

String

qau

Queue_BridgeName

Owning

MQ

bridge

name

String

q-mq-bridge

Queue_ClientConnection

Client

connection

name

String

q-mq-client-
con

Queue_CloseIdle

Close

the

connection

to

the

remote

queue

manager

once

all

messages

have

been

transmitted

boolean

qcwi

Queue_CreationDate

Date

that

the

queue

was

created

long

qcd

Queue_Compressor

Compressor

class

qco

Queue_Cryptor

Cryptor

class

qcr

Designing

your

real

application

41

Table

3.

Queue

properties

(continued)

Property

Explanation

Java

type

C

type

Queue_CurrentSize

Number

of

messages

on

the

queue

qcs

Queue_Description

Unicode

description

qd

Queue_Expiry

Expiry

time

for

messages

qe

Queue_

FileDesc

Location

and

adapter

for

the

queue

qfd

Queue_MaxMsgSize

Maximum

length

of

messages

allowed

on

the

queue

qms

Queue_MaxQSize

Maximum

number

of

messages

allowed

qmqs

Queue_Mode

Synchronous

or

asynchronous

qm

Queue_MQQMgr

MQ

queue

manager

proxy

Queue_Priority

Priority

to

be

used

for

messages

(unless

overridden

by

a

message

value)

qp

Queue_QAliasNameList

Alternative

names

for

the

queue

String[]

qanl

Queue_QMgrName

Queue

manager

owning

the

real

queue

qqmn

Queue_QMgrNameList

Queue

manager

targets

?

Queue_RemoteQName

Remote

MQ

field

name

?

Queue_Rule

Rule

class

for

queue

operations

qr

Queue_QTimerInterval

Delay

before

processing

pending

messages

qti

Queue_TargetRegistry

Target

registry

type

qtr

Queue_Transporter

Transporter

class

qtc

Queue_TransporterXOR

Transporter

to

use

XOR

compression

qtxor

Queue_Transformer

Transformer

class

q-mq-
transformer

Queue

types

Introduction

to

MQe

queue

types

There

are

several

different

types

of

queues

that

you

can

use

in

an

MQe

environment.

Local

queue

The

simplest

type

of

queue

is

a

local

queue.

This

type

of

queue

is

local

to,

and

owned

by,

a

specific

queue

manager.

It

is

the

final

destination

for

all

messages.

Applications

on

the

owning

queue

manager

can

interact

directly

with

the

queue

to

store

messages

in

a

safe

and

secure

way,

excluding

hardware

failures

or

loss

of

the

device.

You

can

use

local

queues

either

online

or

offline,

either

connected

or

not

connected

to

a

network.

Queues

can

also

have

security

attributes

set,

in

a

very

similar

manner

to

protecting

messages

with

attributes.

42

MQe

Application

Programming

Access

to

messages

on

local

queues

is

always

synchronous,

which

means

that

the

application

waits

until

MQe

returns

after

completing

the

operation,

for

example

a

put,

get,

or

browse

operation.

The

queue

owns

access

and

security

and

may

allow

a

remote

queue

manager

to

use

these

characteristics,

when

connected

to

a

network.

This

allows

others

to

send

or

receive

messages

to

the

queue.

Remote

queue

A

remote

queue

is

a

local

queue

belonging

to

another

queue

manager.

This

remote

queue

definition

exchanges

messages

with

the

remote

local

queue.

MQe

can

establish

remote

queues

automatically.

If

you

attempt

to

access

a

queue

on

another

queue

manager,

for

example

to

send

a

message

to

that

queue,

MQe

looks

for

a

remote

queue

definition.

If

one

exists

it

is

used.

If

not,

queue

discovery

occurs.

Note:

The

concept

of

queue

discovery

does

not

apply

to

the

C

codebase.

MQe

discovers

the

authentication,

cryptography,

and

compression

characteristics

of

the

real

queue

and

creates

a

remote

queue

definition.

Such

queue

discovery

depends

upon

the

target

being

accessible.

If

the

target

is

not

accessible,

a

remote

definition

must

be

supplied

in

some

other

way.

When

queue

discovery

occurs,

MQe

sets

the

access

mode

to

synchronous,

because

the

queue

is

now

known

to

be

synchronously

available.

Synchronous

remote

queues

are

queues

that

can

be

accessed

only

when

connected

to

a

network

that

communicates

with

the

owning

queue

manager.

If

the

network

is

not

established,

the

operations

return

an

error.

The

owning

queue

controls

the

access

permissions

and

security

requirements

needed

to

access

the

queue.

It

is

the

application’s

responsibility

to

handle

any

errors

or

retries

when

sending

or

receiving

messages,

because,

in

this

case,

MQe

is

no

longer

responsible

for

once

and

once-only

assured

delivery.

Asynchronous

remote

queues

are

queues

used

to

send

messages

to

remote

queues

and

can

store

messages

pending

transmission.

They

cannot

remotely

retrieve

messages.

If

the

network

connection

is

established,

messages

are

sent

to

the

owning

queue

manager

and

queue.

However,

if

the

network

is

not

connected,

messages

are

stored

locally

until

there

is

a

network

connection

and

then

the

messages

are

transmitted.

This

allows

applications

to

operate

on

the

queue

when

the

device

is

offline.

As

a

result,

these

queues

temporarily

store

messages

at

the

sending

queue

manager

while

awaiting

transmission.

Store-and-forward

queue

Note:

Store-and-forward

queues

are

not

implemented

in

the

C

codebase.

A

store-and-forward

queue

stores

messages

on

behalf

of

one

or

more

remote

queue

managers

until

they

are

ready

to

receive

them.

This

can

be

configured

to

perform

either

of

the

following:

v

Push

messages

either

to

the

target

queue

manager

or

to

another

queue

manager

between

the

sending

and

the

target

queue

managers.

v

Wait

for

the

target

queue

manager

to

pull

messages

destined

for

it.

Designing

your

real

application

43

A

store-and-forward

queue

stores

messages

associated

with

one

or

more

target

queue

manager

destinations.

Messages

addressed

to

a

specific

or

target

queue

manager

are

placed

on

the

relevant

store-and-forward

queue.

The

store-and-forward

queue

can

optionally

have

a

forwarding

queue

manager

name

set.

If

this

name

is

set,

the

queue

attempts

to

send

all

its

messages

to

that

named

queue

manager.

If

the

name

is

not

set,

the

queue

just

holds

the

messages.

Note:

A

store-and-forward

queue

and

a

home

server

queue

should

not

have

the

same

target

queue

manager.

A

store-and-forward

queue

with

a

queue

QueueManagerName

that

is

not

the

same

as

its

host

QueueManagerName,

attempts

to

push

messages

to

the

remote

queue

manager.

If

that

remote

queue

manager

has

a

home

server

queue,

it

may

attempt

to

pull

the

same

message

simultaneously,

causing

the

message

to

lock.

Store-and-forward

queues

can

hold

messages

for

many

target

queue

managers,

or

there

may

be

one

store-and-forward

queue

for

each

target

queue

manager.

This

type

of

queue

is

normally,

but

not

necessarily,

defined

on

a

server

or

gateway

in

Java

only.

Multiple

store-and-forward

queues

can

exist

on

a

single

queue

manager,

but

the

target

names

must

not

be

duplicated.

The

contents

of

a

store-and-forward

queue

are

not

available

to

application

programs.

Likewise

a

message

sending

application

is

quite

unaware

of

the

presence

or

role

of

store-and-forward

queues

in

message

transmission.

Dead-letter

queue

MQe

has

a

similar

dead-letter

queue

concept

to

MQ.

Such

queues

store

messages

that

cannot

be

delivered.

However,

there

are

important

differences

in

the

manner

in

which

they

are

used.

v

In

MQ,

if

a

message

is

being

moved

from

queue

manager

A

to

queue

manager

B,

then

if

the

target

queue

on

queue

manager

B

cannot

be

found,

the

message

can

be

placed

on

the

receiving

queue

manager’s

(B’s)

dead-letter

queue.

v

In

MQe,

if

home-server

queue

on

a

client

pulls

a

message

from

a

server

and

is

not

able

to

deliver

the

message

to

a

local

queue

and

the

client

has

a

dead

letter

queue,

the

message

will

be

placed

on

the

client’s

dead

letter

queue.

Note:

In

C,

the

Dead

letter

queue

is

just

a

local

queue

with

a

specific

name.

The

use

of

dead-letter

queues

with

an

MQ

bridge

needs

special

consideration.

For

more

information,

see

the

topic

on

the

MQ

bridge.

Administration

queue

The

administration

queue

is

a

specialized

queue

that

processes

administration

messages.

Messages

put

to

the

administration

queue

are

processed

internally.

Because

of

this

applications

cannot

get

messages

directly

from

the

administration

queue.

Only

one

message

is

processed

at

a

time,

other

messages

that

arrive

while

a

message

is

being

processed

are

queued

up

and

processed

in

the

sequence

in

which

they

arrive.

44

MQe

Application

Programming

Home-server

queue

This

type

of

queue

usually

resides

on

a

client

and

points

to

a

store-and-forward

queue

on

a

server

known

as

the

home-server.

The

home-server

queue

pulls

messages

from

the

home-server

store-and-forward

queue

when

the

client

connects

on

the

network.

In

Java,

home-server

queues

normally

have

a

polling

interval

that

causes

them

to

check

for

any

pending

messages

on

the

server

while

the

network

is

connected.

When

this

queue

pulls

a

message

from

the

server,

it

uses

assured

message

delivery

to

put

the

message

to

the

local

queue

manager.

The

message

is

then

stored

on

the

target

queue.

Home-server

queues

have

an

important

role

in

enabling

clients

to

receive

messages

over

client-server

connections.

MQ

bridge

queue

Note:

The

C

codebase

does

not

support

MQ

bridge

queues.

This

type

of

queue

is

always

defined

on

an

MQe

gateway

queue

manager

and

provides

a

path

from

the

MQe

environment

to

the

MQ

environment.

The

MQ

bridge

queue

is

a

remote

queue

definition

that

refers

to

a

queue

residing

on

an

MQ

queue

manager.

Applications

can

use

put,

get,

and

browse

operations

on

this

type

of

queue,

as

if

it

were

a

local

MQe

queue.

Queue

persistent

storage

Overview

of

MQe

message

stores

Local

queues

and

asynchronous

remote

queues

store

messages

and

therefore

have

properties

to

determine

how

and

where

the

messages

are

stored.

The

message

store

determines

how

the

messages

are

mapped

to

the

storage

medium.

The

C

and

Java

versions

of

MQe

support

a

default

message

store,

allowing

long

file

names.

The

Java

version

of

MQe

has

two

additional

message

stores,

MQeShortFilenameMessageStore

that

ensures

the

file

name

does

not

exceed

eight

characters,

and

the

MQe4690ShortFilenameMessageStore

that

supports

the

default

file

system

on

a

4690.

A

storage

adapter

provides

the

message

store

access

to

the

storage

medium,

the

Java

and

C

versions

of

MQe

provide

disk

adapters

with

the

Java

version

also

providing

a

case

insensitive

adapter

and

a

memory

adapter.

The

backing

store

used

by

a

queue

can

be

changed

using

an

MQe

administration

message.

Changing

the

backing

store

is

not

allowed

while

the

queue

is

active

or

contains

messages.

If

the

backing

store

used

by

the

queue

allows

the

messages

to

be

recovered

in

the

event

of

a

system

failure,

then

this

allows

MQe

to

assure

the

delivery

of

messages.

MQe

connection

definitions

Explains

how

logical

connections

between

queue

managers

are

established

Designing

your

real

application

45

MQe

supports

a

method

of

establishing

logical

connections

between

queue

managers,

in

order

to

send

or

receive

data.

MQe

clients

and

servers

communicate

over

connections

called

client/server

channels.

Client/server

channels

have

the

following

attributes:

v

They

are

dynamic,

that

is

created

on

demand.

This

differentiates

them

from

MQ

connections

which

have

to

be

explicitly

created.

v

You

can

only

establish

the

connection

from

the

client-side.

v

A

client

can

connect

to

many

servers,

with

each

connection

using

a

separate

channel.

v

The

server-side

queue

manager

can

accept

many

connections

simultaneously,

from

a

multitude

of

different

clients,

using

a

listener

for

each

protocol.

v

They

work

through

a

Firewall,

if

the

server-side

of

the

connection

is

behind

the

Firewall.

However,

this

depends

on

the

configuration

of

the

Firewall.

v

They

are

unidirectional

and

support

the

full

range

of

functions

provided

by

MQe,

including

both

synchronous

and

asynchronous

messaging.

Note:

Unidirectional

means

that

the

client

can

send

data

to,

or

request

data

from

the

server,

but

the

server-side

cannot

initiate

requests

of

the

client.

Standard

connections,

used

for

the

client/server

connection

style,

are

unidirectional,

but

depend

on

a

listener

at

the

server,

as

servers

cannot

initiate

data

transfer.

The

client

initiates

the

connection

request

and

the

server

responds.

A

server

can

usually

handle

multiple

incoming

requests

from

clients.

Over

a

standard

connection,

the

client

has

access

to

resources

on

the

server.

If

an

application

on

the

server

needs

synchronous

access

to

resources

on

the

client,

a

second

connection

is

required

where

the

roles

are

reversed.

However,

because

standard

connections

are

themselves

bidirectional,

messages

destined

for

a

client

from

its

server’s

transmission

queue,

are

delivered

to

it

over

the

standard

(client/server)

connection

that

it

initiated.

A

client

can

be

a

client

to

multiple

servers

simultaneously.

The

client/server

connection

style

is

generally

suited

for

use

through

Firewalls,

because

the

target

of

the

incoming

connection

is

normally

identified

as

being

acceptable

to

the

Firewall.

Note:

Supposing

there

are

two

server

queue

managers,

SQM1

and

SQM2.

SQM2

has

listener

address

host

2:

8082.

Also,

suppose

that

SQM1

has

a

connection

to

SQM2

and

a

listener

addresss,

host

1:8081.

If

you

create

a

connection

definition

on

a

client

queue

manager,

named

SQM2

with

address

host

1:

8081,

this

transports

commands

for

SQM2

to

SQM1,

which

then

transports

them

to

SQM2.

Avoid

this

construct,

as

it

is

inefficient.

Because

of

the

way

channel

security

works,

when

a

specific

attribute

rule

is

specified

for

a

target

queue,

it

forces

the

local

queue

manager

to

create

an

instance

of

the

same

attribute

rule,

examples.rules.AttributeRule

and

com.ibm.mqe.MQeAttributeRule

are

treated

as

the

same

rule.

If

this

is

not

a

desirable

behaviour,

you

can

specify

a

null

rule

for

the

target

queue.

In

this

case,

com.ibm.mqe.MQeAttributeDefaultRule

takes

effect.

Connections

can

have

various

attributes

or

characteristics,

such

as

authentication,

cryptography,

compression,

or

the

transmission

protocol

to

use.

Different

connections

can

use

different

characteristics.

Each

connection

can

have

its

own

value

set

for

each

of

the

following

attributes:

46

MQe

Application

Programming

Authenticator

This

attribute

causes

authentication

to

be

performed.

This

is

a

security

function

that

challenges

the

putting

application

environment

or

user

to

prove

their

identity.

It

has

a

value

of

either

NULL

or

an

authenticator

that

can

perform

user

or

connection

authentication.

Cryptor

This

attribute

causes

encryption

and

decryption

to

be

performed

on

messages

passing

through

the

channel.

This

is

a

security

function

that

encodes

the

messages

during

transit

so

that

you

cannot

read

them

without

the

decoding

information.

Either

null

or

a

cryptor

that

can

perform

encryption

and

decryption.

The

simplest

type

of

cryptor

is

MQeXorCryptor,

which

encrypts

the

data

being

sent

by

performing

an

exclusive-OR

of

the

data.

This

encryption

is

not

secure,

but

it

modifies

the

data

so

that

it

cannot

be

viewed.

In

contrast,

MQe3DESCryptor

implements

triple

DES,

a

symmetric-key

encryption

method.

Channel

The

class

providing

the

transport

services.

Compressor

This

attribute

causes

compression

and

decompression

to

be

performed

on

messages

passing

through

the

channel.

This

attempts

to

reduce

the

size

of

messages

while

they

are

being

transmitted

and

stored.

Either

null

or

a

compressor

that

can

perform

data

compression

and

decompression.

The

simplest

type

of

compressor

is

the

MQeRleCompressor,

which

compresses

the

data

by

replacing

repeated

characters

with

a

count.

Destination

The

server

and

port

number

for

the

connection.

The

target

for

this

connection,

for

example

SERVER.XYZ.COM

Typically,

authentication

only

occurs

when

setting

up

the

connection.

All

flows

normally

use

compressors

and

cryptors.

You

can

establish

MQe

connections

using

a

variety

of

protocols

allowing

them

to

connect

in

a

number

of

different

ways,

for

example:

v

Permanent

connection,

for

example

a

LAN,

or

leased

line

Authenticator

Compressor

Cryptor

Authenticator

Compressor

Cryptor

Communications
protocol

Figure

1.

MQe

connection

Designing

your

real

application

47

v

Dial

out

connection,

for

example

using

a

standard

modem

to

connect

to

an

Internet

service

provider

(ISP)

v

Dial

out

and

answer

connection,

using

a

CellPhone,

or

ScreenPhone

for

example

MQe

implements

the

communications

protocols

as

a

set

of

adapters,

with

one

adapter

for

each

of

the

supported

protocols.

This

enables

you

to

add

new

protocols.

Using

queue

aliases

Introduces

the

use

of

queue

aliases

Aliases

can

be

assigned

for

MQe

queues

to

provide

a

level

of

indirection

between

the

application

and

the

real

queues.

Hence

the

attributes

of

a

queue

that

an

alias

relates

to

can

be

changed

without

the

application

needing

to

change.

For

instance,

a

queue

can

be

given

a

number

of

aliases

and

messages

sent

to

any

of

these

names

will

be

accepted

by

the

queue.

Examples

of

queue

aliasing

Illustrates

some

of

the

ways

in

which

aliasing

can

be

used

with

queues

The

following

examples

illustrate

some

of

the

ways

in

which

aliasing

can

be

used

with

queues:

Merging

applications:

Using

queue

aliasing

to

merge

applications

Suppose

you

have

the

following

configuration:

v

A

client

application

that

puts

data

to

queue

Q1

v

A

server

application

that

takes

data

from

Q1

for

processing

v

A

client

application

that

puts

data

to

queue

Q2

v

A

server

application

which

takes

data

from

Q2

for

processing

Some

time

later

the

two

server

applications

are

merged

into

one

application

supporting

requests

from

both

the

client

applications.

It

may

now

be

appropriate

for

the

two

queues

to

be

changed

to

one

queue.

For

example,

you

may

delete

Q2,

and

add

an

alias

of

the

Q1

queue,

calling

it

Q2.

Messages

from

the

client

application

that

previously

used

Q2

are

automatically

sent

to

Q1.

Upgrading

applications:

Using

queue

aliasing

to

upgrade

applications

Suppose

you

have

the

following

configuration:

v

A

queue

Q1

v

An

application

that

gets

messages

from

Q1

v

An

application

that

puts

messages

to

Q1

You

then

develop

a

new

version

of

the

application

that

gets

the

messages.

You

can

make

the

new

application

work

with

a

queue

called

Q2.

You

can

define

a

queue

called

Q2

and

use

it

to

exercise

the

new

application.

When

you

want

it

to

go

live,

you

let

the

old

version

clear

all

traffic

off

the

Q1

queue,

and

then

create

an

alias

of

Q2

called

Q1.

The

application

that

puts

to

Q1

will

still

work,

but

the

messages

will

end

up

on

Q2.

48

MQe

Application

Programming

Using

different

transfer

modes

to

a

single

queue:

Using

different

transfer

modes

to

a

single

queue,

using

queue

aliasing

Suppose

you

have

a

queue

MY_Q_ASYNC

on

queue

manager

MQE1.

Messages

are

passed

to

MY_Q_ASYNC

by

a

different

queue

manager

MQE2,

using

a

remote

queue

definition

that

is

defined

as

an

asynchronous

queue.

Now

suppose

your

application

periodically

wants

to

get

messages

in

a

synchronous

manner

from

the

MY_Q_ASYNC

queue.

The

recommended

way

to

achieve

this

is

to

add

an

alias

to

the

MY_Q_ASYNC

queue,

perhaps

called

MY_Q_SYNC.

Then

define

a

remote

queue

definition

on

your

MQE2

queue

manager,

that

references

the

MY_Q_SYNC

queue.

This

provides

you

with

two

remote

queue

definitions.

If

you

use

the

MY_Q_ASYNC

definition,

the

messages

are

transported

asynchronously.

If

you

use

the

MY_Q_SYNC

definition,

synchronous

message

transfer

is

used.

Queue

manager

operations

Explanation

of

the

messaging

operations

that

you

can

perform

on

a

queue

manager

This

topic

explains

in

detail

the

messaging

operations

that

you

can

perform

on

a

queue

manager.

It

describes

the

services,

functions,

and

uses

of

queue

managers

under

the

following

headings:

What

is

an

MQe

queue

manager

Introduction

to

the

function

and

use

of

queue

managers

The

MQe

queue

manager

is

the

focal

point

of

the

MQe

system.

It

provides:

v

A

central

point

of

access

to

a

messaging

and

queueing

network

for

MQe

applications

v

Optional

client-side

queuing

v

Optional

administration

functions

v

Once

and

once-only

assured

delivery

of

messages

v

Recovery

from

failure

conditions

Figure

2.

Two

modes

of

transfer

to

a

single

queue

Designing

your

real

application

49

v

Extendable

rules-based

behavior

Unlike

base

MQ,

MQe

has

a

single

queue

manager

type.

However,

you

can

program

MQe

queue

managers

to

act

as

traditional

clients

or

servers.

You

can

also

customize

queue

manager

behavior

using

rules.

The

MQe

queue

manager

is

embedded

within

user

written

programs

and

these

programs

can

run

on

any

MQe

supported

device

or

platform.

You

can

configure

queue

managers

in

a

number

of

different

ways,

the

main

types

being

client,

server,

and

gateway.

You

can

also

update

the

queue

store

of

a

queue

manager

using

administration

messages.

For

more

information

on

administration

messages,

refer

to

the

MQe

Configuration

Guide.

an

MQe

queue

manager

can

control

the

various

types

of

queue.

Communication

with

other

queue

managers

on

the

MQ

messaging

network

can

be

synchronous

or

asynchronous.

If

you

want

to

use

synchronous

communications,

the

originator,

and

the

target

MQe

queue

managers

must

both

be

available

on

the

network.

Asynchronous

communication

allows

an

MQe

application

to

send

messages

even

when

the

remote

queue

manager

is

offline.

The

queue

manager

life-cycle

Overview

of

the

life-cycle

of

a

queue

manager

Typically,

an

application

creates

a

new

queue

manager,

configures

it

with

a

number

of

queues,

and

then

frees

the

queue

manager.

An

application

also

opens

an

existing

queue

manager,

starts

it,

carries

out

messaging

operations,

and

then

stops.

A

further

administration

program

can

reopen

the

queue

manager,

remove

all

of

its

queues,

and

then

stop.

The

following

diagram

displays

this

information:

Creating

queue

managers

A

queue

manager

requires

at

least

the

following:

v

A

registry

v

A

queue

manager

definition

v

Local

default

queue

definitions

Load
existing

Free

Start

Stop

Create
queue

manager

Delete
queue

manager

Queue
manager

non-existant

Queue
manager

exists in the
registry

Created Active

Figure

3.

The

queue

manager

life-cycle

50

MQe

Application

Programming

Once

these

definitions

are

in

place

you

can

run

the

queue

manager

and

use

the

administration

interface

to

perform

further

configuration,

such

as

adding

more

queues.

Methods

to

create

these

initial

objects

are

supplied

in

the

MQeQueueManagerConfigure

class.

The

example

install

programs

examples.install.SimpleCreateQM

and

examples.install.SimpleDeleteQM

use

this

class.

Queue

manager

names

MQe

queue

manager

names

can

contain

the

following

characters:

v

Numerics

0

to

9

v

Lower

case

a

to

z

v

Upper

case

A

to

Z

v

Underscore

_

v

Period

.

v

Percent

%

There

are

no

inherent

name

length

limitations

in

MQe.

Creating

a

queue

manager

-

step

by

step

The

basic

steps

required

to

create

a

queue

manager

are:

1.

Create

and

activate

an

instance

of

MQeQueueManagerConfigure

2.

Set

queue

manager

properties

and

create

the

queue

manager

definition

3.

Create

definitions

for

the

default

queues

4.

Close

the

MQeQueueManagerConfigure

instance

Create

and

activate

an

instance

of

MQeQueueManagerConfigure:

You

can

activate

the

MQeQueueManagerConfigure

class

in

either

of

the

following

ways:

1.

Call

the

empty

constructor

followed

by

activate():

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

qmConfig

=

new

MQeQueueManagerConfigure(

);

qmConfig.activate(

parms,

"MsgLog:qmName\\Queues\\"

);

}

catch

(Exception

e)

{

...

}

2.

Call

the

constructor

with

parameters:

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

Designing

your

real

application

51

qmConfig

=

new

MQeQueueManagerConfigure(

parms,

"MsgLog:qmName\\Queues\\"

);

}

catch

(Exception

e)

{

...

}

The

first

parameter

is

an

MQeFields

object

that

contains

initialization

parameters

for

the

queue

manager.

These

must

contain

at

least

the

following:

v

An

embedded

MQeFields

object

(Name)

that

contains

the

name

of

the

queue

manager.

v

An

embedded

MQeFields

object,

that

contains

the

location

of

the

local

queue

store

as

the

registry

type

(LocalRegType)

and

the

registry

directory

name

(DirName).

If

a

base

file

registry

is

used

these

are

the

only

parameters

that

are

required.

If

a

private

registry

is

used,

a

PIN

and

KeyRingPassword

are

also

required.

The

directory

name

is

stored

as

part

of

the

queue

manager

definition

and

is

used

as

a

default

value

for

the

queue

store

in

any

future

queue

definitions.

The

directory

does

not

have

to

exist

and

will

be

created

when

needed.

If

you

use

an

alias

for

any

of

the

initialization

parameters,

or

if

you

wish

to

use

an

alias

to

set

the

connection

attribute

rule

name,

the

aliases

should

be

defined

before

activating

MQeQueueManagerConfigure

.

import

com.ibm.mqe.*;

import

com.ibm.mqe.registry.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

MQeFields

qmgrFields

=

new

MQeFields();

MQeFields

regFields

=

new

MQeFields();

//

Queue

manager

name

is

needed

qmgrFields.putAscii(MQeQueueManager.Name,

"qmName");

//

Registry

information

regFields.putAscii(MQeRegistry.LocalRegType,

"com.ibm.mqe.registry.MQeFileSession");

regFields.putAscii(MQeRegistry.DirName,

"qmname\\Registry");

//

add

the

imbedded

MQeFields

objects

parms.putFields(MQeQueueManager.QueueManager,

qmgrFields);

parms.putFields(MQeQueueManager.Registry,

regFields);

//

activate

the

configure

object

qmConfig

=

new

MQeQueueManagerConfigure(

parms,

"MsgLog:qmName\\Queues\\"

);

}

catch

(Exception

e)

{

...

}

Set

queue

manager

properties:

When

you

have

activated

MQeQueueManagerConfigure,

but

before

you

create

the

queue

manager

definition,

you

can

set

some

or

all

of

the

following

queue

manager

properties:

v

You

can

add

a

description

to

the

queue

manager

with

setDescription()

v

You

can

set

a

connection

time-out

value

with

setChannelTimeout()

v

You

can

set

the

name

of

the

connection

attribute

rule

with

setChnlAttributeRuleName()

52

MQe

Application

Programming

Call

defineQueueManager(

)

to

create

the

queue

manager

definition.

This

creates

a

registry

definition

for

the

queue

manager

that

includes

any

of

the

properties

that

you

set

previously.

import

com.ibm.mqe.*;

import

com.ibm.mqe.registry.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

...

//

activate

the

configure

object

qmConfig

=

new

MQeQueueManagerConfigure(

parms,

"MsgLog:qmName\\Queues\\"

);

qmConfig.setDescription("a

test

queue

manager");

qmConfig.setChnlAttributeRuleName("ChannelAttrRules");

qmConfig.defineQueueManager();

}

catch

(Exception

e)

{

...

}

At

this

point

you

can

close()

MQeQueueManagerConfigure

and

run

the

queue

manager,

however,

it

cannot

do

much

because

it

has

no

queues.

You

cannot

add

queues

using

the

administration

interface,

because

the

queue

manager

does

not

have

an

administration

queue

to

service

the

administration

messages.

The

following

sections

show

how

to

create

queues

and

make

the

queue

manager

useful.

Create

definitions

for

the

default

queues:

MQeQueueManagerConfigure

allows

you

to

define

the

following

four

standard

queues

for

the

queue

manager:

defineDefaultAdminQueue()

This

administration

queue

is

needed

to

allow

the

queue

manager

to

respond

to

administration

messages,

for

example

to

create

new

connection

definitions

and

queues.

defineDefaultAdminReplyQueue()

This

administration

reply

queue

is

a

local

queue,

used

by

connections

as

the

destination

of

reply

messages

generated

by

administration.

defineDefaultDeadLetterQueue()

This

dead

letter

queue

can

be

used,

depending

on

the

rules

in

force,

to

store

messages

that

cannot

be

delivered

to

their

correct

destination.

defineDefaultSystemQueue()

This

default

local

queue,

SYSTEM.DEFAULT.LOCAL.QUEUE,

has

no

special

significance

within

MQe

itself,

but

it

is

useful

when

MQe

is

used

with

MQ

messaging

because

it

exists

on

every

MQ

messaging

queue

manager.

All

methods

throw

an

exception

if

the

queue

already

exists.

import

com.ibm.mqe.*;

import

com.ibm.mqe.registry.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

Designing

your

real

application

53

...

qmConfig

=

new

MQeQueueManagerConfigure(

parms,

"MsgLog:qmName\\Queues\\"

);

qmConfig.setDescription("a

test

queue

manager");

qmconfig.defineDefaultAdminQueue();

qmconfig.defineDefaultAdminReplyQueue();

qmconfig.defineDefaultDeadLetterQueue();

qmconfig.defineDefaultSystemQueue();

}

catch

(Exception

e)

{

...

}

Close

the

MQeQueueManagerConfigure

instance:

When

you

have

defined

the

queue

manager

and

the

required

queues,

you

can

close()

MQeQueueManagerConfigure

and

run

the

queue

manager.

The

complete

example

looks

like

this:

import

com.ibm.mqe.*;

import

com.ibm.mqe.registry.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

MQeFields

qmgrFields

=

new

MQeFields();

MQeFields

regFields

=

new

MQeFields();

//

Queue

manager

name

is

needed

qmgrFields.putAscii(MQeQueueManager.Name,

"qmName");

//

Registry

information

regFields.putAscii(MQeRegistry.LocalRegType,

"com.ibm.mqe.registry.MQeFileSession");

regFields.putAscii(MQeRegistry.DirName,

"qmname\\Registry");

//

add

the

imbedded

MQeFields

objects

parms.putFields(MQeQueueManager.QueueManager,

qmgrFields);

parms.putFields(MQeQueueManager.Registry,

regFields);

//

activate

the

configure

object

qmConfig

=

new

MQeQueueManagerConfigure(

parms,

"MsgLog:qmName\\Queues\\"

);

qmConfig.setDescription("a

test

queue

manager");

qmConfig.setChnlAttributeRuleName("ChannelAttrRules");

qmConfig.defineQueueManager();

qmconfig.defineDefaultAdminQueue();

qmconfig.defineDefaultAdminReplyQueue();

qmconfig.defineDefaultDeadLetterQueue();

qmconfig.defineDefaultSystemQueue();

qmconfig.close();

}

catch

(Exception

e)

{

...

}

The

registry

definitions

for

the

queue

manager

and

the

required

queues

are

created

immediately.

The

queues

are

not

created

until

they

are

activated.

Persistent

configuration

data

MQe

queue

managers,

irrespective

of

their

role

within

the

MQe

network,

require

some

information

to

be

held

in

permanent

storage.

This

is

the

responsibility

of

MQe.

Iif

there

is

additional

information

that

must

persist

between

invocations

of

an

application,

this

is

the

responsibility

of

the

application.

Information

held

within

the

registry

contains

Queue

Manager

configuration

details,

for

example:

54

MQe

Application

Programming

v

Information

on

where

messages,

queues,

remote

queue

definitions,

channel

timeout,

aliases,

adapters,

and

the

message

store

are

held

and

how

to

access

them

v

Connection

definitions

v

Security

information

v

Various

bridge

related

objects

The

following

persistent

information,

useful

to

an

application,

is

referred

to

in

this

manual

as

environmental

data:

v

Registry

information,

class,

path,

storage

adapter

class,

and

registry

type.

This

information

is

used

to

locate

an

existing

registry,

allowing

MQe

to

start

an

existing

queue

manager,

or

to

create

a

new

queue

manager

registry.

v

Class

manager

information,

for

example

class

and

name.

v

Queue

manager

type.

Creating

simple

queue

managers

The

simplest

MQe

queue

manager

is

a

queue

manager

that

uses

a

registry

based

upon

the

internal

default

values.

The

queue

manager

could

be

created

without

any

queues,

but

its

functionality

would

be

severely

limited.

The

example

we

create

contains

four

standard

queues:

v

Admin

queue

-

so

that

administration

can

be

performed

v

Admin

reply

queue

-

a

standard

place

to

store

replies

from

administration

actions

v

System

default

queue

-

a

useful

general

purpose

local

queue

v

Dead

letter

queue

-

a

place

for

undeliverable

messages

The

simplest

queue

manager

has

no

security

and

has

a

registry

stored

in

the

local

file

system.

The

steps

to

achieve

are:

v

Create

a

registry

on

disk

v

Create

and

start

a

queue

manager

using

the

registry

v

Stop

the

queue

manager

These

actions

are

described

for

both

the

Java

codebase

and

the

C

codebase,

with

example

code

for

each.

The

example

Java

code

is

shipped

as

examples.config.CreateQueueManager.

For

C

example

code,

refer

to

the

HelloWorld

compilation

section

and

the

transport-c

file

in

the

Broker

example.

Creating

a

simple

queue

manager

in

Java:

Registries

are

created

in

Java

by

using

the

class

com.ibm.mqe.MQeQueueManagerConfigure.

An

instance

of

this

class

is

created,

and

activated

by

passing

it

some

initialization

parameters.

The

parameters

are

supplied

in

the

form

of

an

MQeFields

object.

Within

this

MQeFields

are

contained

two

sub

fields,

one

holding

information

about

the

registry,

and

one

holding

information

about

the

queue

manager

being

created.

As

we

are

creating

a

very

simple

queue

manager,

we

only

need

to

pass

two

parameters,

the

queue

manager

name,

in

the

queue

manager

parameters,

and

the

registry

location,

in

the

registry

parameters.

We

can

then

use

the

MQeQueue

ManagerConfigure

to

create

the

standard

queues.

Designing

your

real

application

55

First,

create

three

fields

objects,

one

for

the

QueueManager

parameters,

one

for

the

Registry

parameters.

The

third

fields

object,

parms,

is

used

to

contain

both

the

QueueManager

and

Registry

fields

objects.

MQeFields

parms

=

new

MQeFields();

MQeFields

queueManagerParameters

=

new

MQeFields();

MQeFields

registryParameters

=

new

MQeFields();

The

QueueManager

name

needs

to

be

set.

Use

the

MQeQueueManager.Name

as

the

Field

Label

constant.

queueManagerParameters.putAscii(MQeQueueManager.Name,

queueManagerName);

The

location

of

the

persistent

registry

needs

to

be

specified.

Do

this

in

the

Registry

Paramters

field

object.

Use

the

MQeRegistry.DirName

as

the

Field

Label

constant.

registryParameters.putAscii(MQeRegistry.DirName,

registryLocation);

The

QueueManager

and

registry

parameters

can

now

be

set

embedded

the

main

fields

object.

parms.putFields(MQeQueueManager.QueueManager,

queueManagerParameters);

parms.putFields(MQeQueueManager.Registry,

registryParameters);

An

instance

of

MQeQueueManagerConfigure

can

be

created

now.

This

needs

the

parameters

fields

object,

plus

a

String

indentifying

the

details

of

the

queue

store

to

use.

MQeQueueManagerConfigure

qmConfig

=

new

MQeQueueManagerConfigure(parms,

queueStore);

The

four

common

types

of

queues

can

now

be

created

via

four

convenience

methods

as

follows:

qmConfig.defineQueueManager();

qmConfig.defineDefaultSystemQueue();

qmConfig.defineDefaultDeadLetterQueue();

qmConfig.defineDefaultAdminReplyQueue();

qmConfig.defineDefaultAdminQueue();

Finally

the

MQeQueueManagerConfigure

object

can

be

closed.

qmConfig.close();

Creating

a

simple

queue

manager

in

C:

Stage

1:

Create

the

admin

components

All

local

administration

actions

can

be

accomplished

using

the

MQeAdministrator.

This

allows

you

to

create

new

QueueManagers

and

new

Queues,

and

perform

many

other

actions.

For

all

calls,

a

pointer

to

the

exception

block

is

required,

along

with

a

pointer

for

the

QueueManager

handle.

Stage

2:

Create

a

QueueManager

To

create

a

QueueManager,

two

parameters

structures

are

required.

One

contains

the

parameters

for

the

QueueManager,

the

other

for

the

registry.

In

this

simple

case

the

default

values

are

suitable,

with

the

addition

of

the

location

of

the

registry

and

queue

store.

The

call

to

the

administrator

will

create

the

QueueManager.

Note

that

the

QueueManager

name

is

passed

into

the

call.

A

QueueManager

Hndl

is

returned.

if

(

MQERETURN_OK

==

rc

)

{

MQeQueueManagerParms

qmParams

=

QMGR_INIT_VAL;

56

MQe

Application

Programming

MQeRegistryParms

regParams

=

REGISTRY_INIT_VAL;

qmParams.hQueueStore

=

hQueueStore;

qmParams.opFlags

=

QMGR_Q_STORE_OP;

regParams.hBaseLocationName

=

hRegistryDir;

display("Creating

the

Queue

Manager\n");

rc

=

mqeAdministrator_QueueManager_create(hAdministrator,

&exceptBlk,

&hQueueManager,

hLocalQMName,

&qmParams,

®Params);

}

Starting

queue

managers

Queue

managers

need

to

be

created

before

use.

The

creation

step

uses

the

QueueManagerConfigure

Java

class

or

the

C

administration

API

to

create

persistent

queue

manager

data

in

a

registry.

The

queue

manager

then

uses

the

registry

each

time

its

starts.

Starting

queue

managers

in

Java

Normally,

creating

and

starting

a

queue

manager

can

require

a

large

set

of

parameters.

Therefore,

the

required

parameters

are

supplied

as

an

instance

of

MQeFields,

storing

the

values

as

fields

of

correct

type

and

name.

The

parameters

fall

into

two

categories,

queue

manager

parameters

and

registry

parameters.

Each

of

these

categories

is

represented

by

its

own

MQeFields

instance,

and

both

are

also

enclosed

in

an

MQeFields

instance.

The

following

Java

example

explains

this

concept,

passing

the

queue

managers

name,

″ExampleQM″

and

the

location

of

a

registry,

″C:\ExampleQM″:

/*create

fields

for

queue

manager

parameters

and

place

the

queue

manager

name

MQeFields

queueManagerParameters

=

new

MQeFields();

queueManagerParameters.putAscii(MQeQueueManager.Name,

"ExampleQM");

/*create

fields

for

registry

parameters

and

place

the

registry

location

MQeFields

registryParameters

=

new

MQeFields();

registryParameters.putAscii(MQeRegistry.DirName,

"C:\\ExampleQM\\registry");

/*create

fields

for

combined

parameters

and

place

the

two

sub

fields

MQeFields

parameters

=

new

MQeFields();

parameters.putFields(MQeQueueManager.Registry,

queueManagerParameters);

parameters.putFields(MQeQueueManager.Registry,

registryParameters);

Wherever

you

see

″initialize

the

parameters″

in

code

snippets,

prepare

a

set

of

parameters

as

shown

in

the

example,

including

the

appropriate

options.

Only

one

queue

manager

name

and

one

registry

location

are

mandatory.

Starting

a

simple

queue

manager

in

Java:

To

start

the

simplest

queue

manager,

you

only

need

to

provide

the

queue

manager

name

and

registry

location

to

the

queue

manager

constructor.

This

starts

and

Figure

4.

Create

queue

manager

C

example

Designing

your

real

application

57

activates

the

queue

manager,

and

when

the

constructor

returns

the

queue

manager

is

running.

MQeQueueManager

qm

=

newMQeQueueManager(queueManagerName,

registryName);

There

are

other

ways

to

start

a

queue

manager

that

allow

you

to

pass

more

parameters,

in

order

to

take

advantage

of

some

advanced

features.

Starting

queue

managers

in

C

The

mqeQueueManager_new

function

loads

a

queue

manager

for

an

established

registry.

To

do

this,

you

need

information

supplied

by

a

queue

manager

parameter

structure

and

a

registry

parameter

structure.

The

following

example

shows

how

you

can

set

these

structures

to

their

default

values,

supplying

only

the

directories

of

the

queue

store

and

registry:

MQeQueueManagerHndl

hQueueManager;

MQeRegistryParms

regParms

=

REGISTRY_INIT_VAL;

MQeQueueManagerParms

qmParms

=

QMGR_INIT_VAL;

regParms.hBaseLocationName

=

hRegistryDirectory;

qmParms.hQueueStore

=

hStore;

qmParms.opFlags

=

QMGR_Q_STORE_OP;

rc

=

mqeQueueManager_new(&exceptBlock,

&hQueueManager,

hQMName,

®Params,

&qmParms);

This

creates

a

queue

manager

and

loads

its

persistent

information

from

the

registry

and

creates

queues.

However,

you

must

start

the

queue

manager

to:

v

Create

messages

v

Get

and

put

messages

v

Process

administration

messages,

using

the

administration

queue

Note:

In

C,

the

queues

are

activated

on

starting

the

queue

manager.

To

start

the

queue

manager,

use

rc

=

mqeQueueManager_start(&hQueueManager,

&exceptBlock);

Once

the

queue

manager

is

started,

messaging

operations

can

take

place

and

any

queues

that

have

messages

on

them

are

loaded.

To

stop

the

queue

manager,

use:

rc

=

mqeQueueManager_stop(&hQueueManager,

&exceptBlock);

Once

stopped,

you

can

restart

the

queue

manager

as

required.

At

the

end

of

the

application,

you

must

free

the

queue

manager

to

release

any

resources

it

uses,

for

example

memory.

First,

stop

the

queue

manager

and

then

use:

rc

=

mqeQueueManager_free(&hQueueManager,

&exceptBlock);

Starting

a

simple

queue

manager

in

C:

This

process

involves

two

steps:

1.

Create

the

queue

manager

item.

Figure

5.

Start

queue

manager

Java

example

58

MQe

Application

Programming

2.

Start

the

queue

manager.

Creating

the

queue

manager

requires

two

sets

of

parameters,

one

set

for

the

queue

manager

and

one

for

the

registry.

Both

sets

of

parameters

are

initialized.

The

queue

store

and

the

registry

require

directories.

Note:

All

calls

require

a

pointer

to

ExceptBlock

and

a

pointer

to

the

queue

manager

handle.

if

(MQERETURN_OK

==

rc)

{

MQeQueueManagerParms

qmParams

=

QMGR_INIT_VAL;

MQeRegistryParms

regParams

=

REGISTRY_INIT_VAL;

qmParams.hQueueStore

=

hQueueStore;

qmParams.opFlags

=

QMGR_Q_STORE_OP;

/*

...

create

the

registry

parameters

-

minimum

that

are

required

*/

regParams.hBaseLocationName

=

hRegistryDir;

display("Loading

Queue

Manager

from

registry

\n");

rc

=

mqeQueueManager_new(

&exceptBlock,

&hQueueManager,

hLocalQMName,

&qmParams,

®Params);

}

You

can

now

start

the

queue

manager

and

carry

out

messaging

operations:

/*

Start

the

queue

manager

*/

if

(

MQERETURN_OK

==

rc

)

{

display("Starting

the

Queue

Manager\n");

rc

=

mqeQueueManager_start(hQueueManager,

&exceptBlock);

}

Queue

manager

parameters

List

of

the

parameter

names

that

can

be

passed

to

the

queue

manager

and

the

registry.

The

following

lists

the

parameter

names

that

you

can

pass

to

the

queue

manager

and

the

registry:

Queue

manager

Parameters

MQeQueueManager.Name(ascii)

This

is

the

name

of

the

queue

manager

being

started.

Registry

Parameters

MQeRegistry.LocalRegType(ascii)

This

is

the

type

of

registry

being

opened.

MQe

currently

supports:

file

registry

Set

this

parameter

to

com.ibm.mqe.registry.MQeFileSession.

private

registry

Set

this

parameter

to

com.ibm.mqe.registry.MQePrivateSession.

You

also

need

a

private

registry

for

some

security

features.

MQeRegistry.DirName(ascii)

This

is

the

name

of

the

directory

holding

the

registry

files.

You

must

pass

this

parameter

for

a

file

registry.

Designing

your

real

application

59

MQeRegistry.PIN(ascii)

You

need

this

PIN

for

a

private

registry.

Note:

For

security

reasons,

MQe

deletes

the

PIN

and

KeyRingPassword,

if

supplied,

from

the

startup

parameters

as

soon

as

the

queue

manager

is

activated.

MQeRegistry.CAIPAddrPort(ascii)

You

need

this

address

and

port

number

of

a

mini-certificate

server

for

auto-registration,

so

that

the

queue

manager

can

obtain

its

credentials

from

the

mini-certificate

server.

MQeRegistry.CertReqPIN(ascii)

This

is

the

certificate

request

number

allocated

by

the

mini-certificate

administrator

to

allow

the

registry

to

obtain

its

credentials.

You

need

this

for

auto-registration,

so

that

the

queue

manager

can

obtain

its

credentials

from

the

mini-certificate

server.

MQeRegistry.Separator(ascii)

This

is

used

to

specify

a

non-default

separator.

A

separator

is

the

character

used

between

the

the

components

of

an

entry

name,

for

example

<QueueManager><Separator><Queue>.

Although

this

parameter

is

specified

as

a

string,

it

must

contain

a

single

character.

If

it

contains

more

than

one,

only

the

first

character

is

used.

Use

the

same

separator

for

each

registry

opened

and

do

not

change

it

once

a

registry

is

in

use.

If

you

do

not

specify

this

parameter,

the

separator

defaults

to

″+″.

MQeRegistry.RegistryAdapter(ascii)

This

is

the

class,

or

an

alias

that

resolves

to

a

class,

of

the

adapter

that

the

registry

uses

to

store

its

data.

You

must

include

this

class

if

you

want

the

registry

to

use

an

adapter

other

than

the

default

MQeDiskFieldsAdapter.

You

can

use

any

valid

storage

adapter

class.

You

always

need

the

first

two

parameters.

The

last

two

are

for

auto-registration

of

the

registry

if

it

wishes

to

obtain

credentials

from

the

mini-certificate

server.

MQeRegistry.RegistryAdapter

(ascii)

The

class,

(or

an

alias

that

resolves

to

a

class),

of

the

adapter

that

the

registry

uses

to

store

its

data.

This

value

should

be

included

if

you

want

the

registry

to

use

an

adapter

other

than

the

default

MQeDiskFieldsAdapter.

Any

valid

adapter

class

can

be

used.

A

queue

manager

can

run:

v

As

a

client

v

As

server

v

In

a

servlet

The

following

sections

describe

the

example

client,

servers

and

servlet

that

are

provided

in

the

examples.queuemanager

package.

All

queue

managers

are

constructed

from

the

same

base

MQe

components,

with

some

additions

that

give

each

its

unique

properties.

MQe

provides

an

example

class,

MQeQueueManagerUtils,

that

encapsulates

many

of

the

common

functions.

All

the

examples

require

parameters

at

startup.

These

parameters

are

stored

in

standard

ini

files.

The

ini

files

are

read

and

the

data

is

converted

into

an

MQeFields

object.

The

loadConfigFile()

method

in

the

MQeQueueManagerUtils

class

performs

this

function.

60

MQe

Application

Programming

Registry

parameters

for

a

queue

manager

Description

of

the

queue

manager-related

data

held

in

the

registry

The

registry

is

the

primary

store

for

queue

manager-related

information;

one

exists

for

each

queue

manager.

Every

queue

manager

uses

the

registry

to

hold

its:

v

Queue

manager

configuration

data

v

Communications

listener

resource

definitions

v

Queue

definitions

v

Remote

queue

definitions

v

Remote

queue

manager

definitions

v

User

data,

including

configuration-dependent

security

information

v

Optional

bridge

resource

definitions

Registry

type

MQE_REGISTRY_LOCAL_REG_TYPE

The

type

of

registry

being

opened.

file

registry

and

private

registry

are

currently

supported.

A

private

registry

is

required

for

some

of

the

security

features.

For

a

file

registry

this

parameter

should

be

set

to:

com.ibm.mqe.registry.MQeFileSession

For

a

private

registry

it

should

be

set

to:

com.ibm.mqe.registry.MQePrivateSession

Aliases

can

be

used

to

represent

these

values.

Client

queue

managers

A

client

typically

runs

on

a

device

platform,

and

provides

a

queue

manager

that

can

be

used

by

applications

on

the

device.

It

can

open

many

connections

to

other

queue

managers.

A

server

usually

runs

for

long

periods

of

time,

but

clients

are

started

and

stopped

on

demand

by

the

application

that

use

them.

If

multiple

applications

want

to

share

a

client

,

the

applications

must

coordinate

the

starting

and

stopping

of

the

client.

Example

-

starting

a

client

queue

manager:

Starting

a

client

queue

manager

involves:

1.

Ensuring

that

there

is

no

client

already

running.

(Only

one

client

is

allowed

per

Java

Virtual

Machine.)

2.

Adding

any

aliases

to

the

system

3.

Enabling

trace

if

required

4.

Starting

the

queue

manager

The

following

code

fragment

starts

a

client

queue

manager:

/*-------------------------------------*/

/*

Init

-

first

stage

setup

*/

/*-------------------------------------*/

public

void

init(

MQeFields

parms

)

throws

Exception

{

if

(

queueManager

!=

null

)

/*

One

queue

manager

at

a

time

*/

Designing

your

real

application

61

{

throw

new

Exception(

"Client

already

running"

);

}

sections

=

parms;

/*

Remember

startup

parms

*/

MQeQueueManagerUtils.processAlias(

sections

);

/*

set

any

alias

names

*/

//

Uncomment

the

following

line

to

start

trace

before

the

queue

manager

is

started

//

MQeQueueManagerUtils.traceOn("MQeClient

Trace",

null);

/*

Turn

trace

on

*/

/*

Display

the

startup

parameters

*/

System.out.println(

sections.dumpToString("#1\t=\t#2\r\n"));

/*

Start

the

queue

manage

*/

queueManager

=

MQeQueueManagerUtils.processQueueManager(

sections,

null);

}

Once

you

have

started

the

client,

you

can

obtain

a

reference

to

the

queue

manager

object

either

from

the

static

class

variable

MQeClient.queueManager

or

by

using

the

static

method

MQeQueueManager.getReference(queueManagerName).

The

following

code

fragment

loads

aliases

into

the

system:

public

static

void

processAlias(

MQeFields

sections

)

throws

Exception

{

if

(

sections.contains(

Section_Alias

)

)

/*

section

present

?

*/

{

/*

...

yes

*/

MQeFields

section

=

sections.getFields(

Section_Alias

);

Enumeration

keys

=

section.fields(

);

/*

get

all

the

keywords

*/

while

(

keys.hasMoreElements()

)

/*

as

long

as

there

are

keywords*/

{

String

key

=

(String)

keys.nextElement();

/*

get

the

Keyword

*/

MQe.alias(

key,

section.getAscii(

key

).trim(

)

);

/*

add

*/

}

}

}

Use

the

processAlias

method

to

add

each

alias

to

the

system.

MQe

and

applications

can

use

the

aliases

once

they

have

been

loaded.

Starting

a

queue

manager

involves:

1.

Instantiating

a

queue

manager.

The

name

of

the

queue

manager

class

to

load

is

specified

in

the

alias

QueueManager.

Use

the

MQe

class

loader

to

load

the

class

and

call

the

null

constructor.

2.

Activate

the

queue

manager.

Use

the

activate

method,

passing

the

MQeFields

object

representation

of

the

ini

file.

The

queue

manager

only

makes

use

of

the

[QueueManager]

and

[Registry]

sections

from

the

startup

parameters.

The

following

code

fragment

starts

a

queue

manager:

public

static

MQeQueueManager

processQueueManager(

MQeFields

sections,

Hashtable

ght

)

throws

Exception

{

/*

*/

MQeQueueManager

queueManager

=

null;

62

MQe

Application

Programming

/*

work

variable

*/

if

(

sections.contains(

Section_QueueManager)

)

/*

section

present

?

*/

{

/*

...

yes

*/

queueManager

=

(MQeQueueManager)

MQe.loader.loadObject(Section_QueueManager);

if

(

queueManager

!=

null

)

/*

is

there

a

Q

manager

?

*/

{

queueManager.setGlobalHashTable(

ght

);

queueManager.activate(

sections

);

/*

...

yes,

activate

*/

}

}

return(

queueManager

);

/*

return

the

alloated

mgr

*/

}

Example

-

MQePrivateClient:

MQePrivateClient

is

an

extension

of

MQeClient

with

the

addition

that

it

configures

the

queue

manager

and

registry

to

allow

for

secure

queues.

For

a

secure

client,

the

[Registry]

section

of

the

startup

parameters

is

extended

as

follows:

(ascii)LocalRegType=PrivateRegistry

Location

of

the

registry

(ascii)DirName=.\ExampleQM\PrivateRegistry

Adapter

on

which

registry

sits

(ascii)Adapter=RegistryAdapter

Network

address

of

certificate

authority

(ascii)CAIPAddrPort=9.20.7.219:8082

For

MQePrivateClient

and

MQePrivateServer

to

work,

the

startup

parameters

must

not

contain

CertReqPIN,

KeyRingPassword

and

CAIPAddrPort.

Server

queue

managers

A

server

usually

runs

on

a

server

platform.

A

server

can

run

server-side

applications

but

can

also

run

client-side

applications.

As

with

clients,

a

server

can

open

connections

to

many

other

queue

managers

on

both

servers

and

clients.

One

of

the

main

characteristics

that

differentiate

a

server

from

a

client

is

that

it

can

handle

many

concurrent

incoming

requests.

A

server

often

acts

as

an

entry

point

for

many

clients

into

an

MQe

network

.

MQe

provides

the

following

server

examples:

MQeServer

A

console

based

server.

MQePrivateServer

A

console

based

server

with

enhanced

security.

AwtMQeServer

A

graphical

front

end

to

MQeServer.

MQBridgeServer

In

addition

to

the

normal

MQe

server

functions,

this

server

can

send

and

receive

messages

to

and

from

other

members

of

the

MQ

family.

This

server

is

in

package

examples.mqbridge.queuemanager.

Example

-

MQeServer:

Designing

your

real

application

63

MQeServer

is

the

simplest

server

implementation.

When

two

queue

managers

communicate

with

each

other,

MQe

opens

a

connection

between

the

two

queue

managers.

The

connection

is

a

logical

entity

that

is

used

as

a

queue

manager

to

queue

manager

pipe.

Multiple

connections

may

be

open

at

any

time.

Server

queue

managers,

unlike

client

queue

managers,

can

have

one

or

more

listeners.

A

listener

waits

for

communications

from

other

queue

managers,

and

processes

incoming

requests,

usually

by

forwarding

them

to

its

owning

queue

manager.

Each

listener

has

a

specified

adapter

that

defines

the

protocol

of

incoming

communications,

and

also

specifies

any

extra

data

required.

You

create

listeners

on

the

local

queue

manager

using

administration

messages,

remotely

and

locally.

However,

a

remote

queue

manager

must

have

a

listener

in

order

to

receive

a

message.

A

listener

that

has

just

been

created

by

sending

administration

messages

to

the

queue

manager

does

not

then

start.

To

start

it

you

can

send

an

administration

message

explicitly

to

start

the

listener,

or

you

can

restart

the

queue

manager.

(However,

listeners

are

persistent

in

the

registry.

This

means

that,

once

created,

listeners

that

exist

at

queue

manager

startup

are

started

automatically).

This

example

shows

how

to

create

and

start

a

listener

using

administration

messages:

String

listenerName

=

"MyListener";

String

listenAdapter

=

"com.ibm.mqe.adapters.MQeTcpipHttpAdapter";

int

listenPort

=

1881;

int

channelTimeout

=

300000;

int

maxChannels

=

0;

MQeCommunicationsListenerAdminMsg

msg

=

new

MQeCommunicationsListenerAdminMsg();

msg.setName(listenerName);

msg.create(listenAdapter,

listenPort,

channelTimeout,

maxChannels);

.

.

.

//In

order

to

start

the

listener

use

the

start

action

MQeCommunicationsListenerAdminMsg

msg

=

new

MQeCommunicationsListenerAdminMsg();

msg.setName(listenerName);

msg.start();

.

.

When

the

listener

is

started,

the

server

is

ready

to

accept

network

requests.

When

the

server

is

deactivated:

1.

The

listener

is

stopped,

preventing

any

new

incoming

requests

2.

The

queue

manager

is

closed

Example

-

MQePrivateServer:

64

MQe

Application

Programming

MQePrivateServer

is

an

extension

of

MQeServer

with

the

addition

that

it

configures

the

queue

manager

and

registry

to

allow

for

secure

queues.

Environment

relationship

This

topic

describes

some

requirements

for

running

Java

and

C

implementations

of

MQe.

Java

code

The

java

queue

manager

runs

inside

an

instance

of

a

JVM.

You

can

have

only

one

queue

manager

per

JVM.

However,

you

can

invoke

multiple

instances

of

the

JVM.

Each

of

these

queue

managers

must

have

a

unique

name.

Java

applications

run

inside

the

same

JVM

as

the

queue

manager

they

use.

C

code

You

can

run

only

one

queue

manager

within

a

native

C

process.

You

need

multiple

processes

for

multiple

queue

managers.

Each

of

these

queue

managers

must

have

a

unique

name.

Stopping

queue

managers

Overview

of

stopping

queue

managers

in

Java

and

C

Stopping

a

queue

manager

in

Java

There

are

2

ways

to

close

down

a

QueueManager,

and

one

of

the

close

methods

should

be

called

by

MQe

applications

when

they

have

finished

using

the

queue

manager:

v

closeQuiese

v

closeImmediate

closeQuiesce:

Stopping

a

queue

manager

using

the

closeQuiesce

method

This

method

closes

a

Queue

Manager,

specifying

a

delay

to

allow

existing

internal

processes

to

finish

normally.

Note

that

this

delay

is

only

implemented

as

a

series

of

100ms

pause

and

retry

cycles.

Calling

this

method

prevents

any

new

activity,

such

as

transmitting

a

message,

from

being

started,

but

allows

activities

already

in

progress

to

complete.

The

delay

is

a

suggestion

only,

and

various

JVM

dependant

thread

scheduling

factors

could

result

in

the

delay

being

greater.

If

the

activities

currently

in

progress

finish

sooner,

then

the

method

returns

before

the

expiry

of

the

quiesce

duration.

If

the

queue

has

not

closed

at

the

expiry

of

this

period,

it

is

forced

to

close.

After

this

method

has

been

called,

no

more

event

notifications

will

be

dispatched

to

message

listeners.

It

is

conceivable

that

messages

may

complete

their

arrival

after

this

method

has

been

called

(and

before

it

finishes).

Such

messages

will

not

be

notified.

Application

programmers

should

be

aware

of

this,

and

not

assume

that

every

message

arrival

will

generate

a

message

event.

MQeQueueManager

qmgr

=

new

MQeQueueManager();

MQeMsgObject

msgObj

=

null;

try

{

Designing

your

real

application

65

qmgr.putMessage(null,

"MyQueue",

msgObj,

null,

0);

}

catch

(MQeException

e)

{//

Handle

the

exception

here

}

qmgr.closeQuiesce(3000);

//

close

QMgr

closeImmediate:

Stopping

a

queue

manager

using

the

closeImmediate

method

This

closes

Queue

Manager

immediately.

After

this

method

has

been

called,

no

more

event

notifications

are

dispatched

to

message

listeners.

Messages

might

complete

their

arrival

after

this

method

has

been

called,

and

before

it

finishes.

Such

messages

are

not

notified,

and

therefore

message

arrival

does

not

generate

a

message

event.

MQeQueueManager

qmgr

=

new

MQeQueueManager();

MQeMsgObject

msgObj

=

null;

try

{

qmgr.putMessage(null,

"MyQueue",

msgObj,

null,

0);

}

catch

(MQeException

e)

{//

Handle

the

exception

here

}

qmgr.closeImmediate();

//

close

QMgr

Stopping

a

queue

manager

in

C

Following

the

removal

of

the

message

from

the

queue,

you

can

stop

and

free

the

queue

manager.

You

can

also

free

the

strings

that

were

created.

Finally,

terminate

the

session:

(void)mqeQueueManager_stop(hQueueManager,&exceptBlock);

(void)mqeQueueManager_free(hQueueManager,&exceptBlock);

/*

Lets

do

some

clean

up

*/

(void)mqeString_free(hFieldLabel,&exceptBlock);

(void)mqeString_free(hLocalQMName,&exceptBlock);

(void)mqeString_free(hLocalQueueName,&exceptBlock);

(void)mqeString_free(hQueueStore,&exceptBlock);

(void)mqeString_free(hRegistryDir,&exceptBlock);

(void)mqeSession_terminate(&exceptBlock);

Deleting

queue

managers

This

section

details

how

to

delete

a

queue

manager

in

Java

and

C.

Java

Steps

required

to

delete

queue

managers

in

Java

The

basic

steps

required

to

delete

a

queue

manager

are:

1.

Use

the

administration

interface

to

delete

any

definitions

2.

Create

and

activate

an

instance

of

MQeQueueManagerConfigure

3.

Delete

the

standard

queue

and

queue

manager

definitions

4.

Close

the

MQeQueueManagerConfigure

instance

When

these

steps

are

complete,

the

queue

manager

is

deleted

and

can

no

longer

be

run.

The

queue

definitions

are

deleted,

but

the

queues

themselves

are

not

deleted.

Any

messages

remaining

on

the

queues

are

inaccessible.

66

MQe

Application

Programming

Note:

If

there

are

messages

on

the

queues

they

are

not

automatically

deleted.

Your

application

programs

should

include

code

to

check

for,

and

handle,

remaining

messages

before

deleting

the

queue

manager.

1.

Delete

any

definitions

You

can

use

MQeQueueManagerConfigure

to

delete

the

standard

queues

that

you

created

with

it.

Use

the

administration

interface

to

delete

any

other

queues

before

you

call

MQeQueueManagerConfigure.

2.

Create

and

activate

an

instance

of

MQeQueueManagerConfigure

This

process

is

the

same

as

when

creating

a

queue

manager.

3.

Delete

the

standard

queue

and

queue

manager

definitions

Delete

the

default

queues

by

calling:

v

deleteAdminQueueDefinition()

to

delete

the

administration

queue

v

deleteAdminReplyQueueDefinition()

to

delete

the

administration

reply

queue

v

deleteDeadLetterQueueDefinition()

to

delete

the

dead

letter

queue

v

deleteSystemQueueDefinition()

to

delete

the

default

local

queue

These

methods

work

successfully

even

if

the

queues

do

not

exist.

Delete

the

queue

manager

definition

by

calling

deleteQueueManagerDefinition()

import

com.ibm.mqe.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

...

//

Establish

any

aliases

defined

by

the

.ini

file

MQeQueueManagerUtils.processAlias(parms);

qmConfig

=

new

MQeQueueManagerConfigure(

parms

);

qmConfig.deleteAdminQueueDefinition();

qmConfig.deleteAdminReplyQueueDefinition();

qmConfig.deleteDeadLetterQueueDefinition();

qmConfig.deleteSystemQueueDefinition();

qmConfig.deleteQueueManagerDefinition();

qmconfig.close();

}

catch

(Exception

e)

{

...

}

You

can

delete

the

default

queue

and

queue

manager

definitions

together

by

calling

deleteStandardQMDefinitions().

This

method

is

provided

for

convenience

and

is

equivalent

to:

deleteDeadLetterQueueDefinition();

deleteSystemQueueDefinition();

deleteAdminQueueDefinition();

deleteAdminReplyQueueDefinition();

deleteQueueManagerDefinition();

Designing

your

real

application

67

4.

Close

the

MQeQueueManagerConfigure

instance

When

you

have

deleted

the

queue

and

queue

manager

definitions,

you

can

close

the

MQeQueueManagerConfigure

instance.

The

complete

example

looks

like

this:

import

com.ibm.mqe.*;

import

examples.queuemanager.MQeQueueManagerUtils;

try

{

MQeQueueManagerConfigure

qmConfig;

MQeFields

parms

=

new

MQeFields();

//

initialize

the

parameters

...

//

Establish

any

aliases

defined

by

the

.ini

file

MQeQueueManagerUtils.processAlias(parms);

qmConfig

=

new

MQeQueueManagerConfigure(

parms

);

qmConfig.deleteStandardQMDefinitions();

qmconfig.close();

}

catch

(Exception

e)

{

...

}

C

Steps

required

to

delete

queue

managers

in

C

The

steps

in

deleting

a

queue

manager

are:

1.

Remove

all

Connection

Definitions.

2.

Remove

all

Queues,

including

any

″system″

queues,

for

example

the

dead

letter

queue.

Ensure

all

queues

are

empty.

3.

Remove

the

queue

manager.

You

require

an

administrator

to

perform

these

functions.

We

also

recommend

stopping

the

queue

manager

first.

Note:

Deleting

the

queue

mananger

will

free

the

queue

manager

handle

for

you.

MQeAdministratorHndl

hAdmin:

/*

Create

the

new

administrator

based

on

the

exisitng

QM

Handle

*/

rc

=

mqeAdministrator_new(&exceptBlock,

&hAdmin,hQueueManager);

if

(MQERETURN_OK

==

rc)

{

if

(MQERETURN_OK

==

rc)

{

/*

delete

any

conncetion

definitins

for

example

:*/

rc

=

mqeAdministrator_Connection_delete(hAdmin,

&exceptBlock,

hRemoteQM);

}

/*

delete

all

the

local

queues

here

-

remember

to

do

"special*/

/*queues"

for

example

...

*/

if

(MQERETURN_OK

==

rc)

{

rc

=

mqeAdministrator_LocalQueue_delete(hAdmin,

&exceptBlock,

MQE_DEADLETTER_QUEUE_NAME,

hLocalQMName);

}

/*

Finally

delete

the

queue

manager

*/

if

(MQERETURN_OK

==

rc)

{

68

MQe

Application

Programming

rc

=

mqeAdministrator_QueueManager_delete(hAdmin,

&exceptBlock);

}

/*

free

of

the

amdinsitrator

*/

(void)mqeAdministrator_free(hAdmin,

&exceptBlock);

}

Messaging

lifecycle

Description

of

the

series

of

states

through

which

a

message

progresses

when

it

is

put

to

a

queue

When

a

message

is

put

to

a

queue

it

progresses

through

a

series

of

states.

This

section

describes

these

states

and

related

commands

or

events

under

the

following

headings:

Message

states

Most

queue

types

hold

messages

in

a

persistent

store,

for

example

a

hard

disk.

While

in

the

store,

the

state

of

the

message

varies

as

it

is

transferred

into

and

out

of

the

store.

As

shown

in

Figure

6:

In

this

diagram,

″start″

and

″deleted″

are

not

actual

message

states.

They

are

the

entry

and

exit

points

of

the

state

model.

The

message

states

are:

start

putUnconfirmed

Deleted

browseGetUnconfirmed

lockedForBrowse

unlocked

putMessage
(with confirmId>0)

confirmPutMessage

getUnconfirmed

PutMessage
(with confirmId=0)

undo

unlockMessage

undo

browseWithLock

undo

getMessage
(with confirmId>0)

getMessage

deleteMessage

deleteMessage

getMessage
(with confirmId=0)

getMessage
(with confirmId>0)

confirmGetMessage

confirmGetMessage

undo

Figure

6.

Stored

message

state

flow

Designing

your

real

application

69

Put

unConfirmed

A

message

is

put

to

the

message

store

of

a

queue

with

a

confirmID.

The

message

is

effectively

hidden

from

all

actions

except

confirmPutMessage

or

undo.

Unlocked

A

message

has

been

put

to

a

queue

and

is

available

to

all

operations.

Locked

for

Browse

A

browse

with

lock

retrieves

messages.

Messages

are

hidden

from

all

queries

except

getMessage,

unlock,

delete,

undo,

and

unlockMessage.

A

lockID

is

returned

from

the

browse

operation.

You

must

supply

this

lockID

to

all

other

operations.

Get

Unconfirmed

A

getMessage

call

has

been

made

with

a

confirmID,

but

the

get

has

not

been

confirmed.

The

message

is

invisible

to

all

queries

except

confirmGetMessage,

confirm,

and

undo.

Each

of

these

actions

requires

the

inclusion

of

the

matching

confirmID

to

confirm

the

get.

Browse

Get

Unconfirmed

A

message

got

while

it

is

locked

for

browse.

You

can

do

this

only

by

passing

the

correct

lockID

to

the

getMessage

function.

On

an

asynchronous

remote

queue,

other

states

exist

where

a

message

is

being

transmitted

to

another

machine.

These

states

are

entered

as

″unlocked″,

that

is

only

confirmed

messages

are

transmitted.

Message

events

Messages

pass

from

one

state

to

another

as

a

result

of

an

event.

These

events

are

typically

generated

by

an

API

call.

The

possible

message

events,

as

shown

in

Figure

6

on

page

69,

are:

putMessage

Places

a

message

on

a

queue.

This

does

not

require

a

confirmID.

getMessage

Retrieves

a

message

from

a

queue.

This

does

not

require

a

confirmID.

putMessage

with

confirmId>0

Places

a

message

on

a

queue.

This

requires

a

confirmID.

However,

messages

do

not

arrive

at

the

receiving

end

in

the

order

of

sending,

but

in

the

order

of

confirmation.

confirmPutMessage

A

confirm

for

an

earlier

putMessage

with

a

confirmID>0.

getMessage

with

confirmId>0

Retrieves

message

from

a

queue.

This

requires

a

confirmID.

confirmGetMessage

A

confirm

for

an

earlier

getMessage

with

a

confirmID>0.

browseWithLock

Browses

messages

and

lock

those

that

match.

Prevents

messages

from

changing

while

browse

is

in

operation.

unlockMessage

Unlocks

a

message

locked

with

a

browsewithLock

command.

undo

Unlocks

a

message

locked

with

a

browse,

undoes

a

getMessage

with

a

confirmID>0,

or

undoes

a

putMessage

with

a

confirmID>0.

70

MQe

Application

Programming

deleteMessage

Removes

a

message

from

a

queue.

Message

index

fields

Due

to

memory

size

constraints,

complete

messages

are

not

held

in

memory,

but,

to

enable

faster

message

searching,

MQe

holds

specific

fields

from

each

message

in

a

message

index.

The

fields

that

are

held

in

the

index

are:

Java

In

Java,

the

following

fields

are

held

in

the

index:

UniqueID

MQe.Msg_OriginQMgr

+

MQe.Msg_Time

MessageID

MQe.Msg_ID

CorrelationID

MQe.Msg_CorrelID

Priority

MQe.Msg_Priority

C

In

C,

the

following

fields

are

held

in

the

index:

UniqueID

MQE_MSG_ORIGIN_QMGR

+

MQE_MSG_TIME

MessageID

MQE_MSG_MSGID

CorrelationID

MQE_MSG_CORRELID

Priority

MQE_MSG_PRIORITY

Providing

these

fields

in

a

filter

makes

searching

more

efficient,

since

MQe

may

not

have

to

load

all

the

available

messages

into

memory.

Messaging

operations

The

following

table

shows

which

types

of

messaging

operations

are

valid

on

local

queues,

synchronous

remote

queues,

and

asynchronous

remote

queues.

Note

that

the

Listen

and

Wait

operations

are

supported

in

Java

only.

Table

4.

Messaging

operations

on

MQe

queues

Operation

Local

queue

Synchronous

remote

queue

Asynchronous

remote

queue

Put

Yes

Yes

Yes

Get

Yes

Yes

No

Browse

Yes

Yes

No

Delete

Yes

Yes

No

Listen

Yes

No

No

Wait

Yes

Yes

No

Note:

Designing

your

real

application

71

1.

The

synchronous

remote

wait

operation

is

implemented

through

a

poll

of

the

remote

queue,

so

the

actual

wait

time

is

a

multiple

of

the

poll

time

2.

The

MQ

bridge

supplied

with

MQe

only

supports

an

assured

or

unassured

put,

unassured

get,

and

unassured

browse

(without

lock).

Put

This

operation

places

specified

messages

on

a

specified

queue.

The

queue

can

belong

to

a

local

or

remote

queue

manager.

Puts

to

remote

queues

can

occur

immediately,

or

at

a

later

time,

depending

on

how

the

remote

queue

is

defined

on

the

local

queue

manager.

If

a

remote

queue

is

defined

as

synchronous,

message

transmission

occurs

immediately.

If

a

remote

queue

is

defined

as

asynchronous,

the

message

is

stored

within

the

local

queue

manager.

The

message

remains

there

until

it

is

transmitted.

The

put

message

call

may

finish

before

the

message

is

put.

Refer

to

“Message

delivery”

on

page

82

for

more

information.

Note:

In

Java,

if

the

local

queue

manager

does

not

hold

a

definition

of

the

remote

queue

then

it

attempts

to

contact

the

queue

synchronously.

This

does

not

apply

to

the

C

codebase.

Assured

delivery

depends

on

the

value

of

the

confirmID

parameter.

Passing

a

non-zero

value

transmits

the

message

as

normal,

but

the

message

is

locked

on

the

target

queue

until

a

subsequent

confirm

is

received.

Passing

a

value

of

zero

transmits

the

message

without

the

need

for

a

subsequent

confirm.

However,

message

delivery

is

not

assured.

Refer

to

“Message

delivery”

on

page

82,

for

more

information

on

assured

and

non-assured

message

delivery.

You

can

protect

a

message

using

message-level

security.

Get

This

operation

returns

an

available

message

from

a

specified

queue

and

removes

the

message

from

the

queue.

The

queue

can

belong

to

a

local

or

remote

MQe

queue

manager,

but

cannot

be

an

asynchronous

remote

queue.

If

you

do

not

specify

a

filter,

the

first

available

message

is

returned.

If

you

do

specify

a

filter,

the

first

available

message

that

matches

the

filter

is

returned.

Including

a

valid

lockID

in

the

message

filter

allows

you

to

get

messages

that

have

been

locked

by

a

previous

browse

operation.

If

no

message

is

available,

the

get

operation

returns

an

error.

Using

assured

message

delivery

depends

on

the

value

of

the

confirmID

parameter.

Passing

a

non-zero

value

returns

the

message

as

normal.

However,

the

message

is

locked

and

is

not

removed

from

the

target

queue

until

it

receives

a

subsequent

confirm.

You

can

issue

a

confirm

using

the

confirmGetMessage()

method.

However,

message

delivery

is

not

assured.

Refer

to

“Message

delivery”

on

page

82,

for

more

information

on

assured

and

non-assured

message

delivery.

Delete

This

method

deletes

a

message

from

a

queue.

It

does

not

return

the

message

to

the

application

that

called

it.

You

must

specify

the

UniqueID

and

you

can

delete

only

one

message

per

operation.

72

MQe

Application

Programming

The

queue

can

belong

to

a

local

or

synchronous

remote

MQe

queue

manager.

Including

a

valid

lockID

in

the

message

filter

allows

you

to

delete

messages

that

have

been

locked

by

a

previous

operation,

for

example

browse.

If

a

message

is

not

available,

the

application

returns

an

error.

/*

Example

for

deleting

a

message

*/

MQeFieldsHndl

hMsg,hFilter;

/*

create

the

new

message

*/

rc

=

mqeFields_new(&exceptBlock,

&hMsg);

if

(MQERETURN_OK

==

rc)

{

/*

add

application

fields

here

*/

/*

...

*/

/*

put

message

to

a

queue

*/

rc

=

mqeQueueManager_putMessage(hQueueManager,

&exceptBlock,

hQMName,

hQueueName,

hMsg,

NULL,0);

if

(MQERETURN_OK

==

rc)

{

/*

Delete

requires

a

filter

-

this

can

most

easily

be*/

/*

found

from

the

UID

fields

of

the

message*/

rc

=

mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,

&hFilter);

}

}

/*

some

time

later

want

to

delete

the

message

-

use

the

esatblished

filter

*/

rc

=

mqeQueueManager_deleteMessage(hQueueManager,

&exceptBlock,

hQMName,

hQueueName,

hFilter);

Browse

You

can

browse

queues

for

messages

using

a

filter,

for

example

message

ID

or

priority

.

Browsing

retrieves

all

the

messages

that

match

the

filter,

but

leaves

them

on

the

queue.

The

queue

can

belong

to

a

local

or

remote

queue

manager.

However,

the

implementation

of

the

browse

command

is

codebase

specific.

MQe

also

supports

Browsing

under

lock.

This

allows

you

to

lock

the

matching

messages

on

the

queue.

You

can

lock

messages

individually,

or

in

groups

identified

through

a

filter,

and

the

locking

operation

returns

a

lockID.

Use

the

lockID

to

get

or

delete

messages.

An

option

on

browse

allows

you

to

return

either

the

full

messages,

or

only

the

UniqueIDs.

MQeVectorHndl

hListMsgs;

rc

=

mqeQueueManager_browseMessages(hQueueManager,

&exceptBlock,

&hListMsgs,

hQMName,

hQueueName,

hFilter,

NULL,MQE_FALSE);

if

(MQERETURN_OK

==

rc)

{

Designing

your

real

application

73

/*

process

list

using

mqeVector_*

apis

*/

/*

free

off

the

vector

*/

rc

=

mqeVector_free(hListMsgs,&exceptBlock);

}

Returning

an

entire

collection

of

messsages

can

be

expensive

in

terms

of

system

resources.

Setting

the

justUID

parameter

to

true

and

returns

the

uniqueID

of

each

message

that

matches

the

filter

only.

The

messages

returned

in

the

collection

are

still

visible

to

other

MQe

APIs.

Therefore,

when

performing

subsequent

operations

on

the

messages

contained

in

the

enumeration,

the

application

must

be

aware

that

another

application

can

process

these

messages

once

the

collection

is

returned.

To

prevent

other

applications

from

processing

messages,

use

the

browseMessagesAndLock

method

to

lock

messages

contained

in

the

enumeration.

confirmPut

This

method

performs

the

confirmation

of

a

previously

successful

putMessage()

operation.

confirmGet

This

method

confirms

the

successful

receipt

of

a

message

retrieved

from

a

queue

manager

by

a

previous

getMessage()

operation.

The

message

remains

locked

on

the

target

queue

until

it

receives

a

confirm

flow.

Listen

Applications

can

listen

for

MQe

message

events,

again

with

an

optional

filter.

However,

in

order

to

do

this,

you

must

add

a

listener

to

a

queue

manager.

Listeners

are

notified

when

messages

arrive

on

a

queue.

Wait

This

method

implements

message

polling.

It

allows

you

to

specify

a

time

for

messages

to

arrive

on

a

queue.

Java

implements

a

helper

function

for

this.

The

C

codebase,

as

it

is

non-threaded,

must

implement

a

function

in

application

layer

code.

The

following

example

demonstrates

the

Wait

method:

Java

Message

polling

uses

the

waitForMessage()

method.

This

command

issues

a

getMessage()

command

to

the

remote

queue

at

regular

intervals.

As

soon

as

a

message

that

matches

the

supplied

filter

becomes

available,

it

is

returned

to

the

calling

application:

qmgr.waitForMessage("RemoteQMgr",

"RemoteQueue",

filter,

null,

0,

60000);

The

waitForMessage()

method

polls

the

remote

queue

for

the

length

of

time

specified

in

its

final

parameter.

The

time

is

specified

in

milliseconds.

Therefore,

in

the

example,

polling

lasts

for

6

seconds.

This

blocks

the

thread

on

which

the

command

is

running

for

6

seconds,

unless

a

message

is

returned

earlier.

Message

polling

works

on

both

local

and

remote

queues.

74

MQe

Application

Programming

Note:

Using

this

technique

sends

multiple

requests

over

the

network.

Queue

ordering

Overview

of

the

ordering

of

messages

on

a

queue

The

order

of

messages

on

a

queue

is

primarily

determined

by

their

priority.

Message

priority

ranges

from

9

(highest)

to

0

(lowest).

Messages

with

the

same

priority

value

are

ordered

by

the

time

at

which

they

arrive

on

the

queue,

with

messages

that

have

been

on

the

queue

for

the

longest

being

at

the

head

of

the

priority

group.

Reading

messages

on

a

queue

If

you

issue

a

getMessage

command

when

a

queue

is

empty,

the

queue

throws

a

Java

codebase

Except_Q_NoMatchingMsg

exception

or

returns

a

C

codebase

MQERETURN_QUEUE_ERROR,

MQEREASON_NO_MATCHING_MSG.

This

allows

you

to

create

an

application

that

reads

all

the

available

messages

on

a

queue.

Java

Encasing

the

getMessage()

call

inside

a

try..catch

block

allows

you

to

test

the

code

of

the

resulting

exception.

This

is

done

using

the

code()

method

of

the

MQeException

class.

You

can

compare

the

result

from

the

code()

method

with

a

list

of

exception

constants

published

by

the

MQe

class.

If

the

exception

is

not

of

type

Except_Q_NoMatchingMsg,

throw

the

exception

again.

The

following

code

shows

this

technique:

try

{

while(true)

{

/*

keep

getting

messages

until

an

exception

is

thrown

*/

MQeMsgObject

msg

=

qmgr.getMessage(

"myQMgr",

"myQueue",

null,

null,

0

);

processMessage(msg);

}

}

catch

(Exception

e)

{

if

(

e.code()

!=

MQe.Except_Q_NoMatchingMsg

)

throw

e;

}

Therefore,

you

can

read

all

messages

from

a

queue

by

iteratively

getting

messages

until

MQe.Except_Q_NoMatchingMsg

is

returned.

C

You

can

read

all

messages

from

a

queue

by

looping,

until

the

return

code

is

MQERETURN_QUEUE_WARNING

and

the

reason

code

is

MQEREASON_NO_MATCHING_MSG.

Browse

and

Lock

Performing

BrowseAndLock

on

a

group

of

messages

allows

an

application

to

ensure

that

no

other

application

is

able

to

process

messages

when

they

are

locked.

The

messages

remain

locked

until

that

application

unlocks

them.

No

other

application

can

unlock

the

messages.

Any

messages

that

arrive

on

the

queue

after

the

BrowseAndLock

operation

are

not

locked.

Designing

your

real

application

75

An

application

can

perform

either

a

get

or

a

delete

operation

on

the

messages

to

remove

them

from

the

queue.

To

do

this,

the

application

must

supply

the

lockID

that

is

returned

with

the

enumeration

of

messages.

Specifying

the

lockID

allows

applications

to

work

with

locked

messages

without

having

to

unlock

them

first.

Instead

of

removing

the

messages

from

the

queue,

it

is

also

possible

just

to

unlock

them.

This

makes

them

visible

once

again

to

all

MQe

applications.

You

can

achieve

this

by

using

the

unlockMessage

method.

Note:

See

the

MQe

Configuration

Guide

for

special

considerations

with

MQ

bridge

queues.

Example

-

Java:

Example

of

BrowseAndLock

(Java)

The

MQeEnumeration

object

contains

all

the

messages

that

match

the

filter

supplied

to

the

browse.

MQeEnumeration

can

be

used

in

the

same

manner

as

the

standard

Java

Enumeration.

You

can

enumerate

all

the

browsed

messages

as

follows:

Note:

You

must

supply

a

confirmID,

in

case

the

action

of

locating

messages

fails.

It

must

be

possible

to

undo

the

location,

and

this

action

requires

the

confirmID.

long

confirmID

=

MQe.uniqueValue();

MQeEnumeration

msgEnum

=

qmgr.browseMessagesAndLock(

null,

"MyQueue",

null,

null,

confirmID,

false);

while(

msgEnum.hasMoreElements()

)

{

MQeMsgObject

msg

=

(MQeMsgObject)msgEnum.nextElement();

System.out.println(

"Message

from

queue

manager:

"

+

msg.getAscii(

MQe.Msg_OriginQMgr

)

);

}

The

following

code

performs

a

delete

on

all

the

messages

returned

in

the

enumeration.

The

message’s

UniqueID

and

lockID

are

used

as

the

filter

on

the

delete

operation:

while(msgEnum.hasMoreElements())

{

MQeMsgObject

msg

=

(MQeMsgObject)

msgEnum.getNextMessage(null,0);

processMessage(msg);

MQeFields

filter

=

msg.getMsgUIDFields();

filter.putLong(MQe.Msg_LockID,

msgEnum.getLockId());

qmgr.deleteMessage(null,

"MyQueue",

filter);

}

Example

-

C:

Example

of

BrowseAndLock

(C)

76

MQe

Application

Programming

The

C

codebase

example

gets

the

actual

message.

Note

the

additional

parameters,

a

confirmID

in

case

the

operation

needs

undoing,

and

the

lockID.

MQeVectorHndl

hMessages;

MQEINT64

lockID,

confirmID=42;

rc

=

mqeQueueManager_browseAndLock(hQueueManager,

&exceptBlock,

&hmessages,

&lockID,

hQueueManagerName,

hQueueName,

hFilter,

NULL,

/*No

Attribute*/

confirmID,

MQE_TRUE);

/*Just

UIDs*/

/*process

vector*/

MQeFieldsHndl

hGetFilter;

rc

=

mqeFields_new(&exceptBlock,

&hGetFilter);

if

(MQERETURN_OK

==

rc){

rc

=

mqeFields_putInt64(&hGetFilter,

&exceptBlock,

MQE_MSG_LOCKID,

lockID);

if

(MQERETURN_OK

==

rc){

rc

=

mqeQueueManager_getMessage(&hQueueManager,

&exceptBlock,

hQueueManagerName,

hQueueName,

hGetFilter,

&hMsg);

}

Message

listeners

Note:

This

section

does

not

apply

to

the

C

codebase.

MQe

allows

an

application

to

listen

for

events

occurring

on

queues.

The

application

is

able

to

specify

message

filters

to

identify

the

messages

in

which

it

is

interested,

as

shown

in

the

following

Java

example:

/*

Create

a

filter

for

"Order"

messages

of

priority

7

*/

MQeFields

filter

=

new

MQeFields();

filter.putAscii(

"MsgType",

"Order"

);

filter.putByte(

MQe.Msg_Priority,

(byte)7

);

/*

activate

a

listener

on

"MyQueue"

*/

qmgr.addMessageListener(

this,

"MyQueue",

filter

);

The

following

parameters

are

passed

to

the

addMessageListener()

method:

v

The

name

of

the

queue

on

which

to

listen

for

message

operations

v

A

callback

object

that

implements

MQeMessageListenerInterface

v

An

MQeFields

object

containing

a

message

filter

When

a

message

arrives

on

a

queue

with

a

listener

attached,

the

queue

manager

calls

the

callback

object

that

it

was

given

when

the

message

listener

was

created.

The

following

is

an

example

of

the

way

in

which

an

application

would

normally

handle

message

events

in

Java:

public

void

messageArrived(MQeMessageEvent

msgEvent)

{

String

queueName

=msgEvent.getQueueName();

if

(queueName.equals("MyQueue"))

{

try

Designing

your

real

application

77

{

/*get

message

from

queue

*/

MQeMsgObject

msg

=qmgr.getMessage(null,queueName,

msgEvent.getMsgFields(),null,0);

processMessage(msg

);

}

catch

(MQeException

e)

{

...

}

}

}

messageArrived()

is

a

method

implemented

in

MQeMessageListenerInterface.

The

msgEvent

parameter

contains

information

about

the

message,

including:

v

The

name

of

the

queue

on

which

the

message

arrived

v

The

UID

of

the

message

v

The

messageID

v

The

correlationID

v

Message

priority

Message

filters

only

work

on

local

queues.

A

separate

technique

known

as

polling

allows

messages

to

be

obtained

as

soon

as

they

arrive

on

remote

queues.

Message

polling

Note:

This

section

does

not

apply

to

the

C

codebase.

Message

polling

uses

the

waitForMessage()

method.

This

command

issues

a

getMessage()

command

to

the

remote

queue

at

regular

intervals.

As

soon

as

a

message

that

matches

the

supplied

filter

becomes

available,

it

is

returned

to

the

calling

application.

A

wait

for

message

call

typically

looks

like

this:

qmgr.waitForMessage(

"RemoteQMgr",

"RemoteQueue",

filter,

null,

0,

60000

);

The

waitForMessage()

method

polls

the

remote

queue

for

the

length

of

time

specified

in

its

final

parameter.

The

time

is

specified

in

milliseconds,

so

in

the

example

above,

the

polling

lasts

for

60

seconds.

The

thread

on

which

the

command

is

executing

is

blocked

for

this

length

of

time,

unless

a

message

is

returned

earlier.

Message

polling

works

on

both

local

and

remote

queues.

Note:

Use

of

this

technique

results

in

multiple

requests

being

sent

over

the

network.

Trigger

transmission

This

method

attempts

to

transmit

pending

messages.

Only

unlocked

messages

are

transmitted.

Asynchronous

remote

queues

and

home

server

queues

respond

to

trigger

transmission

processing.

Put

messages

with

no

confirmID

or

put

messages

and

confirm

them

before

calling

this

method.

Only

messages

that

are

fully

’put’

can

be

transmitted.

78

MQe

Application

Programming

Trigger

transmission

rules

There

are

a

number

of

rules,

which

can

control

the

trigger

transmission

processing,

if

processing

occurs.

See

the

Rules

topic

for

more

information.

rc

=

mqeQueueManager_triggerTransmission(hQueueManager,&exceptBlock);

Servlet

Overview

of

servlet

queue

managers,

which

run

inside

a

Web

server

As

well

as

running

as

a

standalone

server,

a

queue

manager

can

be

encapsulated

in

a

servlet

to

run

inside

a

Web

server

.

A

servlet

queue

manager

has

nearly

the

same

capabilities

as

a

server

queue

manager.

MQeServlet

provides

an

example

implementation

of

a

servlet.

As

with

the

server,

servlets

use

ini

files

to

hold

start

up

parameters.

A

servlet

uses

many

of

the

same

MQe

components

as

the

server.

The

main

component

not

required

in

a

servlet

is

the

connection

listener,

this

function

is

handled

by

the

Web

server

itself.

Web

servers

only

handle

http

data

streams

so

any

MQe

client

that

wishes

to

communicate

with

an

MQe

servlet

must

use

the

http

adapter

(com.ibm.mqe.adapters.MQeTcpipHttpAdaper).

When

you

configure

connections

to

queue

managers

running

in

servlets,

you

must

specify

the

name

of

the

servlet

in

the

parameters

field

of

the

connection.

Example

-

configuring

a

connection

on

a

servlet

The

following

definitions

configure

a

connection

on

servlet

/servlet/MQe

with

queue

manager

PayrollQM:

Connection

name

PayrollQM

Channel

com.ibm.mqe.communications.MQeChannel

Note:

The

com.ibm.mqe.MQeChannel

class

has

been

moved

and

is

now

known

as

com.ibm.mqe.communications.MQeChannel.

Any

references

to

the

old

class

name

in

administration

messages

is

replaced

automatically

with

the

new

class

name.

Channel

Adapter

com.ibm.mqe.adapters.MQeTcpipAdapter:192.168.0.10:80

Parameters

/servlet/MQe

Options

Example

-

configuring

a

connection

on

a

servlet

using

aliases

If

the

relevant

aliases

have

been

set

up,

you

can

configure

the

connection

as

follows:

Connection

name

PayrollQM

Channel

DefaultChannel

Adapter

Network:192.168.0.10:80

Designing

your

real

application

79

Parameters

/servlet/MQe

Options

Differences

between

server

and

servlet

startup

The

main

differences

compared

to

a

server

startup

are:

v

The

servlet

overrides

the

init

method

of

the

superclass.

This

method

is

called

by

the

Web

server

to

start

the

servlet.

Typically

this

occurs

when

the

first

request

for

the

servlet

arrives.

v

The

name

of

the

startup

ini

file

cannot

be

passed

in

from

the

command

line.

The

example

expects

to

obtain

the

name

using

the

servlet

method

getInitParameter()

which

takes

the

name

of

a

parameter

and

returns

a

value.

The

MQe

servlet

uses

a

Startup

parameter

that

it

expects

to

contain

an

ini

file

name.

The

mechanism

for

configuring

parameters

in

a

Web

server

is

Web

server

dependant.

v

A

listener

is

not

started

as

the

Web

server

handles

all

network

requests

on

behalf

of

the

servlet.

v

As

there

is

no

listener

a

mechanism

is

required

to

time-out

connections

that

have

been

inactive

for

longer

than

the

time-out

period.

A

simple

timer

class

MQeChannelTimer

is

instantiated

to

perform

this

function.

The

TimeInterval

value

is

the

only

parameter

used

from

the

[Listener]

section

of

the

ini

file.

Example

-

starting

a

servlet

The

MQe

servlet

extends

javax.servlet.http.HttpServlet

and

overrides

methods

for

starting,

stopping

and

handling

new

requests.

The

following

code

fragment

starts

a

servlet:

/**

*

Servlet

initialization......

*/

public

void

init(ServletConfig

sc)

throws

ServletException

{

//

Ensure

supers

constructor

is

called.

super.init(sc);

try

{

//

Get

the

the

server

startup

ini

file

String

startupIni;

if

((startupIni

=

getInitParameter("Startup"))

==

null)

startupIni

=

defaultStartupInifile;

//

Load

it

MQeFields

sections

=

MQeQueueManagerUtils.loadConfigFile(startupIni);

//

assign

any

class

aliases

MQeQueueManagerUtils.processAlias(sections);

//

Uncomment

the

following

line

to

start

trace

before

the

queue

//

manager

is

started

//

MQeQueueManagerUtils.traceOn("MQeServlet

Trace",

null);

//

Start

connection

manager

channelManager

=

MQeQueueManagerUtils.processChannelManager(sections);

//

check

for

any

pre-loaded

classes

loadTable

=

MQeQueueManagerUtils.processPreLoad(sections);

//

setup

and

activate

the

queue

manager

queueManager

=

MQeQueueManagerUtils.processQueueManager(sections,

80

MQe

Application

Programming

channelManager.getGlobalHashtable(

));

//

Start

ChannelTimer

(convert

time-out

from

secs

to

millisecs)

int

tI

=

sections.getFields(MQeQueueManagerUtils.Section_Listener).getInt

("TimeInterval");

long

timeInterval

=

1000

*

tI;

channelTimer

=

new

MQeChannelTimer(channelManager,

timeInterval);

//

Servlet

initialization

complete

mqe.trace(1300,

null);

}

catch

(Exception

e)

{

mqe.trace(1301,

e.toString());

throw

new

ServletException(e.toString());

}

}

Example

-

handling

incoming

requests

A

servlet

relies

on

the

Web

server

for

accepting

and

handling

incoming

requests.

Once

the

Web

server

has

decided

that

the

request

is

for

an

MQe

servlet,

it

passes

the

request

to

MQe

using

the

doPost()

method.

The

following

code

handles

this

request:

/**

*

Handle

POST......

*/

public

void

doPost(HttpServletRequest

request,

HttpServletResponse

response)

throws

IOException

{

//

any

request

to

process

?

if

(request

==

null)

throw

new

IOException("Invalid

request");

try

{

int

max_length_of_data

=

request.getContentLength();

//

data

length

byte[]

httpInData

=

new

byte[max_length_of_data];

//

allocate

data

area

ServletOutputStream

httpOut

=

response.getOutputStream();

//

output

stream

ServletInputStream

httpIn

=

request.getInputStream();

//

input

stream

//

get

the

request

read(

httpIn,

httpInData,

max_length_of_data);

//

process

the

request

byte[]

httpOutData

=

channelManager.process(null,

httpInData);

//

appears

to

be

an

error

in

that

content-

length

is

not

being

set

//

so

we

will

set

it

here

response.setContentLength(httpOutData.length);

response.setIntHeader("content-length",

httpOutData.length);

//

Pass

back

the

response

httpOut.write(httpOutData);

}

catch

(Exception

e)

{

Designing

your

real

application

81

//

pass

it

on

...

throw

new

IOException(

"Request

failed"

+

e

);

}

}

This

method:

1.

Reads

the

http

input

data

stream

into

a

byte

array.

The

input

data

stream

may

be

buffered

so

the

read()

method

is

used

to

ensure

that

the

entire

data

stream

is

read

before

continuing.

Note:

MQe

only

handles

requests

with

the

doPost()

method,

it

does

not

accept

requests

using

the

doGet()

method

2.

The

request

is

passed

to

MQe

through

a

connection

manager.

From

this

point,

all

processing

of

the

request

is

handled

by

core

MQe

classes

such

as

the

queue

manager.

3.

Once

MQe

has

completed

processing

the

request,

it

returns

the

result

wrapped

in

http

headers

as

a

byte

array.

The

byte

array

is

passed

to

the

Web

server

and

is

transmitted

back

to

the

client

that

originated

the

request.

Running

multiple

servlets

on

a

web

server

Web

servers

can

run

multiple

servlets.

It

is

possible

to

run

multiple

different

MQe

servlets

within

a

Web

server,

with

the

following

restrictions:

v

Each

servlet

must

have

a

unique

name

v

Only

one

queue

manager

is

allowed

per

servlet

v

Each

MQe

servlet

must

run

in

a

different

Java

Virtual

Machine

(JVM)

Message

delivery

Details

of

the

different

types

of

message

delivery

process

MQe

networks

are

composed

of

connected

queue

managers

and

can

include

gateways.

They

can

span

multiple

physical

networks

and

route

messages

between

them.

In

general

they

provide

synchronous

and

asynchronous

access

to

queues

with

a

programming

model

that

is

independent

of

queue

location.

Asynchronous

message

delivery

An

asynchronous

put

to

a

remote

queue

places

the

message

on

the

backing

store

associated

with

the

local

definition

of

that

queue,

along

with

its

destination

queue

manager

name,

queue

name,

and

the

compressor,

authenticator,

and

cryptor

characteristics

that

match

the

target

destination

of

the

message.

The

message’s

dump

method

is

called

as

it

is

saved

to

persistent

storage

in

a

secure

format

that

is

defined

by

its

destination

queue.

The

queue

manager

controls

message

delivery.

It

identifies

or

establishes

a

connection

with

appropriate

characteristics

to

the

queue

manager

for

the

next

hop,

then

creates

or

reuses

a

transporter

to

the

target

queue

manager.

The

transporter

dumps

the

message

and

transmits

the

resulting

byte

string.

The

target

queue

manager

and

queue

name

are

not

part

of

that

message

flow.

If

appropriate,

the

message

is

encrypted

and

compressed

over

the

connection.

If

it

has

reached

its

destination

queue

manager,

it

is

decrypted

and

decompressed.

A

new

message

is

created,

using

the

restore

method,

and

the

resultant

message

is

placed

on

the

destination

queue.

If

the

message

has

not

reached

its

destination

queue

manager,

it

is

decrypted

and

decompressed.

It

is

then

re-encrypted,

82

MQe

Application

Programming

compressed,

and

placed

on

a

store-and-forward

queue

for

onward

transmission,

if

a

store-and-forward

queue

exists.

In

both

cases

it

is

held

on

its

respective

queue

in

a

secure

format,

as

defined

by

its

destination

queue.

A

characteristic

of

asynchronous

message

delivery

is

that

messages

are

passed

to

the

queue

manager

at

intermediate

hops,

being

queued

for

onward

transmission.

Messages

are

taken

off

the

intermediate

queues

first

in

order

of

priority,

then

in

order

of

arrival

on

the

queue.

Duplicate

messages,

created

when

you

resend

a

message,

are

also

taken

off

the

intermediate

queues

in

the

order

of

their

arrival

on

the

queue.

Synchronous

message

delivery

Synchronous

message

delivery

is

similar

to

the

asynchronous

case

described

above,

but

the

queue

manager

involvement

in

intermediate

hops

takes

place

at

a

much

lower

level,

involving

the

transporter

and

connections.

An

end-to-end

connection

is

established,

using

the

adapters

defined

in

the

protocol

specifications

at

each

intermediate

node,

to

identify

the

next

link.

At

the

end

of

the

last

link,

where

no

further

relevant

file

descriptors

exist,

the

message

gets

passed

to

the

higher

layers

of

the

queue

manager

for

processing.

Thus

the

sending

node

does

not

queue

the

message

but

passes

it

along

the

connection,

through

intermediate

hops,

and

then

gives

it

to

the

destination

queue

manager

to

place

it

on

the

target

queue.

The

link

into

MQ

uses

a

bridge

queue

on

the

gateway,

which

transforms

the

message

into

an

MQ

format.

This

mechanism

means

that

synchronous

MQe

style

messaging

from

a

device

is

possible

to

MQ,

with

the

connection

terminating

at

the

gateway.

The

message

is

delivered

in

real

time

from

the

gateway,

through

a

client

channel,

to

an

MQ

server.

From

there

its

destination

can

require

it

to

be

routed

asynchronously

along

MQ

message

channels.

In

a

similar

manner,

a

device

capable

of

only

synchronous

messaging

can

send

messages

to

an

asynchronous

MQe

queue,

provided

that

a

suitable

intermediary

is

available.

Assured

and

non-assured

message

delivery

Message

delivery

using

synchronous

message

transmission

can

be

assured

or

non-assured.

Assured

message

delivery

Asynchronous

transmission

introduces

the

concept

of

assured

message

delivery.

When

delivering

messages

asynchronously,

MQe

delivers

each

message

once,

and

once-only,

to

its

destination

queue.

However,

this

assurance

is

only

valid

if

the

definition

of

the

remote

queue

and

remote

queue

manager

match

the

current

characteristics

of

the

remote

queue

and

remote

queue

manager.

If

a

remote

queue

definition

and

the

remote

queue

do

not

match,

then

it

is

possible

that

a

message

may

become

undeliverable.

In

this

case

the

message

is

not

lost,

but

remains

stored

on

the

local

queue

manager.

Non-assured

message

delivery

Non-assured

delivery

of

a

message

takes

place

in

a

single

network

flow.

The

queue

manager

sending

the

message

creates

or

reuses

a

channel

to

the

destination

queue

manager.

Designing

your

real

application

83

The

message

to

be

sent

is

dumped

to

create

a

byte-stream,

and

this

byte

stream

is

given

to

the

channel

for

transmission.

Once

program

control

has

returned

from

the

channel

the

sender

queue

manager

knows

that

the

message

has

been

successfully

given

to

the

target

queue

manager,

that

the

target

has

logged

the

message

on

a

queue,

and

that

the

message

has

been

made

visible

to

MQe

applications.

However,

a

problem

can

occur

if

the

sender

receives

an

exception

over

the

channel

from

the

target.

The

sender

has

no

way

of

knowing

if

the

exception

occurred

before

or

after

the

message

was

logged

and

made

visible.

If

the

exception

occurred

before

the

message

was

made

visible

it

is

safe

for

the

sender

to

send

the

message

again.

However,

if

the

exception

occurred

after

the

message

was

made

visible,

there

is

a

danger

of

introducing

duplicate

messages

into

the

system

since

an

MQe

application

could

have

processed

the

message

before

it

was

sent

the

second

time.

The

solution

to

this

problem

involves

transmitting

an

additional

confirmation

flow.

If

the

sender

application

receives

a

successful

response

to

this

flow,

then

it

knows

that

the

message

has

been

delivered

once

and

once-only.

Synchronous

assured

message

delivery

You

can

perform

assured

message

delivery

using

synchronous

message

transmission.

Put

message

-

assured

put

You

can

perform

assured

message

delivery

using

synchronous

message

transmission,

but

the

application

must

take

responsibility

for

error

handling.

The

confirmID

parameter

of

the

putMessage

method

dictates

whether

a

confirm

flow

is

expected

or

not.

A

value

of

zero

means

that

message

transmission

occurs

in

one

flow,

while

a

value

of

greater

than

zero

means

that

a

confirm

flow

is

expected.

The

target

queue

manager

logs

the

message

to

the

destination

queue

as

usual,

but

the

message

is

locked

and

invisible

to

MQe

applications,

until

a

confirm

flow

is

received.

When

you

put

messages

with

the

confirmID,

the

messages

are

ordered

by

confirm

time,

not

arrival

time.

an

MQe

application

can

issue

a

put

message

confirmation

using

the

confirmPutMessage

method.

Once

the

target

queue

manager

receives

the

flow

generated

by

this

command,

it

unlocks

the

message,

and

makes

it

visible

to

MQe

applications.

You

can

confirm

only

one

message

at

a

time.

It

is

not

possible

to

confirm

a

batch

of

messages.

84

MQe

Application

Programming

The

confirmPutMessage()

method

requires

you

to

specify

the

UniqueID

of

the

message,

not

the

confirmID

used

in

the

prior

put

message

command.

The

confirmID

is

used

to

restore

messages

that

remain

locked

after

a

transmission

failure.

Example

(Java)

-

assured

put:

A

skeleton

version

of

the

code

required

for

an

assured

put

is

shown

below:

long

confirmId

=

MQe.uniqueValue();

try

{

qmgr.putMessage(

"RemoteQMgr",

"RemoteQueue",

msg,

null,

confirmId

);

}

catch(

Exception

e

)

{

/*

handle

any

exceptions*/

}

try

{

qmgr.confirmPutMessage(

"RemoteQMgr",

"RemoteQueue",

msg.getMsgUIDFields()

);

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions

*/

}

Example

(C)

-

assured

put:

A

skeleton

version

of

the

code

required

for

an

assured

put

is

shown

below:

Application puts message,
specifying a confirm ID.

Message is unlocked and
is now visible to other
WebSphere MQ Everyplace
applications.

Message is saved to
persistent store. Message is
locked and is not yet visible
to other WebSphere MQ
Everyplace applications.

Application knows that the
message has been successfully
delivered.

Application confirms the
put of the message.

Application knows that the
message is locked on target
queue manager.

Originator Target queue manager

Step 1

Step 2

Network

Put

Put
success

Confirm
success

Confirm

Figure

7.

Assured

put

of

synchronous

messages

Designing

your

real

application

85

/*

generate

confirm

Id

*/

MQEINT64

confirmId;

rc

=

mqe_uniqueValue(&exceptBlock,

&confirmId);

/*

put

message

to

queue

using

this

confirm

Id

*/

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_putMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hMsg,

NULL,

confirmId);

/*

now

confirm

the

message

put

*/

if(MQERETURN_OK

==

rc)

{

/*

first

get

the

message

uid

fields

*/

MQeFieldsHndl

hFilter;

rc

=

mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,

&hFilter);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hFilter);

}

}

}

Exception

handling

-

put

message:

If

a

failure

occurs

during

step

1

in

“Put

message

-

assured

put”

on

page

84,

the

application

should

retransmit

the

message.

There

is

no

danger

of

introducing

duplicate

messages

into

the

MQe

network

since

the

message

at

the

target

queue

manager

is

not

made

visible

to

applications

until

the

confirm

flow

has

been

successfully

processed.

If

the

MQe

application

retransmits

the

message,

it

should

also

inform

the

target

queue

manager

that

this

is

happening.

The

target

queue

manager

deletes

any

duplicate

copy

of

the

message

that

it

already

has.

The

application

sets

the

MQe.Msg_Resend

field

to

do

this.

If

a

failure

occurs

during

step

2

in

“Put

message

-

assured

put”

on

page

84,

the

application

should

send

the

confirm

flow

again.

There

is

no

danger

in

doing

this

since

the

target

queue

manager

ignores

any

confirm

flows

it

receives

for

messages

that

it

has

already

confirmed.

This

is

shown

in

the

following

example,

taken

from

the

example

program

examples.application.example6.

Example

-

Java:

This

example

is

taken

from

the

examples.application.example6

example

application:

boolean

msgPut

=

false;

/*

put

successful?

*/

boolean

msgConfirm

=

false;

/*

confirm

successful?

*/

int

maxRetry

=

5;

/*

maximum

number

of

retries

*/

long

confirmId

=

MQe.uniqueValue();

int

retry

=

0;

while(

!msgPut

&&

retry

<

maxRetry

)

86

MQe

Application

Programming

{

try

{

qmgr.putMessage(

"RemoteQMgr",

"RemoteQueue",

msg,

null,

confirmId

);

msgPut

=

true;

/*

message

put

successful

*/

}

catch(

Exception

e

)

{

/*

handle

any

exceptions

*/

/*

set

resend

flag

for

retransmission

of

message

*/

msg.putBoolean(

MQe.Msg_Resend,

true

);

retry

++;

}

}

if

(

!msgPut

)

/*

was

put

message

successful?*/

/*

Number

of

retries

has

exceeded

the

maximum

allowed,

/*so

abort

the

put*/

/*

message

attempt

*/

return;

retry

=

0;

while(

!msgConfirm

&&

retry

<

maxRetry

)

{

try

{

qmgr.confirmPutMessage(

"RenoteQMgr",

"RemoteQueue",

msg.getMsgUIDFields());

msgConfirm

=

true;

/*

message

confirm

successful*/

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions*/

/*

An

Except_NotFound

exception

means

*/

/*that

the

message

has

already

*/

/*

been

confirmed

*/

if

(

e

instanceof

MQeException

&&

((MQeException)e).code()

==

Except_NotFound

)

putConfirmed

=

true;

/*

confirm

successful

*/

/*

another

type

of

exception

-

need

to

reconfirm

message

*/

retry

++;

}

}

Example

-

C:

This

example

is

taken

from

the

examples.application.example6

example

application:

MQEINT32

maxRetry

=

5;

rc

=

mqeQueueManager_putMessage(hQMgr,

&exceptBlock,

hQMgrName,

Designing

your

real

application

87

hQName,

hMsg,

NULL,

confirmId);

/*

if

the

put

attempt

fails,

retry

up

to

the

maximum

number*/

/*of

retry

times

permitted,

setting

the

re-send

flag.

*/

while

(MQERETURN_OK

!=

rc

&&

--maxRetry

>

0

)

{

rc

=

mqeFields_putBoolean(hMsg,

&exceptBlock,

MQE_MSG_RESEND,

MQE_TRUE);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_putMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hMsg,

NULL,

confirmId);

}

}

if(MQERETURN_OK

==

rc)

{

MQeFieldsHndl

hFilter;

maxRetry

=

5;

rc

=

mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,

&hFilter);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hFilter);

}

while

(MQERETURN_OK

!=

rc

&&

--maxRetry

>

0

)

{

rc

=

mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hFilter);

}

}

Get

message

-

assured

get

Assured

message

get

works

in

a

similar

way

to

put.

If

a

get

message

command

is

issued

with

a

confirmId

parameter

greater

than

zero,

the

message

is

left

locked

on

the

queue

on

which

it

resides

until

a

confirm

flow

is

processed

by

the

target

queue

manager.

When

a

confirm

flow

is

received,

the

message

is

deleted

from

the

queue.

Figure

8

on

page

89

describes

a

get

of

synchronous

messages:

88

MQe

Application

Programming

Example

(Java)

-

assured

get:

This

example

code

is

taken

from

the

examples.application.example6

example

program.

boolean

msgGet

=

false;

/*

get

successful?

*/

boolean

msgConfirm

=

false;

/*

confirm

successful?

*/

MQeMsgObject

msg

=

null;

int

maxRetry

=

5;

/*

maximum

number

of

retries

*/

long

confirmId

=

MQe.uniqueValue();

int

retry

=

0;

while(

!msgGet

&&

retry

<

maxRetry)

{

try

{

msg

=

qmgr.getMessage(

"RemoteQMgr",

"RemoteQueue",

filter,

null,

confirmId

);

msgGet

=

true;

/*

get

succeeded

*/

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions

*/

/*

if

the

exception

is

of

type

Except_Q_NoMatchingMsg,

meaning

that

*/

/*

the

message

is

unavailable

then

throw

the

exception

*/

if

(

e

instanceof

MQeException

)

if

(

((MQeException)e).code()

==

Except_Q_NoMatchingMsg

)

throw

e;

retry

++;

/*

increment

retry

count

*/

}

}

if

(

!msgGet

)

Originator Target

O1. Application issues a Get Message (specifying a confirm Id)

T1.Message state in persistent store
changed to ‘Get_Uncomfirmed’.
Message returned to originator.

O2. Application issues a Confirm Get Message.

T2.Message removed from queue.

O3. Application now holds sole copy of message.

Figure

8.

Assured

get

of

synchronous

messages

Designing

your

real

application

89

/*

was

the

get

successful?

*/

/*

Number

of

retry

attempts

has

exceeded

the

maximum

allowed,

so

abort

*/

/*

get

message

operation

*/

return;

while(

!msgConfirm

&&

retry

<

maxRetry

)

{

try

{

qmgr.confirmGetMessage(

"RemoteQMgr",

"RemoteQueue",

msg.getMsgUIDFields()

);

msgConfirm

=

true;

/*

confirm

succeeded

*/

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions

*/

retry

++;

/*

increment

retry

count

*/

}

}

Example

(C)

-

assured

get:

This

example

code

is

taken

from

the

examples.application.example6

example

program.

MQEINT32

maxRetry

=

5;

rc

=

mqeQueueManager_getMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hMsg,

NULL,

confirmId);

/*

if

the

get

attempt

fails,

retry

up

to

the

maximum

number

of*/

/*retry

times

permitted,

setting

the

re-send

flag.

*/

while

(MQERETURN_OK

!=

rc

&&

--maxRetry

>

0

)

{

rc

=

mqeFields_getBoolean(hMsg,

&exceptBlock,

MQE_MSG_RESEND,

MQE_TRUE);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_getMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hMsg,

NULL,

confirmId);

}

}

if(MQERETURN_OK

==

rc)

{

MQeFieldsHndl

hFilter;

maxRetry

=

5;

rc

=

mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,

&hFilter);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_confirmGetMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

90

MQe

Application

Programming

hFilter);

}

while

(MQERETURN_OK

!=

rc

&&

--maxRetry

>

0

)

{

rc

=

mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hFilter);

}

}

Undo

command:

The

value

passed

as

the

confirmId

parameter

also

has

another

use.

The

value

is

used

to

identify

the

message

while

it

is

locked

and

awaiting

confirmation.

If

an

error

occurs

during

a

get

operation,

it

can

potentially

leave

the

message

locked

on

the

queue.

This

happens

if

the

message

is

locked

in

response

to

the

get

command,

but

an

error

occurs

before

the

application

receives

the

message.

If

the

application

reissues

the

get

in

response

to

the

exception,

then

it

will

be

unable

to

obtain

the

same

message

because

it

is

locked

and

invisible

to

MQe

applications.

However,

the

application

that

issued

the

get

command

can

restore

the

messages

using

the

undo

method.

The

application

must

supply

the

confirmId

value

that

it

supplied

to

the

get

message

command.

The

undo

command

restores

messages

to

the

state

they

were

in

before

the

get

command.

The

undo

command

also

has

relevance

for

the

putMessage

and

browseMessagesAndLock

commands.

As

with

get

message,

the

undo

command

restores

any

messages

locked

by

the

browseMessagesandLock

command

to

their

previous

state.

If

an

application

issues

an

undo

command

after

a

failed

putMessage

command,

then

any

message

locked

on

the

target

queue

awaiting

confirmation

is

deleted.

The

undo

command

works

for

operations

on

both

local

and

remote

queues.

Undo

command

example

-

Java:

boolean

msgGet

=

false;

/*

get

successful?

*/

boolean

msgConfirm

=

false;

/*

confirm

successful?

*/

MQeMsgObject

msg

=

null;

int

maxRetry

=

5;

/*

maximum

number

of

retries

*/

long

confirmId

=

MQe.uniqueValue();

int

retry

=

0;

while(

!msgGet

&&

retry

<

maxRetry

)

{

try

{

msg

=

qmgr.getMessage(

"RemoteQMgr",

"RemoteQueue",

filter,

null,

confirmId

);

msgGet

=

true;

/*

get

succeeded

*/

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions

*/

Designing

your

real

application

91

/*

if

the

exception

is

of

type

Except_Q_NoMatchingMsg,

meaning

that

*/

/*

the

message

is

unavailable

then

throw

the

exception

*/

if

(

e

instanceof

MQeException

)

if

(

((MQeException)e).code()

==

Except_Q_NoMatchingMsg

)

throw

e;

retry

++;

/*

increment

retry

count

*/

/*

As

a

precaution,

undo

the

message

on

the

queue.

This

will

remove

*/

/*

any

lock

that

may

have

been

put

on

the

message

prior

to

the

*/

/*

exception

occurring

*/

myQM.undo(

qMgrName,

queueName,

confirmId

);

}

}

if

(

!msgGet

)

/*

was

the

get

successful?

*/

/*

Number

of

retry

attempts

has

exceeded

the

maximum

allowed,

so

abort

*/

/*

get

message

operation

*/

return;

while(

!msgConfirm

&&

retry

<

maxRetry

)

{

try

{

qmgr.confirmGetMessage(

"RemoteQMgr",

"RemoteQueue",

msg.getMsgUIDFields()

);

msgConfirm

=

true;

/*

confirm

succeeded

*/

}

catch

(

Exception

e

)

{

/*

handle

any

exceptions

*/

retry

++;

/*

increment

retry

count

*/

}

}

Undo

command

example

-

C:

MQeFieldsHndl

hMsg;

rc

=

mqeQueueManager_getMessage(hQMgr,

&exceptBlock,

&hMsg,

hQMgrName,

hQName,

hFilter,

NULL,

confirmId);

/*

if

unsuccessful,

undo

the

operation

*/

if(MQERETURN_OK

!=

rc)

{

rc

=

mqeQueueManager_undo(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

confirmId);

}

Network

topologies

and

message

resolution

Introduction

to

message

routes

and

their

use

with

MQe

Overview

This

topic

explains,

in

detail,

the

concept

of

message

routes

and

how

to

use

them

with

MQe.

92

MQe

Application

Programming

Several

features

of

MQe

allow

the

routing

of

messages

to

be

altered

dynamically.

However,

you

need

to

ensure

that

there

are

no

’in

doubt’

messages

that

would

be

affected

by

the

change.

If

a

message

is

put

with

a

non-zero

confirm

ID,

and

then

the

MQe

network

topology

is

changed

to

alter

the

routing

of

the

subsequent

confirmGetMessage

call,

the

unconfirmed

message

will

not

be

found.

MQe

protocol

treats

a

failure

to

confirm

a

put

as

an

indication

that

the

put

message

has

been

confirmed

already,

and

therefore

assumes

success.

This

could

leave

an

unconfirmed

message

on

a

queue,

which

represents

a

loss

of

a

message,

and

therefore

breaks

the

assured

delivery

promise.

Since

MQe

uses

the

same

two

step

process

to

assure

delivery

of

asynchronously

sent

messages,

regardless

of

whether

a

zero

or

non-zero

confirmId

is

used,

changing

the

network

topology

can

break

the

assured

delivery

of

asynchronous

message

sends.

Notation

The

topics

within

Network

topologies

and

message

resolution

use

a

consistent

notation

for

illustrating

the

resources.

This

allows

the

areas

of

specific

interest

to

be

shown

prominently,

while

the

less

relevant

parts

of

a

system

can

be

hidden.

This

is

easier

to

show

with

a

diagram:

The

following

diagram

shows

the

same

resources

in

the

’dispersed’

form:

The

line

with

a

diamond

shape

shows

that

the

queue

manager

is

the

child

of

the

host.

This

preserves

the

parent/child

relationship

from

the

tree,

which

would

otherwise

be

lost

by

separating

the

elements.

Introduction

The

route

that

a

message

takes

through

an

MQe

network

can

depend

upon

many

resources

(queues,

connection

definitions,

listeners

and

so

on).

These

need

to

be

correctly

set

up,

often

in

pairs

whose

settings

need

to

be

complementary.

Failure

to

Host
localhost

LocalQM
Queues

LocalQueue

Figure

9.

A

host

and

the

MQe

resources

on

it

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Figure

10.

A

host

and

the

MQe

resources

on

it:

’dispersed’

form

Designing

your

real

application

93

set

up

the

correct

resources,

or

setting

certain

of

their

values

incorrectly

can

result

in

failure

to

deliver

messages.

Since

the

task

of

setting

up

a

network

that

correctly

routes

messages

can

initially

appear

complex,

this

topic

describes

the

theory

underlying

message

resolution.

A

common

source

of

confusion

with

MQe

is

the

differentiation

between

a

local

queue

that

exists

on

a

remote

machine

(or

queue

manager),

and

a

local

definition

of

that

queue

on

the

remote

machine.

Both

of

these

entities

are

commonly

referred

to

as

’remote

queue’s.

In

order

to

clarify

these,

the

term

’remote

queue

reference’

is

used

to

describe

a

local

definition

of

a

queue

that

resides

on

another

(remote)

machine

(or

queue

manager).

Local

queue

resolution

Local

message

putting

is

fundamental

to

MQe.

Messages,

if

they

are

to

be

useful,

must

always

end

up

on

a

local

queue.

Message

route

resolution

is

the

mechanism

by

which

a

message

travels

through

an

MQe

network

to

its

ultimate

destination.

The

following

diagram

shows

a

simple

local

message

put.

The

message

route

is

shown

for

a

message

put

to

(QueueManager)LocalQM

destined

for

the

(Queue)LocalQueue@LocalQM.

This

is

clearly

a

put

to

a

local

queue,

as

the

queue’s

’queue

manager

name’

is

the

same

as

the

name

of

the

queue

manager

to

which

the

message

is

put.

The

message

route

is

shown

with

an

arrow

labelled

with

the

message

route

name.

The

arrow

indicates

the

direction

in

which

the

message

flows.

The

text

on

the

label

indicates

the

currently

used

target

name

(this

can

change

during

message

resolution).

LocalQM

looks

for

a

queue

to

accept

a

message

for

LocalQueue@LocalQM.

The

process

of

determining

which

queue

to

place

a

message

on

is

called

Queue

Resolution.

LocalQM

finds

an

exact

match

for

the

destination,

the

local

queue.

It

then

puts

the

message

onto

the

local

queue.

The

message

will

then

reside

on

the

local

queue

until

it

is

retrieved

via

the

getMessage()

API

call.

Local

queue

alias

Local

queues

can

have

aliases.

If

we

add

a

queue

alias

to

the

local

queue

we

provide

it

with

another

name

by

which

it

will

be

known.

So

the

local

queue

LocalQueue@LocalQM

could

be

given

an

alias

of

’LocalQueueAlias’,

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

LocalQueue@LocalQM

Figure

11.

A

simple

local

message

put

94

MQe

Application

Programming

Messages

addressed

to

LocalQueueAlias@LocalQM

would

be

directed

by

the

queue

manager

to

LocalQueue@LocalQM.

We

could

envisage

this

as

the

message

being

placed

on

the

matching

alias,

almost

as

if

the

alias

were

a

queue,

and

then

the

alias

moves

the

message

to

the

correct

destination,

as

shown

in

the

following

diagram:

The

redirection

of

the

message

by

the

alias

is

accompanied

by

a

change

in

the

’destination

queue

name’

from

LocalQueueAlias@LocalQM

to

LocalQueue@LocalQM.

The

fact

that

the

message

was

originally

put

to

the

alias

is

completely

lost.

This

can

be

seen

by

the

labelling

of

the

message

route

from

the

alias

to

the

queue.

In

this

particular

case

the

change

of

’put

name’

is

of

little

or

no

importance,

but

this

is

important

in

more

complex

message

resolutions.

The

resolution

of

the

queue

alias

is

performed

just

before

the

message

is

routed

to

the

queue.

The

resolution

is

as

late

as

it

could

possibly

be,

and

is

sometimes

termed

’late

resolution’.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Figure

12.

LocalQueue@LocalQM

with

an

alias

of

’QueueAlias’.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

LocalQueueAlias@LocalQM

LocalQueue@LocalQM

Figure

13.

A

message

being

placed

on

a

matching

alias

Designing

your

real

application

95

Queue

manager

alias

Queue

aliases

enable

you

to

refer

to

queues

by

more

than

one

name.

Queue

Manager

Aliases

enable

you

to

refer

to

queue

managers

by

more

than

one

name.

We

can

define

a

Queue

Manager

Alias

’AliasQM’

referring

to

the

local

queue

manager,

as

shown

in

the

following

diagram:

Messages

addressed

to

’AliasQM’

are

routed

to

’LocalQM’,

as

shown

in

the

following

diagram:

The

redirection

of

the

message

by

the

alias

is

accompanied

by

a

change

in

the

’destination

queue

name’

from

LocalQueue@AliasQM

to

LocalQueue@LocalQM.

The

fact

that

the

message

was

originally

put

to

the

alias

is

completely

lost.

This

can

be

seen

by

the

labelling

of

the

message

route

from

the

alias

to

the

queue.

Queue

Manager

Aliases

are

resolved

at

the

beginning

of

message

resolution.

Queue

Manager

Aliases

are

very

effective

as

part

of

complex

topologies

To

complete

the

picture

we

can

resolve

both

the

Queue

Manager

Alias

and

the

Queue

Alias,

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

Figure

14.

Defining

a

queue

manager

alias

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@AliasQM

LocalQueue@LocalQM

Figure

15.

Addressing

messages

to

a

queue

manager

alias

96

MQe

Application

Programming

Here

we

put

a

message

to

LocalQueueAlias@AliasQM,

and

it

is

resolved

first

via

the

Queue

Manager

Alias,

and

then

through

the

Queue

Alias.

Resolution

of

queueManager

aliases

happens

as

soon

as

the

request

reaches

a

queue

manager.

The

effect

is

to

substitute

the

aliased

string

for

the

aliasing

string.

So

for

the

first

example

above,

as

soon

as

the

putMessage(″AliasQM″,....)

call

crosses

the

API,

it

is

converted

to

a

putMessage(″LocalQM″,....)

call.

This

resolution

is

also

performed

when

a

message

is

put

to

a

remote

queue

manager.

On

a

remote

queue

manager

the

queue

aliases

on

that

queue

manager

are

used,

not

those

on

the

originating

queue

manager.

An

alias

can

point

to

another

alias.

However,

circular

definitions

have

unpredictable

results.

An

alias

can

also

be

made

of

the

local

queue

manager

name.

This

allows

a

queue

manager

to

behave

as

if

it

were

another

queue

manager.

This

pretence

means

that

we

can

remove

a

queue

manager

entirely

from

the

network,

and

by

creating

suitable

queue

manager

aliases

elsewhere

we

can

allocate

its

workload

to

another

queue

manager.

This

feature

is

useful

when

modifying

MQe

network

topologies,

because

servers,

under

the

control

of

system

administrators,

can

be

moved,

removed

or

renamed

without

breaking

the

connectivity

of

clients,

which

may

not

be

so

readily

accessible.

Remote

queue

resolution

Remote

queue

resolution

involves

connection

definitions

and

network

resolution.

It

requires

a

setup

where

there

are

two

queue

managers,

one

of

which

is

the

local

queue

manager

that

you

use

to

put

the

message,

and

the

other

is

the

queue

manager

to

which

you

want

the

message

to

go.

The

remote

queue

manager

must

have

a

listener,

and

the

local

queue

manager

must

have

a

connection

definition

describing

the

listener,

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@LocalQM

LocalQueueAlias@AliasQM

LocalQueueAlias@LocalQM

Figure

16.

Resolving

the

queue

manager

alias

and

the

queue

alias

Designing

your

real

application

97

The

connection

definition/listener

pair

allows

MQe

to

establish

the

network

communications

necessary

to

flow

the

message.

The

connection

definition

contains

information

about

communicating

with

a

single

queue

manager.

The

connection

definition

is

named

for

the

queue

manager

to

which

it

defines

a

route.

So

in

this

example

the

connection

definition

is

called

TargetQM,

and

contains

the

information

necessary

to

establish

connection

with

(QueueManager)TargetQM.

This

information

includes

the

address

of

the

machine

upon

which

the

queue

manager

resides

(remote

host

in

this

example),

the

port

upon

which

the

queue

manager

is

listening

(8081

in

this

example),

and

the

protocol

to

use

when

conversing

with

the

queue

manager

(FastNetwork

in

this

example).

You

need

a

remote

queue

reference

on

LocalQM

representing

the

destination

queue

TargetQueue

which

resides

on

TargetQM.

There

are

therefore

two

entities

called

TargetQueue@TargetQM.

One

is

the

’real’

queue,

that

is

a

local

queue,

and

one

is

a

reference

to

the

real

queue,

a

remote

queue

reference,

as

shown

in

the

following

diagram:

The

message

resolution

for

a

put

on

LocalQM

to

TargetQueue@TargetQM

works

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Connection
Host

Queue Manager
TargetQM

Listener
DefaultListener

connects to

remotehost
TargetQM(FastNetwork:remotehost:8082)

Figure

17.

Local

and

remote

queue

managers

with

a

definition

and

listener

pair

Host
localhost

Queue Manager
LocalQM

Remote Queue

Connection

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

connects using

resolves to

connects to

remotehost

TargetQM(FastNetwork:remotehost:8082

TargetQueue@TargetQM

Figure

18.

A

remote

queue

reference.

98

MQe

Application

Programming

The

message

route

is

as

follows:

v

The

message

is

put

on

LocalQM

addressed

to

TargetQueue@TargetQM.

v

LocalQM

performs

queue

resolution

and

finds

the

remote

queue

reference

as

an

exact

match.

LocalQM

places

the

message

onto

the

remote

queue

reference.

v

The

remote

queue

reference

then

performs

connection

resolution.

It

looks

for

a

connection

that

will

allow

it

to

pass

the

message

to

the

queue

manager

owning

the

final

queue.

The

remote

queue

reference

finds

the

connection

definition

called

TargetQM

and

passes

the

message

to

it.

v

The

connection

definition

now

moves

the

message

to

its

partner

listener,

which

puts

the

message

to

the

remote

queue

manager.

v

The

remote

queue

manager

performs

queue

resolution

just

as

if

the

message

had

been

put

locally,

finds

TargetQueue@TargetQM,

and

puts

the

message

on

it.

Although

the

connection

definition

and

listener

are

vital

to

the

message

resolution,

they

do

not

affect

the

routing

in

this

example.

This

is

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Connection

Host
remotehost

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

resolves to

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

TargetQueue@TargetQM

TargetQM(FastNetwork:remotehost:8082)

Figure

19.

Message

resolution

for

a

put

Designing

your

real

application

99

In

later

examples

the

connection

definitions

play

a

more

important

role,

and

they

are

shown

explicitly.

For

now

assume

the

presence

of

the

logical

link

formed

by

the

listener

and

not

show

them

in

the

diagrams.

It

is

often

much

more

convenient

to

use

a

simplified

view

of

the

message

route.

You

can

do

this

by

thinking

of

the

four

elements

that

contribute

to

this

message

resolution

as

a

single,

composite,

entity.

This

entity

is

a

Message

Route,

as

shown

in

the

following

diagram:

Here

you

can

see

the

message

route

that

indicates

that

all

messages

put

to

LocalQM

and

addressed

to

TargetQueue@TargetQM

will

be

moved

directly

to

the

destination.

A

Message

Route

is

valid

only

if

all

the

necessary

components

(Connection

Definition,

Listener,

Remote

Queue

Definition,

and

destination

queue)

are

present

and

correctly

configured.

The

Message

Route

is

defined

as

a

Push

Message

Route

because

messages

are

pushed

from

the

source

queue

to

the

destination

queue,

by

LocalQM.

Aliases

on

remote

queues

You

can

use

aliases

on

the

remote

queue,

as

the

last

step

is

simply

queue

resolution

performed

on

TargetQM.

The

Queue

Alias

on

the

target

queue

appears

to

the

local

system

as

if

it

were

a

queue.

The

remote

queue

definition

on

the

local

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

remotehost

Figure

20.

Message

resolution

for

a

put

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueue

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure

21.

A

message

route

entity

100

MQe

Application

Programming

system

is

therefore

named

for

the

Queue

Alias,

rather

than

the

target

queue.

The

following

diagram

makes

this

clear

(note

that

the

connection

definition

and

the

listener

are

hidden):

Here

a

remote

queue

reference

is

defined

which

actually

refers

to

an

alias

for

a

queue

on

TargetQM.

When

you

perform

a

put

on

LocalQM

addressed

to

QueueAlias@TargetQM

the

resolution

works

as

shown

in

the

following

diagram:

v

Queue

resolution

on

LocalQM

finds

the

remote

queue

reference.

The

fact

that

this

is

a

reference

to

a

queue

alias

is

completely

immaterial

to

queue

resolution.

v

Connection

resolution

works

entirely

as

described

above

v

queue

resolution

on

TargetQM

now

behaves

exactly

as

local

queue

resolution

of

a

queue

alias

described

earlier.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAliasTargetQueueAlias@TargetQM

remotehost

Remote Queue

Figure

22.

Using

aliases

on

the

remote

queue

Host
localhost

Queue Manager
LocalQM

Remote Queue

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAlias

TargetQueueAlias@TargetQM

TargetQueueAlias@TargetQM

TargetQueue@TargetQM

TargetQueueAlias@TargetQM

remotehost

TargetQueueAlias@TargetQM

Figure

23.

Message

resolution

for

a

put

to

a

remote

queue,

using

a

Queue

alias

defined

on

TargetQM

Designing

your

real

application

101

Note

that

the

destination

name

for

the

message

remains

QueueAlias@TargetQM

until

queue

resolution

onTargetQM.

The

Remote

Queue

Definition

completes

the

requirements

for

another

Message

Route,

as

shown

in

the

following

diagram:

Parallel

routes

Aliases

allow

the

creation

of

parallel

routes

between

a

source

and

a

destination.

This

is

sometimes

useful

when

you

want

to

send

messages

synchronously

if

possible,

but

asynchronously

if

the

remote

end

is

not

currently

connected.

You

can

do

this

with

the

setup

illustrated

in

the

following

diagram:

Here

two

aliases

have

been

defined

on

the

target

queue.

One

alias

will

be

used

to

route

synchronous

traffic

to

the

target

queue,

one

will

be

used

to

route

asynchronous

traffic.

On

LocalQM

two

remote

queue

definitions

have

been

defined,

one

pointing

at

each

alias.

You

can

create

an

asynchronous

Remote

Queue

Definition

called

Async@TargetQM,

and

a

synchronous

Remote

Queue

Definition

called

Sync@TargetQM.

By

choosing

the

name

of

the

queue

that

you

put

to

(Sync@TargetQM

or

Async@TargetQM)

you

can

choose

the

route

that

the

message

follows,

even

though

the

destination

is

the

same.

First,

the

resolution

of

the

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueueAlias

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure

24.

Message

route

entity

of

messages

put

to

TargetQueueAlias

on

TargetQM

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

resolves to

resolves to

Async@TargetQM

Sync@TargetQM

RemoteQueue

remotehost

RemoteQueue

Figure

25.

Creating

parallel

routes

between

source

and

destination

102

MQe

Application

Programming

synchronous

route

by

putting

a

message

to

Sync@TargetQM,

as

shown

in

the

following

diagram:

And

secondly

the

asynchronous

resolution

using

AsyncAlias@TargetQM,

as

shown

in

the

following

diagram:

You

could

choose

to

view

this

as

a

pair

of

Push

Message

Routes,

as

shown

in

the

following

diagram:.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Sync@TargetQM

Sync@TargetQM

TargetQueue@TargetQM

Sync@TargetQM

RemoteQueue
Async@TargetQM

RemoteQueue

remotehost

Figure

26.

Resolving

the

synchronous

route

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Target Queue@TargetQM

Async@TargetQM

Sync@TargetQM

Async@TargetQM

Async@TargetQM

remotehost

Remote Queue

Remote Queue

Figure

27.

Resolving

the

asynchronous

route

Designing

your

real

application

103

Chaining

remote

queue

references

Remote

queue

references

can

be

chained

together

to

form

a

longer

route.

This

requires

the

use

of

“Via

connections”

on

page

110.

Pushing

store

and

forward

queues

MQe

has

a

queue

type

that

accepts

messages

on

a

queue

manager

basis

rather

than

on

a

queue

basis.

These

are

called

Store

and

Forward

(S&F)

queues.

S&F

queues

maintain

a

list

of

queue

manager

names,

called

Queue

Manager

Entries

(QMEs).

The

S&F

queue

will

accept

messages

for

any

queue

manager

represented

by

a

QME.

This

acceptance

is

independent

of

the

destination

queue

name,

and

so

allows

one

queue

(the

S&F

queue)

to

route

all

messages

for

a

given,

or

several

given

queue

managers.

S&F

queues

can

operate

in

two

modes,

pushing

mode

and

pulling

mode.

In

pushing

mode

the

messages

are

moved

to

the

next

queue

manager

just

as

with

remote

queue

references.

In

pulling

mode

the

messages

are

removed

from

the

S&F

queue

by

the

action

of

a

Home

Server

Queue.

This

section

deals

only

with

the

pushing

of

messages,

pulling

messages

with

a

home

server

queue

is

described

in

another

section.

A

typical

pushing

S&F

queue

system

might

look

like

this:

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Push Message Route
Async
@TargetQM

remotehost

Push Message Route
Sync
@TargetQM

Figure

28.

A

pair

of

push

message

routes

104

MQe

Application

Programming

A

S&F

queue

called

SafQueue

has

a

queue

manager

entry

(QME)

for

TargetQM.

This

allows

it

to

accept

messages

for

any

queue

on

TargetQM.

In

common

with

ordinary

Remote

Queues,

a

Store

and

Forward

queue

requires

a

connection

definition/listener

pair

set

up

in

order

to

push

messages.

Unlike

a

normal

Remote

Queue

Definition,

a

Store

and

Forward

Queue

effectively

pushes

to

a

Queue

Manager

rather

than

to

a

queue.

The

message

arrives

at

the

Queue

Manager,

where

queue

resolution

is

performed.

When

a

message

is

put

to

LocalQM

addressed

to

TargetQ@TargetQM

the

resolution

is

as

follows:

v

LocalQM

performs

queue

resolution

which

finds

the

queue

manager

entry

TargetQM

on

SafQueue.

LocalQM

puts

the

message

to

the

QME.

v

Putting

a

message

to

the

QME

is

equivalent

to

putting

the

message

on

the

S&F

queue

owning

the

QME.

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

connects to

connects using

resolves to

(FastNetwork:remotehost:8082)
remotehost

SafQueue@TargetQM

Figure

29.

A

typical

pushing

S&F

queue

system

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@TargetQM

remotehost
(FastNetwork:remotehost:8082)

Figure

30.

Routing

of

a

message

put

to

LocalQM

and

addressed

to

TargetQ@TargetQM

Designing

your

real

application

105

v

The

S&F

queue

performs

connection

resolution

and

finds

the

connection

definition,

and

so

uses

it

to

push

messages

to

RemoteQM.

v

The

queue

manager

then

performs

queue

resolution

and

places

the

message

on

the

target

queue.

The

Store

and

Forward

queue

forms

part

of

a

Multi

Message

Route.

This

abstract

entity

represents

the

potential

for

messages

addressed

to

any

queue

on

TargetQM,

and

so

is

called

*@TargetQM,

as

shown

in

the

following

diagram:

If

there

is

no

queue

to

which

the

message

can

be

put,

then

it

is

not

delivered.

This

prevents

any

further

messages

from

being

pushed

from

that

Store

and

Forward

queue

to

that

Queue

Manager.

S&F

queues

and

remote

queue

references

Because

Store

and

Forward

(S&F)

queues

can

accept

messages

for

any

queue

on

a

given

queue

manager,

they

can

appear

to

be

in

conflict

with

a

remote

queue

reference.

In

such

cases

the

remote

queue

reference

takes

precedence,

because

it

is

more

specific.

So

if

add

a

remote

queue

reference

to

the

S&F

queue

resolution,

the

message

route

resolution

changes

immediately,

and

the

S&F

queue

becomes

irrelevant,

as

shown

in

the

following

diagram:

The

queue

resolution

finds

the

best

(most

exact)

match

for

the

message

address.

Host
localhost

Queue Manager
LocalQM

Multi Message Route
*@TargetQM

Host

Queue Manager
TargetQM

remotehost

Figure

31.

A

multi

message

route

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

SafQueue@TargetQM

remotehost

Remote Queue
TargetQueue@TargetQM

Figure

32.

How

routes

using

remote

queue

definitions

take

precedence

over

store-and-forward

queue

routes

106

MQe

Application

Programming

So

a

message

put

to

QueueAlias@TargetQM

goes

via

the

S&F

queue

(asynchronous

transmission),

but

a

put

to

TargetQueue@TargetQM

goes

synchronously

via

the

remote

queue

reference.

Chaining

S&F

queues

Pushing

store

and

forward

queues

can

be

chained

together

into

a

more

complex

route,

as

shown

in

the

following

diagram:

The

Store

and

Forward

queue

on

LocalQM

(SaFQueue@RemoteQM)

has

a

Queue

Manager

Entry

for

TargetQM,

but

actually

pushes

to

RemoteQM.

LocalQM

requires

a

connection

definition

to

RemoteQM,

but

not

to

TargetQM.

A

message

can

then

be

transported

via

the

intermediate

S&F

queue,

as

shown

in

the

following

diagram:

This

works

because

the

combination

of

queue

resolution

and

connection

resolution

on

LocalQM

results

in

the

message

being

put

to

the

S&F

queue

on

RemoteQM,

which

can

then

move

it

to

its

destination.

The

chain

of

Store

and

Forward

Queues

could

be

arbitrarily

long,

with

each

queue

manager

in

the

chain

needing

to

know

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager

Store And Forward Queue

Targets
TargetQM

resolves toresolves to

SafQueue@RemoteQM

remotehost

RemoteQM

SafQueue@RemoteQM

Figure

33.

Pushing

S&F

queues

chained

together

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
RemoteQM

Store And Forward Queue

Targets
TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM
TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@RemoteQM SafQueue@RemoteQM

remotehost

Figure

34.

Transporting

messages

via

an

intermediate

S&F

queue

Designing

your

real

application

107

only

about

the

next

queue

manager

in

the

chain.

The

Message

Routes

express

this

very

succinctly,

as

shown

in

the

following

diagram:

Home

server

queues

Home

server

queues

pull

messages

from

store

and

forward

queues.

The

S&F

queue

may

be

a

’pushing’

S&F

queue

(that

is,

has

a

valid

connection

definition).

Home

server

queues

only

pull

messages

across

a

single

’hop’,

and

only

pull

messages

whose

intended

destination

is

the

local

queue

manager

-

the

queue

manager

upon

which

the

home

server

queue

resides.

A

typical

Home

Server

Queue

configuration

is

illustrated

below:

The

diagram

shows

a

simple

HomeServerQueue

setup.

In

this

configuration

the

server

queue

manager

has

no

connection

definition

to

the

client;

instead

it

has

a

Host
targethost

Queue Manager
TargetQM

Host
localhost

Queue Manager
LocalQM

Multi Message Route

Host

Queue Manager

Multi Message Route

remotehost

*@TargetQM

RemoteQM

*@TargetQM

Figure

35.

A

chain

of

store

and

forward

queues

Host
localhost

Queue Manager
LocalQM

Connection

Host

Queue Manager

Store And Forward Queue

Targets
LocalQM

Listener
DefaultListenerconnects using

pulls from

connects to

remotehost

RemoteQM

RemoteQM

SafQueue@RemoteQM

homeServerQueue@RemoteQM

(FastNetwork:remotehost:8082)

Home Server ‘Queue’

Figure

36.

A

home

server

queue

configuration

108

MQe

Application

Programming

store

queue

(that

is,

a

store

and

forward

queue

with

no

target

queue

manager)

that

collects

all

messages

bound

for

the

client.

This

message

collection

embraces

all

queue

destinations

on

the

client.

The

client

pulls

the

messages

from

the

store

queue

using

a

home

server

queue

pointing

at

the

store

queue

on

the

client.

The

home

server

queue

never

stores

messages

itself,

it

collects

them

from

the

store

queue

and

delivers

them

to

their

destinations

on

the

client.

The

client

makes

the

connection

request

to

the

server

using

its

connection

definition.

The

home

server

queue

’homeServerQueue@RemoteQM’

attempts

to

pull

messages

from

the

queue

manager

’RemoteQM’.

It

requires

a

connection

definition

to

be

able

to

do

this.

The

home

server

queue

is

able

to

pull

messages

only

if

there

is

a

store

and

forward

queue

that

is

storing

messages

for

LocalQM.

Messages

that

are

pulled

from

RemoteQM

are

then

’pushed’

to

local

queues

on

LocalQM.

This

is

shown

in

the

following

diagram,

where

a

Home

Server

Queue

on

LocalQM

is

pulling

messages

(for

LocalQM)

from

RemoteQM.

In

this

case

a

message

for

TargetQueue@LocalQM

is

shown

being

pulled,

and

the

resolution

at

the

queue

manager

has

been

hidden

for

clarity.

In

reality,

the

Home

Server

Queue

presents

each

pulled

message

to

the

local

queue

manager

for

resolution,

as

shown

in

the

following

diagram:

The

pull

message

route

can

be

viewed

at

a

more

abstract

level,

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Local Queue
TargetQueue

Host

Queue Manager

Store And Forward Queue

Queue Manager Entry
LocalQM

TargetQueue@LocalQM TargetQueue@LocalQM

TargetQueue@LocalQM

TargetQueue@LocalQM

RemoteQM

homeServerQueue@RemoteQM

remotehost

SafQueue@RemoteQM

Home Server ‘Queue’

Figure

37.

A

home

server

queue

pulling

messages

Designing

your

real

application

109

How

are

pulled

message

routes

useful,

and

where

would

you

use

them?

The

most

important

feature

of

a

pulled

message

route

is

that

the

flow

of

messages

is

under

the

control

of

the

local

queue

manager.

This

makes

it

very

useful

to

a

client

that

spends

much

of

its

time

disconnected.

If

you

had

to

rely

on

the

server

pushing

message,

the

server

would

need

to

continuously

poll

the

client

to

check

if

it

was

available.

This

would

not

be

a

good

solution

for

large

numbers

of

clients,

as

much

of

the

servers

time

would

be

spent

polling

for

disconnected

clients.

Instead,

with

a

Home

Server

queue,

each

client

pulls

messages

when

it

is

connected,

and

the

server

only

has

to

deal

with

real

requests

from

connected

clients.

One

concrete

example

of

this

is

the

administration

of

queue

managers

that

do

not

have

listener

capability.

Administration

messages

for

the

client

are

placed

upon

a

Store

and

Forward

queue.

The

client

can

then

use

a

Home

Server

queue

to

pull

these

when

it

is

connected.

Administration

reply

messages

could

then

be

pushed

using

normal

push

remote

queue,

as

shown

in

the

following

diagram:

Via

connections

Via

connections

allow

messages

to

be

routed

via

an

intermediate

queue

manager.

For

example,

you

might

want

messages

from

LocalQM

to

travel

to

TargetQM

via

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Host

Queue Manager

remotehost

*@LocalQM

RemoteQM

Figure

38.

An

abstract

pull

message

route

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Push Message Route

Host

Queue Manager

admin messages

RemoteQM

remotehost

Admin Replies

Figure

39.

Administering

queue

managers

that

do

not

have

listener

capability

110

MQe

Application

Programming

RemoteQM.

You

can

already

do

this

with

’pushing’

store

and

forward

queues,

but

via

connections

provide

another

mechanism,

as

shown

in

the

following

diagram:

The

diagram

above

illustrates

the

components

being

used.

The

connection

definition

called

’TargetQM’

on

LocalQM

does

not

contain

the

address

of

TargetQM,

but

simply

refers

to

the

connection

definition

called

’RemoteQM’.

This

means

that

any

messages

destined

for

TargetQM

will

be

sent

to

RemoteQM,

and

RemoteQM

will

be

able

to

move

the

messages

onward.

In

the

diagram

above,

RemoteQM

has

the

necessary

connection

to

move

the

message

to

TargetQM.

The

message

flows

as

expected,

as

shown

in

the

following

diagram:

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Remote Queue

Connection

ViaConnection

Queue Manager

Remote Queue

Connection
TargetQM
(FastNetwork:targethost:8082)

connects to

connects using

resolves to

connects to

connects using

resolves toconnects via

(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

RemoteQM

RemoteQM

TargetQM(RemoteQM)

Figure

40.

Via

connections

Designing

your

real

application

111

The

Remote

Queue

on

LocalQM

uses

Connection

Resolution

to

find

the

Via

Connection.

This

then

passes

the

message

on

to

the

real

connection

which

moves

the

message

to

RemoteQM.

On

RemoteQM

queue

resolution

proceeds

as

for

the

simple

case.

You

can

see

the

topology

most

clearly

using

Message

Routes,

as

shown

in

the

following

diagram:

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Connection

ViaConnection

Queue Manager

Connection
TargetQM
(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

(FastNetwork:targethost:8082)

RemoteQM

RemoteQM

RemoteQueue

RemoteQueue

TargetQM(RemoteQM)

Figure

41.

Message

flow

using

a

via

connection

112

MQe

Application

Programming

This

is

known

as

’chaining

remote

queues’.

The

central

remote

queue

can

be

synchronous,

asynchronous,

or

even

a

store

and

forward

queue.

Rerouting

with

queue

manager

aliases

Fail-over

is

a

common

situation

that

illustrates

the

important

part

that

Queue

Manager

Aliases

play

in

routing.

In

the

following

examples,

you

can

see

a

client

communicating

with

a

server,

and

a

have

a

backup

server

that

can

be

used

if

the

main

server

fails,

or

is

taken

down

for

maintenance:

Queue Manager
TargetQM

Queue Manager
LocalQM

Push Message Route
TargetQueue

Queue Manager

Push Message Route
TargetQueue

RemoteQM

@TargetQM @TargetQM

Figure

42.

Via

connections

expressed

using

message

route

schema

Designing

your

real

application

113

The

diagram

above

shows

the

local

client

queue

manager,

with

a

connection

to

ServerQM

and

a

remote

queue

definition

for

TargetQueue@ServerQM.

The

server

(bottom

left)

has

a

local

queue

as

the

target

for

the

example

message,

and

this

is

mimicked

by

the

backup

server

(bottom

right).

Additionally,

on

the

client

queue

manager,

there

is

a

Queue

Manager

Alias

mapping

the

name

Server

to

ServerQM.

This

mapping

is

then

used

for

messages

put

to

the

server.

The

message

resolution

is

shown

below

for

the

normal

operating

configuration,

where

a

message

put

to

TargetQueue@Server

is

directed

to

TargetQueue@ServerQM:

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

Remote QueueRemote Queue
TargetQueue@BackupQMTargetQueue@ServerQM

Figure

43.

Queue

manager

aliases

and

fail-over.

114

MQe

Application

Programming

The

alias

maps

messages

for

Server

to

ServerQM,

and

this

selects

the

remote

queue

definition

TargetQueue@ServerQM.

If

the

network

administrator

needs

to

route

traffic

to

the

backup

server,

only

the

Queue

Manager

Alias

needs

to

be

changed

(it

is

in

fact

deleted,

and

recreated

with

a

different

target

name,

in

this

case

BackupQM):

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@Server

TargetQueue@BackupQM
Remote Queue

TargetQueue@ServerQM

TargetQueue@ServerQM
Remote Queue

Figure

44.

Routing

traffic

using

a

″server″

alias

Designing

your

real

application

115

The

change

of

alias

reroutes

the

message

to

a

different

remote

queue,

and

hence

on

to

the

backup

queue

manager

and

to

TargetQueue@BackupQM.

There

is

a

pair

of

message

routes,

one

to

each

server,

and

a

Queue

Manager

Alias

to

choose

between

the

message

routes,

as

shown

in

the

following

diagram:

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@ServerQM
Remote Queue Remote Queue

TargetQueue@BackupQM

Figure

45.

Routing

traffic

to

the

backup

server,

using

a

″server″

alias

116

MQe

Application

Programming

The

example

above

required

a

change

to

every

client

on

a

system

that

requires

rerouting

to

a

backup

server.

If

there

are

a

large

number

of

clients

this

might

be

impractical.

In

addition,

each

client

requires

two

complete

message

route

definitions

(a

remote

queue

and

a

connection

definition

for

each).

You

can

avoid

the

need

to

change

the

client

by

having

a

second

server

ready

to

listen

on

the

same

address

and

port

as

the

first.

When

the

administrator

wants

to

change

over

the

first

can

be

brought

down,

and

the

second

can

change

over.

In

this

situation

it

might

be

useful

to

keep

the

names

of

the

servers

different.

The

backup

server

can

be

given

a

Queue

Manager

Alias

mapping

BackupQM

to

ServerQM.

This

allows

BackupQM

to

take

the

place

of

ServerQM.

MQe-MQ

bridge

message

resolution

A

connection

between

MQe

and

MQ

queue

managers

involves

a

collection

of

objects.

The

following

diagram

shows

only

the

entities

that

form

the

communications

link

between

the

two

queue

managers:

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Push Message Route
TargetQueue

Push Message Route
TargetQueue

Queue Manager
ServerQM

Queue Manager
BackupQM

TargetQueue@BackupQM

TargetQueue@Server

@ServerQM @BackupQM

Figure

46.

Choosing

between

message

routes

Designing

your

real

application

117

The

important

entities

are:

v

(Bridge)MQeEarthQMBridge

-

a

bridge

resource

owned

and

controlled

by

the

MQeEarthQM

queue

manager.

v

(MQ

Queue

Manager

Proxy)MQSaturnQM

-

describes

MQSaturnQM

and

how

to

connect

to

it.

v

(BridgeConnection)MQeEarth.CHANNEL

-

a

communications

path

between

MQeEarthQM

and

MQSaturnQM.

v

(MQ

Server

Connection

Channel)

MQeEarth.CHANNEL

-

a

standard

MQ

server

channel

providing

an

entry

point

to

MQSaturnQM

for

MQeEarthQM.

These

entities

are

described

in

more

details

in

other

parts

of

this

documentation.

These

entities

are

used

in

the

following

examples

of

bridge

connectivity,

but

are

not

shown

in

the

diagrams.

Pulling

messages

from

MQ

By

setting

up

a

Transmit

queue

on

MQ,

and

a

bridge

listener

on

an

MQe

queue

manager,

you

can

enable

the

queue

manager

to

pull

messages

from

the

transmit

queue.

Although

in

theory

this

is

sufficient

to

pull

messages

from

the

transmission

queue,

you

cannot

place

messages

onto

the

transmission

queue

without

creating

extra

queues

on

an

MQ

queue

manager.

Single

pull

route:

To

allow

the

messages

to

be

correctly

routed,

you

can

create

extra

queues

on

an

MQ

queue

manager.

The

simplest

form

is

to

create

a

remote

queue

on

MQ

to

allow

Host
earth

Queue Manager
MQeEarthQM

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

Figure

47.

Connecting

MQe

and

MQ

queue

managers.

118

MQe

Application

Programming

messages

addressed

to

TargetQueue@MQeEarthQM

to

be

accepted

by

the

MQ

queue

manager,

as

shown

in

the

following

diagram:

Messages

addressed

to

TargetQueue@MQeEarthQM

are

placed

upon

the

MQ

Transmit

queue.

The

bridge

listener

then

pulls

them

from

the

transmit

queue

and

presents

them

to

the

MQe

queue

manager.

Message

resolution

then

takes

place,

as

shown

in

the

following

diagram:

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQeEarthQM

MQ Transmit Queue
MQeEarth.XMITQ

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

resolves to

pulls from

uses

MQ Remote Queue

MQSaturnQ@MQSaturnQM

Figure

48.

Creating

a

remote

queue

on

MQ

Designing

your

real

application

119

This

is

effectively

a

single

pull

message

route:

Multiple

pull

route:

It

is

generally

more

efficient

to

use

a

multiple

pull

message

route

as

this

requires

the

same

number

of

resource

definitions,

but

will

handle

all

the

traffic

for

the

MQe

queue

manager.

This

is

done

using

a

Remote

queue

manager

alias

on

MQ

(effectively

a

remote

queue

where

the

target

queue

name

is

the

same

as

the

target

queue

manager

name),

as

shown

in

the

following

diagram:

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

TargetQueue

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

MQ Remote Queue

MQ Transmit Queue

Figure

49.

Bridge

listener

pulling

from

an

MQe

transmit

queue

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

TargetQueue@MQeEarthQM

Figure

50.

A

single

pull

message

route

120

MQe

Application

Programming

Message

resolution

works

as

before,

but

now

messages

for

any

queue

on

MQeEarthQM

will

be

moved,

making

this

a

multiple

pull

message

route,

as

shown

in

the

following

diagram:

Pushing

messages

to

MQ

Pushing

messages

to

MQ

is

quite

straightforward.

Again

you

need

to

presume

the

presence

of

the

common

components

described

in

“MQe-MQ

bridge

message

resolution”

on

page

117,

but

now

you

need

to

create

a

Bridge

Queue

which

is

an

MQe

Remote

queue

that

refers

to

a

queue

on

an

MQ

queue

manager,

as

shown

in

the

following

diagram:

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

MQeEarthQM

pulls from

uses

MQ Transmit Queue

MQ Remote Queue

Figure

51.

A

multiple

pull

message

route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeEarthQM

Figure

52.

Multiple

pull

route,

expressed

using

message

route

schema

Designing

your

real

application

121

Messages

travel

as

expected

across

this

remote

queue

definition,

as

shown

below:

This

is

exactly

the

same

as

a

simple

push

message

route

between

two

queue

managers,

as

shown

below:

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

resolves to

MQSaturnQ@MQSaturnQM

Figure

53.

Pushing

messages

to

MQ

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue
MQSaturnQ@MQSaturnQM

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

Figure

54.

Messages

travelling

across

a

remote

queue

definition

122

MQe

Application

Programming

Connecting

a

client

to

MQ

via

a

bridge

A

common

topology

is

to

allow

messages

to

flow

between

MQ

and

a

client

MQe

queue

manager.

This

cannot

happen

directly,

but

requires

an

intermediate

bridge-enabled

MQeQueue

manager.

The

client

can

then

be

a

small

footprint

device

with

no

knowledge

of

MQ.

Additions

are

needed

to

allow

a

client

(MQeMoonQM,

on

a

device

called

moon)

to

communicate

with

MQ,

as

shown

in

the

following

diagram:

This

adds

the

following:

v

(Host)moon

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Host
saturn

MQ Queue Manager
MQSaturnQM

@MQSaturnQM

Figure

55.

Simplified

view

of

route

pushing

messages

to

MQ

Host
moon

Queue Manager
MQeMoonQM

Connection
MQeEarthQM
(FastNetwork:earth:8082)

Host
earth

Queue Manager
MQeEarthQM

Store And Forward Queue

Targets
MQeMoonQM

Listener
DefaultListener

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeMoonQM

connects using

pulls from

connects to

Home Server ‘Queue’
SafQueue@MQeEarthQM

SafQueue@MQeEarthQM

@MQeEarthQM

MQ Remote Queue

Figure

56.

A

client

communicating

with

MQ

Designing

your

real

application

123

v

(QueueManager)

MQeMoonQM

on

(Host)moon

v

A

connection

definition

from

MQeMoonQM

to

a

matching

listener

on

MQeEarthQM

to

provide

the

connectivity

between

the

two

MQe

queue

managers.

v

A

store

and

forward

queue

on

MQeEarthQM

that

accepts

and

holds

messages

for

MQeMoonQM,

and

a

home

server

queue

on

MQeMoonQM

that

pulls

messages

from

the

store

and

forward

queue.

v

A

remote

queue

definition

on

the

MQ

queue

manager

that

routes

messages

for

MQeMoonQM

to

the

transmission

queue

MQeEarth.XMITQ.

This

allows

messages

for

MqeMoonQM

to

be

placed

on

the

transmission

queue,

from

where

they

are

pulled

to

MQeEarthQM.

The

topology

is

more

readily

seen

as

message

routes,

as

shown

in

the

following

diagram:

Messages

can

be

pushed

to

MQ

by

using

a

via

connection

to

chain

remote

queues,

as

shown

below:

Host
moon

Queue Manager
MQeMoonQM

Pull Message Route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM *@MQeEarthQM

Figure

57.

Simplified

pull

routes

from

MQ

through

an

MQe

gateway

to

an

MQe

device

style

queue

manager

124

MQe

Application

Programming

Here

a

via

connection

has

been

added

to

route

messages

destined

for

MQSaturnQM

vian

MQeEarthQM,

and

a

remote

queue

definition

for

MQSaturnQ@MQSaturnQM

has

been

added.

The

messages

can

now

flow

from

the

client

to

MQ,

as

shown

in

the

following

diagram:

Figure

58.

Pushing

messages

using

a

via

connection

Designing

your

real

application

125

This

topology

is

more

easily

understood

as

a

collection

of

message

routes,

as

follows:

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure

59.

Pushing

messages

to

MQ

Host

Queue Manager
MQeMoonQM

Pull Message Route

Push Message Route
MQSaturnQ

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

moon

@MQSaturnQM @MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM
*@MQeEarthQM

Figure

60.

Simplified

view

showing

routes

which

push

messages

from

a

device

style

MQe

queue

manager

to

an

MQ

queue

manager

126

MQe

Application

Programming

Pushing

messages

to

MQ

with

a

via

connection

A

common

topology

allows

messages

to

flow

between

MQ

and

a

client

MQe

queue

manager.

This

cannot

happen

directly,

but

requires

an

intermediate

bridge-enabled

MQeQueue

manager.

The

client

can

then

be

a

small

footprint

device

with

no

knowledge

of

MQ.

If

you

start

with

the

configuration

we

have

above,

the

following

additions

are

needed

to

allow

a

client

(MQeMoonQM,

on

a

device

called

moon)

to

communicate

with

MQ,

as

shown

in

the

following

diagram:

The

following

have

been

added:

v

(Host)moon

v

(QueueManager)

MQeMoonQM

on

(Host)moon

v

A

connection

definition

from

MQeMoonQM

to

a

matching

listener

on

MQeEarthQM

to

provide

the

connectivity

between

the

two

MQe

queue

managers.

v

A

store

and

forward

queue

on

MQeEarthQM

that

accepts

and

holds

messages

for

MQeMoonQM,

and

a

home

server

queue

on

MQeMoonQM

that

pulls

messages

from

the

store

and

forward

queue.

v

A

remote

queue

definition

on

the

MQ

queue

manager

that

routes

messages

for

MQeMoonQM

to

the

transmission

queue

MQeEarth.XMITQ.

This

allows

messages

for

MqeMoonQM

to

be

placed

on

the

transmission

queue,

from

where

they

are

pulled

to

MQeEarthQM.

The

topology

is

more

readily

seen

as

message

routes,

as

shown

in

the

following

diagram:

Host
moon

Queue Manager
MQeMoonQM

Connection
MQeEarthQM
(FastNetwork:earth:8082)

Host
earth

Queue Manager
MQeEarthQM

Store And Forward Queue

Targets
MQeMoonQM

Listener
DefaultListener

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeMoonQM

connects using

pulls from

connects to

Home Server ‘Queue’
SafQueue@MQeEarthQM

SafQueue@MQeEarthQM

@MQeEarthQM

MQ Remote Queue

Figure

61.

A

client

communicating

with

MQ

Designing

your

real

application

127

Messages

can

be

pushed

to

MQ

by

using

a

via

connection

to

chain

remote

queues,

as

shown

in

the

following

diagram:

Here

we

have

added

a

via

connection,

to

route

messages

destined

for

MQSaturnQM

vian

MQeEarthQM,

and

we

have

added

a

remote

queue

definition

for

MQSaturnQ@MQSaturnQM.

The

messages

can

now

flow

from

the

client

to

MQ,

as

shown

in

the

following

diagram:

Host
moon

Queue Manager
MQeMoonQM

Pull Message Route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM *@MQeEarthQM

Figure

62.

Simplified

pull

routes

from

MQ

through

an

MQe

gateway

to

an

MQe

device

style

queue

manager

Figure

63.

Pushing

messages

using

a

via

connection

128

MQe

Application

Programming

This

topology

is

more

easily

understood

as

a

collection

of

message

routes,

as

shown

in

the

following

diagram:

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure

64.

Pushing

messages

to

MQ

Host

Queue Manager
MQeMoonQM

Pull Message Route

Push Message Route
MQSaturnQ

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

moon

@MQSaturnQM @MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM
*@MQeEarthQM

Figure

65.

Simplified

view

showing

routes

which

push

messages

from

a

device

style

MQe

queue

manager

to

an

MQ

queue

manager

Designing

your

real

application

129

Security

considerations

Remote

queue

definitions

define

the

security

requirements

that

must

be

satisfied

by

channels

moving

messages

to

target

queues.

The

queue

manager

attribute

rule

defines

the

rules

for

upgrading

channels;

consequently

with

a

sufficiently

flexible

rule,

multiple

security

requirements

can

be

met

by

a

single

channel.

When

a

message

must

be

stored

on

a

queue,

either

en

route

or

at

the

destination,

then

the

queue

attribute

rule

determines

if

the

channel

security

meets

the

requirements

of

the

queue.

Note

however

that

there

are

message

transfers

that

do

not

involve

a

channel,

for

example,

when

a

home

server

places

a

message

it

has

received

from

a

store

queue

on

to

its

destination

queue.

In

these

cases

there

are

no

security

requirements

to

be

satisfied

in

the

transfer,

but

the

message

will

be

stored

in

its

destination

queue

in

a

manner

controlled

by

that

queue’s

security

characteristics.

When

the

home

server

queue

gets

the

message

from

the

store

queue,

a

channel

is

involved

(with

characteristics

determined

by

the

home

server

queue

and

which

must

be

acceptable

to

the

store

queue).

However,

when

the

home

server

queue

passes

the

message

to

the

destination

queue,

there

are

no

channel

characteristics

to

be

compared

with

the

destination

queue’s

security

characteristics.

In

a

single

hop,

message

transfer,

the

security

checking

is

between

the

source

and

target

queue

managers.

In

multiple

hop,

asynchronous

message

transfers,

security

checking

occurs

stepwise

over

each

hop.

Resolution

rules

Resolution

rules

always

start

with

a

message

being

presented

to

a

queue

manager,

with

a

specified

destination

queue

manager

name

and

a

specified

destination

queue

name.

This

is

equivalent

to

the

API

call

putMessage(queueManagerName,

queueName,

msg,....).

The

destinationQueueManagerName

and

destinationQueueName

must

identify

a

local

queue

onto

which

the

message

should

eventually

be

placed.

Rule

1:

Resolve

queue

manager

aliases

If

the

queue

manager

has

an

alias

mapping

destinationQueueManagerName

to

another

name,

for

example

realQueueManagerName,

then

this

substitution

is

made

first,

and

the

call:

putMessage(destinationQueueManagerName,

destinationQueueName

is

effectively

transformed

to

putMessage(realQueueManagerName,

destinationQueueName.

From

this

point

on

destinationQueueManagerName

is

completely

forgotten,

and

realQueueManagerName

is

used.

Queue

resolution

The

queue

manager

now

looks

for

a

queue

to

place

the

message

on,

selecting

the

queue

with

the

best

match

according

to

the

rules

shown

in

Exact

match,

Queue

alias

match,

S&F

queue,

Queue

discovery,

and

Failure,

below:

130

MQe

Application

Programming

’Exact’

match

Local

queue

or

remote

queue

definition

where

the

queue

name

matches

the

destinationQueueName

and

the

queue’s

queue

manager

name

matches

the

destinationQueueManagerName.

The

term

’queues

queue

manager

name’

needs

to

be

explained

further.

For

a

local

queue

this

is

the

same

as

the

name

of

the

queue

manager

where

the

queue

resides.

For

a

local

queue

localQ@localQM,

localQM

is

the

queue’s

queue

manager

name.

For

a

remote

queue

definition

remoteQ@remoteQM

residing

on

localQM,

the

queues

queue

manager

name

is

remoteQM.

Queue

Alias

Match

If

a

queue

(remote

definition

or

local)

has

a

matching

queue

manager

name

and

an

alias

and

this

alias

matches

destinationQueueName

then

this

queue

will

considered

a

match.

Effectively

the

put

message

call:

putMessage(destinationQueueManagerName,

queueAliasName

is

transformed

to

putMessage(destinationQueueManagerName,

realQueueName.

at

this

point.

The

original

name

of

the

queue

used

in

the

put

call

is

entirely

forgotten

from

this

point

on

in

the

resolution.

S&F

queue

If

there

is

no

exact

match

the

queue

manager

searches

for

an

inexact

match.

An

inexact

math

is

a

Store

and

Forward

queue

that

will

accept

messages

for

the

given

queue

manager

name.

The

search

for

a

store

and

forward

queue

ignores

the

destinationQueueName.

If

an

appropriate

Store

And

Forward

queue

is

found,

then

the

message

is

put

to

it,

using

the

destinationQueueManagerName

and

destinationQueueName,

and

the

StoreAndForward

queue

stores

the

destination

with

the

message.

Queue

Discovery

If

no

queue

has

been

found

that

will

accept

the

message,

and

the

message

is

not

for

a

local

queue,

the

queue

manager

tries

to

find

the

remote

destination

queue

and

create

a

remote

queue

definition

for

it

automatically.

This

is

called

queue

discovery.

The

queue

manager

can

only

perform

discovery

if:

v

There

is

a

connection

definition

to

the

destination

queue

manager

v

There

is

an

active

communications

path

to

the

destination

queue

manager

v

The

destination

queue

exists

v

There

is

a

via

connection

to

a

queue

manager

where

a

remote

connection

definition

exists

If

discovery

is

successful,

the

newly

created

remote

queue

definition

is

used.

This

behaves

as

if

an

exact

match

on

a

remote

queue

definition

had

been

found

in

the

first

place.

The

remote

queue

definition

created

by

discovery

is

always

synchronous,

even

if

the

queue

to

which

it

resolves

is

asynchronous,

or

is

a

Store

and

forward

queue.

Designing

your

real

application

131

Failure

If

no

queue

has

been

found

by

the

above

steps,

the

message

put

is

deemed

to

have

failed.

Push

across

network

A

message

placed

upon

a

remote

queue

is

pushed

across

the

network.

The

queue

first

locates

a

connection

definition

with

the

correct

name,

and

then

puts

the

message

to

the

remote

queue

manager

using

the

connection

definition

as

the

entry

to

the

communications

link.

The

queue

seeks

a

connection

definition

whose

name

is

the

same

as

the

queue’s

queue

manager

name.

The

connection

may

be

a

normal

connection,

or

a

via

connection.

Normal

A

normal

connection

points

to

a

listener

upon

the

destination

queue

manager.

The

put

message

command

is

routed

directly

to

the

destination

queue

manager.

The

putMessage

call

is

then

resolved

just

as

if

it

had

been

placed

on

the

queue

manager

via

the

API.

Via

A

via

connection

points

at

another

connection

called

the

’real’

connection.

All

commands

performed

on

the

via

connection

are

delegated

to

the

real

connection.

Via

connections

can

be

chained,

and

so

the

command

may

travel

’via’

several

indirections

before

reach

a

real

connection.

The

names

of

the

put

message

destination

are

not

changed

by

the

use

of

a

via

connection.

Eventually

the

command

is

routed

to

a

’normal’

connection

definition,

then

across

the

network

to

a

queue

manager,

where

the

message

put

is

resolved.

Home

server

pulling

Home

server

queues

pull

messages

from

Store

and

forward

queues.

The

route

of

the

pull

spans

only

a

single

network

hop.

Only

messages

for

the

queue

manager

hosting

the

home

server

queue

are

pulled

down.

Messages

pulled

from

the

store

and

forward

queue

are

presented

to

the

queue

manager

using

a

normal

put

method

call,

and

are

then

resolved

as

normal.

The

messages

pulled

down

this

way

should

all

be

destined

for

local

queues.

Using

aliases

Introduction

to

the

use

of

aliases

with

MQe

queues

and

queue

managers

Aliases

can

be

assigned

for

MQe

queues

to

provide

a

level

of

indirection

between

the

application

and

the

real

queues.

For

example,

a

queue

can

be

given

a

number

of

aliases

and

messages

sent

to

any

of

these

names

will

be

accepted

by

the

queue.

Using

queue

aliases

This

topic

describes

the

ways

in

which

aliasing

can

be

used

with

MQe

queues.

132

MQe

Application

Programming

Merging

applications

Queue

aliasing

can

be

used

to

merge

applications.

For

example,

imagine

you

have

the

following

configuration:

v

A

client

application

that

puts

data

to

queue

Q1

v

A

server

application

that

takes

data

from

Q1

for

processing

v

A

client

application

that

puts

data

to

queue

Q2

v

A

server

application

which

takes

data

from

Q2

for

processing

Some

time

later

the

two

server

applications

are

merged

into

one

application

supporting

requests

from

both

the

client

applications.

It

may

now

be

appropriate

for

the

two

queues

to

be

changed

to

one

queue.

For

example,

you

may

delete

Q2,

and

add

an

alias

of

the

Q1

queue,

calling

it

Q2.

Messages

from

the

client

application

that

previously

used

Q2

are

automatically

sent

to

Q1.

Upgrading

applications

Queue

aliasing

can

be

used

to

upgrade

applications.

For

example,

imagine

you

have

the

following

configuration:

v

A

queue

Q1

v

An

application

that

gets

messages

from

Q1

v

An

application

that

puts

messages

to

Q1

You

then

develop

a

new

version

of

the

application

that

gets

the

messages.

You

can

make

the

new

application

work

with

a

queue

called

Q2.

You

can

define

a

queue

called

Q2

and

use

it

to

exercise

the

new

application.

When

you

want

it

to

go

live,

you

let

the

old

version

clear

all

traffic

off

the

Q1

queue,

and

then

create

an

alias

of

Q2

called

Q1.

The

application

that

puts

to

Q1

will

still

work,

but

the

messages

will

end

up

on

Q2.

Using

different

transfer

modes

to

a

single

queue

Suppose

you

have

a

queue

MY_Q_ASYNC

on

queue

manager

MQE1.

Messages

are

passed

to

MY_Q_ASYNC

by

a

different

queue

manager

MQE2,

using

a

remote

queue

definition

that

is

defined

as

an

asynchronous

queue.

Now

suppose

your

application

periodically

wants

to

get

messages

in

a

synchronous

manner

from

the

MY_Q_ASYNC

queue.

The

recommended

way

to

achieve

this

is

to

add

an

alias

to

the

MY_Q_ASYNC

queue,

perhaps

called

MY_Q_SYNC.

Then

define

a

remote

queue

definition

on

your

MQE2

queue

manager,

that

references

the

MY_Q_SYNC

queue.

This

provides

you

with

two

remote

queue

definitions.

If

you

use

the

MY_Q_ASYNC

definition,

the

messages

are

transported

asynchronously.

If

you

use

the

MY_Q_SYNC

definition,

synchronous

message

transfer

is

used.

Designing

your

real

application

133

Using

queue

manager

aliases

This

topic

describes

the

ways

in

which

aliasing

can

be

used

with

MQe

queue

managers.

Addressing

a

queue

manager

with

several

different

names

Suppose

you

have

a

queue

manager

SERVER23QM

on

the

server

SAMPLEHOST,

listening

on

port

8082.

You

have

an

application

SERVICEX

that

accesses

this

queue

manager,

and

wants

to

refer

to

the

queue

manager

as

SERVICEXQM.

This

can

be

achieved

using

an

alias

for

the

queue

manager

as

follows:

v

Configure

a

connection

on

the

SERVER23QM

:

Connection

Name/Target

queue

manager:

SERVICEXQM

Description:

Alias

definition

to

enable

SERVER23QM

to

receive

messages

sent

to

SERVICEXQM

Channel:

″null″

Network

Adapter:

″null″

Network

adapter

options:

″null″
v

Create

a

local

queue

on

the

SERVER23QM

queue

manager:

Queue

Name:

SERVICEXQ

Queue

Manager:

SERVER23QM

The

server-side

application

takes

messages

from

this

queue,

and

process

them,

sending

messages

back

to

the

client.

Figure

66.

Two

modes

of

transfer

to

a

single

queue

134

MQe

Application

Programming

an

MQe

application

can

now

put

messages

to

the

SERVICEXQ

on

either

the

SERVER23QM

queue

manager,

or

the

SERVICEXQM

queue

manager.

In

either

case,

the

message

will

arrive

on

the

SERVICEXQ.

If

the

SERVICEXQ

queue

is

moved

to

another

queue

manager,

the

connection

alias

can

be

set

up

on

the

new

queue

manager,

and

the

applications

do

not

need

to

be

changed.

Different

routings

from

one

queue

manager

to

another

Using

the

scenario

in

“Addressing

a

queue

manager

with

several

different

names”

on

page

134,

an

MQe

queue

manager

on

a

mobile

device

(MOBILE0058QM)

can

now

access

the

SERVICEXQ

queue

in

a

number

of

different

ways.

Aliasing

on

the

sending

side:

Using

this

method

of

routing,

the

receiving

queue

manager

does

not

know

that

the

sending

queue

manager

has

given

it

an

alias

name.

The

aliasing

is

confined

to

the

sending

queue

manager

only.

On

the

mobile

device:

v

Create

a

connection

from

MOBILE0058QM

to

the

SERVER23QM

queue

manager:

Connection

name

SERVER23QM

Network

Adapter

parameter

Network:SAMPLEHOST:8082

v

Create

an

alias

called

SERVICEXQM

for

queue

manager

SERVER23QM

When

a

message

is

sent

from

the

mobile

device

application

to

the

SERVICEXQM

queue

manager,

MQe

maps

the

SERVICEXQM

name

to

SERVER23QM

in

the

connection

,

and

sends

the

message

to

the

SERVER23QM

queue

manager.

If

the

Mobile58QM

then

wished

to

send

its

messages

to

a

different

server

queue

manager,

Server24QM,

it

would

remove

the

alias

SERVICEXQM

from

the

Server23QM

connection,

and

add

it

to

a

Server24QM

connection.

This

has

no

impact

on

the

receiving

queue

managers,

or

the

sending

applications.

SERVER23QM queue manager

Connection
name=SERVICEQM

channel=null
adapter=null

adapter parameters=null

SERVICEX queue

PutMessage (”SERVICEQM”...)

PutMessage (”SERVICEX”...)

Both messages arrive at SERVICEX queue

Figure

67.

Addressing

a

queue

manager

with

two

different

names

Designing

your

real

application

135

Virtual

queue

manager

on

the

receiving

side:

Using

this

method,

the

sending

queue

managers

think

that

their

messages

are

routed

through

an

intermediate

queue

manager

before

reaching

the

target

queue

manager.

The

target

queue

manager

doesn’t

actually

exist.

The

’intermediate’

queue

manager

captures

all

the

message

traffic

for

this

virtual

target

queue

manager.

On

the

mobile

device:

v

Create

a

connection

from

MOBILE0058QM

to

the

SERVER23QM

queue

manager:

Connection

name

SERVER23QM

Network

Adapter

parameter

Network:SAMPLEHOST:8082

v

Create

a

second

connection

to

the

SERVICEXQM

that

routes

messages

through

the

first

connection:

Connection

name

SERVICEXQM

Network

Adapter

parameter

SERVER23QM

Note:

This

is

not

an

alias.

It

is

a

via

routing,

indicating

that

messages

headed

for

SERVICEXQM

are

to

be

routed

via

the

SERVER23QM

queue

manager

on

the

receiving

side.

The

via

routing

on

the

mobile

device

causes

any

messages

that

are

put

to

SERVICEXQM

to

be

directed

to

Server23QM.

Server23QM

gets

the

messages

and

notes

that

they

are

destined

for

the

SERVICEXQM

queue

manager.

It

resolves

the

SERVICEXQM

name

and

finds

that

it

is

an

alias

which

represents

the

Server23QM

Mobile58QM queue manager

Connection
name=”Server24QM”

channel=DefaultChannel
adapter=Network:server24:8081

Alias=”SERVICEXQM”

Server23QM queue manager

Queue

Server24QM queue manager

Queue

PutMessage(”SERVICEXQM)

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Alias=”SERVICEXQM”

The message goes to either Server23QM or Server24QM
depending on which connection the alias is attached to

Figure

68.

Addressing

a

queue

manager

with

two

different

names

136

MQe

Application

Programming

queue

manager

(itself).

The

Server23QM

queue

manager

then

accepts

the

messages

and

puts

them

onto

the

queue.

As

an

alternative

to

the

above,

you

can

keep

the

SERVICEXQM

in

existence,

but

move

it

from

its

original

machine

to

the

same

machine

(but

a

different

JVM)

as

the

Server23QM

queue

manager.

SERVICEXQM

needs

to

listen

on

a

different

port,

so

the

connection

from

Server23QM

to

SERVICEXQM

needs

to

be

changed

as

well.

Using

adapters

Describes

the

use

of

storage

adapters

and

communications

adapters

in

MQe

applications,

and

explains

how

to

write

your

own

adapters

This

chapter

describes

how

to

implement

adapters

in

an

MQe

application.

You

can

use

MQe

adapters

to

map

MQe

to

storage

or

communications

device

interfaces.

You

can

also

write

your

own

adapters.

This

chapter

contains

the

following

sections:

v

Storage

adapters

v

Communications

adapters

v

How

to

write

adapters

Storage

adapters

MQe

provides

the

following

storage

adapters:

Storage

adapters

MQeCaseInsensitiveDiskAdapter

Provides

support

for

case

insensitive

matching

when

locating

a

specific

file

in

permanent

storage.

MQeDiskFieldsAdapter

Provides

support

for

reading

and

writing

to

persistent

storage.

MQeMappingAdapter

Provides

support

for

mapping

long

file

names

to

short

file

names.

Mobile58QM queue manager

Connection
name=”SERVICEXQM”

channel=DefaultChannel
adapter=Server23QM

Server23QM queue manager

Target
queue

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Connection
name=”Server23QM”

channel=null
adapter=null

Alias=”SERVICEXQM”

PutMessage(SERVICEXQM)
Queue manager SERVICEXQM
does not really exist

Figure

69.

Addressing

a

queue

manager

with

two

different

names

Designing

your

real

application

137

MQeMemoryFieldsAdapter

Provides

support

for

reading

and

writing

to

non-persistent

storage.

MQeMidpFieldsAdapter

Provides

support

for

reading

and

writing

to

permanent

storage

within

a

MIDP

environment.

MQeReducedDiskFieldsAdapter

Provides

support

for

high

speed

writing

to

permanent

storage.

Note

that

you

cannot

alter

the

behavior

of

these

adapters.

For

more

information

on

the

specific

behavior

of

each

storage

adapter,

refer

to

the

MQe

Java

API

Programming

Reference

and

the

MQe

C

API

Programming

Reference.

Communications

adapters

MQe

provides

the

following

communications

adapters:.

Communications

adapters

MQeMidpHttpAdapter

Provides

support

for

reading

and

writing

to

the

network

using

the

HTTP

1.0

protocol

in

a

MIDP

environment.

MQeTcpipHistoryAdapter

Provides

support

for

reading

and

writing

to

the

network

using

the

TCP

protocol.

This

adapter

provides

the

best

TCP

performance

by

chaching

recently

used

data.

Therefore,

we

recommend

that

you

use

this

adapter.

MQeTcpipLengthAdapter

Provides

support

for

reading

and

writing

to

the

network

using

the

TCP

protocol.

MQeTcpipHttpAdapter

Provides

support

for

reading

and

writing

to

the

network

using

the

HTTP

1.0

protocol.

Also

provides

support

for

passing

HTTP

requests

through

proxy

servers.

Note:

If

using

the

Microsoft

JVM,

the

http:proxyHost

and

http:proxyPort

properties

are

automatically

set

by

the

JVM

using

the

settings

in

the

Internet

Explorer.

If

the

use

of

proxies

is

not

required

for

MQe,

set

the

http.proxySet

Java

property

to

false.

MQeUdpipBasicAdapter

Provides

support

for

reading

and

writing

to

the

network

using

the

UDP

protocol.

This

adapter

uses

only

one

port

on

the

server.

The

behavior

of

this

adapter

is

particularly

sensitive

to

the

various

Java

property

settings,

as

detailed

in

the

MQe

Java

Programming

Reference.

MQeWESAuthenticationAdapter

Provides

support

for

passing

HTTP

requests

through

MQe

authentication

proxy

servers

and

transparent

proxy

servers.

You

can

modify

the

behavior

of

these

adapters

using

Java

properties.

For

more

information

on

how

to

use

these

properties

and

their

effect

on

each

communications

adapter,

refer

to

the

MQe

Java

API

Programming

Reference.

You

can

also

write

your

own

adapters

to

tailor

MQe

for

your

own

environment.

The

next

section

describes

some

adapter

examples

that

are

supplied

to

help

you

with

this

task.

138

MQe

Application

Programming

How

to

write

adapters

You

can

also

write

your

own

adapters

to

tailor

MQe

for

your

own

environment.

This

topic

describes

some

adapter

examples

that

are

supplied

to

help

you

with

this

task.

This

example

is

not

intended

as

a

replacement

for

the

adapters

that

are

supplied

with

MQe,

but

as

a

simple

introduction

on

how

to

create

a

communications

adapter.

To

use

your

communications

adapter,

you

must

specify

the

correct

class

name

when

creating

the

listener

on

the

server

queue

manager,

and

specify

the

connection

definition

on

the

client

queue

manager.

All

communications

adapters

must

inherit

from

MQeCommunicationsAdapter

and

must

implement

the

required

methods.

In

order

to

show

how

this

might

be

done

we

shall

use

the

example

adapter,

examples.adapters.MQeTcpipLengthGUIAdapter.

This

is

a

simple

example

that

accepts

data

to

be

written.

It

also

places

the

data

length

and

the

amount

of

data

to

be

written

to

standard

out,

at

the

front

of

the

data.

When

the

adapter

reads

data,

the

data

length

is

written

to

standard

out.

Proper

error

checking

and

recovery

is

not

carried

out.

This

must

be

added

to

any

adapter

written

by

a

user.

MQe

adapters

use

the

default

constructor.

For

this

reason,

an

activate()

method

is

used

in

order

to

set

up

the

adapter

with

an

open()

method

used

to

prepare

the

adapter

for

communication.

The

activate()

method

is

called

only

once

in

the

life-cycle

of

an

adapter

and

is,

therefore,

used

to

set

up

the

information

from

MQePropertyProvider.

The

MQePropertyProvider

looks

internally

to

verify

that

the

specified

property

is

available.

If

it

is

not

available,

it

checks

the

Java

properties.

In

this

way,

it

is

possible

for

a

user

to

specify

a

property

that

may

be

set

by

the

application

or

JVM

command

line.

The

MQeCommunicationsAdapter

provides

two

variables

that

allow

the

adapter

to

identify

its

role

within

the

communications

conversation:

v

If

the

adapter

is

being

used

by

the

MQeListener,

the

variable

listeningAdapter

is

set

to

true.

v

If

the

adapter

has

been

created

by

the

listening

adapter

in

response

to

an

incoming

request,

the

responderAdapter

variable

is

set

to

true.

The

following

code,

taken

from

the

activate()

method,

shows

how

to

obtain

the

information

from

the

MQePropertyProvider.

if

(!listeningAdapter)

{

//

if

we

are

not

a

listening

adapter

we

need

the

address

of

the

server

address

=

info.getProperty

(MQeCommunicationsAdapter.COMMS_ADAPTER_ADDRESS);

}

The

open()

method

is

called

before

each

conversation

and

must,

therefore,

be

used

to

set

information

that

needs

to

be

reset

for

each

request

or

response.

For

example,

an

adapter

that

is

not

persistent

needs

to

create

a

socket

each

time

it

is

opened.

The

following

code

shows

the

use

of

the

variables

that

identify

the

role

of

the

adapter

role

within

the

conversation:

Designing

your

real

application

139

if

(listeningAdapter

&&

null

==

serverSocket)

{

serverSocket

=

new

ServerSocket(port);

}

else

if

(!responderAdapter

&&

null

==

mySocket)

{

mySocket

=

new

Socket(InetAddress.getByName(address),

port);

}

Once

the

activate()

and

open()

methods

have

been

called,

the

listening

adapter

waitForContact

method

is

called.

This

method

must

wait

at

named

location.

In

an

IP

network,

this

will

be

a

named

port.

When

a

request

is

received,

a

new

adapter

is

created.

Note:

This

method

must

set

the

listeningAdapter

to

false

and

the

responderAdapter

to

true.

Once

the

adapter

has

been

set

up

correctly,

you

must

must

returned

it

to

the

caller.

The

following

code

shows

how

to

do

this:

MQeTcpipLengthGUIAdapter

clientAdapter

=

(MQeTcpipLengthGUIAdapter)

MQeCommunicationsAdapter.createNewAdapter(info);

//

set

the

boolean

variables

so

the

adapter

//

knows

it

is

a

responder.

the

listening

//

variable

will

have

been

set

to

true

as

//

the

MQePropertyProvider

has

the

relevant

//

information

to

create

//

this

listening

adapter.

We

must

therefore

reset

the

//

listeningAdapter

variable

to

false

and

the

//responderAdapter

variable

to

true.

clientAdapter.responderAdapter

=

true;

clientAdapter.listeningAdapter

=

false;

//

Assign

the

new

socket

to

this

new

adapter

clientAdapter.setSocket(clientSocket);

return

clientAdapter;

The

initiator

adapter

and

responder

adapter

are

responsible

for

the

main

part

of

the

conversation.

The

initiator

starts

the

conversation.

The

responder

is

created

by

the

listening

adapter,

reads

the

request

that

is

passed

back

to

MQe,

which

then

writes

a

response.

The

adapter

determines

how

the

read

and

the

write

are

undertaken.

The

example

uses

a

BufferedInputStream

and

a

BufferedOutputStream.

Note:

Use

a

a

non-blocking

mode

of

reading

and

writing.

This

enables

the

adapter

to

respond

to

requests

to

shutdown.

The

following

code,

taken

from

the

waitForContact()

method,

shows

how

the

non-blocking

read

can

be

written.

As

MQe

supports

all

Java

runtime

environments

we

are

unable

to

use

Java

version

1.4

specific

classes

for

our

examples,

although

this

version

does

contain

new

non-blocking

classes

do

{

try

{

clientSocket

=

serverSocket.accept();

}

catch

(InterruptedIOException

iioe)

{

if

(MQeThread.getDemandStop())

{

throw

iioe;

}

}

}

while

(null

==

clientSocket);

140

MQe

Application

Programming

An

example

communications

adapter

This

example

uses

the

standard

Java

classes

to

manipulate

TCPIP

and

adds

a

protocol

of

its

own

on

top.

This

protocol

has

a

header

consisting

of

a

four

byte

length

of

the

data

in

the

data

packet

followed

by

the

actual

data.

This

is

so

that

the

receiving

end

knows

how

much

data

to

expect.

This

example

is

not

meant

as

a

replacement

for

the

adapters

that

are

supplied

with

MQe

but

rather

as

a

simple

introduction

into

how

to

create

communications

adapters.

In

reality,

much

more

care

should

be

taken

with

error

handling,

recovery,

and

parameter

checking.

Depending

on

the

MQe

configuration

used,

the

supplied

adapters

may

be

sufficient.

A

new

class

file

is

constructed,

inheriting

from

MQeAdapter.

Some

variables

are

defined

to

hold

this

adapter’s

instance

information,

that

is

the

name

of

the

host,

port

number

and

the

output

stream

objects.

Note:

With

communications,

ensure

that

the

connection

information

is

correct.

For

example,

the

http

connection

in

J2ME

has

no

timeout

implementation.

In

J2SE,

the

client

times

out

with

an

IO

Exception.

In

Midp

the

server

times

out.

If

the

default

read-timeout

has

been

increased

for

the

J2SE

client,

the

same

exception

is

thrown,

that

is

com.ibm.mqe.MQeException:

Data:

(code=7).

This

is

because

the

server

writes

back

the

exception

to

the

client

and

the

client

cannot

restore

this

data.

The

MQeAdapter

constructor

is

used

for

the

object,

so

no

additional

code

needs

to

be

added

for

the

constructor.

public

class

MyTcpipAdapter

extends

MQeAdapter

{

protected

String

host

=

"";

protected

int

port

=

80;

protected

Object

readLock

=

new

Object(

);

protected

ServerSocket

serversocket

=

null;

protected

Socket

socket

=

null;

protected

BufferedInputStream

stream_in

=

null;

protected

BufferedOutputStream

stream_out

=

null;

protected

Object

writeLock

=

new

Object(

);

Next

the

activate

method

is

coded.

This

is

the

method

that

extracts

from

the

file

descriptor

the

name

of

the

target

network

address

if

a

connector,

or

the

listening

port

if

a

listener.

The

fileDesc

parameter

contains

the

adapter

class

name

or

alias

name,

and

any

network

address

data

for

the

adapter

for

example

MyTcpipAdapter:127.0.0.1:80.

The

thisParam

parameter

contains

any

parameter

data

that

was

set

when

the

connection

was

defined

by

administration,

the

normal

value

would

be

″?Channel″.

The

thisOpt

parameter

contains

the

adapter

setup

options

that

were

set

by

administration,

for

example

MQe_Adapter_LISTEN

if

this

adapter

is

to

listen

for

incoming

connections.

public

void

activate(

String

fileDesc,

Object

thisParam,

Object

thisOpt,

int

thisValue1,

int

thisValue2

)

throws

Exception

{

super.activate(

fileDesc,

thisParam,

thisOpt,

thisValue1,

thisValue2

);

/*

isolate

the

TCP/IP

address

-

Designing

your

real

application

141

"MyTcpipAdapter:127.0.0.1:80"

*/

host

=

fileId.substring(

fileId.indexOf(

’:’

)

+

1

);

i

=

host.indexOf(

’:’

);

/*

find

delimiter

*/

if

(

i

>

-1

)

/*

find

it

?

*/

{

port

=

(new

Integer(

host.substring(

i

+

1

)

)).intValue(

);

host

=

host.substring(

0,

i

);

}

}

The

close

method

needs

to

be

defined

to

close

the

output

streams

and

flush

any

remaining

data

from

the

stream

buffers.

Close

is

called

many

time

during

a

session

between

a

client

and

a

server,

however,

when

the

channel

has

completely

finished

with

the

adapter

it

calls

MQe

with

the

option

MQe_Adapter_FINAL.

If

the

adapter

is

to

have

one

socket

connection

for

the

life

of

the

channel

then

the

call

with

MQe_Adapter_FINAL

set,

is

the

one

to

use

to

actually

close

the

socket,

other

calls

should

just

flush

the

buffers.

If

however

a

new

socket

is

to

be

used

on

each

request,

then

each

call

to

MQe

should

close

the

socket,

subsequent

open

calls

should

allocate

a

new

socket:

public

void

close(

Object

opt

)

throws

Exception

{

if

(

stream_out

!=

null

)

/*

output

stream

?

*/

{

stream_out.flush();

/*

empty

the

buffers

*/

stream_out.close();

/*

close

it

*/

stream_out

=

null;

/*

clear

*/

}

if

(

stream_in

!=

null

)

/*

input

stream

?

*/

{

stream_in.close();

/*

close

it

*/

stream_in

=

null;

/*

clear

*/

}

if

(

socket

!=

null

)

/*

socket

?

*/

{

socket.close();

/*

close

it

*/

socket

=

null;

/*

clear

*/

}

if

(

serversocket

!=

null

)

/*

serversocket

?

*/

{

serversocket.close();

/*

close

it

*/

serversocket

=

null;

/*

clear

*/

}

host

=

"";

port

=

80;

}

The

control

method

needs

to

be

coded

to

handle

an

MQe_Adapter_ACCEPT

request,

to

accept

an

incoming

connect

request.

This

is

only

allowed

if

the

socket

is

a

listener

(a

server

socket).

Any

options

that

were

specified

for

the

listen

socket

142

MQe

Application

Programming

(excluding

MQe_Adapter_LISTEN)

are

copied

to

the

socket

created

as

a

result

of

the

accept.

This

is

accomplished

by

the

use

of

another

control

option

MQe_Adapter_SETSOCKET

this

allows

a

socket

object

to

be

passed

to

the

adapter

that

was

just

instantiated.

public

Object

control(

Object

opt,

Object

ctrlObj

)

throws

Exception

{

if

(

checkOption(

opt,

MQe.MQe_Adapter_LISTEN

)

&&

checkOption(

opt,

MQe.MQe_Adapter_ACCEPT

)

)

{

/*

CtrlObj

-

is

a

string

representing

the

file

descriptor

of

the

*/

/*

MQeAdapter

object

to

be

returned

e.g.

"MyTcpip:"

*/

Socket

ClientSocket

=

serversocket.accept();

/*

wait

connect

*/

String

Destination

=

(String)

ctrlObj;

/*

re-type

object*/

int

i

=

Destination.indexOf(

’:’

);

if

(

i

<

0

)

throw

new

MQeException(

MQe.Except_Syntax,

"Syntax:"

+

Destination

);

/*

remove

the

Listen

option

*/

String

NewOpt

=

(String)

options;

/*

re-type

to

string

*/

int

j

=

NewOpt.indexOf(

MQe.MQe_Adapter_LISTEN

);

NewOpt

=

NewOpt.substring(

0,

j

)

+

NewOpt.substring

(

j

+

MQe.MQe_Adapter_LISTEN.length(

)

);

MQeAdapter

Adapter

=

MQe.newAdapter

(

Destination.substring(

0,i+1

),

parameter,

NewOpt

+

MQe_Adapter_ACCEPT,

-1,

-1

);

/*

assign

the

new

socket

to

this

new

adapater

*/

Adapter.control(

MQe.MQe_Adapter_SETSOCKET,

ClientSocket);

return(

Adapter

);

}

else

if

(

checkOption(

opt,

MQe.MQe_Adapter_SETSOCKET

)

)

{

if

(

stream_out

!=

null

)

stream_out.close();

if

(

stream_in

!=

null

)

stream_in

.close();

if

(

ctrlObj

!=

null

)

/*

socket

supplied

?*/

{

socket

=

(Socket)

ctrlObj;

/*

save

the

socket

*/

stream_in

=

new

BufferedInputStream

(socket.getInputStream

());

stream_out

=

new

BufferedOutputStream(socket.getOutputStream());

}

else

return(

super.control(

opt,

ctrlObj

)

);

}

The

open

method

needs

to

check

for

a

listening

socket

or

a

connector

socket

and

create

the

appropriate

socket

object.

Reinitialization

of

the

input

and

output

streams

is

achieved

by

using

the

control

method,

passing

it

a

new

socket

object.

The

opt

parameter

may

be

set

to

MQe_Adapter_RESET,

this

means

that

any

previous

operations

are

now

complete

any

new

reads

or

writes

constitute

a

new

request.

public

void

open(

Object

opt

)

throws

Exception

{

if

(

checkOption(

MQe.MQe_Adapter_LISTEN

)

)

serversocket

=

new

ServerSocket(

port,

32

);

Designing

your

real

application

143

else

control(

MQe.MQe_Adapter_SETSOCKET,

new

Socket(

host,

port

)

);

}

The

read

method

can

take

a

parameter

specifying

the

maximum

record

size

to

be

read.

This

example

calls

internal

routines

to

read

the

data

bytes

and

do

error

recovery

(if

appropriate)

then

return

the

correct

length

byte

array

for

the

number

of

bytes

read.

Ensure

that

only

one

read

at

a

time

occurs

on

this

socket.

The

opt

parameter

may

be

set

to:

MQe_Adapter_CONTENT

read

any

message

content

MQe_Adapter_HEADER

read

any

header

information
{

public

byte[]

read(

Object

opt,

int

recordSize

)

throws

Exception

int

Count

=

0;

/*

number

bytes

read

*/

synchronized

(

readLock

)

/*

only

one

at

a

time

*/

{

if

(

checkOption(opt,

MQe.MQe_Adapter_HEADER

)

)

{

byte

lreclBytes[]

=

new

byte[4];

/*

for

the

data

length

*/

readBytes(

lreclBytes,

0,

4

);

/*

read

the

length

*/

int

recordSize

=

byteToInt(

lreclBytes,

0,

4

);

}

if

(

checkOption(

opt,

MQe.MQe_Adapter_CONTENT

)

)

{

byte

Temp[]

=

new

byte[recordSize];

/*

allocate

work

array

*/

Count

=

readBytes(

Temp,

0,

recordSize);/*

read

data

*/

}

}

if

(

Count

<

Temp.length

)

/*

read

all

length

?

*/

Temp

=

MQe.sliceByteArray(

Temp,

0,

Count

);

return

(

Temp

);

/*

Return

the

data

*/

}

The

readByte

method

is

an

internal

routine

designed

to

read

a

single

byte

of

data

from

the

socket

and

to

attempt

to

retry

any

errors

a

specific

number

of

times,

or

throw

an

end

of

file

exception

if

there

is

no

more

data

to

be

read.

protected

int

readByte(

)

throws

Exception

{

int

intChar

=

-1;

/*

input

characater

*/

int

RetryValue

=

3;

/*

error

retry

count

*/

int

Retry

=

RetryValue

+

1;

/*

reset

retry

count

*/

do{

/*

possible

retry

*/

try

/*

catch

io

errors

*/

{

intChar

=

stream_in.read();

144

MQe

Application

Programming

/*

read

a

character

*/

Retry

=

0;

/*

dont

retry

*/

}

catch

(

IOException

e

)

/*

IO

error

occured

*/

{

Retry

=

Retry

-

1;

/*

decrement

*/

if

(

Retry

==

0

)

throw

e;

/*

more

attempts

?

*/

}

}

while

(

Retry

!=

0

);

/*

more

attempts

?

*/

if

(

intChar

==

-1

)

/*

end

of

file

?

*/

throw

new

EOFException();

/*

...

yes,

EOF

*/

return(

intChar

);

/*

return

the

byte

*/

}

The

readBytes

method

is

an

internal

routine

designed

to

read

a

number

of

bytes

of

data

from

the

socket

and

to

attempt

to

retry

any

errors

a

specific

number

of

times,

or

throw

an

end

of

file

exception

if

there

is

no

more

data

to

be

read.

protected

int

readBytes(

byte

buffer[],

int

offset,

int

recordSize

)

throws

Exception

{

int

RetryValue

=

3;

int

i

=

0;

/*

start

index

*/

while

(

i

<

recordSize

)

/*

got

it

all

in

yet

?

*/

{

/*

...

no

*/

int

NumBytes

=

0;

/*

read

count

*/

/*

retry

any

errors

based

on

the

QoS

Retry

value

*/

int

Retry

=

RetryValue

+

1;

/*

error

retry

count

*/

do{

/*

possible

retry

*/

try

/*

catch

io

errors

*/

{

NumBytes

=

stream_in.read(

buffer,

offset

+

i,

recordSize

-

i

);

Retry

=

0;

/*

no

retry

*/

}

catch

(

IOException

e

)

/*

IO

error

occured

*/

{

Retry

=

Retry

-

1;

/*

decrement

*/

if

(

Retry

==

0

)

throw

e;

/*

more

attempts

?

*/

}

}

while

(

Retry

!=

0

);

/*

more

attempts

?

*/

/*

check

for

possible

end

of

file

*/

if

(

NumBytes

<

0

)

/*

errors

?

*/

throw

new

EOFException(

);

/*

...

yes

*/

Designing

your

real

application

145

i

=

i

+

NumBytes;

/*

accumulate

*/

}

return

(

i

);

/*

Return

the

count

*/

}

The

readln

method

reads

a

string

of

bytes

terminated

by

a

0x0A

character

it

will

ignore

0x0D

characters.

{

synchronized

(

readLock

)

/*

only

one

at

a

time

*/

{

/*

ignore

the

4

byte

length

*/

byte

lreclBytes[]

=

new

byte[4];

/*

for

the

data

length

*/

readBytes(

lreclBytes,

0,

4

);

/*

read

the

length

*/

int

intChar

=

-1;

/*

input

characater

*/

StringBuffer

Result

=

new

StringBuffer(

256

);

/*

read

Header

from

input

stream

*/

while

(

true

)

/*

until

"newline"

*/

{

intChar

=

readByte(

);

/*

read

a

single

byte

*/

switch

(

intChar

)

/*

what

character

*/

{

case

-1:

/*

...

no

character

*/

throw

new

EOFException();

/*

...

yes,

EOF

*/

case

10:

/*

eod

of

line

*/

return(

Result.toString()

);

/*

all

done

*/

case

13:

/*

ignore

*/

break;

default:

/*

real

data

*/

Result.append(

(char)

intChar

);

/*

append

to

string

*/

}

/*

end

of

line

?

*/

}

}

}

The

status

method

returns

status

information

about

the

adapter.

In

this

example

it

returns

for

the

option

MQe_Adapter_NETWORK

the

network

type

(TCPIP),

for

the

option

MQe_Adapter_LOCALHOST

it

returns

the

tcpip

local

host

address.

public

String

status(

Object

opt

)

throws

Exception

{

if

(

checkOption(

opt,

MQe.MQe_Adapter_NETWORK

)

)

return(

"TCPIP"

);

else

if

(

checkOption(

opt,

MQe.MQe_Adapter_LOCALHOST

)

)

return(

InetAddress.getLocalHost(

).toString()

);

else

return(

super.status(

opt

)

);

}

146

MQe

Application

Programming

The

write

method

writes

a

block

of

data

to

the

socket.

It

needs

to

ensure

that

only

one

write

at

a

time

can

be

issued

to

the

socket.

In

this

example

it

calls

an

internal

routine

writeBytes

to

write

the

actual

data

and

perform

any

appropriate

error

recovery.

The

opt

parameter

may

be

set

to:

MQe_Adapter_FLUSH

flush

any

data

in

the

buffers

MQe_Adapter_HEADER

write

any

header

records

MQe_Adapter_HEADERRSP

write

any

header

response

records

public

void

write(

Object

opt,

int

recordSize,

byte

data[]

)

throws

Exception

{

synchronized

(

writeLock

)

/*

only

one

at

a

time

*/

{

if

(

checkOption(

opt,

MQe.MQe_Adapter_HEADER

)

||

checkOption(

opt,

MQe.MQe_Adapter_HEADERRSP

)

)

writeBytes(

intToByte(

recordSize

),

0,

4

);

/*

write

length*/

writeBytes(

data,

0,

recordSize

);

/*

write

the

data

*/

if

(

checkOption(

opt,

MQe.MQe_Adapter_FLUSH

)

)

stream_out.flush(

);

/*

make

sure

it

is

sent

*/

}

}

The

writeBytes

is

an

internal

method

that

writes

an

array

(or

partial

array)

of

bytes

to

a

socket,

and

attempt

a

simple

error

recovery

if

errors

occur.

protected

void

writeBytes(

byte

buffer[],

int

offset,

int

recordSize

)

throws

Exception

{

if

(

buffer

!=

null

)

/*

any

data

?

*/

{

/*

break

the

data

up

into

manageable

chuncks

*/

int

i

=

0;

/*

Data

index

*/

int

j

=

recordSize;

/*

Data

length

*/

int

MaxSize

=

4096;

/*

small

buffer

*/

int

RetryValue

=

3;

/*

error

retry

count

*/

do{

/*

as

long

as

data

*/

if

(

j

<

MaxSize

)

/*

smallbuffer

?

*/

MaxSize

=

j;

int

Retry

=

RetryValue

+

1;

/*

error

retry

count

*/

do{

/*

possible

retry

*/

try

/*

catch

io

errors

*/

{

stream_out.write(

buffer,

offset

+

i,

MaxSize

);

Retry

=

0;

Designing

your

real

application

147

/*

don’t

retry

*/

}

catch

(

IOException

e

)

/*

IO

error

occured

*/

{

Retry

=

Retry

-

1;

/*

decrement

*/

if

(

Retry

==

0

)

throw

e;

/*

more

attempts

?

*/

}

}

while

(

Retry

!=

0

);

/*

more

attempts

?

*/

i

=

i

+

MaxSize;

/*

update

index

*/

j

=

j

-

MaxSize;

/*

data

left

*/

}

while

(

j

>

0

);

/*

till

all

data

sent

*/

}

}

The

writeLn

method

writes

a

string

of

characters

to

the

socket,

terminating

with

0x0A

and

0x0D

characters.

The

opt

parameter

may

be

set

to:

MQe_Adapter_FLUSH

flush

any

data

in

the

buffers

MQe_Adapter_HEADER

write

any

header

records

MQe_Adapter_HEADERRSP

write

any

header

response

records

public

void

writeln(

Object

opt,

String

data

)

throws

Exception

{

if

(

data

==

null

)

/*

any

data

?

*/

data

=

"";

write(

opt,

-1,

MQe.asciiToByte(

data

+

"\r\n"

)

);

/*

write

data

*/

}

This

is

now

a

complete

(though

very

simple)

TCPIP

adapter

that

will

communicate

to

another

copy

of

itself,

one

of

which

was

started

as

a

listener

and

the

other

started

as

a

connector.

An

example

message

store

adapter

This

example

creates

an

adapter

for

use

as

an

interface

to

a

message

store.

It

uses

the

standard

Java

i/o

classes

to

manipulate

files

in

the

store.

This

example

is

not

meant

as

a

replacement

for

the

adapters

that

are

supplied

with

MQe,

but

rather

as

a

simple

introduction

to

creating

a

message

store

adapter.

A

new

class

file

is

constructed,

inheriting

from

MQeAdapter.

Some

variables

are

defined

to

hold

this

adapter’s

instance

information,

such

as

the

name

of

the

file/message

and

the

location

of

the

message

store.

The

MQeAdapter

constructor

is

used

for

the

object,

so

no

additional

code

needs

to

be

added

for

the

constructor.

148

MQe

Application

Programming

public

class

MyMsgStoreAdapter

extends

MQeAdapter

implements

FilenameFilter

{

protected

String

filter

=

"";

/*

file

type

filter

*/

protected

String

fileName

=

"";

/*

disk

file

name

*/

protected

String

filePath

=

"";

/*

drive

and

directory

*/

protected

boolean

reading

=

false;

/*

opened

for

reading

*/

protected

boolean

writing

=

false;

Because

this

adapter

implements

FilenameFilter,

the

following

method

must

be

coded.

This

is

the

filtering

mechanism

that

is

used

to

select

files

of

a

certain

type

within

the

message

store.

public

boolean

accept(

File

dir,

String

name

)

{

return(

name.endsWith(

filter

));

}

Next

the

activate

method

is

coded.

This

is

the

method

that

extracts,

from

the

file

descriptor,

the

name

of

the

directory

to

be

used

to

hold

all

the

messages.

The

Object

parameter

on

the

method

call

may

be

an

attribute

object.

If

it

is,

this

is

the

attribute

that

is

used

to

encode

and/or

decode

the

messages

in

the

message

store.

The

Object

options

for

this

adapter

are:

v

MQe_Adapter_READ

v

MQe_Adapter_WRITE

v

MQe_Adapter_UPDATE

Any

other

options

should

be

ignored.

public

void

activate(

String

fileDesc,

Object

param,

Object

options,

int

value1,

int

value2

)

throws

Exception

{

super.activate(

fileDesc,

param,

options,

lrecl,

noRec

);

filePath

=

fileId.substring(

fileId.indexOf(

’:’

)

+

1

);

String

Temp

=

filePath;

/*

copy

the

path

data

*/

if

(

filePath.endsWith(

File.separator

)

)

/*

ending

separator

?

*/

Temp

=

Temp.substring(

0,

Temp.length(

)

-

File.separator.length(

)

);

else

filePath

=

filePath

+

File.separator;

/*

add

separator

*/

File

diskFile

=

new

File(

Temp

);

if

(

!

diskFile.isDirectory(

)

)

/*

directory

?

*/

if

(

!

diskFile.mkdirs(

)

)

/*

does

mkDirs

work

?

*/

throw

new

MQeException(

MQe.Except_NotAllowed,

"mkdirs

’"

+

filePath

+

"’

failed"

);

filePath

=

diskFile.getAbsolutePath(

)

+

File.separator;

this.open(

null

);

}

Designing

your

real

application

149

The

close

method

disallows

reading

or

writing.

public

void

close(

Object

opt

)

throws

Exception

{

reading

=

false;

/*

not

open

for

reading*/

writing

=

false;

/*

not

open

for

writing*/

}

The

control

method

needs

to

be

coded

to

handle

an

MQe_Adapter_LIST

that

is,

a

request

to

list

all

the

files

in

the

directory

that

satisfy

the

filter.

Also

to

handle

an

MQe_Adapter_FILTER

that

is

a

request

to

set

a

filter

to

control

how

the

files

are

listed.

public

Object

control(

Object

opt,

Object

ctrlObj

)

throws

Exception

{

if

(

checkOption(

opt,

MQe.MQe_Adapter_LIST

)

)

return(

new

File(

filePath

).list(

this

)

);

else

if

(

checkOption(

opt,

MQe.MQe_Adapter_FILTER

)

)

{

filter

=

(String)

ctrlObj;

/*

set

the

filter

*/

return(

null

);

/*

nothing

to

return

*/

}

else

return(

super.control(

opt,

ctrlObj

)

);

/*

try

ancestor

*/

}

The

erase

method

is

used

to

remove

a

message

from

the

message

store.

public

void

erase(

Object

opt

)

throws

Exception

{

if

(

opt

instanceof

String

)

/*

select

file

?

*/

{

String

FN

=

(String)

opt;

/*

re-type

the

option

*/

if

(

FN.indexOf(

File.separator

)

>

-1

)

/*

directory

?

*/

throw

new

MQeException(

MQe.Except_Syntax,

"Not

allowed"

);

if

(

!

new

File(

filePath

+

FN

).delete(

)

)

throw

new

MQeException(

MQe.Except_NotAllowed,

"Erase

failed"

);

}

else

throw

new

MQeException(

MQe.Except_NotSupported,

"Not

supported"

);

}

The

open

method

sets

the

Boolean

values

that

permit

either

reading

of

messages

or

writing

of

messages.

public

void

open(

Object

opt

)

throws

Exception

{

this.close(

null

);

/*

close

any

open

file

*/

fileName

=

null;

/*

clear

the

filename

*/

if

(

opt

instanceof

String

)

/*

select

new

file

?

*/

fileName

=

(String)

opt;

/*

retype

the

name

*/

150

MQe

Application

Programming

reading

=

checkOption(

opt,

MQe.MQe_Adapter_READ

)

||

checkOption(

opt,

MQe.MQe_Adapter_UPDATE

);

writing

=

checkOption(

opt,

MQe.MQe_Adapter_WRITE

)

||

checkOption(

opt,

MQe.MQe_Adapter_UPDATE

);

}

The

readObject

method

reads

a

message

from

the

message

store

and

recreates

an

object

of

the

correct

type.

It

also

decrypts

and

decompresses

the

data

if

an

attribute

is

supplied

on

the

activate

call.

This

is

a

special

function

in

that

a

request

to

read

a

file

that

satisfies

the

matching

criteria

specified

in

the

parameter

of

the

read,

returns

the

first

message

it

encounters

that

satisfies

the

match.

public

Object

readObject(

Object

opt

)

throws

Exception

{

if

(

reading

)

{

if

(

opt

instanceof

MQeFields

)

{

/*

1.

list

all

files

in

the

directory

*/

/*

2.

read

each

file

in

turn

and

restore

as

a

Fields

object

*/

/*

3.

try

an

equality

check

-

if

equal

then

return

that

object

*/

String

List[]

=

new

File(

filePath

).list(

this

);

MQeFields

Fields

=

null;

for

(

int

i

=

0;

i

<

List.length;

i

=

i

+

1

)

try

{

fileName

=

List[i];

/*

remember

the

name

*/

open(

fileName

);

/*

try

this

file

*/

Fields

=

(MQeFields)

readObject(

null

);

if

(

Fields.equals(

(MQeFields)

opt

)

)

/*

match

?

*/

return(

Fields

);

}

catch

(

Exception

e

)

/*

error

occured

*/

{

}

/*

ignore

error

*/

throw

new

MQeException(

Except_NotFound,

"No

match"

);

}

/*

read

the

bytes

from

disk

*/

File

diskFile

=

new

File(

filePath

+

fileName

);

byte

data[]

=

new

byte[(int)

diskFile.length()];

FileInputStream

InputFile

=

new

FileInputStream(

diskFile

);

InputFile.read(

data

);

/*

read

the

file

data

*/

InputFile.close(

);

/*

finish

with

file

*/

/*

possible

Attribute

decode

of

the

data

*/

if

(

parameter

instanceof

MQeAttribute

)

/*

Attribute

encoding

?*/

data

=

((MQeAttribute)

parameter).decodeData(

null,

data,

0,

data.length

);

MQeFields

FieldsObject

=

MQeFields.reMake(

data,

null

);

return(

FieldsObject

);

}

else

throw

new

MQeException(

MQe.Except_NotSupported,

"Not

supported"

);

}

The

status

method

returns

status

information

about

the

adapter.

In

this

examples

it

can

return

the

filter

type

or

the

file

name.

Designing

your

real

application

151

public

String

status(

Object

opt

)

throws

Exception

{

if

(

checkOption(

opt,

MQe.MQe_Adapter_FILTER

)

)

return(

filter

);

if

(

checkOption(

opt,

MQe.MQe_Adapter_FILENAME

)

)

return(

fileName

);

return(

super.status(

opt

)

);

}

The

writeObject

method

writes

a

message

to

the

message

store.

It

compresses

and

encrypts

the

message

object

if

an

attribute

is

supplied

on

the

activate

method

call.

public

void

writeObject(

Object

opt,

Object

data

)

throws

Exception

{

if

(

writing

&&

(data

instanceof

MQeFields)

)

{

byte

dump[]

=

((MQeFields)

data).dump(

);

/*

dump

object

*/

/*

possible

Attribute

encode

of

the

data

*/

if

(

parameter

instanceof

MQeAttribute

)

dump

=

((MQeAttribute)

parameter).encodeData(

null,

dump,

0,

dump.length

);

/*

write

out

the

object

bytes

*/

File

diskFile

=

new

File(

filePath

+

fileName

);

FileOutputStream

OutputFile

=

new

FileOutputStream(

diskFile

);

OutputFile.write(

dump

);

/*

write

the

data

*/

OutputFile.getFD().sync(

);

/*

synchronize

disk

*/

OutputFile.close();

/*

finish

with

file

*/

}

else

throw

new

MQeException(

MQe.Except_NotSupported,

"Not

supported"

);

}

This

is

now

a

complete

(though

very

simple)

message

store

adapter

that

reads

and

writes

message

objects

to

a

message

store.

Variations

of

this

adapter

could

be

coded

for

example

to

store

messages

in

a

database

or

in

nonvolatile

memory.

The

WebSphere

Everyplace

Suite

(WES)

communications

adapter

MQe

provides

sophisticated

security

that

allows

applications

to

run

over

HTTP,

through

the

protection

of

an

Internet

firewall.

The

purpose

of

the

WebSphere

Everyplace

communications

adapter

is

to

allow

MQe

applications

to

authenticate

themselves

with

the

WebSphere

Everyplace

authentication

proxy

and

thus

allow

messages

to

flow

through

it.

The

following

diagram

shows

a

basic

scenario

with

two

applications

communicating

over

the

Internet

through

the

WebSphere

Everyplace

authentication

proxy.

152

MQe

Application

Programming

The

MQe

adapter

acts

as

the

Auth

HTTP

adapter

on

the

sending

application.

The

receiving

application

could

use

either

the

same

adapter

or

the

standard

HTTP

adapter

provided

with

MQe.

However,

the

real

value

of

MQe

is

that

it

allows

asynchronous

messaging

to

occur

in

a

typically

synchronous

environment.

It

is

possible

to

gather

enqueued

requests

from

the

receiving

application

and

deal

with

them

time-independently.

The

following

diagram

shows

how

incoming

requests

could

be

made

to

reach

MQ

servers

asynchronously.

In

each

of

these

environments

the

WebSphere

authentication

proxy

is

adding

the

ability

to

control

access

to

the

receiving

applications.

The

adapter

code

supports

this

by

adding

(application-supplied)

user

ID

and

password

information

to

each

outgoing

HTTP

request.

The

WebSphere

authentication

proxy

accepts

these

requests

and

verifies

that

the

supplied

credentials

are

valid

for

the

current

environment.

If

the

credentials

are

valid

the

proxy

forwards

the

request

to

the

receiving

application.

The

WebSphere

Everyplace

Suite

(WES)

adapter

files

In

a

standard

MQe

installation

the

WebSphere

Everyplace

adapter

consists

of,

and

is

supported

by

the

following

files:

...\Java\com\ibm\mqe\adapters\MQeWESAuthenticationAdapter.class

-

The

WebSphere

Everyplace

adapter

class.

...\Java\examples\application\Example7.class

-

Compiled

example

application

that

uses

the

adapter

...\Java\examples\application\Example7.java

-

Source

for

the

example

application

...\Java\examples\adapters\WESAuthenticationGUIAdapter.class

-

Compiled

example

adapter

that

adds

a

user

interface

to

the

WebSphere

WebSphere MQ
Everyplace
application
(sending)

WebSphere MQ
Everyplace
application
(receiving)

Auth
HTTP

HTTPWebsphere
authentication

proxy

Internet

Figure

70.

Applications

communicating

through

the

WebSphere

authentication

proxy

WebSphere MQ
Everyplace
application
(sending)

WebSphere MQ
Everyplace
application
(receiving)

Auth
HTTP

HTTPWebsphere
authentication

proxy

Internet
WebSphere

MQ
Everyplace
application

(dequeuing)

WebSphere
MQ

WebSphere
MQ

bridge

Figure

71.

Applications

communicating

asynchronously

through

the

WebSphere

Authentication

Proxy

Designing

your

real

application

153

Everyplace

adapter.

As

with

other

example

classes,

this

class

is

not

meant

as

a

replacement

for

the

base

WES

adapter

class,

but

rather

as

a

demonstration

of

how

to

tailor

the

WES

adapter

to

suit

your

requirements.

...\Java\examples\adapters\WESAuthenticationGUIAdapter.java

-

Source

for

the

example

adapter

If

your

environment

CLASSPATH

variable

is

set

to

find

all

classes

within

the

MQe

Java

folder,

the

WebSphere

Everyplace

adapter

class

files

will

be

accessible

from

within

the

Java

environment.

If

the

files

are

not

accessible,

issue

a

command

such

as:

set

CLASSPATH=%CLASSPATH%;c:\mqe\java

This

makes

the

new

classes

visible

to

Java.

(The

exact

format

of

this

command

may

vary

from

system

to

system.)

Once

this

is

complete

you

should

be

able

to

use

the

WebSphere

Everyplace

adapter

classes

in

the

same

way

as

any

other

MQe

classes.

Using

the

WebSphere

Everyplace

Suite

(WES)

adapter

This

section

provides

information

on

how

to

use

the

WebSphere

Everyplace

adapter.

The

information

is

divided

into

three

parts:

General

operation

This

describes

in

detail,

how

to

use

the

adapter

in

your

applications

Using

the

Authentication

Dialog

Example

This

describes

how

to

use

an

example

class,

examples.adapters.WESAuthenticationGUIAdapter.

This

class

is

derived

from

the

base

WES

adapter

class

and

provides

a

small

user

interface

to

collect

the

ID

and

password

of

the

user.

Using

the

Application

Example

This

describes

how

to

use

the

supplied

example

file

examples.application.Example7

which

is

configured

to

use

the

base

WES

adapter.

The

information

in

this

section

assumes

that

both

the

WebSphere

Everyplace

authentication

proxy

and

MQe

have

been

installed

and

configured

correctly.

It

is

also

assumed

that

an

MQe

server

queue

manager

and

an

MQe

client

queue

manager

have

been

configured.

General

operation:

1.

Configure

the

client

queue

manager

to

send

messages

using

the

new

adapter

by

modifying

the

client

queue

manager’s

configuration

.ini

file

so

that

the

Network

alias

points

to

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter.

Use

the

following

command:

(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

2.

Configure

the

server

queue

manager

to

decode

the

stream

of

data

that

the

Client

Adapter

supplies

using

either

the

new

adapter

or

the

standard

HTTP

adapter.

Do

this

by

changing

the

line

in

the

server

queue

manager’s

configuration

.ini

file

so

that

the

Network

alias

points

to

either

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

or

com.ibm.mqe.adapters.MQeTcpipHttpAdapter.

Use

one

of

the

following

commands:

(ascii)Network=com.ibm.mqe.adapters.MQeWESAuthenticationAdapter

(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter

154

MQe

Application

Programming

3.

Modify

the

client

queue

manager

code

so

that

the

required

user

ID

and

password

are

set

before

the

first

network

operation

is

started.

For

example,

insert

the

following

line

near

the

top

of

your

code:

com.ibm.mqe.adapters.MQeWESAuthenticationAdapter.

setBasicAuthorization("myUserId@myRealm",

"myPassword");

Replace

the

parameters

with

a

valid

WES

Server

user

ID

and

password.

You

also

need

to

add

code

to

catch

the

new

MQeException

Except_Authenticate

after

each

network

operation,

in

case

the

supplied

credentials

were

invalid.

4.

Check

that

the

client

queue

manager

can

still

send

messages

to

the

server

queue

manager

without

going

through

the

proxy.

5.

Configure

the

client

machine

to

send

HTTP

requests

through

the

proxy.

Depending

on

how

WES

has

been

configured,

the

adapter

will

need

to

work

with

either

a

transparent

proxy

or

an

authentication

proxy.

As

a

transparent

proxy

In

this

mode,

the

WES

server

acts

as

a

simple

HTTP

proxy.

In

this

case,

you

need

to

set

the

following

Java

application

system

properties

that

relate

to

proxy

information:

http.proxyHost

Must

be

set

to

the

host

name

of

the

WES

proxy

http.proxyPort

Must

be

set

to

the

name

of

the

port

that

the

proxy

is

listening

on

http.proxySet

Must

be

set

to

true,

which

tells

the

adapter

to

use

transparent

proxy

mode

The

above

parameters

can

be

set

by

adding

the

following

to

your

Java

application:

System.getProperties(

).put(

"http.proxySet",

"true"

);

System.getProperties(

).put(

"http.proxyHost",

"wes.hursley.ibm.com"

);

System.getProperties(

).put(

"http.proxyPort",

"8082"

);

The

client

queue

manager’s

connection

to

the

target

MQe

server

is

similar

to

a

connection

that

doesn’t

use

the

WES

proxy.

Figure

72.

Administration

interface

panel

Designing

your

real

application

155

You

need

to

restart

the

server

and

client

queue

managers

for

the

new

settings

to

take

effect.

The

client

should

then

be

able

to

send

messages

to

the

server

through

the

proxy.

As

an

Authentication

Proxy

In

this

mode,

the

WES

server

forwards

requests

to

services,

based

on

the

URL

that

you

supply.

For

example,

you

may

want

requests

for

http://wes.hursley.ibm.com/mqe

to

be

forwarded

to

an

MQe

queue

manager

running

on

mqe.hursley.ibm.com:8082.

To

set

this

up

from

MQe

you

need

to

update

the

client’s

connection

reference

to

the

server.

Target

network

adapter

Should

point

to

the

Authentication

Proxy

machine

and

port

Network

adapter

parameters

Should

contain

the

pathname

to

the

required

service

If

you

are

using

the

MQe

Example

Administration

tool,

select

Connection

and

then

Update

to

configure

this.

Note:

The

reference

to

the

WES

Server

is

entered

in

the

Network

adapter

field,

and

the

pathname

is

entered

in

the

Network

adapter

parms

field.
You

need

to

restart

the

server

and

client

queue

managers

for

the

new

settings

to

take

effect.

The

client

should

then

be

able

to

send

messages

to

the

server

through

the

proxy.

Using

the

authentication

dialog

example:

The

following

information

describes

the

use

of

the

example

class

file,

examples.adapters.WESAuthenticationGUIAdapter.

This

class

adds

a

small

user

interface

to

the

base

WES

adapter

function.

1.

Follow

steps

(1)

and

(2)

of

the

“General

operation”

on

page

154

procedures,

but

substitute

’WESAuthenticationGUIAdapter’

for

’WESAuthenticationAdapter’

in

step

(1).

2.

Configure

the

client’s

TCP/IP

settings

as

in

step

(5)

of

’General

operation’.

Figure

73.

Administration

interface

panel

156

MQe

Application

Programming

The

client

should

now

able

to

send

messages

to

the

server

using

the

WESAuthenticationGUIAdapter.

This

adapter

intercepts

write

calls

to

the

WES

adapter,

and

on

the

first

request

it

pops

up

a

dialog

box

that

prompts

for

user

ID

and

password

information.

When

the

user

clicks

on

OK

or

presses

the

Enter

key,

the

setBasicAuthorization()

method

is

called

with

the

values

from

the

userid

and

password

fields.

The

write()

is

then

forwarded

on

to

the

underlying

WES

adapter.

The

dialog

box

also

has

a

Cancel

button

which,

when

selected,

cancels

the

current

write

operation

by

not

forwarding

the

request

to

the

WES

adapter.

This

causes

an

MQeException

(Except_Stopped)

to

be

thrown.

If

authentication

fails,

the

dialog

box

is

redisplayed

on

the

next

write()

along

with

any

information

provided

by

the

server.

In

order

to

learn

of

an

authentication

failure,

the

example

adapter

intercepts

read()

calls

and

catches

any

Except_Authenticate

MQeExceptions

coming

from

the

adapter.

Note:

Web

browsers

do

not

generally

send

authentication

information

on

the

first

flow.

This

typically

results

in

a

401

or

407

response

that

contains

the

realm

information.

Only

then

does

the

browser

send

the

authenticated

request.

User

clients

may

wish

to

follow

this

convention.

Using

the

application

example:

The

following

information

describes

the

use

of

the

example

application

file,

examples.application.Example7.

This

example

behaves

in

a

similar

way

to

the

MQSeries

Everyplace

programming

example

examples.application.Example1

and

uses

the

basic

WES

adapter

for

communications.

1.

Follow

steps

(1)

and

(2)

of

the

“General

operation”

on

page

154

procedures.

2.

Configure

the

client’s

TCP/IP

settings

as

in

step

(5)

of

“General

operation”

on

page

154.

3.

Edit

the

example

file

...\Java\examples\application\Example7.java

inserting

a

valid

user

ID

and

password,

and

then

recompile

the

application.

4.

Restart

the

server.

5.

Run

the

Example7

program

using

the

following

command:

java

examples.application.Example7

Server

client.ini

where

Server

is

the

name

of

the

remote

queue

manager

(that

the

client

already

knows

how

to

reach)

client.ini

points

to

the

client’s

.ini

configuration

file.

Figure

74.

WebSphere

Everyplace

Suite

adapter

user

dialog

Designing

your

real

application

157

The

application

starts

the

client

queue

manager,

authenticates

with

the

proxy,

puts

a

message

to

server

and

then

gets

a

message

from

the

server.

Using

rules

Introduction

to

using

MQe

rules

MQe

uses

rules

(which

are

essentially

user

exits)

to

allow

applications

to

monitor

and

modify

the

behavior

of

some

of

its

major

components.

Rules

take

the

form

of

methods

on

Java

classes

or

functions

in

C

methods

that

are

loaded

when

MQe

components

are

initialized.

A

component’s

rules

are

invoked

at

certain

points

during

its

execution

cycle.

Rules

methods

with

particular

signatures

are

expected

to

be

available,

so

when

providing

implementations

of

rules,

ensure

that

you

use

the

correct

signatures.

Default

or

example

rules

are

provided

for

all

relevant

MQe

components.

You

can

customize

these

to

satisfy

particular

user

requirements.

Within

the

Java

codebase,

the

MQeQueueProxy

interface

provides

the

user

with

accessor

methods

for

queues,

allowing

the

user

to

interact

with

queues

in

certain

rule

methods.

Rules

may

be

grouped

into

the

following

categories:

v

Queue

manager

rules.

v

Queue

rules.

v

Attribute

rules.

v

Bridge

rules.

Rules

may

also

be

categorized

into

two

groups

depending

upon

whether

they

can

affect

application

behavior

(modification

rules)

or

are

intended

for

notification

purposes

only

(notification

rules).

Queue

manager

rules

Queue

manager

rules

are

invoked

when:

v

The

queue

manager

is

activated

v

The

queue

manager

is

closed

v

A

queue

is

added

to

the

queue

manager

(Java

codebase

only)

v

A

queue

is

removed

from

the

queue

manager

(Java

codebase

only)

v

A

put

message

operation

occurs

v

A

get

message

operation

occurs

v

A

delete

message

operation

occurs

v

An

undo

message

operation

occurs

v

The

queue

manager

is

triggered

to

transmit

any

pending

messages,

as

described

in

Transmission

rules

Loading

and

activating

queue

manager

rules

This

topic

describes

how

to

load

and

activate

queue

manager

rules

in

Java

and

C.

Java

example

queue

manager

rule:

158

MQe

Application

Programming

Queue

manager

rules

are

loaded,

or

changed

whenever

a

queue

manager

administration

message

containing

a

request

to

update

the

queue

manager

rule

class

is

received.

If

a

queue

manager

rule

has

already

been

applied

to

the

queue

manager,

the

existing

rule

is

asked

whether

it

may

be

replaced

with

a

different

rule.

If

the

answer

is

yes,

the

new

rule

is

loaded

and

activated.

A

restart

of

the

queue

manager

is

not

required.

The

QueueManagerUpdater

command-line

tool

in

the

package

examples.administration.commandline

shows

how

to

create

such

an

administration

message.

C

example

queue

manager

rule:

The

user’s

rules

module

is

loaded

and

initialized

when

the

queue

manager

is

loaded

into

memory.

This

occurs

as

a

result

of

calls

either

to

mqeAdministrator_QueueManager_create()

or

to

mqeQueueManager_new().

The

setup

steps

are

as

follows:

v

The

application

must

register

a

rules

alias,

linking

the

rules

alias

to

the

rules

module

name

and

entry

point,

by

using

mqeClassAlias_add(),

for

example:

#define

RULES_ALIAS

"myAlias"

#define

MODULE_NAME

"myRulesModule.dll"

#define

ENTRY_POINT

"myRules_new"

...

mqeString_newUtf8(pExceptBlock,

&rulesAlias,

RULES_ALIAS);

mqeString_newUtf8(pExceptBlock,

&moduleName,

MODULE_NAME);

mqeString_newUtf8(pExceptBlock,

&entryPoint,

ENTRY_POINT);

mqeClassAlias_add(pExceptBlock,

rulesAlias,

moduleName,

entryPoint);

v

The

rules

alias

must

be

included

in

the

queue

manager

start-up

parameters

passed

to

either

mqeAdministrator_QueueManager_create()

or

mqeQueueManager_new(),

for

example.:

MQeQueueManagerParms

qmParams;

qmParams.hQueueStore

=

msgStore;

/*

String

parameters

for

the*/

/*location

of

the

msg

store

*/

qmParams.hQueueManagerRules

=

rulesAlias;

/*

add

in

rules

alias

*/

/*

Indicate

what

parts

of

the

structure

have

been

set

*/

qmParams.opFlags

=

QMGR_Q_STORE_OP

|

QMGR_RULES_OP;

...

rc

=

mqeAdministrator_QueueManager_create(hAdmin,pExceptBlock,

&hQM,qmName,

&qmParms,

®Parms);

v

An

initialization

function

or

entry

point

must

be

supplied

by

the

user.

The

following

is

an

example

of

an

initialization

function

for

a

rules

implementation.

The

members

of

the

parameter

structures

are

documented

in

the

MQe

C

Programming

Reference.

MQERETURN

myRules_new(

MQeRulesNew_in_

*

pInput,MQeRulesNew_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

/*

declare

an

instance

of

the

private

data

*/

/*structure

passed

around

between

rules

invocations.

*/

/*This

holds

user

data

which

is

’global’

between

rules.

*/

Designing

your

real

application

159

myRules

*

myData

=

NULL;

/*

allocate

the

memory

for

the

structure

*/

myData

=

malloc(sizeof(myRules));

if(myData

!=

NULL)

{

/*

map

user

rules

implementations

to

function

pointers

in

output

parameter

structure

*/

pOutput->fPtrActivateQMgr

=

myRules_ActivateQMgr;

pOutput->fPtrCloseQMgr

=

myRules_CloseQMgr;

pOutput->fPtrDeleteMessage

=

unitTestRules_DeleteMessage;

pOutput->fPtrGetMessage

=

myRules_getMessage;

pOutput->fPtrPutMessage

=

myRules_putMessage;

pOutput->fPtrTransmitQueue

=

myRules_TransmitQueue;

pOutput->fPtrTransmitQMgr

=

myRules_TransmitQMgr;

pOutput->fPtrActivateQueue

=

myRules_activateQueue;

pOutput->fPtrCloseQueue

=

myRules_CloseQueue;

pOutput->fPtrMessageExpired

=

myRules_messageExpired;

/*

initialize

data

in

the

private

data

structure

*/

mydata->carryOn

=

MQE_TRUE;

mydata->hAdmin

=

NULL;

mydata->hThread

=

NULL;

mydata->ifp

=

NULL;

mydata->triggerInterval

=

15000;

/*

now

assign

the

private

data

structure

to

*/

/*the

output

parameter

structure

variable

*/

pOutput->pPrivateData

=

(MQEVOID

*)mydata;

}

else

{

/*

We

had

a

problem

so

clear

up

any

strings

in

the

structure

-

none

in

this

case

*/

}

return

rc;

}

The

rules

module

is

unloaded

when

the

queue

manager

is

freed.

Note

that,

unlike

the

java

codebase,

the

rules

implementation

is

linked

to

the

execution

lifecycle

of

a

single

queue

manager

and

may

not

be

replaced

during

the

course

of

this

lifecycle.

Using

queue

manager

rules

This

topic

describes

some

examples

of

the

use

of

queue

manager

rules.

In

the

Java

codebase,

a

user

provides

an

implementation

of

a

rule

method

by

subclassing

the

MQeQueueManagerRule

class.

In

the

C

codebase,

a

user

maps

rules

functions

to

relevant

rules

function

pointers.

These

pointers

are

passed

into

the

rules

initialization

function,

which

is

also

the

entry

point

to

the

user’s

rules

module.

For

a

description

of

all

parameters

passed

to

rules

functions

in

the

C

codebase,

see

the

MQe

C

Programming

Reference.

Example

put

message

rule:

Put

message

rule

-

examples

This

first

example

shows

a

put

message

rule

that

insists

that

any

message

being

put

to

a

queue

using

this

queue

manager

must

contain

an

MQe

message

ID

field:

160

MQe

Application

Programming

Java

codebase

/*

Only

allow

msgs

containing

an

ID

field

to

be

placed

on

the

Queue

*/

public

void

putMessage(

String

destQMgr,

String

destQ,

MQeMsgObject

msg,

MQeAttribute

attribute,

long

confirmId

)

{

if

(

!(msg.Contains(

MQe.Msg_MsgId

))

)

{

throw

new

MQeException(

Except_Rule,

"Msg

must

contain

an

ID"

);

}

}

C

codebase

MQERETURN

myRules_putMessage(

MQeRulesPutMessage_in_

*

pInput,

MQeRulesPutMessage_out_

*

pOutput)

{

//

Only

allow

msgs

containing

an

ID

field

to

be

placed

on

the

Queue

MQERETURN

rc

=

MQERETURN_OK;

MQEBOOL

contains

=

MQE_FALSE;

MQeExceptBlock

*

pExceptBlock=(MQeExceptBlock*)(pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

rc

=

mqeFields_contains(pInput->hMsg,pExceptBlock,

&contains,

MQE_MSG_MSGID);

if(MQERETURN_OK

==

rc

&&

!contains)

{

SET_EXCEPT_BLOCK(

pExceptBlock,

MQERETURN_RULES_DISALLOWED_BY_RULE,

MQEREASON_NA);

}

}

Notice

the

manner

in

which

the

exception

block

instance

is

retrieved

from

the

output

parameter

structure

and

then

set

with

the

appropriate

return

and

reason

codes.

This

is

the

way

in

which

the

rule

function

communicates

with

the

application,

thus

modifying

application

behavior.

Example

get

message

rule:

The

next

example

rule

is

a

get

message

rule

that

insists

that

a

password

must

be

supplied

before

allowing

a

get

message

request

to

be

processed

on

the

queue

called

OutboundQueue.

The

password

is

included

as

a

field

in

the

message

filter

passed

into

the

getMessage()

method.

Java

codebase

/*

This

rule

only

allows

GETs

from

’OutboundQueue’,

if

a

password

is

*/

/*

supplied

as

part

of

the

filter

*/

public

void

getMessage(

String

destQMgr,

String

destQ,

MQeFields

filter,

MQeAttribute

attr,

long

confirmId

)

{

super.getMessage(

destQMgr,

destQ,

filter,

attr,

confirmId

);

if

(destQMgr.equals(Owner.GetName()

&&

destQ.equals("OutboundQueue"))

{

if

(

!(filter.Contains(

"Password"

)

)

{

throw

new

MQeException(

Except_Rule,

"Password

not

supplied"

);

}

else

{

String

pwd

=

filter.getAscii(

"Password"

);

if

(

!(pwd.equals(

"1234"

))

)

{

throw

new

MQeException(

Except_Rule,

"Incorrect

password"

);

}

}

}

}

Designing

your

real

application

161

C

codebase

MQERETURN

myRules_getMessage(

MQeRulesGetMessage_in_

*

pInput,

MQeRulesGetMessage_out_

*

pOutput)

{

MQeStringHndl

hQueueManagerName,

hCompareString,

hCompareString2,

hFieldName,

hFieldValue;

MQEBOOL

isEqual

=

MQE_FALSE;

MQEBOOL

contains

=

MQE_FALSE;

MQeQueueManagerHndl

hQueueManager;

MQERETURN

rc

=

MQERETURN_OK;

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)

(pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

/*

get

the

current

queue

manager

*/

rc

=

mqeQueueManager_getCurrentQueueManager(pExceptBlock,

&hQueueManager);

if(MQERETURN_OK

==

rc)

{

//

if

the

destination

queue

manager

is

the

local

queue

manager

rc

=

mqeQueueManager_getName(

hQueueManager,

pExceptBlock,

&hQueueManagerName

);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeString_equalTo(pInput->hQueue_QueueManagerName,

pExceptBlock,

&isEqual,

hQueueManagerName);

if(MQERETURN_OK

==

rc

&&

isEqual)

{

//

if

the

destination

queue

name

is

"OutboundQueue"

rc

=

mqeString_newUtf8(pExceptBlock,

&hCompareString,

"OutboundQueue");

rc

=

mqeString_equalTo(pInput->hQueueName,

pExceptBlock,

&isEqual,

hCompareString);

if(MQERETURN_OK

==

rc

&&

isEqual)

{

//

password

required

for

this

queue

MQEBOOL

contains

=

MQE_FALSE;

rc

=

mqeString_newUtf8(pExceptBlock,

&hFieldName,

"Password");

rc

=

mqeFields_contains(pInput->hFilter,

pExceptBlock,

&contains,

hFieldName);

if(MQERETURN_OK

==

rc

&&

contains

==

MQE_FALSE)

{

SET_EXCEPT_BLOCK(pExceptBlock,

MQERETURN_RULES_DISALLOWED_BY_RULE,

MQEREASON_NA);

}

else

{

//

parse

password,

etc.

}

}

}

}

}

}

This

previous

rule

is

a

simple

example

of

protecting

a

queue.

However,

for

more

comprehensive

security,

you

are

recommended

to

use

an

authenticator.

An

authenticator

allows

an

application

to

create

access

control

lists,

and

to

determine

who

is

able

to

get

messages

from

queues.

162

MQe

Application

Programming

Example

remove

queue

rule:

The

next

example

rule

is

called

when

a

queue

manager

administration

request

tries

to

remove

a

queue.

The

rule

is

passed

an

object

reference

to

the

proxy

for

the

queue

in

question.

In

this

example,

the

rule

checks

the

name

of

the

queue

that

is

passed,

and

if

the

queue

is

named

PayrollQueue,

the

request

to

remove

the

queue

is

refused.

Java

codebase

/*

This

rule

prevents

the

removal

of

the

Payroll

Queue

*/

public

void

removeQueue(

MQeQueueProxy

queue

)

throws

Exception

{

if

(

queue.getQueueName().equals(

"PayrollQueue"

)

)

{

throw

new

MQeException(

Except_Rule,

"Can’t

delete

this

queue"

);

}

}

C

codebase

This

rule

is

not

implemented

in

the

C

codebase.

Transmission

rules

A

message

that

is

put

to

a

remote

queue

that

is

defined

as

synchronous

is

transmitted

immediately.

Messages

put

to

remote

queues

defined

as

asynchronous

are

stored

within

the

local

queue

manager

until

the

queue

manager

is

triggered

into

transmitting

them.

The

queue

manager

can

be

triggered

directly

by

an

application.

The

process

can

be

modified

or

monitored

using

the

queue

manager’s

transmission

rules.

The

transmission

rules

are

a

subset

of

the

queue

manager

rules.

The

two

rules

that

allow

control

over

message

transmission

are:

triggerTransmission()

This

rule

determines

whether

to

allow

message

transmission

at

the

time

when

the

rule

is

called.

This

can

be

used

to

veto

or

allow

the

transmission

of

all

messages,

that

is,

either

all

or

none

are

allowed

to

be

transmitted.

transmit()

This

rule

makes

a

decision

to

allow

transmission

on

a

per

queue

basis

for

asynchronous

remote

queues.

For

example,

this

makes

it

possible

only

to

transmit

the

messages

from

queues

deemed

to

be

high

priority.

The

transmit()

rule

is

only

called

if

the

triggerTransmission()

rule

returns

successfully.

Trigger

transmission

rule

example

MQe

calls

the

triggerTransmission

rule

when

transmission

is

triggered.

This

occurs

when

the

queue

manager

triggerTransmission

method

or

function

is

explicitly

called

from

an

application

or

a

rule.

Additionally,

in

the

Java

codebase,

the

rule

may

be

invoked

when

a

message

is

put

onto

a

remote

asynchronous

queue.

The

default

rule

behavior

in

both

Java

and

C

allows

the

attempt

to

transmit

pending

messages

to

proceed.

For

example,

this

is

the

default

Java

rule

in

com.ibm.mqe.MQeQueueManagerRule:

/*

default

trigger

transmission

rule

-

always

allow

transmission

*/

public

boolean

triggerTransmission(int

noOfMsgs,

MQeFields

msgFields

){

return

true;

}

Designing

your

real

application

163

The

return

code

from

this

rule

tells

the

queue

manager

whether

or

not

to

transmit

any

pending

messages.

A

return

code

of

true

means

″transmit″,

while

a

return

code

of

false

means

″do

not

transmit

at

this

time″.

The

user

may

override

the

default

behavior

by

implementing

their

own

triggerTransmission()

rule.

A

more

complex

rule

can

decide

whether

or

not

to

transmit

immediately

based

on

the

number

of

messages

awaiting

transmission

on

asynchronous

remote

queues.

The

following

example

shows

a

rule

that

only

allows

transmission

to

continue

if

there

are

more

than

10

messages

pending

transmission.

Java

codebase

/*

Decide

to

transmit

based

on

number

of

pending

messages

*/

public

boolean

triggerTransmission(

int

noOfMsgs,

MQeFields

msgFields

)

{

if(noOfMsgs

>

10)

{

return

true;

/*

then

transmit

*/

}

else

{

return

false;

/*

else

do

not

transmit

*/

}

}

C

codebase

/*

The

following

function

is

mapped

to

the

fPtrTransmitQMgr

function

pointer

*/

/*

in

the

user’s

initialization

function

output

parameter

structure.

*/

MQERETURN

myRules_TransmitQMgr(

MQeRulesTransmitQMgr_in_

*

pInput,

MQeRulesTransmitQMgr_out_

*

pOutput)

{

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock*)(pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

/*

allow

transmission

to

be

triggered

only

if

the

number

of

pending

messages

>

10

*/

if(pInput->msgsPendingTransmission

<=

10)

{

SET_EXCEPT_BLOCK(pExceptBlock,

MQERETURN_RULES_DISALLOWED_BY_RULE,

MQEREASON_NA);

}

}

Transmit

rule

The

transmit()

rule

is

only

called

if

the

triggerTransmission()

rule

allows

transmission.

It

returns

a

value

of

true

or

MQERETURN_OK.

The

transmit()

rule

is

called

for

every

remote

queue

definition

that

holds

messages

awaiting

transmission.

This

means

that

the

rule

can

decide

which

messages

should

be

transmitted

on

a

queue

by

queue

basis.

A

sensible

extension

to

this

rule

can

allow

all

messages

to

be

transmitted

at

’off-peak’

time.

This

allows

only

messages

from

high-priority

queues

to

be

transmitted

during

peak

periods.

Transmit

rule

-

Java

example

1:

The

example

rule

below

only

allows

message

transmission

from

a

queue

if

the

queue

has

a

default

priority

greater

than

5.

If

a

message

has

not

been

assigned

a

priority

before

being

placed

on

a

queue,

it

is

given

the

queue’s

default

priority.

public

boolean

transmit(

MQeQueueProxy

queue

)

{

if

(

queue.getDefaultPriority()

>

5

)

{

return

(true);

}

164

MQe

Application

Programming

else

{

return

(false);

}

}

Transmit

rule

-

C

example

1:

The

example

rule

below

only

allows

message

transmission

from

a

queue

if

the

queue

has

a

default

priority

greater

than

5.

If

a

message

has

not

been

assigned

a

priority

before

being

placed

on

a

queue,

it

is

given

the

queue’s

default

priority.

/*

The

following

function

is

mapped

to

the

fPtrTransmitQueue

function*/

/*

pointer

in

the

user’s

initialization

/*

function

output

parameter

structure.

*/

MQERETURN

myRules_TransmitQueue(

MQeRulesTransmitQueue_in_

*

pInput,

MQeRulesTransmitQueue_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQEBYTE

queuePriority;

MQeRemoteAsyncQParms

queueParms

=

REMOTE_ASYNC_Q_INIT_VAL;

myRules

*

myData

=

(myRules

*)(pInput->pPrivateData);

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)(pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

/*

inquire

upon

the

default

priority

of

the

queue*/

/*

specify

the

subject

of

the

inquire

in

the

queue

parameter

structure*/

queueParms.baseParms.opFlags

=

QUEUE_PRIORITY_OP

;

rc

=

mqeAdministrator_AsyncRemoteQueue_inquire(myData->hAdmin,

pExceptBlock,

pInput->hQueueName,

pInput->hQueue_QueueManagerName,

&queueParms);

//

if

the

default

priority

is

less

than

6,

disallow

the

operation

if(MQERETURN_OK

==

rc

&&

queueParms.baseParms.queuePriority

<

6)

{

SET_EXCEPT_BLOCK(pExceptBlock,

MQERETURN_RULES_DISALLOWED_BY_RULE,

MQEREASON_NA);

}

}

A

more

complex

transmit

rule

example

The

following

example

(in

Java

and

in

C)

assumes

that

the

transmission

of

the

messages

takes

place

over

a

communications

network

that

charges

for

the

time

taken

for

transmission.

It

also

assumes

that

there

is

a

cheap-rate

period

when

the

unit-time

cost

is

lower.

The

rules

block

any

transmission

of

messages

until

the

cheap-rate

period.

During

the

cheap-rate

period,

the

queue

manager

is

triggered

at

regular

intervals.

Transmit

rule

-

Java

example

2:

The

following

example

assumes

that

the

transmission

of

the

messages

takes

place

over

a

communications

network

that

charges

for

the

time

taken

for

transmission.

It

also

assumes

that

there

is

a

cheap-rate

period

when

the

unit-time

cost

is

lower.

The

rules

block

any

transmission

of

messages

until

the

cheap-rate

period.

During

the

cheap-rate

period,

the

queue

manager

is

triggered

at

regular

intervals.

Designing

your

real

application

165

import

com.ibm.mqe.*;

import

java.util.*;

/**

*

Example

set

of

queue

manager

rules

which

trigger

the

transmission

*

of

any

messages

waiting

to

be

sent.

*

*

These

rules

only

trigger

the

transmission

of

messages

if

the

current

*

time

is

between

the

values

defined

in

the

variables

cheapRatePeriodStart

*

and

cheapRatePeriodEnd

*

(This

example

assumes

that

transmission

will

take

place

over

a

*

communication

network

which

charges

for

the

time

taken

to

transmit)

*/

public

class

ExampleQueueManagerRules

extends

MQeQueueManagerRule

implements

Runnable

{

//

default

interval

between

triggers

is

15

seconds

private

static

final

long

MILLISECS_BETWEEN_TRIGGER_TRANSMITS

=

15000;

//

interval

between

which

we

c

heck

whether

the

queue

manager

is

closing

down.

private

static

final

long

MILLISECS_BETWEEN_CLOSE_CHECKS

=

1000

;

//

Max

wait

of

ten

seconds

to

kil

off

the

background

thread

when

//

the

queue

manager

is

closing

down.

private

static

final

long

MAX_WAIT_FOR_BACKGROUND_THREAD_MILLISECONDS

=

10000;

//

Reference

to

the

control

block

used

to

communicate

with

the

background

thread

//

which

does

a

sleep-trigger-sleep-trigger

loop.

//

Note

that

freeing

such

blocks

for

garbage

collection

will

not

stop

the

thread

//

to

which

it

refers.

private

Thread

th

=

null;

//

Flag

which

is

set

when

shutdown

of

the

background

thread

is

required.

//

Volatile

because

the

thread

using

the

flag

and

the

thread

setting

it

to

true

//

are

different

threads,

and

it

is

important

that

the

flag

is

not

held

in

//

CPU

registers,

or

one

thread

will

see

a

different

value

to

the

other.

private

volatile

boolean

toldToStop

=

false;

//cheap

rate

transmission

period

start

and

end

times

protected

int

cheapRatePeriodStart

=

18;

/*18:00

hrs

*/

protected

int

cheapRatePeriodEnd

=

9;

/*09:00

hrs

*/

}

The

cheapRatePeriodStart

and

cheapRatePeriodEnd

functions

define

the

extent

of

this

cheap

rate

period.

In

this

example,

the

cheap-rate

period

is

defined

as

being

between

18:00

hours

in

the

evening

until

09:00

hours

the

following

morning.

The

constant

MILLISECS_BETWEEN_TRIGGER_TRANSMITS

defines

the

period

of

time,

in

milliseconds,

between

each

triggering

of

the

queue

manager.

In

this

example,

the

trigger

interval

is

defined

to

be

15

seconds.

166

MQe

Application

Programming

The

triggering

of

the

queue

manager

is

handled

by

a

background

thread

that

wakes

up

at

the

end

of

the

triggerInterval

period.

If

the

current

time

is

inside

the

cheap

rate

period,

it

calls

the

MQeQueueManager.triggerTransmission()

method

to

initiate

an

attempt

to

transmit

all

messages

awaiting

transmission.

The

background

thread

is

created

in

the

queueManagerActivate()

rule

and

stopped

in

the

queueManagerClose()

rule.

The

queue

manager

calls

these

rules

when

it

is

activated

and

closed

respectively.

/**

*

Overrides

MQeQueueManagerRule.queueManagerActivate()

*

Starts

a

timer

thread

*/

public

void

queueManagerActivate()throws

Exception

{

super.queueManagerActivate();

//

background

thread

which

triggers

transmission

th

=

new

Thread(this,

"TriggerThread");

toldToStop

=

false;

th.start();

//

start

timer

thread

}

/**

*

Overrides

MQeQueueManagerRule.queueManagerClose()

*

Stops

the

timer

thread

*/

public

void

queueManagerClose()throws

Exception

{

super.queueManagerClose();

//

Tell

the

background

thread

to

stop,

as

the

queue

manager

is

closing

now.

toldToStop

=

true

;

//

Now

wait

for

the

background

thread,

if

it’s

not

already

stopped.

if

(

th

!=

null)

{

try

{

//

Only

wait

for

a

certain

time

before

giving

up

and

timing

out.

th.join(

MAX_WAIT_FOR_BACKGROUND_THREAD_MILLISECONDS

);

//

Free

up

the

thread

control

block

for

garbage

collection.

th

=

null

;

}

catch

(InterruptedException

e)

{

//

Don’t

propogate

the

exception.

//

Assume

that

the

thread

will

stop

shortly

anyway.

}

}

}

The

code

to

handle

the

background

thread

looks

like

this:

/**

*

Timer

thread

*

Triggers

queue

manager

every

interval

until

thread

is

stopped

*/

public

void

run()

{

/*

Do

a

sleep-trigger-sleep-trigger

loop

until

the

*/

/*

queue

manager

closes

or

we

get

an

exception.*/

while

(

!toldToStop)

{

try

{

//

Count

down

until

we’ve

waited

enough

//

We

do

a

tight

loop

with

a

smaller

granularity

because

//

otherwise

we

would

stop

a

queue

manager

from

closing

quickly

long

timeToWait

=

MILLISECS_BETWEEN_TRIGGER_TRANSMITS

;

while(

timeToWait

>

0

&&

!toldToStop

)

{

Designing

your

real

application

167

//

sleep

for

specified

interval

Thread.sleep(

MILLISECS_BETWEEN_CLOSE_CHECKS

);

//

We’ve

waited

for

some

time.

Account

for

this

in

the

overall

wait.

timeToWait

-=

MILLISECS_BETWEEN_CLOSE_CHECKS

;

}

if(

!toldToStop

&&

timeToTransmit())

{

//

trigger

transmission

on

QMgr

(which

is

rule

owner)

((MQeQueueManager)owner).triggerTransmission();

}

}

catch

(

Exception

e

)

{

e.printStackTrace();

}

}

}

}

The

variable

owner

is

defined

by

the

class

MQeRule,

which

is

the

ancestor

of

MQeQueueManagerRule.

As

part

of

its

startup

process,

the

queue

manager

activates

the

queue

manager

rules

and

passes

a

reference

to

itself

to

the

rules

object.

This

reference

is

stored

in

the

variable

owner.

The

thread

loops

indefinitely,

as

it

is

stopped

by

the

queueManagerClose()

rule,

and

it

sleeps

until

the

end

of

the

MILLISECS_BETWEEN_TRIGGER_TRANSMITS

interval

period.

At

the

end

of

this

interval,

if

it

has

not

been

told

to

stop,

it

calls

the

timeToTransmit()

method

to

check

if

the

current

time

is

in

the

cheap-rate

transmission

period.

If

this

method

succeeds,

the

queue

manager’s

triggerTransmission()

rule

is

called.

The

timeToTransmit

method

is

shown

in

the

following

code:

protected

boolean

timeToTransmit()

{

/*

get

current

time

*/

Calendar

calendar

=

Calendar.getInstance();

calendar.setTime(

new

Date()

);

/*

get

hour

*/

int

hour

=

calendar.get(

Calendar.HOUR_OF_DAY

);

if

(

hour

>=

cheapRatePeriodStart

||

hour

<

cheapRatePeriodEnd

)

{

return

true;

/*

cheap

rate

*/

}

else

{

return

false;

/*

not

cheap

rate

*/

}

}

Transmit

rule

-

C

example

2:

The

C

example

emulates

the

Java

example.

While

the

native

C

codebase

is

entirely

single-threaded,

it

is

possible

to

write

platform-specific

code

in

which

threads

are

created.

In

this

example

of

a

user-written

queue

manager

activate

rule,

a

thread

is

spawned

which

loops,

sleeping

for

a

period

of

time

defined

in

a

triggerInterval

variable

and

then,

providing

it

has

not

been

asked

to

stop,

checking

that

we

are

in

a

cheap

rate

period

prior

to

attempting

to

trigger

transmission.

Data,

which

is

required

between

rules

invocations,

is

stored

in

the

rule’s

private

data

structure.

The

queue

manager’s

close

rule

function

is

used

to

provide

the

thread’s

terminating

condition,

setting

a

boolean

switch,

carryOn

to

MQE_FALSE.

This

switch

can

be

initialized

to

MQE_TRUE

in

the

rules

initialization

function.

This

function

waits

until

the

thread

is

suspended

before

passing

control

back

to

the

application.

The

private

data

structure

passed

between

rule

invocations

is

as

follows:

168

MQe

Application

Programming

struct

myRules_st_

{

//

rules

instance

structure

MQeAdministratorHndl

hAdmin;

//

administrator

handle

to

carry

around

between

//

rules

functions

MQEBOOL

carryOn;

//

used

for

trigger

transmission

thread

MQEINT32

triggerInterval;

//

used

for

trigger

transmission

thread

HANDLE

hThread;

//

handle

for

the

trigger

transmission

thread

};

typedef

struct

myRules_st_

myRules;

The

queue

manager

activate

rule:

MQEVOID

myRules_activateQueueManager(

MQeRulesActivateQMgr_in_

*

pInput,

MQeRulesActivateQMgr_out_

*

pOutput)

{

//

retrieve

exception

block

-

passed

from

application

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)

(pOutput->pExceptBlock);

//

retrieve

private

data

structure

passed

between

user’s

rules

invocations

myRules

*

myData

=

(myRules

*)(pInput->pPrivateData);

MQeQueueManagerHndl

hQueueManager;

MQERETURN

rc

=

MQERETURN_OK;

rc

=

mqeQueueManager_getCurrentQueueManager(pExceptBlock,

&queueManager);

if(MQERETURN_OK

==

rc)

{

//

set

up

the

private

data

administrator

handle

using

the

retrieved

//

application

queue

manager

handle.

This

is

done

here

rather

than

in

//

the

rules

initialization

function

as

the

queue

manager

has

not

yet

been

//

activated

fully

when

the

rules

//initialization

function

is

invoked.

rc

=

mqeAdministrator_new(pExceptBlock,

&myData>hAdmin,hQueueManager);

}

if(MQERETURN_OK

==

rc)

{

DWORD

tid;

//

Launch

thread

to

govern

calls

to

trigger

transmission

myData->hThread

=

(HANDLE)

CreateThread(NULL,

0,

timeToTrigger,

(MQEVOID

*)myData,

0,

&tId);

if(myData>hThread

==

NULL)

{

//

thread

creation

failed

SET_EXCEPT_BLOCK(pExceptBlock,

MQERETURN_RULES_ERROR,

MQEREASON_NA);

}

}

}

The

timeToTrigger

function

provides

the

equivalent

functionality

of

the

run()

method

in

the

Java

example.

Notice

the

use

of

the

private

data

variable

carryOn,

Designing

your

real

application

169

type

MQEBOOL,

as

one

of

the

conditions

for

the

while

loop

to

continue.

Once

this

variable

has

a

value

of

MQE_FALSE,

the

while

loop

will

terminate,

causing

the

thread

to

terminate

when

the

function

is

exited.

DWORD

_stdcall

timeToTrigger(myRules

*

rulesStruct)

{

MQERETURN

rc

=

MQERETURN_OK;

MQeQueueManagerHndl

hQueueManager;

MQeExceptBlock

exceptBlock;

myRules

*

myData

=

(myRules

*)rulesStruct;

SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

/*

retrieve

the

current

queue

manager

*/

rc

=

mqeQueueManager_getCurrentQueueManager(&exceptBlock,

&hQueueManager);

if(MQERETURN_OK

==

rc)

{

/*

so

long

as

there

is

not

a

grave

internal

error

and

the

termination

condition

has

not

been

set

*/

while(!(EC(&exceptBlock)

==

MQERETURN_QUEUE_MANAGER_ERROR

&&

ERC(&exceptBlock)

==

MQEREASON_INTERNAL_ERROR)

&&

myData->carryOn

==

MQE_TRUE)

{

/*

Are

we

in

a

cheap

rate

transmission

period?

*/

if(timeToTransmit())

{

/*

if

so,

attempt

to

trigger

transmission

*/

rc

=

mqeQueueManager_triggerTransmission(hQueueManager,

&exceptBlock);

/*

wait

for

the

duration

of

the

trigger

interval

*/

Sleep(myData->triggerInterval);

}

}

}

return

0;

}

The

timeToTransmit()

function

returns

a

boolean

to

indicate

whether

or

not

we

are

in

a

cheap

transmission

period:

MQEBOOL

timeToTransmit()

{

SYSTEMTIME

timeInfo;

GetLocalTime(&timeInfo);

if

(timeInfo.wHour

>=

18

||

timeInfo.wHour

<

9)

{

return

MQE_TRUE;

}

else

{

return

MQE_FALSE;

}

}

It

would

probably

be

a

better

idea

to

define

constants

for

the

cheap

rate

interval

boundary

times

and

carry

these

around

in

the

rules

private

data

structure

also

but

that

has

been

not

been

done

here

for

reasons

of

clarity.

The

function

returns

MQE_TRUE

to

suggest

that

we

are

in

a

cheap

rate

period,

that

is

between

the

hours

of

18:00

and

09:00.

A

return

value

of

MQE_TRUE

is

one

of

the

prerequisites

for

transmission

to

be

triggered

in

timeToTrigger().

Finally,

the

queue

manager

close

rule

is

used

to

terminate

the

thread.

Notice

that

one

of

the

conditions

for

termination

of

the

timeToTrigger()

function

is

for

the

boolean

variable

carryOn

to

have

a

value

of

MQE_FALSE.

In

the

close

function,

the

value

of

carryOn

is

set

to

false.

But,

there

may

still

be

a

considerable

lapse

of

time

between

when

this

value

is

set

to

MQE_FALSE

and

when

the

timeToTrigger()

function

is

170

MQe

Application

Programming

exited.

The

value

of

triggerInterval

+

the

time

taken

to

perform

a

triggerTransmission

operation.

Also,

we

wait

for

the

thread

to

terminate

in

this

function.

We

also

call

triggerTransmission()

one

more

time

in

case

there

are

still

some

pending

messages.

MQEVOID

myRules_CloseQMgr(

MQeRulesCloseQMgr_in_

*

pInput,

MQeRulesCloseQMgr_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQeQueueManagerHndl

hQueueManager;

myRules

*

myData

=

(myRules

*)pInput->pPrivateData;

DWORD

result;

MQeExceptBlock

exceptBlock

=

*((MQeExceptBlock

*)pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

//

Effect

the

ending

of

the

thread

by

setting

the

MQEBOOL

continue

to

MQE_FALSE

//

This

leads

to

a

return

from

timeToTrigger()

and

hence

the

implicit

call

//

to

_endthread

myData->carryOn

=

MQE_FALSE;

/*

wait

for

the

thread

in

any

case

*/

result

=

WaitForSingleObject(myData->hThread,

INFINITE);

/*

retrieve

the

current

queue

manager

*/

rc

=

mqeQueueManager_getCurrentQueueManager(&exceptBlock,

&hQueueManager);

if(MQERETURN_OK

==

rc)

{

/*

attempt

to

trigger

transmission

one

/*

last

time

to

clean

up

queue

*/

rc

=

mqeQueueManager_triggerTransmission(hQueueManager,

&exceptBlock);

}

}

Activating

synchronous

remote

queue

definitions

The

queue

manager

can

activate

its

asynchronous

remote

queue

definitions

and

home

server

queues

at

startup

time.

In

the

Java

codebase,

activating

asynchronous

remote

queue

definitions

results

in

an

attempt

to

transmit

any

messages

they

contain,

while

activating

home

server

queues

results

in

an

attempt

to

get

any

messages

that

are

waiting

on

their

assigned

store-and-forward

queue.

The

activateQueues()

rule

allows

this

behavior

to

be

configured.

The

default

rule

just

returns

true.

public

boolean

activateQueues()

{

return

true;

/*

activate

queues

on

queue

manager

start-up

*/

}

/*As

with

other

rules

examples

above,

a

check

can

be

made

to

see

if

the

current

*/

/*

time

is

inside

the

cheap-rate

transmission

period.

This

information

can

then

*/

/*

be

used

to

determine

whether

queues

should

be

activated

or

not.

public

boolean

activateQueues()

{

if

(

timeToTransmit()

)

{

return

true;

}

else

{

return

false;

}

}

Designing

your

real

application

171

If

activateQueues()

returns

false,

the

remote

queue

definitions

are

only

activated

when

a

message

is

put

onto

them.

Home

server

queues

can

be

activated

by

calling

the

queue

manager’s

triggerTransmission()

method.

In

the

C

codebase,

activation

of

home

server

queues

and

asynchronous

queues

does

not

result

in

any

attempts

to

transmit

or

pull

down

pending

messages.

Only

explicit

calls

to

the

queue

manager’s

triggerTransmission()

function

have

this

result.

There

is

no

implementation

of

an

activateQueues

rule

in

the

C

codebase.

Activation

of

queues

occurs

at

queue

manager

startup.

Queue

rules

Queue

rules

In

the

Java

codebase,

each

queue

has

its

own

set

of

rules.

A

solution

can

extend

the

behavior

of

these

rules.

All

queue

rules

should

descend

from

class

com.ibm.mqe.MQeQueueRule.

In

the

C

codebase,

only

a

single

set

of

rules

is

loaded.

A

user

can

implement

different

rules

for

different

queues

by

loading

other

rules

modules

from

the

’master’

module.

The

master

rules

functions

can

then

invoke

the

corresponding

functions

in

any

other

modules

as

required.

Queue

rules

are

called

when:

v

The

queue

is

activated.

v

The

queue

is

closed.

v

A

message

is

placed

on

the

queue

using

a

put

operation

(Java

codebase

only).

v

A

message

is

removed

from

the

queue

using

a

get

operation.

v

A

message

is

deleted

from

the

queue

using

a

delete

operation

(Java

codebase

only).

v

The

queue

is

browsed.

v

An

undo

operation

is

performed

on

a

message

on

the

queue.

v

A

message

listener

is

added

to

the

queue

(Java

codebase

only).

v

A

message

listener

is

removed

from

the

queue

(Java

codebase

only).

v

A

message

expires.

v

An

attempt

is

made

to

change

a

queue’s

attributes,

that

is

authenticator,

cryptor,

compressor

(Java

codebase

only).

v

A

duplicate

message

is

put

onto

a

queue.

v

A

message

is

being

transmitted

from

a

remote

asynchronouse

queue.

Using

queue

rules

This

section

describes

some

examples

of

the

use

of

queue

rules.

The

first

example

shows

a

possible

use

of

the

message

expired

rule,

putting

a

copy

of

the

message

onto

a

Dead

Letter

Queue.

Both

queues

and

messages

can

have

an

expiry

interval

set.

If

this

interval

is

exceeded,

the

message

is

flagged

as

being

expired.

At

this

point

the

messageExpired()

rule

is

called.

On

return

from

this

rule,

the

expired

message

is

deleted.

Thefirst

example

sends

any

expired

messages

to

the

queue

manager’s

dead-letter

queue,

the

name

of

which

is

defined

by

the

constant

MQe.DeadLetter_Queue_Name

in

the

Java

codebase

andMQE_DEADLETTER_QUEUE_NAME

in

the

C

codebase.

The

queue

172

MQe

Application

Programming

manager

rejects

a

put

of

a

message

that

has

previously

been

put

onto

another

queue.

This

protects

against

a

duplicate

message

being

introduced

into

the

MQe

network.

So,

before

moving

the

message

to

the

dead-letter

queue,

the

rule

must

set

the

resend

flag.

This

is

done

by

adding

the

Java

MQe.Msg_Resend

or

C

MQE_MSG_RESEND

field

to

the

message.

The

message

expiry

time

field

must

be

deleted

before

moving

the

message

to

the

dead-letter

queue.

Queue

rules

-

Java

example

1:

This

example

shows

a

possible

use

of

the

message

expired

rule,

and

a

copy

of

the

message

is

put

onto

a

Dead

Letter

Queue.

Both

queues

and

messages

can

have

an

expiry

interval

set.

If

this

interval

is

exceeded,

the

message

is

flagged

as

being

expired.

At

this

point

the

messageExpired()

rule

is

called.

On

return

from

this

rule,

the

expired

message

is

deleted.

/*

This

rule

puts

a

copy

of

any

expired

messages

to

a

Dead

Letter

Queue

*/

public

boolean

messageExpired(

MQeFields

entry,

MQeMsgObject

msg

)

throws

Exception

{

/*

Get

the

reference

to

the

Queue

Manager

*/

MQeQueueManager

qmgr

=

MQeQueueManager.getReference(

((MQeQueueProxy)owner).getQueueManagerName());

/*

need

to

set

re-send

flag

so

that

put

of

message

to

new

queue

isn’t

rejected

*/

msg.putBoolean(

MQe.Msg_Resend,

true

);

/*

if

the

message

contains

an

expiry

interval

field

-

remove

it

*/

if

(

msg.contains(

MQe.Msg_ExpireTime

)

{

msg.delete(

MQe.Msg_ExpireTime

);

}

/*

put

message

onto

dead

letter

queue

*/

qmgr.putMessage(

null,

MQe.DeadLetter_Queue_Name,

msg,

null,

0

);

/*

Return

true.

Note

that

no

use

is

made

of

this

return

value

-

the

message

is

always

deleted

but

the

return

value

is

kept

for

backward

compatibility

*/

return

(true);

}

Queue

rules

-

C

example

1:

This

example

shows

a

possible

use

of

the

message

expired

rule,

and

a

copy

of

the

message

is

put

onto

a

Dead

Letter

Queue.

Both

queues

and

messages

can

have

an

expiry

interval

set.

If

this

interval

is

exceeded,

the

message

is

flagged

as

being

expired.

At

this

point

the

messageExpired()

rule

is

called.

On

return

from

this

rule,

the

expired

message

is

deleted.

MQEVOID

myRules_messageExpired(

MQeRulesMessageExpired_in_

*

pInput,

MQeRulesMessageExpired_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)(pOutput->pExceptBlock);

MQEBOOL

contains

=

MQE_FALSE;

MQeFieldsHndl

hMsg;

MQeQueueManagerHndl

hQueueManager;

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

/*

Set

re-send

flag

so

that

attempt

to

put

message

to

new

queue

isn’t

rejected

*/

Designing

your

real

application

173

//

First,

clone

the

message

as

the

//input

parameter

is

read-only

rc

=

mqeFields_clone(pInput->hMsg,

pExceptBlock,

&hMsg);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeFields_putBoolean(hMsg,

pExceptBlock,

MQE_MSG_RESEND,

MQE_TRUE);

if(MQERETURN_OK

==

rc)

{

//

if

the

message

contains

an

expiry

interval

field

-

remove

it

rc

=

mqeFields_contains(hMsg,

pExceptBlock,

&contains,

MQE_MSG_EXPIRETIME);

if(MQERETURN_OK

==

rc

&&

contains)

{

rc

=

mqeFields_delete(hMsg,

pExceptBlock,

MQE_MSG_EXPIRETIME);

}

if(MQERETURN_OK

==

rc)

{

//

put

message

onto

dead

letter

queue

MQeStringHndl

hQueueManagerName;

rc

=

mqeQueueManager_getCurrentQueueManager(pExceptBlock,

&hQueueManager);

if(MQERETURN_OK

==

rc)

{

rc

=

mqeQueueManager_getName(hQueueManager,

pExceptBlock,

&hQueueManagerName);

if(MQERETURN_OK

==

rc)

{

//

use

a

temporary

exception

block

as

don’t

care

//

if

dead

letter

queue

does

not

exist

MQeExceptBlock

tempExceptBlock;

SET_EXCEPT_BLOCK_TO_DEFAULT(&tempExceptBlock);

rc

=

mqeQueueManager_putMessage(

hQueueManager,

&tempExceptBlock,

hQueueManagerName,

MQE_DEADLETTER_QUEUE_NAME,

hMsg,

NULL,

0

);

(MQEVOID)mqeString_free(hQueueManagerName,

&tempExceptBlock);

}

}

}

}

}

}

Queue

rules

-

Java

example

2:

The

following

example

shows

how

to

log

an

event

that

occurs

on

the

queue.

The

event

that

occurs

is

the

creation

of

a

message

listener.

In

the

example,

the

queue

has

its

own

log

file,

but

it

is

equally

as

valid

to

have

a

central

log

file

that

is

used

by

all

queues.

The

queue

needs

to

open

the

log

file

when

it

is

activated,

and

close

the

log

file

when

the

queue

is

closed.

The

queue

rules,

queueActivate

and

queueClose

can

be

used

to

do

this.

The

variable

logFile

needs

to

be

a

class

variable

so

that

both

rules

can

access

the

log

file.

/*

This

rule

logs

the

activation

of

the

queue

*/

public

void

queueActivate()

{

try

{

logFile

=

new

LogToDiskFile(

\\log.txt

);

log(

MQe_Log_Information,

Event_Activate,

"Queue

"

+

((MQeQueueProxy)owner).getQueueManagerName()

+

"

+

"

+

((MQeQueueProxy)owner).getQueueName()

+

"

active"

);

}

catch(

Exception

e

)

{

e.printStackTrace(

System.err

);

174

MQe

Application

Programming

}

}

/*

This

rule

logs

the

closure

of

the

queue

*/

public

void

queueClose()

{

try

{

log(

MQe_Log_Information,

Event_Closed,

"Queue

"

+

((MQeQueueProxy)owner).getQueueManagerName()

+

"

+

"

+

((MQeQueueProxy)owner).getQueueName()

+

"

closed"

);

/*

close

log

file

*/

logFile.close();

}

catch

(

Exception

e

)

{

e.printStackTrace(

System.err

);

}

}

The

addListener

rule

is

shown

in

the

following

code.

It

uses

the

MQe.log

method

to

add

an

Event_Queue_AddMsgListener

event.

/*

This

rule

logs

the

addition

of

a

message

listener

*/

public

void

addListener(

MQeMessageListenerInterface

listener,

MQeFields

filter

)

throws

Exception

{

log(

MQe_Log_Information,

Event_Queue_AddMsgListener,

"Added

listener

on

queue

"

+

((MQeQueueProxy)owner).getQueueManagerName()

+

"+"

+

((MQeQueueProxy)owner).getQueueName()

);

}

Queue

rules

-

C

example

2:

The

following

example

shows

how

to

log

an

event

that

occurs

on

the

queue.

The

event

that

occurs

is

a

put

message

request.

In

this

example,

a

central

log

is

set

up

for

all

queues

using

the

queue

activate

and

close

rules.

This

log

is

then

used

to

keep

track

of

all

putMessage

operations.

Because

the

log

is

shared

between

rules

invocations,

the

information

needed

to

access

the

log

is

stored

in

the

rules

private

data

structure.

In

this

case,

the

private

data

structure

contains

a

file

handle

for

passing

between

rules

invocations:

struct

myRulesData_

{

//

rules

instance

structure

MQeAdministratorHndl

hAdmin;

/

administrator

handle

to

carry

around

between

//

rules

functions

FILE

*

ifp;

//

file

handle

for

logging

rules

};

typedef

struct

myRulesData_

myRules;

In

the

rules

queue

activate

function,

the

file

is

opened

and

the

activation

of

the

queue

logged:

MQEVOID

myRules_activateQueue(MQeRulesActivateQueue_in_

*

pInput,

MQeRulesActivateQueue_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQECHAR

*

qName;

MQEINT32

size;

//

recover

the

private

data

from

the

input

structure

parameter

pInput

myRules

*

myData

=

(myRules

*)(pInput->pPrivateData);

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)(pOutput->pExceptBlock);

Designing

your

real

application

175

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

if(myData->ifp

==

NULL)

{

//

initialized

to

NULL

in

the

rules

initialization

function

myData->ifp

=

fopen("traceFile.txt","w");

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

NULL,

&size);

if(MQERETURN_OK

==

rc)

{

qName

=

malloc(size);

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

qName,

&size);

if(MQERETURN_OK

==

rc

&&

myData->ifp

!=

NULL)

{

fprintf(myData->ifp,

"Activating

queue

%s

\n",

qName);

}

}

}

}

In

the

rules

queue

close

function,

the

file

is

closed

after

the

closure

of

the

queue

is

logged:

MQEVOID

myRules_closeQueue(MQeRulesCloseQueue_in_

*

pInput,

MQeRulesCloseQueue_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQECHAR

*

qName;

MQEINT32

size;

//

recover

the

private

data

from

the

input

structure

parameter

pInput

myRules

*

myData

=

(myRules

*)(pInput->pPrivateData);

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)(pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

if(myData->ifp

!=

NULL)

{

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

NULL,

&size);

if(MQERETURN_OK

==

rc)

{

qName

=

malloc(size);

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

qName,

&size);

if(MQERETURN_OK

==

rc)

{

fprintf(myData->ifp,

"Closing

queue

%s

\n",

qName);

}

}

fclose(myData->ifp);

MyData->ifp

=

NULL;

}

}

The

rules

put

message

function

ensures

that

each

put

message

operation

is

logged:

MQERETURN

myRules_putMessage(MQeRulesPutMessage_in_

*

pInput,

MQeRulesPutMessage_out_

*

pOutput)

{

MQERETURN

rc

=

MQERETURN_OK;

MQECHAR

*

qName,

*

qMgrName;

MQEINT32

size;

//

recover

the

private

data

from

the

input

structure

parameter

pInput

myRules

*

myData

=

(myRules

*)(pInput->pPrivateData);

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)(pOutput->pExceptBlock);

176

MQe

Application

Programming

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

if(myData->ifp

!=

NULL)

{

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

NULL,

&size);

if(MQERETURN_OK

==

rc)

{

qName

=

malloc(size);

rc

=

mqeString_getUtf8(pInput->hQueueName,

pExceptBlock,

qName,&size);

}

if(MQERETURN_OK

==

rc)

{

rc

=

mqeString_getUtf8(pInput->hQueue_QueueManagerName,

pExceptBlock,

NULL,

&size);

if(MQERETURN_OK

==

rc)

{

qMgrName

=

malloc(size);

rc

=

mqeString_getUtf8(pInput->hQueue_QueueManagerName,

pExceptBlock,

qMgrName,

&size);

}

}

if(MQERETURN_OK

==

rc)

{

fprintf(myData->ifp,

"Putting

a

message

onto

queue

%s

on

queue

manager

%s\n",qName,

qMgrName);

}

}

/*

allow

the

operation

to

proceed

regardless

of

what

went

wrong

in

this

rule

*/

SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

return

EC(pExceptBlock);

}

Java

Message

Service

(JMS)

The

MQe

classes

for

Java

Message

Service

(JMS)

are

a

set

of

Java

classes

that

implement

the

Sun

JMS

interfaces

to

enable

JMS

programs

to

access

MQe

systems.

This

topic

describes

how

to

use

the

MQe

classes

for

JMS.

The

initial

release

of

JMS

classes

for

MQe

Version

2.1,

supports

the

point-to-point

model

of

JMS,

but

does

not

support

the

publish

or

subscribe

model.

The

use

of

JMS

as

the

API

to

write

MQe

applications

has

a

number

of

benefits,

because

JMS

is

open

standard:

v

The

protection

of

investment,

both

in

skills

and

application

code

v

The

availability

of

people

skilled

in

JMS

application

programming

v

The

ability

to

write

messaging

applications

that

are

independent

of

the

JMS

implementations

More

information

about

the

benefits

of

the

JMS

API

is

on

Sun’s

Web

site

at

http://java.sun.com.

Using

JMS

with

MQe

This

section

describes

how

to

set

up

your

system

to

run

the

example

programs,

including

the

Installation

Verification

Test

(IVT)

example

which

verifies

your

MQe

JMS

installation.

To

use

JMS

with

MQe

you

must

have

the

following

jar

files,

in

addition

to

MQeBase.jar,

on

your

class

path:

Designing

your

real

application

177

jms.jar

This

is

Sun’s

interface

definition

for

the

JMS

classes

MQeJMS.jar

This

is

the

MQe

implementation

of

JMS

Obtaining

jar

files

MQe

does

not

ship

with

Sun’s

JMS

interface

definition,

which

is

contained

in

jms.jar,

and

this

must

be

downloaded

before

JMS

can

be

used.

At

the

time

of

writing,

this

can

be

freely

downloaded

fromhttp://java.sun.com/products/jms/docs.htmlThe

JMS

Version

1.0.2b

jar

file

is

required.

In

addition,

if

JMS

administered

objects

are

to

be

stored

and

retrieved

using

the

Java

Naming

and

Directory

Interface

(JNDI),

the

javax.naming.*

classes

must

be

on

the

classpath.

If

Java

1

is

being

used,

for

example,

a

1.1.8

JRE,

jndi.jar

must

be

obtained

and

added

to

the

classpath.

If

Java

2

is

being

used,

a

1.2

or

later

JRE,

the

JRE

might

contain

these

classes.

You

can

use

MQe

without

JNDI,

but

at

the

cost

of

a

small

degree

of

provider

dependence.MQe-specific

classes

must

be

used

for

the

ConnectionFactory

and

Destination

objects.

You

can

download

JNDI

jar

files

from

http://java.sun.com/products/jndi

Testing

the

JMS

class

path

You

can

use

the

example

program

examples.jms.MQeJMSIVT

to

test

your

JMS

installation.

Before

you

run

this

program,

you

need

an

MQe

queue

manager

that

has

a

SYSTEM.DEFAULT.LOCAL.QUEUE.

In

addition

to

the

JMS

jar

files

mentioned

above,

you

also

need

the

following

or

equivalent

jar

files

on

your

class

path

to

run

examples.jms.MQeJMSIVT:

v

MQeBase.jar

v

MQeExamples.jar

You

can

run

the

example

from

the

command

line

by

typing:

java

examples.jms.MQeJMSIVT

-i

<ini

file

name>

where

<ini

file

name>

is

the

name

of

the

initialization

(ini)

file

for

the

MQe

queue

manager.

You

can

optionally

add

a

″-t″

flag

to

turn

tracing

on:

java

examples.jms.MQeJMSIVT

-t

-i

<ini

file

name>

The

example

program

checks

that

the

required

jar

files

are

on

the

class

path

by

checking

for

classes

that

they

contain.

It

creates

a

QueueConnectionFactory

and

configures

it

using

the

ini

file

name

that

you

passed

in

on

the

command

line.

It

starts

a

connection,

which:

1.

Starts

the

MQe

queue

manager

2.

Creates

a

JMS

Queue

representing

the

queue

SYSTEM.DEFAULT.LOCAL.QUEUE

on

the

queue

manager

3.

Sends

a

message

to

the

JMS

Queue

4.

Reads

the

message

back

and

compares

it

to

the

message

it

sent

The

SYSTEM.DEFAULT.LOCAL.QUEUE

should

not

contain

any

messages

before

running

the

program,

otherwise

the

message

read

back

will

not

be

the

one

that

the

program

sent.

The

output

from

the

program

should

look

like

this:

178

MQe

Application

Programming

using

ini

file

’<.ini

file

name>’

to

configure

the

connection

checking

classpath

found

JMS

interface

classes

found

MQe

JMS

classes

found

MQe

base

classes

Creating

and

configuring

QueueConnectionFactory

Creating

connection

From

the

connection

data,

JMS

provider

is

IBM

MQe

Version

2.0.0.0

Creating

session

Creating

queue

Creating

sender

Creating

receiver

Creating

message

Sending

message

Receiving

message

HEADER

FIELDS

--

JMSType:

jms_text

JMSDeliveryMode:

2

JMSExpiration:

0

JMSPriority:

4

JMSMessageID:

ID:00000009524cf094000000f052fc06ca

JMSTimestamp:

1032184399562

JMSCorrelationID:

null

JMSDestination:

null:SYSTEM.DEFAULT.LOCAL.QUEUE

JMSReplyTo:

null

JMSRedelivered:

false

PROPERTY

FIELDS

(read

only)

JMSXRcvTimestamp

:

1032184400133

MESSAGE

BODY

(read

only)

A

simple

text

message

from

the

MQeJMSIVT

program

Retrieved

message

is

a

TextMessage;

now

checking

for

equality

with

the

sent

message

Messages

are

equal.

Great!

Closing

connection

connection

closed

IVT

finished

Running

other

MQe

JMS

example

programs

MQe

provides

two

other

example

programs

for

the

JMS

classes.

The

program

examples.jms.PTPSample01

is

similar

to

the

IVT

examples

described

above,

but

there

is

a

command

line

argument

to

tell

it

not

to

use

the

Java

Naming

and

Directory

Interface

(JNDI)

and

it

does

not

have

the

same

checks

on

the

class

path.

The

program

requires

the

same

JMS

and

MQe

jar

files

on

the

class

path

as

examples.jms.MQeJMSIVT,

that

is

jms.jar,

MQeJMS.jar,

MQeBase.jar,

and

MQeExamples.jar.

It

also

requires

the

jndi.jar

file,

even

if

it

does

not

use

JNDI,

because

the

program

imports

javax.naming.

The

section

on

Using

JNDI

provides

more

information

on

the

jndi.jar

file.

You

can

run

the

example

from

the

command

line

by

typing:

java

examples.jms.PTPSample01

-nojndi

-i

<ini

file

name>

where

<ini

file

name

>

is

the

name

of

the

initialization

(ini)

file

for

the

MQe

queue

manager.

By

default,

the

program

will

use

the

SYSTEM.DEFAULT.LOCAL.QUEUE

on

this

queue

manager.

You

can

specify

a

different

queue

by

using

the

-q

flag:

Designing

your

real

application

179

java

examples.jms.PTPSample01

-i

<ini

file

name>

-q

<queue

name>

You

can

also

turn

tracing

on

by

adding

the

-t

flag:

java

examples.jms.PTPSample01

-t

-i

<ini

file

name>

-q

<queue

name>

The

examples.jms.PTPSample02

program

uses

message

listeners

and

filters.

This

program

creates

a

QueueReceiver

with

a

″blue″

filter

and

creates

a

message

listener

for

it.

It

creates

a

second

QueueReceiver

with

a

″red″

filter

and

message

listener.

It

then

sends

four

messages

to

a

queue,

two

with

the

filter

property

colour

set

to

blue

and

two

with

the

filter

property

colour

set

to

red,

and

checks

that

the

message

listeners

receive

the

correct

messages.

The

program

has

the

same

command

line

parameters

as

examples.jms.PTPSample01.

Writing

JMS

programs

Introduces

the

JMS

model

and

provides

information

on

writing

MQe

JMS

applications

This

section

provides

information

on

writing

MQe

JMS

applications.

It

provides

a

brief

introduction

to

the

JMS

model

and

information

on

programming

some

common

tasks

that

application

programs

may

need

to

perform.

The

JMS

model

JMS

defines

a

generic

view

of

a

message

service.

It

is

important

to

understand

this

view,

and

how

it

maps

onto

the

underlying

MQe

system.

The

generic

JMS

model

is

based

around

the

following

interfaces

that

are

defined

in

Sun’s

javax.jms

package:

Connection

This

provides

a

connection

to

the

underlying

messaging

service

and

is

used

to

create

Sessions.

Session

This

provides

a

context

for

producing

and

consuming

messages,

including

the

methods

used

to

create

MessageProducers

and

MessageConsumers.

MessageProducer

This

is

used

to

send

messages.

MessageConsumer

This

is

used

to

receive

messages.

Destination

This

represents

a

message

destination.

Note:

A

connection

is

thread

safe,

but

sessions,

message

producers,

and

message

consumers

are

not.

While

the

JMS

specification

allows

a

Session

to

be

used

by

more

than

one

thread,

it

is

up

to

the

user

to

ensure

that

Session

resources

are

not

concurrently

used

by

multiple

threads.

The

recommended

strategy

is

to

use

one

Session

per

application

thread.

Therefore,

in

MQe

terms:

Connection

This

provides

a

connection

to

an

MQe

queue

manager.

All

the

Connections

in

a

JVM

must

connect

to

the

same

queue

manager,

because

MQe

supports

a

single

queue

manager

per

JVM.

The

first

connection

created

by

an

application

will

try

and

connect

to

an

already

running

queue

manager,

and

180

MQe

Application

Programming

if

that

fails

will

attempt

to

start

a

queue

manager

itself.

Subsequent

connections

will

connect

to

the

same

queue

manager

as

the

first

connection.

Session

This

does

not

have

an

equivalent

in

MQe

Message

producer

and

message

consumer

These

do

not

have

direct

equivalents

in

MQe.

The

MessageProducer

invokes

the

putMessage()

method

on

the

queue

manager.

The

MessageConsumer

invokes

the

getMessage()

method

on

the

queue

manager.

Destination

This

represents

an

MQe

queue.

MQe

JMS

can

put

messages

to

a

local

queue

or

an

asynchronous

remote

queue

and

it

can

receive

messages

from

a

local

queue.

It

cannot

put

messages

to

or

receive

messages

from

a

synchronous

remote

queue.

The

generic

JMS

interfaces

are

subclassed

into

more

specific

versions

for

Point-to-point

and

Publish

or

Subscribe

behavior.

MQe

implements

the

Point-to-point

subclasses

of

JMS.

The

Point-to-point

subclasses

are:

QueueConnection

Extends

Connection

QueueSession

Extends

Session

QueueSender

Extends

MessageProducer

QueueReceiver

Extends

MessageConsumer

Queue

Extends

destination

It

is

recommended

that

you

write

application

programs

that

use

only

references

to

the

interfaces

in

javax.jms.

All

vendor-specific

information

is

encapsulated

in

implementations

of:

v

QueueConnectionFactory

v

Queue

These

are

known

as

″administered

objects″,

that

is,

objects

that

can

be

administered

and

stored

in

a

JNDI

namespace.

A

JMS

application

can

retrieve

these

objects

from

the

namespace

and

use

them

without

needing

to

know

which

vendor

provided

the

implementation.

However,

on

small

devices

looking

up

objects

in

a

JNDI

namespace

may

be

impractical

or

represent

an

unnecessary

overhead.

We,

therefore,

provide

two

versions

of

the

QueueConnectionFactory

and

Queue

classes.

The

parent

classes,

MQeQueueConnectionFactory.class,

MQeJMSQueue.class,

provide

the

base

JMS

functionality

but

cannot

be

stored

in

JNDI,

while

subclasses,

MQeJNDIQueueConnectionFactory.class,

and

the

MQeJMSJNDIQueue.class,

add

the

necessary

functionality

for

them

to

be

stored

and

retrieved

from

JNDI.

Building

a

connection:

Designing

your

real

application

181

You

normally

build

connections

indirectly

using

a

connection

factory.

A

JNDI

namespace

can

store

a

configured

factory,

therefore

insulating

the

JMS

application

from

provider-specific

information.

See

the

section

Using

JNDI,

below,

for

details

on

how

to

store

and

retrieve

objects

using

JNDI.

If

a

JNDI

namespace

is

not

available,

you

can

create

factory

objects

at

runtime.

However,

this

reduces

the

portability

of

the

JMS

application

because

it

requires

references

to

MQe

specific

classes.

The

following

code

creates

a

QueueConnectionFactory.

The

factory

uses

an

MQe

queue

manager

that

is

configured

with

an

initialisation

(ini)

file:

QueueConnectionFactory

factory;

factory

=

new

com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory();

((com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory)factory).

setIniFileName(<initialisation

file>)

Using

the

factory

to

create

a

connection:

Use

the

createQueueConnection()

to

create

a

QueueConnection:

QueueConnection

connection;

connection

=

factory.createQueueConnection();

Starting

the

connection:

Under

the

JMS

specification,

connections

are

not

active

upon

creation.

Until

the

connection

starts,

MessageConsumers

that

are

associated

with

the

connection

cannot

receive

any

messages.

Use

the

following

command

to

start

the

connection:

connection.start();

Obtaining

a

session:

Once

a

connection

has

been

created,

you

can

use

the

createQueueSession()

method

on

the

QueueConnection

to

obtain

a

session.

The

method

takes

two

parameters:

1.

A

boolean

that

determines

whether

the

session

is

″transacted″

or

″non-transacted″.

2.

A

parameter

that

determines

the

″acknowledge″

mode.

This

is

used

when

the

session

is

″non-transacted″.

The

simplest

case

is

that

where

acknowledgements

are

used

and

are

handled

by

JMS

itself

with

AUTO_ACKNOWLEDGE,

as

shown

in

the

following

code

fragment:

QueueSession

session;

boolean

transacted

=

false;

session

=

connection.createQueueSession(transacted,

Session.AUTO_ACKNOWLEDGE);

182

MQe

Application

Programming

Sending

a

message:

Messages

are

sent

using

a

MessageProducer.

For

point-to-point

this

is

a

QueueSender

that

is

created

using

the

createSender()

method

on

QueueSession.

A

QueueSender

is

normally

created

for

a

specific

Queue,

so

that

all

messages

sent

using

that

sender

are

sent

to

the

same

destination.

Queue

objects

can

be

either

created

at

runtime,

or

built

and

stored

in

a

JNDI

namespace.

Refer

to

“Using

Java

Naming

and

Directory

Interface

(JNDI)”

on

page

188,

for

details

on

how

to

store

and

retrieve

objects

using

JNDI.

JMS

provides

a

mechanism

to

create

a

Queue

at

runtime

that

minimizes

the

implementation-specific

code

in

the

application.

This

mechanism

uses

the

QueueSession.createQueue()

method,

which

takes

a

string

parameter

describing

the

destination.

The

string

itself

is

still

in

an

implementation-specific

format,

but

this

is

a

more

flexible

approach

than

directly

referencing

the

implementation

classes.

For

MQe

JMS

the

string

is

the

name

of

the

MQe

queue.

This

can

optionally

contain

the

queue

manager

name.

If

the

queue

manager

name

is

included,

the

queue

name

is

separated

from

it

by

a

plus

sign

’+’,

for

example:

ioQueue

=

session.createQueue("myQM+myQueue");

This

will

create

a

JMS

Queue

representing

the

MQe

queue

″myQueue″

on

queue

manager

″myQM″.

If

no

queue

manager

name

is

specified

the

local

queue

manager

is

used,

i.e.

the

one

that

JMS

is

connected

to.

For

example:

String

queueName

=

"SYSTEM.DEFAULT.LOCAL.QUEUE";

...

ioQueue

=

session.createQueue(queueName);

This

will

create

a

JMS

Queue

representing

the

MQe

queue

SYSTEM.DEFAULT.LOCAL.QUEUE

on

the

queue

manager

that

the

JMS

Connection

is

using.

Message

types:

JMS

provides

several

message

types,

each

of

which

embodies

some

knowledge

of

its

content.

To

avoid

referencing

the

implementation-specific

class

names

for

the

QueueSender

QueueReceiver
Queue

QueueConnectionFactory

createQueueConnection()

QueueSession

createReceiver()

createSender()

QueueConnection

createQueueSession()

Figure

75.

Obtaining

a

session

once

a

connection

is

created

Designing

your

real

application

183

message

types,

methods

are

provided

on

the

Session

object

for

message

creation.

In

the

sample

program,

a

text

message

is

created

in

the

following

manner:

System.out.println("Creating

a

TextMessage");

TextMessage

outMessage

=

session.createTextMessage();

System.out.println("Adding

Text");

outMessage.setText(outString);

The

message

types

that

can

be

used

are:

v

BytesMessage

v

ObjectMessage

v

TextMessage

Receiving

a

message:

Messages

are

received

by

using

a

QueueReceiver.

This

is

created

from

a

Session

by

using

the

createReceiver()

method.

This

method

takes

a

Queue

parameter

that

defines

where

the

messages

are

received

from.

See

″Sending

a

message″

above

for

details

of

how

to

create

a

Queue

object.

The

sample

program

creates

a

receiver

and

reads

back

the

test

message

with

the

following

code:

QueueReceiver

queueReceiver

=

session.createReceiver(ioQueue);

Message

inMessage

=

queueReceiver.receive(1000);

The

parameter

in

the

receive

call

is

a

timeout

in

milliseconds.

This

parameter

defines

how

long

the

method

should

wait

if

there

is

no

message

available

immediately.

You

can

omit

this

parameter,

in

which

case

the

call

blocks

indefinitely.

If

you

do

not

want

any

delay,

use

the

receiveNoWait()

method.

The

receive

methods

return

a

message

of

the

appropriate

type.

For

example,

if

a

TextMessage

is

put

on

a

queue,

when

the

message

is

received

the

object

that

is

returned

is

an

instance

of

TextMessage

.

To

extract

the

content

from

the

body

of

the

message,

it

is

necessary

to

cast

from

the

generic

Message

class,

which

is

the

declared

return

type

of

the

receive

methods,

to

the

more

specific

subclass,

such

as

TextMessage

.

If

the

received

message

type

is

not

known,

you

can

use

the

″instanceof″

operator

to

determine

which

type

it

is.

It

is

good

practice

always

to

test

the

message

class

before

casting,

so

that

unexpected

errors

can

be

handled

gracefully.

The

following

code

illustrates

the

use

of

″instanceof″,

and

extraction

of

the

content

from

a

TextMessage:

if

(inMessage

instanceof

TextMessage){

String

replyString

=

((TextMessage)inMessage).getText();

...

}

else

{

//Print

error

message

if

Message

was

not

a

TextMessage.

System.out.println("Reply

message

was

not

a

TextMessage");

}

Handling

errors:

Any

runtime

errors

in

a

JMS

application

are

reported

by

exceptions.

The

majority

of

methods

in

JMS

throw

JMSExceptions

to

indicate

errors.

It

is

good

programming

practice

to

catch

these

exceptions

and

handle

them

appropriately.

Unlike

normal

Java

Exceptions,

a

JMSException

may

contain

a

further

exception

embedded

in

it.

For

JMS,

this

can

be

a

valuable

way

to

pass

important

detail

from

the

underlying

transport.

When

a

JMSException

is

thrown

as

a

result

of

MQe

raising

an

exception,

the

exception

is

usually

included

as

the

embedded

exception

in

the

JMSException.

The

standard

implementation

of

JMSException

does

not

include

the

embedded

exception

in

the

output

of

its

toString()

method.

Therefore,

it

is

necessary

to

check

explicitly

for

an

embedded

exception

and

print

it

out,

as

shown

in

the

following

fragment:

184

MQe

Application

Programming

try

{

...code

which

may

throw

a

JMSException

}

catch

(JMSException

je)

{

System.err.println("caught

"+je);

Exception

e

=

je.getLinkedException();

if

(e

!=

null)

{

System.err.println("linked

exception:"+e);

}

}

Exception

listener:

For

asynchronous

message

delivery,

the

application

code

cannot

catch

exceptions

raised

by

failures

to

receive

messages.

This

is

because

the

application

code

does

not

make

explicit

calls

to

receive()

methods.

To

cope

with

this

situation,

it

is

possible

to

register

an

ExceptionListener,

which

is

an

instance

of

a

class

that

implements

the

onException()

method.

When

a

serious

error

occurs,

this

method

is

called

with

the

JMSException

passed

as

its

only

parameter.

Further

details

are

in

Sun’s

JMS

documentation.

JMS

messages:

JMS

messages

are

composed

of

the

following

parts:

Header

All

messages

support

the

same

set

of

header

fields.

Header

fields

contain

values

that

are

used

by

both

clients

and

providers

to

identify

and

route

messages.

Properties

Each

message

contains

a

built-in

facility

to

support

application-defined

property

values.

Properties

provide

an

efficient

mechanism

to

filter

application-defined

messages.

Body

JMS

defines

several

types

of

message

body

which

cover

the

majority

of

messaging

styles

currently

in

use.

JMS

defines

five

types

of

message

body:

Text

A

message

containing

a

java.lang.String

Object

A

message

that

contains

a

Serializable

java

object

Bytes

A

stream

of

uninterpreted

bytes

for

encoding

a

body

to

match

an

existing

message

format

Stream

A

stream

of

Java

primitive

values

filled

and

read

sequentially,

not

supported

in

this

version

of

MQe

JMS

Map

A

set

of

name-value

pairs,

where

names

are

Strings

and

values

are

Java

primitive

types.

The

entries

can

be

accessed

sequentially

or

randomly

by

name.

The

order

of

the

entries

is

undefined.

Map

is

not

supported

in

this

version

of

MQe

JMS.

The

JMSCorrelationID

header

field

is

used

to

link

one

message

with

another.

It

typically

links

a

reply

message

with

its

requesting

message.

Message

selectors:

A

message

contains

a

built-in

facility

to

support

application-defined

property

values.

In

effect,

this

provides

a

mechanism

to

add

application-specific

header

fields

to

a

message.

Properties

allow

an

application,

via

message

selectors,

to

have

Designing

your

real

application

185

a

JMS

provider

select

or

filter

messages

on

its

behalf,

using

application-specific

criteria.

Application-defined

properties

must

obey

the

following

rules:

v

Property

names

must

obey

the

rules

for

a

message

selector

identifier.

v

Property

values

can

be

boolean,

byte,

short,

int,

long,

float,

double,

and

String.

v

The

JMSX

and

JMS_

name

prefixes

are

reserved.

Property

values

are

set

before

sending

a

message.

When

a

client

receives

a

message,

the

message

properties

are

read-only.

If

a

client

attempts

to

set

properties

at

this

point,

a

MessageNotWriteableException

is

thrown.

If

clearProperties()

is

called,

the

properties

can

then

be

both

read

from,

and

written

to.

A

property

value

may

duplicate

a

value

in

a

message’s

body,

or

it

may

not.

JMS

does

not

define

a

policy

for

what

should

or

should

not

be

made

into

a

property.

However,

for

best

performance,

applications

should

only

use

message

properties

when

they

need

to

customize

a

message’s

header.

The

primary

reason

for

doing

this

is

to

support

customized

message

selection.

A

JMS

message

selector

allows

a

client

to

specify

the

messages

that

it

is

interested

in

by

using

the

message

header.

Only

messages

whose

headers

match

the

selector

are

delivered.

Message

selectors

cannot

reference

message

body

values.

A

message

selector

matches

a

message

when

the

selector

evaluates

to

true

when

the

message’s

header

field

and

property

values

are

substituted

for

their

corresponding

identifiers

in

the

selector.

A

message

selector

is

a

String,

which

can

contain:

Literals

v

A

string

literal

is

enclosed

in

single

quotes.

A

doubled

single

quote

represents

a

single

quote.

Examples

are

’literal’

and

’literal’’s’.

Like

Java

string

literals,

these

use

the

Unicode

character

encoding.

v

An

exact

numeric

literal

is

a

numeric

value

without

a

decimal

point,

such

as

57,

-957,

+62.

Numbers

in

the

range

of

Java

long

are

supported.

v

An

approximate

numeric

literal

is

a

numeric

value

in

scientific

notation,

such

as

7E3

or

-57.9E2,

or

a

numeric

value

with

a

decimal,

such

as

7.,

-95.7,

or

+6.2.

Numbers

in

the

range

of

Java

double

are

supported.

Note

that

rounding

errors

may

affect

the

operation

of

message

selectors

including

approximate

numeric

literals.

v

The

boolean

literals

TRUE

and

FALSE.

Identifiers

v

An

identifier

is

an

unlimited

length

sequence

of

Java

letters

and

Java

digits,

the

first

of

which

must

be

a

Java

letter.

A

letter

is

any

character

for

which

the

method

Character.isJavaLetter

returns

true.

This

includes

″_″

and

″$″.

A

letter

or

digit

is

any

character

for

which

the

method

Character.isJavaLetterOrDigit

returns

true.

v

Identifiers

cannot

be

the

names

NULL,

TRUE,

or

FALSE.

v

Identifiers

cannot

be

NOT,

AND,

OR,

BETWEEN,

LIKE,

IN,

and

IS.

v

Identifiers

are

either

header

field

references

or

property

references.

v

Identifiers

are

case-sensitive.

v

Message

header

field

references

are

restricted

to:

–

JMSDeliveryMode

–

JMSPriority

–

JMSMessageID

–

JMSTimestamp

186

MQe

Application

Programming

–

JMSCorrelationID

–

JMSType

JMSMessageID,

JMSTimestamp,

JMSCorrelationID,

and

JMSType

values

may

be

null,

and

if

so,

are

treated

as

a

NULL

value.

v

Any

name

beginning

with

″JMSX″

is

a

JMS-defined

property

name

v

Any

name

beginning

with

″JMS_″

is

a

provider-specific

property

name

v

Any

name

that

does

not

begin

with

″JMS″

is

an

application-specific

property

name

v

If

there

is

a

reference

to

a

property

that

does

not

exist

in

a

message,

its

value

is

NULL.

If

it

does

exist,

its

value

is

the

corresponding

property

value.

White

space

This

is

the

same

as

is

defined

for

Java,

space,

horizontal

tab,

form

feed,

and

line

terminator.

Logical

operators

Currently

supports

AND

only.

Comparison

operators

v

Only

equals

(’=’)

is

currently

supported.

v

Only

values

of

the

same

type

can

be

compared.

v

If

there

is

an

attempt

to

compare

different

types,

the

selector

is

always

false.

v

Two

strings

are

equal

if

they

contain

the

same

sequence

of

characters.

v

The

IS

NULL

comparison

operator

tests

for

a

null

header

field

value,

or

a

missing

property

value.

The

IS

NOT

NULLcomparison

operator

is

not

supported.

Note

that

Arithmetic

operators

are

not

currently

supported.

The

following

message

selector

selects

messages

with

a

message

type

of

car

and

a

colour

of

blue:

"JMSType

=’car

’AND

colour

=’blue’"

When

selecting

Header

fields

MQe

will

interpret

exact

numeric

literals

so

that

they

match

the

type

of

the

field

in

question,

that

is

a

selector

testing

the

JMSPriority

or

JMSDeliveryMode

Header

fields

will

interpret

an

exact

numeric

literal

as

an

int,

whereas

a

selector

testing

JMSExpiration

or

JMSTimestamp

will

interpret

an

exact

numeric

literal

as

a

long.

However,

when

selecting

message

properties

MQe

will

always

interpret

an

exact

numeric

literal

as

a

long

and

an

approximate

numeric

literal

as

a

double.

Application

specific

properties

intended

to

be

used

for

message

selection

should

therefore

be

set

using

the

setLongProperty

and

setDoubleProperty

methods

respectively.

Restrictions

in

this

version

of

MQe

This

version

of

MQe

JMS

implements

the

Point-to-Point

subset

of

JMS

with

a

few

restrictions.

It

does

not

implement

any

of

the

optional

classes:

v

The

application

server

classes

ConnectionConsumer,

ServerSession,

and

ServerSessionPool

v

The

XA

classes:

–

XAConnection

–

XAConnectionFactory

Designing

your

real

application

187

–

XAQueueConnection

–

XAQueueConnectionFactory

–

XAQueueSession

–

XASession

–

XATopicConnection

–

XATopicConnectionFactory

–

XATopicSession

It

does

not

implement

the

TemporaryQueue

class,

which

means

that

the

QueueRequestor

class

will

not

work

or

the

MapMessage

and

StreamMessage

classes.

In

the

QueueConnectionFactory,

the

createQueueConnection()

method

that

takes

a

username

and

password

as

parameters

is

not

implemented,

MQe

does

not

have

the

concept

of

a

user.

The

method

with

no

parameters

is

implemented.

When

a

message

is

read

from

a

queue

but

not

acknowledged,

the

message

is

returned

to

the

queue

for

redelivery.

In

this

case

the

JMSRedelivered

header

field

should

be

set

in

the

message.

MQe

JMS

does

not

set

this

header

field.

MQe

JMS

can

put

messages

to

a

local

queue

or

an

asynchronous

remote

queue

and

it

can

receive

messages

from

a

local

queue.

It

cannot

put

to

or

receive

messages

from

a

synchronous

remote

queue.

Using

Java

Naming

and

Directory

Interface

(JNDI)

One

of

the

advantages

of

using

JMS

is

the

ability

to

write

applications

which

are

independent

of

the

JMS

implementations,

allowing

you

to

plug

in

a

JMS

implementation

which

is

appropriate

for

your

environment.

However,

certain

JMS

objects

must

be

configured

in

a

way

which

is

specific

to

the

JMS

implementation

you

have

chosen.

These

objects

are

the

connection

factories

and

destinations,

queues,

and

they

are

often

referred

to

as

″administered

objects″.

In

order

to

keep

the

application

programs

independent

of

the

JMS

implementation,

these

objects

must

be

configured

outside

of

the

application

programs.

They

would

typically

be

configured

and

stored

in

a

JNDI

namespace.

The

application

would

lookup

the

objects

in

the

namespace

and

would

be

able

to

use

them

straight

away,

because

they

have

already

been

configured.

There

may

be

situations,

such

as

on

a

small

device,

where

it

would

not

be

desirable

to

use

JNDI.

In

these

cases

the

objects

could

be

configured

directly

in

the

application.

The

cost

of

not

using

JNDI

would

be

a

small

degree

of

implementation-dependence

in

the

application.

Storing

and

retrieving

objects

with

JNDI

Before

using

JNDI

to

either

store

or

retrieve

objects,

an

″initial

context″

must

be

set

up,

as

shown

in

this

fragment

taken

from

the

MQeJMSIVT_JNDI

example

program:

import

javax.jms.*;

import

javax.naming.*;

import

javax.naming.directory.*;

...

java.util.Hashtable

environment

=new

java.util.Hashtable();

188

MQe

Application

Programming

environment.put(Context.INITIAL_CONTEXT_FACTORY,

icf);

environment.put(Context.PROVIDER_URL,

url);

Context

ctx

=

new

InitialContext(environment

);

where:

icf

defines

a

factory

class

for

the

JNDI

context.

This

depends

upon

the

JNDI

provider

that

you

are

using.

The

documentation

supplied

by

the

JNDI

provider

should

tell

you

what

value

to

use

for

this.

See

also

the

examples

below.

url

defines

the

location

of

the

namespace.

This

will

depend

on

the

type

of

namespace

you

are

using.

If

you

are

using

the

file

system,

this

will

be

a

file

url

that

identifies

a

directory

in

your

file

system.

If

you

are

using

LDAP

this

will

be

a

ldap

url

that

identifies

a

LDAP

server

and

location

in

the

directory

tree

of

that

server.

The

documentation

supplied

by

the

JNDI

provider

should

describe

the

correct

format

for

the

url.

For

more

details

about

JNDI

usage,

see

Sun’s

JNDI

documentation.

Note:

Some

combinations

of

the

JNDI

packages

and

LDAP

service

providers

can

result

in

an

LDAP

error

84.

To

resolve

the

problem,

insert

the

following

line

before

the

call

to

InitialContext.

environment.put(Context.REFERRAL,"throw");

Once

an

initial

context

is

obtained,

objects

can

be

stored

in

and

retrieved

from

the

namespace.

To

store

an

object,

use

the

bind()

method:

ctx.bind(entryName,

object);

where

’entryName’

is

the

name

under

which

you

want

the

object

stored,

and

’object’

is

the

object

to

be

stored,

for

example

to

store

a

factory

under

the

name

″ivtQCF″:

ctx.bind("ivtQCF",

factory);

To

store

an

object

in

a

JNDI

namespace,

the

object

must

satisfy

either

the

javax.naming.Referenceable

interface

or

the

java.io.Serializable

interface,

depending

on

the

JNDI

provider

you

use.

The

MQeJNDIQueueConnectionFactory

and

MQeJMSJNDIQueueclasses

implement

both

of

these

interfaces.

To

retrieve

an

object

from

the

namespace,

use

thelookup()

method:

object

=

ctx.lookup(entryName);

where

entryName

is

the

name

under

which

you

want

the

object

stored

,

for

example,

to

retrieve

a

QueueConnectionFactory

stored

under

the

name

″ivtQCF″:

QueueConnectionFactory

factory;

factory

=

(QueueConnectionFactory)ctx.lookup("ivtQCF");

Using

the

sample

programs

with

JNDI

The

example

program

examples.jms.MQeJMSIVT_JNDI

can

be

used

to

test

your

installation

using

JNDI.

This

is

very

similar

to

the

examples.jms.MQeJMSIVT

program,

except

that

it

uses

JNDI

to

retrieve

the

connection

factory

and

the

queue

that

it

uses.

Before

you

can

run

this

program

you

must

store

these

two

administered

objects

in

a

JNDI

namespace:

Table

5.

Administered

objects

for

a

JNDI

namespace

Entry

name

Java

class

Description

Designing

your

real

application

189

Table

5.

Administered

objects

for

a

JNDI

namespace

(continued)

ivtQCF

MQeJNDIQueueConnectionFactory

A

QueueConnectionFactory

configured

to

use

an

MQe

queue

manager

ivtQ

MQeJMSJNDIQueue

A

Queue

configured

to

represent

an

MQe

queue

which

is

local

to

the

queue

manager

used

by

the

ivtQCF

entry

The

program

examples.jms.CreateJNDIEntry

or

the

MQeJMSAdmin

tool,

explained

in

the

following

section,

can

be

used

to

create

these

entries.

Larger

installations

may

have

a

Lightweight

Directory

Access

Protocol

(LDAP)

directory

available,

but

for

smaller

installations

a

file

system

namespace

may

be

more

appropriate.

When

you

have

decided

on

a

namespace

you

must

obtain

the

corresponding

JNDI

class

files

to

support

the

namespace

and

add

these

to

your

classpath.

These

will

vary

depending

on

your

choice

of

namespace

and

the

version

of

Java

you

are

using.

You

must

always

have

the

javax.naming.*

classes

on

your

classpath.

If

you

are

using

Java

1

(for

example

a

1.1.8

JRE)

you

must

obtain

a

copy

of

the

jndi.jar

file

and

add

it

to

your

classpath.

If

you

are

using

Java

2

(a

1.2

or

later

JRE)

the

JRE

may

contain

these

classes

itself.

If

you

want

to

use

an

LDAP

directory,

you

must

obtain

JNDI

classes

that

support

LDAP,

for

example

Sun’s

ldap.jar

or

IBM’s

ibmjndi.jar,

and

add

these

to

your

classpath.

Some

Java

2

JREs

may

already

contain

Sun’s

classes

for

LDAP.

See

also

the

section

below

about

LDAP

support

for

Java

classes.

If

you

want

to

use

a

file

system

directory,

you

must

obtain

JNDI

classes

that

support

the

file

system,

for

example

Sun’s

fscontext.jar

(which

requires

providerutil.jar

as

well)

and

add

these

to

your

classpath.

The

CreateJNDIEntry

example

program

requires

the

MQeJMS.jar

file

on

your

classpath,

in

addition

to

the

JNDI

jar

files.

It

takes

the

following

command

line

arguments:

java

examples.jms.CreateJNDIEntry

-url<providerURL>

[-icf<initialContextFactory>][-ldap]

[-qcf<entry

name><MQe

queue

manager

ini

file>]

[-q<entry

name><MQe

queue

name>]

An

alternative

argument

to

use

is:

java

examples.jms.CreateJNDIEntry

-h

In

the

previous

two

examples:

-url<providerURL>

The

URL

of

the

JNDI

initial

context

(obligatory

parameter)

-icf<initialContextFactory>

The

initialContextFactory

for

JNDI

that

defaults

to

the

file

system:

com.sun.jndi.fscontext.RefFSContextFactory

-ldap

This

should

be

specified

if

you

are

using

an

LDAP

directory

-qcf<entry

name><MQe

queue

manager

ini

file>

The

name

of

a

JNDI

entry

to

be

created

for

a

JMS

QueueConnectionFactory

and

the

name

of

an

initialisation

(ini)

file

for

an

MQe

queue

manager

to

be

used

to

configure

it

-h

Displays

a

help

message

190

MQe

Application

Programming

The

url,

-url,

must

be

specified

and

either

a

QueueConnectionFactory

(-qcf)

or

a

Queue

(-q),

or

both,

must

be

specified.

The

context

factory,

-icf,

is

optional

and

defaults

to

a

file

system

directory.

The

LDAP

flag,

-ldap,

should

be

specified

if

an

LDAP

directory

is

being

used,

this

prefixes

the

entry

name

with

″cn=″,

which

is

required

by

LDAP.

For

example,

if

a

queue

manager

with

the

initialization

file

d:\MQe\exampleQM\exampleQM.ini

exists,

and

you

are

using

a

JNDI

directory

based

in

the

file

system

at

d:\MQe\data\jndi\,

type

(all

on

one

line):

java

examples.jms.CreateJNDIEntry

-url

file://d:/MQe/data/jndi

-qcf

ivtQCF

d:\MQe\exampleQM\exampleQM.ini

Note

that

forward

slashes

are

used

in

the

url,

even

if

the

file

system

itself

uses

back

slashes.

The

url

directory

must

already

exist.

To

add

an

entry

for

the

queue

you

would

type

(all

on

one

line):

java

examples.jms.CreateJNDIEntry

-url

file://

d:/MQe/data/jndi

-q

ivtQ

SYSTEM.DEFAULT.LOCAL.QUEUE

You

could

use

another

local

queue

instead

of

the

SYSTEM.DEFAULT.LOCAL.QUEUE.

You

could

also

specify

the

queue

name

as

exampleQM+SYSTEM.DEFAULT.LOCAL.QUEUE,

where

exampleQM

is

the

name

of

the

queue

manager.

If

the

name

of

the

queue

manager

is

not

specified,

the

local

queue

manager

is

used.

Both

entries

could

be

added

at

the

same

time

by

typing:

java

examples.jms.CreateJNDIEntry

-url

file://d:/MQe/data/jndi

-qcf

ivtQCF

d:\MQe\exampleQM\exampleQM.ini

-q

ivtQ

SYSTEM.DEFAULT.LOCAL.QUEUE

Again,

you

should

type

all

of

this

command

on

one

line.

A

maximum

of

one

connection

factory

and

one

queue

can

be

added

at

a

time.

When

the

JNDI

entries

have

been

created,

you

can

run

the

example

.jms.MQeJMSIVT_JNDI

program.

This

requires

the

same

jar

files

on

the

classpath

as

the

MQeJMSIVT

program,

that

is:

v

jms.jar,

Sun’s

interface

definition

for

the

JMS

classes

v

MQeJMS.jar,

the

MQe

implementation

of

JMS

v

MQeBase.jar

v

MQeExamples.jar

It

also

requires

the

JNDI

jar

files,

as

used

for

the

CreateJNDIEntry

example

program.

The

example

can

be

run

from

the

command

line

by

typing:

java

examples.jms.MQeJMSIVT_JNDI

-url<providerURL>

where

<providerURL>

is

the

specified

URL

of

the

JNDI

initial

context.

By

default

the

program

uses

the

file

system

context

for

JNDI:

com.sun.jndi.fscontext.RefFSContextFactory

If

necessary

you

can

specify

an

alternative

context:

java

examples.jms.MQeJMSIVT_JNDI

-url<providerURL>

-icf<initialContextFactory>

Designing

your

real

application

191

You

can

optionally

add

a

-t

flag

to

turn

tracing

on:

java

examples.jms.MQeJMSIVT_JNDI

-url<providerURL>

-icf<initialContextFactory>

-t

To

use

the

entries

in

the

file

system

directory

created

in

the

CreateJNDIEntry

example

above,

type:

java

examples.jms.MQeJMSIVT_JNDI

-url

file://d:/MQe/data/jndi

The

example

program

checks

that

the

required

jar

files

are

on

the

classpath

by

checking

for

classes

that

they

contain.

It

looks

up

the

QueueConnectionFactory

and

the

Queue

in

the

JNDI

directory.

It

starts

a

connection,

which

starts

the

MQe

queue

manager,

sends

a

message

to

the

Queue,

reads

the

message

back

and

compares

it

to

the

message

it

sent.

The

queue

should

not

contain

any

messages

before

running

the

program,

otherwise

the

message

read

back

will

not

be

the

one

that

the

program

sent.

The

first

lines

of

output

from

the

program

should

look

like

this:

using

context

factory

’com.sun.jndi.fscontext.RefFSContextFactory’

for

the

directory

using

directory

url

’file://d:/MQe/data/jndi’

checking

classpath

found

JMS

interface

classes

found

MQe

JMS

classes

found

MQe

base

classes

found

jndi.jar

classes

found

com.sun.jndi.fscontext.RefFSContextFactory

classes

Looking

up

connection

factory

in

jndi

Looking

up

queue

in

jndi

Creating

connection

The

rest

of

the

output

should

be

similar

to

that

from

the

example

without

JNDI.

You

can

also

run

the

two

other

example

programs,

examples.jms.PTPSample01

and

example

.jms.PTPSample02,

using

JNDI.

These

programs

requires

the

same

JMS

and

MQe

jar

files

on

the

classpath

as

the

MQeJMSIVT_JNDI

program,

that

is:

v

jms.jar

v

MQeJMS.jar

v

MQeBase.jar

v

MQeExamples.jar

They

also

require

the

jndi.jar

file

and

the

jar

files

for

the

JNDI

provider

you

are

using,

for

example,

file

system

or

LDAP.

The

examples

can

be

run

from

the

command

line

by

typing:

java

examples.jms.PTPSsample01

-url<providerURL>

As

in

the

previous

example,

providerURL

is

the

URL

of

the

JNDI

initial

context.

By

default,

the

program

uses

the

file

system

context

for

JNDI,

that

iscom.sun.jndi.fscontext.RefFSContextFactory.

If

necessary

you

can

specify

an

alternative

context:

java

examples.jms.PTPSsample01

-url<providerURL>

-icf<initialContextFactory>

You

can

optionally

add

a

″-t″

flag

to

turn

tracing

on:

java

examples.jms.

PTPSsample01

-url

<providerURL><-icf

initialContextFactory>

-t

.

To

use

the

entries

in

the

file

system

directory

created

in

the

CreateJNDIEntry

example

above,

you

would

type:

java

examples.jms.PTPSample01

-url

file://d:/MQe/data/jndi

192

MQe

Application

Programming

The

program

examples.jms.PTPSample02

uses

message

listeners

and

filters.

It

creates

a

QueueReceiver

with

a

filter

″colour=’blue’″

and

creates

a

message

listener

for

it.

It

creates

a

second

QueueReceiver

with

a

filter

″colour=’red’″

and

also

creates

a

message

listener.

It

sends

four

messages

to

a

queue,

two

with

the

property

″colour″

set

to

″red″

and

two

with

the

property

″colour″

set

to

″blue″,

and

checks

that

the

message

listeners

receive

the

correct

messages.

The

program

has

the

same

command

line

parameters

as

the

PTPSample01

program

and

can

be

run

in

the

same

way.

Simply

substitute

PTPSample02

for

PTPSample01.

Mapping

JMS

messages

to

MQe

messages

This

section

describes

how

the

JMS

message

structure

is

mapped

to

an

MQe

message.

It

is

of

interest

to

programmers

who

wish

to

transmit

messages

between

JMS

and

traditional

MQe

applications.

As

described

earlier,

the

JMS

specification

defines

a

structured

message

format

consisting

of

a

header,

three

types

of

property

and

five

types

of

message

body,

while

MQe

defines

a

single

free-format

message

object,

MQeMsgObject.

MQe

defines

some

constant

field

names

that

messaging

applications

require,

for

example

UniqueID,

MessageID,

and

Priority,

while

applications

can

put

data

into

an

MQe

message

as

<name,

value>

pairs.

To

send

JMS

messages

using

MQe,

we

define

a

constant

format

for

storing

the

information

contained

in

a

JMS

message

within

an

MQeMsgObject.

This

adds

three

top-level

fields

and

four

MQeFields

objects

to

an

MQeMsgObject,

as

shown

in

the

following

example.

The

following

sections

describe

the

contents

of

these

fields:

Naming

MQeMsgObject

fields

An

MQeMsgObject

stores

data

as

a

<name,

value>

pair.

The

field

names

used

to

map

JMS

message

data

to

the

MQeMsgObject

are

defined

in

com.ibm.mqe.MQe

and

com.ibm.mqe.jms.MQeJMSMsgFieldNames:

MQeMsgObjectJMS message

Header

Properties

Body

WebSphere MQ
Everyplace/

JMS information

Map

MQeFields object

MQeFields object

MQeFields object

MQeFields object

Copy

Figure

76.

Mapping

a

JMS

message

to

an

MQeMQeMsgObject

Designing

your

real

application

193

MQeJMS

field

names

MQe.MQe_JMS_VERSION

MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS

message

field

names

MQeJMSMsgFieldNames.MQe_JMS_HEADER

MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES

MQeJMSMsgFieldNames.MQe_JMS_BODY

JMS

header

field

names

MQeJMSMsgFieldNames.MQe_JMS_DESTINATION

MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE

MQeJMSMsgFieldNames.MQe_JMS_MESSAGEID

MQeJMSMsgFieldNames.MQe_JMS_TIMESTAMP

MQeJMSMsgFieldNames.MQe_JMS_CORRELATIONID

MQeJMSMsgFieldNames.MQe_JMS_REPLYTO

MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED

MQeJMSMsgFieldNames.MQe_JMS_TYPE

MQeJMSMsgFieldNames.MQe_JMS_EXPIRATION

MQeJMSMsgFieldNames.MQe_JMS_PRIORITY

MQe

JMS

information

Two

<name,

value>

pairs

holding

information

required

for

MQe

to

recreate

the

JMS

message

are

added

directly

to

the

MQeMsgObject:

MQe.MQe_JMS_VERSION

This

contains

a

short

describing

the

version

number

of

the

MQe

JMS

implementation

used

to

store

the

message.

The

current

version

number

is

1.

The

presence

or

absence

of

a

field

named

MQe.MQe_JMS_VERSION

is

used

to

determine

if

an

MQeMsgObject

contains

an

MQe

JMS

message.

MQeJMSMsgFieldNames.MQe_JMS_CLASS

This

contains

a

String

describing

the

type

of

JMS

message

body

stored

in

the

MQeMsgObject.

It

defines

the

strings

in

the

following

table:

Table

6.

Strings

in

MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS

message

type

MQe.MQe_JMS_CLASS

Bytes

message

jms_bytes

Map

message

jms_map

Null

message

jms_null

Object

message

jms_object

Stream

message

jms_stream

Text

message

jms_text

JMS

header

files

JMS

Header

fields

are

stored

within

an

MQeMsgObject

using

the

following

rules:

1.

If

a

JMS

header

field

is

identical

to

a

defined

MQeMsgObject

field

then

the

header

value

is

mapped

directly

to

the

appropriate

field

in

the

MQeMsgObject.

2.

If

a

JMS

header

field

does

not

map

directly

to

a

defined

field

but

can

be

represented

using

existing

fields

defined

by

MQe

then

the

JMS

header

value

is

converted

as

appropriate

and

then

set

in

the

MQeMsgObject.

194

MQe

Application

Programming

3.

If

MQe

has

not

defined

an

equivalent

field

by

then,

the

header

field

is

stored

within

an

MQeFields

object,

which

is

then

embedded

in

the

MQeMsgObject.

This

ensures

that

the

JMS

header

field

in

question

can

be

restored

when

the

JMS

message

is

recreated.

The

header

fields

that

map

directly

to

MQeMsgObject

fields

are:

Table

7.

Header

fields

that

map

directly

to

MQeMsgObject

fields

JMS

header

field

MQeMsgObjectdefined

field

JMSTimestamp

MQe.Msg_Time

JMSCorrelationID

MQe.Msg_CorrelID

JMSExpiration

MQe.Msg_ExpireTime

JMSPriority

MQe.Msg_Priority

Two

JMS

header

fields,

JMSReplyTo

and

JMSMessageID,

are

converted

prior

to

being

stored

in

MQeMsgObject

fields.

JMSReplyTo

is

split

between

MQe.Msg_ReplyToQMgr

and

MQe.Msg_ReplyToQ,

while

JMSMessageID

is

the

String

"ID:"

followed

by

a

24-byte

hashcode

generated

from

a

combination

of

MQe.Msg_OriginQMgr

and

MQe.Msg_Time.

The

remaining

four

JMS

header

fields,

JMSDeliveryMode,

JMSRedelivered,

and

JMSType

have

no

equivalents

in

MQe.

These

fields

are

stored

within

an

MQeFields

object

in

the

following

manner:

v

As

an

int

field

named

MQe.MQe_JMS_DELIVERYMODE

v

As

a

boolean

field

named

MQe.MQe_JMS_REDELIVERED

v

As

a

String

field

named

MQe.MQe_JMS_JMSTYPE

This

MQeFields

object

is

then

stored

within

the

MQeMsgObject

as

MQe.MQe_JMS_HEADER.

Finally,

JMSDestination

is

recreated

when

the

message

is

received

and,

therefore

does

not

need

to

be

stored

in

the

MQeMsgObject.

JMS

properties

When

storing

JMS

property

fields

in

an

MQeMsgObject,

the

<name,

value>

format

used

by

the

JMS

properties

corresponds

very

closely

to

the

format

of

data

in

an

MQeFields

object:

Table

8.

JMS

property

fields

and

the

MQeFields

object

Property

type

Corresponding

MQeFields

object

Application-specific

MQe.MQe_JMS_PROPERTIES

Standard

(JMSX_name)

MQe.MQe_JMSX_PROPERTIES

Provider-specific

(JMS_provider_name)

MQe.MQe_JMS_PS_PROPERTIES

Three

MQeFields

objects,

corresponding

to

the

three

types

of

JMS

property,

application-specific,

standard,

and

provider-specific

are

used

to

store

the

<name,

value>

pairs

stored

as

JMS

message

properties.

These

three

MQeFields

objects

are

then

embedded

in

the

MQeMsgObject

with

the

following

names:

v

MQe.MQe_JMS_PROPERTIES,

application-specific

Designing

your

real

application

195

v

MQe_MQe_JMSX_PROPERTIES,

standard

properties

v

MQe.MQe_JMS_PS_PROPERTIES,

provider-specific

Note

that

MQe

does

not

currently

set

any

provider

specific

properties.

However,

this

field

is

used

to

enable

MQe

to

handle

JMS

messages

from

other

providers,

for

example

MQ.

The

following

code

fragment

creates

an

MQe

JMS

text

message

by

adding

the

required

fields

to

an

MQeMsgObject:

//

create

an

MQeMsgObject

MQeMsgObject

msg

=

new

MQeMsgObject();

//

set

the

JMS

version

number

msg.putShort(MQe.MQe_JMS_VERSION,

(short)1);

//

and

set

the

type

of

JMS

message

this

MQeMsgObject

contains

msg.putAscii(MQeJMSMsgFieldNames.MQe_JMS_CLASS,

"jms_text");

//

set

message

priority

and

exipry

time

-

these

are

mapped

to

JMSPriority

and

JMSExpiration

msg.putByte(MQe.Msg_Priority,

(byte)7);

msg.putLong(MQe.Msg_ExpireTime,

(long)0);

//

store

JMS

header

fields

with

no

MQe

equivalents

in

an

MQeFields

object

MQeFields

headerFields

=

new

MQeFields();

headerFields.putBoolean(MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED,

false);

headerFields.putAscii(MQeJMSMsgFieldNames.MQe_JMS_TYPE,

"testMsg");

headerFields.putInt(MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE,

Message.DEFAULT_DELIVERY_MODE);

msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_HEADER,

headerFields);

//

add

an

integer

application-specific

property

MQeFields

propField

=

new

MQeFields();

propField.putInt("anInt",

12345);

msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES,

propField);

//

the

provider-specific

and

JMSX

properties

are

blank

msg.putFields(MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES,

new

MQeFields());

msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES,

new

MQeFields());

//

finally

add

a

text

message

body

String

msgText

=

"A

test

message

to

MQe

JMS";

byte[]

msgBody

=

msgText.getBytes("UTF8");

msg.putArrayOfByte(MQeJMSMsgFieldNames.MQe_JMS_BODY,

msgBody);

//

send

the

message

to

an

MQe

Queue

queueManager.putMessage(null,

"SYSTEM.DEFAULT.LOCAL.QUEUE",

msg,

null,

0);

Now,

you

use

JMS

to

receive

the

message

and

print

it:

//

first

set

up

a

QueueSession,

then...

Queue

queue

=

session.createQueue

("SYSTEM.DEFAULT.LOCAL.QUEUE");

QueueReceiver

receiver

=

session.createReceiver(queue);

196

MQe

Application

Programming

//

receive

a

message

Message

rcvMsg

=

receiver.receive(1000);

//

and

print

it

out

System.out.println(rcvMsg.toString());

This

gives:

HEADER

FIELDS

JMSType:

testMsg

JMSDeliveryMode:

2

JMSExpiration:

0

JMSPriority:

7

JMSMessageID:

ID:00000009524cf094000000f07c3d2266

JMSTimestamp:

1032876532326

JMSCorrelationID:

null

JMSDestination:

null:SYSTEM.DEFAULT.LOCAL.QUEUE

JMSReplyTo:

null

JMSRedelivered:

false

PROPERTY

FIELDS

(read

only)

JMSXRcvTimestamp

:

1032876532537

anInt

:

12345

MESSAGE

BODY

(read

only)

--

A

test

message

to

MQe

JMS

Note

that

JMS

sets

some

of

the

JMS

message

fields,

for

example

JMSMessageID,

JMSXRcvTimestamp

internally.

JMS

message

body:

Regardless

of

the

JMS

message

type,

MQe

stores

the

JMS

message

body

internally

as

an

array

of

bytes.

For

the

currently

supported

message

types,

this

byte

array

is

created

as

follows:

Table

9.

JMS

message

body

JMS

message

type

Conversion

Bytes

message

ByteArrayOutputStream.toByteArray();

Object

message

<serialized

object>.toByteArray();

Text

message

String.getBytes(″UTF-8″);

When

the

JMS

message

body

is

stored

in

an

MQeMsgObject,

this

byte

array

is

added

directly

to

the

MQeMsgObject

with

the

name

MQe.MQe_JMS_BODY.

MQe

JMS

classes

MQe

classes

for

Java

Message

Service

consist

of

a

number

of

Java

classes

and

interfaces

that

are

based

on

the

Sun

javax.jms

package

of

interfaces

and

classes.

They

are

contained

in

the

com.ibm.mqe.jms

package.

The

following

classes

are

provided:

Table

10.

MQe

JMS

classes

Class

Implements

MQeBytesMessage

BytesMessage

Designing

your

real

application

197

Table

10.

MQe

JMS

classes

(continued)

Class

Implements

MQeConnection

Connection

MQeConnectionFactory

ConnectionFactory

MQeConnectionMetaData

ConnectionMetaData

MQeDestination

Destination

MQeJMSEnumeration

Java.util.Enumeration

from

QueueBrowser

MQeJMSJNDIQueue

Queue

MQeJMSQueue

Queue

MQeMessage

Message

MQeMessageConsumer

MessageConsumer

MQeMessageProducer

MessageProducer

MQeObjectMessage

ObjectMessage

MQeQueueBrowser

QueueBrowser

MQeQueueConnection

QueueConnection

MQeJNDIQueueConnectionFactory

QueueConnectionFactory

MQeQueueConnectionFactory

QueueConnectionFactory

MQeQueueReceiver

QueueReceiver

MQeQueueSender

QueueSender

MQeQueueSession

QueueSession

MQeSession

Session

MQeTextMessage

TextMessage

Note

that

MessageListener

and

ExceptionListener

are

implemented

by

applications.

Security

Overview

of

the

security

features

in

MQe

that

enable

the

protection

of

data

MQe

provides

an

integrated

set

of

security

features

that

enable

the

protection

of

data

both

when

held

locally

and

when

it

is

being

transferred.

MQe

provides

security

at

several

levels:

v

Local

v

Queue-based

v

Message

level

v

Queue-manager

based

v

Channel

level

v

Certificate-based.

MQe

also

provides

the

following

services

to

assist

with

security:

v

Private

registry

services

v

Public

registry

services

v

Mini-certificate

issuance

service.

198

MQe

Application

Programming

Levels

of

security

MQe

provides

several

levels

of

security:

Local

security

Local

security

provides

protection

for

any

MQe

data.

Queue-based

security

Queue-based

security

is

handled

internally

by

MQe

and

does

not

require

any

specific

action

by

the

initiator

or

recipient

of

the

message.

Message-level

security

Message-level

security

provides

protection

for

message

data

between

an

initiating

and

receiving

MQe

application.

Queue-manager

based

security

Security

features

can

be

added

at

the

queue-manager

level

by

configuring

the

queue

manager

and

its

private

registry.

Channel

level

security

When

data

is

sent

between

a

queue

manager

and

a

remote

queue,

the

queue

manager

opens

a

channel

to

the

remote

queue

manager

that

owns

the

queue.

By

default,

if

the

remote

queue

is

protected,

for

example

with

a

cryptor,

the

channel

is

given

exactly

the

same

level

of

protection

as

the

queue.

Note:

Throughout

the

world

there

are

varying

government

regulations

concerning

levels

and

types

of

cryptography.

You

must

always

use

a

level

and

type

of

cryptography

that

complies

with

the

appropriate

local

legislation.

This

is

particularly

relevant

when

using

a

mobile

device

that

is

moved

from

country

to

country.

MQe

provides

facilities

for

this,

but

it

is

the

responsibility

of

the

application

programmer

to

implement

it.

Queue

based

security

is

handled

internally

by

MQe

and

does

not

require

any

specific

action

by

the

initiator

or

recipient

of

the

message.

Local

and

Message-level

security

must

be

initiated

by

an

application.

All

three

categories

protect

Message

data

by

the

application

of

an

MQeAttribute,

or

a

descendent.

Depending

on

the

category,

the

attribute

is

either

explicitly

or

implicitly

applied.

Every

attribute

can

contain

any

or

all

of

the

following

objects:

v

Authenticator

v

Cryptor

v

Compressor

v

Key

v

Target

Entity

Name

The

way

these

objects

are

used

depends

on

the

category

of

MQe

security.

Each

category

of

security

is

described

in

detail

in

other

topics.

Local

security

Local

security

protects

MQe

message

or

MQeFields

data

locally.

This

is

achieved

by

creating

an

attribute

with

an

appropriate

symmetric

cryptor

and

compressor,

creating

and

setting

up

an

appropriate

key,

by

providing

a

password.

The

key

is

explicitly

attached

to

the

attribute,

and

the

attribute

is

attached

to

the

MQe

Designing

your

real

application

199

message.

MQe

provides

the

MQeLocalSecure

Java

class

and

C

API

to

assist

with

the

setup

of

local

security,

but

in

all

cases

it

is

the

responsibility

of

the

local

security

user

(MQe

internally

or

an

MQe

application)

to

set

up

an

appropriate

attribute

and

manage

the

password

key.

Local

security

provides

protection

for

MQe

data,

MQeFields

objects,

including

Java

message

objects,

for

example

MQeMsg

Object.

The

protected

data

is

returned

in

a

byte

array.

To

apply

local

security

to

a

data

object

you

must:

1.

Create

an

attribute

with

an

appropriate

authenticator,

cryptor,

and

compressor.

2.

Set

up

an

appropriate

key,

by

providing

a

password.

3.

Explicitly

attach

the

key

to

the

attribute,

the

attribute

to

the

data,

MQeFields

object,

and

invoke

the

dump()

method

on

the

data

object.

The

authenticator

determines

how

access

to

the

data

is

controlled.

It

is

invoked

every

time

a

piece

of

data

is

acessed.

The

cryptor

determines

the

cryptographic

strength

protecting

the

data

confidentiality.

The

compressor

determines

the

amount

of

storage

required

by

the

message.

MQe

provides

the

MQeLocalSecure

class

to

assist

with

the

use

of

local

security.

However,

it

is

the

responsibility

of

the

local

security

user

to

setup

an

appropriate

attribute

and

provide

the

password.

MQeLocalSecure

provides

the

function

to

protect

the

data

and

to

save

and

restore

it

from

backing

storage.

If

an

application

chooses

to

attach

an

attribute

to

a

message

without

using

MQeLocalSecure,

it

also

needs

to

save

the

data

after

using

dump

and

must

retrieve

the

data

before

using

restore.

Local

security

usage

scenario:

Consider

a

scenario

where

mobile

agents

working

on

many

different

customer

sites

want

to

ensure

that

the

confidential

data

of

one

customer

is

not

accidentally

shared

with

another.

Local

security

features,

using

different

keys,

and

possibly

different

cryptographic

strengths,

provide

a

simple

method

for

protecting

different

customer

data

held

on

a

single

machine

.

A

simple

extension

of

this

scenario

could

be

that

the

protected

local

data

is

accessed

using

a

key

that

is

pulled

from

a

secure

queue

on

an

MQe

server

node.

The

agent’s

client

has

to

authenticate

itself

to

access

the

server

queue

and

pull

the

local

key

data,

but

never

knows

the

actual

key.

One

of

the

advantages

of

taking

this

approach

is

that

an

audit

trail

is

easily

accumulated

for

all

access

to

customer

specific

data.

Secure

feature

choices:

When

using

local

security,

WebSphere

MQ

Everyplace

provides

attribute

choices

for

authentication,

encryption,

and

compression.

The

algorithms

supported

by

WebSphere

MQ

Everyplace

for

authentication,

encryption,

and

compression

are

listed

in

the

following

table:

200

MQe

Application

Programming

Table

11.

Authentication,

encryption

and

compression

support

Function

Algorithm

Authentication

WTLS

mini-certificate

(NTAuthenticator

or

UserIdAuthenticator,

Java

only)

Validation

Windows

NT,

Windows

2000,

AIX®,

or

Solaris

identity

WinCEAuthenticator

(C

only)

Compression

LZW

(Java

only)

RLE

(Java

and

C)

GZIP

(Java

only)

Encryption

Triple

DES

(Java

only)

DES

(Java

only)

MARS

(Java

only)

RC4

(Java

and

C)

RC6

(Java

only)

XOR

(Java

only)

You

can

use

your

own

implementations

of

authenticators,

provided

that

your

cryptor

is

symmetric.

Selection

criteria:

You

should

use

an

authenticator

if

you

need

to

provide

additional

controls

to

prevent

access

to

the

local

data

by

unauthorized

users.

In

some

ways

using

an

authenticator

is

unnecessary

since

providing

the

key

password

automatically

limits

access

to

those

who

know

this

secret.

Queue-based

security,

uses

mini-certificate

based

mutual

authentication,

and

message-level

protection.

The

choice

of

cryptor

is

driven

by

the

strength

of

protection

required.

The

stronger

the

encryption,

the

more

difficulty

an

attacker

would

face

when

trying

to

get

illegal

access

to

the

data.

Data

protected

with

symmetric

ciphers

that

use

128

bit

keys

is

acknowledged

as

more

difficult

to

attack

than

data

protected

using

ciphers

that

use

shorter

keys.

However,

in

addition

to

cryptographic

strength,

the

selection

of

a

cryptor

may

also

be

driven

by

many

other

factors.

An

example

is

that

some

financial

solutions

require

the

use

of

triple

DES

in

order

to

get

audit

approval.

You

should

use

a

compressor

if

you

need

to

optimize

the

size

of

the

protected

data.

However,

the

effectiveness

of

the

compressor

depends

on

the

content

of

the

data.

The

Java

MQeRleCompressor

and

the

C

MQE_RLE_COMPRESSOR

perform

run

length

encoding.

This

means

that

the

compressor

routines

compress

or

expand

repeated

bytes.

Hence

it

is

effective

in

compressing

and

decompressing

data

with

many

repeated

bytes.

MQeLZWCompressor

uses

the

LZW

scheme.

The

simplest

form

of

the

LZW

algorithm

uses

a

dictionary

data

structure

in

which

various

words,

or

data

patterns,

are

stored

against

different

codes.

This

compressor

is

likely

to

be

most

effective

where

the

data

has

a

significant

number

of

repeating

words,

or

data

patterns.

The

MQeGZIPCompressor

uses

the

same

compression

algorithm

as

the

gzip

Designing

your

real

application

201

command

on

UNIX.

This

searches

for

repeating

patterns

in

the

data

and

replaces

subsequent

occurrences

of

a

pattern

with

a

reference

back

to

the

first

occurrence

of

the

pattern.

Examples

-

Java:

1.

The

following

code

protects

an

MQeFields

object

using

MQeLocalSecure

try

{

.../*

SIMPLE

UNPROTECT

FRAGMENT

*/

.../*

instantiate

a

DES

cryptor

*/

MQeDESCryptor

desC

=

new

MQeDESCryptor(

);

.../*

instantiate

an

attribute

using

the

DES

cryptor

*/

MQeAttribute

desA

=

new

MQeAttribute(

null,

desC,

null);

.../*

instantiate

a

(a

helper)

LocalSecure

object

*/

MQeLocalSecure

ls

=

new

MQeLocalSecure(

);

.../*

open

LocalSecure

obj

identifying

target

file

and

directory

*/

ls.open(

".\\",

"TestSecureData.txt"

);

/*instantiate

an

MQeFields

object

*/

MQeFields

myData

=new

MQeFields();

/*add

some

test

data

*/

myData.putAscii("testdata","0123456789abcdef....");

.../*

use

LocalSecure

write

to

protect

data*/

ls.write(

myData.dump(),

desA,

"It_is_a_secret"

)

);

...

}

catch

(

Exception

e

)

{

e.printStackTrace();

/*

show

exception

*/

}

try

{

.../*

SIMPLE

UNPROTECT

FRAGMENT

*/

.../*

instantiate

a

DES

cryptor

*/

MQeDESCryptor

des2C

=

new

MQeDESCryptor(

);

.../*

instantiate

an

attribute

using

the

DES

cryptor

*/

MQeAttribute

des2A

=

new

MQeAttribute(

null,

des2C,

null);

.../*

instantiate

a

(a

helper)

LocalSecure

object

*/

MQeLocalSecure

ls2

=

new

MQeLocalSecure(

);

.../*

open

LocalSecure

obj

identifying

target

file

and

directory

*/

ls2.open(

".\\",

"TestSecureData.txt"

);

.../*

use

LocalSecure

read

to

restore

from

target

and

decode

data*/

String

outData

=

MQe.byteToAscii(

ls2.read(

desA2,

"It_is_a_secret"));

.../*

show

results....

*/

trace

(

"i:

test

data

out

=

"

+

outData);

...

}

catch

(

Exception

e

)

{

e.printStackTrace();

/*

show

exception

*/

}

2.

The

following

code

protects

an

MQeMsgObject

locally

without

using

MQeLocalSecure.

try

{

.../*SIMPLE

PROTECT

FRAGMENT

*/

.../*instantiate

a

DES

cryptor

*/

MQeDESCryptor

desC

=

new

MQeDESCryptor();

.../*instantiate

an

Attribute

using

the

DES

cryptor

*/

202

MQe

Application

Programming

MQeAttribute

attr

=

new

MQeAttribute(null,desC,null);

.../*instantiate

a

base

Key

object

*/

MQeKey

localkey

=

new

MQeKey();

.../*set

the

base

Key

object

local

key

*/

localkey.setLocalKey("my

secret

key");

.../*attach

the

key

to

the

attribute

*/

attr.setKey(localkey);

/*instantiate

an

MQeFields

object

*/

MQeFields

myData

=

new

MQeFields();

/*attach

the

attribute

to

the

data

object

*/

myData.setAttribute(attr);

/*add

some

test

data

*/

myData.putAscii("testdata",

"0123456789abcdef....");

trace

("i:test

data

in

=

"

+

myData.getAscii("testdata"));

/*encode

the

data

*/

byte

[]

protectedData

=

myData.dump();

trace

("i:protected

test

data

=

"

+

MQe.byteToAscii(protectedData));

}

catch

(Exception

e

)

{

e.printStackTrace();

/*show

exception

*/

}

try

{

.../*SIMPLE

UNPROTECT

FRAGMENT

*/

.../*instantiate

a

DES

cryptor

*/

MQeDESCryptor

desC2

=

new

MQeDESCryptor();

.../*instantiate

an

Attribute

using

the

DES

cryptor

*/

MQeAttribute

attr2

=

new

MQeAttribute(null,desC2,null);

.../*instantiate

a

base

Key

object

*/

MQeKey

localkey2

=

new

MQeKey();

.../*set

the

base

Key

object

local

key

*/

localkey2.setLocalKey("my

secret

key");

.../*attach

the

key

to

the

attribute

*/

attr2.setKey(localkey2

);

/*instantiate

a

new

data

object

*/

MQeFields

myData2

=

new

MQeFields();

/*attach

the

attribute

to

the

data

object

*/

myData2.setAttribute(attr2

);

/*decode

the

data

*/

myData2.restore(protectedData

);

/*show

the

unprotected

test

data

*/

trace

("i:test

data

out

=

"

+

myData2.getAscii("testdata"));

}

catch

(Exception

e

)

{

e.printStackTrace();

/*show

exception

*/

}

Examples

-

C:

1.

The

following

code

protects

an

MQeFields

structure

using

MQeLocalSecure:

/*

write

to

a

file

*/

MQeFieldsAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hDir

=

NULL,

hFile

=

NULL;

MQeStringHndl

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQeLocalSecureHndl

hLocalSecure

=

NULL;

MQeFieldsHndl

hData

=

NULL;

MQEBYTE

outBuf[128];

MQEINT32

bufLen

=

128;

MQERETURN

rc;

/*

create

a

key

seed

string

*/

rc

=

mqeString_newChar8(&exceptBlock,

Designing

your

real

application

203

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeFieldsAttr_new(&exceptBlock,

hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

create

a

dir

string

*/

rc

=

mqeString_newChar8(

&exceptBlock,

&hDir,

".\\");

/*

create

a

file

name

string

*/

rc

=

mqeString_newChar8(

&exceptBlock,

&hFile,

"localSecureFile.txt");

/*

create

an

MQeLocalSecure

*/

rc

=

mqeLocalSecure_new(

&exceptBlock,

&hLocalSecure);

/*

open

file

*/

rc

=

mqeLocalSecure_open(hLocalSecure,

&exceptBlock,

hDir,

hFile);

/*

create

a

data

Fields

*/

rc

=

mqeFields_new(&exceptBlock,

&hData);

/*

add

some

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName,

"testdata");

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldData,

"0123456789abcdef....");

rc

=

mqeFields_putAscii(hData,

&exceptBlock,

hFieldName,

hFieldData);

/*

dump

(protect)

data

Fields

*/

rc

=

mqeFields_dump(hData,

&exceptBlock,

outBuf,

&buflen);

/*

write

to

.\\ocalSecureFile.txt

*/

rc

=

mqeLocalSecure_write(hLocalSecure,

&exceptBlock,

outBuf,

bufLen,

hAttr,

NULL);

/*

read

from

a

file

*/

MQeFieldsAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hDir

=

NULL,

hFile

=

NULL;

MQeStringHndl

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQeLocalSecureHndl

hLocalSecure

=

NULL;

MQERETURN

rc;

MQEBYTE

outBuf[128];

MQEINT32

bufLen

=

128;

/*

create

a

key

seed

string

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeFieldsAttr_new(&exceptBlock,

&hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

create

a

dir

string

*/

rc

=

mqeString_newChar8(

&exceptBlock,

&hDir,

".\\");

/*

create

a

file

name

string

*/

rc

=

mqeString_newChar8(

&exceptBlock,

&hFile,

"localSecureFile.txt");

/*

create

an

MQeLocalSecure

*/

rc

=

mqeLocalSecure_new(

&exceptBlock,

&hLocalSecure);

/*

open

file

*/

rc

=

mqeLocalSecure_open(hLocalSecure,

&exceptBlock,

hDir,

hFile);

204

MQe

Application

Programming

/*

read

from

.\\ocalSecureFile.txt

*/

rc

=

mqeLocalSecure_read(hLocalSecure,

&exceptBlock,

outBuf,

&Buflen,

hAttr,

NULL);

/*

create

a

data

Fields

*/

rc

=

mqeFields_new(&exceptBlock,

&hData);

/*

restore

data

Fields

*/

rc

=

mqeFields_restore(hData,

&exceptBlock,

outBuf,

bufLen);

/*

read

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName,

"testdata");

rc

=

mqeFields_getAscii(hData,

&exceptBlock,

&hFieldData,

hFieldName);

2.

The

following

code

protects

an

MQeFields

structure

without

using

MQeLocalSecure:

/*

dump

to

a

buffer

*/

MQeFieldsAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQeFieldsHndl

hData

=

NULL;

MQEBYTE

outBuf[128];

MQEINT32

bufLen

=

128;

MQERETURN

rc;

/*

create

a

key

seed

string

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeFieldsAttr_new(&exceptBlock,

&hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

create

a

data

Fields

*/

rc

=

mqeFields_new(&exceptBlock,

&hData);

/*

set

the

attribute

to

the

data

Fields

*/

rc

=

mqeFields_setAttribute(hData,

&exceptBlock,

hAttr);

/*

add

some

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName,

"testdata");

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldData,

"0123456789abcdef....");

rc

=

mqeFields_putAscii(hData,

&exceptBlock,

hFieldName,

hFieldData);

/*

dump

(protect)

data

Fields

*/

rc

=

mqeFields_dump(hData,

&exceptBlock,

outBuf,

&bufLen);

/*

restor

from

a

buffer

*/

MQeFieldsAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQERETURN

rc;

MQEBYTE

outBuf[128];

MQEINT32

bufLen

=

128;

...

/*

assume

protected

data

is

in

inBuf

and

its

length

is

in

bufLen

*/

/*

create

a

key

seed

string

*/

Designing

your

real

application

205

rc

=

mqeString_newChar8(&exceptBlock,

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeFieldsAttr_new(&exceptBlock,

&hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

create

a

data

Fields

*/

rc

=

mqeFields_new(&exceptBlock,

&hData);

/*

set

the

attribute

to

the

data

Fields

*/

rc

=

mqeFields_setAttribute(hData,

&exceptBlock,

hAttr);

/*

restore

data

Fields

*/

rc

=

mqeFields_restore(hData,

&exceptBlock,

inBuf,

bufLen);

/*

read

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName,

"testdata");

rc

=

mqeFields_getAscii(hData,

&exceptBlock,

&hFieldData,

hFieldName);

Message

level

security

Message-level

security

facilitates

the

protection

of

message

data

between

an

initiating

and

receiving

MQe

application.

Messages

are

encrypted

by

the

application,

using

MQe

services,

and

passed

to

MQe

for

transport

in

a

fully

protected

state.

MQe

delivers

the

messages

to

a

target

queue,

from

which

they

are

removed

by

an

application

and

subsequently

decrypted,

again

using

MQe

services.

Since

the

messages

are

fully

protected

when

being

directly

handled

by

MQe,

they

can

be

flowed

over

clear

channels

and

held

on

unprotected

intermediate

queues.

Message-level

security

is

an

application

layer

service.

It

requires

the

initiating

MQe

application

to

create

a

message-level

attribute

and

provide

it

when

using

putMessage()

to

put

a

message

to

a

target

queue.

The

receiving

application

must

set

up

and

pass

a

matching

message-level

attribute

to

the

receiving

queue

manager

so

that

the

attribute

is

available

when

the

application

invokes

getMessage()

to

get

the

message

from

the

target

queue.

Like

local

security,

message-level

security

exploits

the

application

of

an

attribute

on

a

message,

an

MQeFields

object

descendent.

The

initiating

application’s

queue

manager

handles

the

application’s

putMessage()

with

the

message

Java

dump

method

or

C

API,

which

invokes

the

attached

attribute’s

Java

encodeData()

method

or

C

API

to

protect

the

message

data.

The

receiving

application’s

queue

manager

handles

the

application’s

getMessage()

with

the

message’s

Java

’restore’

method

or

C

API,

which

in

turn

uses

the

supplied

attribute’s

decodeData()

method

to

recover

the

original

message

data.

Message-level

security

usage

scenario:

Message-level

security

is

typically

most

useful

for:

v

Solutions

that

are

designed

to

use

predominantly

asynchronous

queues.

v

Solutions

for

which

application

level

security

is

important;

that

is

solutions

whose

normal

message

paths

include

flows

over

multiple

nodes

perhaps

connected

with

different

protocols.

Message-level

security

manages

trust

at

the

application

level,

which

means

security

in

other

layers

becomes

unnecessary.

A

typical

scenario

is

a

solution

service

that

is

delivered

over

multiple

open

networks.

For

example

over

a

mobile

network

and

the

internet,

where,

from

outset

206

MQe

Application

Programming

asynchronous

operation

is

anticipated.

In

this

scenario,

it

is

also

likely

that

message

data

is

flowed

over

multiple

links

that

may

have

different

security

features,

but

whose

security

features

are

not

necessarily

controlled

or

trusted

by

the

solution

owner.

In

this

case

it

is

very

likely

the

solution

owner

does

not

want

to

delegate

trust

for

the

confidentiality

of

message

data

to

any

intermediate,

but

would

prefer

to

manage

and

control

trust

management

directly.

MQe

message-level

security

provides

solution

designers

with

the

features

that

enable

the

strong

protection

of

message

data

in

a

way

that

is

under

the

direct

control

of

the

initiating

and

recipient

applications,

and

that

ensures

the

confidentiality

of

the

message

data

throughout

its

transfer,

end

to

end,

application

to

application.

Secure

feature

choices:

MQe

supplies

two

alternative

attributes

for

message-level

security.

MQeMAttribute

This

suits

business-to-business

communications

where

mutual

trust

is

tightly

managed

in

the

application

layer

and

requires

no

trusted

third

party.

It

allows

use

of

all

available

MQe

symmetric

cryptor

and

compressor

choices.

Like

local

security

it

requires

the

attribute’s

key

to

be

preset

before

it

is

supplied

as

a

parameter

on

putMessage()

and

getMessage().

This

provides

a

simple

and

powerful

method

for

message-level

protection

that

enables

use

of

strong

encryption

to

protect

message

confidentiality,

without

the

overhead

of

any

public

key

infrastructure

(PKI).

MQeMTrustAttribute

Note:

The

MQeMTrustAttribute

does

not

apply

to

the

C

codebase.
This

provides

a

more

advanced

solution

using

digital

signatures

and

exploiting

the

default

public

key

infrastructure

to

provide

a

digital

envelope

style

of

protection.

It

uses

ISO9796

digital

signature

or

validation

so

that

the

receiving

application

can

establish

proof

that

the

message

came

from

the

purported

sender.

The

supplied

attribute’s

cryptor

protects

message

confidentiality.

SHA1

digest

guarantees

message

integrity

and

RSA

encryption

and

decryption,

ensuring

that

the

message

can

only

be

restored

by

the

intended

recipient.

As

with

MQeMAttribute,

it

allows

use

of

all

available

MQe

symmetric

cryptor

and

compressor

choices.

Chosen

for

size

optimization,

the

certificates

used

are

mini-certificates

which

conform

to

the

WTLS

Specification

approved

by

the

WAP

forum.

MQe

provides

a

default

public

key

infrastructure

to

distribute

the

certificates

as

required

to

encrypt

and

authenticate

the

messages.

A

typical

MQeMTrustAtribute

protected

message

has

the

format:

RSA-enc{SymKey},

SymKey-enc

{Data,

DataDigest,

DataSignature}

where:

RSA-enc:

RSA

encrypted

with

the

intended

recipient’s

public

key,

from

his

mini-certificate

SymKey:

Generated

pseudo-random

symmetric

key

SymKey-enc:

Symmetrically

encrypted

with

the

SymKey

Designing

your

real

application

207

Data:

Message

data

DataDigest:

Digest

of

message

data

DigSignature:

Initiator’s

digital

signature

of

message

data

Selection

criteria:

MQeMAttribute

relies

totally

on

the

solution

owner

to

manage

the

content

of

the

key

seed

that

is

used

to

derive

the

symmetric

key

that

is

used

to

protect

the

confidentiality

of

the

data.

This

key

seed

must

be

provided

to

both

the

initiating

and

recipient

applications.

While

it

provides

a

simple

mechanism

for

the

strong

protection

of

message

data

without

the

need

of

any

PKI,

it

clearly

depends

of

the

effective

operational

management

of

the

key

seed.

MQeMTrustAttribute

exploits

the

advantages

of

the

MQe

default

PKI

to

provide

a

digital

envelope

style

of

message-level

protection.

This

not

only

protects

the

confidentiality

of

the

message

data

flowed,

but

checks

its

integrity

and

enables

the

initiator

to

ensure

that

only

the

intended

recipient

can

access

the

data.

It

also

enables

the

recipient

to

validate

the

originator

of

the

data,

and

ensures

that

the

signer

cannot

later

deny

initiating

the

transaction.

This

is

known

as

non-repudiation.

Solutions

that

wish

to

simply

protect

the

end-to-end

confidentiality

of

message

data

will

probably

decide

that

MQeMAttrribute

suits

their

needs,

while

solutions

for

which

one

to

one

(authenticatable

entity

to

authenticatable

entity)

transfer

and

non-repudiation

of

the

message

originator

are

important

may

find

MQeMTrustAttribute

is

the

correct

choice.

Examples

-

using

MAttribute

for

Java:

/*SIMPLE

PROTECT

FRAGMENT

*/

{

MQeMsgObject

msgObj

=

null;

MQeMAttribute

attr

=

null;

long

confirmId

=

MQe.uniqueValue();

try{

trace(">>>putMessage

to

target

Q

using

MQeMAttribute"

+"

with

3DES

Cryptor

and

key=my

secret

key");

/*

create

the

cryptor

*/

MQe3DESCryptor

tdes

=

new

MQe3DESCryptor();

/*

create

an

attribute

using

the

cryptor

*/

attr

=

new

MQeMAttribute(null,tdes,null

);

/*

create

a

local

key

*/

MQeKey

localkey

=

new

MQeKey();

/*

give

it

the

key

seed

*/

localkey.setLocalKey("my

secret

key");

/*

set

the

key

in

the

attribute

*/

attr.setKey(localkey

);

/*

create

the

message

*/

msgObj

=

new

MQeMsgObject();

msgObj.putAscii("MsgData","0123456789abcdef...");

/*

put

the

message

using

the

attribute

*/

newQM.putMessage(targetQMgrName,

targetQName,

msgObj,

attr,

confirmId

);

trace(">>>MAttribute

protected

msg

put

OK...");

}

catch

(Exception

e)

{

trace(">>>on

exception

try

resend

exactly

once...");

msgObj.putBoolean(MQe.Msg_Resend,

true

);

newQM.putMessage(targetQMgrName,

targetQName,

208

MQe

Application

Programming

msgObj,

attr,

confirmId

);

}

}

/*SIMPLE

UNPROTECT

FRAGMENT

*/

{

MQeMsgObject

msgObj2

=

null;

MQeMAttribute

attr2

=

null;

long

confirmId2

=

MQe.uniqueValue();

try{

trace(">>>getMessage

from

target

Q

using

MQeMAttribute"+

"

with

3DES

Cryptor

and

key=my

secret

key");

/*

create

the

attribute

-

we

do

not

have

to

specify

the

cryptor,

*/

/*

the

attribute

can

get

this

from

the

message

itself

*/

attr2

=

new

MQeMAttribute(null,null,null

);

/*

create

a

local

key

*/

MQeKey

localkey

=

new

MQeKey();

/*

give

it

the

key

seed

*/

localkey.setLocalKey("my

secret

key");

/*

set

the

key

in

the

attribute

*/

attr2.setKey(localkey

);

/*

get

the

message

using

the

attribute

*/

msgObj2

=

newQM.getMessage(targetQMgrName,

targetQName,

null,

attr2,

confirmId2

);

trace(">>>unprotected

MsgData

=

"

+

msgObj2.getAscii("MsgData"));

}

catch

(Exception

e)

{

/*exception

may

have

left

*/

newQM.undo(targetQMgrName,

/*message

locked

on

queue

*/

targetQName,

confirmId2

);

/*undo

just

in

case

*/

e.printStackTrace();

/*show

exception

reason

*/

}

...

}

Examples

-

using

MAttribute

for

C:

/*

putMessage

*/

MQeMsgAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hQMgrName

=

NULL,

hQName

=

NULL;

MQeStringHndl

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQeFieldsHndl

hData

=

NULL;

MQeQueueManagerHndl

hQMgr

=

NULL;

MQERETURN

rc;

...

/*

assume

queue

manager

handle

in

hQMgr,

/*QMgr

name

in

hQMgrName,

and

queue

name

in

hQName

*/

/*

create

a

key

seed

string

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeMsgAttr_new(&exceptBlock,

&hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

create

a

data

Fields

*/

rc

=

mqeFields_new(&exceptBlock,

&hData);

/*

add

some

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName

Designing

your

real

application

209

"MsgData");

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldData

"0123456789abcdef....");

rc

=

mqeFields_putAscii(hData,

&exceptBlock,

hFieldName,

hFieldData);

/*

send

message

*/

rc

=

mqeQueueManager_putMessage(hQMgr,

&exceptBlock,

hQMgrName,

hQName,

hData,

hAttr,

0);

/*

getMessage

*/

MQeMsgAttrHndl

hAttr

=

NULL;

MQeStringHndl

hKeySeed

=

NULL,

hQMgrName

=

NULL,

hQName

=

NULL;

MQeStringHndl

hFieldName

=

NULL,

hFieldData

=

NULL;

MQeExceptBlock

exceptBlock;

MQeQueueManagerHndl

hQMgr

=

NULL;

MQERETURN

rc;

...

/*

assume

queue

manager

handle

in

hQMgr,

QMgr

name

in

hQMgrName,

and

queue

name

in

hQName

*/

/*

create

a

key

seed

string

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hKeySeed,

"my

secret

key");

/*

create

a

new

attribute

with

a

RC4

cryptor

*/

rc

=

mqeMsgAttr_new(&exceptBlock,

&hAttr,

NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,

NULL,

hKeySeed);

/*

get

message

*/

rc

=

mqeQueueManager_getMessage(hQMgr,

&exceptBlock,

&hData,

hQMgrName,

hQName,

NULL,

hAttr,

0);

/*

get

test

data

*/

rc

=

mqeString_newChar8(&exceptBlock,

&hFieldName,

"MsgData");

rc

=

mqeFields_getAscii(hData,

&exceptBlock,

&hFieldData,

hFieldName);

Examples

-

using

MTrustAttribute

for

Java:

For

an

explanation

about

MQePrivateRegistry

and

MQePublicRegistry

(used

in

the

following

example)

see

“Private

registry

service”

on

page

236and

“Public

registry

service”

on

page

240.

/*SIMPLE

PROTECT

FRAGMENT

*/

{

MQeMsgObject

msgObj

=

null;

MQeMTrustAttribute

attr

=

null;

long

confirmId

=

MQe.uniqueValue();

try

{

trace(">>>putMessage

from

Bruce1

intended

for

Bruce8"

+

"

to

target

Q

using

MQeMTrustAttribute

with

MARSCryptor

");

/*

create

the

cryptor

*/

MQeMARSCryptor

mars

=

new

MQeMARSCryptor();

/*

create

an

attribute

using

the

cryptor

*/

attr

=

new

MQeMTrustAttribute(null,

mars,

null);

/*

open

the

private

registry

belonging

to

the

sender

*/

String

EntityName

=

"Bruce1";

String

PIN

=

"12345678";

Object

Passwd

=

"It_is_a_secret";

MQePrivateRegistry

sendreg

=

new

MQePrivateRegistry();

sendreg.activate(EntityName,

".\\MQeNode_PrivateRegistry",

PIN,

Passwd,

null,

null

);

/*

set

the

private

registry

in

the

attribute

*/

210

MQe

Application

Programming

attr.setPrivateRegistry(sendreg

);

/*

set

the

target

(recipient)

name

in

the

attribute

*/

attr.setTarget("Bruce8");

/*

open

a

public

registry

to

get

the

target’s

certificate

*/

MQePublicRegistry

pr

=

new

MQePublicRegistry();

pr.activate("MQeNode_PublicRegistry",

".\\");

/*

set

the

public

registry

in

the

attribute

*/

attr.setPublicRegistry(pr);

/*

set

a

home

server,

which

is

used

to

find

the

certificate*/

/*

if

it

is

not

already

in

the

public

registry

*/

attr.setHomeServer(MyHomeServer

+":8082");

/*

create

the

message

*/

msgObj

=new

MQeMsgObject();

msgObj.putAscii("MsgData","0123456789abcdef...");

/*

put

the

message

using

the

attribute

*/

newQM.putMessage(targetQMgrName,

targetQName,

msgObj,

attr,

confirmId

);

trace(">>>MTrustAttribute

protected

msg

put

OK...");

}

catch

(Exception

e)

{

trace(">>>on

exception

try

resend

exactly

once...");

msgObj.putBoolean(MQe.Msg_Resend,

true);

newQM.putMessage(targetQMgrName,

targetQName,

msgObj,

attr,

confirmId

);

}

}

/*SIMPLE

UNPROTECT

FRAGMENT

*/

{

MQeMsgObject

msgObj2

=

null;

MQeMTrustAttribute

attr2

=

null;

long

confirmId2

=

MQe.uniqueValue();

try

{

trace(">>>getMessage

from

Bruce1

intended

for

Bruce8"

+

"

from

target

Q

using

MQeMTrustAttribute

with

MARSCryptor

");

/*

create

the

cryptor

*/

MQeMARSCryptor

mars

=

new

MQeMARSCryptor();

/*

create

an

attribute

using

the

cryptor

*/

attr2

=

new

MQeMTrustAttribute(null,

mars,

null);

/*

open

the

private

registry

belonging

to

the

target

*/

String

EntityName

=

"Bruce8";

String

PIN

=

"12345678";

Object

Passwd

=

"It_is_a_secret";

MQePrivateRegistry

getreg

=

new

MQePrivateRegistry();

getreg.activate(EntityName,

".\\MQeNode_PrivateRegistry",

PIN,

Passwd,

null,

null

);

/*

set

the

private

registry

in

the

attribute

*/

attr2.setPrivateRegistry(getreg);

/*

open

a

public

registry

to

get

the

sender’s

certificate

*/

MQePublicRegistry

pr

=

new

MQePublicRegistry();

pr.activate("MQeNode_PublicRegistry",

".\\");

/*

set

the

public

registry

in

the

attribute

*/

attr2.setPublicRegistry(pr);

/*

set

a

home

server,

which

is

used

to

find

the

certificate*/

/*

if

it

is

not

already

in

the

public

registry

*/

attr2.setHomeServer(MyHomeServer

+":8082");

/*

get

the

message

using

the

attribute

*/

msgObj2

=

newQM.getMessage(targetQMgrName,

targetQName,

null,

attr2,

confirmId2

);

trace(">>>MTrustAttribute

protected

msg

=

"

+

msgObj2.getAscii("MsgData"));

}

catch

(Exception

e)

{

/*exception

may

have

left

*/

Designing

your

real

application

211

newQM.undo(targetQMgrName,

/*message

locked

on

queue

*/

targetQName,

confirmId2

);

/*undo

just

in

case

*/

e.printStackTrace();

/*show

exception

reason

*/

}

}

Non-repudiation:

The

MQeMTrustAttribute

digitally

signs

messages.

This

enables

the

recipient

to

validate

the

creator

of

the

message,

and

ensures

that

the

creator

cannot

later

deny

creating

the

message.

This

is

known

as

non-repudiation.

This

process

depends

on

the

fact

that

only

one

public

key

can

validate

the

signature

successfully

generated

by

a

particular

private

key.

This

validation

proves

that

the

signature

was

created

with

the

corresponding

private

key.

The

only

way

the

alleged

creator

can

deny

creating

the

message

is

to

claim

that

someone

else

had

access

to

the

private

key.

When

a

message

is

created

with

the

MQeMTrustAttribute,

it

uses

the

private

key

from

the

sender’s

private

registry

to

create

the

digital

signature

and

it

stores

the

sender’s

name

in

the

message.

When

the

message

is

read

with

the

queue

manager’s

getMessage()

method,

it

uses

the

sender’s

public

certificate

to

validate

the

digital

signature.

The

message

is

read

successfully

only

if

the

signature

validates

successfully,

proving

that

the

message

was

created

by

the

entity

whose

name

was

stored

in

the

message

as

the

sender.

When

the

MQeMTrustAttribute

is

specified

as

a

parameter

to

the

queue

manager’s

getMessage()

method,

the

attribute

validates

the

digital

signature

but

by

the

time

the

message

is

returned

to

the

user’s

application

all

the

information

relating

to

the

signature

has

been

discarded.

If

non-repudiation

is

important

to

you,

you

must

keep

a

record

of

this

information.

The

simplest

way

to

do

this

is

to

keep

a

copy

of

the

encrypted

message,

because

that

includes

the

digital

signature.

You

can

do

this

by

using

the

getMessage()

method

without

an

attribute.

This

returns

the

encrypted

message

which

you

can

then

save,

for

example

in

a

local

queue.

You

can

decrypt

the

message

by

applying

the

attribute

to

access

the

contents

of

the

message.

Example

-

saving

a

copy

of

an

encrypted

message:

The

following

code

fragment

provides

an

example

of

how

to

save

an

encrypted

message.

/*SIMPLE

FRAGMENT

TO

SAVE

ENCRYPTED

MESSAGE*/

{

MQeMsgObject

msgObj2

=

null;

MQeMTrustAttribute

attr2

=

null;

long

confirmId2

=

MQe.uniqueValue();

long

confirmId3

=

MQe.uniqueValue();

try

{

trace(">>>getMessage

from

Bruce1

intended

for

Bruce8"

+

"

from

target

Q

using

MQeMTrustAttribute

with

MARSCryptor

");

/*

read

the

encrypted

message

without

an

attribute

*/

MQeMsgObject

tmpMsg1

=

newQM.getMessage(targetQMgrName,

targetQName,

null,

null,

confirmId2

);

/*

save

the

encrypted

message

-

we

cannot

put

it

directly

*/

/*

to

another

queue

because

of

the

origin

queue

manager

*/

/*

data.

Embed

it

in

another

message

*/

MQeMsgObject

tmpMsg2

=

new

MQeMsgObject();

tmpMsg2.putFields("encryptedMsg",

tmpMsg1);

newQM.putMessage(localQMgrName,

archiveQName,

212

MQe

Application

Programming

tmpMsg2,

null,

confirmId3);

trace(">>>encrypted

message

saved

locally");

/*

now

decrypt

and

read

the

message

&

*/

/*

create

the

cryptor

*/

MQeMARSCryptor

mars

=

new

MQeMARSCryptor();

/*

create

an

attribute

using

the

cryptor

*/

attr2

=

new

MQeMTrustAttribute(null,

mars,

null);

/*

open

the

private

registry

belonging

to

the

target

*/

String

EntityName

=

"Bruce8";

String

PIN

=

"12345678";

Object

Passwd

=

"It_is_a_secret";

MQePrivateRegistry

getreg

=

new

MQePrivateRegistry();

getreg.activate(EntityName,

".\\MQeNode_PrivateRegistry",

PIN,

Passwd,

null,

null

);

/*

set

the

private

registry

in

the

attribute

*/

attr2.setPrivateRegistry(getreg);

/*

open

a

public

registry

to

get

the

sender’s

certificate

*/

MQePublicRegistry

pr

=

new

MQePublicRegistry();

pr.activate("MQeNode_PublicRegistry",

".\\");

/*

set

the

public

registry

in

the

attribute

*/

attr2.setPublicRegistry(pr);

/*

set

a

home

server,

which

is

used

to

find

the

certificate*/

/*

if

it

is

not

already

in

the

public

registry

*/

attr2.setHomeServer(MyHomeServer

+":8082");

/*

decrypt

the

message

by

unwrapping

it

*/

msgObj2

=

tmpMsg1.unwrapMsgObject(attr2);

trace(">>>MTrustAttribute

protected

msg

=

"

+

msgObj2.getAscii("MsgData"));

catch

(Exception

e)

{

/*exception

may

have

left

*/

newQM.undo(targetQMgrName,

/*message

locked

on

queue

*/

targetQName,

confirmId2

);

/*undo

just

in

case

*/

e.printStackTrace();

/*show

exception

reason

*/

}

}

Queue-based

security

Queue-based

security

is

handled

internally

by

MQe

and

does

not

require

any

specific

action

by

the

initiator

or

recipient

of

the

message.

Messages

are

assumed

to

have

been

encrypted

by

the

application

when

they

are

passed

to

MQe.

MQe

delivers

the

messages

to

a

target

queue,

from

which

they

are

removed

by

an

application.

MQe

protects

the

messages

on

receipt

and

flows

them

over

secure

channels;

they

are

also

held

protected

on

any

intermediate

queues

and

on

the

destination

queue.

This

protection

is

independent

of

whether

the

target

queue

is

owned

by

a

local

or

a

remote

queue

manager.

Using

queue-based

security

does

not

require

any

application

programming,

but

the

following

topic

(“Configuring

queue-based

security”

on

page

214)

describes

how

to

add

security

attributes

to

a

queue.

As

long

as

configurations

have

been

set

up

properly,

messages

are

automatically

protected

during

transmission.

Security

properties:

Designing

your

real

application

213

The

level

of

queue-based

security

to

be

used

is

determined

through

the

setting

of

attributes

on

queues.

As

a

consequence

of

these

attributes,

MQe

uses,

if

required,

appropriate

secure

channels,

cryptors,

and

compressors,

and

controls

access

through

authenticators.

The

relevant

queue

properties

are:

Compressor

A

compressor

is

optional.

It

determines

whether

the

data

should

be

compressed.

Cryptor

A

cryptor

is

optional.

It

determines

whether

the

data

should

be

encrypted

to

hide

the

significance

of

the

contents.

Authenticator

An

authenticator

is

optional.

It

determines

whether

the

data

access

should

be

controlled.

Attribute

rule

An

attribute

rule

is

optional

in

the

sense

that

you

can

specify

a

null

for

this

property.

If

a

null

is

specified,

a

system

default

attribute

rule

is

then

used

internally.

An

attribute

rule

determines

whether

an

existing

channel

can

be

reused

or

upgraded

to

access

a

particular

queue.

Effects

of

queue

attributes:

Queue

attributes

can

be

set

on

all

queue

definitions.

They

affect

not

only

the

way

messages

are

stored

on

the

queues

in

question,

but

also

affect

the

way

messages

are

transmitted

over

communication

channels.

MQe

creates

security

attributes

internally

based

on

target

queue

attributes.

The

effect

they

have

depends

upon

the

kind

of

queue

definition

the

queue

attributes

relate

to:

Local

queue

Determines

how

the

data

is

stored

and

whether

the

incoming

channel

characteristics

are

acceptable.

If

an

authenticator

is

specified,

an

authentication

process

using

this

authenticator

occurs

when

the

queue

is

accessed

for

the

first

time

by

any

particular

instance

of

a

local

queue

manager.

Remote

queue

Determines

how

the

data

is

stored

pending

transmission,

if

applicable,

and

how

the

outgoing

channel

is

established.

If

an

authenticator

is

specified,

an

authentication

process

using

this

authenticator

occurs

whenever

a

new

channel

for

transmitting

messages

on

the

queue

is

created.

Store-and-forward

queue

Determines

how

the

data

is

stored

pending

transmission,

whether

the

incoming

channel

characteristics

are

acceptable,

and

how

the

outgoing

channel

is

established

(if

applicable).

An

authenticator

on

a

store-and-forward

queue

has

the

same

effect

that

it

has

on

a

remote

queue.

Home

server

queue

Determines

how

the

outgoing

channel

is

established.

An

authenticator

on

a

home-server

queue

has

the

same

effect

that

it

has

on

a

remote

queue.

Configuring

queue-based

security:

This

topic

explains

how

to

add

security

attributes

to

a

queue.

214

MQe

Application

Programming

Writing

authenticators:

Authenticators

are

invoked

by

security

attributes.

Therefore,

how

and

when

they

are

used

is

determined

by

the

specific

implementation

of

an

attribute.

One

main

usage

of

authenticators

is

for

controlling

access

to

queues

in

queue-based

security.

Authenticators

can

be

used

in

queue-based

security

to

control

access

to

queues.

MQe

provides

a

certificate

authenticator

as

part

of

its

base

code,

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator.

There

are

some

Java

example

authenticators,

in

the

examples.attributes

directory,

which

are

based

on

user

names

and

passwords.

There

is

also

a

C

example,

WinCEAuthenticator,

in

the

examples\src\WinCEAuthenticator

directory.

In

addition

to

these,

MQe

allows

you

to

write

your

own

authenticator.

In

queue-based

security,

authenticators

are

activated

when

a

queue

is

first

accessed

and

they

can

grant

or

deny

access

to

the

queue.

When

a

queue

is

accessed

from

its

local

queue

manager,

the

authenticator

is

activated

when

the

first

operation,

for

example

put,

get

,

or

browse

is

performed

on

the

queue.

When

a

queue

is

accessed

from

a

remote

queue

manager,

MQe

establishes

a

channel

between

the

two

queue

managers

and

the

authenticator

is

activated

as

part

of

establishing

the

channel.

Writing

authenticators

in

Java:

All

authenticators

must

extend

the

base

authenticator

class:

class

MyAuthenticator

extends

com.ibm.mqe.MQeAuthenticator

The

following

methods

in

the

base

class

can

be

overridden:

activateMaster()

The

signature

for

this

method

is:

public

byte[]

activateMaster(

boolean

local

)

throws

Exception

It

is

invoked

on

the

queue

manager

that

initiates

access

to

a

queue.

The

parameter

local

indicates

whether

this

is

a

local

access;

that

is,

the

queue

is

on

the

same

queue

manager,

local

==

true,

or

a

remote

access,

local

==

false.

The

method

should

collect

data

to

authenticate

the

queue

manager

or

user

and

return

the

data

in

a

byte

array.

The

data

is

passed

to

the

activateSlave()

method.

The

activateMaster()

method

in

the

base

class,

MQeAuthenticator,

simply

returns

null.

It

does

not

throw

any

exceptions.

Any

exceptions

thrown

by

this

method,

in

a

subclass,

are

not

caught

by

MQe

itself,

but

are

passed

back

to

the

user’s

code

and

terminate

the

attempt

to

access

the

queue.

activateSlave()

The

signature

for

this

method

is:

public

byte[]

activateSlave(

boolean

local,

byte

data[]

)

throws

Exception

This

is

invoked

on

the

queue

manager

that

owns

the

queue.

The

parameter

local

indicates

whether

this

is

a

local

access,

i.e.

initiated

on

the

same

queue

manager,

local

==

true,

or

a

remote

access,

local

==

false.

The

parameter

datacontains

the

data

returned

by

the

activateMaster()

method.

The

activateSlave()

method

should

validate

this

data.

If

it

is

satisfied

with

the

data

it

should

call

the

setAuthenticatedID()

method

to

set

the

name

of

the

authenticated

entity,

this

indicates

that

the

first

stage

of

the

authentication

was

successful.

It

can

then

collect

data

to

authenticate

the

local

queue

manager

and

return

it

in

a

byte

array.

The

data

is

passed

to

the

slaveResponse()

method.

If

it

is

not

satisfied

with

the

data,

it

throws

an

exception

indicating

the

reason.

The

activateSlave()

method

in

the

base

Designing

your

real

application

215

class,

MQeAuthenticator,

checks

whether

the

name

of

the

authenticated

entity

has

been

set

and

if

it

has,

it

logs

the

name;

it

then

returns

null.

It

does

not

throw

any

exceptions.

Any

exceptions

thrown

by

this

method,

in

a

subclass,

are

not

caught

by

MQe

itself,

but

are

passed

back

to

the

initiating

queue

manager

where

they

are

re-thrown.

MQe

does

not

catch

these

exceptions

on

the

initiating

queue

manager

and

they

are

passed

back

to

the

user’s

code

and

will

terminate

the

attempt

to

access

the

queue.

slaveResponse()

The

signature

for

this

method

is:

public

void

slaveResponse(

boolean

local,

byte

data[]

)

throws

Exception

It

is

invoked

on

the

queue

manager

that

initiates

access

to

a

queue.

The

local

parameter

indicates

whether

this

is

a

local

access,

local

==

true,

or

a

remote

access,

local

==

false.

The

parameter

data

contains

the

data

returned

by

the

activateSlave()

method.

If

it

is

satisfied

with

the

data

it

should

call

the

setAuthenticatedID()

method

to

set

the

name

of

the

authenticated

entity,

this

indicates

that

the

second

stage

of

the

authentication

was

successful.

If

the

activateSlave()

method

did

not

return

any

data,

and

the

slaveResponse()

method

is

satisfied

with

this,

it

still

calls

setAuthenticatedID()

to

indicate

success.

If

it

is

not

satisfied

with

the

data,

it

throws

an

exception

indicating

the

reason.

The

slaveResponse()

method

in

the

base

class,

MQeAuthenticator,

simply

returns

null.

It

does

not

throw

any

exceptions.

Any

exceptions

thrown

by

this

method,

in

a

subclass,

are

not

caught

by

MQe

itself,

but

are

passed

back

to

the

user’s

code

and

terminate

the

attempt

to

access

the

queue.

When

a

queue

is

accessed

locally,

the

three

methods

are

invoked

in

sequence

on

the

local

queue

manager.

The

example

logon

authenticator:

The

example

logon

authenticator

shows

how

to

implement

the

three

methods:

activateMaster(),

activateSlave(),

and

slaveResponse().

Queue manager
that initiates

access

Queue manager
that owns
the queue

activatemaster()
{

return byte []
}

slaveResponse(byte [])
{

}

activateSlave(byte [])
{

return byte []
}

Figure

77.

The

slaveResponse()

method

in

MQeAuthenticator

216

MQe

Application

Programming

It

has

a

base

class,

examples.attributes.LogonAuthenticator,

and

three

subclasses,

one

for

the

NTAuthenticator,

one

for

the

UnixAuthenticator,

and

one

for

the

UseridAuthenticator.

The

base

class

provides

common

functionality

and

the

subclasses

provide

functionality

that

is

specific

to

the

type

of

authenticator,

that

is

NT,

Unix,

or

Userid.

The

activateMaster()

method

in

the

LogonAuthenticator

class

creates

an

empty

MQeFields

object

and

passes

it

into

a

method

called

prompt().

This

is

overridden

in

each

of

the

subclasses,

and

in

each

case

it

displays

a

Java

dialog

box,

collects

data

from

it,

masks

the

data

with

a

simple

exclusive

OR

operation,

and

adds

the

data

to

the

MQeFields

object.

The

exclusive

OR

is

used

in

the

example

authenticators

but

in

practice

it

does

not

provide

much

protection.

The

MQeFields

object

is

dumped

to

provide

a

byte

array

which

is

returned

by

activateMaster().

The

activateMaster()

method

is

invoked

on

the

queue

manager

that

initiates

access

to

the

queue,

so

the

dialog

box

is

displayed

by

this

queue

manager.

public

byte[]

activateMaster(boolean

local)

throws

Exception

{

MQeFields

fields

=

new

MQeFields();

/*

for

request

fields

*/

this.prompt(fields);

/*

put

up

the

dialog

prompt

*/

return

(fields.dump());

/*

return

ID

*/

}

The

activateSlave()

method

receives

the

data

returned

by

activateMaster(),

restores

it

into

an

MQeFields

object

and

passes

the

object

into

the

validate()

method.

This

is

overridden

in

each

of

the

subclasses,

and

in

each

case

it

validates

the

data

in

a

way

appropriate

to

the

authenticator.

For

example,

in

the

NTAuthenticator

subclass,

the

validate()

method

unmasks

the

data

and

passes

it

to

the

logonUser()

method.

This

method

uses

Java

Native

Interface

(JNI)

to

access

the

Windows

security

mechanism

and

check

whether

the

user

name

and

password

are

valid.

If

they

are

valid,

the

validate()

method

returns

the

user

name,

otherwise

it

throws

an

exception.

public

byte[]

activateSlave(boolean

local,

byte

data[])

throws

Exception

{

MQeFields

fields

=

new

MQeFields(data);

/*

work

object

*/

try

{

authID

=

this.validate(fields);

/*

get

the

auth

ID

value

*/

setAuthenticatedID(authID);

/*

is

it

allowed

?

*/

super.activateSlave(local,

data);

/*

call

ancestor

*/

trace("_:Logon

"

+

authID);

/*

trace

*/

MQeFields

result

=

new

MQeFields();

/*

reply

object

*/

result.putAscii(Authentic_ID,

authID);/*

send

id

*/

return

(result.dump());

/*

send

back

as

response

*/

}

catch

(Exception

e)

{

/*

error

occured

*/

authID

=

null;

/*

make

sure

authID

is

null

*/

setAuthenticatedID(null);

/*

invalidate

*/

throw

e;

/*

re-throw

the

exception

*/

}

}

Designing

your

real

application

217

If

the

user

name

is

valid,

the

activateSlave()

method

calls

setAuthenticatedID()

to

register

the

user

name

and

the

calls

super.activateSlave()

which

puts

out

a

log

message.

It

issues

a

trace

message,

adds

the

user

name

to

an

MQeFields

object,

dumps

this

to

a

byte

array

and

returns

it.

If

the

user

name

is

not

valid,

validate()

throws

an

exception.

The

activateSlave()

method

catches

the

exception,

ensures

the

authenticated

id

is

null

and

re-throws

the

exception.

The

slaveResponse

method()

receives

the

byte

array

returned

by

activateSlave()

and

restores

it

into

an

MQeFields

object.

The

user

name

that

was

validated

by

activateSlave()

is

extracted

from

this

and

passed

to

setAuthenticatedID().

public

void

slaveResponse(boolean

local,

byte

data[])

throws

Exception

{

super.slaveResponse(local,

data);

/*

call

ancestor*/

MQeFields

fields

=

new

MQeFields(data);

/*

work

object*/

setAuthenticatedID(fields.getAscii(Authentic_ID));

/*

id

to

check

*/

}

These

authenticators

behave

the

same

for

both

local

and

remote

accesses,

so

they

ignore

the

local

parameter

to

these

methods.

Writing

authenticators

in

C:

In

the

C

codebase,

you

need

to

provide

at

least

four

functions

to

implement

an

authenticator:

1.

new()

2.

activateMaster()

3.

ctivateSlave()

4.

slaveResponse()

In

terms

of

functionality,

functions

2

to

4

behave

exactly

the

same

as

their

Java

counterpart

implementation.

If

your

new()

function

allocates

any

private

memory,

you

then

have

to

provide

a

free()

function,

which

frees

the

private

memory

you

have

allocated.

new()

The

new()

function

is

executed

when

the

authenticator

is

loaded

by

MQe.

It

serves

as

an

initialization

function

for

the

authenticator.

Its

main

functionality

includes:

v

Allocating

private

memory,

if

required

v

Notifying

the

MQe

system

of

the

implementations

for

the

activateMaster(),

activateSlave(),

slaveResponse(),

and

free()

functions

v

Providing

initial

values

for

private

variables

To

notify

the

MQe

of

the

existence

of

your

implementation,

call

the

mqeClassAlias_add()

function,

which

has

the

following

signature:

MQERETURN

mqeClassAlias_add(MQERETURN

*

pExceptBlock,

MQeStringHndl

hWinCEAuthName,

MQeStringHndl

hModuleName,

MQeStringHndl

hInitFuncName);

In

the

previous

example,

the

hWinCEAuthName

is

a

string

name

for

the

authenticator.

The

hModuleName

is

the

dynamically

loadable

library

file

name

in

which

your

authenticator

has

been

compiled

into,

and

the

hInitFuncName

is

the

name

of

your

new

function,

which

can

be

an

arbitrary

name.

The

new()function

has

the

following

signature:

218

MQe

Application

Programming

MQERETURN

new(MQeAttrPlugin_SubclassInitInput

*

pInput,

MQeAuthenticator_SubclassInitOutput

*

pOutput

);

The

pOutput

points

to

an

MQeAuthenticator_SubclassInitOutput

structure,

which

needs

to

be

filled

in.

The

MQeAuthenticator_SubclassInitOutput

contains

the

following

fields:

MQEVERSION

version;

Assign

MQE_CURRENT_VERSION

to

this

variable.

MQeStringHndl

hClassName;

Assign

the

Java

class

name

of

the

authenticator,

MQeString,

to

this

variable.

MQEBOOL

regRequired;

Assign

MQE_FALSE

to

this

variable.

MQEKEYTYPE

keyType;

Assign

MQE_KEY_NULL

to

this

variable.

MQeAuthenticator_FreeFunc

fFree;

Assign

the

address

of

the

free()

function

to

this

variable.

MQeAuthenticator_ActivateMasterPrepFunc

fActivateMasterPrep;

Assign

the

address

of

the

activateMaster()

function

to

this

variable.

MQeAuthenticator_ActivateSlavePrepFunc

fActivateSlavePrep;

Assign

the

address

of

the

activateSlave()

function

to

this

variable.

MQeAuthenticator_ProcessSlaveResponseFunc

fProcessSlaveResponse;

Assign

the

address

of

the

activateSlave()

function

to

this

variable.

MQeAuthenticator_CloseFunc

fClose;

Assign

NULL

to

this

variable.

MQEVOID

*

pSubclassPrivateData;

Assign

the

address

of

authenticator’s

private

data

memory

to

this

variable.

Any

pointers

or

handles

that

are

not

used

in

the

implementation

must

be

initialised

to

NULL.

free()

The

signature

of

free()

is:

MQERETURN

free(MQeAuthenticatorHndl

hThis,

MQeAttrPlugin_FreeInput

*

pInput,

MQeAttrPlugin_FreeOutput

*

pOutput

);

If

the

new()

function

allocates

private

memory,

the

pointer

to

the

allocated

memory

can

be

retrieved

into

a

pointer

p

using:

mqeAuthenticator_getPrivateData(hThis,

pExceptBlock,

(MQEVOID

**)

&p);

The

pointer

can

then

be

used

to

free

the

memory.

The

MQeString

assigned

to

the

hClassName

in

the

new()

function,

if

any,

are

automatically

freed

by

the

system

when

mqeAttrBase_free

is

called.

activateMaster()

The

signature

of

activateMaster()

is:

Designing

your

real

application

219

MQERETURN

activateMaster(MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ActivateMasterPrepInput

*pInput,

MQeAttrPlugin_ActivateMasterPrepOutput

*

pOutput

);

Refer

to

description

in

the

corresponding

Java

section

for

the

required

functionality

for

this

function.

The

pOutput

points

to

an

MQeAttrPlugin_ActivateMasterPrepOutput

structure

which

needs

to

be

filled

in.

The

MQeAttrPlugin_ActivateMasterPrepOutput

contains

the

following

fields:

MQEINT32

*

pOutputDataLen;

Assign

the

length

of

the

output

data

for

activateSlave()

to

this

variable.

MQEBYTE

*

pOutputData;

Assign

the

address

of

the

output

data

buffer

for

activateSlave()

to

this

variable.

activateSlave()

The

signature

of

activateSlave()

is:

MQERETURN

activateSlave(MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ActivateSlavePrepInput

*pInput,

MQeAttrPlugin_ActivateSlavePrepOutput

*pOutput

);

Refer

to

description

in

the

corresponding

Java

section

for

the

required

functionality

for

this

function.

The

pInput

points

to

an

MQeAttrPlugin_ActivateSlavePrepInput

structure

which

contains

the

input

from

the

activateMaster()

and

the

pOutput

points

to

an

MQeAttrPlugin_ActivateSlavePrepOutput

structure

which

needs

to

be

filled

in.

The

MQeAttrPlugin_ActivateSlavePrepInput

contains

the

following

fields:

MQEINT32

*

pInputDataLen;

Get

the

length

of

the

input

data

from

activateMaster()

from

this

variable.

MQEBYTE

*

pInputData;

Get

the

address

of

the

input

data

buffer

from

activateMaster()

from

this

variable.

The

MQeAttrPlugin_ActivateSlavePrepOutput

contains

the

following

fields:

MQEINT32

*

pOutputDataLen;

Assign

the

length

of

the

output

data

for

slaveResponse()

to

this

variable.

MQEBYTE

*

pOutputData;

Assign

the

address

of

the

output

data

buffer

for

slaveResponse()

to

this

variable.

slaveResponse()

The

signature

of

slaveResponse()

is:

MQERETURN

slaveResponse(MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ProcessSlaveResponseInput

*pInput,

MQeAttrPlugin_ProcessSlaveResponseOutput

*pOutput

);

Refer

to

description

in

the

corresponding

Java

section

for

the

required

functionality

for

this

function.

The

pInput

points

to

an

220

MQe

Application

Programming

MQeAttrPlugin_ProcessSlaveResponseInput

structure

which

contains

the

input

from

the

activateSlave().

The

MQeAttrPlugin_ProcessSlaveResponseInput

contains

the

following

fields:

MQEINT32

*

pInputDataLen;

Get

the

length

of

the

input

data

from

activateSlave()

from

this

variable.

MQEBYTE

*

pInputData;

Get

the

address

of

the

input

data

buffer

from

activateSlave()

from

this

variable.

The

example

WinCEAuthenticator:

The

example

WinCEAuthenticator

shows

how

the

methods

listed

in

the

previous

section

can

be

implemented.

It

is

functionally

very

similar

to

the

example

NTAuthenticator

in

the

Java

code

base.

Calling

winCEAuthenticator_new()

function

implements

the

new()

function.

This

allocates

a

private

memory

block

to

register

the

type

of

the

authenticator,

private

to

this

implementation,

filling-in

private

variables

and

the

function

pointers

mentioned

above

so

they

point

to

the

right

function

implementations,

and

set

pOutput->hClassName

to

″WinCEAuthenticator″.

Notice

that

no

″WinCEAuthenticator″

is

provided

in

the

Java

package.

This

is

because

the

WinCEAuthenticator

is

designed

to

be

executed

only

on

a

C

client.

The

″WinCEAuthenticator″

string

is

created

for

demonstration

purposes

only.

The

pOutput->hClassName

must

point

to

an

existing

Java

class

if

the

authenticator

is

to

be

used

in

a

dialogue

between

a

C

client

and

a

Java

server.

MQERETURN

winCEAuthenticator_new(

MQeAttrPlugin_SubclassInitInput

*

pInput,

MQeAuthenticator_SubclassInitOutput

*

pOutput

)

{

MQeStringHndl

hClassName;

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock*)

pOutput->pExceptBlock;

(void)mqeString_newChar8(pExceptBlock,

&hClassName,

"WinCEAuthenticator");

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

pOutput->pSubclassPrivateData

=

malloc(sizeof(MQEINT32));

if

(NULL

!=

pOutput->pSubclassPrivateData)

{

*((MQEINT32

*)pOutput->pSubclassPrivateData)

=

AUTHENTICATOR;

pOutput->hClassName

=

hClassName;

pOutput->regRequired

=

MQE_FALSE;

/*

key

type

unknown

*/

pOutput->keyType

=

MQE_KEY_NULL;

/*

pointers

to

subclass

implementations

of

support

methods

*/

pOutput->fFree

=

winCEAuthenticator_free;

pOutput->fActivateMasterPrep

=

winCEAuthenticator_activateMasterPrep;

pOutput->fActivateSlavePrep

=

winCEAuthenticator_activateSlavePrep;

pOutput->fProcessSlaveResponse

=

winCEAuthenticator_processSlaveResponse;

pOutput->fClose

=

NULL;

}

else

{

pExceptBlock->ec

=

MQERETURN_ALLOCATION_FAIL;

pExceptBlock->erc

=

MQEREASON_NA;

}

}

return

pExceptBlock->ec;

}

Designing

your

real

application

221

Calling

winCEAuthenticator_free()

implements

the

free()

function.

It

retrieves

the

private

memory

block

allocated

by

winCEAuthenticator_new(),

making

sure

the

authenticator

has

got

the

right

private

signature,

and

then

frees

the

memory

block.

MQERETURN

winCEAuthenticator_free(MQeAuthenticatorHndl

hThis,

MQeAttrPlugin_FreeInput

*

pInput,

MQeAttrPlugin_FreeOutput

*

pOutput

)

{

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock*)

pOutput->pExceptBlock;

MQEINT32

*

pType;

pExceptBlock->ec

=

MQERETURN_INVALID_ARGUMENT;

pExceptBlock->erc

=

MQEREASON_INVALID_SIGNATURE;

if

((NULL

!=

hThis)

&&

(MQERETURN_OK

==

mqeAuthenticator_getPrivateData(hThis,

pExceptBlock,

(MQEVOID**)

&pType))

)

{

/*

make

sure

it

is

an

authenticator

created

here

*/

if

(AUTHENTICATOR

==

*pType)

{

pExceptBlock->ec

=

MQERETURN_OK;

pExceptBlock->erc

=

MQEREASON_NA;

free(pType);

}

}

return

pExceptBlock->ec;

}

Calling

winCEAuthenticator_activateMasterPrep()

implements

the

activateMaster()

function.

It

creates

an

empty

MQeFields

structure

and

passes

it

into

a

function

called

prompt().

The

prompt()

function:

v

Displays

a

dialogue

box

v

Collects

data

from

the

dialogue

box

v

Masks

the

data

with

a

simple

exclusive

OR

operation

v

Adds

the

data

to

the

MQeFields

object

The

exclusive

OR

is

used

in

the

example

authenticators,

but

in

practice

it

does

not

provide

much

protection.

The

MQeFields

structure

is

then

dumped

to

provide

a

byte

array,

which

is

returned

by

winCEAuthenticator_activateMasterPrep().

MQERETURN

winCEAuthenticator_activateMasterPrep(

MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ActivateMasterPrepInput

*

pInput,

MQeAttrPlugin_ActivateMasterPrepOutput

*

pOutput)

{

static

MQeFieldsHndl

hActivateMasterFields

=

NULL;

MQEINT32

*

pOutputDataLen

=

pOutput->pOutputDataLen;

MQEBYTE

*

pOutputData

=

pOutput->pOutputData;

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock*)

pOutput->pExceptBlock;

/*

initialize

exception

block

*/

pExceptBlock->ec

=

MQERETURN_OK;

pExceptBlock->erc

=

MQEREASON_NA;

if

(NULL

==

hActivateMasterFields)

{

/*

get

data

for

authentication

*/

(void)mqeFields_new(pExceptBlock,

&hActivateMasterFields);

222

MQe

Application

Programming

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/**

*

Write

your

code

here

which

puts

the

input

data,

*

for

example.,

userid,

password

into

hActivateMasterFields.

*

The

format

is

not

important

as

long

as

it

can

be

*

understood

by

your

corresponding

code

in

*

winCEAuthenticator_activateSlavePrep,

which

digests

*

these

data.

*/

prompt(hActivateMasterFields,

pExceptBlock);}

}

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/*

dump

the

fields

*/

(void)mqeFields_dump(hActivateMasterFields,

pExceptBlock,

pOutputData,

pOutputDataLen);

}

if

((NULL

!=

hActivateMasterFields)

&&

((NULL

!=

pOutputData)

||

(MQERETURN_OK

!=

pExceptBlock->ec)))

{

/**

*

Caller

has

supplied

a

buffer

or

operation

failed.

*

No

need

to

keep

the

Fields

any

more.

*/

(void)mqeFields_free(hActivateMasterFields,

NULL);

hActivateMasterFields

=

NULL;

}

return

pExceptBlock->ec;

}

The

winCEAuthenticator_activateSlavePrep()

implements

the

activateSlave()

function.

The

winCEAuthenticator_activateSlavePrep()

method

receives

the

data

returned

by

winCEAuthenticator_activateMasterPrep(),

restores

it

into

an

MQeFields

structure

and

passes

it

into

a

validate()

function.

The

validate()

function

unmasks

the

data

and

passes

it

to

the

system

LogonUser()

function.

This

function

checks

if

the

user

name

and

password

are

valid.

On

a

WinCE

system,

the

LogonUser()

never

returns

if

the

user

name

and

password

are

not

valid.

The

following

winCEAuthenticator_activateSlavePrep()

and

winCEAuthenticator_processSlaveResponse()

implementations,

however,

assume

that

LogonUser()

will

always

return

with

a

value

indicating

whether

or

not

the

input

is

valid,

in

order

to

demonstrate

what

you

need

to

do.

If

the

user

name

and

password

are

valid,

the

winCEAuthenticator_activateSlavePrep()

function

calls

mqeAuthenticator_setAuthenticatedID()

to

register

the

user

name

as

if

the

code

is

running

on

a

server.

It

may

be

that

this

code

is

running

on

a

client

just

as

the

winCEAuthenticator_activateMasterPrep.

It

then

adds

the

user

name

to

an

MQeFields,

dumps

this

to

a

byte

array,

and

returns

it.

If

the

user

name

is

not

valid,

the

winCEAuthenticator_activateSlavePrep()

function

returns

an

error.

MQERETURN

winCEAuthenticator_activateSlavePrep(

MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ActivateSlavePrepInput

*

pInput,

MQeAttrPlugin_ActivateSlavePrepOutput

*

pOutput)

{

static

MQeFieldsHndl

hActivateSlaveFields

=

NULL;

MQeFieldsHndl

hTempFields

=

NULL;

MQEINT32

inputDataLen

=

pInput->inputDataLen;

MQEBYTE

*

pInputData

=

pInput->pInputData;

MQEINT32

*

pOutputDataLen

=

pOutput->pOutputDataLen;

MQEBYTE

*

pOutputData

=

pOutput->pOutputData;

Designing

your

real

application

223

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock*)

pOutput->pExceptBlock;

/*

initialize

exception

block

*/

pExceptBlock->ec

=

MQERETURN_OK;

pExceptBlock->erc

=

MQEREASON_NA;

if

(NULL

==

hActivateSlaveFields)

{

/*

restore

input

*/

(void)mqeFields_new(pExceptBlock,

&hTempFields);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/*

restore

it

into

an

MQeFields

*/

(void)mqeFields_restore(hTempFields,

pExceptBlock,

pInputData,

inputDataLen);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

MQeStringHndl

hAuthenticID

=

NULL;

/**

*

put

your

code,

which

digests(authenticates)

*

the

input

data

your

gathered

in

the

*

winCEAuthenticator_activateMasterPrep().

*

If

successful,

create

an

AuthenicateID

string

*

in

hAuthenticID.

*/

(void)validate(hTempFields,

pExceptBlock,

&hAuthenticID);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/**

*

If

successfully

authenticated,

*

set

local

id

variable

(recored

a

success)

*/

(void)mqeAuthenticator_setAuthenticatedID(hAuthenticator,

pExceptBlock,

hAuthenticID);

/*

preparation

for

sending

the

id

to

the

master

*/

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/**

*

Send

the

hAuthenticID

to

the

Master,

*

indicating

a

a

success.

*/

(void)mqeFields_new(pExceptBlock,

&hActivateSlaceFields);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

MQeStringHndl

hAuthenticIDField;

(void)mqeString_newChar8(pExceptBlock,

&hAuthenticIDField,

AUTHENTIC_ID);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

(void)mqeFields_putAscii(hActivateSlaveFields,

pExceptBlock,

hAuthenticIDField,

hAuthenticID);

(void)mqeString_free(hAuthenticIDField,

NULL);

}

}

}

}

}

(void)mqeFields_free(hTempFields,

NULL);

}

}

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

/*

dump

the

fields

*/

224

MQe

Application

Programming

(void)mqeFields_dump(hActivateSlaveFields,

pExceptBlock,

pOutputData,

pOutputDataLen);

}

if

((NULL

!=

hActivateSlaveFields)

&&

((NULL

!=

pOutputData)

||

(MQERETURN_OK

!=

pExceptBlock->ec)))

{

/**

*

Caller

has

supplied

a

buffer

or

operation

failed.

*

No

need

to

keep

the

Fields

any

more.

*/

(void)mqeFields_free(hActivateSlaveFields,

NULL);

hActivateSlaveFields

=

NULL;

}

return

pExceptBlock->ec;

}

Calling

winCEAuthenticator_processSlaveResponse()

implements

the

slaveResponse()

function.

The

winCEAuthenticator_processSlaveRespons()

function

receives

the

byte

array

returned

by

winCEAuthenticator_activateSlavePrep()

and

restores

it

into

an

MQeFields

structure.

The

user

name,

validated

by

activateSlave(),

is

extracted

from

this

and

passed

to

mqeAuthenticator_setAuthenticatedID().

MQERETURN

winCEAuthenticator_processSlaveResponse(

MQeAuthenticatorHndl

hAuthenticator,

MQeAttrPlugin_ProcessSlaveResponseInput

*

pInput,

MQeAttrPlugin_ProcessSlaveResponseOutput

*

pOutput

)

{

MQEINT32

inputDataLen

=

pInput->inputDataLen;

MQEBYTE

*

pInputData

=

pInput->pInputData;

MQeFieldsHndl

hFields;

MQeExceptBlock

*

pExceptBlock

=

(MQeExceptBlock

*)pOutput->pExceptBlock;

/*

initialize

exception

block

*/

pExceptBlock->ec

=

MQERETURN_OK;

pExceptBlock->erc

=

MQEREASON_NA;

/*

restore

input

*/

(void)mqeFields_new(pExceptBlock,

&hFields);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

(void)mqeFields_restore(hFields,

pExceptBlock,

pInputData,

inputDataLen);

/*

get

ID

*/

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

MQeStringHndl

hAuthenticIDField;

(void)mqeString_newChar8(pExceptBlock,

&hAuthenticIDField,

AUTHENTIC_ID);

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

MQeStringHndl

hAuthenticID;

(void)mqeFields_getAscii(hFields,

pExceptBlock,

&hAuthenticID,

hAuthenticIDField);

/**

If

the

above

call

failed,

*

then

the

authentication

by

the

slave

was

not

successful.

*/

if

(MQERETURN_OK

==

pExceptBlock->ec)

{

Designing

your

real

application

225

/*

set

local

ID

*/

(void)mqeAuthenticator_setAuthenticatedID(hAuthenticator,

pExceptBlock,

hAuthenticID);

}

(void)mqeString_free(hAuthenticIDField,

NULL);

}

}

(void)mqeFields_free(hFields,

NULL);

}

return

pExceptBlock->ec;

}

Queue

manager

based

security

Security

features

can

be

added

at

the

queue-manager

level

by

configuring

the

queue

manager

and

its

private

registry.

Configuring

queue

manager

security:

This

section

shows

how

to

configure

a

queue

manager

and

a

private

registry

with

security

features.

Setting

up

the

queue

manager:

In

order

to

configure

a

queue

manager’s

private

registry,

which

can

be

shared

by

its’

queues,

do

the

following:

1.

When

starting

the

queue

manager,

present

the

private

registry

logon

PIN.

If

autoregistration

with

a

mini-certificate

server

is

required,

the

CertReqPIN,

KeyRingPassword,

and

CAIPAddrPort

parameters

must

also

be

presented,

on

opening

the

registry.

2.

The

mini-certificate

server

is

running

if

autoregistration

is

required.

Setting

up

a

private

registry:

A

private

registry

is

relevant

only

if

one

of

the

queue-attribute

properties

prerequisites

it.

In

order

to

establish

a

queue

manager

private

registry,

which

can

be

shared

by

its’

queues,

the

following

conditions

must

be

met:

1.

The

owning

queue

manager

must

itself

have

a

registry

of

type

private

registry.

2.

The

owning

queue

manager

must

have

previously

auto-registered

with

the

mini-certificate

server.

This

must

have

been

primed

to

allow

queue

registry

before

the

queue

private

registry

can

be

established.

if

auto

registration

with

a

mini-certificate

server

is

required.

3.

In

starting

the

queue

manager,

the

queue

manager

private

registry

logon

PIN,

CertReqPIN,

KeyRingPassword,

and

CAIPAddrPort

were

passed

whilst

opening

the

registry.

If

a

CertReqPIN

different

from

the

queue

manager’s

is

used

for

the

queue,

it

is

currently

necessary

to

first

shutdown

the

owning

queue

manager,

replace

the

original

CertReqPIN

with

the

new

one,

and

then

start

the

queue

manager

again.

Auto-registration

will

then

be

triggered

using

the

new

CertReqPIN

when

the

queue

private

registry

is

activated

first

time.

4.

The

mini-certificate

server

is

running,

if

autoregistration

with

the

mini-certificate

server

is

required.

If

queue

private

registry

(instead

of

the

queue

manager’s)

is

required,

for

example,

the

target

registry

property

of

the

queue

has

been

set

to

″Queue″

for

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator.

226

MQe

Application

Programming

Due

to

the

intensity

of

numerical

computation

involved,

auto-registration

may

take

10-20

minutes

on

a

handheld

device.

Security

configuration

example:

Security

attribute

properties

can

be

added

to

a

queue

using

the

com.ibm.mqe.administration.MQeQueueAdminMsg

class

and

its

subclasses.

The

security

attribute

properties

are

defined

as

parameters

of

the

administration

message.

The

following

example

(examples.security.createSecureQueue)

creates

a

new

queue

on

an

existing

client

queue

manager.

It

creates

the

queue

with

a

cryptor,

compressor,

authenticator,

and

attribute

rule.

It

is

not

necessary

to

add

all

of

these

attributes

and

any

of

them

could

be

omitted.

A

cryptor

on

a

local

queue

uses

a

key

seed

based

on

the

queue

manager

private

registry

logon

PIN.

Therefore,

it

is

important

to

present

the

right

PIN

when

starting

the

queue

manager.

The

example

starts

with

a

class

header:

package

examples.security;

import

java.io.File;

import

com.ibm.mqe.*;

import

com.ibm.mqe.administration.*;

import

examples.queuemanager.MQePrivateClient;

/**

createSecureQueue.java

*

<p>This

creates

a

secure

queue

on

an

existing

queue

manager.

The

queue

is

*

created

with

an

authenticator,

cryptor,

compressor

and

attribute

rule.

*

The

queue

manager

must

have

a

private

registry,

so

that

the

queue

can

be

*

given

a

cryptor.

*

*

<p>The

program

requires

two

command

line

parameters.

*

*

<p>The

first

parameter

is

a

configuration

file

for

the

queue

manager.

This

*

is

used

to

start

the

queue

manager

as

a

client.

*

*

<p>The

second

parameter

is

the

PIN

for

the

queue

manager’s

private

*

registry.

*

**/

public

class

createSecureQueue

{

First

you

define

the

name

of

the

queue

you

want

to

add:

//

the

name

of

the

queue

String

qName

=

"protQueue";

The

attributes

are

defined

by

their

class

names:

//

define

the

attributes

we

want

the

queue

to

have.

These

are

defined

by

//

their

class

names.

String

cryptorType

=

"com.ibm.mqe.attributes.MQeDESCryptor";

String

compressorType

=

"com.ibm.mqe.attributes.MQeGZIPCompressor";

String

authenticatorType

=

"examples.attributes.NTAuthenticator";

String

attributeRule

=

"com.ibm.mqe.MQeAttributeRule";

They

are

followed

by

some

definitions

of

local

variables:

//local

variables

MQePrivateClient

client;

MQeQueueManager

clientQM;

String

clientQMName;

MQeQueueAdminMsg

msg;

Designing

your

real

application

227

The

example

adds

the

queue

directly

to

the

local

queue

manager,

so

the

queue

manager

must

be

activated:

/**

*

open

the

queue

manager

as

a

client

*

*

@param

configFile

the

configuration

(.ini)

file

for

the

queue

manager

*

@param

qmPIN

the

PIN

for

the

queue

manager’s

registry

*

@exception

java.lang.Exception

propagated

from

invoked

methods

**/

void

openQM(String

configFile,

String

qmPIN)

throws

Exception

{

//

start

the

queue

manager

as

a

client

client

=

new

MQePrivateClient(configFile,

qmPIN,

null,

null);

//save

the

queue

manager

and

its

name

clientQM

=

client.queueManager;

clientQMName

=

clientQM.getName();

}

The

MQeQueueAdminMsg

is

created

and

values

added

to

it

as

normal.

A

correlation

id

is

added

to

the

message

to

make

it

easy

to

find

the

reply

message.

All

the

security

attributes

are

added

as

parameters

to

the

message,

that

is,

they

are

added

to

a

separate

MQeFields

object

which

is

passed

to

the

msg.create(parms)

method:

/**

*

create

the

admin

message

to

add

the

queue

attributes

*

*

@exception

java.lang.Exception

propagated

from

invoked

methods

**/

void

createAdminMsg()

throws

Exception

{

//

the

file

descriptor

String

FileDesc

=

"MsgLog:.";

//

create

an

Admin

msg

to

add

the

queue

msg

=

new

MQeQueueAdminMsg();

msg.setTargetQMgr(clientQMName);

msg.setName(clientQMName,

qName);

msg.putInt(MQe.Msg_Style,

MQe.Msg_Style_Request);

msg.putAscii(MQe.Msg_ReplyToQ,

MQe.Admin_Reply_Queue_Name);

msg.putAscii(MQe.Msg_ReplyToQMgr,

clientQMName);

msg.putArrayOfByte(MQe.Msg_CorrelID,

Long.toHexString(clientQM.

uniqueValue()).getBytes());

//

define

parameter

values

for

the

queue

MQeFields

parms

=

new

MQeFields();

parms.putUnicode(msg.Queue_Description,

"DES

protected

queue");

parms.putAscii(msg.Queue_FileDesc,

FileDesc

);

//

this

is

where

we

specify

the

queue

attributes

parms.putAscii(msg.Queue_Cryptor,

cryptorType);

parms.putAscii(msg.Queue_Compressor,

compressorType);

parms.putAscii(msg.Queue_Authenticator,

authenticatorType);

parms.putAscii(msg.Queue_AttrRule,

attributeRule);

//add

the

parameters

to

the

message

msg.create(parms);

}

The

message

is

sent

to

the

Admin

Queue

on

the

local

queue

manager:

/**

*

send

the

admin

message

to

the

client

queue

manager

*

*

@exception

java.lang.Exception

propagated

from

invoked

methods

228

MQe

Application

Programming

**/

void

sendAdminMsg()

throws

Exception

{

//

send

the

Admin

msg

System.out.println("putting

Admin

Msg

to

QM/queue:"

+

clientQMName

+

"/"

+

MQe.Admin_Queue_Name);

clientQM.putMessage(clientQMName,

MQe.Admin_Queue_Name,

msg,

null,

0);

}

The

correlation

id

is

used

in

a

filter

to

find

the

correct

reply.

The

example

waits

up

to

3

seconds

for

the

reply:

/**

*

wait

for

a

reply

message

and

process

it

to

determine

success

or

failure

*

*

@exception

java.lang.Exception

propagated

from

invoked

methods

**/

void

processReply()

throws

Exception

{

//

use

the

CorrelID

to

create

a

filter

for

the

reply

message

MQeFields

replyFilter

=

new

MQeFields();

replyFilter.putArrayOfByte(MQe.Msg_CorrelID,

msg.getArrayOfByte(MQe.Msg_CorrelID));

//

get

the

Admin

Reply

msg

MQeMsgObject

reply

=

clientQM.waitForMessage(clientQMName,

MQe.Admin_Reply_Queue_Name,

replyFilter,

null,

0,

3000);

if

(reply

instanceof

MQeAdminMsg)

{

MQeAdminMsg

adminReply

=

(MQeAdminMsg)reply;

System.out.println("Admin

Reply

Msg

received");

if

(adminReply.getRC()

==

MQeAdminMsg.RC_Success)

System.out.println("Queue

added

OK");

else

System.out.println("create

Queue

failed:"

+

adminReply.getReason());

}

else

System.out.println("reply

message

is

not

an

admin

message");

}

The

queue

manager

needs

to

be

closed:

/**

*

close

the

queue

manager

*

*

@exception

java.lang.Exception

propagated

from

invoked

method

**/

void

close()

throws

Exception

{

clientQM.close();

}

The

main()

method

for

the

example

is:

/**

*

main

method.

*

*

@param

args

The

command

line

arguments.

The

first

is

a

configuration

*

(.ini)

file

for

the

queue

manager,

the

second

is

the

PIN

*

for

the

queue

manager’s

private

registry.

*

**/

public

static

void

main(String

[]

args)

Designing

your

real

application

229

{

createSecureQueue

secQueue

=

new

createSecureQueue();

//

check

the

command

line

arguments

if

(args.length

<

2)

System.err.println("usage:

createSecureQueue

configFile

qmPIN");

else

{

try

{

secQueue.openQM(args[0],

args[1]);

secQueue.createAdminMsg();

secQueue.sendAdminMsg();

secQueue.processReply();

secQueue.close();

}

catch

(Exception

e)

{

System.out.println("Exception

caught:"

+

e);

}

}

}

}

Attribute

rules

can

also

be

set

on

channels

using

the

ChannelAttrRules

keyword

in

the

configuration

file

used

at

queue

manager

creation

time.

MQe

defaults

the

keyword

to

com.ibm.mqe.MQeAttrubuteRule.

Channel

level

security

When

data

is

sent

between

a

queue

manager

and

a

remote

queue,

the

queue

manager

opens

a

channel

to

the

remote

queue

manager

that

owns

the

queue.

By

default,

if

the

remote

queue

is

protected,

for

example

with

a

cryptor,

the

channel

is

given

exactly

the

same

level

of

protection

as

the

queue.

For

efficiency

in

queue-based

security,

an

MQe

channel

uses

symmetric

cryptors

(for

example,

DES,

3DES,

MARS,

RC4,

RC6);

a

consequence

of

which

is

that

the

two

queue

managers

at

either

end

must

use

the

same

encryption

key.

When

such

a

channel

is

established,

a

protocol,

called

the

Diffie

Hellman

key

exchange,

is

used

to

establish

a

secret

key

that

only

the

two

queue

managers

know.

This

protocol

is

susceptible

to

a

″man

in

the

middle″

attack,

but

for

that

to

be

successful,

the

″man

in

the

middle″

must

know

some

of

the

data

that

is

fed

into

the

Diffie

Hellman

protocol.

This

data

is

held

in

the

com.ibm.mqe.attributes.MQeDHk

class.

It

is

possible

for

an

attacker

to

get

hold

of

this

data,

by

examining

the

shipped

MQe

classes.

However,

this

data

can

be

changed

by

running

the

com.ibm.mqe.attributes.MQeGenDH

utility;

it

generates

a

new

Java

source

file

com.ibm.mqe.attributes.MQeDHk.java.

This

file

can

then

be

compiled

into

a

replacement

com.ibm.mqe.attributes.MQeDHk.class

file.

When

the

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator

is

used,

the

two

queue

managers

(or

queues)

swap

certificates

in

order

to

authenticate

each

other.

If

this

is

used

in

conjunction

with

a

cryptor

on

the

queue,

the

exchanges

which

establish

the

secret

key

for

the

cryptor

are

protected

with

the

public

keys

from

the

certificates,

making

a

″man

in

the

middle″

attack

even

more

difficult.

With

synchronous

remote

queues,

queue-based

security

is

relatively

simple.

In

this

case

a

message

is

put

to

a

synchronous

remote

queue

definition

that

has

the

same

security

attributes

as

the

destination

queue.

The

message

is

transmitted

over

a

channel

with

appropriate

security

attributes

and

is

stored

on

the

secure

queue.

230

MQe

Application

Programming

With

asynchronous

remote

queues,

especially

Store-and-forward

queues

and

Home-server

queues,

the

transmitting

and

receiving

queues

are

more

likely

to

have

different

security

attributes.

These

differences

have

to

be

managed

during

message

transfer.

Once

a

message

has

been

put

to

an

asynchronous

queue

it

is

transmitted

from

one

queue

to

another

until

it

reaches

its

destination.

A

queue

manager

is

responsible

for

requesting

the

transfer

of

the

message

between

a

pair

of

queues

and

another

queue

manager

is

responsible

for

responding

to

the

request.

If

queue

based

security

is

used,

the

requesting

queue

manager

establishes

a

channel

with

security

attributes

that

match

the

queue

that

it

owns.

The

queue

manager

receiving

the

request

checks

that

the

channel

attributes

are

sufficient

for

its

queue.

For

example,

suppose

a

client

queue

manager

has

a

queue

with

a

DES

cryptor

on

it

and

messages

are

routed

from

this

to

a

server’s

Store-and-forward

queue

that

has

a

MARS

cryptor.

When

the

client

is

triggered

to

send

a

message

it

establishes

a

DES

encrypted

channel

to

the

server;

the

server

asks

the

Store-and-forward

queue

whether

it

will

accept

messages

over

a

DES

encrypted

channel.

If

the

Store-and-forward

queue

considers

DES

is

not

as

strong

as

its

own

MARS

cryptor

(determined

by

the

queue

attribute

rule),

it

would

throw

an

″attribute

mismatch″

exception.

A

Home-server

queue

trying

to

pull

messages

from

a

Store-and-forward

queue

needs

a

cryptor

that

is

at

least

as

strong

as

that

on

the

Store-and-forward

queue,

because

the

Home-server

queue

is

at

the

initiating

end

of

the

request.

Once

the

Home-server

queue

has

received

the

message

it

can

store

it

on

a

local

queue

that

has

any

level

of

protection.

This

behavior

can

be

changed

by

using

different

attribute

rules

on

the

queues.

For

example,

if

the

attribute

rule

always

allows

reuse,

the

queue

will

accept

channels

with

any

cryptor.

Trying

to

send

a

message

from

a

queue

with

a

weaker

cryptor

to

a

queue

with

a

stronger

cryptor

usually

results

in

an

″attribute

mismatch″

exception.

However

if

a

channel

with

a

strong

cryptor

already

exists

between

the

queue

managers,

this

can

be

reused

(depending

on

the

attribute

rules

on

the

channel)

and

result

in

the

message

being

delivered.

One

slight

exception

to

the

above

behavior

is

when

a

Store-and-forward

queue

is

used

to

forward

(push)

messages

to

other

queues.

The

Store-and-forward

queue

establishes

a

channel

with

security

attributes

that

match

its

own.

However,

in

this

case

the

destination

queue

accepts

the

channel

without

checking

its

attributes

against

the

queue’s.

For

example,

a

Store-and-forward

queue

without

a

cryptor

would

establish

a

channel

without

a

cryptor

and

this

would

be

used

to

forward

messages

to

a

destination

queue

even

if

the

queue

had

a

cryptor

on

it.

Normally,

with

other

queue

types,

this

would

result

in

an

″attribute

mismatch″

exception.

When

using

a

Store-and-forward

queue

in

this

way,

you

should

ensure

that

it

has

a

cryptor

that

is

comparable

to

any

cryptor

on

a

destination

queue.

This

does

not

apply

when

a

Home-server

queue

polls

for

messages

from

a

Store-and-forward

queue

(in

this

case

the

Home-server

queue

establishes

the

channel,

not

the

Store-and-forward

queue).

Channel

attribute

rules:

To

reduce

the

number

of

channels

open

concurrently,

the

queue

manager

can

reuse

an

existing

channel

if

its

level

of

protection

is

adequate.

If

none

of

the

channels

has

a

suitable

level

of

protection,

the

queue

manager

can

also

change

(upgrade)

the

level

of

protection

on

an

existing

channel

to

match

that

required

for

the

queue.

This

kind

of

behavior

is

governed

by

the

MQeattributeRule

on

both

the

queue

and

the

channel.

These

rules

apply

to

the

attribute

on

the

queue

(and

channel),

they

are

Designing

your

real

application

231

not

the

same

as

queue

rules.

Attribute

rules

are

set

on

a

queue

when

it

is

created

or

modified

using

administration

messages.

The

isAcceptable()

method

on

the

MQeAttributeRule

class

determines

if

a

channel

can

be

reused.

This

provides

protection

against

inconsistency

in

the

queue

attribute

rules

on

the

local

and

target

queue

managers.

If

the

isAcceptable()

method

returns

true,

the

channel

is

used.

Otherwise,

the

channel

will

not

be

reused.

If

none

of

the

existing

channels

can

be

reused,

the

queue

manager

checks

if

any

of

the

channels

can

be

upgraded

to

the

required

level.

The

permit()

method

on

the

MQeAttributeRule

class

determines

this.

If

the

permit()

method

returns

true,

the

channel

is

upgraded.

Otherwise,

the

channel

is

upgraded.

MQe

provides

a

default

rule,

com.ibm.mqe.MQeAttributeRule

(identical

to

examples.rules.AttributeRule.

This

is

specified

as

the

attribute

rule

for

a

queue

by

MQe

by

default.

Note:

This

is

different

from

setting

attribute

rule

to

null.

This

rule

allows

a

channel

to

be

used

for

a

queue

if

the

following

conditions

are

met:

1.

If

the

queue

has

an

authenticator,

the

channel

must

have

the

same

type

of

authenticator.

If

the

queue

does

not

have

an

authenticator,

it

does

not

matter

whether

the

channel

has

one

or

not.

2.

If

the

queue

has

a

cryptor,

the

channel

must

have

a

cryptor

that

is

the

same

type

as

or

better

than

that

on

the

queue.

If

the

queue

does

not

have

a

cryptor

it

does

not

matter

whether

the

channel

has

one

or

not.

Here

″better″

is

defined

as:

v

Any

cryptor

is

the

same

as

or

better

than

XOR.

v

Any

cryptor,

except

XOR,

is

the

same

as

or

better

then

DES.

v

The

remaining

cryptors

(Triple

DES,

RC4,

RC6,

and

MARS)

are

considered

equal

to

each

other

and

all

better

than

XOR

and

DES.
3.

It

does

not

matter

what

compressors

are

defined

for

the

queue

or

channel.

This

rule

has

the

following

upgrade

behavior:

1.

If

the

channel

has

been

authenticated

it

cannot

be

upgraded,

but

if

it

does

not

have

one,

an

authenticator

can

be

added

to

a

channel.

2.

A

cryptor

can

be

added

to

a

channel

or

strengthened

(using

the

criteria

for

″better″

described

above).

A

cryptor

cannot

be

removed

from

the

channel

or

replaced

with

a

weaker

cryptor.

3.

A

compressor

can

be

changed,

added

to,

or

removed

from

the

channel.

If

the

attribute

rule

is

explicitly

set

to

null,

MQe

adopts

an

internal

rule,

com.ibm.mqe.MQeAttributeDefaultRule.

This

rule

only

accepts

a

channel

that

has

exactly

the

same

authenticator

(and

authenticated

to

the

same

entity),

cryptor,

and

compressor

as

itself

for

reuse

and

always

allow

channel

upgrade.

Because

of

the

way

channel

security

works,

when

a

specific

attribute

rule

is

specified

for

a

target

queue,

it

forces

the

local

queue

manager

to

create

an

instance

of

the

same

attribute

rule

(examples.rules.AttributeRule

and

com.ibm.mqe.MQeAttributeRule

are

treated

as

the

same

rule

for

backward

compatibility).

A

null

rule

can

be

specified

for

the

target

queue,

to

avoid

the

need

to

have

the

same

attribute

rule

available

remotely.

232

MQe

Application

Programming

While

the

com.ibm.mqe.MQeAttributeRule

provides

practical

defaults,

there

may

be

a

solution-specific

reason

why

different

behavior

is

required.

You

can

modify

the

way

channels

are

reused

by

extending

or

replacing

the

default

com.ibm.mqe.MQeAttributeRule

with

rules

that

define

the

desired

behavior.

Certificate

management

MQe

can

use

private

or

public

key

encryption

for

message

level

security

using

the

MQeMTrustAttribute,

and

for

queue

based

security

using

the

MQeWTLSCertAuthenticator.

Any

entity,

for

example

queue

manager,

queue,

application,

person,

which

needs

private

and

public

keys

must

have

a

private

registry.

When

the

registry

is

initialized

it

generates

and

stores

the

keys,

if

the

associated

information

is

supplied.

The

private

key

is

encrypted

and

stored

directly

in

the

registry.

The

public

key

is

sent

to

the

certificate

server,

which

returns

a

public

certificate

containing

the

public

key,

and

the

registry

stores

the

certificate.

For

message

level

security,

the

certificates

must

also

be

copied

to

public

registries

so

that

they

are

available

to

other

entities

that

need

them.

This

is

not

required

for

queue

based

security.

The

certificate

server

normally

issues

certificates,

which

are

valid

for

12

months.

The

certificates

cannot

be

used

once

they

have

expired,

so

it

is

important

to

keep

track

of

the

expiry

dates

and

to

renew

the

certificates

before

they

expire.

Examining

certificates:

Certificates

can

be

examined

using

the

com.ibm.mqe.attributes.MQeListCertificates

class.

This

class

opens

a

registry

and

allows

you

to

list

all

the

certificates

in

it,

or

to

examine

specific

certificates

by

name.

To

use

the

class,

you

must

supply

the

name

of

the

registry

and

an

MQeFields

object

that

contains

the

information

required

to

open

it:

MQeRegistry.LocalRegType

(ascii)

For

a

public

registry,

set

this

parameter

to

com.ibm.mqe.registry.MQeFileSession.

For

a

private

registry,

set

it

to

com.ibm.mqe.registry.MQePrivateSession.

MQeRegistry.DirName

(ascii)

The

name

of

the

directory

holding

the

registry

files.

MQeRegistry.PIN(ascii)

The

PIN

protecting

the

registry.

This

is

only

required

for

private

registries.

No

other

parameters

are

required

to

open

the

registry

for

this

class.

If

the

registry

is

a

public

registry

with

the

name

″MQeNode_PublicRegistry″and

the

class

is

initialised

in

the

directory

that

contains

the

registry,

the

MQeFields

object

can

be

null.

If

the

registry

belongs

to

the

mini-certificate

server,

its

name

is

″MiniCertificateServer″.

If

the

registry

belongs

to

a

queue,

its

name

is

″MiniCertificateServer″.

MQeListCertificates

list;

String

fileRegistry

=

"com.ibm.mqe.registry.MQeFileSession";

String

privateRegistry

=

"com.ibm.mqe.registry.MQePrivateSession";

void

open(String

regName,

String

regDirectory,

String

regPIN)

throws

Exception

{

MQeFields

regParams

=

new

MQeFields();

//

if

regPIN

==

null,

assume

file

registry

String

regType

=

(regPIN

==

null)

?

Designing

your

real

application

233

fileRegistry

:

privateRegistry;

regParams.putAscii(MQeRegistry.RegType,

regType);

regParams.putAscii(MQeRegistry.DirName,

regDirectory);

if

(regPIN

!=

null)

regParams.putAscii(MQeRegistry.PIN,

regPIN);

list

=

new

MQeListCertificates(regName,

regParams);

}

This

constructor

opens

the

registry.

Once

this

has

been

done,

the

registry

entries

for

the

certificates

can

be

retrieved.

They

can

be

retrieved

either

individually

by

name:

MQeFields

entry

=

list.readEntry(certificateName);

or

all

the

certificate

entries

in

the

registry

can

be

retrieved

together:

MQeFields

entries

=

list.readAllEntries();

The

value

returned

from

readAllEntries()

is

an

MQeFields

object

that

contains

a

field

for

each

certificate

in

the

registry,

the

name

of

the

field

is

the

name

of

the

certificate

and

the

contents

of

the

field

is

an

MQeFields

object

containing

the

registry

entry.

You

can

process

each

registry

entry

using

an

enumeration:

Enumeration

enum

=

entries.fields();

if

(!enum.hasMoreElements())

System.out.println("no

certificates

found");

else

{

while

(enum.hasMoreElements())

{

//

get

the

name

of

the

certificate

String

entity

=

(String)

enum.nextElement();

//

get

the

certificate’s

registry

entry

MQeFields

entry

=

entries.getFields(entity);

//

do

something

with

it

...

}

}

The

certificate

can

be

obtained

from

the

registry

entry

using

the

getWTLSCertificate()

method:

Object

certificate

=

list.getWTLSCertificate(entry);

Information

can

now

be

obtained

from

the

certificate:

String

subject

=

list.getSubject(certificate);

String

issuer

=

list.getIssuer(certificate);

long

notBefore

=

list.getNotBefore(certificate);

long

notAfter

=

list.getNotAfter(certificate);

The

notBefore

and

notAfter

times

are

the

number

of

seconds

since

the

midnight

starting

1st

January

1970,

that

is

the

standard

UNIX

format

for

dates

and

times.

Finally,

the

list

object

should

be

closed:

list.close();

The

MQeListCertificates

class

is

used

in

the

example

program,

examples.certificates.ListWTLSCertificates,

which

is

a

command-line

program

that

lists

certificates.

234

MQe

Application

Programming

The

program

has

one

compulsory

and

three

optional

parameters:

ListWTLSCertificates

<regName>[<ini

file>][<level>][<cert

names>]

where:

regName

The

name

of

the

registry

whose

certificates

are

to

be

listed.

It

can

be

a

private

registry

belonging

to

a

queue

manager,

a

queue

or

another

entity.

It

can

be

a

public

registry,

or,

for

the

administrator,

it

can

be

the

mini-certificate

server’s

registry.

If

you

want

to

list

the

certificates

in

a

queue’s

registry,

you

must

specify

its

name

as

<queue

manager>+<queue>,

for

example

myQM+myQueue.

If

you

want

to

list

the

certificates

in

a

public

registry,

it

must

have

the

name

MQeNode_PublicRegistry.

It

will

not

work

for

a

public

registry

with

any

other

name.

The

name

of

the

mini-certificate

server’s

registry

is

MiniCertificateServer

.

ini

file

This

is

the

name

of

a

configuration

file

that

contains

a

section

for

the

registry.

This

is

typically

the

same

configuration

file

that

is

used

for

the

queue

manager

or

mini-certificate

server.

For

a

queue,

this

is

typically

the

configuration

file

for

the

queue

manager

that

owns

the

queue.

This

parameter

should

be

specified

for

all

registries

except

public

registries,

for

which

it

can

be

omitted.

level

The

level

of

detail

for

the

listing.

This

can

be:

v

″-b″

or

″-brief″,

which

prints

the

names

of

the

certificate,

one

name

per

line.

v

″-f″

or

″-full″,

which

prints

the

names

of

the

certificates

and

some

of

the

contents.

This

parameter

is

optional

and

if

omitted

the

″brief″

level

of

detail

is

used.

cert

names

This

is

a

list

of

names

of

the

certificates

to

be

listed.

It

starts

with

the

flag

″-cn″

followed

by

names

of

the

certificates,

for

example

-cn

ExampleQM

putQM

.If

this

parameter

is

used,

only

the

named

certificates

are

listed.

If

this

parameter

is

omitted,

all

the

certificates

in

the

registry

are

listed.

The

MQe_Explorer

configuration

tool

can

also

be

used

to

examine

certificates

which

belong

to

queue

managers

or

queues.

Renewing

certificates:

To

ensure

continuity

of

service,

you

are

advised

to

renew

certificates

before

they

expire.

Certificates

are

renewed

using

the

same

mini-certificate

issuance

service

that

originally

issued

them.

Before

requesting

a

renewal,

the

request

must

be

authorized

with

the

issuance

service

and

a

one-time-use

certificate

request

PIN

obtained,

in

just

the

same

way

as

for

the

initial

certificate

issuance.

When

a

certificate

is

renewed,

the

new

certificate

contains

the

same

public

key

as

the

old

certificate.

For

additional

security,

you

may

wish

to

change

credentials

regularly.

This

involves

generating

a

new

private

and

public

key,

storing

the

new

private

key

in

the

registry,

and

requesting

a

new

certificate

for

the

public

key.

If

you

use

message

level

security

with

the

MTrustAttribute,

and

change

credentials,

you

will

not

be

able

to

use

the

new

credentials

to

read

messages

sent

with

the

old

credentials.

The

old

credentials

are

not

deleted,

but

are

renamed

within

the

registry

so

that

they

are

still

available.

Designing

your

real

application

235

The

class

com.ibm.mqe.registry.MQePrivateRegistryConfigure

can

be

used

both

to

renew

certificates

and

to

generate

new

credentials.

To

use

the

class,

you

must

supply

the

name

of

the

registry,

an

MQeFields

object

that

contains

the

information

required

to

open

it,

and

optionally

the

registry’s

PIN.

Security

services

MQe

provides

the

following

services

to

assist

with

security:

Private

registry

services

MQe

private

registry

provides

a

repository

in

which

public

and

private

objects

can

be

stored.

It

provides

(login)

PIN

protected

access

so

that

access

to

a

private

registry

is

restricted

to

the

authorized

user.

It

also

provides

additional

services

so

that

functions

can

use

the

entity’s

private

key,

(for

digital

signature,

and

RSA

decryption)

without

the

private

credentials

leaving

the

PrivateRegistry

instance.

These

services

are

used

by

queue-based

security

and

message-level

security

using

MQeTrustAttribute.

Public

registry

services

MQe

public

registry

provides

a

publicly

accessible

repository

for

mini-certificates.

These

services

can

be

used

by

queue-based

and

message-level

security.

Mini-certificate

issuance

service

MQe

provides

SupportPac

ES03,

″MQe

WTLS

Mini-Certificate

Server″,

which

includes

a

default

mini-certificate

issuance

service

which

you

can

configure

to

issue

mini-certificates

to

a

carefully

controlled

set

of

entity

names.

These

services

can

be

used

by

queue-based

and

message-level

security.

Private

registry

service

This

topic

describes

the

private

registry

service

provided

by

MQe.

Note

that

the

private

registry

service

applies

only

to

the

Java

codebase.

Private

registries:

Some

security

properties,

such

as

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator,

prerequisite

an

appropriate

private

registry

where

the

entity’s

private/public

keys

can

be

found,

and,

in

some

cases,

the

queue

manager’s

public

registry

where

foreign

entities’

public

keys

can

be

found.

This

happens

when

a

security

attribute

uses

a

public/private

key

based

algorithm

to

perform

encryption/authentication.

There

are

two

types

of

private

registries,

queue

manager

owned

and

queue

owned,

and

each

private

registry

only

stores

its

owner’s

security

credentials.

The

queue

manager’s

credential,

however,

can

be

shared

by

the

queues

it

owes.

For

this

reason,

if

the

com.ibm.mqe.attributes.MQeWTLSCertAuthenticator

class

authenticator

is

used,

an

additional

parameter

″target

registry″

on

the

queue

attribute

that

the

authenticator

is

attached

to

must

also

be

set.

This

parameter

determines

which

registry

is

to

supply

the

credentials

for

authentication,

and

can

have

the

value

of

either

″Queue

manager″

or

″Queue″.

If

″Queue

manager″

is

specified,

the

credentials

used

are

those

of

the

queue

manager

owning

the

queue,

and

come

from

the

private

registry

of

the

queue

236

MQe

Application

Programming

manager.

The

queue

manager

originally

obtains

these

credentials

through

auto-registration

with

the

mini-certificate

server.

This

option

is

the

recommended

default.

If

″Queue″

is

specified,

the

credentials

used

are

those

of

the

queue

itself,

and

come

from

the

private

registry

of

the

queue.

The

queue

originally

obtains

these

credentials

through

auto-registration

with

the

mini-certificate

server

as

well.

See

“Mini-certificate

issuance

service”

on

page

241

for

issues

related

to

mini-certificate

management.

Private

registry

usage

guide:

Prior

to

using

queue-based

security,

MQe-owned

authenticatable

entities

must

have

credentials.

This

is

achieved

by

completing

the

correct

configuration

so

that

auto-registration

of

queue

managers

is

triggered.

This

requires

the

following

steps:

1.

Setup

and

start

an

instance

of

MQe

mini-certificate

issuance

service.

2.

Using

MQe_MiniCertificateServer,

add

the

name

of

the

queue

manager

as

a

valid

authenticatable

entity,

and

the

entity’s

one-time-use

certificate

request

PIN.

3.

Configure

MQePrivateClient1.ini

and

MQePrivateServer1.ini

so

that

when

queue

managers

are

created

using

SimpleCreateQM,

auto-registration

is

triggered.

This

section

explains

which

keywords

are

required

in

the

registry

section

of

the

ini

files,

and

where

to

use

the

entity’s

one-time-use

certificate

request

PIN.

Prior

to

using

message-level

security

to

protect

messages

using

MQeMTrustAttribute,

the

application

must

use

private

registry

services

to

ensure

that

the

initiating

and

recipient

entities

have

credentials.

This

requires

the

following

steps:

1.

Setup

and

start

an

instance

of

MQe

mini-certificate

issuance

service.

2.

Add

the

name

of

the

application

entity,

and

allocate

the

entity

a

one-time-use

certificate

request

PIN.

3.

Use

a

program

similar

to

the

pseudo-code

fragment

below

to

trigger

auto-registration

of

the

application

entity

.

This

creates

the

entity’s

credentials

and

saves

them

in

its

private

registry.

/*

SIMPLE

MQePrivateRegistry

FRAGMENT*/

try

{

/*

setup

PrivateRegistry

parameters

*/

String

EntityName

=

"Bruce";

String

EntityPIN

=

"11111111";

Object

KeyRingPassword

=

"It_is_a_secret";

Object

CertReqPIN

=

"12345678";

Object

CAIPAddrPort

=

"9.20.X.YYY:8082";

/*

instantiate

and

activate

a

Private

Registry.

*/

MQePrivateRegistry

preg

=

new

MQePrivateRegistry(

);

preg.activate(

EntityName,

/*

entity

name

*/

".//MQeNode_PrivateRegistry",

/*

directory

root

*/

EntityPIN,

/*

private

reg

access

PIN

*/

KeyRingPassword,

/*

private

credential

keyseed

*/

CertReqPIN,

/*

on-time-use

Cert

Req

PIN

*/

Designing

your

real

application

237

CAIPAddrPort

);

/*

addr

and

port

MiniCertSvr

*/

trace(">>>

PrivateRegistry

activated

OK

...");

}

catch

(Exception

e)

{

e.printStackTrace(

);

}

Private

registry

usage

scenario:

The

primary

purpose

of

MQe’s

private

registry

is

to

provide

a

private

repository

for

MQe

authenticatable

entity

credentials.

An

authenticatable

entity’s

credentials

consist

of

the

entity’s

mini-certificate

(encapsulating

the

entity’s

public

key),

and

the

entity’s

keyring

protected

private

key.

Typical

usage

scenarios

need

to

be

considered

in

relation

to

other

MQe

security

features:

Queue-based

security

with

MQeWTLSCertAuthenticator

Whenever

queue-based

security

is

used,

where

a

queue

attribute

is

defined

with

MQeWTLSCertAuthenticator,

mini-certificate

based

mutual

authentication,

the

authenticatable

entities

involved

are

MQe

owned.

Any

queue

manager

that

is

to

be

used

to

access

messages

in

such

a

queue,

any

queue

manager

that

owns

such

a

queue

and

the

queue

itself

are

all

authenticatable

entities

and

need

to

have

their

own

credentials.

By

using

the

correct

configuration

options

and

setting

up

and

using

an

instance

of

MQe

mini-certificate

issuance

service,

auto-registration

can

be

triggered

when

the

queue

managers

and

queues

are

created,

creating

new

credentials

and

saving

them

in

the

entities’

own

private

registries.

Message-level

security

with

MQeMTrustAttribute

Whenever

message-level

security

is

used

with

MQeMTrustAttribute,

the

initiator

and

recipient

of

the

MQeMTrustAttribute

protected

message

are

application

owned

authenticatable

entities

that

must

have

their

own

credentials.

In

this

case,

the

application

must

use

the

services

of

MQePrivateRegistry

(and

an

instance

of

MQe

mini-certificate

issuance

service

)

to

trigger

auto-registration

to

create

the

entities’

credentials

and

to

save

them

in

the

entities’

own

private

registries.

Private

registry

and

authenticatable

entity:

Queue-based

security

that

uses

mini-certificate

based

mutual

authentication,

and

message-level

security

that

uses

digital

signature,

have

triggered

the

concept

of

authenticatable

entity.

In

the

case

of

mutual

authentication

it

is

normal

to

think

about

the

authentication

between

two

users

but,

messaging

generally

has

no

concept

of

users.

The

normal

users

of

messaging

services

are

applications,

and

they

handle

the

user

concept.

MQe

abstracts

the

concept

of

target

of

authentication

from

user

to

authenticatable

entity.

This

does

not

exclude

the

possibility

of

authenticatable

entities

being

people,

but

this

would

be

application

selected

mapping.

Internally,

MQe

defines

all

queue

managers

that

can

either

originate

or

be

the

target

of

mini-certificate

dependent

services

as

authenticatable

entities.

MQe

also

defines

queues

defined

to

use

mini-certificate

based

authenticators

as

authenticatable

entities.

So

queue

managers

that

support

these

services

can

have

238

MQe

Application

Programming

one

authenticatable

entity

(the

queue

manager

only),

or

a

set

of

authenticatable

entities

(the

queue

manager

and

every

queue

that

uses

certificate

based

authenticator).

MQe

provides

configurable

options

to

enable

queue

managers

and

queues

to

auto-register

as

an

authenticatable

entity.

MQe

private

registry

service,

MQePrivateRegistry

provides

services

that

enable

an

MQe

application

to

auto-register

authenticatable

entities

and

manage

the

resulting

credentials.

All

application-registered

authenticatable

entities

can

be

used

as

the

initiator

or

recipient

of

message-level

services

protected

using

MQeMTrustAttribute.

Authenticatable

entity

credentials:

To

be

useful

every

authenticatable

entity

needs

its

own

credentials.

This

provides

two

challenges,

firstly

how

to

execute

registration

to

get

the

credentials,

and

secondly

where

to

manage

the

credentials

in

a

secure

manner.

MQe

private

registry

services

help

to

solve

these

two

problems.

These

services

can

be

used

to

trigger

auto-registration

of

an

authenticatable

entity

creating

its

credentials

in

a

secure

manner

and

they

can

also

be

used

to

provide

a

secure

repository.

Private

registry

(a

descendent

of

base

registry)

adds

to

base

registry

many

of

the

qualities

of

a

secure

or

cryptographic

token.

For

example,

it

can

be

a

secure

repository

for

public

objects

(mini-certificates)

and

private

objects

(private

keys).

It

provides

a

mechanism

to

limit

access

to

the

private

objects

to

the

authorized

user.

It

provides

support

for

services

(for

example

digital

signature,

RSA

decryption)

in

such

a

way

that

the

private

objects

never

leave

the

private

registry.

Also,

by

providing

a

common

interface,

it

hides

the

underlying

device

support.

Auto-registration:

MQe

provides

default

services

that

support

auto-registration.

These

services

are

automatically

triggered

when

an

authenticatable

entity

is

configured;

for

example

when

a

queue

manager

is

started,

or

when

a

new

queue

is

defined,

or

when

an

MQe

application

uses

MQePrivateRegistry

directly

to

create

a

new

authenticatable

entity.

When

registration

is

triggered,

new

credentials

are

created

and

stored

in

the

authenticatable

entity’s

private

registry.

Auto-registration

steps

include

generating

a

new

RSA

key

pair,

protecting

and

saving

the

private

key

in

the

private

registry;

and

packaging

the

public

key

in

a

new-certificate

request

to

the

default

mini-certificate

server.

Assuming

the

mini-certificate

server

is

configured

and

available,

and

the

authenticatable

entity

has

been

pre-registered

by

the

mini-certificate

server

(is

authorized

to

have

a

certificate),

the

mini-certificate

server

returns

the

authenticatable

entity’s

new

mini-certificate,

along

with

its

own

mini-certificate.

These

mini-certificates,

together

with

the

protected

private

key,

are

stored

in

the

authenticatable

entity’s

private

registry

as

the

entity’s

new

credentials.

While

auto-registration

provides

a

simple

mechanism

to

establish

an

authenticatable

entity’s

credentials,

in

order

to

support

message-level

protection,

the

entity

requires

access

to

its

own

credentials

(facilitating

digital

signature)

and

to

the

intended

recipient’s

public

key

(mini-certificate).

Designing

your

real

application

239

Public

registry

service

This

section

describes

the

public

registry

service

provided

by

MQe.

MQe

provides

default

services

facilitating

the

sharing

of

authenticatable

entity

public

credentials

(mini-certificates)

between

MQe

nodes.

Access

to

these

mini-certificates

is

a

prerequisite

for

message-level

security.

MQe

public

registry,

also

a

descendent

of

base

registry,

provides

a

publicly

accessible

repository

for

mini-certificates.

This

is

analogous

to

the

personal

telephone

directory

service

on

a

mobile

phone,

the

difference

being

that

it

is

a

set

of

mini-certificates

of

the

authenticatable

entities

instead

of

phone

numbers.

MQe

public

registry

is

not

a

purely

passive

service.

If

accessed

to

provide

a

mini-certificate

that

is

does

not

hold,

and

if

the

public

registry

is

configured

with

a

valid

home

server,

the

public

registry

automatically

attempts

to

get

the

requested

mini-certificate

from

the

public

registry

of

the

home

server.

It

also

provides

a

mechanism

to

share

a

mini-certificate

with

the

public

registry

of

other

MQe

nodes.

Together

these

services

provide

the

building

blocks

for

an

intelligent

automated

mini-certificate

replication

service

that

can

facilitates

the

availability

of

the

right

mini-certificate

at

the

right

time.

Public

registry

usage

scenario:

A

typical

scenario

for

the

use

of

the

public

registry

would

be

to

use

these

services

so

that

the

public

registry

of

a

particular

MQe

node

builds

up

a

store

of

the

most

frequently

needed

mini-certificates

as

they

are

used.

A

simple

example

of

this

is

to

setup

an

MQe

client

to

automatically

get

the

mini-certificates

of

other

authenticatable

entities

that

it

needs,

from

its

MQe

home

server,

and

then

save

them

in

its

public

registry.

Secure

feature

choices:

It

is

the

Solution

creator’s

choice

whether

to

use

the

public

registry

active

features

for

sharing

and

getting

mini-certificates

between

the

public

registries

of

different

MQe

nodes.

The

alternative

to

this

intelligent

replication

may

be

to

have

an

out-of-band

utility

to

initialize

an

MQe

node’s

public

registry

with

all

required

mini-certificates

before

enabling

any

secure

services

that

uses

them.

Selection

criteria:

Out-of-band

initialization

of

the

set

of

mini-certificates

available

in

an

MQe

node’s

public

registry

may

have

advantages

over

using

the

public

registry

active

features

in

the

case

where

the

solution

is

predominantly

asynchronous

and

the

synchronous

connection

to

the

MQe

node’s

home

server

may

be

difficult.

But

in

the

case

where

this

connection

is

more

likely

to

be

available,

the

public

registry’s

active

mini-certificate

replication

services

are

useful

tools

to

automatically

maintain

the

most

useful

set

of

mini-certificates

on

any

MQe

node

public

registry.

Example

-

public

registry:

/*SIMPLE

MQePublicRegistry

shareCertificate

FRAGMENT

*/

try

{

String

EntityName

=

"Bruce";

String

EntityPIN

=

"12345678";

Object

KeyRingPassword

=

"It_is_a_secret";

240

MQe

Application

Programming

Object

CertReqPIN

=

"12345678";

Object

CAIPAddrPort

=

"9.20.X.YYY:8082";

/*instantiate

and

activate

PublicReg

*/

MQePublicRegistry

pubreg

=

new

MQePublicRegistry();

pubreg.activate("MQeNode_PublicRegistry",".\\");

/*

auto-register

Bruce1,Bruce2...Bruce8

*/

/*

...

note

that

the

mini-certificate

issuance

service

must

*/

/*

have

been

configured

to

allow

the

auto-registration

*/

for

(int

i

=

1;

i

<

9;

i++)

{

EntityName

=

"Bruce"+(new

Integer(i)).toString();

MQePrivateRegistry

preg

=

new

MQePrivateRegistry();

/*

activate()

will

initiate

auto-registration

*/

preg.activate(EntityName,

".\\MQeNode_PrivateRegistry",

EntityPIN,

KeyRingPassword,

CertReqPIN,

CAIPAddrPort);

/*

save

MiniCert

from

PrivReg

in

PubReg*/

pubreg.putCertificate(EntityName,

preg.getCertificate(EntityName

));

/*before

share

of

MiniCert

*/

pubreg.shareCertificate(EntityName,

preg.getCertificate(EntityName

),"9.20.X.YYY:8082");

preg.close();

}

pubreg.close();

}

catch

(Exception

e)

{

e.printStackTrace();

}

Note:

1.

It

is

not

possible

to

activate

a

registry

instance

more

than

once,

hence

the

example

above

demonstrates

the

recommended

practice

of

accessing

a

private

registry

by

creating

a

new

instance

of

MQePrivateRegistry,

activating

the

instance,

performing

the

required

operations

and

closing

the

instance.

2.

If

you

want

to

share

certificates

using

a

public

registry

on

the

home-server,

the

public

registry

must

be

called

MQeNode_PublicRegistry.

Mini-certificate

issuance

service

The

ES03

MQe

SupportPac,

″MQe

WTLS

Mini-Certificate

Server″

is

available

as

a

separate

free

download

from

http://www.ibm.com/software/ts/mqseries/txppacs/.

MQe

includes

a

default

mini-certificate

issuance

service

that

can

be

configured

to

satisfy

private

registry

auto-registration

requests.

With

the

tools

provided,

a

solution

can

setup

and

manage

a

mini-certificate

issuance

service

so

that

it

issues

mini-certificates

to

a

carefully

controlled

set

of

entity

names.

These

are

a

prerequisite

for

MQeMTrustAttribute-based

message-level

security.

The

characteristics

of

this

issuance

service

are:

v

Management

of

the

set

of

registered

authenticatable

entities.

v

Issuance

of

mini-certificates.

The

mini-certificate

conforms

to

the

WAP

WTLS

specification.

v

Management

of

the

mini-certificate

repository.

The

tools

provided

in

the

ES03

SupportPac

enable

a

mini-certificate

issuance

service

administrator

to

authorize

mini-certificate

issuance

to

an

entity

by

registering

its

entity

name

and

registered

address

and

defining

a

one-time-use

certificate

request

PIN.

This

would

normally

be

done

after

off

line

checking

to

validate

the

authenticity

of

the

requestor.

The

certificate

request

PIN

can

be

posted

to

the

intended

user,

as

bank

card

PINs

are

posted

when

a

new

card

is

issued.

The

Designing

your

real

application

241

user

of

the

private

registry

(for

example

the

MQe

application

or

MQe

queue

manager)

can

then

be

configured

to

provide

this

certificate

request

PIN

at

startup

time.

When

the

private

registry

triggers

auto-registration,

the

mini-certificate

issuance

service

validates

the

resulting

new

certificate

request

,

issues

the

new

mini-certificate

and

then

resets

the

registered

certificate

request

PIN

so

it

cannot

be

reused.

All

auto-registration

of

new

mini-certificate

requests

is

processed

on

a

secure

channel.

We

recommend

that

you

refer

to

the

MQe_MiniCertificateServer

documentation

included

in

the

ES03

SupportPac,

″MQe

WTLS

Mini-Certificate

Server″,

for

more

details

of

how

to

install

and

use

the

WTLS

digital

certificate

issuance

service

for

MQe.

Renewing

mini-certificates:

The

certificates

issued

for

an

entity

by

the

mini-certificate

issuance

service

are

valid

for

one

year

from

the

date

of

issue

and

it

is

advisable

to

renew

them

before

they

expire.

Renewed

certificates

are

obtained

from

the

same

mini-certificate

issuance

service.

Before

requesting

a

renewal,

the

request

must

be

authorized

with

the

issuance

service

and

a

one-time-use

certificate

request

PIN

obtained,

in

just

the

same

way

as

for

the

initial

certificate

issuance.

When

you

use

the

server

to

obtain

the

PIN

for

renewal,

remember

that

you

are

updating

the

entity,

not

adding

it.

When

a

certificate

is

issued

for

an

entity,

a

copy

of

the

mini-certificate

server’s

own

certificate

is

issued

with

it.

This

is

needed

to

check

the

validity

of

other

certificates.

With

versions

of

MQe

earlier

than

1.2,

the

certificate

server’s

certificate

could

expire

before

the

entity’s

certificate.

If

this

happens

you

can

renew

the

server’s

certificate

by

requesting

a

renewal

of

the

entity’s

certificate;

a

new

copy

of

the

mini-certificate

server’s

certificate

will

be

returned

along

with

the

entity’s

certificate.

From

mini-certificate

server

Version

1.2,

the

mini-certificate

server’s

certificate

will

expire

later

than

the

entity’s

certificate.

The

class

com.ibm.mqe.registry.MQePrivateRegistryConfigure

contains

a

method

renewCertificates()

which

can

be

used

to

request

renewed

certificates.

This

is

used

in

the

example

program

examples.certificates.RenewWTLSCertificates,

which

implements

a

command-line

program

that

requests

renewed

certificates

from

the

issuance

service

The

program

has

four

compulsory

parameters:

RenewWTLSCertificates

<entity>

<ini

file>

<MCS

addr>

<MCS

Pin>

where:

entity

is

the

name

of

the

entity

for

which

a

renewed

certificate

is

required.

This

should

be

either

a

queue

manager,

a

queue

or

other

authenticatable

entity.

The

name

of

a

queue

should

be

specified

as

<queue

manager>+<queue>,

for

example

myQM+myQueue.

ini

file

is

the

name

of

a

configuration

file

that

contains

a

section

for

the

registry.

This

is

typically

the

same

configuration

file

that

is

used

for

the

queue

manager.

For

a

queue,

this

typically

the

configuration

file

for

the

queue

manager

that

owns

the

queue.

MCS

addr

is

the

host

name

and

port

address

of

the

mini-certificate

server

(for

example:

myServer:8085)

242

MQe

Application

Programming

MCS

Pin

is

the

one-time

use

PIN

issued

by

the

mini-certificate

server

administrator

to

authorize

this

renewal

request.

Obtaining

new

credentials

(private

and

public

keys):

When

you

renew

a

certificate,

you

get

an

updated

certificate

for

your

existing

public

key.

This

allows

you

to

continue

to

use

your

existing

private

and

public

key

pair.

If

you

want

to

change

your

private

and

public

key

pair,

you

must

request

new

credentials.

This

includes

a

request

to

the

mini-certificate

issuance

service

for

a

new

public

certificate

embodying

the

new

public

key.

Before

requesting

a

certificate

for

the

new

credentials,

the

request

must

be

authorized

with

the

issuance

service

and

a

one-time-use

certificate

request

PIN

must

be

obtained,

in

the

same

way

as

for

the

initial

certificate

issuance.

(When

you

use

the

server

to

obtain

the

PIN

for

the

new

certificate,

remember

that

you

are

updating

the

entity,

not

adding

it.)

The

class

com.ibm.mqe.registry.MQePrivateRegistryConfigure

contains

a

method

getCredentials()

which

can

be

used

to

request

new

credentials.

This

is

used

in

the

example

program

examples.install.GetCredentials,

which

implements

a

GUI

program

that

requests

new

credentials

from

the

issuance

service.

Note:

When

new

credentials

are

issued,

the

existing

ones

are

archived

in

the

registry.

You

will

no

longer

be

able

to

decrypt

messages

created

using

your

earlier

credentials.

The

new

certificate

will

not

validate

a

digital

signature

(used

with

MQeMTrustAttribute)

created

with

your

earlier

credentials.

Listing

mini-certificates:

It

can

be

useful

to

list

the

certificates

in

a

registry,

for

example

to

check

on

their

expiry

dates.

You

can

do

this

using

methods

in

the

class

com.ibm.mqe.attributes.MQeListCertificates.

These

are

used

in

the

example

program

examples.certificates.ListWTLSCertificates,

which

implements

a

command-line

program

that

lists

certificates.

The

program

has

one

compulsory

and

three

optional

parameters:

ListWTLSCertificates

<reg

Name>[<ini

file>]

[<level>]

[<cert

names>]

where:

regName

is

the

name

of

the

registry

whose

certificates

are

to

be

listed.

It

can

be

a

private

registry

belonging

to

a

queue

manager,

a

queue

or

another

entity;

it

can

be

a

public

registry,

or

(for

the

administrator)

it

can

be

the

mini-certificate

server’s

registry.

If

you

want

to

list

the

certificates

in

a

queue’s

registry,

you

must

specify

its

name

as

<queue

manager>+<queue>,

for

example

myQM+myQueue.

If

you

want

to

list

the

certificates

in

a

public

registry,

it

must

have

the

name

MQeNode_PublicRegistry,

it

will

not

work

for

a

public

registry

with

any

other

name.

The

name

of

the

mini-certificate

server’s

registry

is

MiniCertificateServer.

ini

file

is

the

name

of

a

configuration

file

that

contains

a

section

for

the

registry.

This

is

typically

the

same

configuration

file

that

is

used

for

the

queue

manager

or

mini-certificate

server.

For

a

queue,

this

is

typically

the

Designing

your

real

application

243

configuration

file

for

the

queue

manager

that

owns

the

queue.

This

parameter

should

be

specified

for

all

registries

except

public

registries,

for

which

it

can

be

omitted.

level

is

the

level

of

detail

for

the

listing.

This

can

be:

-b

or

-brief

prints

the

names

of

the

certificate,

one

name

per

line

-n

or

-normal

prints

the

names

of

the

certificates,

one

per

line,

followed

by

their

type

(old

or

new

format)

-f

or

-full

prints

the

names

of

the

certificates,

their

type,

and

some

of

the

contents

This

parameter

is

optional

and

if

omitted

the

″normal″

level

of

detail

is

used.

cert

names

is

a

list

of

names

of

the

certificates

to

be

listed.

It

starts

with

the

flag

-cn

followed

by

names

of

the

certificates,

for

example:

-cn

ExampleQM

putQM.

If

this

parameter

is

used,

only

the

named

certificates

are

listed.

If

this

parameter

is

omitted,

all

the

certificates

in

the

registry

are

listed.

Performance

MQe

can

be

used

in

a

number

of

different

configurations,

and

the

performance

you

can

expect

will

vary

a

great

deal

depending

on

your

adapters

and

manner

of

use.

The

main

thing

to

be

aware

of

when

configuring

MQe

is

that

disk

accesses

are

the

single

biggest

cause

of

slowdown

in

an

MQe

system.

All

unnecessary

disk

accesses

should

be

designed

out

from

the

beginning.

Try

to

split

the

messages

that

you’ll

be

dealing

with

into

messages

that

it’s

important

are

persistent

and

messages

that

do

not

need

to

be

persistent.

The

persistent

messages

need

to

use

a

disk

fields

adapter

for

storage,

but

the

non-persistent

ones

should

use

a

memory

fields

adapter.

Non-persistent

messages

stored

in

memory

can

go

around

100

times

faster

than

messages

stored

to

disk.

When

possible,

distribute

queues

across

different

physical

hard

discs,

so

that

reads

and

writes

to

different

queues

can

take

place

using

different

hardware

and

happen

simultaneously.

When

multiple

clients

are

accessing

a

single

server,

use

multiple

queues,

as

only

one

client

can

use

a

queue

at

a

time.

Avoid

very

large

numbers

of

queues,

as

this

increases

the

time

to

do

any

MQe

access.

Keep

polling

systems

such

as

trigger

transmit

rules

or

home

server

queue

polls

to

a

minimum.

Unless

you

need

a

specific

performance

characteristic,

the

intervals

between

these

can

often

be

configured

to

be

quite

large.

If

you

are

using

them

together,

then

the

trigger

transmit

rule,

which

is

only

used

to

automatically

recover

a

home

server

queue

from

network

stoppage

can

often

be

set

to

have

a

much

larger

interval.

If

you

are

designing

an

application

that

makes

use

of

home

server

queues

and

you

are

using

a

trigger

transmission

rule,

then

consider

replacing

it

with

a

user

interaction

to

cause

the

trigger

transmission.

244

MQe

Application

Programming

Most

JVMs

can

have

their

initial

memory

settings

tweaked.

These

settings

are

often

on

-msX

and

-mxX.

Executing

java

-X

will

give

you

more

information.

Try

increasing

the

initial

and

maximum

heap

size

to

as

much

as

you

can

without

causing

the

machine

to

start

paging.

If

you

are

running

some

application

with

a

queue

manager

that

is

under

a

lot

of

external

load,

be

aware

that

your

own

application

may

suffer

from

reduced

performance

as

many

threads

to

deal

with

incoming

messages

are

started.

Making

sure

your

own

application

is

multithreaded

can

reduce

this

problem.

Errors

and

error

handling

Overview

of

errors

and

error

handling

in

Java

and

C

This

chapter

describes

what

happens

if

an

error

occurs

within

the

Java

and

C

codebases.

Error

handling

in

Java

Errors

within

the

Java

codebase

are

handled

using

exceptions.

The

MQe

Java

API

Programming

Reference

documents

all

of

the

exception

codes

that

the

MQe

Java

code

can

return

in

the

following

classes:

v

com.ibm.mqe.MQeExceptionCodes

v

com.ibm.mqe.mqbridge.MQeBridge.ExceptionCodes

Error

handling

in

C

The

C

codebase

indicates

errors

using

Return

and

Reason

codes.

The

C

code

does

not

have

any

exception

handling

mechanism,

as

in

C++.

MQe

does

not

use

the

operating

system

error

handling

functions.

An

MQeExceptBlock

handles

errors

and

returns

values

from

the

functions.

An

application

is

free

to

install

any

operating

system

exception

handlers

that

it

requires.

The

specific

nature

of

an

error

condition

is

returned

using

two

values,

MQERETURN

and

MQEREASON.

MQERETURN

determines

the

general

area

in

which

the

application

failed,

and

distinguishes

between

warnings

and

errors.

You

can

ignore

warnings,

but

you

must

not

ignore

errors.

With

errors,

your

application

needs

to

solve

the

problem

in

order

to

continue

safely.

MQERETURN

and

MQEREASON

are

both

returned

in

the

MQeExceptBlock.

The

MQERETURN

value

is

also

the

return

value

from

the

function.

Code

structure

The

MQe_nativeReturnCodes.h

header

file

lists

all

of

the

return

and

reason

codes.

They

are

divided

into

function

area

and

then

by

error

or

warning.

For

example,

MQERETURN_QUEUE_MANAGER_ERROR

and

MQERETURN_QUEUE_MANAGER_WARNING.

Warnings

indicate

that

a

situation

can

be

ignored.

Exception

block

The

MQeExceptBlock

structure

is

used

to

pass

the

return

code

and

reason

code,

generated

by

a

function

call,

back

to

the

user.

If

a

function

call

does

not

return

MQERETURN_OK,

use

the

ERC

macro

to

get

the

reason

code.

Designing

your

real

application

245

MQe

ships

two

macros:

EC

This

macro

resolves

to

the

return

code

in

the

exception

block

structure.

ERC

This

macro

resolves

to

the

reason

code

in

the

exception

block

structure.

The

convention

within

MQe

is

that

a

pointer

to

an

exception

block

is

passed

first

on

a

new

function.

A

pointer

to

the

object

handle

is

passed

second,

followed

by

any

additional

parameters.

On

subsequent

calls,

the

object

handle

is

the

first

parameter

passed,

and

the

pointer

to

the

exception

block

is

second,

followed

by

any

additional

parameters.

The

structure

of

the

exception

block,

as

shown

in

the

following

example,

is

MQeExceptBlock_st.

struct

MQeExceptBlock_st

{

MQERETURN

ec;

/*

return

code*/

MQEREASON

erc;

/*

reason

code*/

MQEVOID*

reserved;

/*

reserved

for

internal

use

only*/

}

It

is

recommended

that

you

allocate

the

Exception

Block

on

the

stack,

rather

than

the

heap.

This

simplifies

possible

memory

allocations,

although

there

are

no

restrictions

on

allocating

space

on

the

heap.

The

following

code

demonstates

how

to

do

this:

MQERETURN

rc

MQeExceptBlock

exceptBlock;

/*.....initialisation*/

rc

=

mqeFunction_anyFunction(&exceptBlock,

/*parameters

go

here*/);

if

(MQERETURN_OK

!

=

rc)

{

printf("An

error

has

occured,

return

code

=

%d,

reason

code

=%d

\n",

exceptBlock.ec

exceptBlock.erc);

}else

{

}

All

API

calls

need

to

take

exception

blocks.

The

C

Bindings

codebase

permits

NULL

to

be

passed

to

an

API

call.

However,

this

feature

is

deprecated

in

the

C

codebase

and,

therefore,

not

recommended.

You

should

use

a

different

exception

block

for

each

thread

in

the

application.

Note:

If

an

error

is

not

corrected,

subsequent

API

calls

can

put

the

system

in

an

unpredictable

state.

Useful

macros

A

number

of

macros

help

to

access

the

exception

block:

SET_EXCEPT_BLOCK

Sets

the

return

and

reason

codes

to

specific

values,

for

exampe:

MQeExceptBlock

exceptBlock;

SET_EXCEPT_BLOCK(&exceptBlock,

MQERETURN_OK,

MQEREASON_NA);

246

MQe

Application

Programming

SET_EXCEPT_BLOCK_TO_DEFAULT

Sets

return

and

reason

codes

to

non-error

values,

for

example:

MQeExceptBlock

exceptBlock;

SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

EC

Accesses

the

return

code,

for

example:

MQeExceptBlock

exceptBlk;

/*MQe

API

call

*/

MQERETURN

returncode;

returnCode

=

EC(&exceptBlock);

ERC

Accesses

the

reason

code,

for

example:

MQeExceptBlock

exceptBlk;

/*MQe

API

call*/

MQEREASON

reasoncode;

MQEREASON

reasonCode

=

ERC(&exceptBlock);

NEW_EXCEPT_BLOCK

Can

create

a

temporary

exception

block.

This

is

useful

for

temporary

clean-up

operations.

Java

programming

samples

Introduction

to

the

set

of

Java

examples

provided

with

MQe

This

topic

provides

a

brief

description

of

the

set

of

Java

programming

examples

provided

with

MQe.

Each

example

demonstrates

how

to

use

or

extend

a

feature

of

MQe,

and

most

of

them

are

described

more

fully

in

the

relevant

topics

in

this

information

center.

Adapters

(examples.adapters)

This

package

provides

two

example

classes

that

conform

to

the

MQe

adapters

specification.

MQeDiskFieldsAdapter

This

example

class

is

identical

in

functionality

to

the

disk

fields

adapter

found

in

com.ibm.mqe.adapters.

It

supports

the

reading

and

writing

of

data

on

the

local

file

store.

WESAuthenticationGUIAdapter

Wrappers

the

WESAuthenticationAdapter

found

inside

com.ibm.mqe.adapters.

This

example

enhances

the

WESAuthenticationAdapter

by

displaying

a

dialog

box

that

prompts

the

user

for

login

information

when

connecting

to

a

WebSphere

Everyplace

proxy.

Command

line

administration

(examples.administration.commandline)

This

package

contains

a

suite

of

example

tools

for

creating

base

MQe

objects

from

the

command

line.

Each

program

is

a

simple

example

of

how

to

send

administration

messages

and

how

to

interpret

the

replies.

Using

these

tools

and

a

script,

you

can

reliably

set

up

exactly

the

same

configuration

on

a

number

of

machines.

Designing

your

real

application

247

GUI

administration

(examples.administration.console)

This

package

contains

a

set

of

classes

that

implement

a

simple

graphical

user

interface

(GUI)

for

managing

MQe

resources.

Admin

Front

end

to

the

example

administration

GUI.

Additionally

there

is

a

suite

of

classes

that

provides

the

graphical

user

interface

for

each

MQe

managed

resource.

The

GUI

can

be

invoked

in

any

of

the

following

ways:

v

Using

the

batch

file

ExamplesAdminConsole.bat

v

From

the

command

line:

java

examples.administration.console.Admin

v

From

a

button

on

the

example

server

examples.awt.AwtMQeServer

Simple

administration

(examples.administration.simple)

This

package

contains

a

set

of

examples

that

show

how

to

use

some

of

the

administrative

features

of

MQe

in

your

programs.

As

with

the

application

examples,

these

examples

can

work

with

either

a

local

or

a

remote

queue

manager.

Example1

Create

and

delete

a

queue.

Example2

Add

a

connection

definition

for

a

remote

queue

manager.

Example3

Inquire

on

the

characteristics

of

a

queue

manager

and

the

queues

it

owns.

ExampleAdminBase

The

base

class

that

all

administration

examples

inherit

from.

Interaction

with

a

queue

manager

(examples.application)

This

package

contains

a

set

of

examples

that

demonstrate

various

ways

to

interact

with

a

queue

manager.

These

include

putting

a

message

to

and

getting

a

message

from

a

queue.

All

the

examples

can

be

used

with

either

a

local

queue

manager

or

a

remote

queue

manager.

Before

you

can

use

any

of

these

applications,

the

queue

managers

that

are

to

be

used

must

be

created.

You

can

use

the

CreateExampleQM.bat

batch

file

on

Windows,

or

the

CreateExampleQM

shell

script

on

UNIX,

to

create

queue

managers

ExampleQM

(see

Verifying

your

installation).

Example1

Simple

put

and

get

of

a

message.

Example2

Put

several

messages

and

then

get

the

second

one

using

a

match

field.

Example3

Use

a

message

listener

to

detect

when

new

messages

arrive.

Example5

Lock

messages

then

get,

unlock,

and

delete

them.

248

MQe

Application

Programming

Example6

Simple

put

and

get

of

a

message

using

assured

message

delivery.

Example7

Simple

put

and

get

of

a

message

through

a

Websphere

Everyplace

proxy.

ExampleBase

The

base

class

that

all

application

examples

inherit

from.

These

examples

can

be

run

as

follows:

Windows

Using

batch

file

ExamplesMQeClientTest.bat

ExamplesMQeClientTest

<JDK>

<example

no>

<remoteQMgrName>

<localQMgr

ini

file>

UNIX

Using

shell

script

ExamplesMQeClientTest

ExamplesMQeClientTest

<example

no>

<remoteQMgrName>

<localQMgr

ini

file>

where

<JDK>

is

the

name

of

the

Java

environment.

The

default

is

IBM

Note:

This

parameter

is

not

used

on

UNIX.

<example

no>

is

the

number

of

the

example

to

run

(suffix

of

the

name

of

the

example).

The

default

is

1

(Example1).

<remoteQMgrName>

is

the

name

of

the

queue

manager

that

the

application

should

work

with.

This

can

be

the

name

of

the

local

or

a

remote

queue

manager.

If

it

is

a

remote

queue

manager,

a

connection

must

be

configured

that

defines

how

the

local

queue

manager

can

communicate

with

the

remote

queue

manager.

By

default

the

local

queue

manager

is

used,

as

defined

in

ExamplesMQeClient.ini.

<localQMgrIniFile>

is

an

ini

file

containing

startup

parameters

for

a

local

queue

manager.

By

default

ExamplesMQeClient.ini

is

used.

For

more

details

on

how

to

write

applications

that

interact

with

a

queue

manager

see

“Queue

manager

operations”

on

page

49.

Security

(examples.attributes)

This

package

contains

a

set

of

classes

that

show

how

to

write

additional

components

to

extend

MQe

security.

However,

they

are

not

designed

to

be

used

for

asynchronous

messaging

and

do

not

provide

very

strong

security.

NTAuthenticator

An

authenticator

that

authenticates

a

user

to

the

Windows

NT

security

database.

To

authenticate

correctly

the

user

must

have

the

following

User

Rights

set

on

the

target

NT

system:

v

Act

as

part

of

the

operating

system

v

Logon

locally

v

Logon

as

a

service

Designing

your

real

application

249

The

NT

authenticator

uses

the

Java

native

interface

(JNI)

to

interact

with

Windows

NT

security.

The

code

for

this

can

be

found

in

the

examples.nativecode

directory.

The

dll

built

from

this

code

must

be

placed

in

the

PATH

of

the

NT

machine

that

owns

the

target

resource.

UnixAuthenticator

An

authenticator

that

authenticates

a

user

using

the

UNIX

password

or

shadow

password

system.

The

UNIX

authenticator

uses

the

JNI

to

interact

with

the

host

system.

The

code

for

this

can

be

found

in

the

examples.nativecode

directory.

If

your

system

supports

the

shadow

password

file,

you

must

recompile

this

native

code

with

the

USE_SHADOW

preprocessor

flag

defined.

You

must

also

ensure

the

code

has

sufficient

privileges

to

read

the

shadow

password

file

when

it

executes.

This

example

does

not

work

if

your

system

uses

a

distributed

logon

service

(such

as

Lightweight

Directory

Access

Protocol

(LDAP)).

LogonAuthenticator

Base

logon

authentication

support.

UseridAuthenticator

Support

for

base

userID

authentication.

This

example

requires

a

UserIDS.txt

file

as

input.

This

file

must

have

the

format:

[UserIDs]

User1Name=User1Password

...

UserNName=UserNPassword

See

“Security”

on

page

198

for

more

detailed

information

about

the

MQe

security

features.

Adding

a

small

GUI

to

an

application

(examples.awt)

This

package

provides

a

toolkit

for

building

applications

that

require

a

small

graphical

interface.

It

also

contains

example

applications

that

provide

a

graphical

front

end

to

MQe

functions.

AwtMQeServer

A

graphical

front

end

to

the

examples.queuemanager.MQeServer

example.

The

MQeTraceResourceGUI

class

provides

a

resource

bundle

that

contains

internationalized

strings

for

use

by

the

GUI.

MQeTraceResourceGUI

is

in

package

examples.trace.

You

can

use

the

batch

file

ExamplesAwtMQeServer.bat

to

run

this

application.

See

“Server

queue

managers”

on

page

63

for

more

details

about

running

a

queue

manager

in

a

server

environment.

AwtMQeTrace

A

graphical

front

end

to

examples.trace.MQeTrace.

See

“Java

Message

Service

(JMS)”

on

page

177

for

more

information

about

the

MQe

trace

facility.

250

MQe

Application

Programming

Classes

AwtDialog,

AwtEvent,

AwtFormat,

AwtFrame,

and

AwtOutputStream

provide

a

toolkit

for

building

small

footprint

awt-based

graphical

applications.

These

classes

are

used

by

many

of

the

graphical

MQe

examples.

Managing

mini-certificates

(examples.certificates)

This

package

contains

examples

for

managing

mini-certificates.

See

“Mini-certificate

issuance

service”

on

page

241

for

more

information

on

these

examples,

and

using

mini-certificates.

ListWTLSCertificates

This

example

uses

methods

in

the

class

com.ibm.mqe.attributes.MQeListCertificates

to

implement

a

command

line

program

which

lists

mini-certificates

in

a

registry,

to

varying

levels

of

detail.

RenewWTLSCertificates

This

example

uses

methods

in

the

class

com.ibm.mqe.registry.MQePrivateRegistryConfigure

to

implement

a

command

line

program

which

renews

mini-certificates

in

a

registry.

This

should

be

used

only

on

a

private

registry.

Logging

events

(examples.eventlog)

This

package

contains

some

examples

that

demonstrate

how

to

log

events

to

different

facilities.

LogToDiskFile

Write

events

to

a

disk

file.

LogToNTEventLog

Write

events

to

the

Windows

NT

event

log.

This

class

uses

the

JNI

to

interact

with

the

Windows

NT

event

log.

The

code

for

this

is

in

the

examples.nativecode

directory.

LogToUnixEventLog

Write

events

to

the

UNIX

event

log

(which

is

normally

/var/adm/messages).

This

class

uses

the

JNI

to

interact

with

the

UNIX

event

logging

system.

The

code

for

this

can

be

found

in

the

examples.nativecode

directory.

The

syslog

daemon

on

your

system

should

be

configured

to

report

the

appropriate

events.

Creating

and

deleting

queue

managers

(examples.install)

This

package

contains

a

set

of

classes

for

creating

and

deleting

queue

managers.

DefineQueueManager

A

GUI

that

allows

the

user

to

select

options

when

creating

a

queue

manager.

When

the

options

have

been

selected,

this

example

creates

an

ini

file

containing

the

queue

manager

startup

parameters,

and

then

creates

the

queue

manager.

CreateQueueManager

A

GUI

program

that

requests

the

name

and

directory

of

an

ini

file

that

contains

queue

manager

startup

parameters.

When

the

name

and

directory

are

provided,

a

queue

manager

is

created.

SimpleCreateQM

A

command

line

program

that

takes

a

parameter

that

is

the

name

of

an

ini

Designing

your

real

application

251

file

that

contains

queue

manager

startup

parameters.

It

also

optionally

takes

a

parameter

that

is

the

root

directory

where

queues

are

stored.

Provided

a

valid

ini

file

is

found,

a

queue

manager

is

created.

DeleteQueueManager

A

GUI

program

that

takes

the

name

of

an

ini

file

that

contains

queue

manager

startup

parameters.

Provided

a

valid

ini

file

is

found,

the

queue

manager

is

deleted.

SimpledDeleteQM

A

command

line

program

that

takes

a

parameter

that

is

the

name

of

an

ini

file

that

contains

queue

manager

startup

parameters.

Provided

a

valid

ini

file

is

found,

the

queue

manager

is

deleted.

GetCredentials

A

GUI

program

that

takes

the

name

of

an

ini

file

that

contains

queue

manager

startup

parameters.

Provided

a

valid

ini

file

is

found,

new

credentials

(private/public

key

pair

and

public

certificate)

are

obtained

for

the

queue

manager.

The

mini-certificate

server

must

be

running

and

the

request

for

a

new

certificate

must

have

been

authorized

for

this

to

succeed

(see

“Mini-certificate

issuance

service”

on

page

241).

All

the

configuration

files

use

the

resources

and

utilities

provided

in

ConfigResource,

and

ConfigUtils.

For

more

details

about

creating

and

deleting

queue

managers,

see

“Queue

manager

operations”

on

page

49.

Extending

the

MQ

bridge

(examples.mqbridge.awt)

This

package

contains

a

set

of

classes

that

show

how

to

use

and

extend

the

MQ

bridge.

Some

of

the

examples

extend

other

MQe

examples.

AwtMQBridgeServer

This

is

an

example

of

a

graphical

interface

for

the

underlying

examples.mqbridge.queuemanager.MQBridgeServer

class.

The

MQBridgeServer

class

source

code

demonstrates

how

to

add

bridge

functionality

to

your

MQe

server

program,

following

these

guidelines.

To

start

the

bridge

enabled

server:

1.

Instantiate

the

base

MQe

queue

manager,

and

start

it

running.

2.

Instantiate

a

com.ibm.mqe.mqbridge.MQeMQBridges

object,

and

use

its

activate()

method,

passing

the

same

.ini

file

information

as

you

passed

to

the

base

MQe

queue

manager.

The

bridge

function

is

then

usable.

To

stop

the

bridge-enabled

server:

1.

Disable

the

bridge

function

by

calling

the

MQeMQBridges.close()

method.

This

stops

all

the

current

MQ

bridge

operations

cleanly,

and

shuts

down

all

the

MQ

bridge

function.

2.

Remove

your

reference

to

the

MQeMQBridges

object,

allowing

it

to

be

garbage-collected.

3.

Stop

and

close

the

base

MQe

queue

manager.

252

MQe

Application

Programming

ExamplesAwtMQBridgeServer.bat

This

file

provides

an

example

of

how

to

invoke

the

MQBridgeServer

using

the

Awt

server.

It

also

shows

how

to

control

the

initial

settings

of

the

AwtMQBridgeTrace

module.

ExamplesAwtMQBridgeServer.ini

This

file

provides

an

example

configuration

file

for

a

queue

manager

that

supports

MQ

bridge

functionality.

Administering

objects

for

an

MQ

bridge

(examples.mqbridge.administration.commandline)

This

package

contains

a

suite

of

example

tools,

similar

to

those

in

the

examples.administration.commandline

package,

designed

to

administer

the

objects

required

for

an

MQ

bridge.

Testing

communication

between

MQ

and

MQe

(examples.mqbridge.application.GetFromMQ)

The

example

programs

in

this

package

are

useful

for

proving

that

MQe

and

MQ

can

communicate

with

each

other.

These

examples

are

MQ

bindings

programs

that

use

the

Java

classes

and

are

driven

by

a

simple

command-line

syntax.

GetFromMQ

This

class

destructively

reads

any

message

appearing

on

a

specified

MQ

queue,

and

provides

timing

statistics

on

when

the

message

arrives.

Optionally

the

message

content

can

be

dumped

to

the

standard

output

screen.

This

example

is

useful

when

testing

a

link

between

MQe

and

MQ,

to

see

what

throughput

is

being

achieved

between

the

two

systems.

Scripts

dealing

with

connectivity

between

MQe

and

MQ

can

refer

to

and

use

this

class.

PutFromMQ

This

class

puts

a

message

to

an

MQ

queue,

such

that

the

user

can

specify

the

target

queue

and

the

target

queue

manager.

It

specifically

uses

the

long

form

of

the

MQQueueManager.accessQueue()

method

to

make

use

of

any

MQe

queue

manager

alias

definitions

that

might

be

defined

on

the

MQ

queue.

MQe

interface

(examples.mqeexampleapp)

This

package

contains

two

example

applications

to

aid

your

understanding

of

the

MQe

interface.

The

example

code

can

be

split

into

3

parts:

The

message

service

(examples.mqeexampleapp.messageservice)

This

runs

MQe,

controls

a

queue

manager

and

performs

functions

such

as

queue

creation

and

message

sending.

This

is

the

core

of

the

examples

and

allows

them

to

be

written

with

minimal

calls

to

the

MQe

API.

This

also

means

that

to

see

the

code

required

to

create

a

local

queue

for

example,

a

user

can

simply

look

at

the

relevant

function

within

MQeMessageService.

Example

1:

The

message

pump

(examples.mqeexampleapp.msgpump)

This

is

a

very

simple

application

consisting

of

a

single

server

and

client.

The

client

is

set

to

send

a

message

to

the

server

every

3

seconds

which,

when

received

by

the

server,

will

be

displayed

to

the

user.

Queues

are

Designing

your

real

application

253

asynchronous.

Implementations

of

the

client

are

available

for

both

MIDP

and

J2SE,

while

the

server

is

only

available

for

J2SE.

Example

2:

The

text

application

(examples.mqeexampleapp.textapp)

This

is

slightly

more

complex

than

the

first

example,

consisting

of

2

servers

and

a

client.

When

initiating,

the

client

is

required

to

register

with

the

registration

server.

The

registration

server

adds

the

client

to

a

store-and-forward

queue

on

the

gateway

server

and

replies

with

a

success

or

failure

message.

The

client

can

then

send

user-defined

messages

to

the

gateway

server

(which

it

will

display).

The

aim

of

this

application

is

to

show

how

a

separate

server

can

be

used

to

create

resources

necessary

for

a

new

client

on

the

system

to

aid

scalability

of

large

MQe

networks.

JNI

implementation

(examples.nativecode)

Several

of

the

examples

require

access

to

operating

system

facilities

on

Windows

NT,

or

UNIX

(AIX

and

Solaris).

MQe

accesses

these

functions

using

the

JNI.

For

Windows,

the

code

in

the

examples\native

directory

provides

the

JNI

implementation

required

by

examples.attributes.NTAuthenticator

and

examples.eventlog.LogToNTEventLog.

For

UNIX,

the

code

in

the

file

examples/native/JavaUnix.c

provides

the

JNI

implementation

required

by

the

examples.attributes.UnixAuthenticator

and

examples.eventlog.LogToUnixEventLog.

Running

a

QM

as

a

client,

server,

or

servlet

(examples.queuemanager)

A

queue

manager

can

run

in

many

different

types

of

environment.

This

package

contains

a

set

of

examples

that

allow

a

queue

manager

to

run

as

a

client,

server,

or

servlet:

MessageWaiter

An

example

of

how

to

wait

for

messages

without

using

the

deprecated

waitFormessage

method.

MQeClient

A

simple

client

typically

used

on

a

device.

MQePrivateClient

A

client

that

can

be

used

with

secure

queues

and

secure

messaging.

MQeServer

A

server

that

can

connect

concurrently

to

multiple

queue

managers

(clients

or

servers).

This

is

typically

used

on

a

server

platform.

Batch

file

ExamplesAwtMQeServer.bat

can

be

used

to

run

the

examples.awt.AwtMQeServer

example

which

provides

a

graphical

front

end

to

this

server.

MQePrivateServer

Similar

to

MQeServer

but

allows

the

use

of

secure

queues

and

secure

messaging.

MQeServlet

An

example

that

shows

how

to

run

a

queue

manager

in

a

servlet.

MQeChannelTimer

An

example

that

polls

the

channel

manager

so

that

it

can

time-out

idle

channels.

254

MQe

Application

Programming

MQeQueueManagerUtils

A

set

of

helper

methods

that

configure

start

various

MQe

components.

For

more

details

about

running

queue

managers

in

different

environments

see

“Starting

queue

managers”

on

page

57.

For

details

on

queue

managers

that

provide

an

environment

for

secure

queues

and

messaging

(MQePrivateClient

and

MQePrivateServer),

see

“Security”

on

page

198.

Rules

classes

(examples.rules)

You

can

control

and

extend

the

base

MQe

functionality

using

rules.

Some

components

of

MQe

invoke

rules

classes.

These

rules

provide

a

means

of

changing

the

functionality

of

the

component.

This

package

contains

the

following

example

rules

classes:

ExamplesQueueManagerRules

Example

queue

manager

rules

class

makes

regular

attempts

to

transmit

any

held

messages.

See

“Message

delivery”

on

page

82

for

more

details.

AttributeRule

Example

attribute

rule

that

controls

the

use

of

attributes.

Trace

handling

(examples.trace)

This

package

contains

an

example

trace

handler

that

can

be

used

for

debugging

an

application

during

development,

and

for

tracing

a

completed

application.

MQeTrace

The

base

MQe

trace

class.

AwtMQeTrace,

which

is

in

the

examples.awt

package,

provides

a

graphical

front

end

to

the

MQeTrace

class.

MQeTraceResource

A

resource

bundle

that

contains

trace

messages

that

can

be

output

by

MQe.

MQeTraceResourceGUI

This

class

contains

all

the

translatable

text

for

the

trace

window

controls.

Designing

your

real

application

255

256

MQe

Application

Programming

Deploying

your

application

Packaging

and

deployment

MQe

is

a

flexible

messaging

system

that

can

be

deployed

to

a

wide

variety

of

operating

systems

and

devices.

This

section

provides

information

to

assist

in

the

build,

packaging

and

deployment

of

MQe.

It

is

split

into

two

sections

covering

the

Java

code

base

and

the

native

code

base.

Because

MQe

can

be

deployed

on

a

variety

of

devices,

operating

systems,

and

runtimes,

it

is

not

possible

to

detail

each

application.

Hence

in

some

topics

only

a

brief

outline

and

introduction

is

provided.

Java

deployment

The

MQe

Java

code

base

can

be

deployed

onto

a

large

variety

of

Java

runtimes.

These

include:

v

J2ME

CLDC/MIDP

v

J2ME

CDC/Foundation

v

PersonalJava

V1.1

v

Java

1.1

v

J2SE

1.2

(or

later)

v

IBM®

WebSphere

Studio

Custom

Environment

(WSCE)

jclGateway

(or

better)

The

way

that

MQe,

the

application

and

other

classes

are

packaged

and

deployed

is

dependant

on

the

type

of

Java

runtime,

the

operating

system

and

processor

type

of

the

device

that

is

being

deployed

to.

The

following

topics

provide

information

to

assist

in

packaging

and

deploying

Java

based

MQe

applications

to

different

environments.

Supplied

jar

files

When

deploying

MQe

applications,

you

are

recommended

to

pack

the

minimum

set

of

classes

required

by

the

application

into

compressed

jar

files.

This

ensures

that

the

application

requires

the

minimum

system

resources.

MQe

provides

the

following

examples

of

how

the

MQe

classes

can

be

packaged

into

.jar

files.

These

examples

are

in

the<MQeInstallDir>\Java\Jars

directory

of

a

standard

MQe

installation.

There

are

three

types

of

jar

file;

base,

extension,

and

other:

v

The

base

jar

files

allow

a

usable

queue

manager

to

be

created,

administered

and

run

v

The

extension

jar

files

can

be

used

in

addition

to

the

base

jar

files

to

provide

additional

capability

v

The

other

jar

files

include

example,

and

core,

sets

of

classes

for

you

to

use

as

a

base

for

your

development

©

Copyright

IBM

Corp.

2000,

2004

257

Base

jar

files

MQeBase.jar

Contains

classes

that

provide

for

a

basic

queue

manager

running

in

client

and

server

mode

on

a

J2ME

CDC/Foundation

or

J2SE

or

better

Java

runtime.

MQeMidp.jar

Similar

to

MQeBase.jar

but

for

use

on

a

J2ME

CLDC/MIDP

Java

runtime.

Allows

a

queue

manager

to

run

in

client

mode.

All

MIDP

compliant

classes

are

included

in

this

jar.

No

extension

jars

can

be

used

with

this

one,

as

they

are

not

MIDP

compliant.

MQeGateway.jar

Contains

classes

that

provide

for

a

basic

queue

manager

running

in

client,

server

and

bridge

mode

on

a

J2SE

or

better

Java

runtime.

Extension

jar

files

MQeJMS.jar

Contains

the

classes

that

extend

an

MQe

queue

manager

to

provide

a

JMS

programming

interface.

MQeRetail.jar

Contains

extra

classes

for

use

in

retail

environments.

In

particular,

these

classes

are

useful

on

a

4690

retail

system.

MQeSecurity.jar

A

set

of

classes

that

are

used

to

provide

both

queue

and

message

based

security.

It

contains

a

set

of

cryptors,

compressors

and

authenticators.

MQeBindings.jar

This

file

contains

all

C

bindings

specific

information.

It

is

required

if

access

to

a

Java

queue

manager

from

a

C

application

is

needed

(only

on

Win32

platforms).

MQeMigration.jar

Contains

classes

that

assist

in

migrating

from

an

earlier

version

of

MQe.

MQeDeprecated.jar

This

contains

all

of

the

deprecated

class

files

that

are

no

longer

needed

by

an

MQe

application.

These

deprecated

class

files

help

you

run

applications

written

using

a

previous

version

of

MQe,

without

making

any

changes.

MQeDiagnostics.jar

This

file

helps

to

diagnose

problems

with

MQe

classes.

It

contains

tooling

to

search

the

class

path

to

find

out

the

level

of

each

class

found.

Other

jar

files

MQeExamples.jar

A

packaging

of

all

the

MQe

examples

into

one

jar

file.

This

includes

all

of

the

examples

supplied

with

MQe,

but

excludes

the

deprecated

classes.

MQeCore.jar

This

contains

a

minimal

set

of

classes.

On

its

own

it

is

not

usable

but

it

can

be

used

as

a

base

for

building

a

small

footprint

MQe

system.

More

details

on

reducing

footprint

can

be

found

in

the

″Optimizing

footprint″

section.

Optimizing

footprint

In

many

cases

the

supplied

jar

files

can

be

used

without

change,

however

there

are

instances

where

this

is

not

the

case.

In

particular,

on

some

environments

where

258

MQe

Application

Programming

footprint

is

limited,

the

set

of

classes

that

are

deployed

must

be

reduced

to

the

smallest

possible

size.

The

supplied

jar

files

are

general

purpose

and

contain

more

than

is

necessary

for

an

optimized

environment.

The

table

below

separates

the

classes

into

groups

associated

with

a

particular

function

or

configuration

and

will

help

determine

which

classes

will

be

required

to

optimize

an

applications

footprint.

Using

this

table

the

minimum

required

set

of

classes

can

be

deduced

by

taking

the

mandatory

classes

for

the

required

categories

and

then

adding

in

required

optional

classes

for

that

category.

Due

to

the

wide

ranging

set

of

Java

runtimes

that

are

now

available,

not

all

classes

can

run

on

all

runtimes.

The

table

lists

all

classes,

and

unless

otherwise

stated,

each

class

will

run

on

a

J2SE

runtime.

Because

of

the

differences

between

a

J2SE

and

a

J2ME

runtime,

some

of

the

classes

are

not

appropriate

for

a

J2ME

runtime.

There

are

two

columns

marked

with

an

X

to

show

a

class

that

can

be

used

on

J2ME

MIDP

or

J2ME

CDC/Foundation

runtimes.

Table

12.

Class

optimization

Category

Detail

Type

Details

Midp

CDC

Classes

required

(com.ibm.mqe)

Mandatory

classes

For

all

queue

managers

X

X

MQe

MQeAdapter

MQeAttribute

MQeAttributeDefaultRule

MQeAttributeRule

MQeAuthenticator

MQeCompressor

MQeCryptor

MQeEnumeration

MQeException

MQeExceptionCodes

MQeField

MQeFields

MQeKey

MQeLoaderMQeProperties

MQePropertyProvider

MQeQueueControlBlock

MQeQueueProxy

MQeQueueManager

MQeQueueManagerRule

MQeResourceControlBlock

MQeRule

MQeRunnable

MQeRunnableInstance

MQeThread

MQeThreadPool$1

MQeThreadPool$PooledThread

MQeThreadPool$Target

MQeThreadPool

MQeTrace

MQeTraceHandler

MQeTraceInterface

registry.MQeRegistry

Registry

type

One

option

in

this

category

must

be

selected

Deploying

your

application

259

Table

12.

Class

optimization

(continued)

File

registry

Add

required:

Storage

adapter

X

X

registry.MQeFileSession

registry.MQeRegistrySession

Private

registry

w/o

credentials

Add:

File

registry

X

registry.MQePrivateRegistry

registry.MQePrivateSession

Private

registry

with

credentials

Add:

Private

registry

w/o

credentials

X

attributes.MQeMiniCertRequest

attributes.MQeSharedKey

attributes.MQeWTLSCertificate

Mini-certificate

management

functions

X

attributes.MQeListCertificates

registry.MQePrivateRegistryConfigure

Public

registry

Applicable

to

types

of

message-level

security,

Add:

Private

registry

with

credentials

X

registry.MQePublicRegistry

Queue

manager

type

For

all

types

add

required:

Administration

Storage

adapters

Message

store

Authenticators

Cryptors

Compressors

Rules

Security

Standalone

qMgr.

No

additional

classes

Client

qMgr.

Add

required:

Communications

X

X

MQeTransporter

adapters.MQeCommunicationsAdapter

communications.MQeChannel

communications.MQeChannelCommandInterface

communications.MQeChannelControlBlock

communications.MQeCommunicationsException

communications.MQeCommunicationsManager

communications.MQeConnectionDefinition

communications.MQeListener

communications.MQeListenerSlave

Server

qMgr.

Add:

Client

qMgr.

Add

required:

Communications

X

Note:

whilst

MQeListener

is

not

used

in

the

Client,

they

need

to

be

included

when

preverifying

a

J2ME

application

Gateway

qMgr.

Add:

Server

qMgr.

Add

required

Communications

Transformers

MQeBridgeLoadable

MQeBridgeManager

mqbridge.*

Communications

260

MQe

Application

Programming

Table

12.

Class

optimization

(continued)

TCP/IP

w/o

history

&

persistence

X

adapters.MQeTcpipAdapter

adapters.MQeTcpipLengthAdapter

TCP/IP

with

history

&

persistence

Add:

TCP/IP

w/o

history

and

persistence

X

adapters.MQeTcpipHistoryAdapter

adapters.MQeTcpipHistoryAdapterElement

HTTP

1.0

Not

to

WES

Proxy

Authentication

server

X

adapters.MQeTcpipAdapter

adapters.MQeTcpipHttpAdapter

HTTP

To

WES

Proxy

Authentication

server

X

adapters.MQeTcpipAdapter

adapters.MQeWESAuthenticationAdapter

HTTP

1.1/1.0

J2ME

MIDP

only

X

adapters.MQeMidpHttpAdapter

UDP

X

adapters.MQeUdpipBasicAdapter$Initiator

adapters.MQeUdpipBasicAdapter$InternalAdapter

adapters.MQeUdpipBasicAdapter$Responder

adapters.MQeUdpipBasicAdapter$Writer

adapters.MQeUdpipBasicAdapter

Queue

Types

For

all

queue

types

add

required:

Authenticators

Cryptors

Compressors

Rules

Local

Add:

Storage

adapter

Message

storage

X

X

MQeAbstractQueueImplementation

MQeEventTrigger

MQeMessageEvent

MQeMessageListenerInterface

MQeQueue

MQeQueueRule

(or

replacement)

Remote

Add:

Local

queue

(storage

adapter

&

msg.

storage

only

if

needed)

X

X

MQeRemoteQueue

Home

server

Add:

Remote

queue

(no

storage

adapter

or

msg.

storage)

X

X

MQeHomeServerQueue

Sore

and

forward

Add:

Remote

queue

X

X

MQeStoreAndForwardQueue

Bridge

queue

Add:

Remote

queue

mqbridge.MQeMQBridgeAdminMsg

mqbridge.MQeBridgeServices

mqbridge.MQeMQBridgeQueue

mqbridge.MQeMQQMgrName

mqbridge.MQeMQQName

Message

storage

Deploying

your

application

261

Table

12.

Class

optimization

(continued)

Base

X

X

MQeMessageStoreException

MQeAbstractMessageStore

messagestore.MqeIndexEntry

Standard

Add:

Base

X

X

messagestore.MQeMessageStore

Short

filename.

Always

use

8.3

file

name

for

messages.

Add:

Standard

X

messagestore.MQeShortFilenameMessageStore

4690

specific

Add:

Short

filename

messagestore.MQe4690ShortFilenameMessageStore

Message

type

Basic

X

X

Support

for

MQeMsgObject

is

in

Mandatory

classes

MQSeries

mqemqmessage.*

Storage

adapters

Assured

disk

Independence

from

OS

lazy

writes

X

adapters.MQeDiskFieldsAdapter

Non-assured

disk

Dependence

on

OS

lazy

writes

Add:

Assured

disk

X

adapters.MQeReducedDiskFieldsAdapter

Case-Insensitive

Add:

Assured

disk

X

adapters.MQeCaseInsensitiveAdapter

Long

to

Short

Filename

Mapping

X

adapters.MQeMappingAdapter

Midp

RMS

Storage

MIDP

Only

X

adapters.MQeMidpFieldsAdapter

com.ibm.mqe.adapters.MQeMidpFieldsAdapter$RMSFile

Memory

Volatile

storage

X

X

adapters.MQeMemoryFieldsAdapter

Administration

262

MQe

Application

Programming

Table

12.

Class

optimization

(continued)

Basic

administration

capability

Add:

Local

queue

X

X

MQeAdminMsg

MQeAdminQueue

MQeAdminQueue$1

MQeAdminQueue$Timer

Manage

queue

manager

Add:

Basic

administration

capability

X

X

administration.MQeQueueManagerAdminMsg

Manage

connection

definitions

Add:

Basic

administration

capability

X

X

administration.MQeConnectionAdminMsg

Manage

communications

listeners

Add:

Basic

administration

capability

X

X

administration.MQeCommunicationsListenerAdminMsg

Manage

local

queue

Add:

Basic

administration

capability

X

X

administration.MQeQueueAdminMsg

Manage

administration

queue

Add:

Manage

local

queue

X

X

administration.MQeAdminQueueAdminMsg

Manage

remote

queue

Add:

Manage

local

queue

X

X

administration.MQeRemoteQueueAdminMsg

Manage

home

server

queue

Add:

Manage

remote

queue

X

X

administration.MQeHomeServerQueueAdminMsg

Manage

store

and

forward

queue

Add:

Manage

remote

queue

X

X

administration.MQeStoreAndForwardQueueAdminMsg

Manage

bridge

queue

Add:

Manage

remote

queue

X

mqbridge.MQeMQBridgeQueueAdminMsg

mqbridge.MQeCharacteristicLabels

Manage

a

bridge

to

MQSeries

Add:

Remote

queues

mqbridge.*AdminMsg

mqbridge.MqeCharacteristicLabels

mqbridge.MqeRunState

mqbridge.MqeBridgeServices

mqbridge.MQeBridgeExceptionCodes

Queue

manager

creation

and

deletion

MQeQueueManagerConfigure

X

X

Authenticators

mini-certificate

X

attributes.DHk

(source

may

be

generated)

attributes.MQeSharedKey

attributes.MQeRandom

attributes.MQeWTLSCertificate

attributes.MQeWTLSCertAuthenticator

Compressors

Deploying

your

application

263

Table

12.

Class

optimization

(continued)

GZIP

attributes.MQeGZIPCompressor

X

LZW

attributes.MQeLZWCompressor

attributes.MQeLZWDictionaryItem

X

X

RLE

attributes.MQeRleCompressor

X

X

Cryptors

triple

DES

attributes.MQe3DESCryptor

X

DES

attributes.MQe3DESCryptor

X

MARS

attributes.MQeDESCryptor

X

RC4

attributes.MQeRC4Cryptor

X

RC6

attributes.MQeRC6Cryptor

X

XOR

attributes.MQeXorCryptor

X

X

Application

security

services

Local

security

Add

required:

Cryptors

X

X

attributes.MQeLocalSecure

Message-level

security

Add

required:

Cryptors

X

attributes.MQeMAttribute

Message-level

security

with

digital

signature

&

validation

Add:

Public

registry.

Add

required:

Cryptors

X

attributes.MQeMTrustAttribute

Trace

264

MQe

Application

Programming

Table

12.

Class

optimization

(continued)

Collect

binary

trace

in

J2SE/CDC

X

trace.MQeTraceToBinary

trace.MQeTraceToBinaryFile

Collect

binary

trace

to

Midp

RMS

Store

And

or

send

to

MIDP

Trace

servlet

X

trace.MQeTraceToBinary

trace.MQeTraceToBinaryMidp

Base

trace

renderer

X

trace.MQeTracePoint

trace.MQeTracePointGroup

trace.MQeTraceRenderer

Decode

a

binary

file

to

readable

form

Add:

Base

trace

renderer

X

trace.MQeTraceToReadable

trace.MQeTraceFromBinaryFile

Trace

to

a

readable

output

stream

Add:

Base

trace

renderer

X

trace.MqeTraceToReadable

Servlet

collection

of

Midp

binary

trace

Add

Base

trace

renderer

trace.MQeTraceToReadable

examples.trace.MQeServlet

Miscellaneous

Cryptographic

support

Application

or

installation

use

only

X

attributes.MQeCL

(footnote?)

attributes.MQeGenDH

(generates

a

version

of

attributes.MQeDHk.java)

Mini-certificate

server

SupportPac

ES03

MQe_MiniCertServer

(or

command

line

tool)

See

ES03

installation

instructions

MQe_Explorer

SupportPac

ES02

MQe_Explorer

See

ES02

installation

instructions

Bindings

Access

to

Java

classes

from

other

languages

C

language

bindings.*

JMS

Support

for

the

Java

Message

Service

API

XX

jms.*

transaction.*

User-defined

MQe

extensions

Authenticators

Communications

adapters

Compressors

Cryptors

Logging

classes

Message

classes

Rule

classes

Security

control

Storage

adapters

Trace

handler

Deploying

your

application

265

JMS

requirements

In

order

to

use

the

MQe

JMS

programming

interface,

the

JMS

interface

classes

are

required.

These

are

contained

typically

in

jms.jar.

MQe

does

not

ship

with

jms.jar,

and

this

must

be

downloaded

before

JMS

can

be

used.

At

the

time

of

writing,

this

can

be

freely

downloaded

from

http://java.sun.com/products/jms/docs.html.

The

JMS

Version

1.0.2b

jar

file

is

required.

JNDI

In

addition,

if

JMS

administered

objects

are

to

be

stored

and

retrieved

using

the

Java

Naming

and

Directory

Interface

(JNDI),

the

javax.naming.*

classes

must

be

available.

If

Java

1

is

being

used,

for

example,

a

1.1.8

JRE,

jndi.jar

must

be

obtained

and

added

to

the

classpath.

If

Java

2

is

being

used,

for

example

a

1.2

or

later

JRE,

the

JRE

might

contain

these

classes.

You

can

use

MQe

without

JNDI,

but

at

the

cost

of

a

small

degree

of

provider

dependence.

MQe-specific

classes

must

be

used

for

the

ConnectionFactory

and

Destination

objects.

You

can

download

JNDI

jar

files

from

http://java.sun.com/products/jndi

MQe

classes

for

Java

requirements

To

use

the

MQ

bridge

the

MQ

Classes

for

Java

are

required,

version

5.1

or

later.

These

are

packaged

with

MQ

5.3

and

above.

If

using

an

earlier

version

of

MQ

then

they

are

available

for

free

download

from

the

Web

as

SupportPac

MA88,

see

MQe

SupportPacs

for

web

addresses.

For

an

example

of

how

to

setup

the

classpath

to

include

MQ

jar

files,

see

batch

files:

v

<MqeInstallDir>\Java\Demo\Windows\javaenv.bat

v

<MqeInstallDir>\Java\Demo\UNIX\javaenv

Occasionally,

the

jar

files

change

between

versions

of

MQ

-

if

problems

are

encountered

as

a

consequence

of

this,

consult

the

documentation

for

MQ

classes

in

order

to

determine

the

correct

jar

files

to

use.

Using

WSDD

smart

linker

The

smart

linker

tool

that

ships

with

WSDD

(WebSphere

Studio

Device

Developer)

is

used

in

the

process

of

building

and

packaging

an

application

into

a

jar

or

jxe

file.

The

smart

linker

can

remove

classes

(and

methods)

that

are

deemed

not

to

be

required;

this

can

cause

the

removal

of

classes

that

are

needed

but

dynamically

loaded.

MQe

makes

use

of

dynamic

loading

so

care

should

be

taken

to

either

avoid

this

feature

or

to

explicitly

name

classes

that

must

be

present,

even

though

not

explicitly

referenced

in

the

code.

266

MQe

Application

Programming

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jndi

To

prevent

unused

classes

being

removed

use

the

-noRemoveUnused

option.

Otherwise,

if

the

-removeUnused

option

is

set

then

any

class

that

is

dynamically

loaded

must

be

specifically

included.

One

option

that

can

be

used

to

achieve

this

is

-includeWholeClass.

For

example

-includeWholeClass

"com.ibm.mqe.adapters.*"

will

include

all

classes

in

the

adapters

package,

and

-includeWholeClass

"com.ibm.mqe.adapters.MQeTcpipHttpAdapter"

will

include

only

the

http

adapter.

Multiple

include

(or

exclude)

options

can

be

specified

in

the

smart

linker

options

file.

The

following

guidelines

can

be

used

to

determine

which

classes

are

dynamically

loaded.

The

basic

guideline

is

any

class

that

is

referenced

though

an

MQe

class

alias

or

any

class

that

is

set

as

a

parameter

when

administering

MQe

resources

will

be

dynamically

loaded.

This

includes:

v

Communications

adapters

v

Storage

adapters

v

Message

stores

v

Rules

v

Aliases

v

Cryptors

v

Compressors

v

Authenticators

v

Queues

v

Transporter

v

Connection

(refer

to

the

following

example)

An

example

of

a

set

of

includes

needed

for

a

simple

MIDP

application

is:

-includeWholeClass

"com.ibm.mqe.MQeQueue"

-includeWholeClass

"com.ibm.mqe.MQeRemoteQueue"

-includeWholeClass

"com.ibm.mqe.MQeHomeServerQueue"

-includeWholeClass

"com.ibm.mqe.MQeTransporter"

-includeWholeClass

"com.ibm.mqe.communications.MQeConnectionDefinition"

-includeWholeClass

"com.ibm.mqe.adapters.MQeMidpFieldsAdapter"

-includeWholeClass

"com.ibm.mqe.adapters.MQeMidpHttpAdapter"

-includeWholeClass

"com.ibm.mqe.messagestore.MQeMessageStore"

-includeWholeClass

"com.ibm.mqe.registry.MQeFileSession"

J2ME

Midp

specifics

When

deploying

the

Java

Application

for

the

Midp

environment

a

few

additional

comments

are

worth

mentioning.

v

The

developer

must

use

the

Midp

specific

Storage

and

Communication

adapters

(see

“Using

WSDD

smart

linker”

on

page

266)

and

exclude

any

classes

that

are

not

Midp

compliant.

v

You

can

either

use

the

prepackaged

MQeMidp.jar

file

or

your

own

reduced

version,

however

a

JAD

file

(Java

application

descriptor)

must

also

be

included

detailing

the

Midlets

available

within

the

application.

When

deploying

to

the

Deploying

your

application

267

device

all

classes

should

be

packaged

and

preverified

in

one

jar

before

deploying.

However,

whilst

testing

using

an

emulator

several

jars

can

be

used

by

including

them

in

the

classpath

v

Sun

and

IBM

also

provide

tools

that

will

generate

the

required

.prc

file

for

Palm

Devices.

See

documentation

within

either

Sun’s

Wireless

Toolkit

or

IBM’s

WebSphere

Studio

Device

Developer

v

Care

must

be

taken

to

ensure

that

all

the

required

classes

are

included

in

either

the

jar/prc

file

or

other

executable.

Some

classes

are

dynamically

loaded

and

may

be

missed

when

using

any

Smart-Linker.

See

“Using

WSDD

smart

linker”

on

page

266

for

more

details.

4690

specifics

Take

the

following

requirements

into

account

when

configuring

MQe

for

use

with

4690.

v

Terminal

Applications

are

restricted

to

24

character

maximum

path

length,

but

Store

Controller

Applications

can

have

127

characters.

Java

Applications

are

also

restricted

to

the

24

length.

v

The

virtual

file

system

(VFS)

cannot

hold

greater

than

64,000

files.

With

GB

disk

sizes

being

used,

the

C:

drive

may

not

have

a

limit

on

the

number

of

files,

depending

on

your

operating

system.

v

When

you

want

to

access

a

file,

you

must

specify

the

path

that

leads

to

it.

The

path

consists

of

directory

names

that

are

separated

by

a

backslash

character

″\″

or

a

forward

slash

″/″.

Note:

Although

your

system

accepts

both

the

″\″

and

the

″/″

character,

it

is

probably

less

confusing

to

use

one

or

the

other.

v

Examples

elsewhere

in

this

manual

demonstrate

how

to

configure

your

queue

manager

such

that

the

data

describing

its

resources,

certificates,

and

other

configuration

data

is

stored

in

files

with

long

filenames.

These

filenames

are

for

a

single

top-level

directory,

which

can

also

be

located

on

the

VFS

drive

namespace.

v

Using

the

8.3

format,

the

total

character

length

of

the

fully-qualified

filename

exceeds

the

allowable

limits

imposed

by

the

4960

native

file

system.

Therefore,

in

VFS

:

–

The

maximum

length

of

a

filename

is

256

characters.

–

The

maximum

path

length,

including

directories

and

files,

is

260

characters.

–

The

maximum

directory

depth

is

60

levels

including

the

root

directory.
v

MQe

classes

can

be

stored

in

long

format

names

in

VFS.

However,

for

performance

and

convenience,

as

there

are

lots

of

class

files,

we

would

recommend

that

the

application

and

MQe

classes

are

packaged

into

a

.jar

files

and

deployed.

v

According

to

the

VFS

manual

″The

operating

system

provides

support

for

file

names

greater

than

eight

characters

in

length

through

the

use

of

a

4690

Virtual

File

System

(VFS)″.

v

The

VFS

manual

states:

″The

VFS

drive

setting

must

be

enabled

through

system

configuration.

On

enabling

VFS

drive

settings,

the

operating

system

creates

two

logical

drives.

C:

and

D:.

The

drive

determines

where

the

VFS

directory

is

located.

However,

the

information

is

actually

stored

on

drives

C:

and

D:.

Drive

M:

information

is

stored

on

drive

C:,

and

drive

N:

information

is

stored

on

drive

D:.

Once

you

have

enabled

VFS,

you

can

use

drives

M:

and

N:

to

provide

long

file

name

support

locally.″

v

It

is

recommended

that

you

use

the

MQeCaseInsensitiveDiskAdapter

on

the

4690

OS.

This

class

implements

a

disk

adapter

that

is

insensitive

to

the

case

(upper

or

268

MQe

Application

Programming

lower)

of

the

filename

used

during

matching.

Some

JVM

or

OS

combinations

list

files

with

different

case

to

that

in

which

they

were

created.

This

means

that

the

simple

filtering

in

the

superclass

ignores

them.

However

this

class

converts

both

the

comparator

and

the

comparand

to

lowercase

before

performing

the

comparison.

This

ensures

the

best

chance

of

finding

a

valid

match.

Note

that

the

conversion

to

lower

case

may

be

inappropriate

on

platforms

where

the

case

is

honoured,

and

where

there

are

non-MQe

files

stored

that

could

be

confused

by

case.

In

summary,

this

adapter

is

suited

for

use

with

the

4690

filesystem.

Packaging

Following

is

a

list

of

some

of

the

techniques

and

tools

that

can

be

used

to

package

applications

ready

for

deployment

to

a

device.

The

list

is

not

a

full

list

and

does

not

go

into

any

detail

but

is

intended

to

provide

an

introduction

to

some

of

the

ways

a

Java

application

can

be

packaged.

Single

Jar

file

Build

a

self-contained

application

with

MQe

embedded

in

it.

This

option

minimizes

the

footprint

and

ensures

that

the

classpath

is

kept

to

a

minimum.

Multiple

Jar

files

Put

the

application

into

one

jar

file,

and

then

also

use

either

the

supplied

MQe

jar

files

or

construct

a

separate

MQe

jar

file.

Keeping

MQe

in

one

or

more

separate

jars

makes

it

easy

to

use

MQe

from

multiple

independent

applications.

JNLP

JNLP

(Java

Network

Launching

Protocol

and

API)

is

an

emerging

standard

for

use

in

packaging

and

deploying

Java

applications.

It

is

designed

to

automate

the

deployment,

via

the

web,

for

applications

written

for

the

J2SE

platform.

OSGi

OSGi

or

Open

Services

Gateway

Initiative

defines

define

a

platform

for

the

packaging

of

and

dynamic

delivery

of

Java

software

services

to

networked

devices.

This

is

achieved

via

a

consistent,

component-based,

architecture

for

the

development

and

delivery

of

Java

software

components

known

as

bundles

and

services.

Both

MQe

components

and

applications

can

be

turned

into

OSGi

bundles

and

services

for

use

in

an

OSGi

environment.

The

bundles

are

delivered

from

a

bundle

server

There

are

several

products

that

provide

bundle

servers

together

with

the

client

code

to

handle

the

installation

and

lifecycle

of

bundles.

Depending

on

implementation

the

bundles

can

be

downloaded

on

demand,

and

updated

automatically

when

a

new

version

is

available.

IBM

WSDD

(WebSphere

Studio

Device

Developer)

ships

with

SMF

(Service

Management

Framework),

which

assists

in

the

creation

and

testing

of

bundles

together

with

a

bundle

server.

See

more

at

“Open

Services

Gateway

initiative

(OSGi)”

on

page

272.

Midlet

An

MQe

J2ME

MIDP

application

must

be

packaged

as

a

midlet

or

midlet

suite

(.jad

and

.jar).

Palm

specific

Deploying

your

application

269

In

order

to

run

on

a

Palm

device

a

Java

application

must

to

be

packaged

in

a

prc

file,

which

is

a

Palm

specific

format.

The

IBM

WebSphere

Studio

Device

Developer

product

ships

with

a

tool

that

will

package

a

Java

application

as

a

prc

file.

JXE

IBM

WebSphere

Studio

Device

Developer

has

a

SmartLinker

tool

that

can

produce

an

optimized

packaging

of

an

application

that

contains

the

minimum

set

of

required

classes

and

methods

for

the

deployment

platform.

The

output

from

the

smartlinker

is

stored

in

a

.JXE

file

which

is

understood

by

the

IBM

j9

Java

runtime.

Installer

There

are

several

tools

that

will

package

an

application

ready

for

installation

on

one

or

more

platforms.

A

couple

of

examples

of

these

are

InstallShield

and

self

extracting

zip

files.

Roll

your

own

distribution

mechanism

For

instance

using

a

Java

class

loader

that

can

load

classes

over

a

network.

Deployment

to

devices

Following

is

a

list

of

some

of

the

techniques

and

tools

that

can

be

used

to

deploy

applications

to

devices.

The

list

is

by

no

means

complete

and

does

not

go

into

any

detail

but

is

intended

to

provide

an

introduction

to

some

of

the

ways

a

Java

application

can

be

deployed.

Device

specific

tools

Most

devices

ship

with

tools

that

allow

applications

to

be

copied

across

and

installed.

For

instance:

v

ActiveSync

for

PocketPC

v

Hotsync

for

Palm

Development

tools

Many

IDEs

(Integrated

Development

Environments)

such

as

IBM

WSDD

(WebSphere

Studio

Device

Developer)

provide

tools

that

allow

deployment

of

applications

onto

a

device

and

debugging

of

the

application

from

the

development

environment.

OSGi

related

management

OSGi

or

Open

Services

Gateway

Initiative

defines

define

a

platform

for

the

packaging

of

and

dynamic

delivery

of

Java

software

services

to

networked

devices.

This

is

achieved

via

a

consistent,

component-based,

architecture

for

the

development

and

delivery

of

Java

software

components

known

as

bundles

and

services.

Both

MQe

components

and

applications

can

be

turned

into

OSGi

bundles

and

services

for

use

in

an

OSGi

environment.

The

bundles

are

delivered

from

a

bundle

server.

There

are

several

products

that

provide

bundle

servers

together

with

the

client

code

to

handle

the

installation

and

lifecycle

of

bundles.

Depending

on

implementation

the

bundles

can

be

downloaded

on

demand,

and

updated

automatically

when

a

new

version

is

available.

IBM

WSDD

(WebSphere

Studio

Device

Developer)

ships

with

SMF

(Service

Management

Framework),

which

assists

in

the

creation

and

testing

of

bundles

together

with

a

bundle

server.

See

more

at

“Open

Services

Gateway

initiative

(OSGi)”

on

page

272.

JNLP

270

MQe

Application

Programming

JNLP

or

Java

Network

Launching

Protocol

and

API,

is

an

emerging

standard,

for

use

in

packaging

and

deploying

Java

applications.

It

is

designed

to

automate

the

deployment,

via

the

web,

for

applications

written

to

the

J2SE

platform.

Device

management

products

There

are

several

products

on

the

market

that

can

be

used

for

large-scale

deployment

of

software.

One

example

is

Tivoli®

Configuration

Manager

from

IBM.

C

deployment

Supplied

DLLs

To

deploy

applications

on

the

PocketPC

2000,

2002

and

2003

devices,

you

must

copy

the

MQe

DLLs

to

the

device.

Copy

the

DLLs

to

the

Windows

directory,

the

root

directory,

or

the

same

directory

that

holds

the

application.

The

following

list

shows

which

DLLs

you

need

for

different

MQe

entities:

For

the

local

queuing

base

v

HMQ_Core.dll

v

HMQ_DiskAdapter.dll

v

HMQ_HAL.dll

v

HMQ_nativeAPI.dll

v

HMQ_nativeOSA.dll

v

HMQ_RegistryFileSession.dll

v

HMQ_LocalQueue.dll

Along

with

the

base

DLLs

you

require

the

following

DLLs

depending

on

how

you

wish

to

configure

your

application:

Remote

queuing

HMQ_HttpAdapter.dll

Note:

You

can

remove

HMQ_LocalQueue.dll,

if

you

do

not

want

to

support

administration

queues

or

local

queueing.

Synchronous

remote

queue

support

HMQ_SyncRemoteQueue.dll

Asynchronous

remote

queue

support

HMQ_AsyncRemoteQueue.dll

Home

server

queue

support

HMQ_HomeServerQueue.dll

Administration

queue

support

HMQ_AdminQueue.dll

and

HMQ_LocalQueue.dll

RLE

compressor

support

HMQ_RleCompressor.dll

RC4

crytpor

support

HMQ_RC4Cryptor.dll

Support

for

included

examples

Deploying

your

application

271

BrokerDLL.dll

Open

Services

Gateway

initiative

(OSGi)

Open

Services

Gateway

initiative

(OSGi)

is

an

application

framework

capable

of

deploying

java

applications

or

services,

which

can

be

dynamically

employed,

updated,

or

removed.

Therefore,

it

can

be

a

very

useful

means

for

providing

service

updates

and

ensuring

that

all

the

required

classes

for

an

application

are

made

available

as

and

when

required.

MQe

provides

an

example

bundle

that

provides

MQe

messaging

within

this

framework.

The

following

topics

explain

more.

MQe

example

bundle

contents

MQe

provides

one

main

bundle

for

OSGi

development

and

two

example

application

bundles

that

provide

hints

on

how

to

create

an

MQe

client

or

server

application

within

OSGi.

No

bundle

exports

or

imports

a

service;

they

all

rely

on

package

dependency.

The

following

table

details

the

bundles

and

their

dependencies.

Table

13.

Bundles

and

dependencies

Bundle

name

Description

Export

packages

Import

packages

MQeBundle.jar

Bundle

containing

all

the

required

MQe

classes

excluding

mqbridge

functionality

com.ibm.mqe

com.ibm.mqe.adapters

com.ibm.mqe.administration

com.ibm.mqe.attributes

com.ibm.mqe.communications

com.ibm.mqe.messagestore

com.ibm.mqe.mqemqmessage

com.ibm.mqe.registry

com.ibm.mqe.trace

MQeServerBundle.jar

Example

bundle

containing

an

MQe

Server

application

com.ibm.mqe

com.ibm.mqe.adapters

com.ibm.mqe.administration

com.ibm.mqe.trace

org.osgi.framework

MQeClientBundle.jar

Example

bundle

containing

an

MQe

Client

application

com.ibm.mqe

com.ibm.mqe.adapters

com.ibm.mqe.administration

com.ibm.mqe.trace

org.osgi.framework

Both

example

application

bundles,

MQeClientBundle.jar

and

MQeServerBundle.jar

contain

bundle

activators

which

start

and

stop

the

application

when

the

framework

starts

or

stops

the

bundle.

The

bundles

are

in

MQE_HOME/Java/Jars.

Using

MQe

within

OSGi

When

developing

your

own

bundles,

importing

the

correct

MQe

packages

into

your

bundles

manifest

file

ensures

that

the

MQe

bundle

is

also

installed

into

the

framework

when

your

bundle

is

installed.

One

major

factor

in

developing

a

bundle

is

that

only

one

MQe

queue

manager

can

be

run

within

an

OSGi

runtime.

This

means

that

there

may

be

conflicts

if

several

bundles

are

installed

and

each

requires

its

own

queue

manager.

Careful

design

of

272

MQe

Application

Programming

the

bundle

application

is

required

to

eliminate

this

problem.

However,

there

should

be

no

limit

on

the

number

of

bundles

that

can

use

the

same

queue

manager.

Running

the

example

bundles

As

an

example

of

how

to

use

MQe

within

the

OSGi

environment,

we

provide

two

example

application

bundles

that

are

designed

to

work

together

in

a

simple

scenario.

The

scenario

consists

of

a

client

application

and

a

server

application:-

v

The

Server

simply

sits

and

waits

for

messages

and

prints

out

any

that

it

receives,

v

The

Client

just

sends

one

message.

Within

this

scenario

it

is

possible

to

have

multiple

Clients

sending

to

the

same

Server

or

the

same

Client

can

be

stopped

and

restarted

to

send

another

message

to

the

Server.

These

bundles

are

explained

in

more

detail

in

the

following

topics.

Server

application

(MQeServerBundle.jar)

When

this

bundle

is

started,

an

MQeQueueManager

is

created

and

started,

with

a

listener

and

default

queues

in

memory.

The

Application

code

is

then

run

in

a

new

thread

and

waits

for

incoming

messages

using

a

message

listener;

any

received

messages

are

displayed

in

the

console.

This

thread

continues

to

listen

until

the

bundle

is

stopped,

at

which

time

it

stops

and

then

deletes

the

MQeQueueManager.

Client

application

(MQeClientBundle.jar)

When

this

bundle

is

started

it

checks

to

see

if

an

MQeQueueManager

is

already

running

in

the

JVM,

and

if

so,

it

assumes

it

is

running

in

the

same

runtime

as

the

server,

and

so

uses

that

queue

manager.

If

no

queue

manager

is

detected

then

a

new

one

is

defined

and

started

in

memory

and

a

connection

definition

and

remote

queue

definition

are

setup

to

the

server.

Client

application

code

is

then

run

in

a

new

thread

which

sends

a

single

message

to

the

server.

No

checks

are

made

to

ensure

the

message

is

received.

When

the

bundle

is

stopped,

if

a

new

QueueManager

was

created

for

the

Client,

it

is

stopped

and

deleted.

The

source

for

the

classes

included

in

the

bundles

can

be

seen

in

the

MQe\Java\examples\osgi

directory.

More

details

are

given

in

the

Java

API

Programming

Reference

for

these

classes.

Some

points

to

note

when

running

the

applications:

v

Each

application

was

written

with

two

parts

in

mind.

The

first

is

setup

of

the

underlying

MQe

messaging

infrastructure,

and

the

second

is

the

main

application.

This

is

why

each

one

has

a

separate

class

providing

function

for

each

part.

v

The

MQeClientBundle.class

and

MQeServerBundle.class

are

both

started

in

their

own

threads

by

the

bundle

activator

start

method.

This

way

the

start

method

is

Deploying

your

application

273

not

delayed

in

completing

as

the

tasks

of

sending

and

receiving

messages

can

take

some

time.

This

ensures

a

smooth

transition

of

the

bundles

state

from

resolved

to

started.

Note:

The

Client

and

Server

share

the

same

MQeAdmin

class

in

their

bundles.

This

class

could

have

been

placed

in

its

own

bundle

to

avoid

the

duplication

but

for

simplicities

sake

we

have

not

done

this.

v

The

Server

must

always

be

started

before

any

Clients.

Each

Server

must

run

in

its

own

runtime.

A

single

client

can

share

the

server’s

runtime

or

can

reside

in

its

own.

Running

the

example

Whichever

way

you

run

the

examples,

the

MQeBundle.jar

bundle

is

required

by

both

the

client

and

server

and

must

be

present

on

the

Bundle

Server.

To

run

the

example,

first

start

the

Server:

1.

Import

the

MQeServerBundle.jar

bundle

onto

the

Bundle

Server.

2.

Start

a

new

SMF

(Service

Management

Framework)

runtime,

and

install

and

start

the

MQeServerBundle

bundle

on

it.

This

should

also

install

the

three

prerequisite

bundles.

3.

The

server

then

starts

listening,

you

should

see

output

on

the

console

including:

’MQeServerBundle

-

registering

message

listener’

This

means

the

server

is

ready

for

messages.

Next

you

need

to

run

a

client

to

send

a

message.

There

are

two

methods

for

runnning

the

client

bundle:

Method

1

In

the

same

SMF

runtime

as

the

server:

1.

Import

the

MQeClientBundle.jar

bundle

onto

the

Bundle

Server.

2.

Install

and

start

the

MQeClientBundle

bundle

on

the

runtime.

3.

The

client

now

starts

and

sends

a

message,

which

the

server

will

print

on

the

console.

You

can

stop

and

start

the

client

bundle

to

send

another

message.

Method

2

In

separate

SMF

runtimes:

1.

Import

the

MQeClientBundle.jar

bundle

onto

the

Bundle

Server.

2.

Start

a

new

SMF

runtime,

and

install

and

start

the

MQeClientBundle

bundle

on

it.

This

should

also

install

the

three

prerequisite

bundles.

3.

The

client

starts

and

sends

a

message,

which

the

server

will

print

on

the

console.

You

can

stop

and

start

the

client

bundle

to

send

another

message.

By

default

the

example

expects

both

client

and

server

to

be

on

the

same

machine

running

with

the

receiver

listening

on

port

8085.

However,

you

can

change

the

port

and

address

of

the

server,

that

is

run

the

server

on

a

separate

machine.

Before

the

server

is

started,

tell

it

which

port

to

run

on

by

setting

the

java

system

property,

examples.osgi.server.port.

This

can

be

set

in

the

Runtime

IDE

by

selecting

Show

runtime

properties

from

the

drop

down

menu.

274

MQe

Application

Programming

To

tell

the

client

the

address

and

port

that

the

server

is

listening

on,

before

starting

the

client

set

the

system

properties

examples.osgi.server.address

and

examples.osgi.server.port.

Note:

The

server

ignores

the

address

property

if

it

is

not

present.

Also,

if

the

client

has

already

been

run

and

you

want

to

change

the

address

and

port,

the

runtime

needs

to

be

terminated

and

restarted

to

ensure

that

old

MQeConnectionDefinition

information

is

wiped

from

memory.

Providing

user-defined

rules

and

dynamic

class

loading

The

OSGi

runtime

controls

package

visibility

across

bundles.

If

a

bundle

does

not

explicitly

import

a

package,

then

it

will

not

have

access

to

classes

within

that

package

when

it

comes

to

dynamically

loading

them.

This

is

especially

important

to

MQe,

because

it

has

been

designed

with

this

flexibility

in

mind.

Without

some

small

changes

to

the

bundles,

developers

cannot

use

3rd

party

or

their

own

Rules

or

Adapters.

There

are

two

ways

to

remove

this

problem:

1.

OSGi

version

3

includes

a

DynamicImport-Package

statement

for

the

bundles

manifest

file.

This

has

been

included

in

the

MQeBundle.jar

and

when

the

user-defined

class’s

package

is

exported

from

its

bundles

manifest,

MQe

will

be

able

to

have

access

to

this

class.

Note:

This

functionality

is

available

to

SMF

version

3.1.0

or

higher.

2.

Create

a

new

MQeLoader

and

add

all

the

user-defined

classes

before

they

are

used,

most

likely

within

the

bundles

activator,

for

example:

String

MyRule

=

"UserQMRule";

MQeLoader

loader

=

new

MQeLoader();

loader.addClass(MyRule,

Class.forName(MyRule));

MQe.setLoader(loader);

Note:

Take

care

that

the

loader

within

MQe

is

not

replaced

with

another

loader

from

another

bundle

during

the

application

runtime.

Deploying

your

application

275

276

MQe

Application

Programming

Problem

solving

Problem

determination

Before

you

start

problem

determination

in

detail,

it

is

worth

considering

whether

there

is

an

obvious

cause

of

the

problem,

or

an

area

of

investigation

likely

to

give

good

results.

This

approach

to

diagnosis

can

often

save

a

lot

of

work

by

highlighting

a

simple

error,

or

by

narrowing

down

the

range

of

possibilities.

The

checklist

below

raises

some

fundamental

questions

that

you

need

to

consider.

As

you

go

through

the

list,

make

a

note

of

anything

that

might

be

relevant

to

the

problem.

Even

if

your

observations

do

not

suggest

a

cause

straight

away,

they

could

be

useful

later

if

you

have

to

carry

out

a

systematic

problem

determination

exercise.

The

preliminary

checks

that

you

should

make

are

as

follows:-

v

Has

MQe

run

successfully

before?

v

Are

any

appropriate

environment

variables

set

correctly?

v

Are

there

any

error

messages,

return

codes,

or

exceptions,

that

explain

the

problem?

v

Can

you

reproduce

the

problem?

v

Have

you

made

any

changes

since

the

last

successful

run?

v

Is

there

a

problem

with

the

network?

v

Does

the

problem

affect

all

users?

v

Have

you

applied

any

service

updates?

Common

problems

Client

is

unable

to

connect

to

server

-

it

appears

to

hang

v

Check

that

the

communications

protocol

being

used

by

the

client

matches

the

protocol

being

used

by

the

server.

Messages

are

stuck

v

Ensure

that

the

channel

timeout

settings

are

appropriate

for

the

network.

v

Ensure

that

the

adapter

timeout

settings

are

appropriate

for

the

network

Home

server

queue

stops

pulling

messages

from

the

store

queue

v

The

home

server

queue

has

a

polling

interval

that

may

be

set.

However

if

the

thread

polling

the

queue

terminates

unexpectedly,

no

exception

is

thrown

to

the

application.

An

alternative

approach

is

to

set

the

poll

interval

to

zero,

and

implement

a

queue

manager

rule

to

loop

on

a

call

to

trigger

transmission.

Asynchronous

remote

queue

does

not

send

message

in

a

timely

manner

v

By

default

an

asynchronous

remote

queue

will

attempt

to

send

a

message

when

it

is

put

to

the

queue.

If

the

background

thread

is

unsuccessful

for

any

reason,

then

no

attempt

is

made

to

resend

the

message

until

another

message

is

placed

on

the

queue.

To

avoid

this,

implement

a

queue

manager

rule

to

loop

on

a

call

to

trigger

transmission.

©

Copyright

IBM

Corp.

2000,

2004

277

Cannot

create

bridge

definitions

v

Check

that

the

MQe

bridge

classes

are

on

the

CLASSPATH

v

Check

that

the

MQ

Java

classes

are

on

the

CLASSPATH

Tracing

and

logging

Tracepoints

generated

from

MQe

All

of

the

MQe

trace

points

use

negative

trace

point

numbers.

They

are

provided

to

facilitate

problem

diagnosis

for

the

IBM

Service

team,

when

investigating

a

reported

problem

on

the

MQe

product.

Each

trace

point

may

change

its

meaning,

value,

and

sequential

position,

between

versions

of

the

MQe

classes.

A

trace

point

used

in

one

version

of

MQe

might

never

be

issued

in

another.

For

this

reason,

we

strongly

recommend

that

in

your

applications

you

do

not

use

a

trace

point

as

a

trigger

for

application

logic.

When

rendering

trace

point

information

to

a

readable

format,

maintain

a

consistent

version

between

all

of

the

MQe

classes.

Failure

to

do

so

might

result

in

misleading

information

being

written

to

the

trace

output.

Tracing

and

logging

with

Java

The

trace

mechanism

provided

and

used

by

MQe

has

the

following

features:

v

A

pluggable

interface

to

allow

user-written

trace

handlers

to

be

implemented

if

required.

v

A

variety

of

implementations

of

the

trace

handler

interface

to

cater

for

a

variety

of

uses.

One

such

implementation

supports

a

crude

form

of

circular

logging,

so

older

trace

information

is

discarded

when

newer

trace

information

becomes

available.

See

the

com.ibm.mqe.trace.MQeTraceToBinaryFile

for

more

details.

v

A

separation

between

the

trace

point

number,

and

the

meaning,

or

textual

representation

of

that

trace

point.

This

separation

of

the

number

from

lengthy

meaningful

string

information

allows

for

collection

of

the

trace

point

numbers

to

be

performed

at

runtime,

and

the

rendering

of

that

information

to

a

readable

format

to

be

done

offline

at

a

later

time.

This

can

mean

trace

information

files

are

smaller

and

generated

more

quickly

at

the

point

of

capture,

but

much

larger

and

more

accessible

at

the

time

they

are

read.

v

Dynamic,

runtime

filtering

of

trace

information.

Generating

trace

information

(Java)

Tracing

in

the

Java

codebase

is

performed

using

the

com.ibm.mqe.MQeTrace

class.

All

calls

to

com.ibm.mqe.MQeTrace.trace()

methods

pass

the

following

information:

v

A

number,

by

which

the

trace

point

can

be

identified.

v

A

group

bit-mask,

which

identifies

this

trace

point

as

being

classified

as

part

of

one

or

more

groups

of

trace

points.

This

information

is

used

in

conjunction

with

the

MQeTrace.setFilter()

method,

to

allow

unwanted

trace

information

to

be

filtered

out

at

runtime.

Many

of

the

bits

in

the

group

bit-mask

have

a

defined

meaning.

For

example,

if

the

MQeTrace.GROUP_ERROR

bit

is

set,

then

the

trace

point

indicates

that

an

error

is

being

reported.

Multiple

group

bits

can

be

set

for

the

same

trace

point.

v

A

number

of

parameters.

A

tostring()

method

is

invoked

for

each

parameter,

so

that

a

string

is

extracted

at

runtime,

and

added

to

the

trace

point.

278

MQe

Application

Programming

Classes

shipped

in

MQe

generate

lots

of

trace

information

using

these

methods,

such

that

the

trace

point

numbers

are

all

negative.

We

recommend

that

programs

using

this

trace

mechanism

use

positive

numbers,

or

zero.

Several

bit-fields

are

reserved

for

user

applications,

for

example,

the

MQeTrace.GROUP_MASK_USER_DEFINED

bit-fields.

For

convenience,

MQeTrace.GROUP_USER_DEFINED_1

maps

to

one

such

bit,

for

example:

MQeTrace.trace(this,

(short)

1,

MQeTrace.GROUP_ERROR

|

MQeTrace.GROUP_USER_DEFINED_1,

thingToLog

);

This

statement

implements

a

logical

AND

operation

on

the

GROUP_ERROR

and

GROUP_USER_DEFINED_1,

maintaining

the

runtime

filter

with

the

MQeTrace

class.

If

the

result

is

non-zero,

then

the

corresponding

method

on

the

MQeTraceHandler

interface

class

is

called,

if

a

handler

has

been

set.

There

are

several

variants

of

the

MQeTrace.trace()

method,

including

methods

that

trace

different

numbers

of

parameters

with

the

trace

point.

Capturing

trace

information

(Java)

MQe

does

not

automatically

capture

the

trace

information

provided

by

the

MQeTrace.trace()

methods.

The

solution

programmer

must

capture

the

trace

messages.

We

strongly

recommend

that

your

solution

includes

a

mechanism

to

allow

the

capture

of

MQe

trace

events,

as

this

output

may

be

requested

by

the

IBM

service

teams

when

investigating

any

problems

reported.

To

capture

MQe

trace

information,

you

need

to

ensure

that

v

A

trace

handler

has

been

provided,

and

set

using

the

MQeTrace.setHandler()

method.

v

The

runtime

filter

maintained

by

the

MQeTrace.setFilter()

method

is

not

excluding

the

information

you

want

to

capture.

The

required

trace

handler

must

implement

the

MQeTraceHandler

interface.

MQe

ships

with

several

trace

handlers,

used

for

different

purposes:

MQeTraceToReadable

This

renders

trace

information

to

a

printstream

in

a

readable

format.

MQeTraceToBinaryFile

This

collects

trace

information

into

a

file,

or

sequence

of

files.

MQeTraceFromBinaryFile

You

can

use

this

to

render

this

binary

information

file

format

into

readable

text.

MQeTraceToBinaryMidp

Collects

binary

trace

information

when

running

inside

a

MIDP

Java

environment.

//

Allocate

a

trace

instance,

so

that

our

handler

//

is

not

garbage

collected

when

it’s

on.

myMQeTrace

=

new

MQeTrace();

//

Allocate

a

trace

handler

//

This

one

puts

trace

output

to

stdout

by

default.

MQeTraceHandler

handler

=

(MQeTraceHandler)

new

com.ibm.mqe.trace.MQeTraceToReadable();

//

Set

this

handler

as

the

one

MQe

uses.

MQeTrace.setHandler(handler);

Problem

solving

279

//

Set

the

filter

so

we

collect

those

//

pieces

of

trace

we

are

interrested

in.

//

In

this

case,

collect

all

the

default

trace

information.

MQeTrace.setFilter(MQeTrace.GROUP_MASK_DEFAULT);

...

//

To

end

trace

set

the

filter

to

zero

and

the

handler

to

null

MQeTrace.setFilter(0);

MQeTrace.setHandler(null);

This

example

shows

the

creation

of

a

trace

handler,MQeTraceToReadable

in

this

case,

and

setting

of

the

filter

to

capture

the

default

trace

information.

This

can

result

in

lots

of

information

being

captured.

You

can

use

a

more

restrictive

filter

to

capture

only

a

subset

of

the

data.

For

example,

collecting

errors,

warnings,

and

user-coded

trace

points

might

be

more

appropriate:

MQeTrace.GROUP_ERROR

|

MQeTrace.GROUP_WARNING

|

MQeTrace.GROUP_MASK_USER_DEFINED

Note:

1.

The

IBM

Service

team

may

ask

you

to

use

the

MQeTrace.GROUP_MASK_ALL

value

when

diagnosing

a

problem.

2.

When

using

the

MQeTraceToBinaryMidp

tracehandler,

you

require

an

additional

step

to

recover

the

trace.

The

MIDP

tracehandler

either

stores

the

trace

in

a

record

store

or

in

memory.

Once

trace

has

finished,

call

sendDataToUrl()

to

recover

this

binary

data.

By

default,

this

sends

the

data

to

a

servlet.

For

more

information,

refer

to

the

examples.trace.MQeTraceServlet

section

of

the

MQe

Java

Programming

Reference.

Writing

your

own

trace

handler

(Java)

Solution

providers

may

wish

to

write

their

own

trace

handlers,

to

v

Do

more

complex

filtering.

v

Store

trace

information

in

a

different

place

or

form

to

that

used

by

the

supplied

trace

handlers

v

Reroute

trace

information

generated

through

this

mechanism

to

another

trace

capture

mechanism.

For

example,

the

trace

handlers

supplied

with

MQe

rely

on

function

supplied

by

underlying

classes:

com.ibm.mqe.trace.MQeTracePointGroup

This

class

holds

information

about

a

logical

grouping

of

trace

points.

com.ibm.mqe.trace.MQeTraceRenderer

Provides

a

programmatic

way

of

managing

a

collection

of

tracePointGroups

and

tracePoints

information.

It

provides

methods

to

add

or

remove

tracePointGroups,

individual

tracePoints

to

and

from

the

collection

of

tracePointGroups,

and

collection

of

tracePoints.

com.ibm.mqe.trace.MQeTracePoint

A

collection

of

information

that

describes

a

particular

trace

point.

The

trace

handlers

in

the

product

populate

a

series

of

MQeTracePointGroup

objects

with

a

collection

of

MQeTracePoint

objects.

The

groups

are

added

to

the

MQeTraceRenderer,

and

the

MQeTraceRenderer

is

used

to

map

from

the

trace

point

number

passed

on

the

MQeTrace.trace()

methods,

to

a

readable

string.

The

separation

of

the

readable

string

from

the

trace

point

number

allows

the

code

to

collect

just

the

number,

and

separate

the

information

collection

stage

from

the

stage

that

renders

to

readable

strings.

280

MQe

Application

Programming

Where

possible,

the

trace

handlers

supplied

also

gather

stack

trace

information

when

a

java.lang.throwable

is

passed

as

a

parameter

to

the

MQeTrace.trace()

method.

You

can

implement

the

trace

handler

interface,

and

intercept

trace

information

from

your

application

and

the

MQe

system

classes.

For

examples

of

this,

refer

to

the

following

classes

in

the

MQe

Java

Programming

Reference:

v

examples.trace.MQeTrace

v

examples.trace.MQeTraceToFile

You

can

add

trace

points

to

existing

trace

point

groups,

or

to

your

own

trace

point

groups.

You

can

add

these

to

the

base

MQeTraceRenderer,

and

use

them

in

conjunction

with

the

existing

trace

handlers.

For

an

example

of

this,

please

refer

to

the

MQeTrace

class

section

of

the

MQe

Java

Programming

Reference.

Tracing

and

logging

with

C

This

section

describes

trace

and

logging

in

the

C

codebase.

It

shows

you

how

to

enable

MQe

trace

on

PocketPC

and

PocketPC2002

devices

and

emulators.

Trace

architecture

(C)

In

MQe,

trace

is

configured

globally.

This

means

that

trace

is

enabled

for

the

device,

and

when

enabled,

all

C

MQe

applications

generate

trace.

You

can

configure

the

location

where

you

want

trace

files

to

be

written.

Each

application

generates

a

unique

file

in

the

form

MQEnnnnn.trc,

where

″nnnnn″

is

the

process

identifier

of

the

application.

MQe

trace

files

are

written

in

a

binary

format

to

minimize

their

size.

You

can

either

send

these

binary

trace

files

directly

to

an

IBM

Service

Representative

to

decode

them

or,

alternatively,

use

the

MQenativeTraceFormatter.exe

utility

provided

with

MQe.

This

utility

runs

on

Windows,

but

does

not

run

on

PocketPC.

It

takes

the

trace

file

as

an

argument

and

prints

the

decoded

output

to

standard

out.

The

output

can

be

captured

in

a

file

by

running

a

command,

such

as:

MQenativeTraceFormatter.exe

AMQ12345.trc

>

AMQ12345.txt

This

will

decode

the

file

AMQ12345.trc

and

place

the

output

in

a

file

called

AMQ12345.txt.

Configuring

trace

(C)

Trace

is

controlled

on

the

PocketPC

via

entries

in

the

Windows

Registry.

These

trace

values

are

under

the

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQe\CurrentVersion\Trace

key.

You

can

set

the

values

in

several

ways:

v

Manually,

using

a

registry

editor,

such

as

the

Remote

Registry

Editor

provided

with

eMbedded

Visual

Tools

V3.0

v

With

a

.Reg

file,

which

you

can

download

to

the

device

and

then

execute

v

Programatically,

using

the

supplied

mqeTrace_setOptions

function

For

information

on

the

mqeTrace_setOptions

function,

see

the

C

Programming

Reference

on

the

product

CD.

If

you

set

the

value

manually

or

use

a

.Reg

file,

all

values

should

be

of

type

REG_SZ.

MQe

supports

the

following

values:

Problem

solving

281

Table

14.

Trace

values

supported

in

MQe

Value

Name

Supported

values

Description

Enable

Yes

or

no

Turns

trace

on

and

off.

Location

Full

path

Directory

where

trace

files

are

written

to.

The

location

string

must

be

a

valid

file

path,

for

example

mqetrace.

Timestamp

Yes

or

no

Determine

if

timestamp

information

is

added

to

each

tracepoint.

Set

to

″no″

to

reduce

file

size

and

increase

speed.

Parameters

Yes

or

no

Determine

if

parameter

information

is

added

to

each

tracepoint.

Set

to

″no″

to

reduce

file

size

and

increase

speed.

WrapLength

Value

Advanced

value,

described

in

the

following

list

under

Wraplength.

SubtractMethodFilter

Value

Advanced

value,

described

in

the

following

list

under

AddMethodFilter

and

SubtractMethodFilter.

AddMethodFilter

Value

Advanced

value,

describted

in

the

following

list

under

AddMethodFilter

and

SubtractMethodFilter.

In

the

table,

the

following

conditions

apply:

WrapLength

This

is

the

maximum

size,

in

bytes,

that

an

individual

trace

file

will

reach.

Once

this

value

is

reached,

the

trace

file

begins

to

wrap

using

a

″circular

buffer″

algorithm.

However,

this

takes

a

considerable

amount

of

time,

and

may

significantly

slow

down

execution

speed

once

the

file

starts

wrapping.

Therefore,

leave

this

value

at

-1,

except

in

circumstances

where

disk

space

is

at

a

premium.

Note:

This

is

the

maximum

length

of

a

single

trace

file.

If

an

application

is

run

multiple

times,

or

multiple

applications

are

run,

then

each

generated

trace

file

reaches

this

size.

AddMethodFilter

and

SubtractMethodFilter

These

values

allow

sophisticated

control

over

exactly

what

trace

points

are

produced.

Incorrect

use

can

seriously

limit

the

effectiveness

and

understandability

of

the

trace

files.

You

should

leave

these

fields

blank,

unless

an

IBM

service

representative

instructs

you

otherwise.

If

you

do

send

trace

files

to

IBM,

you

must

include

details

of

what

both

of

these

fields

are

set

to.

MQe

Diagnostic

tool

MQe

includes

a

small

diagnostic

tool,

MQeDiagnostics,

that

can

be

used

to

gather

the

information

required

by

technical

support

personnel

to

assist

with

problem

determination.

The

tool

collects

information

about

the

local

MQe

environment.

In

particular:

v

CLASSPATH

and

PATH

information

v

Java

and

C

system

variables

282

MQe

Application

Programming

v

Version

information

of

the

MQe

classes

No

personal

information

or

MQe

message

data

is

collected

by

this

program,

and

it

should

normally

only

be

used

at

the

request

of

IBM

technical

support

personnel.

This

tool

should

not

be

confused

with

the

trace

facility,

which

is

used

to

gather

debugging

information

on

a

running

MQe

system.

Windows

diagnostics

1.

From

a

command

prompt

change

to

the

<mqe_install_dir>\mqe\Java\demo\Windows\

folder.

2.

Edit

the

MQeDiagnostics.bat

file

to

suit

your

environment.

The

file

makes

use

of

the

JavaEnv.bat

script,

so

either

ensure

that

JavaEnv.bat

correctly

sets

up

your

CLASSPATH

and

PATH

environment

variables,

or

set

them

up

in

the

MQeDiagnostics.bat

script.

3.

Run

the

MQeDiagnostics.bat

file

and

follow

the

on

screen

prompts.

4.

Once

the

tool

has

completed,

look

through

the

MQeDiagnostics.out

file

for

any

errors.

Common

errors

include:

″.\MQeDiagnostics.properties

could

not

be

found″

The

tool

requires

the

MQeDiagnostics.properties

file

to

be

supplied

as

input.

Edit

MQeDiagnostics.bat

so

that

it

points

to

the

correct

location

for

this

file

and

rerun

the

tool.

″com.ibm.mqe.support.MQeDiagnostics

is

not

recognized

as

an

internal

or

external

command...″

JavaEnv.bat

is

not

configured

correctly.

Edit

MQeDiagnostics.bat

and

JavaEnv.bat

if

necessary

and

rerun

the

tool.

″java.lang.NoclassDefFoundError:

com/ibm/mqe/support/MQeDiagnostics″

Edit

JavaEnv.bat

and

MQeDiagnostics.bat

if

necessary

so

that

the

<mqe_install_dir>\MQe\Java\Jars\MQeDiagnostics.jar

can

be

found

in

the

CLASSPATH

environment

variable.

Note:

Not

all

MQe

classes

can

supply

version

information,

so

the

MQeDiagnostics.out

file

may

include

some

″Unknown

version!″

messages.

5.

Send

MQeDiagnostics.out

to

the

MQe

support

personnel,

as

described

in

“Information

required

by

IBM

support”

on

page

284.

Unix

diagnostics

1.

From

a

command

prompt

change

to

the

C

folder

name

or

the

<mqe_install_dir>\mqe\Java\demo\UNIX\

folder.

2.

Edit

the

MQeDiagnostics

script

to

suit

your

environment.

The

file

makes

use

of

the

JavaEnv

script,

so

either

ensure

that

JavaEnv

correctly

sets

up

your

CLASSPATH

and

PATH

environment

variables,

or

configure

them

directly

from

within

the

MQeDiagnostics

script.

3.

Run

the

MQeDiagnostics

script

and

follow

the

on

screen

prompts.

4.

Once

the

tool

has

completed,

look

through

the

MQeDiagnostics.out

file

for

any

errors.

Common

errors

include:

″.\MQeDiagnostics.properties

could

not

be

found″

Problem

solving

283

The

tool

requires

the

MQeDiagnostics.properties

file

to

be

supplied

as

input.

Edit

MQeDiagnostics.bat

so

that

it

points

to

the

correct

location

of

this

file

and

rerun

the

tool.

″com.ibm.mqe.support.MQeDiagnostics

:

command

not

found″

The

file

JavaEnv

is

not

configured

correctly.

Edit

the

files

MQeDiagnostics

and

JavaEnv

if

necessary

and

rerun

the

tool.

″java.lang.NoClassDefFoundError:

com/ibm/mqe/support/MQeDiagnostics″

Edit

the

files

JavaEnv

and

MQeDiagnostics

if

necessary

so

that

the

<mqe_install_dir>\MQe\Java\Jars\MQeDiagnostics.jar

file

can

be

found

in

the

CLASSPATH

environment

variable.

Note:

Not

all

MQe

classes

can

supply

version

information,

so

the

MQeDiagnostics.out

file

may

include

some

″Unknown

version!″

messages.

5.

Send

MQeDiagnostics.out

to

the

MQe

support

personnel,

as

described

in

“Information

required

by

IBM

support.”

Other

systems

diagnostics

On

other

systems,

the

MQeDiagnostics

tool

should

be

invoked

directly.

1.

Add

the

MQeDiagnostics.jar

file

to

your

classpath.

2.

Invoke

the

com.ibm.mqe.support.MQeDiagnostics

class

from

the

Java

runtime

environment.

For

example:

java

com.ibm.mqe.support.MQeDiagnostics

MQeDiagnostics.properties

>

MQeDiagnostics.out

(The

program

takes

the

MQeDiagnostics.properties

file

as

an

argument.

The

output

is

redirected

to

a

file).

3.

Send

MQeDiagnostics.out

to

the

MQe

support

personnel,

as

described

in

“Information

required

by

IBM

support.”

Information

required

by

IBM

support

If

you

cannot

resolve

problems

that

you

find

when

you

use

MQe,

or

if

you

are

directed

to

do

so

by

an

error

message

generated

by

MQe,

you

can

request

assistance

from

your

IBM

Support

Center.

Before

you

contact

your

Support

Center,

use

the

checklist

below

to

gather

important

information.

Some

items

might

not

necessarily

be

relevant

in

every

situation,

but

you

should

provide

as

much

information

as

possible

to

enable

the

IBM

Support

Center

to

re-create

your

problem.

For

your

system:

v

Operating

system

being

used,

and

Version,

Level

and

any

fixpacks

or

fixes

applied

(On

UNIX

you

can

find

the

version

installed

by

using

the

uname

-a

command).

v

MQe

Version,

Level

and

any

fixpacks

or

fixes

applied

v

JVM

Version,

Level

and

any

fixpacks

or

fixes

applied

v

Any

relevant

software

used

by

MQE

application

v

Codebase

-

Server:

Java

or

C

Bindings;

Client:

Java,

C

or

C

Bindings

v

Message

flow:-

–

Are

messages

pulled

-

using

home

server

queue

on

client

and

store

queue

on

server

284

MQe

Application

Programming

–

Are

messages

pushed

-

synchronous

or

asynchronous

remote

queues

or

forward

queue

–

Explicit

use

of

trigger

transmission

–

Is

the

application

applying

assured

delivery

(using

confirm

id

and

put

with

putConfirm)

–

Message

expiry
v

Is

security

involved

v

Network

being

used

-

e.g.

GSM,

GPRS,

LAN

–

Communications

adapter

–

Communications

settings

-

adapter

(for

example:

timeout,

retries,

packet

size)

and

Channel

(timeout)
v

Is

a

gateway

to

MQ

involved

–

MQ

Bindings

or

MQ

Client

–

Message

created

using

MQeMQMessageObject

or

MQeMsgObject

–

Transformer

used

on

Bridge
v

Rules

–

Where

are

they

used

–

Purpose
v

Use

of

tools

–

MQe_Explorer

–

MQe_Script
v

Administration

For

your

problem:

v

A

concise

description

of

the

problem

v

How

to

re-create

the

problem

v

Any

traces

you

can

generate,

as

follows:-

Traces

for

MQe:

v

The

file

MQeDiagnostics.out,

generated

as

described

in

“MQe

Diagnostic

tool”

on

page

282.

Create

a

.zip

file

using

any

zip

utility.

v

Appropriate

trace

files

generated

according

to

the

advice

in

“Tracing

and

logging”

on

page

278.

Create

a

.zip

file

using

any

zip

utility.

v

A

sample

of

the

messages

being

used

when

the

problem

arose.

Traces

for

MQ:

v

All

current

trace

and

error

logs,

including

relevant

Windows

Event

log

or

UNIX

platform

syslog

entries

and

FFST

output

files.

You

can

find

these

files,

which

have

the

extension

.fdc,

in

the

errors

subdirectory

within

the

MQ

home

directory.

Problem

solving

285

286

MQe

Application

Programming

Programming

reference

If

you

have

installed

the

two

extra

reference

plugins

they

appear

in

this

section

in

the

Contents.

The

plugins

and

their

contents

are:-

API

References

v

Java

API

Programming

Reference

v

C

API

Programming

Reference

C

Programming

Guides

v

C

Bindings

Programming

Guide

v

C

Programming

Guide

for

Palm

OS

This

section

also

contains:-

JMX

Attributes

and

operations

The

topics

in

this

section

describe

the

attributes

and

operations

that

each

JMX-instrumented

WMQe

resource

can

access.

Each

resource

is

described

here

by

up

to

three

sub-topics:

1.

Attributes

In

the

table

on

these

pages:

v

The

Attribute

Name

is

the

name

returned

by

the

Attribute

class

getName()

method

or

the

MBeanAttributeInfo

getName()

method.

v

The

Attribute

description

describes

the

attribute.

v

The

Attribute

Type

is

the

String

representation

of

the

attribute

data

type

retrieved

using

the

MBeanAttributeInfo

getType()

method

(This

is

referred

to

as

the

class

name

literal

for

the

type

in

Data

types).

v

The

Read/Write

column

indicates

whether

an

attribute

is

read-only

(RO),

or

can

also

be

updated

(RW).
2.

Operations

These

pages

show:

v

The

Operation

Name

v

The

Operation

description

v

The

Parameter.

For

more

details

on

what

each

parameter

is,

see

the

following

sub-topic

Operations

parameters,

where

present.

Unless

otherwise

stated,

the

return

type

of

all

operations

is

java.lang.Void.

To

ensure

that

default

values

are

used,

leave

parameter

entries

blank

on

a

GUI

interface

or

use

a

value

of

null

in

a

programmatic

interface.

3.

Operations

parameters

These

pages

explain

the

parameters

on

the

preceding

page,

showing:

v

Parameter

name

v

Parameter

type

v

Parameter

description

©

Copyright

IBM

Corp.

2000,

2004

287

Admin

MBean

Attributes

Table

15.

Admin

MBean

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

AdminMsgExpiry

The

default

expiry

time

(in

milliseconds)

for

sent

admin

messages

java.lang.Integer

RW

AdminQName

The

default

name

of

the

admin

queue

to

use

for

sending

admin

messages

java.lang.String

RW

CacheInterval

The

default

time

(in

milliseconds)

to

retain

cached

values

(see

below)

java.lang.Long

RW

InquireOnConnect

Indicates

whether

remote

queue

manager

resources

are

inquired

upon

and

MBeans

for

these

created

when

new

connection

definitions

are

created

java.lang.Boolean

RW

MsgPollInterval

The

default

time

(in

milliseconds)

to

wait

for

admin

reply

messages

when

performing

remote

admin

java.lang.Long

RW

LocalMsgTimeout

The

default

length

of

time

(in

milliseconds)

to

check

for

admin

reply

messages

when

performing

local

admin

java.lang.Long

RW

RemoteMsgTimeout

The

default

length

of

time

(in

milliseconds)

to

check

for

admin

reply

messages

when

performing

remote

admin

java.lang.Long

RW

Note:

1.

In

the

current

implementation,

the

values

set

for

these

MQeAdminJmx

attributes

are

not

persistent

between

deletion

and

re-creation

of

the

MBean

so

must

be

reset

whenever

a

new

MQeAdminJmx

MBean

is

created.

This

effectively

means

that

remote

queue

managers

must

be

refreshed

so

that

their

children

are

all

visible

via

JMX.

2.

The

attribute

CacheInterval

relates

to

a

caching

mechanism

employed

in

the

WMQe

JMX

interface.

Attribute

values

are

cached

for

this

duration

and

inquires

during

the

cache

interval

do

not

result

in

a

refresh

of

the

values.

Attribute

values

are

refreshed

whenever

an

update

is

done

(that

is

to

say,

the

value

of

one

or

more

of

the

attributes

is

changed).

In

that

instance,

the

cache

clock

is

reset

to

zero

and

no

refresh

will

take

place

until

either

the

CacheIntervalexpires

or

another

update

is

done.

The

default

value

is

0.

3.

InquireOnConnect

is

used

whenever

new

connection

definitions

are

created

or

loaded.

If

this

attribute

has

a

value

of

true,

an

attempt

will

be

made

to

inquire

upon

the

remote

queue

manager

accessed

directly

by

this

connection

definition.

If

the

inquire

is

successful,

an

attempt

will

be

made

to

create

MBeans

for

all

of

the

remote

queue

manager

child

resources.

If

the

attribute

value

is

false,

an

MBean

will

be

created

for

the

remote

queue

manager

but

no

MBeans

will

be

created

or

registered

for

its

child

resources.

The

creation

of

the

children

MBeans

can

be

effected

288

MQe

Application

Programming

when

desired

by

using

the

MQeRemoteQueueManagerJmx

refresh()

method.

The

default

setting

is

false

which

means

that

no

children

MBeans

for

remote

queue

managers

are

created

at

start-up.

4.

MsgPollInterval

specifies

how

frequently

the

admin

reply

message

should

be

looked

for.

The

lower

the

number,

the

more

times

the

reply

message

will

be

searched

for

during

the

Local/RemoteMsgTimeoutperiod.

This

relates

effectively

to

remote

administration

—

for

local

administration,

there

should

only

need

to

be

a

single

attempt

to

retrieve

the

reply

message.

5.

LocalMsgTimeout

and

RemoteMsgTimeoutindicate

the

length

of

time

that

it

takes

to

check

for

a

reply

message.

If

a

reply

message

is

not

returned

within

the

specified

time,

then

the

inquire/update

returns

in

an

unknown

state.

For

all

local

administration,

a

reply

message

should

always

be

received.

A

case

when

a

reply

message

may

not

be

received

is

if

remote

administration

is

taking

place

and

the

remote

queue

manager

does

not

have

a

connection

definition

back

to

the

originating

queue

manager.

In

this

case

setting

the

RemoteMsgTimeout

value

to

zero

may

be

useful

as

it

is

already

known

that

a

reply

message

will

not

be

received.

In

every

case

where

a

reply

message

is

not

received

an

exception

will

always

be

thrown.

Setting

the

RemoteMsgTimeout

to

zero

does

not

change

this.

6.

LocalMsgTimeout,

RemoteMsgTimeout

and

MsgPollInterval

have

defaults

10,000ms,

10,000ms

and

10ms

respectively.

Resetting

these

values

takes

effect

immediately

and

the

new

values

are

in

force

until

they

are

reset

again

or

the

application

is

terminated.

Operations

There

are

no

operations

for

this

MBean

Queue

manager

Attributes

Table

16.

Queue

Manager

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

ChannelAttributeRules

The

rule

class

(or

alias)

to

be

associated

with

the

channel

attribute

java.lang.String

RW

ChannelTimeout

The

time

(in

milliseconds)

after

which

an

outgoing

idle

channel

will

be

turned

off

java.lang.Long

RW

Connections

A

list

of

connections

owned

by

this

queue

manager

[Ljava.lang.String;

RO

MQBridges

A

list

of

bridges

owned

by

this

queue

manager

[Ljava.lang.String;

RO

Queues

A

list

of

queues

owned

by

this

queue

manager

[Ljava.lang.String;

RO

Programming

reference

289

Table

16.

Queue

Manager

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Rule

The

rule

class

(or

alias)

to

be

used

by

this

queue

manager

java.lang.String

RW

MaxTransThreads

The

maximum

number

of

threads

that

will

be

spawned

to

service

the

transmission

needs

of

the

queue

manager

java.lang.Integer

RW

Version

The

version

of

WMQe

hosting

the

queue

manager

[Ljava.lang.String;

RO

CommsListeners

A

list

of

communications

listeners

owned

by

this

queue

manager

[Ljava.lang.String;

RO

BridgeCapable

Indicates

whether

the

queue

manager

is

bridge

capable

java.lang.Boolean

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

QMsgStore

The

default

message

store

class

(or

alias)

for

a

queue

that

determines

how

messages

on

that

queue

are

stored

java.lang.String

RW

QAdapter

The

default

storage

adapter

class

(or

alias)

for

a

queue

java.lang.String

RW

QPath

The

default

path

for

messages

to

be

stored

for

queues

java.lang.String

RW

Operations

Table

17.

Queue

Manager

operations

Operation

name

Operation

description

Parameter

[1]

addAlias

[2]

Adds

an

alias

to

the

queue

manager

alias

removeAlias

[2]

Removes

an

alias

from

the

queue

manager

alias

addAlias

Adds

an

array

of

aliases

to

the

queue

manager

aliases

removeAlias

Removes

an

array

of

aliases

from

the

queue

manager

aliases

createAdminQueue

Creates

a

new

admin

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createApplicationQueue

Creates

a

new

application

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createHomeServerQueue

Creates

a

new

home

server

queue

queueName,

getFromQMgrName

290

MQe

Application

Programming

Table

17.

Queue

Manager

operations

(continued)

Operation

name

Operation

description

Parameter

[1]

createAsyncProxyQueue

Creates

a

new

asynchronous

proxy

queue

queueName,

destinationQMgrName,

messageStore(optional),

adapter(optional),

path(optional)

createSyncProxyQueue

Creates

a

new

synchronous

proxy

queue

queueName,

destinationQMgrName

createStoreQueue

Creates

a

new

store

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createForwardQueue

Creates

a

new

forward

queue

queueName,

forwardToQMgrName,

messageStore(optional),

adapter(optional),

path(optional)

createCommsListener

Creates

a

new

communications

listener

listenerName,

listenerAdapter,

listenerPort

createAliasConnection

Creates

a

new

Alias

Connection

connectionName

createMQConnection

Creates

a

new

MQ

Connection

connectionName

createUdpipConnection

Creates

a

new

Udpip

Connection

connectionName,

address,

port

createTcpipHistoryConnection

Creates

a

new

Tcpip

History

Connection

connectionName,

address,

port

createTcpipHttpConnection

Creates

a

new

Tcpip

Http

Connection

connectionName,

address,

port

createTcpipLengthConnection

Creates

a

new

Tcpip

Length

Connection

connectionName,

address,

port

createIndirectConnection

Creates

a

new

Indirect

Connection

connectionName,

viaQMName

createMQBridgeQueue

Creates

a

new

MQBridge

queue

queueName,

destinationQMgrName,

bridgeName,

proxyName,

clientConnectionName

createMQBridge

Creates

a

new

MQBridge

bridgeName

triggerTransmission

Initiate

the

triggering

of

any

pending

messages

Note:

1.

See

the

following

table

for

more

information

on

parameters

2.

This

operation

is

provided

to

allow

compatibility

with

adapters

which

can

not

handle

array

parameters

to

operations.

A

similar

operation

has

also

been

added

for

some

queues

and

connections.

Programming

reference

291

Operations

parameters

Table

18.

Queue

manager

operation

parameters

Parameter

name

Parameter

type

Parameter

description

adapter

java.lang.String

Class

name

for

the

adapter

to

use

with

the

message

store

-

optional

address

java.lang.String

IP

address

for

a

connection

alias

java.lang.String

Name

of

the

queue

manager

alias

aliases

[Ljava.lang.String;

Names

of

the

queue

manager

aliases

bridgeName

java.lang.String

Name

of

an

MQ

bridge

clientConnectionName

java.lang.String

Name

of

MQ

client

connection

associated

with

an

MQ

bridge

queue

connectionName

java.lang.String

Name

of

a

connection

destinationQMgrName

java.lang.String

Name

of

the

queue

manager

that

owns

a

given

proxy

(remote)

queue

or

a

bridge

queue

forwardToQMgrName

java.lang.String

Name

of

the

queue

manager

that

messages

are

forwarded

to

from

a

Forward

queue

getFromQMgrName

java.lang.String

Name

of

the

queue

manager

that

owns

a

given

home

server

queue

listenerAdapter

java.lang.String

Listener

adapter

class

listenerName

java.lang.String

Name

of

a

listener

listenerPort

java.lang.String

Port

for

a

listener

to

listen

on

messageStore

java.lang.String

Class

name

for

the

message

store

optional

path

java.lang.String

Path

for

the

queue

store

optional

port

java.lang.String

IP

Port

for

a

connection

proxyName

java.lang.String

Name

of

MQ

queue

manager

proxy

associated

with

an

MQ

bridge

queue

queueName

java.lang.String

Name

of

the

queue

viaQMName

java.lang.String

Name

of

a

queue

manager

to

connect

via

(for

an

indirect

connection)

Note:

1.

The

return

type

in

each

case

is

of

type

java.lang.Void.

Hence,

return

types

have

not

been

included

in

the

table.

2.

There

may

seem

to

be

a

discrepancy

between

the

input

parameters

listed

for

the

operations

and

the

input

parameters

required

for

the

corresponding

WMQe

operations.

This

is

because

the

interface

design

allows

the

user

to

input

only

mandatory

parameters

at

this

point.

The

reason

for

this

is

that

where

the

adapter

used

provides

a

graphical

interface,

the

inclusion

of

all

optional

parameters

for

each

operation

would

result

in

a

very

cluttered

interface.

Thus,

all

optional

parameters

have

been

omitted

in

these

create

operations.

Once

the

resource

has

been

created,

they

can

be

specified

as

updates

using

setAttribute()

or

setAttributes().

3.

Some

of

these

methods

may

seem

unfamiliar

to

someone

who

uses

the

WMQe

programmatic

interface.

In

particular

the

methods

292

MQe

Application

Programming

createStoreQueue(),

and

createForwardQueue()

do

not

correspond

to

WMQe

standard

APIs.

The

rationale

behind

these

resources

is

explained

in

the

relevant

sections

below

on

Store

Queues,

Forward

Queues

and

Connections.

Remote

queue

manager

Attributes

Table

19.

Remote

queue

manager

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Accessible

A

Boolean

value

indicating

whether

the

remote

queue

manager

is

accessible

from

the

local

queue

manager

or

not

java.lang.Boolean

RO

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

ChannelAttributeRules

The

rule

class

(or

alias)

to

be

associated

with

the

channel

attribute

java.lang.String

RW

ChannelTimeout

The

time

(in

milliseconds)

after

which

an

outgoing

idle

channel

will

be

turned

off

java.lang.Long

RW

Connections

A

list

of

connections

owned

by

queue

manager

[Ljava.lang.String;

RO

MQBridges

A

list

of

Bridges

owned

by

this

queue

manager

[Ljava.lang.String;

RO

Queues

A

list

of

Queues

owned

by

this

queue

manager

[Ljava.lang.String;

RO

Rule

The

rule

class

(or

alias)

to

be

used

by

this

queue

manager

java.lang.String

RW

MaxTransThreads

The

maximum

number

of

threads

that

will

be

spawned

to

service

the

transmission

needs

of

the

queue

manager

java.lang.Integer

RW

Version

The

version

of

WMQe

hosting

the

queue

manager

[Ljava.lang.Short;

RO

CommsListeners

A

list

of

communications

listeners

owned

by

this

queue

manager

[Ljava.lang.String;

RO

BridgeCapable

Indicates

whether

the

queue

manager

is

bridge

capable

java.lang.Boolean

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

QMsgStore

The

default

message

store

class

(or

alias)

for

a

queue

that

determines

how

messages

on

that

queue

are

stored

java.lang.String

RW

Programming

reference

293

Table

19.

Remote

queue

manager

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

QAdapter

The

default

storage

adapter

class

(or

alias)

for

a

queue

java.lang.String

RW

QPath

The

default

path

for

messages

to

be

stored

for

queues

java.lang.String

RW

Operations

Table

20.

Remote

queue

manager

operations

Operation

name

Operation

description

Parameter

[1]

addAlias

[2]

Adds

an

alias

to

the

queue

manager

alias

removeAlias

[2]

Removes

an

alias

from

the

queue

manager

alias

addAlias

Adds

an

array

of

aliases

to

the

queue

manager

aliases

removeAlias

Removes

an

array

of

aliases

from

the

queue

manager

aliases

createAdminQueue

Creates

a

new

admin

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createApplicationQueue

Creates

a

new

application

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createHomeServerQueue

Creates

a

new

home

server

queue.

queueName,

getFromQMgrName

createAsyncProxyQueue

Creates

a

new

asynchronous

proxy

queue

queueName,

destinationQMgrName,

messageStore(optional),

adapter(optional),

path(optional)

createSyncProxyQueue

Creates

a

new

synchronous

proxy

queue

queueName,

destinationQMgrName

createStoreQueue

Creates

a

new

store

queue

queueName,

messageStore(optional),

adapter(optional),

path(optional)

createForwardQueue

Creates

a

new

forward

queue

queueName,

forwardToQMgrName,

messageStore(optional),

adapter(optional),

path(optional)

createCommsListener

Creates

a

new

communications

listener

listenerName,

listenerAdapter,

listenerPort

createAliasConnection

Creates

a

new

Alias

Connection

connectionName

createMQConnection

Creates

a

new

MQ

Connection

connectionName

294

MQe

Application

Programming

Table

20.

Remote

queue

manager

operations

(continued)

Operation

name

Operation

description

Parameter

[1]

createUdpipConnection

Creates

a

new

Udpip

Connection

connectionName,

address,

port

createTcpipHistoryConnection

Creates

a

new

Tcpip

History

Connection

connectionName,

address,

port

createTcpipLengthConnection

Creates

a

new

Tcpip

Length

Connection

connectionName,

address,

port

createTcpipHttpConnection

Creates

a

new

Tcpip

Http

Connection

connectionName,

address,

port

createIndirectConnection

Creates

a

new

Indirect

Connection

connectionName,

viaQMName

createMQBridgeQueue

Creates

a

new

MQBridge

queue

queueName,

destinationQMgrName,

bridgeName,

proxyName,

clientConnectionName

createMQBridge

Creates

a

new

MQBridge

bridgeName

refresh

Refresh

the

queue

manager

resources

from

the

registry

Note:

1.

See

Table

21

for

more

information

on

parameters.

2.

This

operation

is

provided

to

allow

compatibility

adapters

which

can

not

handle

array

parameters

to

operations.

A

similar

operation

has

also

been

added

for

some

queues

and

connections.

Operations

parameters

Table

21.

Remote

queue

manager

operation

parameters

Parameter

name

Parameter

type

Parameter

description

adapter

java.lang.String

Class

name

for

the

adapter

to

use

with

the

message

store

-

optional

address

java.lang.String

IP

address

for

a

connection

alias

java.lang.String

Name

of

the

queue

manager

alias

aliases

[Ljava.lang.String;

Names

of

the

queue

manager

aliases

bridgeName

java.lang.String

Name

of

an

MQ

bridge

clientConnectionName

java.lang.String

Name

of

MQ

client

connection

associated

with

an

MQ

bridge

queue

connectionName

java.lang.String

Name

of

a

connection

destinationQMgrName

java.lang.String

Name

of

the

queue

manager

that

owns

a

given

proxy

(remote)

queue

or

a

bridge

queue

forwardToQMgrName

java.lang.String

Name

of

the

queue

manager

that

messages

are

forwarded

to

from

a

Forward

queue

getFromQMgrName

java.lang.String

Name

of

the

queue

manager

that

owns

a

given

home

server

queue

listenerAdapter

java.lang.String

Listener

adapter

class

listenerName

java.lang.String

Name

of

a

listener

Programming

reference

295

Table

21.

Remote

queue

manager

operation

parameters

(continued)

Parameter

name

Parameter

type

Parameter

description

listenerPort

java.lang.String

Port

for

a

listener

to

listen

on

messageStore

java.lang.String

Class

name

for

the

message

store

optional

path

java.lang.String

Path

for

the

queue

store

-

optional

port

java.lang.String

IP

Port

for

a

connection

proxyName

java.lang.String

Name

of

MQ

queue

manager

proxy

associated

with

an

MQ

bridge

queue

queueName

java.lang.String

Name

of

the

queue

viaQMName

java.lang.String

Name

of

a

queue

manager

to

connect

via

(for

an

indirect

connection)

Note:

1.

The

refresh()

operation

requires

particular

comment.

When

resources

are

added

to

or

removed

from

a

JMX-enabled

queue

manager,

whether

via

the

JMX

interface

or

from

another

application,

these

updates

are

automatically

reflected

in

the

MBeans

(that

is

to

say,

corresponding

MBeans

are

registered

or

deregistered).

However,

when

the

MBeans

corresponding

to

a

queue

manager

which

is

remote

to

the

JMX-enabled

queue

manager

(known

to

it

through

a

direct

connection)

are

updated

from

another

application,

these

changes

are

not

reflected

automatically.

In

this

case,

the

refresh()

operation

has

to

be

invoked

to

update

the

MBeans

in

accordance

with

the

current

remote

queue

manager

resources.

2.

When

a

direct

connection

to

another

Queue

Manager

is

created,

a

RemoteQueueManager

MBean

is

created

in

addition

to

the

MBean

for

the

connection

definition

itself.

If

the

MQeAdminJmx

attribute

InquireOnConnect

is

set

to

true,

MBeans

for

the

remote

queue

manager

child

resources

will

be

created

and

registered

with

the

MBeanServer

instance

at

this

point.

However,

if

InquireOnConnect

is

set

to

false,

the

child

MBeans

will

not

be

created.

The

refresh

operation

on

this

MBean

will

need

to

be

invoked

at

a

later

time

in

order

to

create

the

remote

queue

manager

alias

MBeans

and

the

MBeans

for

the

child

resources

when/if

required.

Note

that

MBeans

for

the

remote

Queue

Manager

child

resources

are

only

created

for

queue

managers

connected

to

the

JMX

local

queue

manager

by

direct

connections

no

child

MBeans

are

created

for

queue

managers

known

only

through

MQ,

alias

or

indirect

connections.

Admin

queue

Attributes

Table

22.

Admin

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Adapter

The

adapter

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

296

MQe

Application

Programming

Table

22.

Admin

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

CurrentDepth

The

number

of

messages

currently

on

the

queue

java.lang.Integer

RO

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire.

java.lang.Long

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxDepth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

a

message

that

can

be

placed

on

the

queue

java.lang.Integer

RW

MessageStore

The

class

(or

alias)

determines

how

messages

on

the

queue

are

stored

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Path

The

path

locating

the

physical

storage

for

the

queue

java.lang.String

RO

Priority

The

default

priority

to

be

associated

with

messages

on

the

queue

java.lang.Byte

RW

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

TimerInterval

The

time

(in

milliseconds)

between

attempts

to

get

messages

java.lang.Long

RW

Operations

Table

23.

Admin

queue

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

queue

alias

removeAlias

Removes

an

alias

from

this

queue

alias

addAlias

Adds

an

array

of

aliases

to

this

queue

aliases

removeAlias

Removes

an

array

of

aliases

from

this

queue

aliases

delete

Deletes

this

queue

Programming

reference

297

Operations

parameters

Table

24.

Admin

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

description

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Application

queue

This

queue

type

is

also

referred

to

local

queue

elsewhere

in

MQe

documentation.

Attributes

Table

25.

Application

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Adapter

The

adapter

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

CurrentDepth

The

number

of

messages

currently

on

the

queue

java.lang.Integer

RO

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire

java.lang.Long

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxDepth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

a

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MessageStore

The

class

(or

alias)

determines

how

messages

on

the

queue

are

stored

java.lang.String

RO

298

MQe

Application

Programming

Table

25.

Application

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Messages

The

message

bodies

of

messages

on

the

queue

[Ljava.lang.String;

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Path

The

path

locating

the

physical

storage

for

the

queue

java.lang.String

RO

Priority

The

default

priority

to

be

associated

with

messages

on

the

queue

java.lang.Byte

RW

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

Operations

Table

26.

Application

queue

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

queue

alias

removeAlias

Removes

an

alias

from

this

queue

alias

addAlias

Adds

an

array

of

aliases

to

this

queue

aliases

removeAlias

Removes

an

array

of

aliases

from

this

queue

aliases

delete

Deletes

this

queue

deleteMessage[1]

Deletes

a

message

from

this

queue

index

putMessage[1]

Places

a

message

onto

the

queue

message

Note:

1.

See

Messaging

operations

for

more

details

of

the

messaging

operations.

Operations

parameters

Table

27.

Application

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

description

index

java.lang.Integer

The

index

of

the

message

to

be

deleted

message

java.lang.String

The

text

body

of

the

message

to

be

put

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Home

Server

queue

Attributes

Table

28.

Home

Server

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Programming

reference

299

Table

28.

Home

Server

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

GetFromQMgr

The

name

of

the

queue

manager

that

the

home

server

queue

will

pull

messages

from

java.lang.String

RO

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

TimerInterval

The

time

(in

milliseconds)

between

attempts

to

get

messages

java.lang.Long

RW

Transporter

The

class

(or

alias)

that

flows

messages

over

the

channel

to

the

target

queue

java.lang.String

RW

Operations

Table

29.

Home

Server

queue

operations

Operation

name

Operation

description

Parameter

delete

Deletes

this

queue

Asynchronous

Proxy

queue

This

queue

type

is

also

referred

to

as

asynchronous

remote

queue

elsewhere

in

MQe

documentation.

Attributes

Table

30.

Asynchronous

Proxy

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

300

MQe

Application

Programming

Table

30.

Asynchronous

Proxy

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Adapter

The

adapter

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

CurrentDepth

The

number

of

messages

currently

on

the

queue

java.lang.Integer

RO

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire

java.lang.Long

RW

DestinationQMgr

The

name

of

the

queue

manager

to

own

the

physical

queue

java.lang.String

RO

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxDepth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

a

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MessageStore

The

class

(or

alias)

determines

how

messages

on

the

queue

are

stored

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Path

The

path

locating

the

physical

storage

for

the

queue

java.lang.String

RO

Priority

The

default

priority

to

be

associated

with

messages

on

the

queue

java.lang.Byte

RW

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

Transporter

The

class

(or

alias)

that

flows

messages

over

the

channel

to

the

target

queue

java.lang.String

RW

Programming

reference

301

Operations

Table

31.

Asynchronous

Proxy

queue

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

queue

alias

removeAlias

Removes

an

alias

from

this

queue

alias

addAlias

Adds

an

array

of

aliases

to

this

queue

aliases

removeAlias

Removes

an

array

of

aliases

from

this

queue

aliases

delete

Deletes

this

queue

putMessage

Places

a

message

onto

the

queue

message

Operations

parameters

Table

32.

Asynchronous

Proxy

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

description

message

java.lang.String

The

text

body

of

the

message

to

be

put

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Synchronous

Proxy

queue

This

queue

type

is

also

referred

to

as

synchronous

remote

queue

elsewhere

in

MQe

documentation.

Attributes

Table

33.

Synchronous

Proxy

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

DestinationQMgr

The

name

of

the

queue

manager

to

own

the

physical

queue

java.lang.String

RO

302

MQe

Application

Programming

Table

33.

Synchronous

Proxy

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxMessageSize

The

maximum

size

of

a

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MQeClass

The

class

of

the

resource

java.lang.String

RO

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

Transporter

The

class

(or

alias)

that

flows

messages

over

the

channel

to

the

target

queue

java.lang.String

RW

Operations

Table

34.

Synchronous

Proxy

queue

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

queue

alias

removeAlias

Removes

an

alias

from

this

queue

alias

addAlias

Adds

an

array

of

aliases

to

this

queue

aliases

removeAlias

Removes

an

array

of

aliases

from

this

queue

aliases

delete

Deletes

this

queue

putMessage

Places

a

message

onto

the

queue

message

Operations

parameters

Table

35.

Synchronous

Proxy

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

description

message

java.lang.String

The

text

body

of

the

message

to

be

put

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Store

queue

These

two

queue

types

(store

and

forward)

require

some

explanation.

An

MQe

JMX

store

queue

MBean

maps

onto

an

MQe

queue

of

type

MQeStoreAndForwardQueue

but

with

the

functionality

of

that

queue

somewhat

curtailed

for

ease

of

use:-

v

An

MQeStoreAndForwardQueue

has

the

ability

to

store

messages

for

a

list

of

target

queue

managers

(DestinationQMgrs)

and

also

has

the

ability

to

forward

messages

to

one

specified

ForwardToQMgr.

v

However,

the

MQe

JMX

implementation

has

split

this

dual

messaging

functionality

into

two,

so

that

our

store

queues

retain

the

ability

to

store

messages

for

a

list

of

target

queue

managers,

but

do

not

have

a

ForwardToQMgr.

v

The

forwarding

functionality

of

the

MQeStoreAndForwardQueue

is

retained

in

our

forward

queue

MBean.

Programming

reference

303

Attributes

Table

36.

Store

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource.

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Adapter

The

adapter

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

CurrentDepth

The

number

of

messages

currently

on

the

queue

java.lang.Integer

RO

DestinationQMgrs

The

queue

manager

destinations

for

which

a

store

(or

forward)

queue

will

hold

messages

[Ljava.lang.String;

RW

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire

java.lang.Long

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxDepth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MessageStore

The

class

(or

alias)

determines

how

messages

on

the

queue

are

stored

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Path

The

path

locating

the

physical

storage

for

the

queue

java.lang.String

RO

Priority

The

default

priority

to

be

associated

with

messages

on

the

queue

java.lang.Byte

RW

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

304

MQe

Application

Programming

Table

36.

Store

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Transporter

The

class

(or

alias)

that

flows

messages

over

the

channel

to

the

target

queue

java.lang.String

RW

Operations

Table

37.

Store

queue

operations

Operation

name

Operation

description

Parameter

addDestinationQMgr

[1]

Adds

a

destinationQMgr

to

the

queues

DestinationQMgrs

List

DestinationQMgr

removeDestinationQMgr

[1]

Removes

a

destinationQMgr

from

the

queues

DestinationQMgrs

List

DestinationQMgr

addDestinationQMgrs

Adds

an

array

of

destinationQMgrs

to

the

queues

DestinationQMgrs

List

DestinationQMgrs

removeDestinationQMgrs

Removes

an

array

of

destinationQMgrs

from

the

queues

DestinationQMgrs

List

DestinationQMgrs

delete

Deletes

this

queue

Note:

1.

This

operation

is

provided

to

allow

compatibility

with

adapters

which

cannot

handle

array

parameters

to

operations.

Operations

parameters

Table

38.

Store

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

Description

DestinationQMgr

java.lang.String

Destination

queue

manager

name

to

be

added

or

removed

DestinationQMgrs

[Ljava.lang.String;

Destination

queue

manager

names

to

be

added

or

removed

Forward

queue

These

two

queue

types

(store

and

forward)

require

some

explanation.

An

MQe

JMX

store

queue

MBean

maps

onto

an

MQe

queue

of

type

MQeStoreAndForwardQueue

but

with

the

functionality

of

that

queue

somewhat

curtailed

for

ease

of

use:-

v

An

MQeStoreAndForwardQueue

has

the

ability

to

store

messages

for

a

list

of

target

queue

managers

(DestinationQMgrs)

and

also

has

the

ability

to

forward

messages

to

one

specified

ForwardToQMgr.

v

However,

the

MQe

JMX

implementation

has

split

this

dual

messaging

functionality

into

two,

so

that

our

store

queues

retain

the

ability

to

store

messages

for

a

list

of

target

queue

managers,

but

do

not

have

a

ForwardToQMgr.

v

The

forwarding

functionality

of

the

MQeStoreAndForwardQueue

is

retained

in

our

forward

queue

MBean.

Programming

reference

305

Attributes

Table

39.

Forward

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Adapter

The

adapter

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

AttributeRule

The

attribute

class

(or

alias)

associated

with

the

security

attributes

of

the

queue

java.lang.String

RW

Authenticator

The

authenticator

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Compressor

The

compressor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

Cryptor

The

cryptor

class

(or

alias)

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

CurrentDepth

The

number

of

messages

currently

on

the

queue

java.lang.Integer

RO

DestinationQMgrs

The

queue

manager

destinations

for

which

a

forward

(or

store)

queue

will

hold

messages

[Ljava.lang.String;

RW

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire

java.lang.Long

RW

ForwardToQMgr

The

name

of

the

next

queue

manager

that

will

receive

the

messages

for

a

forward

queue

java.lang.String

RO

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxDepth

The

maximum

number

of

messages

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

a

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MessageStore

The

class

(or

alias)

determines

how

messages

on

the

queue

are

stored

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Path

The

path

locating

the

physical

storage

for

the

queue

java.lang.String

RO

Priority

The

default

priority

to

be

associated

with

messages

on

the

queue

java.lang.Byte

RW

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

306

MQe

Application

Programming

Table

39.

Forward

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

TargetRegistry

The

registry

to

be

used

by

the

authenticator

java.lang.Byte

RW

Transporter

The

class

(or

alias)

that

flows

messages

over

the

channel

to

the

target

queue

java.lang.String

RW

Operations

Table

40.

Forward

queue

operations

Operation

name

Operation

description

Parameter

addDestinationQMgr

Adds

a

destinationQMgr

to

the

queues

DestinationQMgrs

List

DestinationQMgr

removeDestinationQMgr

Removes

a

destinationQMgr

from

the

queues

DestinationQMgrs

List

DestinationQMgr

addDestinationQMgrs

Adds

an

array

of

destinationQMgrs

to

the

queues

DestinationQMgrs

List

DestinationQMgrs

removeDestinationQMgrs

Removes

an

array

of

destinationQMgrs

from

the

queues

DestinationQMgrs

List

DestinationQMgrs

delete

Deletes

this

queue

Operations

parameters

Table

41.

Forward

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

Description

DestinationQMgr

java.lang.String

Destination

queue

manager

name

to

be

added

or

removed

DestinationQMgrs

[Ljava.lang.String;

Destination

queue

manager

names

to

be

added

or

removed

Communications

Listener

Attributes

Table

42.

Communications

Listener

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Running

A

Boolean

value

indicating

if

the

listener

is

running

java.lang.Boolean

RO

Adapter

The

class

(or

alias)

of

the

communications

protocol

adapter

java.lang.String

RO

ChannelTimeout

The

time

(in

milliseconds)

after

which

an

idle

incoming

connection

will

be

timed

out

java.lang.Long

RW

Programming

reference

307

Table

42.

Communications

Listener

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

CurrentChannels

The

number

of

channels

currently

open

on

the

communications

listener

java.lang.Integer

RO

MaxChannels

The

maximum

number

of

channels

allowed

for

the

communications

listener

java.lang.Integer

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MQeClass

The

class

of

the

resource

java.lang.String

RO

Port

The

IP

port

number

used

by

the

communications

listener

to

service

incoming

connection

requests

java.lang.String

RO

Operations

Table

43.

Communications

Listener

operations

Operation

name

Operation

description

Parameter

stop

Starts

this

listener

start

Stops

this

listener

delete

Deletes

this

listener

MQ/Alias

connection

v

MQ

connections

are

used

to

define

MQ

queue

managers.

The

only

parameter

needed

to

create

one

is

the

connection

definition

name.

v

Alias

connections

are

used

as

another

way

to

add

aliases

to

a

local

queue

manager.

The

only

parameter

that

is

needed

to

create

one

is

the

connection

definition

name.

Both

these

connections

may

also

be

known

as

no-op

connections.

Although

there

are

two

separate

MQeQueueManagerJmx

methods

for

creating

MQ

and

Alias

connections,

both

types

of

connection

share

a

domain

name:

com.ibm.WMQe_<OwningQMName>_MQConnections:name=<ConnectionName>.

This

is

because

they

are

identical

in

practice.

Attributes

Table

44.

MQ/Alias

Connection

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

308

MQe

Application

Programming

Operations

Table

45.

MQ/Alias

Connection

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

resource

alias

removeAlias

Removes

an

alias

from

this

resource

alias

addAlias

Adds

an

array

of

aliases

to

this

resource

aliases

removeAlias

Removes

an

array

of

aliases

from

this

resource

aliases

delete

Deletes

this

resource

Operations

parameters

Table

46.

MQ/Alias

connection

operations

parameters

Parameter

name

Parameter

type

Parameter

description

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Direct

connection

To

create

a

direct

connection,

the

parameters

adapter,

port

and

address

are

all

valid.

v

The

port

and

address

values

are

required.

v

The

adapter

is

assigned

a

default

value

according

to

the

type

of

direct

connection

created.

There

are

several

types

of

connections

which

fall

under

this

category

and

which

share

the

same

attributes

and

operations.

These

are

currently:

v

Udpip

connection,

TcpipLength

connection,

TcpipHttp

connection,

TcpipHistory

connection.

v

An

instance

of

each

type

of

connection

and

its

corresponding

MBean

is

created

using

a

type-specific

API

in

the

QueueManager

MBean

(for

example

createUdpipConnection()).

Once

created,

the

type

of

connection

can

be

distinguished

by

the

value

of

the

Adapter

attribute.

For

the

sake

of

convenience,

these

connection

types

are

grouped

together

in

this

section

under

the

heading

DirectConnection.

Attributes

Table

47.

Direct

Connection

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

LocalQMgr

The

name

of

the

queu

manager

to

own

the

resource

java.lang.String

RO

Programming

reference

309

Table

47.

Direct

Connection

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Adapter

The

class

(or

alias)

of

the

communications

protocol

adapter

java.lang.String

RW

Address

The

numeric

or

string

IP

address

of

the

machine

hosting

the

remote

queue

manager

java.lang.String

RW

Channel

The

channel

class

(or

alias)

to

be

used

in

the

connection

java.lang.String

RW

Persist

[1]

Whether

the

adapter

should

be

persistent

or

not

java.lang.Boolean

RW

Port

The

IP

port

number

used

by

the

remote

queue

manager

to

service

incoming

requests

java.lang.String

RW

Servlet

Servlet

options

java.lang.String

RW

Note:

1.

To

avoid

confusion

about

how

the

attribute

Persist

relates

to

the

options

v

MQeCommunicationsAdapter.MQe_Adapter_PERSIST

v

MQeCommunicationsAdapter.MQe_Adapter_NOPERSIST

use

the

following

equivalences:

v

Setting

Persist

to

true

is

equivalent

to

setting

MQeCommunicationsAdapter.MQe_Adapter_PERSIST

to

true.

v

Setting

Persist

to

false

is

equivalent

to

setting

MQeCommunicationsAdapter.MQe_Adapter_NOPERSIST

to

true.

Operations

Table

48.

Direct

Connection

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

resource

alias

removeAlias

Removes

an

alias

from

this

resource

alias

addAlias

Adds

an

array

of

aliases

to

this

resource

aliases

removeAlias

Removes

an

array

of

aliases

from

this

resource

aliases

delete

Deletes

this

resource

Operations

parameters

Table

49.

Direct

connection

operations

parameters

Parameter

name

Parameter

type

Parameter

description

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

Indirect

connection

These

are

connections

that

use

an

intermediate

queue

manager

to

get

to

the

final

destination

queue

manger.

310

MQe

Application

Programming

Indirect

connections

require

that

the

viaQMName

parameter

is

set

to

the

name

of

the

intermediate

queue

manager.

The

only

parameters

for

creating

a

connection

of

this

type

are

the

connectionName

and

the

viaQMName.

Attributes

Table

50.

Indirect

Connection

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource.

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource.

java.lang.String

RW

Aliases

Alternative

names

for

the

resource.

[Ljava.lang.String;

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

ViaQMName

The

name

of

the

queue

manager

to

be

used

as

the

ViaQM

java.lang.String

RW

Operations

Table

51.

Indirect

Connection

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

resource

alias

removeAlias

Removes

an

alias

from

this

resource

alias

addAlias

Adds

an

array

of

aliases

to

this

resource

aliases

removeAlias

Removes

an

array

of

aliases

from

this

resource

aliases

delete

Deletes

this

resource

Operations

parameters

Table

52.

Indorect

connection

operations

parameters

Parameter

name

Parameter

type

Parameter

description

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

MQ

Bridge

queue

Attributes

Table

53.

MQ

Bridge

queue

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

Active

A

Boolean

value

indicating

whether

the

queue

is

active

or

not

java.lang.Boolean

RO

Programming

reference

311

Table

53.

MQ

Bridge

queue

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

Aliases

Alternative

names

for

the

resource

[Ljava.lang.String;

RW

BridgeName

The

bridge

object

that

handles

the

target

MQ

queue

java.lang.String

RW

ClientConnection

The

name

of

the

client

connection

associated

with

the

queue

java.lang.String

RW

CreationDate

The

time

(in

milliseconds

since

midnight

Jan1,

1970

GMT)

the

queue

object

was

created

java.lang.Long

RO

Expiry

The

time

(in

milliseconds)

after

which

messages

places

on

the

queue

expire

java.lang.Long

RW

DestinationQMgr

The

name

of

the

queue

manager

to

own

the

physical

queue

java.lang.String

RO

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MaxIdleTime

The

maximum

time

(in

seconds)

that

the

MQ

bridge

queue

can

hold

onto

an

idle

connection

before

it

is

returned

to

the

connection

pool

java.lang.Integer

RW

MaxMessageSize

The

maximum

size

of

a

message

that

may

be

placed

on

the

queue

java.lang.Integer

RW

MQQueueManagerProxy

The

target

MQ

QueueManager

associated

with

the

queue

java.lang.String

RW

MQRemoteQueueName

The

actual

queue

name

of

the

remote

MQ

queue

java.lang.String

RW

MQeClass

The

class

of

the

resource

java.lang.String

RO

Rule

The

rule

class

(or

alias)

to

be

used

by

the

queue

java.lang.String

RW

Transformer

The

transformer

class

(or

alias)

converting

the

message

from

MQe

to

MQ

format

java.lang.String

RW

Operations

Table

54.

MQ

Bridge

queue

operations

Operation

name

Operation

description

Parameter

addAlias

Adds

an

alias

to

this

queue

alias

removeAlias

Removes

an

alias

from

this

queue

alias

312

MQe

Application

Programming

Table

54.

MQ

Bridge

queue

operations

(continued)

Operation

name

Operation

description

Parameter

addAlias

Adds

an

array

of

aliases

to

this

resource

aliases

removeAlias

Removes

an

array

of

aliases

from

this

resource

aliases

delete

Deletes

this

queue

putMessage

Places

a

message

onto

the

queue

message

Operations

parameters

Table

55.

MQ

Bridge

queue

operations

parameters

Parameter

name

Parameter

type

Parameter

description

message

java.lang.String

The

text

body

of

the

message

to

be

put

alias

java.lang.String

Name

of

the

resource

alias

aliases

[Ljava.lang.String;

Names

of

the

resource

aliases

MQ

Bridge

A

bridge

resource

is

part

of

a

hierarchy

which

takes

the

following

form:

v

an

MQ

Bridge

instance

can

have

one

or

more

MQ

QueueManager

Proxy

children.

–

these

can

have

MQ

Client

Connection

children

-

which

can

have

MQ

Listener

children

Note:

Some

bridge

resources,

when

their

attributes

are

changed,

will

only

reflect

these

changes

when

the

resource

has

been

stopped:

for

example,

this

is

the

case

with

the

SyncQName

attribute

of

the

MQ

Client

Connection.

For

more

information

on

this

subject

see:

v

Java

API

Programming

Reference

v

C

API

Programming

Reference

Attributes

Table

56.

MQ

Bridge

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

AdministeredObjectClass

The

class

name

(or

alias)

used

to

realize

the

resource

java.lang.String

RO

Children

The

list

of

child

objects

[Ljava.lang.String;

RO

DefaultTransformer

The

default

transformer

class

(or

alias)

used

for

message

conversion

java.lang.String

RW

HeartBeatInterval

The

heartbeat

pulse

interval

in

minutes

java.lang.Integer

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

Programming

reference

313

Table

56.

MQ

Bridge

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

RunState

An

integer

value

representing

the

running

state

of

the

resource

java.lang.Integer

RO

StartupRuleClass

The

class

name

(or

alias)

of

the

rule

used

to

start

the

resource

java.lang.String

RW

Operations

Table

57.

MQ

Bridge

operations

Operation

name

Operation

description

Parameter

start

Starts

this

MQBridge

affectChildren

stop

Stops

this

MQBridge

affectChildren

delete

Deletes

this

MQBridge

affectChildren

createMQQMgrProxy

Creates

a

new

MQ

QueueManager

proxy

proxyName

Operations

parameters

Table

58.

MQ

Bridge

operations

parameters

Parameter

name

Parameter

type

Parameter

description

affectChildren

java.lang.Boolean

A

Boolean

value

indicating

whether

actions

on

this

resource

should

affect

child

objects.

[1]

proxyName

java.lang.String

Name

of

the

MQ

queue

manager

proxy

Note:

1.

Some

adaptors

may

have

defaults.

These

defaults

may

differ

from

the

WMQe

defaults.

For

example

the

Sun

RI

HtmlAdaptorServer

defaults

all

boolean

values

to

true.

MQ

Queue

Manager

Proxy

Attributes

Table

59.

MQ

Queue

Manager

Proxy

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

AdministeredObjectClass

The

class

name

(or

alias)

used

to

realize

the

resource

java.lang.String

RO

BridgeName

Identifies

the

name

of

the

bridge

java.lang.String

RO

Children

The

list

of

child

objects

[Ljava.lang.String;

RO

HostName

The

IP

address

of

the

target

MQ

queue

manager

java.lang.String

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

314

MQe

Application

Programming

Table

59.

MQ

Queue

Manager

Proxy

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

RunState

An

integer

value

representing

the

running

state

of

the

resource

java.lang.Integer

RO

StartupRuleClass

The

class

name

(or

alias)

of

the

rule

used

to

start

the

resource

java.lang.String

RW

Operations

Table

60.

MQ

Queue

Manager

Proxy

operations

Operation

name

Operation

description

Parameter

start

Starts

this

MQ

Queue

Manager

Proxy

affectChildren

stop

Stops

this

MQ

Queue

Manager

Proxy

affectChildren

delete

Deletes

this

MQ

Queue

Manager

Proxy

affectChildren

createClientConnection

Creates

a

new

MQ

Client

Connection

clientConnectionName

Operations

parameters

Table

61.

MQ

Queue

Manager

Proxy

operations

parameters

Parameter

name

Parameter

type

Parameter

description

affectChildren

java.lang.Boolean

A

Boolean

value

indicating

whether

actions

on

this

resource

should

affect

child

objects

clientConnectionName

java.lang.String

Name

of

the

MQ

client

connection

MQ

Client

Connection

Attributes

Table

62.

MQ

Client

Connection

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

AdapterClass

The

bridge

adapter

class

(or

alias)

used

to

move

messages

from

WMQe

to

the

target

MQ

queue

java.lang.String

RW

AdministeredObjectClass

The

class

name

(or

alias)

used

to

realize

the

resource

java.lang.String

RO

BridgeName

Identifies

the

name

of

the

bridge

java.lang.String

RO

CCSID

The

CCSID

property

used

by

MQ

java.lang.Integer

RW

Children

The

list

of

child

objects

[Ljava.lang.String;

RO

Programming

reference

315

Table

62.

MQ

Client

Connection

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MQPassword

The

password

used

with

the

MQUserID

java.lang.String

RW

MQQMgrProxyName

Identifies

the

name

of

the

MQ

Proxy

java.lang.String

RO

MQUserID

The

user

ID

used

by

MQ

java.lang.String

RW

MaxConnectionIdleTime

The

time

(in

minutes)

after

which

an

idle

connection

to

MQ

is

discarded

and

the

resources

returned

to

the

pool

java.lang.Integer

RW

Port

The

IP

port

number

used

by

the

target

MQ

queue

manager

java.lang.String

RW

ReceiveExit

The

receive

exit

specified

at

the

remote

end

of

the

MQ

client

channel

java.lang.String

RW

RunState

An

integer

value

representing

the

running

state

of

the

resource

java.lang.Integer

RO

SecurityExit

The

security

exit

specified

at

the

remote

end

of

the

MQ

client

channel

java.lang.String

RW

SendExit

The

send

exit

specified

at

the

remote

end

of

the

MQ

client

channel

java.lang.String

RW

StartupRuleClass

The

class

(or

alias)

of

the

rule

used

to

start

the

resource

java.lang.String

RW

SyncQName

The

name

of

the

synchronization

queue

on

the

MQ

queue

manager

used

by

the

MQBridge

java.lang.String

RW

SyncQPurgeInterval

The

time

(in

minutes)

between

successive

purges

of

the

sync

queue

java.lang.Integer

RW

SyncQPurgerRulesClass

The

rule

class

(or

alias)

used

when

a

message

on

the

sync

queue

indicates

a

failure

of

MQ

to

confim

a

message

java.lang.String

RW

Operations

Table

63.

MQ

Client

Connection

operations

Operation

name

Operation

description

Parameter

start

Starts

this

Client

Connection

affectChildren

stop

Stops

this

Client

Connection

affectChildren

316

MQe

Application

Programming

Table

63.

MQ

Client

Connection

operations

(continued)

Operation

name

Operation

description

Parameter

delete

Deletes

this

Client

Connection

affectChildren

createListener

Creates

a

new

MQ

listener

listenerName

Operations

parameters

Parameter

name

Parameter

type

Parameter

description

affectChildren

java.lang.Boolean

A

Boolean

value

indicating

whether

actions

on

this

resource

should

affect

child

objects

listenerName

java.lang.String

Name

of

the

MQ

listener

MQ

Listener

Attributes

Table

64.

MQ

Listener

attributes

Attribute

name

Attribute

description

Attribute

type

Read/Write

Name

The

name

of

the

resource

java.lang.String

RO

Description

An

arbitrary

string

describing

the

resource

java.lang.String

RW

AdministeredObjectClass

The

class

name

(or

alias)

used

to

realize

the

resource

java.lang.String

RO

BridgeName

Identifies

the

name

of

the

bridge

java.lang.String

RO

ClientConnectionName

Identifies

the

name

of

the

Client

Connection

java.lang.String

RO

DeadLetterQName

The

MQ

queue

used

to

hold

messages

that

cannot

be

delivered

from

MQ

to

WMQe

java.lang.String

RW

FlowsPerCommit

The

number

of

messages

flowed

after

which

the

MQ

sync

queue

(if

used)

is

cleared

java.lang.Integer

RW

ListenerStateStoreAdapter

The

specification

of

permanent

storage

used

to

hold

state

information

as

messages

are

moved

from

MQ

to

WMQe

java.lang.String

RW

LocalQMgr

The

name

of

the

queue

manager

to

own

the

resource

java.lang.String

RO

MQQMgrProxyName

Identifies

the

name

of

the

MQ

Proxy

java.lang.String

RO

Programming

reference

317

Table

64.

MQ

Listener

attributes

(continued)

Attribute

name

Attribute

description

Attribute

type

Read/Write

RunState

An

integer

value

representing

the

running

state

of

the

resource

java.lang.Integer

RO

StartupRuleClass

The

class

(or

alias)

of

the

rule

used

to

start

the

resource

java.lang.String

RW

TransformerClass

The

class

(or

alias)

of

the

actual

transformer

used

by

the

MQBridge

java.lang.String

RW

UndeliveredMessageRuleClass

The

rule

class

(or

alias)

determining

the

action

to

be

taken

when

a

message

cannot

be

delivered

from

MQ

to

WMQe

java.lang.String

RW

Operations

Table

65.

MQ

Listener

operations

Operation

name

Operation

description

Parameter

start

Starts

this

MQ

Listener

stop

Stops

this

MQ

Listener

delete

Deletes

this

MQ

Listener

318

MQe

Application

Programming

Glossary

This

glossary

describes

terms

used

in

this

book,

and

words

used

with

other

than

their

everyday

meaning.

In

some

cases,

a

definition

might

not

be

the

only

one

applicable

to

a

term,

but

it

gives

the

particular

sense

in

which

the

word

is

used

in

this

book.

If

you

do

not

find

the

term

you

are

looking

for,

try

a

softcopy

search,

or

see

the

hardcopy

index,

or

see

the

IBM

Dictionary

of

Computing,

New

York:.

McGraw-Hill,

1994.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

application

programming

interface

(API)

An

application

programming

interface

consists

of

the

functions

and

variables

that

programmers

are

allowed

to

use

in

their

applications.

asynchronous

messaging

A

method

of

communication

between

programs

in

which

programs

place

messages

on

message

queues.

With

asynchronous

messaging,

the

sending

program

proceeds

with

its

own

processing

without

waiting

for

a

reply

to

its

message.

Contrast

with

synchronous

messaging.

authenticator

A

program

that

verifies

the

senders

and

receivers

of

messages.

B

bridge

A

component

that

can

be

added

to

an

MQe

queue

manager

to

allow

it

to

communicate

with

MQ.

See

MQe

queue

managers.

C

channel

See

dynamic

channel

and

MQI

channel.

channel

manager

an

MQe

object

that

supports

logical

multiple

concurrent

communication

pipes

between

end

points.

class

An

encapsulated

collection

of

data

and

methods

to

operate

on

the

data.

A

class

may

be

instantiated

to

produce

an

object

that

is

an

instance

of

the

class.

client

In

MQ,

a

client

is

a

run-time

component

that

allows

local

user

applications

to

send

messages

to

a

server.

compressor

A

program

that

compacts

a

message

to

reduce

the

volume

of

data

to

be

transmitted.

connection

Links

MQe

devices

and

transfers

synchronous

and

asynchronous

messages

and

responses

in

a

bidirectional

manner.

©

Copyright

IBM

Corp.

2000,

2004

319

cryptor

A

program

that

encrypts

a

message

to

provide

security

during

transmission.

D

device

platform

A

small

computer

that

is

capable

of

running

MQe

only

as

a

client,

that

is,

with

a

device

queue

manager

only.

device

queue

manager

See

MQe

queue

managers.

E

encapsulation

An

object

oriented

programming

technique

that

makes

an

object’s

data

private

or

protected

and

allows

programmers

to

access

and

manipulate

the

data

only

through

method

calls.

G

gateway

A

computer

of

any

size

running

an

MQe

gateway

queue

manager,

which

includes

the

MQ

bridge

function.

See

MQe

queue

managers.

gateway

queue

manager

A

queue

manager

with

a

listener

and

a

bridge.

See

MQe

queue

managers.

H

Hypertext

Markup

Language

(HTML)

A

language

used

to

define

information

that

is

to

be

displayed

on

the

World

Wide

Web.

I

instance

An

object.

When

a

class

is

instantiated

to

produce

an

object,

the

object

is

an

instance

of

the

class.

interface

A

class

that

contains

only

abstract

methods

and

no

instance

variables.

An

interface

provides

a

common

set

of

methods

that

can

be

implemented

by

subclasses

of

a

number

of

different

classes.

internet

A

cooperative

public

network

of

shared

information.

Physically,

the

Internet

uses

a

subset

of

the

total

resources

of

all

the

currently

existing

public

telecommunication

networks.

Technically,

what

distinguishes

the

Internet

as

a

cooperative

public

network

is

its

use

of

a

set

of

protocols

called

TCP/IP

(Transport

Control

Protocol/Internet

Protocol).

J

Java

Development

Kit

(JDK)

A

package

of

software

distributed

by

Sun

Microsystems

for

Java

developers.

It

includes

the

Java

interpreter,

Java

classes

and

Java

development

tools:

compiler,

debugger,

disassembler,

appletviewer,

stub

file

generator,

and

documentation

generator.

320

MQe

Application

Programming

Java

Naming

and

Directory

Service

(JNDI)

An

API

specified

in

the

Java

programming

language.

It

provides

naming

and

directory

functions

to

applications

written

in

the

Java

programming

language.

L

Lightweight

Directory

Access

Protocol

(LDAP)

A

client/server

protocol

for

accessing

a

directory

service.

M

message

In

message

queuing

applications,

a

communication

sent

between

programs.

message

queue

See

queue.

message

queuing

A

programming

technique

in

which

each

program

within

an

application

communicates

with

the

other

programs

by

putting

messages

on

queues.

method

The

object

oriented

programming

term

for

a

function

or

procedure.

MQ

bridge

A

computer

with

a

gateway

queue

manager

that

can

communicate

with

MQ.

See

MQe

queue

managers.

MQ

and

MQ

family

Refers

to

WebSphere

MQ,

which

includes

these

products:

v

WebSphere

MQ

Workflow

simplifies

integration

across

the

whole

enterprise

by

automating

business

processes

involving

people

and

applications.

v

WebSphere

MQ

Integrator

is

message-brokering

software

that

provides

real-time,

intelligent,

rules-based

message

routing,

and

content

transformation

and

formatting.

v

WebSphere

MQ

Messaging

provides

any-to-any

connectivity

from

desktop

to

mainframe,

through

business

quality

messaging,

with

over

35

platforms

supported.

MQ

Messaging

Refers

to

the

following

WebSphere

MQ

messaging

product

groups:

v

Distributed

messaging:

MQ

for

Windows

NT

and

Windows

2000,

AIX,

iSeries®,

HP-UX,

Solaris,

and

other

platforms

v

Host

messaging:

MQ

for

z/OS®

v

Pervasive

messaging:

MQe

MQe

Refers

to

WebSphere

MQ

Everyplace,

the

MQ

pervasive

messaging

product

group

.

MQI

channel

Connects

an

MQ

client

to

a

queue

manager

on

a

server

system

and

transfers

MQI

calls

and

responses

in

a

bidirectional

manner.

O

object

(1)

In

Java,

an

object

is

an

instance

of

a

class.

A

class

models

a

group

of

things;

an

object

models

a

particular

member

of

that

group.

(2)

In

MQ,

an

object

is

a

queue

manager,

a

queue,

or

a

channel.

Glossary

321

P

package

A

package

in

Java

is

a

way

of

giving

a

piece

of

Java

code

access

to

a

specific

set

of

classes.

Java

code

that

is

part

of

a

particular

package

has

access

to

all

the

classes

in

the

package

and

to

all

non-private

methods

and

fields

in

the

classes.

personal

digital

assistant

(PDA)

A

pocket

sized

personal

computer.

private

A

private

field

is

not

visible

outside

its

own

class.

protected

A

protected

field

is

visible

only

within

its

own

class,

within

a

subclass,

or

within

packages

of

which

the

class

is

a

part.

public

A

public

class

or

interface

is

visible

everywhere.

A

public

method

or

variable

is

visible

everywhere

that

its

class

is

visible.

Q

queue

A

queue

is

an

MQ

object.

Message

queueing

applications

can

put

messages

on,

and

get

messages

from,

a

queue.

queue

manager

A

queue

manager

is

a

system

program

that

provides

message

queuing

services

to

applications.

queue

queue

manager

This

term

is

used

in

relation

to

a

remote

queue

definition.

It

describes

the

remote

queue

manager

that

owns

the

local

queue

that

is

the

target

of

a

remote

queue

definition.

See

more

at

Configuring

remote

queues

-

Introduction.

device

queue

manager

On

MQe:-

A

queue

manager

with

no

listener

component,

and

no

bridge

component.

It

therefore

can

only

send

messages,

it

cannot

receive

them.

server

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them.

gateway

queue

manager

On

MQe:-

A

queue

manager

that

can

have

a

listener

and

a

bridge

added.

With

the

listener

it

can

receive

messages

as

well

as

send

them,

and

with

the

bridge

it

can

communicate

with

MQ.

R

registry

Stores

the

queue

manager

configuration

information.

S

server

1.

An

MQe

server

is

a

device

that

has

an

MQe

channel

manager

configured,

and

responds

to

requests

for

information

in

a

client-server

setup.

2.

An

MQ

server

is

a

queue

manager

that

provides

message

queuing

services

to

client

applications

running

on

a

remote

workstation.

322

MQe

Application

Programming

3.

More

generally,

a

server

is

a

program

that

responds

to

requests

for

information

in

the

particular

two-program

information-flow

model

of

client-server.

4.

The

computer

on

which

a

server

program

runs.

server

queue

manager

A

queue

manager

with

a

listener

that

can

therefore

receive

messages

as

well

as

send

them.

See

MQe

queue

managers.

server

platform

A

computer

of

any

size

that

is

capable

of

running

MQe

as

a

server

or

client.

servlet

A

Java

program

which

is

designed

to

run

only

on

a

Web

server.

subclass

A

subclass

is

a

class

that

extends

another.

The

subclass

inherits

the

public

and

protected

methods

and

variables

of

its

superclass.

superclass

A

superclass

is

a

class

that

is

extended

by

some

other

class.

The

superclass’s

public

and

protected

methods

and

variables

are

available

to

the

subclass.

synchronous

messaging

A

method

of

communicating

between

programs

in

which

programs

place

messages

on

message

queues.

With

synchronous

messaging,

the

sending

program

waits

for

a

reply

to

its

message

before

resuming

its

own

processing.

Contrast

with

asynchronous

messaging.

T

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP)

A

set

of

communication

protocols

that

support

peer-to-peer

connectivity

functions

for

both

local

and

wide

area

networks.

transformer

A

piece

of

code

that

performs

data

or

message

reformatting.

W

Web

See

World

Wide

Web.

Web

browser

A

program

that

formats

and

displays

information

that

is

distributed

on

the

World

Wide

Web.

World

Wide

Web

(Web)

The

World

Wide

Web

is

an

Internet

service,

based

on

a

common

set

of

protocols,

which

allows

a

particularly

configured

server

computer

to

distribute

documents

across

the

Internet

in

a

standard

way.

Glossary

323

324

MQe

Application

Programming

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

United

Kingdom

Laboratories,

Mail

Point

151,

©

Copyright

IBM

Corp.

2000,

2004

325

Hursley

Park,

Winchester,

Hampshire

England

SO21

2JN

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Trademarks

The

following

terms

are

trademarks

of

International

Business

machines

Corporation

in

the

United

States,

or

other

countries,

or

both.

AIX

Everyplace

IBM

iSeries

MQSeries

WebSphere

z/OS

zSeries

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States

and/or

other

countries.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States

and/or

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

326

MQe

Application

Programming

����

Printed

in

USA

	Contents
	About this topic collection
	Developing a basic application
	Introduction to the MQe development kit
	Setting up your development environment
	Java development
	J2ME environment

	C development
	Using embedded Visual C++
	Threading
	Calling conventions
	Handles and items
	MQe memory functions
	MQeString

	Walkthrough: creating a basic application
	1. Create a queue manager (QM1)
	2. Start the queue manager (QM1)
	3. Create a local queue (Q1)
	4. Create a connection definition
	5. Create a remote queue definition
	6. Create a listener (L1)
	7. Start listener (L1)
	8. Create a second queue manager (QM2)
	9. Start QM2
	10. Create a local queue (on QM2) called Q2
	11. Create a connection definition (on QM2)
	12. Create a remote queue definition (on QM2)
	13. Create a listener (on QM2) called L2
	14. Start the listener L2 (on QM2)
	15. Send (PUT) a message from QM1 to QM2
	16. Receive (GET) the message on QM2
	17. Displaying details of MQe objects

	An example MQe application (HelloWorld)
	Java "HelloWorld"
	Designing the Java application
	Developing the Java application
	Overview of examples.helloworld.run
	Start the queue manager
	Create a message and put to a local queue
	Get message from a local queue
	Stopping and deleting the queue manager

	Running the Java application

	C "HelloWorld"
	Designing the C application
	Developing the C application
	Overview of HelloWorld_Runtime.c
	Start the queue manager
	Create a message
	Put message to a local queue
	Get message from a local queue
	Shutdown
	Compiling

	Deploying the C application
	Running the C application

	Using the MQe development and administration tools
	Using WebSphere Studio Device Developer (WSDD)
	Developing applications for Palm
	Developing applications for PocketPC
	Debugging applications
	Runnable classes
	MIDlets
	Cleaning up after applications
	Constraints of SmartLinker
	Further information

	Designing your real application
	Messaging
	What are MQe messages?
	Message properties
	Symbolic names
	Examples

	Message filters
	Message expiry
	Checking for expired messages
	Assurance of expiry

	MQeFields
	Storage and retrieval of values in MQeFields
	Embedding MQeFields items

	Queues
	What are MQe queues?
	Queue names
	Queue properties
	Queue types
	Local queue
	Remote queue
	Store-and-forward queue
	Dead-letter queue
	Administration queue
	Home-server queue
	MQ bridge queue

	Queue persistent storage
	MQe connection definitions
	Using queue aliases
	Examples of queue aliasing
	Merging applications
	Upgrading applications
	Using different transfer modes to a single queue

	Queue manager operations
	What is an MQe queue manager
	The queue manager life-cycle
	Creating queue managers
	Queue manager names
	Creating a queue manager - step by step
	Create and activate an instance of MQeQueueManagerConfigure
	Set queue manager properties
	Create definitions for the default queues
	Close the MQeQueueManagerConfigure instance

	Persistent configuration data
	Creating simple queue managers
	Creating a simple queue manager in Java
	Creating a simple queue manager in C

	Starting queue managers
	Starting queue managers in Java
	Starting a simple queue manager in Java

	Starting queue managers in C
	Starting a simple queue manager in C

	Queue manager parameters
	Registry parameters for a queue manager
	Registry type
	Client queue managers
	Example - starting a client queue manager
	Example - MQePrivateClient

	Server queue managers
	Example - MQeServer
	Example - MQePrivateServer

	Environment relationship
	Java code
	C code

	Stopping queue managers
	Stopping a queue manager in Java
	closeQuiesce
	closeImmediate

	Stopping a queue manager in C

	Deleting queue managers
	Java
	1. Delete any definitions
	2. Create and activate an instance of MQeQueueManagerConfigure
	3. Delete the standard queue and queue manager definitions
	4. Close the MQeQueueManagerConfigure instance
	C

	Messaging lifecycle
	Message states
	Message events
	Message index fields

	Messaging operations
	Put
	Get
	Delete
	Browse
	confirmPut
	confirmGet
	Listen
	Wait

	Queue ordering
	Reading messages on a queue
	Java
	C
	Browse and Lock
	Example - Java
	Example - C

	Message listeners
	Message polling
	Trigger transmission
	Trigger transmission rules

	Servlet
	Example - configuring a connection on a servlet
	Example - configuring a connection on a servlet using aliases
	Differences between server and servlet startup
	Example - starting a servlet
	Example - handling incoming requests
	Running multiple servlets on a web server

	Message delivery
	Asynchronous message delivery
	Synchronous message delivery
	Assured and non-assured message delivery
	Assured message delivery
	Non-assured message delivery

	Synchronous assured message delivery
	Put message - assured put
	Example (Java) - assured put
	Example (C) - assured put
	Exception handling - put message
	Example - Java
	Example - C

	Get message - assured get
	Example (Java) - assured get
	Example (C) - assured get
	Undo command
	Undo command example - Java
	Undo command example - C

	Network topologies and message resolution
	Overview
	Introduction
	Local queue resolution
	Local queue alias
	Queue manager alias

	Remote queue resolution
	Aliases on remote queues
	Parallel routes
	Chaining remote queue references

	Pushing store and forward queues
	S&F queues and remote queue references
	Chaining S&F queues

	Home server queues
	Via connections
	Rerouting with queue manager aliases
	MQe-MQ bridge message resolution
	Pulling messages from MQ
	Single pull route
	Multiple pull route

	Pushing messages to MQ
	Connecting a client to MQ via a bridge
	Pushing messages to MQ with a via connection

	Security considerations
	Resolution rules
	Rule 1: Resolve queue manager aliases
	Queue resolution
	'Exact' match
	Queue Alias Match
	S&F queue
	Queue Discovery
	Failure
	Push across network
	Normal
	Via
	Home server pulling

	Using aliases
	Using queue aliases
	Merging applications
	Upgrading applications
	Using different transfer modes to a single queue

	Using queue manager aliases
	Addressing a queue manager with several different names
	Different routings from one queue manager to another
	Aliasing on the sending side
	Virtual queue manager on the receiving side

	Using adapters
	Storage adapters
	Communications adapters
	How to write adapters
	An example communications adapter
	An example message store adapter
	The WebSphere Everyplace Suite (WES) communications adapter
	The WebSphere Everyplace Suite (WES) adapter files
	Using the WebSphere Everyplace Suite (WES) adapter
	General operation
	Using the authentication dialog example
	Using the application example

	Using rules
	Queue manager rules
	Loading and activating queue manager rules
	Java example queue manager rule
	C example queue manager rule

	Using queue manager rules
	Example put message rule
	Example get message rule
	Example remove queue rule

	Transmission rules
	Trigger transmission rule example
	Transmit rule
	Transmit rule - Java example 1
	Transmit rule - C example 1

	A more complex transmit rule example
	Transmit rule - Java example 2
	Transmit rule - C example 2

	Activating synchronous remote queue definitions
	Queue rules
	Using queue rules
	Queue rules - Java example 1
	Queue rules - C example 1
	Queue rules - Java example 2
	Queue rules - C example 2

	Java Message Service (JMS)
	Using JMS with MQe
	Obtaining jar files
	Testing the JMS class path
	Running other MQe JMS example programs

	Writing JMS programs
	The JMS model
	Building a connection
	Using the factory to create a connection
	Starting the connection
	Obtaining a session
	Sending a message
	Message types
	Receiving a message
	Handling errors
	Exception listener
	JMS messages
	Message selectors

	Restrictions in this version of MQe
	Using Java Naming and Directory Interface (JNDI)
	Storing and retrieving objects with JNDI
	Using the sample programs with JNDI

	Mapping JMS messages to MQe messages
	Naming MQeMsgObject fields
	MQe JMS information
	JMS header files
	JMS properties
	JMS message body

	MQe JMS classes

	Security
	Levels of security
	Local security
	Local security usage scenario
	Secure feature choices
	Selection criteria

	Examples - Java
	Examples - C

	Message level security
	Message-level security usage scenario
	Secure feature choices
	Selection criteria

	Examples - using MAttribute for Java
	Examples - using MAttribute for C
	Examples - using MTrustAttribute for Java
	Non-repudiation
	Example - saving a copy of an encrypted message

	Queue-based security
	Security properties
	Effects of queue attributes
	Configuring queue-based security
	Writing authenticators
	Writing authenticators in Java
	Writing authenticators in C

	Queue manager based security
	Configuring queue manager security
	Setting up the queue manager
	Setting up a private registry
	Security configuration example

	Channel level security
	Channel attribute rules

	Certificate management
	Examining certificates
	Renewing certificates

	Security services
	Private registry service
	Private registries
	Private registry usage guide
	Private registry usage scenario
	Private registry and authenticatable entity
	Authenticatable entity credentials
	Auto-registration

	Public registry service
	Public registry usage scenario
	Secure feature choices
	Selection criteria
	Example - public registry

	Mini-certificate issuance service
	Renewing mini-certificates
	Obtaining new credentials (private and public keys)
	Listing mini-certificates

	Performance
	Errors and error handling
	Error handling in Java
	Error handling in C
	Code structure
	Exception block
	Useful macros

	Java programming samples
	Adapters (examples.adapters)
	Command line administration (examples.administration.commandline)
	GUI administration (examples.administration.console)
	Simple administration (examples.administration.simple)
	Interaction with a queue manager (examples.application)
	Security (examples.attributes)
	Adding a small GUI to an application (examples.awt)
	Managing mini-certificates (examples.certificates)
	Logging events (examples.eventlog)
	Creating and deleting queue managers (examples.install)
	Extending the MQ bridge (examples.mqbridge.awt)
	Administering objects for an MQ bridge (examples.mqbridge.administration.commandline)
	Testing communication between MQ and MQe (examples.mqbridge.application.GetFromMQ)
	MQe interface (examples.mqeexampleapp)
	JNI implementation (examples.nativecode)
	Running a QM as a client, server, or servlet (examples.queuemanager)
	Rules classes (examples.rules)
	Trace handling (examples.trace)

	Deploying your application
	Packaging and deployment
	Java deployment
	Supplied jar files
	Optimizing footprint
	JMS requirements
	MQe classes for Java requirements
	Using WSDD smart linker
	J2ME Midp specifics
	4690 specifics
	Packaging
	Deployment to devices

	C deployment
	Supplied DLLs

	Open Services Gateway initiative (OSGi)
	MQe example bundle contents
	Using MQe within OSGi
	Running the example bundles
	Server application (MQeServerBundle.jar)
	Client application (MQeClientBundle.jar)
	Running the example

	Providing user-defined rules and dynamic class loading

	Problem solving
	Problem determination
	Common problems
	Tracing and logging
	Tracepoints generated from MQe
	Tracing and logging with Java
	Generating trace information (Java)
	Capturing trace information (Java)
	Writing your own trace handler (Java)

	Tracing and logging with C
	Trace architecture (C)
	Configuring trace (C)

	MQe Diagnostic tool
	Windows diagnostics
	Unix diagnostics
	Other systems diagnostics

	Information required by IBM support

	Programming reference
	JMX Attributes and operations
	Admin MBean
	Attributes
	Operations

	Queue manager
	Attributes
	Operations
	Operations parameters

	Remote queue manager
	Attributes
	Operations
	Operations parameters

	Admin queue
	Attributes
	Operations
	Operations parameters

	Application queue
	Attributes
	Operations
	Operations parameters

	Home Server queue
	Attributes
	Operations

	Asynchronous Proxy queue
	Attributes
	Operations
	Operations parameters

	Synchronous Proxy queue
	Attributes
	Operations
	Operations parameters

	Store queue
	Attributes
	Operations
	Operations parameters

	Forward queue
	Attributes
	Operations
	Operations parameters

	Communications Listener
	Attributes
	Operations

	MQ/Alias connection
	Attributes
	Operations
	Operations parameters

	Direct connection
	Attributes
	Operations
	Operations parameters

	Indirect connection
	Attributes
	Operations
	Operations parameters

	MQ Bridge queue
	Attributes
	Operations
	Operations parameters

	MQ Bridge
	Attributes
	Operations
	Operations parameters

	MQ Queue Manager Proxy
	Attributes
	Operations
	Operations parameters

	MQ Client Connection
	Attributes
	Operations
	Operations parameters

	MQ Listener
	Attributes
	Operations

	Glossary
	Appendix. Notices
	Trademarks

