
IBM ADSTAR Distributed Storage Manager

Using the Application
Program Interface

Version 2

SH26-4002-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

This book is also available in a softcopy form that can be viewed with the IBM BookManager READ licensed program.

First Edition (November 1996)

This edition applies to Version 2 Release 1 of the ADSTAR Distributed Storage Manager, 5648-020, 5622-112,
5697-078, 5763-SV1, 5733-197, 5686-073, 5655-119, 5765-564, 28H2250, 28H2180, 89G1342, and to any subse-
quent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct
edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

You can send us comments about this book electronically:

� IBMLink from U.S.: STARPUBS at SJSVM28
� IBMLink from Canada: STARPUBS at TORIBM
� IBM Mail Exchange: USIB3VVD at IBMMAIL
� Internet: starpubs@sjsvm28.vnet.ibm.com (or starpubs at sjsvm28.vnet.ibm.com)
� Fax (U.S.): 1-800-426-6209

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Program Interface Information . vii
Trademarks . vii

Preface . ix
What You Should Know Before Reading This Publication ix
Style Conventions . ix
Referenced Publications . x
Summary of Changes . xi

Version 2, Release 1, June 1995 . xi
Version 2, Release 1, March 1996 . xi

| Version 2, Release 1, September 1996 . xii

Chapter 1. Introduction to the ADSM API . 1
Getting Information and Support . 1
Configuration Files and Options Files . 2

Chapter 2. Using the API Sample Application 5
Building the Sample Application . 5

Windows platform . 5
| Windows 32-Bit (Windows 95 and Windows NT) Platform 6

OS/2 platform . 7
UNIX platform . 8
NetWare platform . 11

| AS/400 platform . 12
Running the Sample Application . 14

Chapter 3. Using the Application Program Interface 15
Maintaining Version Control in the API . 15

Example . 16
Starting and Terminating a Session . 16

Application Design Considerations . 18
Session Security . 18
Examples . 18

Associating a Management Class With Objects 20
Querying Management Classes . 22
Example . 22

Querying the ADSM System . 22
State Diagrams and Flow Charts . 23
Example . 24

Sending Data to a Server . 26
The Transaction Model . 26
Sending Objects to the Server . 27
State Diagrams and Flow Charts . 28
Example . 31

 Copyright IBM Corp. 1995, 1996 iii

Receiving Data from a Server . 33
| Receiving Data: Partial Object Restore or Retrieve 33
| Receiving Data: Restore or Retrieve Procedure 34

Step 1. Issuing Queries for Backup or Archive Data 34
Step 2. Selecting Objects to Receive . 35
Step 3. Sorting Objects by Restore Order 35
Step 4. Issuing the dsmBeginGetData Call 36
Step 5. Receiving Each Object to Be Restored/Retrieved 36
Step 6. Issuing the dsmEndGetData Call . 37
State Diagrams and Flow Charts . 37
Example . 38

Deleting Objects from the Server . 40
Identifying the Object . 41

File Space Name . 41
High-Level and Low-Level Names . 42
Object Type . 42
Examples . 42

Setting the Owner Name . 43
Managing File Spaces . 43

Examples . 44
Putting It All Together . 46
Determining Size Limits . 48

Chapter 4. API Function Definitions . 49
dsmBeginGetData . 50
dsmBeginQuery . 52
dsmBeginTxn . 55
dsmBindMC . 57
dsmChangePW . 59
dsmDeleteFS . 60
dsmDeleteObj . 62
dsmEndGetData . 64
dsmEndGetObj . 65
dsmEndQuery . 66
dsmEndSendObj . 67
dsmEndTxn . 68
dsmGetData . 70
dsmGetNextQObj . 71
dsmGetObj . 73
dsmInit . 75
dsmQueryApiVersion . 79
dsmQuerySessInfo . 80
dsmRCMsg . 81
dsmRegisterFS . 82
dsmSendData . 83
dsmSendObj . 85
dsmTerminate . 89
dsmUpdateFS . 90

iv ADSM V2 Using the Application Program Interface

Appendix A. API Type Definitions Source File 91

Appendix B. API Function Definitions Source File 107

Appendix C. API Return Codes Source File 113

Appendix D. API Return Codes With Explanations 123

Appendix E. The ADSM X/Open API . 147
Introduction . 147

Getting Information and Support . 147
Setting Up Options Files . 148

Using the ADSM X/Open API Sample Application 148
Building the Sample Application . 149
Running the Sample Application . 151

Using the ADSM X/Open API . 151
Maintaining Version Control in the API . 152
Starting and Terminating a Session . 152
Session Security . 154
Determining the Session Parameters . 154
Associating a Management Class With Objects 155
The Transaction Model . 156
Querying the ADSM System . 157
Sending Data to a Server . 159
Receiving Data from a Server . 160
Deleting Objects from the Server . 165
Identifying the Object . 165
Setting the Owner Name . 167
Determining Size Limits . 168

ADSM Changes to the XBSA Header Files . 168
Changes to custom.h . 168
Changes to xbsa.h . 169
Changes to policy.h . 169

Glossary . 171

Index . 177

 Contents v

vi ADSM V2 Using the Application Program Interface

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe upon any of the intellectual property
rights of IBM may be used instead of the IBM product, program, or service. The evalu-
ation and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give one any license to these
patents. Send license inquiries, in writing, to the IBM Director of Licensing, IBM Corpo-
ration, 500 Columbus Avenue, Thornwood NY 10594-1907, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information that has
been exchanged, should contact IBM Corporation, Information Enabling Requests,
Dept. M13, 5600 Cottle Road, San Jose CA 95193-0001, USA. Such information may
be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Program Interface Information
This reference manual is intended to help the customer add ADSM application pro-
gramming interface calls to an existing application. This manual documents
General-Use Program Interface information provided by ADSTAR Distributed Storage
Manager.

General-Use Program Interfaces allow the user to write programs that obtain the ser-
vices of ADSM.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the
IBM Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
ADSTAR
AIX
AIXwindows
AIX/6000
Application System/400
APPN
AS/400
BookManager
Database 2
IBM

MVS/ESA
OpenEdition MVS
Operating System/2
Operating System/400
OS/2
OS/2 Warp
OS/400
RISC System/6000
Scalable POWERparallel
SP2
VSE/ESA

 Copyright IBM Corp. 1995, 1996 vii

The following terms, denoted by a double asterisk (**) in this publication, are trade-
marks of other companies:

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

AFS Transarc Corporation
Apple Apple Computer, Inc.
Attachmate Attachmate Corp.
Borland Borland International, Inc.
CompuServe CompuServe, Inc.
DECstation Digital Equipment Corp.
DynaText Electronic Book Technologies, Inc.
EWS-UX/V NEC Corporation
Extra! Attachmate Corp.
Hewlett-Packard Hewlett-Packard Company
HP-UX Hewlett-Packard Company
Intel Intel Corp.
IPX/SPX Novell, Inc.
IRIX Silicon Graphics, Inc.
Lotus Lotus Development Corporation
Lotus Notes Lotus Development Corporation
Macintosh Apple Computer, Inc.
MacTCP Apple Computer, Inc.
Microsoft Microsoft Corp.
Motif Open Software Foundation, Inc.
NDS Novell, Inc.
NetWare Novell, Inc.
NetWare Directory Services Novell, Inc.
NetWare Loadable Module Novell, Inc.
NFS Sun Microsystems, Inc.
NLM Novell, Inc.
Novell Novell, Inc.
Open Desktop The Santa Cruz Operation, Inc.
OpenWindows Sun Microsystems, Inc.
PC/TCP FTP Software, Inc.
SCO The Santa Cruz Operation, Inc.
SINIX Siemens Nixdorf Information Systems, Inc.
Solaris Sun Microsystems, Inc.
SPARC SPARC International, Inc.
Sun Sun Microsystems, Inc.
Sun Microsystems Sun Microsystems, Inc.
SunOS Sun Microsystems, Inc.
Sun-3 Sun Microsystems, Inc.
Sun-4 Sun Microsystems, Inc.
ULTRIX Digital Equipment Corp.
WATCOM WATCOM Systems, Inc.
Windows Microsoft Corp.
Windows NT Microsoft Corp.
X Windows Massachusetts Institute of Technology
X/Open X/Open Company Limited

viii ADSM V2 Using the Application Program Interface

 Preface

ADSTAR Distributed Storage Manager (ADSM) is a client/server program product that
provides storage management services to customers in a multivendor computer envi-
ronment. It includes the following programs:

� A server program that allows systems to act as a backup and archive server and a
migration server for distributed workstations and file servers. The server program
provides hierarchical storage management.

� An administrative client program that allows an ADSM administrator to control and
monitor server activities, define storage management policies for backup, archive,
and space management services, and set up schedules to perform those services
at regular intervals.

� A backup-archive client program that allows users to back up and archive files from
their workstations or file servers to ADSM storage, and restore and retrieve backup
versions of files and archived copies of files to their local file systems.

� A hierarchical storage management (HSM) client program that provides space
management services. The HSM client program migrates eligible files to ADSM
storage to maintain specific levels of free space on local file systems, and automat-
ically recalls migrated files when they are accessed. It also allows users to migrate
and recall specific files. This client is not available on all ADSM-supported plat-
forms.

� An application program interface (API) that allows you to enhance an existing appli-
cation with storage management services. When an application is registered as a
client node with an ADSM server, users can use the application to back up and
archive objects, such as databases, to ADSM storage, and restore and retrieve
objects from ADSM storage.

This publication documents an application program interface. It is intended for applica-
tion programmers who want to develop an application that uses the ADSM storage
management functions.

What You Should Know Before Reading This Publication
This publication assumes the following:

� You are familiar with the C Programming language
� You understand the ADSM storage management functions

 Style Conventions
Throughout the book, we use the following style conventions in the text:

 Copyright IBM Corp. 1995, 1996 ix

Figure 1. Style Conventions

Convention Indicates

bold An API function call or a file name.

UPPER CASE An ADSM command or option.

italics A new term or a reference to another publication.

monospace text A data structure or type, or an example in the text.

 Referenced Publications
The publications referenced in this book are listed in Figure 2.

All of the ADSM publications are available in online readable format on the ADSM
Online Product Library CD-ROM, order number SK2T-1878. The ADSM library is also
available in softcopy on the following CD-ROMs:

AIX Base Collection Kit (order number SK2T-2066)
AS/400 Base Collection Kit (order number SK2T-2171)
MVS Base Collection Kit (order number SK2T-0710)
OS/2 Base Collection Kit (order number SK2T-2176)
VM Base Collection Kit (order number SK2T-2067)
VSE Base Collection Kit (order number SK2T-0060)
IBM SystemView for AIX (order number SK2T-1451)

In addition, the following book is published by the X/Open Company. It contains the
detailed specification on the X/Open Backup Services API. You should refer to it for
information on the XBSA functions and data types. You can also contact X/Open at
xospecs@xopen.org .

Figure 2. Referenced Publications

Short Title Publication Title Order
Number

Installing the Clients ADSTAR Distributed Storage Manager
Installing the Clients

SH26-4049

Using the UNIX Backup-
Archive Clients

ADSTAR Distributed Storage Manager Using
the UNIX Backup-Archive Clients

SH26-4052

ADSM Messages ADSTAR Distributed Storage Manager Mes-
sages

SH35-0133

Figure 3. X/Open Publications. These are available from X/Open Company.

Short Title Publication Title Order
Number

X/Open Specification X/Open Preliminary Specification: Systems
Management: Backup Services API (XBSA)

P424

x ADSM V2 Using the Application Program Interface

Summary of Changes
Major technical changes in this book are indicated by a vertical bar (|) in the margin.

Previous versions of this book were distributed only in ASCII format on CompuServe.
This is the first version to be available in hardcopy form.

Version 2, Release 1, June 1995
These are the changes made for ADSM Version 2 Release 1.

 Functional Enhancements
� The ADSM API is now available on the following platforms:

 – AT&T UNIX
 – NEC EWS-UX/V
 – OpenEdition MVS
 – SGI IRIX

– Siemens Nixdorf SINIX

� A new API function, dsmRCMsg , has been added.

� Support for partial object retrieval has been added. This allows the user to retrieve
a portion of an object instead of the entire object. Partial object retrieval is only
valid for archived copies.

� The API now uses many of the same files as the backup-archive clients, such as
the message text file and the options.doc file. Also, the API uses the same instal-
lation directory as the backup-archive clients for files referenced by DSMI_DIR.

Changes to this Book
� An appendix describing the return codes in more detail has been added. This

appendix was formerly available on CompuServe as a separate book.

Version 2, Release 1, March 1996
These are additional changes made for ADSM Version 2 Release 1.

 Functional Enhancements
� A version of the ADSM API that implements the X/Open Backup Services API

standard is now available on the following platforms:

– AIX 3.2.5 and 4.1
– Solaris 2.3 and 2.4

Changes to this Book
� Information on the ADSM X/Open API has been added as an appendix.

 Preface xi

| Version 2, Release 1, September 1996
| These are additional changes made for ADSM Version 2 Release 1.

| Functional Enhancements
| � The ADSM API is now available on the following platforms:

| – AS/400

xii ADSM V2 Using the Application Program Interface

Chapter 1. Introduction to the ADSM API

The ADSTAR Distributed Storage Manager application program interface (API) enables
an application client to use the ADSM storage management functions. The API con-
sists of a set of 24 function calls that an application can use to perform the following
operations:

� Initialize and terminate an ADSM session
� Assign management classes to objects before storing them on an ADSM server
� Back up or archive objects to an ADSM server
� Restore or retrieve objects from an ADSM server
� Query the server for information on objects stored there
� Manage file spaces

When you, as an application developer, install the ADSM API, you get the following:

� The files that an end user of an application would need:
The API shared library
The Trusted Agent program
Sample client options files

 Documentation
� The source code for the three API header files that your application needs
� The source code for a sample application and the makefile to build it

For information on installing the API, see Installing the Clients.

Getting Information and Support
The IBM Storage Systems Division (SSD) Software Developer's Program provides a
range of services to software developers who want to use the ADSM API. Information
about the SSD Software Developer's Program is available in:

� IBMSTORAGE forum on CompuServe
� SSD Software Developer's Program Information Package

To obtain the Software Developer's Program Information Package:

1. Call 800-4-IBMSSD (800-442-6773). Outside the U.S.A., call 408-256-0000.
2. Listen for the SSD Software Developer's Program prompt.
3. Request the Software Developer's Program Information Package.

IBM has two programs—standard and premier—to provide you with technical support
and notification of updates.

| See the register.frm file for details and application forms. On the AS/400 platform, this
| file is QANSAPI/QAANSDOC(REGISTER) . You receive this file when you install the

API.

 Copyright IBM Corp. 1995, 1996 1

Configuration Files and Options Files
Configuration files and options files allow you to set the conditions and boundaries
under which your ADSM session runs. The available options can be set by the ADSM
administrator, the end user, or you. The values of various options allow you to do the
following:

� Set up the connection to an ADSM server

� Control which objects are sent to the server and what management class they are
associated with

� Set the format in which various object attributes appear, such as the date and time

The same option can appear in more than one configuration file. When this happens,
the file with the highest priority takes precedence.

The different configuration files, in order of decreasing priority, are as follows:

1. Administrator options. Options set by an ADSM administrator, whether on the
client or the server, override any options set by you or the end user.

For example, the administrator can specify whether or not objects can be com-
pressed before being sent to an ADSM server. In this case, setting the COM-
PRESSION option in the API configuration file has no effect. The administrator
can also decide that the choice of allowing compression is to be determined by the
client. Setting the COMPRESSION option in the API configuration file then deter-
mines whether objects are compressed before being stored.

2. The API options list takes effect when it is passed to a dsmInit call as a param-
| eter. The list can contain user options such as:

| NODENAME
| SERVERNAME (UNIX only)
| TCPServeraddr (non-UNIX)

The purpose of the API options list is to allow an application client to make
changes to the values of the options in the API configuration file and the client user
options file. For example, your application might query the end user for the user's
preferred format for displaying dates and times. On the basis of the user's
answers, you could construct an API options list with these two options and pass it
into the call to dsmInit .

For information on the format of the API options list, see the options parameter on
page 77.

You can also set this parameter to NULL, indicating there is no API options list for
this ADSM session.

3. On the UNIX platform, the API configuration file can include any of the options in
the user options file and the following options from the system options file:

 COMPRESSION
 DIRMC
 INCLEXCL

2 ADSM V2 Using the Application Program Interface

| On the Windows, OS/2, NetWare, and AS/400 platforms, the API configuration file
| can contain the user options.

You set up the options in the API configuration file to have values that you think
will be appropriate in the end user's ADSM session. The values take effect when
the API configuration file is passed to the new ADSM session as a parameter in
the dsmInit call.

You can also set this parameter to NULL, indicating there is no API configuration
file for this ADSM session.

4. The ADSM options files on the UNIX platform include the user options file
(dsm.opt) and the system options file (dsm.sys). On the Windows, OS/2, and

| NetWare platforms, the options file consists of dsm.opt only. On the AS/400 plat-
| form, the options file consists of *LIBL/QOPTADSM(APIOPT) only. These files are

set up by the end user when the ADSM API is first installed on the user's work-
station. The options in these files can be overridden by the methods mentioned
above.

For more detailed information on the options available, see either the Installing the
Clients book or the separate User's Guide for your platform.

 Chapter 1. Introduction to the ADSM API 3

4 ADSM V2 Using the Application Program Interface

Chapter 2. Using the API Sample Application

| The API package that you receive includes a sample application. This sample applica-
tion demonstrates the use of the API function calls in context. You should install the
sample application and look at its source code to better understand how the function
calls can be used.

A function named rcApiOut is included in the sample application. This function calls
the API function dsmRCMsg , which translates a return code into a message.
rcApiOut then prints the message.

Building the Sample Application
When you build the sample application, the procedure to follow depends on whether

| you are running the ADSM API on a Windows, Windows 32-bit (Windows 95 and
| Windows NT), OS/2, UNIX, NetWare, or AS/400 platform.

 Windows platform
For the Windows platform, the files listed in Figure 4 are available to build either of the

| sample applications included in the ADSM API package for Windows.

Figure 4 (Page 1 of 2). Files Available for Building Windows API Sample Applications

File Name Description

dapismp.prj Project file used by the Borland C++ IDE to build the dapismp execut-
able

dapismp.mak Makefile for dapismp executable

dapismp.cfg Configuration file referred to by dapismp.mak

dapismp.def Definition file for sample application dapismp.exe

dapibkup.c
dapidata.h
dapiinit.c
dapint64.c
dapint64.h
dapipref.c
dapiproc.c
dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.c
dapiutil.h

The components of a general non-Windows application that demon-
strates the use of the major ADSM API functions

apidemo.prj Project file used by the Borland C++ IDE to build the apidemo execut-
able

apidemo.mak Makefile for apidemo executable

 Copyright IBM Corp. 1995, 1996 5

All of the build methods implemented by the above files use the Borland C++ compiler.
Whether you use the makefile or the project file for the build, either the .mak file or the
options in the project file may need to be adjusted to fit your environment. Specifically,
the library and/or include directories may need to be changed. The DLL adsm.dll is a
16-bit DLL, and the makefile assumes use of the Borland C++ compiler.

Figure 4 (Page 2 of 2). Files Available for Building Windows API Sample Applications

File Name Description

apidemo.cfg Configuration file referred to by apidemo.mak

apidemo.def Definition file for apidemo.exe

apidemo.c
apidemo.h
apidemo.rc
apidemo.res

A sample Windows application source module
Header file for apidemo.exe
.RC file for apidemo.exe
.RES file for apidemo.exe

| Windows 32-Bit (Windows 95 and Windows NT) Platform
| For the Windows 95 and Windows NT platforms, the files listed in Figure 5 make up
| the source files needed to build the sample application included in the ADSM API
| package for Windows 95 and Windows NT.

| Figure 5 (Page 1 of 2). Files Available for Building Windows 95 and Windows NT API Sample
| Application

| File Name| Description

| dapismp| API sample program

| blkhook.def
| blkhook.c
| blkhook.mak

| Definition file for blocking hook single-threaded DLL
| Sample source code for blocking function
| Borland C++ 4.5 makefile for blocking function

| adsm32.dll
| blkhook.dll
| API DLLs

| dsmrc.h
| dsmapitd.h
| dsmapifp.h
| dsmapidl.h
| dsmint64.h

| Return codes header file
| Type definitions header file
| Function prototype header file
| Dynamically loaded function prototype header file
| Int 64 function prototype header file

| dapidata.h
| dapint64.h
| dapitype.h
| dapiutil.h

| Source code header files for dapismp.exe

| adsm32.def| Definition file for single-threaded DLL

6 ADSM V2 Using the Application Program Interface

| In addition, the API\OBJ directory contains the API sample program object files, and the
| API\SAMPRUN directory is the sample program dapismp execution directory.

| The source code (blkhook.c) and makefile (blkhook.mak) for a blocking function are
| included (along with the sample API program dapismp) for applications that use non-
| threaded GUIs and need to switch out of their message loops when blocked. The
| blocking hook DLL is called by the API routines in the dapismp sample program. The
| DLLs adsm32.dll and blkhook.dll are both 32-bit DLLs.

| The API sample application dapismp may be compiled with the Borland C++ 4.5 com-
| piler, using makefile dapismp.mak , or with the Microsoft Visual C++ 4.2 compiler, using
| makefile dapismp.vc . The makefiles may need to be adjusted to fit your environment.
| Specifically, the library and/or the include directories may need to be changed. To run
| the sample application, enter dapismp from the api\samprun directory.

| Figure 5 (Page 2 of 2). Files Available for Building Windows 95 and Windows NT API Sample
| Application

| File Name| Description

| dapibkup.c
| dapiinit.c
| dapint64.c
| dapipref.c
| dapiproc.c
| dapipw.c
| dapiqry.c
| dapirc.c
| dapismp.c
| dapiutil.c
| dynaload.c

| Source code files for dapismp.exe

| dapismp.mak
| dapismp.vc
| Borland C++ 4.5 makefile for API sample program
| Visual C++ makefile for API sample program

 OS/2 platform
For the OS/2 platform, the files listed in Figure 6 make up the source files and other

| files needed to build the sample application included in the ADSM API package for
| OS/2.

Figure 6 (Page 1 of 2). Files Available for Building OS/2 API Sample Application

File Name Description

dapismp.mak Makefile for dapismp.exe

dapismp.def Definition file for sample application dapismp.exe

 Chapter 2. Using the API Sample Application 7

The dapismp.mak file may need to be adjusted to fit your environment. Specifically,
the library and/or include directories may need to be changed. The DLL adsmos2.dll
is a 16-bit DLL, and the makefile assumes use of the Microsoft C 6.0 compiler.

Figure 6 (Page 2 of 2). Files Available for Building OS/2 API Sample Application

File Name Description

dapibkup.c
dapidata.h
dapiinit.c
dapint64.c
dapint64.h
dapipref.c
dapiproc.c
dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.c
dapiutil.h

The source code for dapismp.exe

 UNIX platform
For the UNIX platform, the files listed in Figure 7 make up the source files and other
files needed to build the sample application included with the ADSM API.

Figure 7 (Page 1 of 2). Files Available for Building UNIX API Sample Application

File Name Description

dsmrc.h Return codes header file

dsmapitd.h Type definitions header file

dsmapifp.h Function prototype header file

dapibkup.c
dapidata.h
dapiinit.c
dapint64.h
dapint64.c
dapipref.c
dapiproc.c
dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapitype.h
dapiutil.h
dapiutil.c

Modules for the command line driven sample application

8 ADSM V2 Using the Application Program Interface

Follow these steps to compile the sample application and test the installation. Note that
several of the steps have slight variations, depending on the UNIX platform you are
using.

In the following instructions, the source directory from which the files are copied may
not be the same as the directory you are using on your workstation. If that is the case,
substitute the directory that you set in the DSMI_DIR environment variable for the one
in these instructions.

The target directory in these instructions has the name /u/developer/testapi . However,
you can use any name for the target directory.

1 Copy the API library to the /usr/lib directory:

AIX: cp /usr/lpp/adsm/api/bin/libApiDS.a /usr/lib

HP-UX: cp /usr/adsm/api/libApiDS.sl /usr/lib

SunOS: cp /usr/adsm/api/libApiDS.so.1.ð.sun41

/usr/lib/libApiDS.so.1.ð

| Solaris: cp /usr/adsm/api/libApiDS.so.sol2 /usr/lib/libApiDS.so

AT&T: cp /usr/adsm/api/libApiDS.so /usr/lib

NEC: cp /usr/adsm/api/libApiDS.so /usr/lib

SGI: cp /usr/adsm/api/libApiDS.so /usr/lib

SINIX: cp /usr/adsm/api/libApiDS.so /usr/lib

OpenEdition MVS: cp /usr/adsm/api/libApiDS.a /usr/lib

For some of the platforms, instead of copying the API library, you can create a
symbolic link to the file from the /usr/lib directory. First change to the /usr/lib
directory with the command:

 cd /usr/lib

Then enter the following command:

AIX: ln -s /usr/lpp/adsm/api/bin/libApiDS.a

HP-UX: ln -s /usr/adsm/api/libApiDS.sl

AT&T: ln -s /usr/adsm/api/libApiDS.so

Figure 7 (Page 2 of 2). Files Available for Building UNIX API Sample Application

File Name Description

makeapi.aix
makeapi.hp
makeapi.sun
makeapi.sol
makeapi.att
makeapi.nec
makeapi.sgi
makeapi.sinix
makeapi.oemvs

Makefile to build dapismp for AIX
Makefile to build dapismp for HP-UX
Makefile to build dapismp for SunOS
Makefile to build dapismp for Solaris
Makefile to build dapismp for AT&T
Makefile to build dapismp for NEC
Makefile to build dapismp for SGI
Makefile to build dapismp for SINIX
Makefile to build dapismp for OpenEdition MVS

caller1.c
caller2.c

Simple example modules

 Chapter 2. Using the API Sample Application 9

NEC: ln -s /usr/adsm/api/libApiDS.so

SGI: ln -s /usr/adsm/api/libApiDS.so

SINIX: ln -s /usr/adsm/api/libApiDS.so

OpenEdition MVS: ln -s /usr/adsm/api/libApiDS.a

2 Copy the sample application files to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/dapi\

/u/developer/testapi

HP-UX: cp /usr/adsm/api/dapi\ /u/developer/testapi

SunOS: cp /usr/adsm/api/dapi\ /u/developer/testapi

Solaris: cp /usr/adsm/api/dapi\ /u/developer/testapi

AT&T: cp /usr/adsm/api/dapi\ /home/developer/testapi

NEC: cp /usr/adsm/api/dapi\ /home/developer/testapi

SGI: cp /usr/adsm/api/dapi\ /home/developer/testapi

SINIX: cp /usr/adsm/api/dapi\ /home/developer/testapi

OpenEdition MVS: cp /usr/adsm/api/dapi\ /u/developer/testapi

3 Copy the header files to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/\.h /u/developer/testapi

HP-UX: cp /usr/adsm/api/\.h /u/developer/testapi

SunOS: cp /usr/adsm/api/\.h /u/developer/testapi

Solaris: cp /usr/adsm/api/\.h /u/developer/testapi

AT&T: cp /usr/adsm/api/\.h /home/developer/testapi

NEC: cp /usr/adsm/api/\.h /home/developer/testapi

SGI: cp /usr/adsm/api/\.h /home/developer/testapi

SINIX: cp /usr/adsm/api/\.h /home/developer/testapi

OpenEdition MVS: cp /usr/adsm/api/\.h /u/developer/testapi

4 Copy the makefile to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/makeapi.aix

/u/developer/testapi

HP-UX: cp /usr/adsm/api/makeapi.hp /u/developer/testapi

SunOS: cp /usr/adsm/api/makeapi.sun /u/developer/testapi

Solaris: cp /usr/adsm/api/makeapi.sol /u/developer/testapi

AT&T: cp /usr/adsm/api/makeapi.att /home/developer/testapi

NEC: cp /usr/adsm/api/makeapi.nec /home/developer/testapi

SGI: cp /usr/adsm/api/makeapi.sgi /home/developer/testapi

SINIX: cp /usr/adsm/api/makeapi.sinix /home/developer/testapi

OpenEdition MVS: cp /usr/adsm/api/makeapi.oemvs /u/developer/testapi

5 Compile the sample with the following command:

AIX: make -f makeapi.aix

HP-UX: make -f makeapi.hp

SunOS: make -f makeapi.sun

Solaris: make -f makeapi.sol

10 ADSM V2 Using the Application Program Interface

AT&T: make -f makeapi.att

NEC: make -f makeapi.nec

SGI: make -f makeapi.sgi

SINIX: make -f makeapi.sinix

OpenEdition MVS: make -f makeapi.oemvs

6 Ensure that your environment variables, especially DSMI_DIR, and options files
are set up. See “Configuration Files and Options Files” on page 2 and the
Installing the Clients book for information.

7 Log on as root the first time for password registration.

8 Run dapismp to start the sample application.

 NetWare platform
For the NetWare platform, the files listed in Figure 8 make up the source files and
other files needed to build the sample application included with the ADSM API.

Follow these steps to compile the sample application and test the installation:

1 Once your makefile and WATCOM compiler are ready, type:

wmake /f dapismp.wat

You will see compiler messages on the screen until the compile is completed.

Figure 8. ADSM files in the Novell NetWare API package for developers

File Name Description

dsmapifp.h prototype sdk header file

dsmapitd.h types sdk header file

dsmrc.h return code sdk header file

dapibkup.c
dapidata.h
dapiinit.c
dapipref.c
dapiproc.c
dapipw.c
dapiqry.c
dapirc.c
dapismp.c
dapismp.lnk
dapismp.wat
dapismp.nlm
dapitype.h
dapinwut.c
dapiutil.c
dapiutil.h

Source code for a sample application that demonstrates the use of the
major ADSM API functions

 Chapter 2. Using the API Sample Application 11

2 Copy dapismp.nlm to the NetWare server.

3 Before running the sample application, dapismp.nlm , make sure that you have
the following files on your NetWare server:

 dsm.smp
 dscameng.txt
 dsmapi.nlm
 acpwsrvs.nlm
 acpwtcps.nlm
 acpwsaas.nlm
 dapismp.nlm

4 Copy dsm.smp to dsm.opt .

5 Edit dsm.opt and enter values for the COMMMETHOD and NODENAME
options. Also enter values for the options relating to the specific communication
method that you are using.

6 At the NetWare console enter the following:

search add sys:\adsm\api

7 To start the sample application, run dapismp by entering:

 load dapismp

| AS/400 platform
| For the AS/400 platform, the files listed in Figure 9 make up the source files and other
| files needed to build the sample application included with the ADSM API.

| Figure 9 (Page 1 of 2). ADSM files in the AS/400 API package for developers

| File Name| Description

| CRTAPISMP| Source for a CL Program to create the Sample Application

| dsmrc.h| Return codes header file

| dsmapitd.h| Type definitions header file

| dsmapifp.h| Function prototype header file

12 ADSM V2 Using the Application Program Interface

| The .c files are members of file QANSAPI/QCSRC , and the .h files are members of file
| QANSAPI/H. . The CL source is contained in file QANSAPI/QCLSRC .

| Follow these steps to compile the sample application and test the installation:

| 1 Compile the CL program QANSAPI/QCLSRC(CRTAPISMP):

| CRTCLPGM PGM(QANSAPI/CRTAPISMP) SRCFILE(QANSAPI/QCLSRC)

| 2 Compile the source code for the Sample Application:

| Issue the CRTCMOD command for each member in QANSAPI/QCSRC
| For example:

| CRTCMOD MODULE(QANSAPI/DAPISMP) SRCFILE(QANSAPI/QCSRC) OUTPUT(\PRINT)

| 3 Invoke CRTAPISMP to create the Sample Application and bind it to the API
| service program.

| CALL CRTAPISMP (target_library QANSAPI)

| 4 Ensure that target_library is in your library list.

| 5 Copy QANSAPI/QAANSDOC(APIOPTSMP) to library/QOPTADSM(APIOPT) ,
| where library is in your library list.

| 6 Edit library/QOPTADSM(APIOPT) and enter values for the COMMMETHOD
| and NODENAME options. Also enter values for the options relating to the spe-
| cific communication method that you are using.

| Figure 9 (Page 2 of 2). ADSM files in the AS/400 API package for developers

| File Name| Description

| dapibkup.c
| dapidata.h
| dapiinit.c
| dapint64.h
| dapint64.c
| dapipref.c
| dapiproc.c
| dapipw.c
| dapiqry.c
| dapirc.c
| dapismp.c
| dapitype.h
| dapiutil.h
| dapiutil.c

| Source code for a sample application that demonstrates the use of the
| major ADSM API functions

 Chapter 2. Using the API Sample Application 13

| 7 To start the sample application, run dapismp by entering:

| call dapismp

Running the Sample Application
After you start the sample application by entering dapismp , follow the instructions that
appear on the screen. Some things to remember when running the application are:

� You must run the Signon action before any other action.

� When entering the File space, High-level, or Low-level names, prefix them with the
correct path delimiter. This is true even if you are specifying the asterisk (*)
wildcard character.

� The sample application creates its own data streams when backing up or archiving
objects. The object name does not correspond to any file on your workstation.
The “Seed string” you enter is used to generate a pattern that can be verified when
the object is restored or retrieved.

� For OpenEdition MVS, the owner of dapismp must have root user authority, and
the set-user-ID bit must be turned on if dapismp is run with
PASSWORDACCESS=Generate.

chown ð dapismp

chmod u+s dapismp

14 ADSM V2 Using the Application Program Interface

Chapter 3. Using the Application Program Interface

This section describes, in a task-oriented fashion, how to use the Application Program
Interface (API). You should be familiar with this section prior to designing or writing an
application that uses the ADSM API.

| The API package that you receive includes a sample application. This chapter demon-
strates how the API can be used by showing examples excerpted from the sample
application.

Remember that the examples in this section are just program fragments. Their purpose
is to show how the API functions might be used in context, not to provide pieces of
executable code.

Note: The examples that follow are taken from the UNIX sample application. The
analogous program fragments on other platforms might look somewhat different.

Maintaining Version Control in the API
All APIs have some form of version control, and ADSM is no exception. You must be
sure the version of the ADSM API that you use in your application is compatible with
the version of the API library that the end users have installed on their workstations.

The first API call issued when using the ADSM API should usually be
dsmQueryApiVersion . This call does the following for the application client:

� Confirms that the ADSM API library is installed and available on the end user's
system

� Returns the version level of the API library being accessed by the application

The API is designed to be upward compatible, so that applications written to older ver-
sions or releases of the API library will still operate correctly if the end user is running a
newer version.

Determining the release of the API library is critical, because some releases might have
different memory requirements and data structure definitions. Downward compatibility
might be possible on a case-by-case basis, but it is not a design goal to be so. Down-
ward compatibility, if a requirement, is the responsibility of the application client.

The API library and the Trusted Communication Agent module (dsmapitca) must be at
the same level.

The dsmQueryApiVersion call returns the version of the API library installed on the
end user's workstation. You can then compare the returned value with the version of
the API that the application client is using.

The version number of the application client's API is hard-coded in the compiled object
code as a set of three constants (see Appendix A, “API Type Definitions Source File”
on page 91):

 Copyright IBM Corp. 1995, 1996 15

 DSM_API_VERSION

 DSM_API_RELEASE

 DSM_API_LEVEL

The application client's API version should usually be less than or equal to the API
library installed on the user's system. Any other condition should be entered into with
care.

The dsmQueryApiVersion call can be issued at any time, whether the API session
has been initialized or not.

Data structures used by the API also have version control information in them. Those
structures that can grow in size have version information as the first field within the
structure. This allows the ADSM API to verify the version of the structure being used.

 Example
The example in Figure 10 on page 17 first shows the type definition of the structure
dsmApiVersion from the header file dsmapitd.h . The example then defines a global
variable called apiLibVer and shows how it can be used in a call to
dsmQueryApiVersion to return the version of the end user's API library. Finally, the
returned value is compared to the version number of the application client's API.

Starting and Terminating a Session
ADSM is a session-oriented product, and all activities must be performed within an
ADSM session. To start a session, the application invokes the dsmInit call. This call
must be performed prior to any other API call except dsmQueryApiVersion . The
dsmInit function sets up a session with the ADSM server as indicated in the parame-
ters passed in the call or defined in the options files.

Three parameters that must be passed in to dsmInit are the client's node name, owner
name, and password. The owner name is case sensitive, but the node name and
password are not.

The first time a unique API application client initializes a session with the ADSM server,
the client's application type is registered with the server. This type can be used as a
very high-level identifier to perform validity checking on the type of data the client has
stored at the server. For example, if the application client is the Wonder DB backup
solution on UNIX, the application type might be UNIX_Wonder_DB. After initialization is
complete, the application can check to see if the application type is correct, and if not,
issue an error or modify processing to handle the returned application type.

Note that the application client can only register new nodes with a server if the server
has closed registration. If a server has open registration, then any nodes that are
already registered with the server will be accepted by the application. However, if a
server has open registration and dsmInit tries to register a new node, then the return
code DSM_RC_REJECT_ID_UNKNOWN is generated. Application designers should tell their
customers about this requirement so that customers can configure their servers accord-
ingly.

16 ADSM V2 Using the Application Program Interface

typedef struct /\ from dsmapitd.h \/

{

unsigned short version; /\ API version \/

unsigned short release; /\ API release \/

unsigned short level; /\ API level \/

} dsmApiVersion;

extern dsmApiVersion apiLibVer;

memset(&apiLibVer,ðxðð,sizeof(dsmApiVersion)); /\ Zero out block \/

dsmQueryApiVersion(&apiLibVer); /\ Get the end user's version \/

printf("\nAPI Library Version = %d.%d.%d\n\n",apiLibVer.version,

 apiLibVer.release,

 apiLibVer.level);

/\ Compare with the application client's version \/

if ((apiLibVer.version != DSM_API_VERSION) ||

(apiLibVer.release != DSM_API_RELEASE) ||

 (apiLibVer.level != DSM_API_LEVEL))

 { printf("Application Version = %d.%d.%d\n",DSM_API_VERSION,

 DSM_API_RELEASE,

 DSM_API_LEVEL);

printf("Application version is different than end user's API version.\n\n");

 };

Figure 10. Example: Getting the Version Level of the API

Once the application type has been registered with the server, it persists with the node
name until that node is deleted from the system. Future session initializations from the
same node can set this parameter to NULL.

dsmInit also links the ADSM session with the application client's API configuration file
and option list. The application client can use the API configuration file and option list
to set a number of ADSM options. These values override the values set in the user's
configuration files at installation time, although they cannot change the options defined
by the ADSM administrator. If the application client does not have its own configuration
file and option list, both of these parameters can be set to NULL. (For more informa-
tion on configuration files, see “Configuration Files and Options Files” on page 2.)

Once a session is initialized, the application can issue a call to dsmQuerySessInfo to
determine the parameters set for this session. Items such as the policy domain and
transaction limits are all returned to the application with this call.

Sessions are terminated by a dsmTerminate call. This causes the API to close any
connection with the ADSM server and free all resources associated with this session.

Note: Only one session can be active per invocation of the API. However, applica-
tions on UNIX and OS/2 platforms can circumvent this restriction by running with mul-

| tiple processes, each process owning its own ADSM session. Applications on the
| AS/400 platform can circumvent this restriction by running with multiple jobs, each job
| owning its own ADSM session. The Windows and NetWare platforms do not have this

option.

 Chapter 3. Using the Application Program Interface 17

Application Design Considerations
On the UNIX platform, if the end user has PASSWORDACCESS=Generate, then the
Trusted Communication Agent (dsmapitca) child process is forked to manage the
session with the ADSM server. The SIGCLD signal is used during termination. If
PASSWORDACCESS=Prompt, no child process is used.

On OpenEdition MVS, if the end user has PASSWORDACCESS=Generate, then the
API calls have to be executed with the effective userid set to 0, because there is no
separate Trusted Communication Agent process on this platform. This can be achieved
by running the whole program with root user authority:

chown ð dapismp

chmod u+s dapismp

For better security control, each API call can be surrounded with seteuid(0) and
seteuid(getuid()), thus running only API calls with root user authority. If there is no
need for automatic session reconnection on timeouts, this special handling may be
applied only to the dsmInit call.

If PASSWORDACCESS=Prompt, there is no need for such a mechanism, but the code
should handle the case where the call to dsmInit fails because the user's password is
expired.

 Session Security
ADSM, being a session-based system, has security components that allow applications
to initialize sessions in a secure manner. These security measures prohibit unauthor-
ized access to the server and help to insure system integrity.

Every session that is started with the server has to go through a sign-on process. This
sign-on process requires the use of a password that, when coupled with the node name
of the client, insures proper authorization when connecting to the server. The applica-
tion client is responsible for providing this password to the ADSM API for session initial-
ization.

Passwords have expiration periods associated with them. Thus, if a dsmInit call fails
with a password expired return code, the application client must issue the
dsmChangePW call to update the password. If a password has expired, it must be
updated before the session can be successfully established.

Objects stored in the system also have ownerships associated with them. See the
section “Identifying the Object” on page 41 to understand how an application can take
advantage of this to support multi-user applications. The application client is respon-
sible for insuring that security and ownership rules are met once a session is initialized.

 Examples
The example in Figure 11 on page 19 defines a number of global and local variables
and then uses them in calls to dsmInit and dsmTerminate . Note that dsmInit takes a
pointer to dsmHandle for one of its parameters, while dsmTerminate takes the
dsmHandle itself.

18 ADSM V2 Using the Application Program Interface

The function rcApiOut calls the API function dsmRCMsg , which translates a return
code into a message. rcApiOut then prints the message for the user. A version of
rcApiOut is included in the API sample application. dsmApiVersion and ApiSessInfo
are type definitions found in the header file dsmapitd.h .

/\\\ Example 1 \\\/

extern uint32 dsmHandle;

extern dsmApiVersion apiVer; /\ application's API version \/

extern ApiSessInfo dsmSessInfo;

char \node;

char \pw; /\ Must allocate space \/

char \owner; /\ for these pointer variables \/

int16 rc;

apiVer.version = DSM_API_VERSION; /\ Set the application's API \/

apiVer.release = DSM_API_RELEASE; /\ version from the constants \/

apiVer.level = DSM_API_LEVEL; /\ in dsmapitd.h \/

rc = dsmInit(&dsmHandle, /\ Will contain session handle on return. \/

&apiVer, /\ Application's API version. \/

node,owner,pw, /\ Node, owner, & password \/

NULL, /\ Name of our node type. \/

NULL,NULL); /\ Use default configs and options. \/

if (rc)

{

printf("\\\ Init failed: ");

rcApiOut(rc); /\ Call function to print error message \/

}

rc = dsmTerminate(dsmHandle);
dsmHandle = ð;

memset(&dsmSessInfo,ðxðð,sizeof(ApiSessInfo)); /\ Zero out block. \/

Figure 11. Example: Beginning and Ending a Session

The example in Figure 12 on page 20 demonstrates the procedure to change a pass-
word using dsmChangePW .

 Chapter 3. Using the Application Program Interface 19

/\\\ Example 2 \\\/

printf("Enter your current password:");

gets(current_pw);

printf("Enter your new password:");

gets(new_pw1);

printf("Enter your new password again:");

gets(new_pw2);

/\ If new password entries don't match, then try again or exit. \/

/\ If they do match, call dsmChangePW. \/

rc = &cpw.(dsmHandle,current_pw,new_pw1);

if (rc)

{

printf("\\\ Password change failed. Rc = %i\n",rc);

}

else

{

printf("\\\ Your new password has been accepted and updated.\n");

}

return ð;

Figure 12. Example: Changing a Password

Associating a Management Class With Objects
One of the key features offered by ADSM is the use of policy (management classes) to
define how objects are stored and managed in ADSM storage. A management class is
associated with an object when the object is backed up or archived. This management
class determines the following:

How frequently objects are backed up
How many versions of the object are retained if backed up
How long to keep archive copies
Where the object is to be inserted in the storage hierarchy on the server

Management classes have two components:

Backup copy groups
Archive copy groups

A copy group is a set of attributes that define the management policies for an object
that is being backed up or archived. Thus, if a backup operation is being performed,
the attributes in the backup copy group apply. If an archive is being performed, the
attributes in the archive copy group apply.

Note that the backup or archive copy group in a particular management class can be
empty or NULL. If an object is bound to the NULL backup copy group, then that object
cannot be backed up. If an object is bound to the NULL archive copy group, the object
cannot be archived.

Because the use of policy is a critical component of ADSM, the API requires that all
objects sent to the server first be assigned a management class via the dsmBindMC

20 ADSM V2 Using the Application Program Interface

call. ADSM supports the use of an include-exclude list to perform management class
binding. dsmBindMC uses the current include-exclude list to perform the management
class binding.

The API requires that dsmBindMC be called prior to backing up or archiving an object.
dsmBindMC returns an mcBindKey structure that contains information on the manage-
ment class and copy groups associated with the object. A valid backup or archive copy
group destination is the key information required to determine whether the current
object can be sent as part of a current multiple object transaction or if a new trans-
action must be started before sending the object to a server. The information returned
by dsmBindMC is:

management class
This is the name of the management class that has been bound to the
object. If desired, the application client can issue dsmBeginQuery to
determine all attributes of this management class.

backup copy group
The information returned is whether a backup copy group exists for this
management class. If a backup operation is being performed and a
backup copy group does not exist, this object cannot be sent to ADSM
storage. An attempt to send it via dsmSendObj results in an error code
being returned.

backup copy destination
This field identifies the ADSM storage pool to which the data is sent. If you
are performing a multiple object backup transaction, then all copy destina-
tions within that transaction must be the same. If an object has a different
copy destination than previous objects in the transaction, the current trans-
action must be ended and a new transaction begun before the object can
be sent. Attempts to send objects to different copy destinations within the
same transaction result in an error code being returned.

archive copy group
The information returned is whether an archive copy group exists for this
management class. If an archive operation is being performed and an
archive copy group does not exist, this object cannot be sent to ADSM
storage. An attempt to send it via dsmSendObj results in an error code
being returned.

archive copy destination
This field identifies the ADSM storage pool to which the data is sent. If you
are performing a multiple object archive transaction, then all copy destina-
tions within that transaction must be the same. If an object has a different
copy destination than previous objects in the transaction, the current trans-
action must be ended and a new transaction begun before the object can
be sent. Attempts to send objects to different copy destinations within the
same transaction result in an error code being returned.

 Chapter 3. Using the Application Program Interface 21

Querying Management Classes
Applications can query management classes to see what management classes are pos-
sible for a given node, and to see what the attributes are within the management class.
Objects can only be bound to management classes via the dsmBindMC call, but appli-
cations might wish to query the management class attributes for displaying them to end
users or for other purposes. See the section “Querying the ADSM System” for details.

 Example
In the example in Figure 13, a switch statement is used to distinguish between backup
and archive operations when calling dsmBindMC . The information returned from this
call is stored in the structure MCBindKey.

uint16 send_type;

uint32 dsmHandle;

dsmObjName objName; /\ structure containing the object name \/

mcBindKey MCBindKey; /\ management class information \/

char \dest; /\ save destination value \/

switch (send_type)

{

case (Backup_Send) :

rc = dsmBindMC(dsmHandle,&objName,stBackup,&MCBindKey);
dest = MCBindKey.backup_copy_dest;

 break;

case (Archive_Send) :

rc = dsmBindMC(dsmHandle,&objName,stArchive,&MCBindKey);
dest = MCBindKey.archive_copy_dest;

 break;

default : ;

}

if (rc)

{

printf("\\\ dsmBindMC failed: ");

 rcApiOut(rc);

rc = (RC_SESSION_FAILED);

 return;

}

Figure 13. Example: Associating a Management Class With an Object

Querying the ADSM System
The ADSM API has a variety of queries that applications can use. The management
class query, for example, has already been mentioned. All queries to the system
operate in the same manner for consistency and ease of implementation.

All queries that use dsmBeginQuery follow the same steps described below:

1 Issue the dsmBeginQuery call with the proper query type. Query types are:

22 ADSM V2 Using the Application Program Interface

 Backup
 Archive

Active backed up objects
 File space
 Management class

The dsmBeginQuery call tells the API in what format the data is coming back
from the server, so that the proper fields can be placed in the data structures
passed by the dsmGetNextQObj calls. The begin query call also allows the
application client to set the scope of the query to be performed by properly spec-
ifying the parameters on the begin query call.

Note that on multi-user platforms the query of active backed up objects (also
known as fast path) can be done only by the root user.

2 Issue the dsmGetNextQObj call.

A dsmGetNextQObj call must be issued to obtain each record from the query
issued. This call passes a buffer that is large enough to hold the data returned
from the query. Each query type has a corresponding data structure for the data
returned. For instance, a backup query type has an associated
qryRespBackupData structure that is filled in when the dsmGetNextQObj call is
issued.

3 Check the return code.

The dsmGetNextQObj call usually returns one of the following codes (an error
code might also be returned):

 DSM_RC_MORE_DATA
 DSM_RC_FINISHED

In the first case, issue the dsmGetNextQObj call again. In the second case,
there is no more data, so issue the dsmEndQuery call.

4 Issue the dsmEndQuery call.

When all query data has been retrieved or no further query data is desired, the
dsmEndQuery call must be issued to terminate the query process. This causes
the ADSM API to flush any remaining data from the query stream and release
any resources utilized for the query.

State Diagrams and Flow Charts
The state diagram for performing query operations is shown in Figure 14 on page 24.

 Chapter 3. Using the Application Program Interface 23

In Query

dsmBeginQuery dsmEndQuery

dsmGetNextQObj

Figure 14. State Diagram for General Queries

The flow chart for performing query operations is shown in Figure 15.

Start

Yes

More
objects?

dsmBeginQuery

dsmEndQuery

dsmGetNextQObj

No

Figure 15. Flow Chart for General Queries

 Example
In the example in Figure 16 on page 25, a management class query prints out the
values of all the fields in the backup and archive copy groups for a particular manage-
ment class.

24 ADSM V2 Using the Application Program Interface

int16 rc;

qryMCData qMCData;

DataBlk qData;

qryRespMCDetailData qRespMCData, \mcResp;

char \mc, \s;

bool_t done = bFalse;

uint32 qry_item;

/\ Fill in the qMCData structure with the query criteria we want \/

qMCData.stVersion = qryMCDataVersion; /\ structure version \/

qMCData.mcName = mc; /\ management class name \/

qMCData.mcDetail = bTrue; /\ want full details? \/

/\ Set parameters of the data block used to get or send data \/

qData.stVersion = DataBlkVersion;

qData.bufferLen = sizeof(qryRespMCDetailData);

qData.bufferPtr = (char \)&qRespMCData;

qRespMCData.stVersion = qryRespMCDetailDataVersion;

if ((rc = dsmBeginQuery(dsmHandle,qtMC,(dsmQueryBuff \)&qMCData)))
{

printf("\\\ dsmBeginQuery failed: ");

 rcApiOut(rc);

rc = (RC_SESSION_FAILED);

}

Figure 16 (Part 1 of 2). Example: Performing a System Query

 Chapter 3. Using the Application Program Interface 25

else

{

done = bFalse;

qry_item = ð;

 while (!done)

 {

rc = dsmGetNextQObj(dsmHandle,&qData);
if (((rc == DSM_RC_MORE_DATA)

|| (rc == DSM_RC_FINISHED))

 && qData.numBytes)

 {

 qry_item++;

mcResp = (qryRespMCDetailData \)qData.bufferPtr;

printf("Mgmt. Class %lu:\n",qry_item);

 printf(" Name: %s\n",mcResp->mcName);

printf(" Backup CG Name: %s\n",mcResp->backupDet.cgName);

 .

. /\ other fields of backup and archive copy groups \/

 .

printf(" Copy Destination: %s\n",mcResp->archDet.destName);

 }

 else

 {

done = bTrue;

if (rc != DSM_RC_FINISHED)

 {

printf("\\\ dsmGetNextQObj failed: ");

 rcApiOut(rc);

 }

 }

if (rc == DSM_RC_FINISHED) done = bTrue;

 }

rc = dsmEndQuery(dsmHandle);
}

Figure 16 (Part 2 of 2). Example: Performing a System Query

Sending Data to a Server
The ADSM API allows application clients to send data, or named objects and their
associated data, to ADSM server storage. Data can be either backed up or archived.
Note that all send operations must be done within the bounds of a transaction.

The Transaction Model
All data sent to ADSM storage during a backup or archive operation is done within the
bounds of a transaction. This provides a high level of data integrity for the ADSM
product, but it does impose some restrictions that an application client must take into
consideration.

A transaction is initiated by a call to dsmBeginTxn and is ended by a call to
dsmEndTxn .

26 ADSM V2 Using the Application Program Interface

A single transaction is an atomic action. Data sent within the bounds of a transaction is
either all committed to the system at the end of the transaction, or it is all rolled back if
the transaction is ended prematurely.

Transactions can consist of either single object sends or multiple object sends. Smaller
objects should be sent in a multiple object transaction. This greatly improves total
system performance, because transaction overhead is decreased. The application
client determines whether single or multiple transactions are appropriate.

All objects within a multiple object transaction must be sent to the same copy destina-
tion. If you need to send an object to a different destination than the previous object,
you must end the current transaction and start a new one. Within the new transaction,
you can send the object to the new copy destination.

ADSM limits the number of objects that can be sent in a multiple object transaction.
You can find this limit by calling dsmQuerySessInfo and examining the maxObjPerTxn

| field. This field shows the value of the TXNGroupmax option set on your server.

The application client must keep track of the objects sent within a transaction in order
to perform retry processing or error processing if the transaction is ended prematurely.
A transaction can be halted at any time by either the server or the client. Thus, the
application client must be prepared to handle sudden transaction ends that it did not
initiate.

Sending Objects to the Server
Application clients can send data, or named objects and their associated data, to ADSM
storage using the API's backup and archive functions. The backup and archive compo-
nents of the system allow for different management methodologies to be used for the
data sent to ADSM storage.

You can back up or archive objects that are larger than two gigabytes in size. The
objects can be either compressed or uncompressed.

Initiate a send operation by calling dsmSendObj . If you have more data than can be
sent at one time, you can make repeated calls to dsmSendData to transfer the rest of
the information. Call dsmEndSendObj to finish the send operation.

The backup component of the ADSM system supports multiple versions of named
objects stored on the server. Thus, any object backed up to the server that has the
same name as an object already stored on the server from that client is subject to
version control. Objects are considered to be in active or inactive states on the server.
The latest copy of an object on the server that has not been deactivated is in the active
state. Any other object, whether it is an older version or a deactivated copy, is consid-
ered to be inactive. Different management criteria are assigned to active and inactive
objects on the server as defined by the management class constructs.

The archive component of the ADSM system allows objects to be stored on the server
with retention or expiration period controls instead of version control. Each object
stored is considered to be unique, even though its name might be the same as an

 Chapter 3. Using the Application Program Interface 27

object already archived. This allows an application to archive the same object multiple
times, but with different expiration times assigned to each copy of the object.

The end user's configuration, along with the objCompressed flag, determines whether
ADSM will compress the object during a send. Also, objects with a sizeEstimate less
than DSM_MIN_COMPRESS_SIZE will not be compressed.

Some types of data (for example, data that is already compressed) may actually get
bigger when processed with the compression algorithm. When this happens, the return
code DSM_RC_COMPRESS_GREW is generated. If you recognize that this may happen, but
want the send operation to continue anyway, tell the end users to specify the following
option in their options file:

 COMPRESSAlways Yes

| Note: If your application plans to use partial object restore or retrieve, you cannot
| compress the data while sending it. To enforce this, set ObjAttr.objCompressed to
| bTrue.

State Diagrams and Flow Charts
The ADSM API is designed for straightforward logic flows and clear transitions between
the various states of the application client. This clean state transition greatly enhances
the quality and reliability of the system by catching logic flaws and program errors early
in the development cycle. For instance, a dsmSendObj call cannot be made unless a
transaction has been started and a dsmBindMC call was previously made for the
object being backed up.

The state diagram for performing backup or archive operations within a transaction is
shown in Figure 17 on page 29. The arrow on the right, going from the block marked
“In Send Object” to dsmEndTxn , shows that a dsmEndTxn call can be issued after a
call to dsmSendObj or dsmSendData . This might be desirable if an error condition
occurred during the sending of an object, and you want to stop the whole operation. In
normal circumstances, though, you call dsmEndSendObj before ending the trans-
action.

28 ADSM V2 Using the Application Program Interface

In Transaction

dsmBeginTxn

dsmBindMC*

* May be inside or outside of a transaction

dsmSendData

dsmEndTxn

In Send Object

dsmEndSendObjdsmSendObj

dsmDeleteObj

Figure 17. State Diagram for Backup and Archive Operations

The flow chart for performing backup or archive operations within a transaction is
shown in Figure 18 on page 30.

 Chapter 3. Using the Application Program Interface 29

Start

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No Idle
State

BindMC
Done?

Send
Object?

More
data?

More
objects
in txn?

More
objects?

dsmBeginTxn

dsmBindMC

dsmSendObj

dsmSendData

dsmEndSendObj

dsmEndTxn

Figure 18. Flow Chart for Backup and Archive Operations

The key feature in these two diagrams is the loop between the following API calls from
within a transaction:

 dsmBindMC
 dsmSendObj
 dsmSendData
 dsmEndSendObj

The dsmBindMC call is unique in that it can be issued from inside or outside of a
transaction boundary. It can also be issued from a different transaction if required.
The only requirement for the dsmBindMC call is that it be made prior to backing up or
archiving an object. If the object being backed up or archived is not associated with a
management class, an error code is returned from dsmSendObj . In this situation, the

30 ADSM V2 Using the Application Program Interface

transaction is halted by calling dsmEndTxn (this error condition is not shown in the
flow chart).

The flow chart illustrates how an application would use multiple object transactions. It
shows where decision points can be placed to determine if the object being sent fits
within the bounds of a transaction or whether a new transaction must be started.

 Example
The example in Figure 19 demonstrates the use of the API functions that send data to
ADSM storage. dsmSendObj appears inside a switch statement, so that different
parameters can be called depending on whether a backup or archive operation is being
performed. dsmSendData is called from inside a loop that repeatedly sends data until
a flag is set that allows the program execution to exit the loop. Note that the entire
send operation is done from within the bounds of a transaction.

The third parameter on the dsmSendObj call is a buffer that contains the archive
description. Because backup objects do not have a description, this parameter is NULL
when backing up an object.

An example showing the use of dsmBindMC is shown in Figure 13 on page 22.

if ((rc = dsmBeginTxn(dsmHandle))) /\ API session handle \/

{

printf("\\\ dsmBeginTxn failed: ");

 rcApiOut(rc);

 return;

}

/\ Call dsmBindMC if not done previously \/

Figure 19 (Part 1 of 3). Example: Sending Data to a Server

 Chapter 3. Using the Application Program Interface 31

switch (send_type)

{

case (Backup_Send) :

rc = dsmSendObj(dsmHandle,stBackup,NULL,&objName,&objAttr,NULL);
 break;

case (Archive_Send) :

archData.stVersion = sndArchiveDataVersion;

archData.descr = desc;

rc = dsmSendObj(dsmHandle,stArchive,&archData,&objName,&objAttr,NULL);
 break;

default : ;

}

if (rc)

{

printf("\\\ dsmSendObj failed: ");

 rcApiOut(rc);

 return;

}

done = bFalse;

while (!done)

{

dataBlk.stVersion = DataBlkVersion;

dataBlk.bufferLen = send_amt;

 dataBlk.numBytes = ð;

dataBlk.bufferPtr = bkup_buff;

rc = dsmSendData(dsmHandle,&dataBlk);
 if (rc)

 {

printf("\\\ dsmSendData failed: ");

 rcApiOut(rc);

done = bTrue;

 }

/\ Adjust the dataBlk buffer for the next piece to send \/

}

Figure 19 (Part 2 of 3). Example: Sending Data to a Server

32 ADSM V2 Using the Application Program Interface

rc = dsmEndSendObj(dsmHandle);
if (rc)

{

printf("\\\ dsmEndSendObj failed: ");

 rcApiOut(rc);

}

if (in_txn)

{

txn_reason = ð;

rc = dsmEndTxn(dsmHandle, /\ API session handle \/

DSM_VOTE_COMMIT, /\ Commit transaction \/

&txn_reason); /\ Reason if txn aborted \/

if (rc || txn_reason)

 {

printf("\\\ dsmEndTxn failed: rc = ");

 rcApiOut(rc);

printf(" reason = %u\n",txn_reason);

 }

}

Figure 19 (Part 3 of 3). Example: Sending Data to a Server

Receiving Data from a Server
The ADSM API allows application clients to receive data, or named objects and their
associated data, from ADSM storage using the restore and retrieve functions of the
product. Restore accesses objects that have previously been backed up, and retrieve
accesses objects that have previously been archived.

Note: Only the API can restore or retrieve objects that have been backed up or
archived with API calls.

Both restore and retrieve start with a query operation. The query returns different infor-
mation depending on whether the data was originally backed up or archived. For
instance, a query on backup objects returns information on whether an object is active
or inactive, while a query on archive objects returns information such as object
descriptions. Both queries return object keys that are used by ADSM to uniquely define
the object on the server.

| Receiving Data: Partial Object Restore or Retrieve
| The application client can choose to receive only a portion of the object. This is called
| partial object restore or partial object retrieve.

| Partial object restore or retrieve is accomplished by associating the following two data
fields with each object key:

offset The byte offset into the object from which to begin returning data

length How many bytes of the object to return

 Chapter 3. Using the Application Program Interface 33

| These data fields are used on the dsmBeginGetData call. They determine what
| portion of the object is restored or retrieved, as follows:

| � If both offset and length are zero, then the entire object is restored or retrieved
| from ADSM storage.

| � If offset is greater than zero, but length is zero, then the object is restored or
| retrieved from the offset to the end.

� If length is greater than zero, then just the portion of the object from offset for the
| specified length is restored or retrieved.

| Note: Partial object restore or retrieve works only with ADSM Version 2 servers. Also,
| if your application plans to use partial object restore or retrieve, you cannot compress
| the data while sending it. To enforce this, set ObjAttr.objCompressed to bTrue.

| Receiving Data: Restore or Retrieve Procedure
After a query has been made, restore and retrieve operate in exactly the same way.

Once a session is established with the ADSM server, the typical procedure to restore or
retrieve data is:

1 Query the ADSM server for either backup or archive data.

2 Determine the objects to be restored or retrieved from the server.

3 Sort the objects on the restore order field.

4 Issue the dsmBeginGetData call with the list of objects to be accessed.

5 Issue the dsmGetObj call to obtain each object from the system. Multiple
dsmGetData calls might be needed for each object to obtain all associated
object data. Issue the dsmEndGetObj call after all data for an object has been
obtained.

6 Issue the dsmEndGetData call after all data for all objects has been received or
to terminate the receive operation.

This cycle can be repeated as many times as is necessary. A more detailed
description of each step follows.

Step 1. Issuing Queries for Backup or Archive Data
Before any restore or retrieve operation can begin, you must first query the ADSM
server to determine what objects can be received from storage. To issue the query, the
application must fill in the proper parameter lists and structures for the
dsmBeginQuery call. This includes the file space that the query is to examine and
pattern-match entries for the high-level and low-level name fields. If the session was

34 ADSM V2 Using the Application Program Interface

initialized with a NULL owner name, the owner field need not be specified, but if the
session was initialized with an explicit owner name, then only objects that explicitly
have that owner name associated with them are returned.

The query returns all information that was originally stored with the object, plus the
following:

copyId The copyIdHi and copyIdLo values provide an 8-byte number that uniquely
identifies this object for this node in ADSM storage. Use this ID to request
a specific object from storage for restore or retrieve processing.

restoreOrder
The restoreOrderHi and restoreOrderLo values provide a mechanism for
receiving objects from ADSM storage in the most efficient manner possible.
Sort the objects to be restored on this value to insure that tapes are
mounted only once and are read from front to back.

mediaClass
The mediaClass value identifies the type of media on which the object is
currently stored in the server. This field can have one of the following
values:

MEDIA_FIXED Local, online, fixed media such as hard disks
MEDIA_LIBRARY Local media that can be mechanically mounted
MEDIA_NETWORK Storage media accessible via a network server
MEDIA_SHELF Media accessible only via human intervention
MEDIA_OFFSITE Media stored in an off-site location
MEDIA_UNAVAILABLE Media that are inaccessible for retrieval

The first value represents the fastest access to an object. Each successive
value represents a class of media that involves increasing variation in the
time required to retrieve an object.

You must retain some or all of the query information for later processing. Retain the
copyId and restoreOrder fields because they are needed for the actual restore opera-
tion. You must also retain any other information needed to properly open a data file or
identify a destination.

Call dsmEndQuery to finish the query operation.

Step 2. Selecting Objects to Receive
Once the backup or archive query has been performed, the application client must
determine which objects, if any, are to be restored or retrieved.

Step 3. Sorting Objects by Restore Order
Once the objects to restore or retrieve are selected, they must be sorted in ascending
order (low to hi) by the restoreOrderHi and restoreOrderLo fields. This sorting is crit-
ical to the performance of the restore operation. Sorting the objects on the
restoreOrder fields means that the data is read from the server in the most efficient
order. Thus, all data on disk is restored first, followed by data on media classes that
require volume mounts (such as tape). The restoreOrder field also insures that data

 Chapter 3. Using the Application Program Interface 35

on tape is read in order with processing starting at the front of a tape and progressing
towards the end.

Properly sorting on the restoreOrder field means that duplicate tape mounts and
unnecessary tape rewinds do not occur.

Step 4. Issuing the dsmBeginGetData Call
Once the objects to receive have been selected and sorted, they can be submitted to
ADSM for restore or retrieve. The dsmBeginGetData call begins a restore or retrieve
operation. Two key parameters must be filled out in these calls:

mountWait
This parameter tells the server whether the application client is willing to
wait for offline media to be mounted in order to obtain an object's data, or
whether that object should be skipped during processing of the restore or
retrieve operation.

Note that the application client can make an informed decision on this by
checking the mediaClass field returned from the backup or archive query.
Requesting objects to be skipped takes longer to process, because the
system must indicate to the application client that the object was skipped
due to being on offline media.

dsmGetObjListP
This parameter is a data structure that contains a list of all objIds that are
to be restored or retrieved. If the objects are archive copies, then each
objId is associated with a partialObjData structure that describes whether
the entire objId or only a particular section of the object is to be retrieved.

Each objId is eight bytes long, so a single restore or retrieve request can
contain thousands of objects. The number of objects to request in a single

| call is limited to DSM_MAX_GET_OBJ.

The objects are returned to the application client in the order requested.

Step 5. Receiving Each Object to Be Restored/Retrieved
Once the dsmBeginGetData call has been issued, you must perform the following
activities to receive each object being sent from the server:

1 Issue the dsmGetObj call to identify the object being requested from the data
stream and, optionally, to obtain the first block of data associated with the
object.

2 Issue more dsmGetData calls, as necessary, to obtain the remaining object
data.

After all data for an object has been obtained, or no further data for the object is
desired, then a dsmEndGetObj call must be issued. If more objects are to be

36 ADSM V2 Using the Application Program Interface

received, issue the dsmGetObj call again. If the process is to be stopped (normally or
abnormally), issue the dsmEndGetData call.

Step 6. Issuing the dsmEndGetData Call
After all data for all requested objects has been received, the dsmEndGetData call
must be issued. You can also use this call to discard any remaining data in the restore
stream for all objects not yet received.

State Diagrams and Flow Charts
The state diagram for performing restore or retrieve operations is shown in Figure 20.
The arrow on the right, going from the block marked “In Get Object” to
dsmEndGetData , shows that a dsmEndGetData call can be issued after a call to
dsmGetObj or dsmGetData . This might be desirable if an error condition occurred
while getting an object from ADSM storage and you want to stop the operation. In
normal circumstances, though, you should call dsmEndGetObj first.

In Get Data

dsmBeginGetData

dsmGetData

dsmEndGetData

In Get Object

dsmEndGetObjdsmGetObj

Figure 20. State Diagram for Restore and Retrieve Operations

The flow chart for performing restore or retrieve operations is shown in Figure 21 on
page 38.

 Chapter 3. Using the Application Program Interface 37

No

Yes

Start

Idle
State

Yes

Yes

No

No

Query server to determine
objects to get

Sort desired objects
by restore order

dsmBeginGetData

dsmGetObj

More
data?

dsmGetData

dsmEndGetObj More
objects? dsmEndGetData

Another
list?

Figure 21. Flow Chart for Restore and Retrieve Operations

 Example
The example in Figure 22 on page 39 demonstrates the use of the API functions that
retrieve data from ADSM storage. dsmBeginGetData appears inside a switch state-
ment, so that different parameters can be called depending on whether a restore or
retrieve is being performed. dsmGetData is called from inside a loop that repeatedly
gets data from the server until a flag is set that allows the program execution to exit the
loop.

38 ADSM V2 Using the Application Program Interface

/\ Call dsmBeginQuery and create a linked list of objects to restore. \/

/\ Process this list to create the proper list for the GetData calls. \/

/\ Set up the getList structure to point to this list. \/

/\ This example is set up to perform a partial object retrieve. To \/

/\ retrieve only complete objects, set up: \/

/\ getList.stVersion = dsmGetListVersion; \/

/\ getList.partialObjData = NULL; \/

dsmGetList getList;

getList.stVersion = dsmGetListPORVersion; /\ structure version \/

getList.numObjId = items; /\ number of items in list \/

getList.objId = (ObjID \)rest_ibuff; /\ list of object IDs to restore \/

getList.partialObjData = (PartialObjData \) part_ibuff;

/\ list of partial object data \/

switch(get_type)

{

case (Restore_Get) :

rc = dsmBeginGetData(dsmHandle,bFalse,gtBackup,&getList);
 break;

case (Retrieve_Get) :

rc = dsmBeginGetData(dsmHandle,bFalse,gtArchive,&getList);
 break;

default : ;

}

if (rc)

{

printf("\\\ dsmBeginGetData failed: ");

 rcApiOut(rc);

 return rc;

}

/\ Get each object from the list and verify whether it is on the \/

/\ server. If so, initialize structures with object attributes for \/

/\ data validation checks. When done, call dsmGetObj. \/

rc = dsmGetObj(dsmHandle,objId,&dataBlk);

Figure 22 (Part 1 of 2). Example: Receiving Data from a Server

 Chapter 3. Using the Application Program Interface 39

done = bFalse;

while(!done)

{

if ((rc == DSM_RC_MORE_DATA)

|| (rc == DSM_RC_FINISHED))

 {

if (rc == DSM_RC_MORE_DATA)

 {

dataBlk.numBytes = ð;

rc = dsmGetData(dsmHandle,&dataBlk);
 }

 else

done = bTrue;

 }

 else

 {

printf("\\\ dsmGetObj or dsmGetData failed: ");

 rcApiOut(rc);

done = bTrue;

 }

} /\ while \/

rc = dsmEndGetObj(dsmHandle);

rc = dsmEndGetData(dsmHandle);
return ð;

Figure 22 (Part 2 of 2). Example: Receiving Data from a Server

Deleting Objects from the Server
API applications can issue calls to either delete objects that have been archived or
deactivate objects that have been backed up. The former is dependent on the node
authorization given when the node was registered by an ADSM administrator. Adminis-
trators can specify whether nodes can delete archive objects.

dsmDeleteObj is used for both deleting archive objects and deactivating backup
objects.

When deleting an archive object, the object is marked in ADSM storage for deletion
when the system next performs its object expiration cycle. Once an archive object is
deleted from the server, it cannot be retrieved.

When deactivating a backup object at the server, the object moves from an active state
to an inactive state. These states have different retention policies associated with them
based on the management class assigned.

Like the dsmSendObj call, a call to dsmDeleteObj is issued within the bounds of a
transaction. The state diagram in Figure 17 on page 29 shows how a call to
dsmDeleteObj is preceded by a call to dsmBeginTxn and followed by a call to
dsmEndTxn .

40 ADSM V2 Using the Application Program Interface

Identifying the Object
The ADSM server can be viewed as an object storage server whose main goal is to
efficiently store and retrieve named objects. The server has two main storage areas to
meet this requirement:

� The database contains all metadata (name, attributes, and so forth) associated with
an object.

� The data storage contains the actual object data. The data storage is actually a
storage hierarchy defined by the system administrator. Data is efficiently stored
and managed on either online or offline media, depending on cost and access
needs.

Each object stored on the server has a name associated with it. The client controls the
following key components of the name:

File space name
 High-level name
 Low-level name
 Object type

When making decisions about naming objects for an application, keep in mind that it
may be necessary to externalize the full object names to the end user. Specifically, the
end user may need to specify the object in an Include or Exclude statement when the
application is run.

The exact syntax of the object name in these statements is platform dependent. On
the OS/2 and Windows platforms (but not UNIX), the drive letter associated with the file
space rather than the file space name itself is used in the Include or Exclude statement.

| On the Novell and AS/400 platforms, the first character of the low-level name must be a
forward slash (/).

File Space Name
One of the most critical components of the name is the file space name. This name
can be viewed as the name of a file system or disk drive, or any other high-level qual-
ifier that groups related data together. ADSM uses the file space to identify the file
system or disk drive the data is located on. Thus, actions can be performed on all
entities within a file space with relative ease, such as querying all objects within a spec-
ified file space. Because the file space is such a critical component of the ADSM
naming convention, ADSM has special calls to register, update, query, and delete file
spaces.

The ADSM server also has administrative commands to query the file spaces on a
given node in ADSM storage, and delete them if necessary. Thus, all data stored by
the application client must have a file space name associated with it. Choose the name
carefully to group like data together in the system.

An application client should choose different file space names than a backup-archive
client would use, in order to avoid possible interference. The application client should

 Chapter 3. Using the Application Program Interface 41

publish its file space names, so that end users can identify the objects for Include and
Exclude statements, if necessary.

Note that on the Microsoft Windows platform, when the file space is registered, you
must enter a drive letter. However, the drive letter is not part of the actual file space
name.

High-Level and Low-Level Names
Two other components of the object name are the high-level and low-level name qual-
ifiers. The high-level qualifier can be viewed as the directory path the object belongs
in, and the low-level qualifier as the actual name of the object in that directory path.
When the file space name, high-level name, and low-level name are concatenated, they
must form a syntactically correct name on the operating system the client is running on.
The name does not have to exist as an object on the system or bear any relation to the
actual data on the local file system, but the name must meet the standard naming rules
in order to be properly processed by the dsmBindMC calls.

 Object Type
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data. A directory is an object that contains only
attributes.

 Examples
| Following are four examples of object names. The first demonstrates what the applica-

tion client would code on a UNIX platform:

 /myfs/highlev/lowlev

The second example shows what the application client would code on a Windows or
OS/2 platform:

 myvol\\highlev\\lowlev

The double backslashes are ultimately translated to single backslashes. Note that file
space names start with a slash on the UNIX platform, but need not do so on the
Windows platform.

The third example shows what the application client would code on a Novell NetWare
platform:

 myvol:highlev/lowlev

| The fourth example shows what the application client would code on the AS/400
| platform:

| myfs/highlev/lowlev

42 ADSM V2 Using the Application Program Interface

Setting the Owner Name
Each object has an owner name associated with it. The rules governing what objects
can be accessed depend on what owner name is used when a session is initialized.
This object owner value can be used to control access to the object.

If a session is initialized with an owner name of NULL, that session owner is treated
with session (or root) authority. This session can perform any action on any object
owned by this node regardless of the actual owner of that object. The session owner is
set during the call to dsmInit in the clientOwnerNameP parameter.

If a session is initialized with a specific owner name, the session can only perform
actions on objects that have that owner name associated with them. Thus, backups or
archives into the system all must have this owner name associated with them. Also,
any queries performed only return values that have this owner name associated with
them. The object owner value is set during the dsmSendObj call in the owner field of
the ObjAttr structure.

Note that an owner name is case sensitive.

Figure 23 summarizes the conditions under which a user has access to an object.

Figure 23. Summary of user access to objects

Session owner Object owner User access?

NULL (root, system owner) “ ” (empty string) Yes

NULL specific name Yes

specific name “ ” (empty string) No

specific name same name Yes

specific name different name No

Managing File Spaces
The file space identifier was introduced in “Identifying the Object” on page 41.
Because the file space is so important to the operation of the system, a separate set of
calls is used to register, update, and delete file space identifiers.

A file space must first be registered with ADSM before any objects associated with that
file space can be stored on the system. Use the dsmRegisterFS call to accomplish
this task.

The file space identifier is used as the top-level qualifier in a three-part name hierarchy.
Grouping related data together within a file space makes management of that data
much simpler. For instance, a file space and all the objects within the file space can be
deleted by either the application client or the ADSM server administrator.

 Chapter 3. Using the Application Program Interface 43

File spaces also allow the application client to provide various information about the file
space to the server, which can then be queried by an ADSM administrator. This infor-
mation is stored in the dsmFSUpd structure and includes:

fstype The file space type. This field is a character string set by the applica-
tion client.

fsAttr[platform].fsInfo
A client information field used for client specific data.

capacity The total amount of space in the file space (if applicable).

occupancy The amount of space currently occupied in the file space (if applicable).

The use of the last two items depends on the application client. Some applications
might not need information about the size of the file space, in which case these fields
can be defaulted to zero.

After a file space is registered with the system, you can back up or archive objects as
desired. A good practice (though not required) is to call dsmUpdateFS to update the
file space's occupancy and capacity fields after a backup or archive operation. This
insures that the values for the file system's occupancy and capacity are up-to-date.

If a file space is no longer needed, you can delete it with the dsmDeleteFS command.

File spaces can also be queried. (See “Querying the ADSM System” on page 22 for
details.) On a file space query, all information available about the file space is returned
in the qryRespFSData structure.

 Examples
The examples in Figure 24 on page 45 demonstrate the use of the three file space
calls.

44 ADSM V2 Using the Application Program Interface

/\ Register the file space if it hasn't already been done. \/

int16 rc;

regFSData fsData;

char fsName[DSM_MAX_FSNAME_LENGTH];

char smpAPI[] = "Sample-API";

strcpy(fsName,"/home/tallan/text");

memset(&fsData,ðxðð,sizeof(fsData));

fsData.stVersion = regFSDataVersion;

fsData.fsName = fsName;

fsData.fsType = smpAPI;

strcpy(fsData.fsAttr.unixFSAttr.fsInfo,"Sample API FS Info");

fsData.fsAttr.unixFSAttr.fsInfoLength =

strlen(fsData.fsAttr.unixFSAttr.fsInfo) + 1;

fsData.occupancy.hi=ð;

fsData.occupancy.lo=1ðð;

fsData.capacity.hi=ð;

fsData.capacity.lo=3ðð;

rc = dsmRegisterFS(dsmHandle,fsData);
if (rc == DSM_RC_FS_ALREADY_REGED) rc = DSM_RC_OK; /\ already done \/

if (rc)

{

printf("Filespace registration failed: ");

 rcApiOut(rc);

 free(bkup_buff);

 return (RC_SESSION_FAILED);

}

Figure 24 (Part 1 of 2). Example: Working with File Spaces

 Chapter 3. Using the Application Program Interface 45

/\ Update the file space. \/

dsmFSUpd updFilespace; /\ for update FS \/

updFilespace.stVersion = dsmFSUpdVersion;

updFilespace.fsType = ð; /\ no change \/

updFilespace.occupancy.hi = ð;

updFilespace.occupancy.lo = 5ð;

updFilespace.capacity.hi = ð;

updFilespace.capacity.lo = 2ðð;

strcpy(updFilespace.fsAttr.unixFSAttr.fsInfo,

"My update for filespace") ;

updFilespace.fsAttr.unixFSAttr.fsInfoLength =

 strlen(updFilespace.fsAttr.unixFSAttr.fsInfo);

updAction = DSM_FSUPD_FSINFO |

 DSM_FSUPD_OCCUPANCY |

 DSM_FSUPD_CAPACITY;

rc = dsmUpdateFS(handle,fsName,&updFilespace,updAction);
printf("dsmUpdateFS rc=%d\n", rc);

/\ Delete the file space. \/

printf("\nDeleting file space %s",fsName);

rc = dsmDeleteFS(dsmHandle,fsName,DSM_REPOS_ALL);
if (rc)

{

 printf(" FAILED!!! ");

 rcApiOut(rc);

}

else printf(" OK!\n");

Figure 24 (Part 2 of 2). Example: Working with File Spaces

Putting It All Together
Figure 25 on page 47 contains an overall state diagram for the ADSM API. It contains
all previous state diagrams shown plus a few other calls not depicted.

The key new points in this diagram are:

� The dsmQueryApiVersion call can be called at any time and has no state associ-
ated with it. An example is shown in Figure 10 on page 17.

� A set of calls that have to do with managing file spaces (dsmRegisterFS ,
dsmUpdateFS , dsmDeleteFS). These calls are made from within an idle session
state. File spaces are queried using the dsmBeginQuery call. For more informa-
tion on the file space calls, see “Managing File Spaces” on page 43.

� The dsmBindMC call can be issued from within an idle session state or from
within a send object transaction state. See the example in Figure 13 on page 22.

46 ADSM V2 Using the Application Program Interface

� The dsmChangePW call is issued from within an idle session state. Note that if
the dsmInit call returns with a password expired return code, the dsmChangePW
call must be made before a valid session is started. An example using
dsmChangePW is shown in Figure 12 on page 20.

| Note: If a call returns with an error, the state remains as it was. For example, if
| dsmGetObj returns with an error, the state remains “In Get Data,” and a call to
| dsmEndGetObj is a call sequence error.

dsmInit

dsmBindMC

dsmDeleteFS

dsmUpdateFS

dsmRegisterFS

dsmChangePW

dsmQuerySessInfo

dsmTerminate

In
Session

dsmQueryApiVersion

dsmBeginQuery

dsmGetNextQObj

dsmEndQuery

In Query

dsmBeginGetData

dsmGetData

dsmEndGetData

In Get Data

dsmGetObj dsmEndGetObj

In Get Object

In
Transaction

dsmBeginTxn

dsmBindMC*

* May be inside or outside of a transaction

dsmSendData

dsmEndTxn

In
Send Object

dsmDeleteObj

dsmSendObj dsmEndSendObj

Figure 25. Global State Diagram for ADSM

 Chapter 3. Using the Application Program Interface 47

Determining Size Limits
Certain data structures or fields in the API have size limitations. These structures are
often names or other text fields that cannot exceed a predetermined length. Examples
of fields with such limits are:

 Archive description
Copy group destination
Copy group name
File space information
Management class name
Object owner name

 Password

These limits are defined as constants within the header file dsmapitd.h . Any storage
allocation should be based on these constants instead of hard-coded numbers. Refer
to Appendix A, “API Type Definitions Source File” on page 91 for further information
and a list of the current constants.

48 ADSM V2 Using the Application Program Interface

Chapter 4. API Function Definitions

This section describes the calls that constitute the application program interface. The
functions are listed in alphabetical order.

For each function, the following items are described:

� Purpose — a description of the circumstances in which the function is used.

� Syntax — the actual C code for the function. This code is copied from the UNIX
version of the header file dsmapifp.h (see Appendix B, “API Function Definitions
Source File” on page 107). Note that this file differs slightly on other platforms.
Application programmers for other platforms should check their version of
dsmapifp.h for the exact syntax of the API definitions.

� Parameters — a description of each parameter in the function call. Each param-
eter is identified as (I) or (O), depending on whether it is used for input or output.
A few parameters are designated as (I/O). These are data structures that are used
for both input and output. The data types referred to in this section are defined in
the header file dsmapitd.h (see Appendix A, “API Type Definitions Source File” on
page 91).

� Return Codes — a list of the return codes specific to the function. Note that there
are also general system errors, such as communication errors, server problems,
and user mistakes, that could appear on any call, and these are not listed on the
following pages. For a complete list of all the return codes with explanations, see
Appendix D, “API Return Codes With Explanations” on page 123.

 Copyright IBM Corp. 1995, 1996 49

dsmBeginGetData

 dsmBeginGetData
Use dsmBeginGetData to start a restore or retrieve operation on a list of objects in
ADSM storage. The list of objects is contained in the dsmGetList structure. This list is
created in the call to dsmBeginQuery that must precede a call to dsmBeginGetData .

The list contained in this call must first be sorted by the caller using the restore order
fields obtained from the object query. This is critical to insure the objects are restored
from ADSM storage in the most efficient mode possible without having to rewind or
remount data tapes.

| The list can contain as many objects as are defined in DSM_MAX_GET_OBJ (4080).

The call to dsmBeginGetData should be followed by one or more calls to dsmGetObj
to obtain each object within the list. After each object is obtained (or no further data for
the object is desired), the dsmEndGetObj call must be issued.

When all objects have been obtained (or the get is to be canceled), the
dsmEndGetData call is issued. The cycle can then be started again if required.

 Syntax
int16 dsmBeginGetData

 (uint32 dsmHandle,

 bool_t mountWait,

 dsmGetType getType,

 dsmGetList \dsmGetObjListP);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

bool_t mountWait (I)
A boolean True/False value indicating whether the application client is willing to
wait for offline media to be mounted if the desired data is currently offline.

dsmGetType getType (I)
An enumerated type consisting of gtBackup and gtArchive that indicates what type
of object to get.

dsmGetList *dsmGetObjListP (I)
| This parameter is the structure that contains information on the objects or partial
| objects to restore or retrieve. The structure points to a list of object IDs and, in the
| case of a partial object retrieve or restore, a list of associated offsets and lengths.
| If your application will be using the partial object restore or retrieve function, set the
| dsmGetList.stVersion field to dsmGetListPORVersion. Also, in a partial object
| restore or retrieve, you cannot compress data while sending it. To enforce this, set
| ObjAttr.objCompressed to bTrue.

Refer to Figure 22 on page 39 and Appendix A, “API Type Definitions Source
File” on page 91 for further details on this structure.

50 ADSM V2 Using the Application Program Interface

dsmBeginGetData

| Refer to page 33 for more information on partial object restore or retrieve.

 Return Codes

Figure 26. Return Codes for dsmBeginGetData

Return Code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset specified during a partial object retrieve is greater
than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length specified during a partial object retrieve is greater
than the length of the object, or the offset plus the length
extends past the end of the object.

DSM_RC_NO_MEMORY (102) There is no RAM left to complete request.

| DSM_RC_NUMOBJ_EXCEED (2029)| dsmGetList.numObjId is greater than DSM_MAX_GET_OBJ.

DSM_RC_OBJID_NOTFOUND (2063) Object ID not found, so object was not restored.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

 Chapter 4. API Function Definitions 51

dsmBeginQuery

 dsmBeginQuery
Use dsmBeginQuery to initiate a query request to ADSM for information about one of
the following areas:

 Archived data
Backed up data
Active backed up data

 File spaces
 Management classes

The query data returned from the call is obtained by one or more calls to
dsmGetNextQObj .

When the query is complete (whether successful or not), the dsmEndQuery call is
issued.

 Syntax
int16 dsmBeginQuery

 (uint32 dsmHandle,

 dsmQueryType queryType,

 dsmQueryBuff \queryBuffer);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

dsmQueryType queryType (I)
Identifies the type of query to perform. You can choose from:

qtArchive Queries archived objects

qtBackup Queries backed up objects

qtBackupActive Queries only active backed up objects for the entire file space
name you pass. This is referred to as “fast path” and is the
most efficient way to query active objects from ADSM storage.

Note: On multi-user platforms, you must be the root user.

qtFilespace Queries registered file spaces

qtMC Queries defined management classes

dsmQueryBuff *queryBuffer (I)
Identifies a pointer to a buffer that is mapped to a particular data structure associ-
ated with the query type you pass.

These structures contain the selection criteria for each query type. The fields in
each structure must be filled out to specify the scope of the query to be performed.
The first field of each structure is stVersion, which is the API version number. The
data structures and their other fields are:

52 ADSM V2 Using the Application Program Interface

dsmBeginQuery

qryArchiveData

objName The full name of the object. You can use a wildcard char-
acter, such as an asterisk (*) or question mark (?), in the high-
or low-level portion of the name (see “High-Level and Low-
Level Names” on page 42). An asterisk matches zero or
more characters and a question mark matches exactly one
character. The objType field of the objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or DSM_OBJ_ANY_TYPE.

owner The name of the object's owner.

insDateLowerBound
The lower bound for the archive insert date (the date the
object was archived). To get the default lower bound, set the
year component to DATE_MINUS_INFINITE.

insDateUpperBound
The upper bound for the archive insert date. To get the
default upper bound, set the year component to
DATE_PLUS_INFINITE.

expDateLowerBound
The lower bound for the expiration date. The default values
for both expiration date fields are the same as for the insert
date fields.

expDateUpperBound
The upper bound for the expiration date.

descr The archive description. Enter an asterisk (*) to search on all
descriptions.

qryBackupData

objName The full name of the object. You can use a wildcard char-
acter, such as an asterisk (*) or question mark (?), in the high-
or low-level portion of the name (see “High-Level and Low-
Level Names” on page 42). An asterisk matches zero or
more characters and a question mark matches exactly one
character. The objType field of the objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or DSM_OBJ_ANY_TYPE.

owner The name of the object's owner.

objState This field can have one of the three values DSM_ACTIVE,
DSM_INACTIVE, or DSM_ANY_MATCH.

qryABackupData

objName The full name of the object. You can use a wildcard char-
acter, such as an asterisk (*) or question mark (?), in the high-
or low-level portion of the name (see “High-Level and Low-
Level Names” on page 42). An asterisk matches zero or
more characters and a question mark matches exactly one

 Chapter 4. API Function Definitions 53

dsmBeginQuery

character. The objType field of the objName can be
DSM_OBJ_FILE, DSM_OBJ_DIRECTORY, or DSM_OBJ_ANY_TYPE.

qryFSData

fsName Enter the name of a specific file space in this field or enter an
asterisk (*) to retrieve information about all registered file
spaces.

qryMCData

mcName Enter the name of a specific management class or enter an
empty string (“ ”) to get information about all management
classes. Note that an asterisk (*) will not work.

mcDetail This field has the value bTrue or bFalse. The value deter-
mines whether information on the management class's backup
and archive copy groups is returned.

 Return Codes

Figure 27. Return Codes for dsmBeginQuery

Return Code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM left to complete request.

DSM_RC_FILE_SPACE_NOT_FOUND (124) Specified file space was not found.

DSM_RC_NO_POLICY_BLK (2007) No server policy information available.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner name.

DSM_RC_INVALID_OBJSTATE (2024) Invalid object state.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

54 ADSM V2 Using the Application Program Interface

dsmBeginTxn

 dsmBeginTxn
Use dsmBeginTxn to begin an ADSM transaction. The dsmBeginTxn call indicates to
ADSM the beginning of one or more actions that are executed as an atomic unit, that
is, all the actions succeed or none succeed. An action can be assumed to be either a
single ADSM call or a series of ADSM calls that are made for a particular end. For
example, a dsmSendObj call followed by a number of dsmSendData calls can be con-
sidered a single action. Similarly, a dsmSendObj that has a dataBlkPtr indicating a
data area that fully contains the object to be backed up is also a single action.

Try to group multiple objects together in a single transaction for data transfer oper-
ations. Grouping objects results in significant performance improvements in the ADSM
system. A certain amount of overhead is incurred in initiating and terminating a trans-
action from both a client and a server perspective. Sending multiple objects within a
single transaction also means that multiple objects can be sent within a single low-level
communication buffer, which greatly decreases the number of communication line turn-
arounds.

ADSM has certain limits to what can be performed within a single transaction. These
restrictions are:

� There is a maximum number of objects that can be sent in a single transaction.
This limit can be found from the data returned by dsmQuerySessInfo in the field
ApiSessInfo.maxObjPerTxn.

� Objects sent to the server (backup or archive) within a single transaction must all
have the same copy destination as defined in the management class binding for
the object. This limit can be found from the data returned by dsmBindMC in the
fields mcBindKey.backup_copy_dest and mcBindKey.archive_copy_dest.

The ADSM API has been designed so that either the application client can monitor and
control these restrictions, or the API itself can monitor these restrictions and inform the
application client when one or more have been reached via appropriate return codes
from the API calls.

A dsmBeginTxn call is always coupled with a dsmEndTxn call. ADSM attempts to
optimize the set of actions within a pair of dsmBeginTxn and dsmEndTxn calls.

 Syntax
int16 dsmBeginTxn

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Chapter 4. API Function Definitions 55

dsmBeginTxn

 Return Codes
There are no return codes specifically for this call.

56 ADSM V2 Using the Application Program Interface

dsmBindMC

 dsmBindMC
Use dsmBindMC to associate, or bind, an ADSM management class to the passed
object. This binding is performed by passing the object through the include/exclude list
pointed to in the options file. If no match is found in this list for a specific management
class, the default management class is assigned.

The parameters returned in the mcBindKey structure can be used by the application
client to determine if this object should be backed up or archived, and whether a new
transaction must be started due to different copy destinations (see dsmBeginTxn).

You must call dsmBindMC prior to calling dsmSendObj , because every object must
have a management class associated with it. This call can be done inside or outside of
the bounds of a transaction. For example, while in a multiple object transaction, if
dsmBindMC indicates that the object has a different copy destination than the previous
object, then the transaction must be ended and a new transaction started. In this case,
another dsmBindMC is not required because one has already been performed for this
object.

 Syntax
int16 dsmBindMC

 (uint32 dsmHandle,

 dsmObjName \objNameP,

 dsmSendType sendType,

 mcBindKey \mcBindKeyP);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name, high-
level object name, low-level object name, and object type.

dsmSendType sendType (I)
Identifies whether this management class bind is being done for archive or backup
sends. The possible values for this call are:

stBackup Specifies that this is a backup object
stArchive Specifies that this is an archive object
stBackupMountWait Specifies that this is a backup object
stArchiveMountWait Specifies that this is an archive object

For the dsmBindMC call, stBackup and stBackupMountWait are equivalent, and
stArchive and stArchiveMountWait are equivalent.

mcBindKey *mcBindKeyP (O)
This is the address of a mcBindKey structure where the management class informa-
tion is returned. The application client can use the information returned here to

 Chapter 4. API Function Definitions 57

dsmBindMC

determine if this object fits within a multiple object transaction, or to do a manage-
ment class query on the management class bound to the object.

 Return Codes

Figure 28. Return Codes for dsmBindMC

Return Code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM left to complete request.

DSM_RC_INVALID_PARM (109) One of the parameters passed has an invalid value.

DSM_RC_TL_EXCLUDED (185) Backup object is excluded and cannot be sent.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

58 ADSM V2 Using the Application Program Interface

dsmChangePW

 dsmChangePW
Use dsmChangePW to change an ADSM password. On a multiple-user platform, such
as UNIX, this call can only be used by the root user within the login user ID of root.

On the Windows, OS/2, and Novell platforms, the password can be specified in the
dsm.opt file. In this situation, dsmChangePW does not update dsm.opt . After the
call to dsmChangePW is made, dsm.opt must be updated separately.

| A successful execution of this call is required if dsmInit returns
| DSM_RC_VERIFIER_EXPIRED. The session will terminate if the dsmChangePW call
| fails in this situation.

| If dsmChangePW is called for some other reason, the session will remain open, no
| matter what the return code.

 Syntax
int16 dsmChangePW

 (uint32 dsmHandle,

 char \oldPW,

 char \newPW);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

char *oldPW (I)
This parameter is the caller's old password.

char *newPW (I)
This parameter is the caller's new password.

 Return Codes

Figure 29. Return Codes for dsmChangePW

Return Code Explanation

DSM_RC_ABORT_BAD_VERIFIER (6) An incorrect password was entered.

DSM_RC_AUTH_FAILURE (137) Authentication failure. Old password is incorrect.

DSM_RC_NEWPW_REQD (2030) A value must be entered for the new password.

DSM_RC_OLDPW_REQD (2031) A value must be entered for the old password.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NEED_ROOT (2300) API caller must be a root user.

 Chapter 4. API Function Definitions 59

dsmDeleteFS

 dsmDeleteFS
Use dsmDeleteFS to delete a file space from ADSM storage.

To delete a file space, you must have the appropriate permissions granted to you by
your ADSM administrator. You can find out whether you have the necessary permis-
sions by calling dsmQuerySessInfo . This function returns a data structure of type
ApiSessInfo, which includes two fields called archDel and backDel.

If the file space that you want to delete contains backup versions, you must have
backup delete authority (backDel = BACKDEL_YES). If it contains archive copies, you
must have archive delete authority (archDel = ARCHDEL_YES). If the file space contains
both backup versions and archive copies, you need to have both types of delete
authority.

Note that on a UNIX platform only a root user within the login user ID of root can delete
a file space.

 Syntax
int16 dsmDeleteFS

 (uint32 dsmHandle,

 char \fsName,

 unsigned char repository);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

char *fsName (I)
This parameter is a pointer to the file space name to be deleted.

unsigned char repository (I)
This parameter indicates whether the file space to be deleted is a backup reposi-
tory, archive repository, or both. The possible values for this field are:

DSM_ARCHIVE_REP /\ archive repository \/

DSM_BACKUP_REP /\ backup repository \/

DSM_REPOS_ALL /\ all repository types \/

60 ADSM V2 Using the Application Program Interface

dsmDeleteFS

 Return Codes

Figure 30. Return Codes for dsmDeleteFS

Return Code Explanation

DSM_RC_ABORT_NOT_AUTHORIZED (27) You do not have the necessary authority to delete the file
space.

DSM_RC_INVALID_REPOS (2015) Invalid value for repository.

DSM_RC_FSNAME_NOTFOUND (2060) File space name not found.

DSM_RC_NEED_ROOT (2300) API caller must be a root user.

 Chapter 4. API Function Definitions 61

dsmDeleteObj

 dsmDeleteObj
Use dsmDeleteObj to deactivate backup objects or delete archive objects in ADSM
storage. This function must be called from within a transaction (see dsmBeginTxn).

The maximum number of objects that can be deleted in a single transaction is deter-
mined by the value of maxObjPerTxn. You can get this value by calling
dsmQuerySessInfo .

Note that you must have the appropriate permission granted to you by your ADSM
administrator. To delete archive objects, you must have archive delete authority. You
do not need backup delete authority to deactivate a backup object.

 Syntax
int16 dsmDeleteObj

 (uint32 dsmHandle,

 dsmDelType delType,

 dsmDelInfo delInfo)

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

dsmDelType delType (I)
Indicates what type of object (backup or archive) is to be deleted. Possible values
are:

dtArchive Object to delete was previously archived
dtBackup Object to deactivate was previously backed up

dsmDelInfo delInfo (I)
This parameter is a structure whose fields are used to identify the object. The
fields are different, depending on whether the object is a backup object or an
archive object. The structure for a backup object, called delBack, contains the
object name and the object's copy group. The structure for an archive object,
called delArch, contains the object ID.

The information in delInfo is obtained by issuing the query sequence described in
“Querying the ADSM System” on page 22. The call to dsmGetNextQObj returns
a data structure called qryRespBackupData for backup queries or
qryRespArchiveData for archive queries. These data structures contain the infor-
mation needed for delInfo.

62 ADSM V2 Using the Application Program Interface

dsmDeleteObj

 Return Codes

Figure 31. Return Codes for dsmDeleteObj

Return Code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

 Chapter 4. API Function Definitions 63

dsmEndGetData

 dsmEndGetData
Use dsmEndGetData to signify the end of a dsmBeginGetData session for obtaining
objects from ADSM storage.

dsmEndGetData can be invoked after all objects to restore have been processed or to
terminate the get process prematurely. dsmEndGetData must be called to end a
dsmBeginGetData session before other processing can continue.

Depending on when dsmEndGetData is called, the ADSM API might have to finish
processing a partial data stream before the process can be stopped. The caller, there-
fore, should not always expect an immediate return from this call.

 Syntax
int16 dsmEndGetData

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Return Codes
There are no return codes specifically for this call.

64 ADSM V2 Using the Application Program Interface

dsmEndGetObj

 dsmEndGetObj
Use dsmEndGetObj to signify the end of a dsmGetObj cycle for obtaining data for a
specified object.

dsmEndGetObj can be invoked after an end of data has been received for the object
signaling that all data has been received, or can be invoked to indicate no further data
is to be received for this object. dsmEndGetObj must be called before another
dsmGetObj call can be invoked.

Depending on when dsmEndGetObj is called, the ADSM API might have to finish proc-
essing a partial data stream before the process can be stopped. The caller, therefore,
should not always expect an immediate return from this call.

 Syntax
int16 dsmEndGetObj

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Return Codes

Figure 32. Return Codes for dsmEndGetObj

Return Code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM left to complete request.

 Chapter 4. API Function Definitions 65

dsmEndQuery

 dsmEndQuery
Use dsmEndQuery to signify the end of a dsmBeginQuery action.

The application client issues dsmEndQuery to complete a query. This call is either
issued after all query responses have been obtained through dsmGetNextQObj or to
end a query before all data is returned. Note that ADSM still sends the query data from
the server to the client in this case, but the ADSM API just flushes any remaining data.

Once a dsmBeginQuery has been issued, a dsmEndQuery must be issued before
any other activity can be started.

 Syntax
int16 dsmEndQuery

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Return Codes
There are no return codes specifically for this call.

66 ADSM V2 Using the Application Program Interface

dsmEndSendObj

 dsmEndSendObj
Use dsmEndSendObj to signify the end of data being sent to ADSM storage.

dsmEndSendObj must be called to indicate the end of data from dsmSendObj and
dsmSendData calls. Not doing so causes a protocol violation. The only exception to
this rule is calling dsmEndTxn to abort the transaction, which then discards all data
sent for that transaction.

 Syntax
int16 dsmEndSendObj

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Return Codes

Figure 33. Return Codes for dsmEndSendObj

Return Code Explanation

DSM_RC_NO_MEMORY (102) There is no RAM left to complete request.

 Chapter 4. API Function Definitions 67

dsmEndTxn

 dsmEndTxn
Use dsmEndTxn to end an ADSM transaction. dsmEndTxn is coupled with
dsmBeginTxn to identify the ADSM call or set of ADSM calls that are to be treated as
a transaction. The application client can specify on the dsmEndTxn call whether or not
the transaction is to be committed or aborted.

All of the following calls must be performed within the bounds of a transaction:

 dsmSendObj
 dsmSendData
 dsmEndSendObj
 dsmDeleteObj

 Syntax
int16 dsmEndTxn

 (uint32 dsmHandle,

 uint8 vote,

 uint16 \reason);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

uint8 vote (I)
This parameter indicates whether or not the application client wants to commit all
the actions done between the previous dsmBeginTxn call and this call. Its pos-
sible values are listed below.

DSM_VOTE_COMMIT /\ commit current transaction \/

DSM_VOTE_ABORT /\ roll back current transaction \/

Use DSM_VOTE_ABORT only if your application has found a reason to halt the trans-
action.

uint16 *reason (O)
If the call to dsmEndTxn ends with an error or the value of vote is not agreed to,
then this parameter will have a reason code indicating why the vote failed. Note
that the return code for the call could be 0 and the reason code could be non-zero.
Thus the application client must always check for errors on both the return code
and the reason (if (rc || reason)) before successful completion can be
assumed. See Appendix C, “API Return Codes Source File” on page 113 for a list
of the possible reason codes. Numbers 1 - 50 in the return codes list are reserved
for the reason codes.

68 ADSM V2 Using the Application Program Interface

dsmEndTxn

 Return Codes

Figure 34. Return Codes for dsmEndTxn

Return Code Explanation

DSM_RC_INVALID_VOTE (2011) The value specified for vote is invalid.

DSM_RC_CHECK_REASON_CODE (2302) The transaction was aborted, so check the reason field.

 Chapter 4. API Function Definitions 69

dsmGetData

 dsmGetData
Use dsmGetData to get a byte stream of data from ADSM and place it in the caller's
buffer. The application client calls dsmGetData when there is more data to receive
from a previous dsmGetObj or dsmGetData call.

 Syntax
int16 dsmGetData

 (uint32 dsmHandle,

 DataBlk \dataBlkPtr);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer for
the data that is to be received and the size of the buffer. On return, this structure
contains the number of bytes actually transferred. See Appendix A, “API Type
Definitions Source File” on page 91 for the type definition.

 Return Codes

Figure 35. Return Codes for dsmGetData

Return Code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset specified during a partial object retrieve is greater
than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length specified during a partial object retrieve is greater
than the length of the object, or the offset plus the length
extends past the end of the object.

DSM_RC_FINISHED (121) Finished processing (issue dsmEndGetObj).

DSM_RC_NULL_DATABLKPTR (2001) Datablock pointer is null.

DSM_RC_ZERO_BUFLEN (2008) Buffer length is zero for datablock pointer.

DSM_RC_NULL_BUFPTR (2009) Buffer pointer is null for datablock pointer.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

70 ADSM V2 Using the Application Program Interface

dsmGetNextQObj

 dsmGetNextQObj
Use dsmGetNextQObj to get the next query response from a previous
dsmBeginQuery call and place it in the caller's buffer. dsmGetNextQObj is called one
or more times, and each time it is called, a single query record is retrieved. If the
application client wishes to end the query before retrieving all of the data, a
dsmEndQuery call can be issued.

The dataBlkPtr must point to a buffer that is defined with the qryResp\Data structure
type. The type of structure filled in on the query response is determined by the context
in which dsmGetNextQObj is called. The structure associated with each type of query
is:

 Query Response Structure
qtArchive qryRespArchiveData
qtBackup qryRespBackupData
qtBackupActive qryARespBackupData
qtFilespace qryRespFSData
qtMC qryRespMCData, qryRespMCDetailData

 Syntax
int16 dsmGetNextQObj

 (uint32 dsmHandle,

 DataBlk \dataBlkPtr);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer for
the data that is to be received and the size of the buffer. This buffer is the
qryResp\Data structure described above. On return, this structure contains the
number of bytes actually transferred. See Appendix A, “API Type Definitions
Source File” on page 91 for the type definition of DataBlk.

 Chapter 4. API Function Definitions 71

dsmGetNextQObj

 Return Codes

Figure 36. Return Codes for dsmGetNextQObj

Return Code Explanation

DSM_RC_ABORT_NO_MATCH (2) No match for the query requested.

DSM_RC_FINISHED (121) Finished processing (issue dsmEndQuery).

DSM_RC_UNKNOWN_FORMAT (122) The file that ADSM attempted to restore or retrieve has an
unknown format.

DSM_RC_COMM_PROTOCOL_ERROR (136) Communication protocol error.

DSM_RC_NULL_DATABLKPTR (2001) Pointer is not pointing to a datablock.

DSM_RC_INVALID_MCNAME (2025) Invalid management class name.

DSM_RC_BAD_CALL_SEQUENCE (2041) The sequence of calls is invalid.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

DSM_RC_BUFF_TOO_SMALL (2210) Buffer is too small.

72 ADSM V2 Using the Application Program Interface

dsmGetObj

 dsmGetObj
Use dsmGetObj to obtain the requested object data from the ADSM data stream and
place it in the caller's buffer. dsmGetObj uses the object ID, offset, and length infor-
mation to obtain the next object or partial object from the data stream.

The data for the indicated object is placed in the buffer pointed to by DataBlk. If more
data is available, then one or more calls to dsmGetData must be made to receive the
remaining object data until a return code of DSM_RC_FINISHED is returned. Check the
numBytes field in DataBlk to see whether any data remains in the buffer.

Objects should usually be asked for in the order that they were listed on the
dsmBeginGetData call in the dsmGetList parameter. The exception to this is when the
application client wishes to pass over an object(s) in the data stream to get to an object
later in the list. If the object indicated by the object ID is not the next object in the
stream, then the data stream is processed until the object is found or the stream is
exhausted. Use this feature with care, because large amounts of data might have to be
processed and discarded to find the requested object.

 Syntax
int16 dsmGetObj

 (uint32 dsmHandle,

 ObjID \objIdP,

 DataBlk \dataBlkPtr);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

ObjID *objIdP (I)
A pointer to the ID of the object to be restored.

DataBlk *dataBlkPtr (I/O)
A pointer to the buffer where the data being restored is placed.

 Chapter 4. API Function Definitions 73

dsmGetObj

 Return Codes

Figure 37. Return Codes for dsmGetObj

Return Code Explanation

DSM_RC_ABORT_INVALID_OFFSET (33) The offset specified during a partial object retrieve is greater
than the length of the object.

DSM_RC_ABORT_INVALID_LENGTH (34) The length specified during a partial object retrieve is greater
than the length of the object, or the offset plus the length
extends past the end of the object.

DSM_RC_FINISHED (121) Finished processing (issue dsmEndGetObj).

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_MORE_DATA (2200) There is more data to get.

74 ADSM V2 Using the Application Program Interface

dsmInit

 dsmInit
Use dsmInit to start an ADSM API session and connect the client to ADSM storage.
The application client can only have one active session open at a time. To open
another session with different parameters, the dsmTerminate call must first be used to
end the current session.

 Syntax
int16 dsmInit

 (uint32 \dsmHandle,

 dsmApiVersion \dsmApiVersionP,

 char \clientNodeNameP,

 char \clientOwnerNameP,

 char \clientPasswordP,

 char \applicationType,

 char \configfile,

 char \options);

 Parameters
uint32 *dsmHandle (O)

This parameter is the handle that identifies this initialization session and associates
it with subsequent ADSM calls.

dsmApiVersion *dsmApiVersionP (I)
This parameter is a pointer to the data structure that identifies the version of the
API that the application client is using for this session. The structure contains the
values of the three constants DSM_API_VERSION, DSM_API_RELEASE, and
DSM_API_LEVEL set in dsmapitd.h . A previous call to dsmQueryApiVersion must
be performed to insure compatibility between the application client's API version
and the version of the API library installed on the user's workstation.

char *clientNodeNameP (I)
This parameter is a pointer to the node for the ADSM session. All ADSM sessions
must have a node name associated with them. The maximum size allowed for a
node name is set by the constant DSM_MAX_NODE_LENGTH in the file dsmapitd.h .

The node name is not case sensitive.

If this parameter is set to NULL, the API attempts to obtain the node name first
from the options string passed, and, if it is not there, from the configuration file or
options files. If these attempts to find the node name fail, the UNIX API uses the
system host name, while other platforms' APIs return the code
DSM_RC_REJECT_ID_UNKNOWN.

This parameter must be NULL if the PASSWORDACCESS option in the dsm.sys
configuration file has been set to Generate. The API then uses the system host
name.

char *clientOwnerNameP (I)
This parameter is a pointer to the owner of the ADSM session. If the platform on
which the ADSM session is initialized is a multi-user platform, then an owner name

 Chapter 4. API Function Definitions 75

dsmInit

of NULL (the root user) has the authority to back up, archive, restore, or retrieve
any objects belonging to the application, regardless of the owner of the object.

The owner name is case sensitive.

This parameter must be NULL if the PASSWORDACCESS option in the dsm.sys
configuration file has been set to Generate. The API then uses the login user ID.

Note: On a multi-user platform, the owner name does not have to match the
active user ID of the session running the application.

char *clientPasswordP (I)
This parameter is a pointer to the password of the node on which the ADSM
session runs. The maximum size allowed for a password is set by the constant
DSM_MAX_VERIFIER_LENGTH in the file dsmapitd.h .

The password is not case sensitive.

If PASSWORDACCESS=Generate, then the value of this parameter is ignored.

char *applicationType (I)
This parameter identifies the application that is running the ADSM session. The
value is defined by the application client. Note that this value is registered at the
ADSM server the first time a session is initialized after it has been registered by an
administrator. This value is then bound as part of the node name for the life of the
node name.

To see the current value of the application type, call dsmQuerySessInfo .

char *configfile (I)
This parameter points to a character string that contains the fully qualified name of
an API configuration file.

On the UNIX platform, the API configuration file is a superset of the user options
file. It can include any of the supported options of the user options file plus the
following options from the system options file.

 COMPRESSION
 DIRMC
 INCLEXCL

| On the Windows, OS/2, Netware, and AS/400 platforms, the API configuration file
| can include any user option.

These options can be specified in the API configuration file to override their specifi-
cation in the system options file (on the UNIX platform) and the client options file.
The options files are defined when ADSM (client or API) is installed.

For the description and use of configuration files, refer to “Configuration Files and
Options Files” on page 2. Another source of information is the Installing the
Clients book.

char *options (I)
| This parameter points to a character string that can contain user options such as:

| NODENAME

76 ADSM V2 Using the Application Program Interface

dsmInit

| SERVERNAME (UNIX only)
| TCPServeraddr (non-UNIX)

The application client can use the option list to override the values of these options
set by the configuration file.

The format of the options is as follows: each option specified in the option list
begins with a dash (-) and is followed directly by the option keyword. The
keyword, in turn, is followed directly by an equal sign (=) and then followed by the
option parameter. If the option parameter contains a blank space, the parameter
must be surrounded by single or double quotes. If more than one option is speci-
fied, the options are separated by blanks.

If options is NULL, then values for all options are taken from the user options file
or the API configuration file. Descriptions and usage of each option can be found

| in the options.doc file or in the Installing the Clients book.

 Return Codes

Figure 38 (Page 1 of 2). Return Codes for dsmInit

Return Code Explanation

DSM_RC_BAD_HOST_ID (-103) Session rejected. Unexpected 3270 emulator error.

DSM_RC_PC3270_MISSING_DLL (-123) PC3270 DLL not in user's path.

DSM_RC_3270COMM_MISSING_DLL (-124) DSM3270.DLL not in user's path.

DSM_RC_ABORT_SYSTEM_ERROR (1) The ADSM server has detected a system error and has notified
the clients.

DSM_RC_REJECT_VERIFIER_EXPIRED (52) Password has expired and must be updated.

DSM_RC_REJECT_ID_UNKNOWN (53) Could not find the node name.

DSM_RC_TA_COMM_DOWN (103) The communications link is down.

DSM_RC_AUTH_FAILURE (137) There was an authentication failure.

DSM_RC_NO_STARTING_DELIMITER (148) There is no starting delimiter in pattern.

DSM_RC_NEEDED_DIR_DELIMITER (149) A directory delimiter is needed immediately before and after the
“match directories” meta-string (“...”) and one was not found.

DSM_RC_UNMATCHED_QUOTE (177) An unmatched quote is in the option string.

DSM_RC_INVALID_OPT (2013) An entry in the option string is invalid.

DSM_RC_INVALID_DS_HANDLE (2014) Invalid DSM handle.

DSM_RC_NO_OWNER_REQD (2032) Owner parameter must be NULL when
PASSWORDACCESS=Generate.

DSM_RC_NO_NODE_REQD (2033) Node parameter must be NULL when
PASSWORDACCESS=Generate.

DSM_RC_WRONG_VERSION (2064) Application client's API version has a higher value than the
ADSM version.

DSM_RC_PASSWD_TOOLONG (2103) The specified password is too long.

DSM_RC_NO_OPT_FILE (2220) No configuration file could be found.

 Chapter 4. API Function Definitions 77

dsmInit

Figure 38 (Page 2 of 2). Return Codes for dsmInit

Return Code Explanation

DSM_RC_INVALID_KEYWORD (2221) A keyword specified in an options string is invalid.

DSM_RC_PATTERN_TOO_COMPLEX (2222) Include-exclude pattern too complex to be interpreted by
ADSM.

DSM_RC_NO_CLOSING_BRACKET (2223) There is no closing bracket in the pattern.

DSM_RC_INVALID_SERVER (2225) For a multi-user environment, the server in the system config-
uration file was not found.

DSM_RC_NO_HOST_ADDR (2226) Not enough information to connect to host.

DSM_RC_MACHINE_SAME (2227) The NODENAME defined in the options file cannot be the
same as the system host name.

DSM_RC_NO_API_CONFIGFILE (2228) Cannot open the configuration file.

DSM_RC_NO_INCLEXCL_FILE (2229) The include-exclude file was not found.

DSM_RC_NO_SYS_OR_INCLEXCL (2230) Either the dsm.sys or the include-exclude file was not found.

78 ADSM V2 Using the Application Program Interface

dsmQueryApiVersion

 dsmQueryApiVersion
Use dsmQueryApiVersion to perform a query request for the API library version being
accessed by the application client.

The version is specified in the following three-part format: version.release.level .
Updates that require changes to the API have a corresponding change in either the
version or release values. Updates to the level do not involve any changes in param-
eters or returned levels from the API, but indicate code fixes to the underlying API.

All updates to the API are made in an upward compatible format. This means that any
application client that has an API version or release less than or equal to the API library
on the end user's workstation operates without change. If the dsmQueryApiVersion
call returns a version or version/release that is older than that of the application client,
then caution should be taken before proceeding, because some API calls might have
been enhanced in a manner that is not supported by the end user's older version of
API.

The application's API version number is stored in the dsmapitd.h header file as the
constants DSM_API_VERSION, DSM_API_RELEASE, and DSM_API_LEVEL.

 Syntax
void dsmQueryApiVersion

 (dsmApiVersion \apiVersionP);

 Parameters
dsmApiVersion *apiVersionP (O)

This parameter is a pointer to the structure that contains the API library's version,
release, and level components. For instance, if the library is version 1.1.0, then,
after returning from the call, the fields of the structure contain the following values:

dsmApiVersionP->version = 1
dsmApiVersionP->release = 1
dsmApiVersionP->level = 0

 Return Codes
There are no return codes specifically for this call.

 Chapter 4. API Function Definitions 79

dsmQuerySessInfo

 dsmQuerySessInfo
Use dsmQuerySessInfo to initiate a query request to ADSM for all information related
to the operation of the specified session in dsmHandle. A structure of type ApiSessInfo
is passed in the call, which is filled out with all available session related information.
This call is typically issued after a successful dsmInit call.

The information returned in the ApiSessInfo structure includes the following:

� server information — port number, date/time, type
� client defaults — application type, delete permissions, delimiters, transaction limits
� session information — login ID, owner
� policy data — domain, active policy set, retention grace period

See Appendix A, “API Type Definitions Source File” on page 91 for details on the
content of the structure passed and each field within it.

 Syntax
int16 dsmQuerySessInfo

 (uint32 dsmHandle,

 ApiSessInfo \SessInfoP);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

ApiSessInfo *SessInfoP (I/O)
This parameter is used to pass the address of the structure that the ADSM API fills
out. The application client is responsible for allocating storage for the structure and
for filling out the field that indicates the version of the structure being used. Upon
successful return, the fields in the structure are filled in with the appropriate infor-
mation.

 Return Codes

Figure 39. Return Codes for dsmQuerySessInfo

Return Code Explanation

DSM_RC_NO_SESS_BLK (2006) No server session block information.

DSM_RC_NO_POLICY_BLK (2007) No server policy information available.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

80 ADSM V2 Using the Application Program Interface

dsmRCMsg

 dsmRCMsg
Use dsmRCMsg to get the message text that is associated with an ADSM API return
code.

The msg parameter displays the return code in parentheses, followed by the message
text. For example, a call to dsmRCMsg might return the following:

ANSð264E (RC23ðð) Only root user can execute dsmChangePW or dsmDeleteFS.

 Syntax
int16 dsmRCMsg

 (uint32 dsmHandle,

 int16 dsmRC,

 char \msg);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.
Currently this parameter is not used by dsmRCMsg . It is present to allow future
enhancements to the function. The parameter must be passed for syntax
checking, but its value is ignored.

int16 dsmRC (I)
This parameter is the ADSM API return code for which you want the associated
message text. The API return codes are listed in the file dsmrc.h (see
Appendix C, “API Return Codes Source File” on page 113).

char *msg (O)
This parameter is the message text that is associated with the return code dsmRC.
The caller is responsible for allocating enough space for the message text.

The maximum length for msg is defined as DSM_MAX_RC_MSG_LENGTH.

 Return Codes

Figure 40. Return Codes for dsmRCMsg

Return Code Explanation

DSM_RC_NULL_MSG (2002) msg parameter for dsmRCMsg call is a NULL pointer.

DSM_RC_INVALID_RETCODE (2021) Return code passed to dsmRCMsg call is an invalid one.

 Chapter 4. API Function Definitions 81

dsmRegisterFS

 dsmRegisterFS
Use dsmRegisterFS to register a new file space for the node with the ADSM server. A
file space must first be registered before any data can be backed up to it.

Application clients must not use the same file space names that a backup-archive client
would use.

� On UNIX, run the df command to see what these names are.

� On Windows and OS/2, these names are generally the volume labels associated
with the different drives on your system.

� On Novell NetWare, these names are normally volume names. There is always
one called sys:, but other volume names can be almost anything.

| � On AS/400, there is no backup-archive client.

 Syntax
int16 dsmRegisterFS

 (uint32 dsmHandle,

 regFSData \regFilespaceP);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

regFSData *regFilespaceP (I)
This parameter is used to pass the name of the file space and associated informa-
tion that is to be registered with the ADSM server.

 Return Codes

Figure 41. Return Codes for dsmRegisterFS

Return Code Explanation

DSM_RC_INVALID_FSNAME (2016) Invalid file space name.

DSM_RC_INVALID_DRIVE_CHAR (2026) Drive letter is not an alphabetic character.

DSM_RC_NULL_FSNAME (2027) Null file space name.

DSM_RC_FS_ALREADY_REGED (2062) File space is already registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information too long.

82 ADSM V2 Using the Application Program Interface

dsmSendData

 dsmSendData
Use dsmSendData to send a byte stream of data to ADSM via a buffer. The applica-
tion client can pass any type of data for storage on the server. This data is typically file
data, but is not limited to such. dsmSendData can be called multiple times, in case
the byte stream of data to be sent is large. Note that the buffer specified in
dsmSendData cannot be reused by the application client until dsmSendData returns.

Note: If ADSM returns code 157 (DSM_RC_WILL_ABORT), issue a call to
| dsmEndSendObj and then to dsmEndTxn with a vote of DSM_VOTE_COMMIT. The appli-

cation should then get back return code 2302 (DSM_RC_CHECK_REASON_CODE) and pass
the reason code back to the application user. This will tell the user why the server is
aborting the transaction.

 Syntax
int16 dsmSendData

 (uint32 dsmHandle,

 DataBlk \dataBlkPtr);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer from
which the data is to be sent, as well as the size of the buffer. On return, this
structure contains the number of bytes actually transferred. See Appendix A, “API
Type Definitions Source File” on page 91 for the type definition.

 Return Codes

 Chapter 4. API Function Definitions 83

dsmSendData

Figure 42. Return Codes for dsmSendData

Return Code Explanation

DSM_RC_NO_COMPRESS_MEMORY (154) Insufficient memory available to do data compression or expan-
sion.

DSM_RC_COMPRESS_GREW (155) During compression the compressed data grew in size com-
pared to the original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the trans-
action to be halted.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end transaction.

DSM_RC_OBJ_EXCLUDED (2080) The object is excluded by the include-exclude list.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group and will not be sent to
the server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group and will not be sent to
the server.

84 ADSM V2 Using the Application Program Interface

dsmSendObj

 dsmSendObj
Use dsmSendObj to initiate a request to send a single object to ADSM storage. Mul-
tiple dsmSendObj calls and associated dsmSendData calls can be made within the
bounds of a transaction for performance reasons.

The dsmSendObj call processes the data for the object as a byte stream passed in
memory buffers. The dataBlkPtr parameter in the dsmSendObj call allows the appli-
cation client to either:

� pass the data and the attributes (the attributes are passed via the objAttrPtr) of
the object in a single call

� specify part of the object data through the dsmSendObj call and the remainder of
the data through one or more dsmSendData calls.

An alternative is for the application client to specify only the attributes through the
dsmSendObj call and to specify the object data through one or more calls to
dsmSendData . For this latter alternative, set dataBlkPtr on the dsmSendObj call to
NULL. Note that for certain object types, byte stream data might not be associated with
the data at all. An example of such an object could be a directory entry with no
extended attributes.

Before dsmSendObj can be called, a preceding dsmBindMC call must be made to
properly bind a management class to the object being backed up or archived. The
ADSM API retains this binding so that it can associate the proper management class
with the object when it is sent to the server.

All object data sent to ADSM storage must be followed by a dsmEndSendObj call.
Thus, if you do not have object data to send to the server or all data was contained
within the dsmSendObj call, you must issue a dsmEndSendObj call before another
dsmSendObj call can be made. If multiple data sends were required via the
dsmSendData call, then the dsmEndSendObj follows the last send to indicate the
state change.

Note: If ADSM returns code 157 (DSM_RC_WILL_ABORT), issue a call to dsmEndTxn
with a vote of DSM_VOTE_COMMIT. The application should then get back return code 2302
(DSM_RC_CHECK_REASON_CODE) and pass the reason code back to the application user.
This will tell the user why the server is aborting the transaction.

| If the reason code is 11 (DSM_RS_ABORT_NO_REPOSIT_SPACE), it is possible that the
| sizeEstimate is too small for the actual amount of data. The application needs to deter-
| mine a more accurate sizeEstimate and send the data again.

 Chapter 4. API Function Definitions 85

dsmSendObj

 Syntax
int16 dsmSendObj

 (uint32 dsmHandle,

 dsmSendType sendType,

 void \sendBuff,

 dsmObjName \objNameP,

 ObjAttr \objAttrPtr,

 DataBlk \dataBlkPtr);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

dsmSendType sendType (I)
This parameter specifies the type of send being performed. Possible values are:

stBackup Specifies that this is a backup object being sent to the server

stArchive Specifies that this is an archive object being sent to the server

stBackupMountWait
Specifies that this is a backup object for which you want the server
to wait until the necessary device, such as a tape, is mounted

stArchiveMountWait
Specifies that this is an archive object for which you want the server
to wait until the necessary device, such as a tape, is mounted

Note: Use the MountWait types if there is any possibility your application user
may send data to a tape.

void *sendBuff (I)
This parameter is a pointer to a structure that contains other information specific to
the sendType on the call. Currently, only a sendType of stArchive has an associ-
ated structure. This structure is called sndArchiveData and contains the archive
description.

dsmObjName *objNameP (I)
This parameter is a pointer to the structure that contains the file space name, high-
level object name, low-level object name, and object type. See “Identifying the
Object” on page 41 for more information.

In a backup operation, the object type specifies whether the object is a file or a
directory. In an archive operation, the object type must be a file.

ObjAttr *objAttrPtr (I)
This parameter is used to pass object attributes of interest to the application. See
Appendix A, “API Type Definitions Source File” on page 91 for the type definition.

The attributes of particular interest are:

� owner — This attribute refers to the owner of the object. Whether the owner is
declared to be a specific name or an empty string is important when getting

86 ADSM V2 Using the Application Program Interface

dsmSendObj

the object back from ADSM storage. See “Setting the Owner Name” on
page 43 for more information.

� sizeEstimate — The size estimate attribute is a best estimate of the total size
of the data object to be sent to the server. It is important that you try to be as
accurate as possible on this size, because the ADSM server uses this attribute
for efficient space allocation and object placement within its storage resources.
Not specifying this value could result in performance degradation on the
server, because allocations will have to be made on a best guess basis.

| If the size estimate specified is significantly smaller than the actual number of
| bytes sent, the server may have difficulty allocating enough space and abort
| the transaction with a reason code 11
| (DSM_RS_ABORT_NO_REPOSIT_SPACE).

Note: The size estimate is for the total size of the data object in bytes.

Objects with a size smaller than DSM_MIN_COMPRESS_SIZE will not be com-
pressed.

| If your object will have no bit data (only the attribute information from this call),
| the sizeEstimate should be 0. Otherwise, the transaction will abort when going
| to an ADSM Version 1 server.

| The sizeEstimate value is not returned on a query. If you need this informa-
| tion for your application, save the value in the objInfo area.

� objCompressed — This attribute is a boolean value that states whether or not
the object data has already been compressed.

If the object is compressed, ADSM does not try to compress it again. If it is
not compressed, then ADSM decides whether to compress the object, based
on the values of the COMPRESSION option set by the ADSM administrator
and set in the API configuration file and the client option files (dsm.sys in
UNIX and dsm.opt in Windows).

| If your application plans to use partial object restore or retrieve, you cannot
| compress the data while sending it. To enforce this, set
| ObjAttr.objCompressed to bTrue.

� objInfo — This attribute can be used to save information about the particular
object. Note that no information is stored here automatically. When this attri-
bute is used, the attribute objInfoLength must also be set to show the length
of objInfo.

� mcNameP — This attribute contains the name of a management class that
overrides the default management class obtained from dsmBindMC .

DataBlk *dataBlkPtr (I/O)
This parameter points to a structure that includes both a pointer to the buffer of
data that is to be backed up or archived and the size of that buffer. This param-
eter applies to dsmSendObj only. If you wish to begin sending data on a subse-
quent dsmSendData call, rather than on the dsmSendObj call, set the buffer
pointer in the DataBlk structure to NULL. On return, this structure contains the

 Chapter 4. API Function Definitions 87

dsmSendObj

number of bytes actually transferred. See Appendix A, “API Type Definitions
Source File” on page 91 for the type definition.

 Return Codes

Figure 43. Return Codes for dsmSendObj

Return Code Explanation

DSM_RC_NO_COMPRESS_MEMORY (154) Insufficient memory available to do data compression or
expansion.

DSM_RC_COMPRESS_GREW (155) During compression the compressed data grew in size com-
pared to the original data.

DSM_RC_WILL_ABORT (157) An unknown and unexpected error occurred, causing the
transaction to be halted.

DSM_RC_TL_NOACG (186) The management class for this file does not have a valid copy
group for the send type.

DSM_RC_NULL_OBJNAME (2000) Null object name.

DSM_RC_NULL_OBJATTRPTR (2004) Null object attribute pointer.

DSM_RC_INVALID_OBJTYPE (2010) Invalid object type.

DSM_RC_INVALID_OBJOWNER (2019) Invalid object owner.

DSM_RC_INVALID_SENDTYPE (2022) Invalid send type.

DSM_RC_WILDCHAR_NOTALLOWED (2050) Wildcard characters not allowed.

DSM_RC_FS_NOT_REGISTERED (2061) File space not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_NEEDTO_ENDTXN (2070) Need to end transaction.

DSM_RC_OBJ_EXCLUDED (2080) The object is excluded by the include-exclude list.

DSM_RC_OBJ_NOBCG (2081) The object has no backup copy group and will not be sent to
the server.

DSM_RC_OBJ_NOACG (2082) The object has no archive copy group and will not be sent to
the server.

DSM_RC_DESC_TOOLONG (2100) Description is too long.

DSM_RC_OBJINFO_TOOLONG (2101) Object information is too long.

DSM_RC_HL_TOOLONG (2102) High-level qualifier is too long.

DSM_RC_FILESPACE_TOOLONG (2104) File space name is too long.

DSM_RC_LL_TOOLONG (2105) Low-level qualifier is too long.

DSM_RC_NEEDTO_CALL_BINDMC (2301) dsmBindMC must be called first.

88 ADSM V2 Using the Application Program Interface

dsmTerminate

 dsmTerminate
Use dsmTerminate to end a session with the ADSM server and clean up the ADSM
environment. All ADSM API calls must occur within the bounds of a dsmInit and a
dsmTerminate call with the exception of the dsmQueryApiVersion call.

 Syntax
int16 dsmTerminate

 (uint32 dsmHandle);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

 Return Codes
There are no return codes specifically for this call.

 Chapter 4. API Function Definitions 89

dsmUpdateFS

 dsmUpdateFS
Use dsmUpdateFS to update a file space in ADSM storage. This ensures that the
ADSM administrator has an up-to-date record of your file space.

 Syntax
int16 dsmUpdateFS

 (uint32 dsmHandle,

 char \fs,

 dsmFSUpd \fsUpdP,

 uint32 fsUpdAct);

 Parameters
uint32 dsmHandle (I)

This parameter is the handle that associates this call with a previous dsmInit call.

char *fs (I)
This parameter is a pointer to the file space name.

dsmFSUpd *fsUpdP (I)
This parameter is a pointer to the structure which has the proper fields filled in for
the update desired. Only those fields needing update plus the fsName need be
filled in for the update.

uint32 fsUpdAct (I)
A two byte bit map indicating which of the above fields are to be updated. See the
DSM_FSUPD definitions in Appendix A, “API Type Definitions Source File” on
page 91 for a description of these bit masks.

 Return Codes

Figure 44. Return Codes for dsmUpdateFS

Return Code Explanation

DSM_RC_FS_NOT_REGISTERED (2061) File space name is not registered.

DSM_RC_WRONG_VERSION_PARM (2065) Application client's API version is different than the ADSM
library version.

DSM_RC_FSINFO_TOOLONG (2106) File space information is too long.

90 ADSM V2 Using the Application Program Interface

Appendix A. API Type Definitions Source File

This section contains structure definitions, type definitions, and various constants for the
ADSM API. This is a copy of the header file dsmapitd.h used by the API.

 Copyright IBM Corp. 1995, 1996 91

/\\\

\ ADSTAR Distributed Storage Manager (ADSTAR DSM) \

\ API Client Component \

\ \

\ (C) Copyright IBM Corporation 1993, 1995 \

\\\/

/\\/

/\ Header File Name: dsmapitd.h \/

/\ \/

/\ Descriptive-name: Definitions for ADSTAR DSM external constants \/

/\\/

#ifndef _H_DSMAPITD

#define _H_DSMAPITD

/\==\/

/\ D E F I N E S \/

/\==\/

/\---+

| API Version, Release, and Level to use in dsmApiVersion on dsmInit() |

+---\/

#define DSM_API_VERSION 2

#define DSM_API_RELEASE 1

#define DSM_API_LEVEL 5

/\---+

| Maximum field lengths |

+---\/

#define DSM_MAX_CG_DEST_LENGTH 3ð /\ copy group destination \/

#define DSM_MAX_CG_NAME_LENGTH 3ð /\ copy group name \/

#define DSM_MAX_DESCR_LENGTH 255 /\ archive description \/

#define DSM_MAX_DOMAIN_LENGTH 3ð /\ policy domain name \/

#define DSM_MAX_FSINFO_LENGTH 5ðð /\ filespace info \/

#define DSM_MAX_FSNAME_LENGTH 1ð24 /\ filespace name \/

#define DSM_MAX_FSTYPE_LENGTH 32 /\ filespace type \/

#define DSM_MAX_HL_LENGTH 1ð24 /\ object high level name \/

#define DSM_MAX_ID_LENGTH 64 /\ session node name \/

#define DSM_MAX_LL_LENGTH 256 /\ object low level name \/

#define DSM_MAX_MC_NAME_LENGTH 3ð /\ management class name \/

#define DSM_MAX_OBJINFO_LENGTH 255 /\ object info \/

#define DSM_MAX_OWNER_LENGTH 64 /\ object owner name \/

#define DSM_MAX_PLATFORM_LENGTH 16 /\ application type \/

#define DSM_MAX_PS_NAME_LENGTH 3ð /\ policy set name \/

#define DSM_MAX_SERVERTYPE_LENGTH 32 /\ server platform type \/

#define DSM_MAX_VERIFIER_LENGTH 64 /\ password \/

#define DSM_PATH_MAX 1ð24 /\ API config file path \/

#define DSM_NAME_MAX 255 /\ API config file name \/

#define DSM_MAX_NODE_LENGTH 64 /\ node/machine name \/

#define DSM_MAX_RC_MSG_LENGTH 1ð24 /\ msg parm for dsmRCMsg \/

#define DSM_MAX_MC_DESCR_LENGTH DSM_MAX_DESCR_LENGTH /\ mgmt class \/

#define DSM_MAX_SERVERNAME_LENGTH DSM_MAX_ID_LENGTH /\ server name \/

92 ADSM V2 Using the Application Program Interface

#define DSM_MAX_GET_OBJ 4ð8ð /\ max objs on BeginGetData\/

/\---+

| Minimum field lengths |

+---\/

#define DSM_MIN_COMPRESS_SIZE 2ð48 /\ minimum number of bytes an object \/

/\ needs before compression is allowed\/

/\---+

| Values for object type in dsmObjName structure |

+---\/

#define DSM_OBJ_FILE ðxð1 /\ object has attrib info and data\/

#define DSM_OBJ_DIRECTORY ðxð2 /\ object has only attribute info \/

#define DSM_OBJ_ANY_TYPE ðxFF /\ for use on query \/

/\---+

| Values for copySer in DetailCG structures for Query Mgmt Class response |

+---\/

#define Copy_Serial_Static 1 /\Copy Serialization Static \/

#define Copy_Serial_Shared_Static 2 /\Copy Serialization Shared Static\/

#define Copy_Serial_Shared_Dynamic 3 /\Copy Serialization Shared Dynamic\/

#define Copy_Serial_Dynamic 4 /\Copy Serialization Dynamic \/

/\---+

| Values for copyMode in DetailCG structures for Query Mgmt Class response |

+---\/

#define Copy_Mode_Modified 1 /\Copy Mode Modified \/

#define Copy_Mode_Absolute 2 /\Copy Mode Absolute \/

/\---+

| Values for objState in qryBackupData structure |

+---\/

#define DSM_ACTIVE ðxð1 /\ query only active objects \/

#define DSM_INACTIVE ðxð2 /\ query only inactive objects \/

#define DSM_ANY_MATCH ðxFF /\ query all backup objects \/

/\---+

| Boundary values for dsmDate.year field in qryArchiveData structure |

+---\/

#define DATE_MINUS_INFINITE ðxðððð /\ lowest boundary \/

#define DATE_PLUS_INFINITE ðxFFFF /\ highest upper boundary \/

/\---+

| Bits masks for update action parameter on dsmUpdateFS() |

+---\/

#define DSM_FSUPD_FSTYPE ((unsigned) ðxððððððð2)

#define DSM_FSUPD_FSINFO ((unsigned) ðxððððððð4)

#define DSM_FSUPD_OCCUPANCY ((unsigned) ðxðððððð2ð)

#define DSM_FSUPD_CAPACITY ((unsigned) ðxðððððð4ð)

/\---+

| Values for repository parameter on dsmDeleteFS() |

 Appendix A. API Type Definitions Source File 93

+---\/

#define DSM_ARCHIVE_REP ðxðA /\ archive repository \/

#define DSM_BACKUP_REP ðxðB /\ backup repository \/

#define DSM_REPOS_ALL ðxð1 /\ all respository types \/

/\---+

| Values for vote parameter on dsmEndTxn() |

+---\/

#define DSM_VOTE_COMMIT 1 /\ commit current transaction \/

#define DSM_VOTE_ABORT 2 /\ roll back current transaction \/

/\---+

| Values for various flags returned in ApiSessInfo structure. |

+---\/

/\ Client compression field codes \/

#define COMPRESS_YES 1 /\ client must compress data \/

#define COMPRESS_NO 2 /\ client must NOT compress data \/

#define COMPRESS_CD 3 /\ client determined \/

/\ Archive delete permission codes. \/

#define ARCHDEL_YES 1 /\ archive delete allowed \/

#define ARCHDEL_NO 2 /\ archive delete NOT allowed \/

/\ Backup delete permission codes. \/

#define BACKDEL_YES 1 /\ backup delete allowed \/

#define BACKDEL_NO 2 /\ backup delete NOT allowed \/

/\---+

| Definitions for "media access class" field. |

+---\/

/\

 \ The following constants define a hierarchy of media access classes.

 \ Lower numbers indicate media which can supply faster access to data.

 \/

/\ Fixed: represents the class of local, on-line, fixed media (such as

hard disks). Represents minimal delays in retrieval. \/

#define MEDIA_FIXED ðx1ð

/\ Library: represents the class of local, mountable media accessible

through a mechanical mounting device, in which there are

typically small variations in mount time. \/

#define MEDIA_LIBRARY ðx2ð

/\ Network: represents storage media accessible via a network server. \/

#define MEDIA_NETWORK ðx3ð

/\ Shelf: represents the class of local, mountable media accessible only

via human intervention. There can be large variations in the

mount time. \/

#define MEDIA_SHELF ðx4ð

94 ADSM V2 Using the Application Program Interface

/\ Offsite: represents media stored in an off-site location. The

media are not accessible via local mounting procedures

or direct attachment through a network. \/

#define MEDIA_OFFSITE ðx5ð

/\ Unavailable: represents media that are (for whatever reason)

inaccessible for retrieval. \/

#define MEDIA_UNAVAILABLE ðxFð

/\==\/

/\ T Y P E D E F S \/

/\==\/

/\ "Undefine" the keyword "signed" for the SunOS non-ANSI compiler. \/

#ifdef _SUN_NONANSI_

#define signed

#endif

/\---+

| Typedefs for different integer types |

+---\/

/\ The alpha processor of Digital Equipment Corporation is the only \/

/\ platform currently supported that has a 64 bit architecture. \/

/\ Therefore the '(u)int32' data types are 'int' and not 'long'. \/

#ifndef __alpha

typedef signed char int8 ;

typedef unsigned char uint8 ;

typedef signed short int16 ;

typedef unsigned short uint16 ;

typedef signed long int32 ;

typedef unsigned long uint32 ;

typedef struct

{

 uint32 hi; /\ Most significant 32 bits. \/

 uint32 lo; /\ Least significant 32 bits. \/

} uint64 ;

#else

typedef signed char int8 ;

typedef unsigned char uint8 ;

typedef signed short int16 ;

typedef unsigned short uint16 ;

typedef signed int int32 ;

typedef unsigned int uint32 ;

typedef struct

{

 uint32 hi; /\ Most significant 32 bits. \/

 Appendix A. API Type Definitions Source File 95

 uint32 lo; /\ Least significant 32 bits. \/

} uint64 ;

#endif

/\---+

| Type definition for bool_t |

+---\/

/\

 \ Had to create a Boolean type that didn't clash with any other predefined

 \ version in any operating system or windowing system.

 \/

typedef enum

{

bFalse = ðxðð,

 bTrue = ðxð1

} bool_t ;

/\---+

| Type definition for date structure |

+---\/

typedef struct

{

 uint16 year; /\ year, 16-bit integer (e.g., 199ð) \/

uint8 month; /\ month, 8-bit integer (1 - 12) \/

uint8 day; /\ day. 8-bit integer (1 - 31) \/

uint8 hour; /\ hour, 8-bit integer (ð - 23) \/

uint8 minute; /\ minute, 8-bit integer (ð - 59) \/

uint8 second; /\ second, b-bit integer (ð - 59) \/

} dsmDate ;

/\---+

| Type definition for Object ID on dsmGetObj() and in dsmGetList structure|

+---\/

typedef uint64 ObjID ;

/\---+

| Type definition for dsmQueryBuff on dsmBeginQuery() |

+---\/

typedef void dsmQueryBuff ;

/\---+

| Type definition for dsmGetType parameter on dsmBeginGetData() |

+---\/

typedef enum

{

gtBackup = ðxðð, /\ Backup processing type \/

gtArchive /\ Archive processing type \/

} dsmGetType ;

/\---+

| Type definition for dsmQueryType parameter on dsmBeginQuery() |

96 ADSM V2 Using the Application Program Interface

+---\/

typedef enum

{

qtArchive = ðxðð, /\ Archive query type \/

qtBackup, /\ Backup query type \/

qtBackupActive, /\ Fast query for active backup files \/

qtFilespace, /\ Filespace query type \/

qtMC /\ Mgmt. class query type \/

} dsmQueryType ;

/\---+

| Type definition sendType parameter on dsmBindMC() and dsmSendObj() |

+---\/

typedef enum

{

stBackup = ðxðð, /\ Backup processing type \/

stArchive, /\ Archive processing type \/

stBackupMountWait, /\ Backup processing with mountwait on \/

stArchiveMountWait /\ Archive processing with mountwait on \/

} dsmSendType ;

/\---+

| Type definition for delType parameter on dsmDeleteObj() |

+---\/

typedef enum

{

dtArchive = ðxðð, /\ Archive delete type \/

dtBackup /\ Backup delete (deactivate) type \/

} dsmDelType ;

/\---+

| Type definition for API Version on dsmInit() and dsmQueryApiVersion() |

+---\/

typedef struct

{

unsigned short version; /\ API version \/

unsigned short release; /\ API release \/

unsigned short level; /\ API level \/

} dsmApiVersion;

/\---+

| Type definition for object name used on BindMC, Send, Delete, Query |

+---\/

typedef struct S_dsmObjName

{

char fs[DSM_MAX_FSNAME_LENGTH + 1] ; /\ Filespace name \/

char hl[DSM_MAX_HL_LENGTH + 1] ; /\ High level name \/

char ll[DSM_MAX_LL_LENGTH + 1] ; /\ Low level name \/

uint8 objType; /\ for object type values, see defines above \/

} dsmObjName;

 Appendix A. API Type Definitions Source File 97

/\---+

| Type definition for Backup delete info on dsmDeleteObj() |

+---\/

typedef struct

{

uint16 stVersion ; /\ structure version \/

dsmObjName \objNameP ; /\ object name \/

uint32 copyGroup ; /\ copy group \/

} delBack ;

#define delBackVersion 1

/\---+

| Type definition for Archive delete info on dsmDeleteObj() |

+---\/

typedef struct

{

uint16 stVersion ; /\ structure version \/

uint64 objId ; /\ object ID \/

} delArch ;

#define delArchVersion 1

/\---+

| Type definition for delete info on dsmDeleteObj() |

+---\/

typedef union

{

 delBack backInfo ;

 delArch archInfo ;

} dsmDelInfo ;

/\---+

| Type definition for Object Attribute parameter on dsmSendObj() |

+---\/

typedef struct

{

uint16 stVersion; /\ Structure version \/

char owner[DSM_MAX_OWNER_LENGTH + 1]; /\ object owner \/

uint64 sizeEstimate; /\ Size estimate in bytes of the object \/

bool_t objCompressed; /\ Is object already compressed? \/

uint16 objInfoLength; /\ length of object-dependent info \/

char \objInfo; /\ object-dependent info \/

char \mcNameP; /\ mgmt class name for override \/

}ObjAttr;

#define ObjAttrVersion 2

/\---+

| Type definition for mcBindKey returned on dsmBindMC() |

+---\/

98 ADSM V2 Using the Application Program Interface

typedef struct

{

uint16 stVersion; /\ structure version \/

char mcName[DSM_MAX_MC_NAME_LENGTH + 1];

/\ Name of mc bound to object. \/

bool_t backup_cg_exists; /\ True/false \/

bool_t archive_cg_exists; /\ True/false \/

char backup_copy_dest]DSM_MAX_CG_DEST_LENGTH + 1];

/\ Backup copy dest. name \/

char archive_copy_dest[DSM_MAX_CG_DEST_LENGTH + 1];

/\ Arch copy dest.name \/

} mcBindKey;

#define mcBindKeyVersion 1

/\---+

| Type definition for partial object data for dsmBeginGetData() |

+---\/

typedef struct

{

uint16 stVersion; /\ Structure version \/

uint64 partialObjOffset; /\ offset into object to begin reading \/

uint64 partialObjLength; /\ amount of object to read \/

} PartialObjData ; /\ partial object data \/

#define PartialObjDataVersion 1 /\ \/

/\---+

| Type definition for object list on dsmBeginGetData() |

+---\/

typedef struct

{

uint16 stVersion ; /\ structure version \/

uint32 numObjId ; /\ number of object IDs in the list \/

 ObjID \objId ; /\ list of object IDs to restore \/

PartialObjData \partialObjData ; /\ list of partial object data \/

} dsmGetList ;

#define dsmGetListVersion 2 /\ default if not using Partial Obj data \/

#define dsmGetListPORVersion 3 /\ version if using Partial Obj data \/

/\---+

| Type definition for DataBlk used to Get or Send data |

+---\/

typedef struct

{

uint16 stVersion ; /\ structure version \/

uint32 bufferLen; /\ Length of buffer passed below \/

uint32 numBytes; /\ Actual number of bytes read from \/

/\ or written to the buffer \/

char \bufferPtr; /\ Data buffer \/

} DataBlk;

 Appendix A. API Type Definitions Source File 99

#define DataBlkVersion 1

/\---+

| Type definition for Mgmt Class queryBuffer on dsmBeginQuery() |

+---\/

typedef struct S_qryMCData

{

uint16 stVersion; /\ structure version \/

char \mcName; /\ Mgmt class name \/

/\ single name to get one \/

/\ or empty string to get all \/

bool_t mcDetail; /\ Want details or not? \/

} qryMCData;

#define qryMCDataVersion 1

/\---+

| Type definition for Archive Copy Group details on Query MC response |

+---\/

typedef struct S_archDetailCG

{

 char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /\ Copy group name \/

uint16 frequency; /\ Copy (archive) frequency \/

uint16 retainVers; /\ Retain version \/

uint8 copySer; /\ for copy serialization values, see defines \/

uint8 copyMode; /\ for copy mode values, see defines above \/

 char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /\ Copy dest name \/

} archDetailCG;

/\---+

| Type definition for Backup Copy Group details on Query MC response |

+---\/

typedef struct S_backupDetailCG

{

char cgName[DSM_MAX_CG_NAME_LENGTH + 1]; /\ Copy group name \/

uint16 frequency; /\ Backup frequency \/

uint16 verDataExst; /\ Versions data exists \/

uint16 verDataDltd; /\ Versions data deleted \/

uint16 retXtraVers; /\ Retain extra versions \/

uint16 retOnlyVers; /\ Retain only versions \/

 uint8 copySer; /\ for copy serialization values, see defines \/

 uint8 copyMode; /\ for copy mode values, see defines above \/

char destName[DSM_MAX_CG_DEST_LENGTH + 1]; /\ Copy dest name \/

} backupDetailCG;

/\---+

| Type definition for Query Mgmt Class detail response on dsmGetNextQObj()|

+---\/

typedef struct S_qryRespMCDetailData

{

uint16 stVersion; /\ structure version \/

100 ADSM V2 Using the Application Program Interface

char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /\ mc name \/

char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /\mc description \/

 archDetailCG archDet; /\ Archive copy group detail \/

backupDetailCG backupDet; /\ Backup copy group detail \/

} qryRespMCDetailData;

#define qryRespMCDetailDataVersion 1

/\---+

| Type definition for Query Mgmt Class summary response on dsmGetNextQObj()|

+---\/

typedef struct S_qryRespMCData

{

uint16 stVersion; /\ structure version \/

char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /\ mc name \/

char mcDesc[DSM_MAX_MC_DESCR_LENGTH + 1]; /\ mc description \/

}qryRespMCData;

#define qryRespMCDataVersion 1

/\---+

| Type definition for Archive queryBuffer on dsmBeginQuery() |

+---\/

typedef struct S_qryArchiveData

{

uint16 stVersion; /\ structure version \/

dsmObjName \objName; /\ Full dsm name of object \/

char \owner; /\ owner name \/

/\ for maximum date boundaries, see defines above \/

dsmDate insDateLowerBound; /\ low bound archive insert date \/

dsmDate insDateUpperBound; /\ hi bound archive insert date \/

dsmDate expDateLowerBound; /\ low bound expiration date \/

dsmDate expDateUpperBound; /\ hi bound expiration date \/

char \descr; /\ archive description \/

} qryArchiveData;

#define qryArchiveDataVersion 1

/\---+

| Type definition for Query Archive response on dsmGetNextQObj() |

+---\/

typedef struct S_qryRespArchiveData

{

uint16 stVersion; /\ structure version \/

dsmObjName objName; /\ Filespace name qualifier \/

uint32 copyGroup; /\ copy group number \/

char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /\ mc name \/

char owner[DSM_MAX_OWNER_LENGTH + 1]; /\ owner name \/

uint64 objId; /\ Unique copy id \/

uint64 restoreOrder; /\ restore order \/

uint8 mediaClass; /\ media access class \/

dsmDate insDate; /\ archive insertion date \/

 Appendix A. API Type Definitions Source File 101

dsmDate expDate; /\ expiration date for object \/

char descr[DSM_MAX_DESCR_LENGTH + 1]; /\ archive description \/

uint16 objInfolen; /\ length of object-dependent info\/

char objInfo[DSM_MAX_OBJINFO_LENGTH]; /\object-dependent info \/

} qryRespArchiveData;

#define qryRespArchiveDataVersion 1

/\---+

| Type definition for Archive sendBuff parameter on dsmSendObj() |

+---\/

typedef struct S_sndArchiveData

{

uint16 stVersion; /\ structure version \/

char \descr; /\ archive description \/

} sndArchiveData;

#define sndArchiveDataVersion 1

/\---+

| Type definition for Backup queryBuffer on dsmBeginQuery() |

+---\/

typedef struct S_qryBackupData

{

uint16 stVersion; /\ structure version \/

dsmObjName \objName; /\ full dsm name of object \/

char \owner; /\ owner name \/

uint8 objState; /\ object state selector \/

/\ for possible values, see defines above \/

} qryBackupData;

#define qryBackupDataVersion 1

/\---+

| Type definition for Query Backup response on dsmGetNextQObj() |

+---\/

typedef struct S_qryRespBackupData

{

uint16 stVersion; /\ structure version \/

dsmObjName objName; /\ full dsm name of object \/

uint32 copyGroup; /\ copy group number \/

char mcName[DSM_MAX_MC_NAME_LENGTH + 1]; /\ mc name \/

char owner[DSM_MAX_OWNER_LENGTH + 1]; /\ owner name \/

uint64 objId; /\ Unique object id \/

uint64 restoreOrder; /\ restore order \/

uint8 mediaClass; /\ media access class \/

uint8 objState; /\ Obj state, active, etc. \/

dsmDate insDate; /\ backup insertion date \/

dsmDate expDate; /\ expiration date for object \/

uint16 objInfolen; /\ length of object-dependent info\/

char objInfo[DSM_MAX_OBJINFO_LENGTH]; /\object-dependent info \/

} qryRespBackupData;

102 ADSM V2 Using the Application Program Interface

#define qryRespBackupDataVersion 1

/\---+

| Type definition for Active Backup queryBuffer on dsmBeginQuery()

|

| Notes: For the active backup query, only the fs (filespace) and objType

| fields of objName need be set. objType can only be set to

| DSM_OBJ_FILE or DSM_OBJ_DIRECTORY. DSM_OBJ_ANY_TYPE will not

| find a match on the query.

+---\/

typedef struct S_qryABackupData

{

uint16 stVersion; /\ structure version \/

dsmObjName \objName; /\ Only fs and objtype used \/

} qryABackupData;

#define qryABackupDataVersion 1

/\---+

| Type definition for Query Active Backup response on dsmGetNextQObj() |

+---\/

typedef struct S_qryARespBackupData

{

uint16 stVersion; /\ structure version \/

dsmObjName objName; /\ full dsm name of object \/

uint32 copyGroup; /\ copy group number \/

char mcName[DSM_MAX_MC_NAME_LENGTH + 1];/\management class name\/

char owner[DSM_MAX_OWNER_LENGTH + 1]; /\ owner name \/

dsmDate insDate; /\ backup insertion date \/

uint16 objInfolen; /\ length of object-dependent info\/

char objInfo[DSM_MAX_OBJINFO_LENGTH]; /\object-dependent info \/

} qryARespBackupData;

#define qryARespBackupDataVersion 1

/\---+

| Type definition for DOS Filespace attributes |

+---\/

typedef struct

{

char driveLetter ; /\ drive letter for filespace \/

uint16 fsInfoLength; /\ fsInfo length used \/

 char fsInfo[DSM_MAX_FSINFO_LENGTH];/\caller-determined data \/

} dsmDosFSAttrib ;

/\---+

| Type definition for UNIX Filespace attributes |

+---\/

typedef struct

{

uint16 fsInfoLength; /\ fsInfo length used \/

 Appendix A. API Type Definitions Source File 103

 char fsInfo[DSM_MAX_FSINFO_LENGTH];/\caller-determined data \/

} dsmUnixFSAttrib ;

/\---+

| Type definition for Filespace attributes on all Filespace calls |

+---\/

typedef union

{

 dsmDosFSAttrib dosFSAttr ;

 dsmUnixFSAttrib unixFSAttr ;

} dsmFSAttr ;

/\---+

| Type definition for fsUpd parameter on dsmUpdateFS()

+---\/

typedef struct S_dsmFSUpd

{

uint16 stVersion ; /\ structure version \/

char \fsType ; /\ filespace type \/

uint64 occupancy ; /\ occupancy estimate \/

uint64 capacity ; /\ capacity estimate \/

dsmFSAttr fsAttr ; /\ platform specific attributes \/

} dsmFSUpd ;

#define dsmFSUpdVersion 1

/\---+

| Type definition for Filespace queryBuffer on dsmBeginQuery() |

+---\/

typedef struct S_qryFSData

{

uint16 stVersion; /\ structure version \/

 char \fsName; /\ File space name \/

} qryFSData;

#define qryFSDataVersion 1

/\---+

| Type definition for Query Filespace response on dsmGetNextQObj() |

+---\/

typedef struct S_qryRespFSData

{

uint16 stVersion; /\ structure version \/

char fsName[DSM_MAX_FSNAME_LENGTH + 1]; /\ Filespace name \/

char fsType[DSM_MAX_FSTYPE_LENGTH + 1] ; /\ Filespace type \/

uint64 occupancy; /\ Occupancy est. in bytes. \/

uint64 capacity; /\ Capacity est. in bytes. \/

dsmFSAttr fsAttr ; /\general fs info or attribs\/

} qryRespFSData;

#define qryRespFSDataVersion 1

104 ADSM V2 Using the Application Program Interface

/\---+

| Type definition for regFilespace parameter on dsmRegisterFS()

+---\/

typedef struct S_regFSData

{

 uint16 stVersion; /\ structure version \/

char \fsName; /\ Filespace name \/

char \fsType; /\ Filespace type \/

 uint64 occupancy; /\ Occupancy est. in bytes. \/

 uint64 capacity; /\ Capacity est. in bytes. \/

dsmFSAttr fsAttr ; /\general fs info or attribs\/

} regFSData;

#define regFSDataVersion 1

/\---+

| Type definition for session info response on dsmQuerySessionInfo() |

+---\/

typedef struct

{

uint16 stVersion; /\ Structure version \/

 /\--\/

 /\ Server information \/

 /\--\/

 char serverHost[DSM_MAX_SERVERNAME_LENGTH+1];

/\ Network host name of DSM server \/

uint16 serverPort; /\ Server comm port on host \/

dsmDate serverDate; /\ Server's date/time \/

 char serverType[DSM_MAX_SERVERTYPE_LENGTH+1];

/\ Server's execution platform \/

uint16 serverVer; /\ Server's version number \/

uint16 serverRel; /\ Server's release number \/

uint16 serverLev; /\ Server's level number \/

uint16 serverSubLev; /\ Server's sublevel number \/

 /\--\/

 /\ Client Defaults \/

 /\--\/

char nodeType[DSM_MAX_PLATFORM_LENGTH+1]; /\node/application type\/

char fsdelim; /\ File space delimiter \/

char hldelim; /\ Delimiter betw highlev and lowlev\/

uint8 compression; /\ Compression flag \/

uint8 archDel; /\ Archive delete permission \/

uint8 backDel; /\ Backup delete permission \/

uint32 maxBytesPerTxn; /\ for future use \/

uint16 maxObjPerTxn; /\ The max objects allowed in a txn \/

 /\--\/

 /\ Session Information \/

 /\--\/

char id[DSM_MAX_ID_LENGTH+1]; /\ Sign-in id node name \/

char owner[DSM_MAX_OWNER_LENGTH+1]; /\ Sign-in owner \/

/\ (for multi-user platforms) \/

char confFile[DSM_PATH_MAX + DSM_NAME_MAX +1];

 Appendix A. API Type Definitions Source File 105

/\ len is platform dep \/

/\ dsInit name of appl config file \/

uint8 opNoTrace; /\ dsInit option - NoTrace = 1 \/

 /\--\/

 /\ Policy Data \/

 /\--\/

char domainName[DSM_MAX_DOMAIN_LENGTH+1]; /\ Domain name \/

 char policySetName[DSM_MAX_PS_NAME_LENGTH+1];

/\ Active policy set name \/

dsmDate polActDate; /\ Policy set activation date \/

char dfltMCName[DSM_MAX_MC_NAME_LENGTH+1];/\ Default Mgmt Class \/

uint16 gpBackRetn; /\ Grace-period backup retention \/

uint16 gpArchRetn; /\ Grace-period archive retention \/

} ApiSessInfo;

#define ApiSessInfoVersion 1

#endif /\ _H_DSMAPITD \/

106 ADSM V2 Using the Application Program Interface

Appendix B. API Function Definitions Source File

This section contains the function definitions for the ADSM API. This is a copy of the
header file dsmapifp.h used in the UNIX version of the product. The Windows, OS/2,
and Novell versions differ slightly, and application programmers for these platforms
should check their version of dsmapifp.h for the exact syntax of the API functions.

 Copyright IBM Corp. 1995, 1996 107

/\\\

\ ADSTAR Distributed Storage Manager (ADSTAR DSM) \

\ API Client Component \

\ \

\ (C) Copyright IBM Corporation 1993, 1995 \

\\\/

/\\/

/\ Header File Name: dsmapifp.h \/

/\ \/

/\ Descriptive-name: ADSTAR DSM API function prototypes \/

/\\/

#ifndef _H_DSMAPIFP

#define _H_DSMAPIFP

/\==\/

/\ P U B L I C F U N C T I O N S \/

/\==\/

#ifdef _NO_PROTO_

extern int16 dsmBeginGetData();

extern int16 dsmBeginQuery();

extern int16 dsmBeginTxn();

extern int16 dsmBindMC();

extern int16 dsmChangePW();

extern int16 dsmDeleteObj();

extern int16 dsmDeleteFS();

extern int16 dsmEndGetData();

extern int16 dsmEndGetObj();

extern int16 dsmEndQuery();

extern int16 dsmEndSendObj();

extern int16 dsmEndTxn();

extern int16 dsmGetData();

extern int16 dsmGetNextQObj();

extern int16 dsmGetObj();

extern int16 dsmInit();

extern void dsmQueryApiVersion();

extern int16 dsmQuerySessInfo();

extern int16 dsmRCMsg();

extern int16 dsmRegisterFS();

extern int16 dsmSendData();

extern int16 dsmSendObj();

extern int16 dsmTerminate();

extern int16 dsmUpdateFS();

#else /\ use ANSI C required prototypes \/

extern int16 dsmBeginGetData(

 uint32 dsmHandle,

 bool_t mountWait,

 dsmGetType getType,

108 ADSM V2 Using the Application Program Interface

 dsmGetList \dsmGetObjListP

);

extern int16 dsmBeginQuery(

 uint32 dsmHandle,

 dsmQueryType queryType,

 dsmQueryBuff \queryBuffer

);

extern int16 dsmBeginTxn(

 uint32 dsmHandle

);

extern int16 dsmBindMC(

 uint32 dsmHandle,

 dsmObjName \objNameP,

 dsmSendType sendType,

 mcBindKey \mcBindKeyP

);

extern int16 dsmChangePW(

 uint32 dsmHandle,

 char \oldPW,

 char \newPW

);

extern int16 dsmDeleteObj(

 uint32 dsmHandle,

 dsmDelType delType,

 dsmDelInfo delInfo

);

extern int16 dsmDeleteFS(

 uint32 dsmHandle,

 char \fsName,

 unsigned char repository

);

extern int16 dsmEndGetData(

 uint32 dsmHandle

);

extern int16 dsmEndGetObj(

 uint32 dsmHandle

);

extern int16 dsmEndQuery(

 uint32 dsmHandle

);

extern int16 dsmEndSendObj(

 uint32 dsmHandle

);

extern int16 dsmEndTxn(

 uint32 dsmHandle,

 uint8 vote,

 uint16 \reason

);

extern int16 dsmGetData(

 uint32 dsmHandle,

 Appendix B. API Function Definitions Source File 109

 DataBlk \dataBlkPtr

);

extern int16 dsmGetNextQObj(

 uint32 dsmHandle,

 DataBlk \dataBlkPtr

) ;

extern int16 dsmGetObj(

 uint32 dsmHandle,

 ObjID \objIdP,

 DataBlk \dataBlkPtr

);

extern int16 dsmInit(

 uint32 \dsmHandle,

 dsmApiVersion \dsmApiVersionP,

 char \clientNodeNameP,

 char \clientOwnerNameP,

 char \clientPasswordP,

 char \applicationType,

 char \configfile,

 char \options

);

extern void dsmQueryApiVersion(

 dsmApiVersion \apiVersionP

);

extern int16 dsmQuerySessInfo(

 uint32 dsmHandle,

 ApiSessInfo \SessInfoP

);

extern int16 dsmRCMsg(

 uint32 dsmHandle,

 int16 dsmRC,

 char \msg

);

extern int16 dsmRegisterFS(

 uint32 dsmHandle,

 regFSData \regFilespaceP

);

extern int16 dsmSendData(

 uint32 dsmHandle,

 DataBlk \dataBlkPtr

) ;

extern int16 dsmSendObj(

 uint32 dsmHandle,

 dsmSendType sendType,

 void \sendBuff,

 dsmObjName \objNameP,

 ObjAttr \objAttrPtr,

 DataBlk \dataBlkPtr

);

extern int16 dsmTerminate(

110 ADSM V2 Using the Application Program Interface

 uint32 dsmHandle

);

extern int16 dsmUpdateFS(

 uint32 dsmHandle,

 char \fs,

 dsmFSUpd \fsUpdP,

 uint32 fsUpdAct

);

#endif /\ NO _PROTOTYPE_ \/

#endif /\ _H_DSMAPIFP \/

 Appendix B. API Function Definitions Source File 111

112 ADSM V2 Using the Application Program Interface

Appendix C. API Return Codes Source File

The following is a list of the possible return codes from the APIs. This is a copy of the
header file dsmrc.h used in the product.

The return codes are explained in more detail in Appendix D, “API Return Codes With
Explanations” on page 123.

 Copyright IBM Corp. 1995, 1996 113

/\\\

\ ADSTAR Distributed Storage Manager (ADSTAR DSM) \

\ API Client Component \

\ \

\ (C) Copyright IBM Corporation 1993, 1995 \

\\\/

/\\/

/\ Header File Name: dsmrc.h \/

/\ \/

/\ Descriptive-name: Return codes from ADSTAR DSM APIs \/

/\\/

#ifndef _H_DSMRC

#define _H_DSMRC

typedef int RetCode ;

#define DSM_RC_SUCCESSFUL ð /\ successful completion \/

#define DSM_RC_OK ð /\ successful completion \/

/\ dsmEndTxn reason code \/

#define DSM_RS_ABORT_SYSTEM_ERROR 1

#define DSM_RS_ABORT_NO_MATCH 2

#define DSM_RS_ABORT_BY_CLIENT 3

#define DSM_RS_ABORT_ACTIVE_NOT_FOUND 4

#define DSM_RS_ABORT_NO_DATA 5

#define DSM_RS_ABORT_BAD_VERIFIER 6

#define DSM_RS_ABORT_NODE_IN_USE 7

#define DSM_RS_ABORT_EXPDATE_TOO_LOW 8

#define DSM_RS_ABORT_DATA_OFFLINE 9

#define DSM_RS_ABORT_EXCLUDED_BY_SIZE 1ð

#define DSM_RS_ABORT_NO_STO_SPACE_SKIP 11

#define DSM_RS_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP

#define DSM_RS_ABORT_MOUNT_NOT_POSSIBLE 12

#define DSM_RS_ABORT_SIZESTIMATE_EXCEED 13

#define DSM_RS_ABORT_DATA_UNAVAILABLE 14

#define DSM_RS_ABORT_RETRY 15

#define DSM_RS_ABORT_NO_LOG_SPACE 16

#define DSM_RS_ABORT_NO_DB_SPACE 17

#define DSM_RS_ABORT_NO_MEMORY 18

#define DSM_RS_ABORT_FS_NOT_DEFINED 2ð

#define DSM_RS_ABORT_NODE_ALREADY_DEFED 21

#define DSM_RS_ABORT_NO_DEFAULT_DOMAIN 22

#define DSM_RS_ABORT_INVALID_NODENAME 23

#define DSM_RS_ABORT_INVALID_POL_BIND 24

#define DSM_RS_ABORT_DEST_NOT_DEFINED 25

#define DSM_RS_ABORT_WAIT_FOR_SPACE 26

#define DSM_RS_ABORT_NOT_AUTHORIZED 27

#define DSM_RS_ABORT_RULE_ALREADY_DEFED 28

#define DSM_RS_ABORT_NO_STOR_SPACE_STOP 29

114 ADSM V2 Using the Application Program Interface

#define DSM_RS_ABORT_INVALID_OFFSET 33 /\ Partial Object Retrieve \/

#define DSM_RS_ABORT_INVALID_LENGTH 34 /\ Partial Object Retrieve \/

/\ RETURN CODE \/

#define DSM_RC_ABORT_SYSTEM_ERROR DSM_RS_ABORT_SYSTEM_ERROR

#define DSM_RC_ABORT_NO_MATCH DSM_RS_ABORT_NO_MATCH

#define DSM_RC_ABORT_BY_CLIENT DSM_RS_ABORT_BY_CLIENT

#define DSM_RC_ABORT_ACTIVE_NOT_FOUND DSM_RS_ABORT_ACTIVE_NOT_FOUND

#define DSM_RC_ABORT_NO_DATA DSM_RS_ABORT_NO_DATA

#define DSM_RC_ABORT_BAD_VERIFIER DSM_RS_ABORT_BAD_VERIFIER

#define DSM_RC_ABORT_NODE_IN_USE DSM_RS_ABORT_NODE_IN_USE

#define DSM_RC_ABORT_EXPDATE_TOO_LOW DSM_RS_ABORT_EXPDATE_TOO_LOW

#define DSM_RC_ABORT_DATA_OFFLINE DSM_RS_ABORT_DATA_OFFLINE

#define DSM_RC_ABORT_EXCLUDED_BY_SIZE DSM_RS_ABORT_EXCLUDED_BY_SIZE

#define DSM_RC_ABORT_NO_REPOSIT_SPACE DSM_RS_ABORT_NO_STO_SPACE_SKIP

#define DSM_RC_ABORT_NO_STO_SPACE_SKIP DSM_RS_ABORT_NO_STO_SPACE_SKIP

#define DSM_RC_ABORT_MOUNT_NOT_POSSIBLE DSM_RS_ABORT_MOUNT_NOT_POSSIBLE

#define DSM_RC_ABORT_SIZESTIMATE_EXCEED DSM_RS_ABORT_SIZESTIMATE_EXCEED

#define DSM_RC_ABORT_DATA_UNAVAILABLE DSM_RS_ABORT_DATA_UNAVAILABLE

#define DSM_RC_ABORT_RETRY DSM_RS_ABORT_RETRY

#define DSM_RC_ABORT_NO_LOG_SPACE DSM_RS_ABORT_NO_LOG_SPACE

#define DSM_RC_ABORT_NO_DB_SPACE DSM_RS_ABORT_NO_DB_SPACE

#define DSM_RC_ABORT_NO_MEMORY DSM_RS_ABORT_NO_MEMORY

#define DSM_RC_ABORT_FS_NOT_DEFINED DSM_RS_ABORT_FS_NOT_DEFINED

#define DSM_RC_ABORT_NODE_ALREADY_DEFED DSM_RS_ABORT_NODE_ALREADY_DEFED

#define DSM_RC_ABORT_NO_DEFAULT_DOMAIN DSM_RS_ABORT_NO_DEFAULT_DOMAIN

#define DSM_RC_ABORT_INVALID_NODENAME DSM_RS_ABORT_INVALID_NODENAME

#define DSM_RC_ABORT_INVALID_POL_BIND DSM_RS_ABORT_INVALID_POL_BIND

#define DSM_RC_ABORT_DEST_NOT_DEFINED DSM_RS_ABORT_DEST_NOT_DEFINED

#define DSM_RC_ABORT_WAIT_FOR_SPACE DSM_RS_ABORT_WAIT_FOR_SPACE

#define DSM_RC_ABORT_NOT_AUTHORIZED DSM_RS_ABORT_NOT_AUTHORIZED

#define DSM_RC_ABORT_RULE_ALREADY_DEFED DSM_RS_ABORT_RULE_ALREADY_DEFED

#define DSM_RC_ABORT_NO_STOR_SPACE_STOP DSM_RS_ABORT_NO_STOR_SPACE_STOP

#define DSM_RC_ABORT_INVALID_OFFSET DSM_RS_ABORT_INVALID_OFFSET

#define DSM_RC_ABORT_INVALID_LENGTH DSM_RS_ABORT_INVALID_LENGTH

/\ Definitions for server signon reject codes \/

/\ These error codes are in the range (51 to 99) inclusive. \/

#define DSM_RC_REJECT_NO_RESOURCES 51

#define DSM_RC_REJECT_VERIFIER_EXPIRED 52

#define DSM_RC_REJECT_ID_UNKNOWN 53

#define DSM_RC_REJECT_DUPLICATE_ID 54

#define DSM_RC_REJECT_SERVER_DISABLED 55

#define DSM_RC_REJECT_CLOSED_REGISTER 56

#define DSM_RC_REJECT_CLIENT_DOWNLEVEL 57

#define DSM_RC_REJECT_SERVER_DOWNLEVEL 58

 Appendix C. API Return Codes Source File 115

#define DSM_RC_REJECT_ID_IN_USE 59

#define DSM_RC_REJECT_ID_LOCKED 61

#define DSM_RC_SIGNONREJECT_LICENSE_MAX 62

#define DSM_RC_REJECT_NO_MEMORY 63

#define DSM_RC_REJECT_NO_DB_SPACE 64

#define DSM_RC_REJECT_NO_LOG_SPACE 65

#define DSM_RC_REJECT_INTERNAL_ERROR 66

#define DSM_RC_SIGNONREJECT_INVALID_CLI 67 /\ client type not licensed \/

#define DSM_RC_USER_ABORT 1ð1 /\ processing aborted by user \/

#define DSM_RC_NO_MEMORY 1ð2 /\ no RAM left to complete request \/

#define DSM_RC_TA_COMM_DOWN 1ð3 /\ communications link down \/

#define DSM_RC_FILE_NOT_FOUND 1ð4 /\ specified file not found \/

#define DSM_RC_PATH_NOT_FOUND 1ð5 /\ specified path doesn't exist \/

#define DSM_RC_ACCESS_DENIED 1ð6 /\ denied due to improper permission \/

#define DSM_RC_NO_HANDLES 1ð7 /\ no more file handles available \/

#define DSM_RC_FILE_EXISTS 1ð8 /\ file already exists \/

#define DSM_RC_INVALID_PARM 1ð9 /\ invalid parameter passed. CRITICAL\/

#define DSM_RC_INVALID_HANDLE 11ð /\ invalid file handle passed \/

#define DSM_RC_DISK_FULL 111 /\ out of disk space \/

#define DSM_RC_PROTOCOL_VIOLATION 113 /\ call protocol violation. CRITICAL \/

#define DSM_RC_UNKNOWN_ERROR 114 /\ unknown system error. CRITICAL \/

#define DSM_RC_UNEXPECTED_ERROR 115 /\ unexpected error. CRITICAL \/

#define DSM_RC_FILE_BEING_EXECUTED 116 /\ No write is allowed \/

#define DSM_RC_DIR_NO_SPACE 117 /\ directory can't be expanded \/

#define DSM_RC_LOOPED_SYM_LINK 118 /\ too many symbolic links were

encountered in translating path. \/

#define DSM_RC_FILE_NAME_TOO_LONG 119 /\ file name too long \/

#define DSM_RC_FILE_SPACE_LOCKED 12ð /\ filespace is locked by the system \/

#define DSM_RC_FINISHED 121 /\ finished processing \/

#define DSM_RC_UNKNOWN_FORMAT 122 /\ unknown format \/

#define DSM_RC_NO_AUTHORIZATION 123 /\ server response when the client has

no authorization to read another

host's owner backup/archive data \/

#define DSM_RC_FILE_SPACE_NOT_FOUND 124/\ specified file space not found \/

#define DSM_RC_TXN_ABORTED 125 /\ transaction aborted \/

#define DSM_RC_SUBDIR_AS_FILE 126 /\ Subdirectory name exists as file \/

#define DSM_RC_PROCESS_NO_SPACE 127 /\ process has no more disk space. \/

#define DSM_RC_PATH_TOO_LONG 128 /\ a directory path being build became

 too long \/

#define DSM_RC_NOT_COMPRESSED 129 /\ file thought to be compressed is

 actually not \/

#define DSM_RC_TOO_MANY_BITS 13ð /\ file was compressed using more bits

then the expander can handle \/

#define DSM_RC_SYSTEM_ERROR 131 /\ internal system error \/

#define DSM_RC_NO_SERVER_RESOURCES 132 /\ server out of resources. \/

#define DSM_RC_FS_NOT_KNOWN 133 /\ the file space is not known by the

 server \/

#define DSM_RC_NO_LEADING_DIRSEP 134 /\ no leading directory separator \/

#define DSM_RC_WILDCARD_DIR 135 /\ wildcard character in directory

path when not allowed \/

#define DSM_RC_COMM_PROTOCOL_ERROR 136 /\ communications protocol error \/

116 ADSM V2 Using the Application Program Interface

#define DSM_RC_AUTH_FAILURE 137 /\ authentication failure \/

#define DSM_RC_TA_NOT_VALID 138 /\ TA not a root and/or SUID program \/

#define DSM_RC_KILLED 139 /\ process killed. \/

#define DSM_RC_WOULD_BLOCK 145 /\ operation would cause the system to

block waiting for input. \/

#define DSM_RC_TOO_SMALL 146 /\ area for compiled pattern small \/

#define DSM_RC_UNCLOSED 147 /\ no closing bracket in pattern \/

#define DSM_RC_NO_STARTING_DELIMITER 148 /\ pattern has to start with

 directory delimiter \/

#define DSM_RC_NEEDED_DIR_DELIMITER 149 /\ a directory delimiter is needed

immediately before and after the

"match directories" metastring

("...") and one wasn't found \/

#define DSM_RC_UNKNOWN_FILE_DATA_TYPE 15ð /\ structured file data type is

 unknown \/

#define DSM_RC_BUFFER_OVERFLOW 151 /\ data buffer overflow \/

#define DSM_RC_NO_COMPRESS_MEMORY 154 /\ Compress/Expand out of memory \/

#define DSM_RC_COMPRESS_GREW 155 /\ Compression grew \/

#define DSM_RC_INV_COMM_METHOD 156 /\ Invalid comm method specified \/

#define DSM_RC_WILL_ABORT 157 /\ Transaction will be aborted \/

#define DSM_RC_FS_WRITE_LOCKED 158 /\ File space is write locked \/

#define DSM_RC_SKIPPED_BY_USER 159 /\ User wanted file skipped in the

case of ABORT_DATA_OFFLINE \/

#define DSM_RC_TA_NOT_FOUND 16ð /\ TA not found in it's directory \/

#define DSM_RC_TA_ACCESS_DENIED 161 /\ Access to TA is denied \/

#define DSM_RC_FS_NOT_READY 162 /\ File space not ready \/

#define DSM_RC_FS_IS_BAD 163 /\ File space is bad \/

#define DSM_RC_FIO_ERROR 164 /\ File input/output error \/

#define DSM_RC_WRITE_FAILURE 165 /\ Error writing to file \/

#define DSM_RC_OVER_FILE_SIZE_LIMIT 166 /\ File over system/user limit \/

#define DSM_RC_CANNOT_MAKE 167 /\ Could not create file/directory,

could be a bad name \/

#define DSM_RC_NO_PASS_FILE 168 /\ password file needed and user is

 not root \/

#define DSM_RC_VERFILE_OLD 169 /\ password stored locally doesn't

match the one at the host \/

#define DSM_RC_INPUT_ERROR 173 /\ unable to read keyboard input \/

#define DSM_RC_REJECT_PLATFORM_MISMATCH 174 /\ Platform name doesn't match

up with what the server says

is the platform for the client \/

#define DSM_RC_TL_NOT_FILE_OWNER 175 /\ User trying to backup a file is not

the file's owner. \/

#define DSM_RC_DBCS_IN_RANGE 176 /\DBCS character not allowed within \/

#define DSM_RC_UNMATCHED_QUOTE 177 /\ missing starting or ending quote \/

/\---\/

/\ Return codes 18ð-199 are reserved for Policy Set handling \/

/\---\/

#define DSM_RC_PS_MULTBCG 181 /\ Multiple backup copy groups in 1 MC\/

 Appendix C. API Return Codes Source File 117

#define DSM_RC_PS_MULTACG 182 /\ Multiple arch. copy groups in 1 MC\/

#define DSM_RC_PS_NODFLTMC 183 /\ Default MC name not in policy set \/

#define DSM_RC_TL_NOBCG 184 /\ Backup req, no backup copy group \/

#define DSM_RC_TL_EXCLUDED 185 /\ Backup req, excl. by in/ex filter \/

#define DSM_RC_TL_NOACG 186 /\ Archive req, no archive copy group \/

#define DSM_RC_PS_INVALID_ARCHMC 187 /\ Invalid MC name in archive override\/

#define DSM_RC_NO_PS_DATA 188 /\ No policy set data on the server \/

#define DSM_RC_PS_INVALID_DIRMC 189 /\ Invalid directory MC specified in

the options file. \/

#define DSM_RC_PS_NO_CG_IN_DIR_MC 19ð /\ No backup copy group in directory MC.

Must specify an MC using DirMC

 option. \/

/\---\/

/\ Return codes for the Trusted Communication Agent \/

/\---\/

#define DSM_RC_TCA_ATTACH_SHR_MEM_ERR 2ðð /\ Error attaching shared memory \/

#define DSM_RC_TCA_SHR_MEM_BLOCK_ERR 2ð1 /\ Shared memory block invalid \/

#define DSM_RC_TCA_SHR_MEM_IN_USE 2ð2 /\ Shared memory already in use \/

#define DSM_RC_TCA_SHARED_MEMORY_ERROR 291 /\ Error alloc TCA shared memory \/

#define DSM_RC_TCA_FORK_FAILED 292 /\ Error forking off TCA process \/

#define DSM_RC_TCA_SEGMENT_MISMATCH 293 /\ Shared memory segs don't match \/

#define DSM_RC_TCA_DIED 294 /\ TCA died unexpectedly \/

#define DSM_RC_TCA_INVALID_REQUEST 295 /\ Invalid request sent to TCA \/

#define DSM_RC_TCA_NOT_ROOT 296 /\ Invalid action for non-root user \/

#define DSM_RC_TCA_SEMGET_ERROR 297 /\ Error getting semaphores \/

#define DSM_RC_TCA_SEM_OP_ERROR 298 /\ Error in semaphore set or wait \/

/\---\/

/\ 6ðð to 61ð for volume label codes \/

/\---\/

#define DSM_RC_DUP_LABEL 6ðð /\ duplicate volume label found \/

#define DSM_RC_NO_LABEL 6ð1 /\ drive has no label \/

/\---\/

/\ Return codes for message file processing \/

/\---\/

#define DSM_RC_NLS_CANT_OPEN_TXT 61ð /\ error trying to open msg txt file \/

#define DSM_RC_NLS_CANT_READ_HDR 611 /\ error trying to read header \/

#define DSM_RC_NLS_INVALID_CNTL_REC 612 /\ invalid control record \/

#define DSM_RC_NLS_INVALID_DATE_FMT 613 /\ invalid default date format \/

#define DSM_RC_NLS_INVALID_TIME_FMT 614 /\ invalid default time format \/

#define DSM_RC_NLS_INVALID_NUM_FMT 615 /\ invalid default number format \/

/\---\/

/\ Return codes 62ð-63ð are reserved for log message return codes \/

/\---\/

#define DSM_RC_LOG_CANT_BE_OPENED 62ð /\ error trying to open error log \/

#define DSM_RC_LOG_ERROR_WRITING_TO_LOG 621 /\ error occurred writing to

 log file \/

#define DSM_RC_LOG_NOT_SPECIFIED 622 /\ no error log file was specified \/

118 ADSM V2 Using the Application Program Interface

/\ TCP/IP error codes \/

#define DSM_RC_TCPIP_FAILURE -5ð /\ TCP/IP communications failure \/

#define DSM_RC_CONN_TIMEDOUT -51 /\ TCP/IP connection attempt timedout \/

#define DSM_RC_CONN_REFUSED -52 /\ TCP/IP connection refused by host \/

#define DSM_RC_BAD_HOST_NAME -53 /\ TCP/IP invalid host name specified \/

#define DSM_RC_NETWORK_UNREACHABLE -54 /\ TCP/IP host name unreachable \/

#define DSM_RC_WINSOCK_MISSING -55 /\ TCP/IP WINSOCK.DLL missing \/

#define DSM_RC_TCPIP_DLL_LOADFAILURE -56 /\ Error from LoadLibrary \/

#define DSM_RC_TCPIP_LOADFAILURE -57 /\ Error from GetProcAddress \/

#define DSM_RC_TCPIP_USER_ABORT -58 /\ User aborted while in TCP/IP layer \/

/\ Comm327ð error codes \/

#define DSM_RC_COMM_TIMEOUT -1ð1 /\ Communication timeout \/

#define DSM_RC_EMULATOR_INACTIVE -1ð2 /\ Emulator inactive or not responding\/

#define DSM_RC_BAD_HOST_ID -1ð3 /\ Host session id is invalid \/

#define DSM_RC_HOST_SESS_BUSY -1ð4 /\ Another OS/2 HLLAPI appl has sess. \/

#define DSM_RC_327ð_CONNECT_FAILURE -1ð5 /\ Could not startup host

 session side \/

#define DSM_RC_NO_ACS3ELKE_DLL -1ð6 /\ The ACSNETB.DLL could not be loaded\/

#define DSM_RC_EMULATOR_ERROR -1ð7 /\ Emulator error detected \/

#define DSM_RC_EMULATOR_BACKLEVEL -1ð8 /\ Emulator error detected \/

#define DSM_RC_CKSUM_FAILURE -1ð9 /\ 327ð cksum failed, pkt too big or \/

/\ just plain got bad data. \/

/\ The following Return codes are for EHLLAPI for Windows \/

#define DSM_RC_327ðCOMMError_DLL -11ð

#define DSM_RC_327ðCOMMError_GetProc -111

#define DSM_RC_EHLLAPIError_DLL -112

#define DSM_RC_EHLLAPIError_GetProc -113

#define DSM_RC_EHLLAPIError_HostConnect -114

#define DSM_RC_EHLLAPIError_AllocBuff -115

#define DSM_RC_EHLLAPIError_SendKey -116

#define DSM_RC_EHLLAPIError_PacketChk -117

#define DSM_RC_EHLLAPIError_ChkSum -118

#define DSM_RC_EHLLAPIError_HostTimeOut -119

#define DSM_RC_EHLLAPIError_Send -12ð

#define DSM_RC_EHLLAPIError_Recv -121

#define DSM_RC_EHLLAPIError_General -122

#define DSM_RC_PC327ð_MISSING_DLL -123

#define DSM_RC_327ðCOMM_MISSING_DLL -124

/\ NETBIOS error codes \/

#define DSM_RC_NETB_ERROR -151 /\ Could not add node to LAN \/

#define DSM_RC_NETB_NO_DLL -152 /\ The ACSNETB.DLL could not be loaded\/

#define DSM_RC_NETB_LAN_ERR -155 /\ LAN error detected \/

#define DSM_RC_NETB_NAME_ERR -158 /\ Netbios error on Add Name \/

#define DSM_RC_NETB_TIMEOUT -159 /\ Netbios send timeout \/

#define DSM_RC_NETB_NOTINST -16ð /\ Netbios not installed - DOS \/

#define DSM_RC_NETB_REBOOT -161 /\ Netbios config err - reboot DOS \/

/\ Named Pipe error codes \/

#define DSM_RC_NP_ERROR -19ð

 Appendix C. API Return Codes Source File 119

/\ CPIC error codes \/

#define DSM_RC_CPIC_ALLOCATE_FAILURE -2ð1

#define DSM_RC_CPIC_TYPE_MISMATCH -2ð2

#define DSM_RC_CPIC_PIP_NOT_SPECIFY_ERR -2ð3

#define DSM_RC_CPIC_SECURITY_NOT_VALID -2ð4

#define DSM_RC_CPIC_SYNC_LVL_NO_SUPPORT -2ð5

#define DSM_RC_CPIC_TPN_NOT_RECOGNIZED -2ð6

#define DSM_RC_CPIC_TP_ERROR -2ð7

#define DSM_RC_CPIC_PARAMETER_ERROR -2ð8

#define DSM_RC_CPIC_PROD_SPECIFIC_ERR -2ð9

#define DSM_RC_CPIC_PROGRAM_ERROR -21ð

#define DSM_RC_CPIC_RESOURCE_ERROR -211

#define DSM_RC_CPIC_DEALLOCATE_ERROR -212

#define DSM_RC_CPIC_SVC_ERROR -213

#define DSM_RC_CPIC_PROGRAM_STATE_CHECK -214

#define DSM_RC_CPIC_PROGRAM_PARAM_CHECK -215

#define DSM_RC_CPIC_UNSUCCESSFUL -216

#define DSM_RC_UNKNOWN_CPIC_PROBLEM -217

#define DSM_RC_CPIC_MISSING_LU -218

#define DSM_RC_CPIC_MISSING_TP -219

#define DSM_RC_CPIC_MISSING_DLL -22ð

#define DSM_RC_CPIC_DLL_LOADFAILURE -221

#define DSM_RC_CPIC_FUNC_LOADFAILURE -222

#define DSM_RC_NULL_OBJNAME 2ððð /\ Object name pointer is NULL \/

#define DSM_RC_NULL_DATABLKPTR 2ðð1 /\ dataBlkPtr is NULL \/

#define DSM_RC_NULL_MSG 2ðð2 /\ msg parm in dsmRCMsg is NULL \/

#define DSM_RC_NULL_OBJATTRPTR 2ðð4 /\ Object Attr Pointer is NULL \/

#define DSM_RC_NO_SESS_BLK 2ðð6 /\ no server session info \/

#define DSM_RC_NO_POLICY_BLK 2ðð7 /\ no policy hdr info \/

#define DSM_RC_ZERO_BUFLEN 2ðð8 /\ bufferLen is zero for dataBlkPtr \/

#define DSM_RC_NULL_BUFPTR 2ðð9 /\ bufferPtr is NULL for dataBlkPtr \/

#define DSM_RC_INVALID_OBJTYPE 2ð1ð /\ invalid object type \/

#define DSM_RC_INVALID_VOTE 2ð11 /\ invalid vote \/

#define DSM_RC_INVALID_OPT 2ð13 /\ invalid option \/

#define DSM_RC_INVALID_DS_HANDLE 2ð14 /\ invalid ADSM handle \/

#define DSM_RC_INVALID_REPOS 2ð15 /\ invalid value for repository \/

#define DSM_RC_INVALID_FSNAME 2ð16 /\ fs should start with dir delim \/

#define DSM_RC_INVALID_OBJNAME 2ð17 /\ invalid full path name \/

#define DSM_RC_INVALID_LLNAME 2ð18 /\ ll should start with dir delim \/

#define DSM_RC_INVALID_OBJOWNER 2ð19 /\ invalid object owner name \/

#define DSM_RC_INVALID_ACTYPE 2ð2ð /\ invalid action type \/

#define DSM_RC_INVALID_RETCODE 2ð21 /\ dsmRC in dsmRCMsg is invalid \/

#define DSM_RC_INVALID_SENDTYPE 2ð22 /\ invalid send type \/

#define DSM_RC_INVALID_PARAMETER 2ð23 /\ invalid parameter \/

#define DSM_RC_INVALID_OBJSTATE 2ð24 /\ active, inactive, or any match? \/

120 ADSM V2 Using the Application Program Interface

#define DSM_RC_INVALID_MCNAME 2ð25 /\ Mgmt class name not found \/

#define DSM_RC_INVALID_DRIVE_CHAR 2ð26 /\ Drive letter is not alphabet \/

#define DSM_RC_NULL_FSNAME 2ð27 /\ Filespace name is NULL \/

#define DSM_RC_INVALID_HLNAME 2ð28 /\ hl should start with dir delim \/

#define DSM_RC_NUMOBJ_EXCEED 2ð29 /\ BeginGetData num objs exceeded \/

#define DSM_RC_NEWPW_REQD 2ð3ð /\ new password is required \/

#define DSM_RC_OLDPW_REQD 2ð31 /\ old password is required \/

#define DSM_RC_NO_OWNER_REQD 2ð32 /\ owner not allowed. Allow default \/

#define DSM_RC_NO_NODE_REQD 2ð33 /\ node not allowed w/ pw=generate \/

#define DSM_RC_BAD_CALL_SEQUENCE 2ð41 /\ Sequence of DSM calls not allowed\/

#define DSM_RC_WILDCHAR_NOTALLOWED 2ð5ð /\ Wild card not allowed for hl,ll \/

#define DSM_RC_FSNAME_NOTFOUND 2ð6ð /\ Filespace name not found \/

#define DSM_RC_FS_NOT_REGISTERED 2ð61 /\ Filespace name not registered \/

#define DSM_RC_FS_ALREADY_REGED 2ð62 /\ Filespace already registered \/

#define DSM_RC_OBJID_NOTFOUND 2ð63 /\ No object id to restore \/

#define DSM_RC_WRONG_VERSION 2ð64 /\ Wrong level of code \/

#define DSM_RC_WRONG_VERSION_PARM 2ð65 /\ Wrong level of parameter struct \/

#define DSM_RC_NEEDTO_ENDTXN 2ð7ð /\ Need to call dsmEndTxn \/

#define DSM_RC_OBJ_EXCLUDED 2ð8ð /\ Object is excluded by MC \/

#define DSM_RC_OBJ_NOBCG 2ð81 /\ Object has no backup copy group \/

#define DSM_RC_OBJ_NOACG 2ð82 /\ Object has no archive copy group \/

#define DSM_RC_APISYSTEM_ERROR 2ð9ð /\ API internal error \/

#define DSM_RC_DESC_TOOLONG 21ðð /\ description is too long \/

#define DSM_RC_OBJINFO_TOOLONG 21ð1 /\ object attr objinfo too long \/

#define DSM_RC_HL_TOOLONG 21ð2 /\ High level qualifier is too long \/

#define DSM_RC_PASSWD_TOOLONG 21ð3 /\ password is too long \/

#define DSM_RC_FILESPACE_TOOLONG 21ð4 /\ filespace name is too long \/

#define DSM_RC_LL_TOOLONG 21ð5 /\ Low level qualifier is too long \/

#define DSM_RC_FSINFO_TOOLONG 21ð6 /\ filespace length is too big \/

#define DSM_RC_MORE_DATA 22ðð /\ There are more data to restore \/

#define DSM_RC_BUFF_TOO_SMALL 221ð /\ DataBlk buffer too small for qry \/

#define DSM_RC_NO_OPT_FILE 222ð /\No default user configuration file\/

#define DSM_RC_INVALID_KEYWORD 2221 /\ Invalid option keyword \/

#define DSM_RC_PATTERN_TOO_COMPLEX 2222 /\ Can't match Include/Exclude entry\/

#define DSM_RC_NO_CLOSING_BRACKET 2223 /\ Missing closing bracket inc/excl \/

#define DSM_RC_INVALID_SERVER 2225 /\ Invalid server name from client \/

#define DSM_RC_NO_HOST_ADDR 2226 /\ Not enuf info to connect server \/

#define DSM_RC_MACHINE_SAME 2227 /\ -MACHINENAME same as real name \/

#define DSM_RC_NO_API_CONFIGFILE 2228 /\specified API confg file not found\/

 Appendix C. API Return Codes Source File 121

#define DSM_RC_NO_INCLEXCL_FILE 2229 /\ specified inclexcl file not found\/

#define DSM_RC_NO_SYS_OR_INCLEXCL 223ð /\ either dsm.sys or inclexcl file

specified in dsm.sys not found \/

#define DSM_RC_REJECT_NO_POR_SUPPORT 2231 /\ server doesn't have POR support\/

#define DSM_RC_NEED_ROOT 23ðð /\ API caller must be root \/

#define DSM_RC_NEEDTO_CALL_BINDMC 23ð1 /\ dsmBindMC must be called first \/

#define DSM_RC_CHECK_REASON_CODE 23ð2 /\ check reason code from dsmEndTxn \/

#endif /\ _H_DSMRC \/

122 ADSM V2 Using the Application Program Interface

-050 E �-051 E

Appendix D. API Return Codes With Explanations

This appendix describes in more detail what the return codes mean, and how you, as
an application developer, should deal with them.

In this section, the return codes are listed in numerical order. For each return code, the
following information is given:

� the return code number — This number corresponds to the number in the header
file dsmrc.h (see Appendix C, “API Return Codes Source File” on page 113).

� the severity code — This letter is an indication of the severity of the situation that
caused the return code to be generated. The possible severity codes and their
meanings are:

� the symbolic name — This name corresponds to the definition in the header file
dsmrc.h . You should always use the symbolic name for a return code in your
application rather than the return code number.

Note that the symbolic names are case sensitive. Most are entirely in upper case
letters, but the ones within the range -110 to -122 also contain lower case letters.

� the explanation — This field explains the circumstances under which this return
code might be generated.

� the system action — This field describes what action ADSM is going to take in
response to the return code.

� the user response — This field explains what you should do in response to the
system action.

Many of the return codes describe errors that cause processing to stop. You may want
to send a message to the end user that describes the problem and suggests some
course of action. To identify different messages, you can use these return code values
or develop your own numbering system.

 S Severe error Processing could not continue.
 E Error Processing could not continue.
 W Warning Processing can continue, but problems may develop later.

You should be cautious.
 I Information Processing continues. No user response necessary.

-050 E DSM_RC_TCPIP_FAILURE

Explanation: An attempt to connect to the server using TCP/IP
communications failed. This error can occur if the LAN con-
nection went down or if your system administrator canceled a
backup operation.

System Action: Session rejected. Processing stopped.

User Response: Retry the operation, or wait until the server
comes back up and retry the operation. If the problem con-
tinues, see your system administrator for further help.

-051 E DSM_RC_CONN_TIMEDOUT

Explanation: The attempt to establish a TCP/IP connection
timed out before the connection was made.

System Action: Processing stopped.

User Response: Check for a networking problem. If the
problem continues, see your system administrator.

 Copyright IBM Corp. 1995, 1996 123

-052 E �-104 E

-052 E DSM_RC_CONN_REFUSED

Explanation: An attempt to establish a TCP/IP connection was
rejected by the server.

System Action: Processing stopped.

User Response: The server was not fully initialized, is not cur-
rently running, was not enabled for TCP/IP communications, or
an incorrect TCP/IP port number was specified. If the problem
continues, see your system administrator.

-053 E DSM_RC_BAD_HOST_NAME

Explanation: An invalid TCP/IP host name or address was
specified.

System Action: Processing stopped.

User Response: Check your options file for the correct
TCPSERVERADDRESS statement. See your administrator for
the correct name of the server.

-054 E DSM_RC_NETWORK_UNREACHABLE

Explanation: The TCP/IP host name specified in the
TCPSERVERADDRESS statement cannot be reached.

System Action: Processing stopped.

User Response: Check your options file for the correct
TCPSERVERADDRESS statement. See your administrator for
the correct name of the server.

-055 E DSM_RC_WINSOCK_MISSING

Explanation: The TCP/IP WINSOCK.DLL file cannot be found.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

-056 E DSM_RC_TCPIP_DLL_LOADFAILURE

Explanation: An error occurred while loading a library. The
TCP/IP DLL load failed.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

-057 E DSM_RC_TCPIP_LOADFAILURE

Explanation: An error occurred while locating a function. The
TCP/IP load function failed.

System Action: Processing stopped.

User Response: Verify your TCP/IP installation.

-101 E DSM_RC_COMM_TIMEOUT

Explanation: Explain the message. What caused it?

System Action: What did the system really do?

User Response: What should the user do?

-101 E DSM_RC_COMM_TIMEOUT

Explanation: Explain the message. What caused it?

System Action: What did the system really do?

User Response: What should the user do?

-101 E DSM_RC_COMM_TIMEOUT

Explanation: Explain the message. What caused it?

System Action: What did the system really do?

User Response: What should the user do?

-101 E DSM_RC_COMM_TIMEOUT

Explanation: Explain the message. What caused it?

System Action: What did the system really do?

User Response: What should the user do?

-102 E DSM_RC_EMULATOR_INACTIVE

Explanation: The 3270 terminal emulator was not active or
cannot be accessed by ADSM. Ensure that your 3270 terminal
emulator is active and that it is at the proper level as supported
by ADSM.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: Ensure that the emulator is active and at the
proper release level.

-103 E DSM_RC_BAD_HOST_ID

Explanation: The 3270 emulator session cannot be accessed
by ADSM.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: Ensure that the correct short name is speci-
fied for the 3270 terminal session that ADSM is to access. The
short name is usually shown in the lower left corner of the 3270
session. Valid names are single alphabetic characters from a
through z.

-104 E DSM_RC_HOST_SESS_BUSY

Explanation: Another application (typically a HLLAPI applica-
tion) is running on your machine and has access to the 3270
host session.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: Try running ADSM again to see if the condi-
tion clears. If the condition remains, see what other applications
are running on your system and suspend or end the one that is
preventing ADSM from accessing the server.

124 ADSM V2 Using the Application Program Interface

-105 E �-114 E

-105 E DSM_RC_3270_CONNECT_FAILURE

Explanation: ADSM cannot access the specified 3270 host
session to connect to the server. Host session might be down
or in an incorrect state.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: Check to see if your host system is active. If
so, ensure that the 3270 terminal session is in the proper state
to receive the 3270 startup command sequence. If the system
fails, make sure the server is active.

-106 E DSM_RC_NO_WSOCK32_DLL

Explanation: The 32-Bit Windows Sockets DLL WSOCK32.DLL
could not be located

System Action: Communications link is not established.
Session rejected.

User Response: See your system administrator.

-106 E DSM_RC_NO_WSOCK32_DLL

Explanation: The 32-Bit Windows Sockets DLL WSOCK32.DLL
could not be located

System Action: Communications link is not established.
Session rejected.

User Response: See your system administrator.

-107 E DSM_RC_EMULATOR_ERROR

Explanation: An unknown error was returned from the 3270
emulator session to ADSM.

System Action: ADSM canceled the current operation.
Session rejected.

User Response: Ensure that the 3270 session is functioning
properly. If the problem continues, see your service represen-
tative for further problem determination.

-108 S DSM_RC_EMULATOR_BACKLEVEL

Explanation: You are running a back level version of the 3270
emulator that is not supported by ADSM.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: Install the current version of the 3270 emu-
lator.

-109 E DSM_RC_CKSUM_FAILURE

Explanation: Corrupted data was received over the 3270 con-
nection.

System Action: The client ends its current activity with the
server.

User Response: Check your connection path for errors. Verify
that you have installed and set up your 3270 emulator properly.
Also, ensure that your 3270BUFFERSIZE as specified in your
ADSM options file is not too large for your site. Typically, values

of 4,000 bytes are accepted without error, but values over
32,000 bytes might cause this error if your communication link
does not support the larger sizes.

-110 E DSM_RC_3270COMMError_DLL

Explanation: An error occurs while loading the ADSM 3270
support file into memory. This error only applies when using
3270 communications.

System Action: The connection to the server fails.

User Response: Because this error may be caused by insuffi-
cient memory, shutdown applications in progress and retry the
operation. If the problem persists, contact your service repre-
sentative.

-111 E DSM_RC_3270COMMError_GetProc

Explanation: An error occurs while loading one or more func-
tions from the ADSM 3270 support file. This error only applies
when using 3270 communications.

System Action: The connection to the server fails.

User Response: Because this error may be caused by insuffi-
cient memory, shutdown applications in progress and retry the
operation. If the problem persists, contact your service repre-
sentative.

-112 E DSM_RC_EHLLAPIError_DLL

Explanation: An error occurs while loading the PC3270W
v3.00 EHLLAPI support file. This error only applies when using
3270 communications.

System Action: The connection to the server fails.

User Response: Because this error may be caused by insuffi-
cient memory, shutdown applications in progress, and retry the
operation. If the problem persists, contact your service repre-
sentative.

-113 E DSM_RC_EHLLAPIError_GetProc

Explanation: An error occurs while loading one or more func-
tions from the PC3270W v3.00 EHLLAPI support file. This error
only applies when using 3270 communications.

System Action: The connection to the server fails.

User Response: Because this error may be caused by insuffi-
cient memory, shutdown applications in progress, and retry the
operation. If the problem persists, contact your service repre-
sentative.

-114 E DSM_RC_EHLLAPIError_HostConnect

Explanation: Connection to the ADSM server using 3270 com-
munications fails.

System Action: The connection to the server fails.

User Response: Contact your service representative.

 Appendix D. API Return Codes With Explanations 125

-115 E �-158 E

-115 E DSM_RC_EHLLAPIError_AllocBuff

Explanation: A 3270 communications buffer cannot be allo-
cated. This is usually caused by insufficient memory.

System Action: The connection to the server fails.

User Response: Shutdown some applications in progress or
reduce the communication buffer sizes by using the
3270BUFFERSIZE option. If the problem persists, contact your
service representative.

-116 E DSM_RC_EHLLAPIError_SendKey

Explanation: An error occurs sending the host startup
command specified in the 3270HOSTCOMMAND option to the
specified host session.

System Action: The connection to the server fails.

User Response: Make sure that the specified emulator session
is in the correct state (Input is not inhibited, and so on).

-117 E DSM_RC_EHLLAPIError_PacketChk

Explanation: A packet or checksum error occurs when
receiving data from the server.

System Action: The connection to the server fails.

User Response: Retry the operation. If the problem persists,
contact your service representative.

-118 E DSM_RC_EHLLAPIError_ChkSum

Explanation: A packet or checksum error occurs when
receiving data from the server.

System Action: The client session is ended.

User Response: Retry the operation. If the problem persists,
contact your service representative.

-119 E DSM_RC_EHLLAPIError_HostTimeOut

Explanation: The client timed out while waiting for data to
arrive from the server.

System Action: The connection to the server fails.

User Response: If system response time is very slow, try
increasing the timeout value with the 3270HOSTTIMEOUT
option. Also, make sure the specified emulator session is in the
correct state.

-120 E DSM_RC_EHLLAPIError_Send

Explanation: An error occurs while sending data to the server.

System Action: The connection to the server fails.

User Response: Contact your service representative.

-121 E DSM_RC_EHLLAPIError_Recv

Explanation: Error receiving data from the server.

System Action: The connection to the server fails.

User Response: Contact your service representative.

-122 E DSM_RC_EHLLAPIError_General

Explanation: A general 3270 communication error occurs. The
connection to the server fails.

System Action: The communications link is not established.

User Response: Contact your service representative.

-123 E DSM_RC_PC3270_MISSING_DLL

Explanation: The PC/3270 EHLLAPI DLL pcshll.dll cannot be
found in the user's path.

System Action: Communications link is not established.

User Response: Contact your system administrator. Make
sure that the PS/3270 EHLLAPI DLLs are in a directory that is
included in the user's path.

-124 E DSM_RC_3270COMM_MISSING_DLL

Explanation: The ADSM DLL dsm3270.dll cannot be found in
the user's path.

System Action: Communications link is not established.

User Response: Make sure that the ADSM DLL dsm3270.dll is
in a directory that is included in the user's path.

-151 E DSM_RC_NETB_ERROR

Explanation: The client cannot access the NETBIOS server.

System Action: Session is not established.

User Response: Ensure that NETBIOS is loaded and that the
NETBIOS server is active. See your system administrator on
status of the LAN.

-152 E DSM_RC_NETB_NO_DLL

Explanation: The OS/2 LAN file ACSNETB.DLL is not available
to establish a communications link, or the file is incorrect.

System Action: Communications link is not established.

User Response: See your system administrator.

-155 E DSM_RC_NETB_LAN_ERR

Explanation: LAN communications failure detected while in
session with server.

System Action: Communications link is not established.

User Response: See your system administrator.

-158 E DSM_RC_NETB_NAME_ERR

Explanation: An attempt to add the client NETBIOS name
failed, or an attempt to call the server NETBIOS name failed.

System Action: Processing stopped.

User Response: Verify that your NETBIOSNAME option value
is unique. Verify that your NETBIOSSERVERNAME option
value is correct. Verify that the server has NETBIOS support
running. If the problem continues, see your system administrator
for further help.

126 ADSM V2 Using the Application Program Interface

-159 E �-207 S

-159 E DSM_RC_NETB_TIMEOUT

Explanation: A timeout occurred when transmitting data with
the NETBIOS protocol.

System Action: Processing stopped.

User Response: Make sure the server is operational. You
may need to increase the NETBIOSTIMEOUT value or use a
value of 0 for no timeout. If the problem continues, see your
system administrator for further help.

-160 E DSM_RC_NETB_NOTINST

Explanation: The product for NETBIOS is not installed.

System Action: Processing stopped.

User Response: Verify that the product for NETBIOS, such as
the LAN Support Program, is installed. If the problem continues,
see your system administrator for further help.

-161 E DSM_RC_NETB_REBOOT

Explanation: A DOS or Windows NETBIOS error has occurred
which requires that the adapter be reset. This may be caused by
a software installation or adapter configuration error.

System Action: Processing stopped.

User Response: Reboot the machine. If the error recurs, check
the ADSM error log to find the NETBIOS return code. See your
system administrator for help with your NETBIOS
installation/configuration problem.

-190 E DSM_RC_NP_ERROR

Explanation: An attempt to connect to the server using Named
Pipes communications failed. This might have occurred if an
incorrect NAMEDPIPENAME was specified in the options files or
if your system administrator canceled a backup operation.

System Action: Processing stopped.

User Response: Retry the operation, or wait until the server
comes back up and retry the operation. Ensure that the value
specified on the NAMEDPIPENAME option is the same as the
one used by the ADSM server. If the problem continues, contact
your system administrator for further help.

-201 S DSM_RC_CPIC_ALLOCATE_FAILURE

Explanation: ADSM client cannot allocate a CPIC conversation
to the ADSM server.

System Action: Processing stopped.

User Response: Ensure that the symbolic destination name
matches a valid side information table entry in your local commu-
nications program.

-202 S DSM_RC_CPIC_TYPE_MISMATCH

Explanation: An unexpected CPIC error occurred. There is a
CPIC conversation type mismatch between the client and the
ADSM server.

System Action: Processing stopped.

User Response: This is a program error. See your service
representative.

-203 S DSM_RC_CPIC_PIP_NOT_SPECIFY_ERR

Explanation: An unexpected CPIC error occurred. The CPIC
PIP is not specified correctly.

System Action: Processing stopped.

User Response: This is a program error. See your service
representative.

-204 S DSM_RC_CPIC_SECURITY_NOT_VALID

Explanation: The conversation cannot be allocated because
the CPIC security is not valid.

System Action: Processing stopped.

User Response: Change the security in the CPIC side informa-
tion table.

-205 S DSM_RC_CPIC_SYNC_LVL_NO_SUPPORT

Explanation: The conversation cannot continue because the
CPIC synchronization level of either the local or remote system
is not supported.

System Action: Processing stopped.

User Response: ADSM defaults to no synchronization level.
See your service representative.

-206 S DSM_RC_CPIC_TPN_NOT_RECOGNIZED

Explanation: CPIC transaction program name not recognized.
ADSM cannot find the name of the ADSM server.

System Action: Processing stopped.

User Response: Ensure that you have the correct ADSM
server name listed in your CPIC side information entry and that
the ADSM server is running.

-207 S DSM_RC_CPIC_TP_ERROR

Explanation: CPIC transaction program not available. The
ADSM server is not responding to the local program's request.

System Action: Processing stopped.

User Response: Ensure that the ADSM server is running and
retry the command. Stop and start the local communications
program.

 Appendix D. API Return Codes With Explanations 127

-208 S �-221 E

-208 S DSM_RC_CPIC_PARAMETER_ERROR

Explanation: A parameter to a CPIC call was in error.

System Action: Processing stopped.

User Response: An invalid symbolic destination or invalid
transaction program name was given. Check these values and
retry the command.

-209 S DSM_RC_CPIC_PROD_SPECIFIC_ERR

Explanation: ADSM detected a CPIC product-specific error that
occurred when making a CPIC call.

System Action: Processing stopped.

User Response: Ensure that LU6.2 is working properly at your
installation. See your system administrator.

-210 S DSM_RC_CPIC_PROGRAM_ERROR

Explanation: An unexpected CPIC program error occurred.

System Action: Processing stopped.

User Response: This is a program error. See your service
representative.

-211 S DSM_RC_CPIC_RESOURCE_ERROR

Explanation: CPIC resource error. The conversation ended
prematurely.

System Action: Processing stopped.

User Response: Exit ADSM and retry the ADSM command.

-212 W DSM_RC_CPIC_DEALLOCATE_ERROR

Explanation: CPIC conversation deallocation error. ADSM
received an incorrect return code from the deallocate verb. This
error does not affect the ADSM program.

System Action: None.

User Response: None.

-213 S DSM_RC_CPIC_SVC_ERROR

Explanation: A CPIC SVC error occurred.

System Action: Processing stopped.

User Response: See your service representative.

-214 S DSM_RC_CPIC_PROGRAM_STATE_CHECK

Explanation: CPIC program state check.

System Action: Processing stopped.

User Response: This is a program error. See your service
representative.

-215 S DSM_RC_CPIC_PROGRAM_PARAM_CHECK

Explanation: A parameter to a CPIC call was in error.

System Action: Processing stopped.

User Response: An invalid symbolic destination or invalid
transaction program name was given. Check these values and
retry the command.

-216 S DSM_RC_CPIC_UNSUCCESSFUL

Explanation: CPIC session not immediately available. All the
sessions for SNA communications are in use.

System Action: Processing stopped.

User Response: Stop and start SNA communications and retry
the command.

-217 E DSM_RC_UNKNOWN_CPIC_PROBLEM

Explanation: An unexpected CPI Communication error occurs.

System Action: Processing stops.

User Response: Contact your service representative.

-218 S DSM_RC_CPIC_MISSING_LU

Explanation: For CPIC, you must supply a PARtnerluname if
no SYMbolicdestination is given.

System Action: Processing stopped.

User Response: Retry the operation using an LU name or a
symbolic destination name.

-219 S DSM_RC_CPIC_MISSING_TP

Explanation: For CPIC, you must supply a TPname if no
SYMbolicdestination is given.

System Action: Processing stopped.

User Response: Retry the operation using the TPname option
or define the SYMbolicdestination option.

-220 E DSM_RC_CPIC_MISSING_DLL

Explanation: ADSM cannot find the PWSCS CPI Communi-
cation support file (ACPOCPIC.DLL) in the current search path.
This message only applies when using PWSCS communications.

System Action: The connection to the server fails.

User Response: Shutdown Windows and place the directory
where this file resides in the DOS path statement.

-221 E DSM_RC_CPIC_DLL_LOADFAILURE

Explanation: An error occurs while loading the PWSCS CPI
Communication support file into memory. This error only applies
when using PWSCS communications.

System Action: The connection to the server fails.

User Response: Because this may be caused by insufficient
memory, shutdown applications in progress, and retry the opera-
tion. If the problem persists, contact your service representative.

128 ADSM V2 Using the Application Program Interface

-222 E �0010 E

-222 E DSM_RC_CPIC_FUNC_LOADFAILURE

Explanation: An error occurs while loading one or more func-
tions from the PWSCS CPI Communication support file. This
error only applies when using PWSCS communications.

System Action: The connection to the server fails.

User Response: Because this may be caused by insufficient
memory, shutdown applications in progress, and retry the opera-
tion. If the problem persists, contact your service representative.

0000 I DSM_RC_SUCCESSFUL

Explanation: The operation successfully completed.

System Action: None.

User Response: None.

0000 I DSM_RC_OK

Explanation: The operation successfully completed.

System Action: None.

User Response: None.

0001 E DSM_RC_ABORT_SYSTEM_ERROR

Explanation: The server detected a system error and notified
the clients.

System Action: Processing stopped.

User Response: See your system administrator for further
information on server activity.

0002 E DSM_RC_ABORT_NO_MATCH

Explanation: No objects on the server match the query opera-
tion being performed.

System Action: Processing stopped.

User Response: Ensure the names are properly entered.

0003 E DSM_RC_ABORT_BY_CLIENT

Explanation: The client system ended the operation with the
server and ended the current transaction.

System Action: Processing stopped.

User Response: Restart the session.

0004 W DSM_RC_ABORT_ACTIVE_NOT_FOUND

Explanation: ADSM did not find an active object flagged for
expiration on the server. The object is marked as expired by
another ADSM operation.

System Action: None.

User Response: None.

0005 E DSM_RC_ABORT_NO_DATA

Explanation: ADSM tried to do a restore or retrieve on an
object that has no data associated with it.

System Action: ADSM ended the current operation.

User Response: See your system administrator to verify the
problem. If the problem continues, see your system adminis-
trator.

0006 E DSM_RC_ABORT_BAD_VERIFIER

Explanation: You entered an incorrect password (verifier).

System Action: Processing stopped.

User Response: Retry the session with the correct password.

0007 E DSM_RC_ABORT_NODE_IN_USE

Explanation: The node you are running on is in use by another
operation on the server. This might be from another client or
from some activity on the server.

System Action: Processing stopped.

User Response: Retry the operation, or see your system
administrator to see what other operations are running for your
node.

0008 E DSM_RC_ABORT_EXPDATE_TOO_LOW

Explanation: Archive expiration date is too low, the date must
be greater than today's date.

System Action: ADSM canceled the current operation.

User Response: Retry archiving the file with an expiration date
that is higher than today's date.

0009 W DSM_RC_ABORT_DATA_OFFLINE

Explanation: For the restore or retrieve operation, one or more
of the requested files must be recalled from offline storage
media (generally tape). The wait time depends on your site's
offline storage management policies.

System Action: ADSM waits for offline storage media to
become available and then continues.

User Response: None.

0010 E DSM_RC_ABORT_EXCLUDED_BY_SIZE

Explanation: The object is too large. The configuration of the
server does not have any data storage space that accepts the
object.

System Action: File skipped.

User Response: See your system administrator to determine
the maximum file (object) size for which your site's server is con-
figured.

 Appendix D. API Return Codes With Explanations 129

0011 E �0023 S

0011 E DSM_RC_ABORT_NO_REPOSIT_SPACE

Explanation: The server does not have any space available to
store the object.

System Action: ADSM ended the current operation.

User Response: Inform your system administrator that a
storage pool on the server is full.

0012 E DSM_RC_ABORT_MOUNT_NOT_POSSIBLE

Explanation: Server media mount not possible. The server
timed out waiting for a mount of an offline volume.

System Action: File skipped.

User Response: Retry later when server volumes can be
mounted.

0013 E DSM_RC_ABORT_SIZESTIMATE_EXCEED

Explanation: The total amount of data for a backup or archive
operation exceeds the estimated size originally sent to the server
for allocating data storage space. This happens when many
files are growing by large amounts while the backup or archive
operation is in session.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
check what other processes are running on the client machine
that are generating large amounts of data. Disable those oper-
ations while the backup or archive operation is taking place.

0014 E DSM_RC_ABORT_DATA_UNAVAILABLE

Explanation: The file data is currently unavailable on the
server. A retrieve or restore operation was attempted. Possible
causes are:

� Data was corrupted at the server
� Server found a read error
� File is temporarily involved in a reclaim operation at the

server
� Server requested a tape volume that was marked unavail-

able.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
see your system administrator to determine the problem from the
server console or the activity log. Check whether any requests
were made for a tape volume that was unavailable. A tape
volume may be marked unavailable if prior read errors were
encountered or the volume is checked out of the tape library.

0015 E DSM_RC_ABORT_RETRY

Explanation: Unexpected Retry request. The server found an
error while writing data to the server's data storage.

System Action: Client retries the operation.

User Response: None.

0016 E DSM_RC_ABORT_NO_LOG_SPACE

Explanation: The server ran out of recovery log space.

System Action: ADSM ended the current operation.

User Response: This error is a temporary problem. Retry later
or see your system administrator.

0017 E DSM_RC_ABORT_NO_DB_SPACE

Explanation: The server ran out of database space.

System Action: ADSM ended the current operation.

User Response: See your system administrator.

0018 E DSM_RC_ABORT_NO_MEMORY

Explanation: The server ran out of memory.

System Action: ADSM ended the current operation.

User Response: This is a temporary problem. Retry later or
see your system administrator.

0020 E DSM_RC_ABORT_FS_NOT_DEFINED

Explanation: The specified file space does not exist on the
server. Your system administrator deleted the file space or
another client using your client's node name deleted it.

System Action: ADSM canceled the current operation.

User Response: Check the file space name to see if it is
correct and retry the operation.

0021 S DSM_RC_ABORT_NODE_ALREADY_DEFED

Explanation: Open registration failed because a node is
defined on the server with the same name.

System Action: ADSM canceled the current operation.

User Response: Retry with another node name.

0022 S DSM_RC_ABORT_NO_DEFAULT_DOMAIN

Explanation: Open registration failed because a default policy
domain does not exist for you to place your node.

System Action: ADSM canceled the current operation.

User Response: See your system administrator.

0023 S DSM_RC_ABORT_INVALID_NODENAME

Explanation: Open registration failed because the specified
node name contains invalid characters.

System Action: ADSM canceled the current operation.

User Response: Retry with another node name that does not
have any invalid characters.

130 ADSM V2 Using the Application Program Interface

0024 S �0054 E

0024 S DSM_RC_ABORT_INVALID_POL_BIND

Explanation: Server problem. Invalid policy binding.

System Action: Processing stopped.

User Response: Have your service representative check the
error log.

0025 E DSM_RC_ABORT_DEST_NOT_DEFINED

Explanation: Server problem: Destination not defined.

System Action: Processing stopped.

User Response: Have your service representative check the
error log.

0026 S DSM_RC_ABORT_WAIT_FOR_SPACE

Explanation: The client received an unexpected Wait For
Space message from the server.

System Action: ADSM ended the current operation.

User Response: See your system administrator.

0027 E DSM_RC_ABORT_NOT_AUTHORIZED

Explanation: During a delete filespace operation, you specified
a file space to which your node does not have permission to
delete archived data and/or backed up data.

System Action: Delete processing fails.

User Response: See your system administrator.

0028 E DSM_RS_ABORT_RULE_ALREADY_DEFED

Explanation: You are trying to define authorization for the
specified node, which already has authorization defined.

System Action: ADSM did not redefine authorization for the
specified node.

User Response: Update the authorization, or delete the old
rule and define a new one, or use the current authorization.

0029 S DSM_RC_ABORT_NO_STOR_SPACE_STOP

Explanation: The server does not have space available to
store the object.

System Action: ADSM ended the current operation.

User Response: Report to your system administrator that a
storage pool on the server is full.

0033 E DSM_RC_ABORT_INVALID_OFFSET

Explanation: The partialObjOffset value for partial object
retrieve is invalid.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0034 E DSM_RC_ABORT_INVALID_LENGTH

Explanation: partialObjLength value for partial object retrieve is
invalid.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0051 E DSM_RC_REJECT_NO_RESOURCES

Explanation: ADSM has all available sessions in use and
cannot accept a new one at this time.

System Action: ADSM canceled the current operation.

User Response: Retry the operation. If the problem continues,
see your system administrator to increase the number of concur-
rently active sessions to the server.

0052 E DSM_RC_REJECT_VERIFIER_EXPIRED

Explanation: Your ADSM password has expired.

System Action: ADSM canceled the current operation. You
are not allowed to connect to the server until the password is
updated.

User Response: Update your password.

0053 E DSM_RC_REJECT_ID_UNKNOWN

Explanation: The node name you entered is not known by the
server, or you are attempting to access a file migrated to a dif-
ferent node.

System Action: ADSM canceled the current operation. You
are not allowed to connect to the server until your node name is
registered with the server. If attempting to access a migrated
file, your nodename must be the same node which migrated the
file.

User Response: Ensure that you entered your ADSM node
name correctly. If yes, see your system administrator. Verify
that the server is using closed registration and that your node
name is registered with the server.

0054 E DSM_RC_REJECT_DUPLICATE_ID

Explanation: Another process using this node name is active
with the server.

System Action: ADSM cannot connect to the server. ADSM
canceled the current operation.

User Response: If you are running a UNIX-based system,
ensure that another process is not active with ADSM under the
same name. Also, ensure that your node name is unique to the
server so that it cannot be used by another person. See your
system administrator to identify the owner of that node name.

 Appendix D. API Return Codes With Explanations 131

0055 E �0101 I

0055 E DSM_RC_REJECT_SERVER_DISABLED

Explanation: The server is in a disabled state and cannot be
accessed for normal activity.

System Action: ADSM canceled the current operation.

User Response: Retry the operation after the server returns to
an enabled state. If the problem continues, see your system
administrator.

0056 E DSM_RC_REJECT_CLOSED_REGISTER

Explanation: No authorization. Registration is required by your
system administrator. The server is not configured to allow open
registration.

System Action: Session not started.

User Response: You must obtain an ADSM node and pass-
word from your system administrator.

0057 S DSM_RC_REJECT_CLIENT_DOWNLEVEL

Explanation: The server version and your client version do not
match. The client code is downlevel.

System Action: ADSM canceled the current operation.

User Response: See your system administrator to see what
version of ADSM to run for your location.

0058 S DSM_RC_REJECT_SERVER_DOWNLEVEL

Explanation: The server version and your client version do not
match. The server code is downlevel.

System Action: ADSM canceled the current operation.

User Response: See your system administrator to see what
version of ADSM to run for your location.

0059 E DSM_RC_REJECT_ID_IN_USE

Explanation: The node name you specified is in use on the
server.

System Action: Session was not started.

User Response: The server is probably performing a task that
prevents your node from establishing a session. Retry later or
check with your system administrator.

0061 E DSM_RC_REJECT_ID_LOCKED

Explanation: The node name you specified is currently locked
on the server.

System Action: Session was not started.

User Response: Check with your system administrator to find
out why your node name is locked.

0062 S DSM_RC_SIGNONREJECT_LICENSE_MAX

Explanation: Adding a new enrollment will exceed the product
license count for ADSM.

System Action: Execution of the client enrollment or con-
nection request ends.

User Response: See your system administrator.

0063 E DSM_RC_REJECT_NO_MEMORY

Explanation: The server does not have enough memory to
allow your client to establish a connection with the server.

System Action: Session was not started.

User Response: Retry later or see your system administrator.

0064 E DSM_RC_REJECT_NO_DB_SPACE

Explanation: The server ran out of database space.

System Action: Session was not started.

User Response: See your system administrator.

0065 E DSM_RC_REJECT_NO_LOG_SPACE

Explanation: The server ran out of recovery log space.

System Action: Session was not started.

User Response: This error is a temporary problem. Retry later
or see your system administrator.

0066 E DSM_RC_REJECT_INTERNAL_ERROR

Explanation: The client cannot establish a connection to the
server because of an internal server error.

System Action: Session was not started.

User Response: See your system administrator immediately.

0067 S DSM_RC_SIGNONREJECT_INVALID_CLI

Explanation: The server is not licensed for the requeting client
type.

System Action: Execution of the client enrollment or con-
nection request ends.

User Response: See your system administrator.

0101 I DSM_RC_USER_ABORT

Explanation: An abort signal to stop an operation was
received.

System Action: Processing stopped.

User Response: Continue with normal operations.

132 ADSM V2 Using the Application Program Interface

0102 E �0114 E

0102 E DSM_RC_NO_MEMORY

Explanation: The program has exhausted all available storage.

System Action: Processing stopped.

User Response: Free any unnecessary programs, for example,
terminate and stay resident programs (TSRs), that are running
and retry the operation. Reducing the scope of queries and the
amount of data returned can also solve the problem.

0103 E DSM_RC_TA_COMM_DOWN

Explanation: An unexpected communications failure occurred
during an ADSM operation.

System Action: Processing stopped.

User Response: Verify that communications are active
between the client and server machines. Server outages,
processor outages, and communication controller outages can
cause this error.

0104 E DSM_RC_FILE_NOT_FOUND

Explanation: The file being processed for backup, archive or
migrate no longer exists on the client. Another process deletes
the file before it can be backed up, archived or migrated by
ADSM.

System Action: File skipped.

User Response: None.

0105 E DSM_RC_PATH_NOT_FOUND

Explanation: You specified an incorrect directory path.

System Action: Processing stopped.

User Response: Correct the syntax specified on the call and
retry the operation.

0106 E DSM_RC_ACCESS_DENIED

Explanation: Access to the specified file or directory is denied.
You tried to read from or write to a file and you do not have
access permission for either the file or the directory.

System Action: Processing stopped.

User Response: Ensure that you specified the correct file or
directory name, correct the permissions, or specify a new
location.

0107 E DSM_RC_NO_HANDLES

Explanation: All file handles for your system are currently in
use. No more are available.

System Action: Processing stopped.

User Response: Either free some file handles by ending other
processes, or modify your system setup to allow for more files to
be open at the same time.

0108 E DSM_RC_FILE_EXISTS

Explanation: The file being restored or retrieved exists.

System Action: File is replaced or skipped depending on client
options.

User Response: None.

0109 E DSM_RC_INVALID_PARM

Explanation: The system encountered an internal program
error due to an invalid parameter.

System Action: The system returns to the calling procedure.

User Response: Ask your service representative to check the
error log.

0110 E DSM_RC_INVALID_HANDLE

Explanation: An internal system error occurred. A file opera-
tion failed because an invalid file handle was passed.

System Action: Processing stopped.

User Response: Report the problem to your system adminis-
trator, and then retry the operation.

0111 E DSM_RC_DISK_FULL

Explanation: No more files can be restored or retrieved
because the destination disk is full.

System Action: Processing stopped.

User Response: Free up disk space, or restore or retrieve the
file to another disk.

0113 E DSM_RC_PROTOCOL_VIOLATION

Explanation: A communications protocol error occurred. The
communication subsystem is not properly defined or is itself in
error.

System Action: ADSM ended the current operation.

User Response: Verify that the communication processes are
operating properly, and then retry the operation.

0114 E DSM_RC_UNKNOWN_ERROR

Explanation: An unknown error occurred. This might be a low-
level system or communication error that ADSM cannot handle
or recover from.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
determine where the problem exists. See your system adminis-
trator for further help.

 Appendix D. API Return Codes With Explanations 133

0115 E �0127 E

0115 E DSM_RC_UNEXPECTED_ERROR

Explanation: An unexpected error occurred. This might be a
low-level system or communication error that ADSM cannot
handle or recover from.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
determine where the problem exists. See your system adminis-
trator for further help.

0116 E DSM_RC_FILE_BEING_EXECUTED

Explanation: The current file cannot be opened to write to
because it is currently being run by another operation.

System Action: File skipped.

User Response: Stop the operation that is running the file and
retry the operation, or restore or retrieve the file to a different
name or directory.

0117 E DSM_RC_DIR_NO_SPACE

Explanation: No more files can be restored or retrieved since
the destination directory is full.

System Action: Processing stopped.

User Response: Free up disk space, or restore or retrieve the
file to another disk.

0118 E DSM_RC_LOOPED_SYM_LINK

Explanation: While trying to resolve the file name, too many
symbolic links were found.

System Action: File skipped.

User Response: Ensure that you do not have a looping sym-
bolic link for the file.

0119 E DSM_RC_FILE_NAME_TOO_LONG

Explanation: The file name specified is too long to be handled
by ADSM.

System Action: File is skipped.

User Response: See the appropriate Using the Backup-
Archive Client book for the particular operating system, for the
file names that are handled by ADSM.

0120 E DSM_RC_FILE_SPACE_LOCKED

Explanation: File system cannot be accessed because it is
locked by the system.

System Action: ADSM cannot complete the operation.

User Response: See your system administrator.

0121 I DSM_RC_FINISHED

Explanation: The operation is finished.

System Action: The system returns to the calling procedure.

User Response: Proceed with next function call.

0122 E DSM_RC_UNKNOWN_FORMAT

Explanation: ADSM tried to restore or retrieve a file, but it had
an unknown format.

System Action: File skipped.

User Response: See your system administrator.

0123 E DSM_RC_NO_AUTHORIZATION

Explanation: The client is not authorized to restore the other
node's data.

System Action: The system returns to the calling procedure.

User Response: Get authorization from the other node.

0124 E DSM_RC_FILE_SPACE_NOT_FOUND

Explanation: The specified file space (domain) is incorrect or
does not exist on the workstation.

System Action: Processing stopped.

User Response: Retry the operation specifying an existing
domain (drive letter or file system name).

0125 E DSM_RC_TXN_ABORTED

Explanation: The current transaction between the server and
the client stopped. A server, client, or communication failure
cannot be recovered.

System Action: ADSM canceled the current operation.

User Response: Retry the operation. If the problem continues,
see your system administrator to isolate the problem.

0126 E DSM_RC_SUBDIR_AS_FILE

Explanation: ADSM tried to create a directory path, but is
unable to because a file exists that has the same name as a
directory.

System Action: Processing stopped.

User Response: Remove the file that has the same name as
the directory. Refer to the last restore/retrieve operation and
check all directories along the path.

0127 E DSM_RC_PROCESS_NO_SPACE

Explanation: The disk space allocated for the client owner is
full.

System Action: Processing stopped.

User Response: Free up disk space and retry the restore or
retrieve operation.

134 ADSM V2 Using the Application Program Interface

0128 E �0145 S

0128 E DSM_RC_PATH_TOO_LONG

Explanation: The path name specified plus the path name in
the restored file name combine to create a name whose length
exceeds the system maximum.

System Action: Processing stopped.

User Response: Specify a destination path that, when com-
bined, is less than the system maximum.

0129 E DSM_RC_NOT_COMPRESSED

Explanation: A file that was flagged as compressed was not
compressed, and the system failed.

System Action: Processing stopped.

User Response: See your system administrator to report this
problem. This error is a system failure.

0130 E DSM_RC_TOO_MANY_BITS

Explanation: You are trying to restore a file that was backed
up and compressed on another client workstation that had more
memory than your client workstation. You cannot restore this
file. When the file is restored, it is expanded and your work-
station does not have enough memory.

System Action: ADSM canceled the operation.

User Response: Obtain a machine with more memory and
retry the operation.

0131 S DSM_RC_SYSTEM_ERROR

Explanation: An unexpected program failure occurred.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
see your system administrator or your service representative.

0132 E DSM_RC_NO_SERVER_RESOURCES

Explanation: The server ran out of resources. A lack of
storage or a condition does not allow any new activity.

System Action: ADSM canceled the current operation.

User Response: Retry the operation at a later time. If the
problem continues, see your system administrator to isolate what
resource is unavailable.

0133 E DSM_RC_FS_NOT_KNOWN

Explanation: The number defining the correspondence
between drive letter or file (domain name) and volume label is
not known to the server.

System Action: Processing stopped.

User Response: Report the program error to your service rep-
resentative.

0134 E DSM_RC_NO_LEADING_DIRSEP

Explanation: The objName field does not have a leading direc-
tory separator.

System Action: The system returns to the calling procedure.

User Response: Correct the value for the objName.

0135 E DSM_RC_WILDCARD_DIR

Explanation: Wildcards are not allowed in the objName direc-
tory path.

System Action: The system returns to the calling procedure.

User Response: Correct the value for the objName.

0136 E DSM_RC_COMM_PROTOCOL_ERROR

Explanation: Communications protocol error. An unexpected
communications message was received by the client.

System Action: ADSM canceled the current operation.

User Response: Verify that your communication path is func-
tioning properly. If the problem continues, have your service
representative check for a possible program error.

0137 E DSM_RC_AUTH_FAILURE

Explanation: Authentication failure. You entered an incorrect
password.

System Action: ADSM canceled the current operation.

User Response: Enter your correct password. If you cannot
remember the correct password, see your system administrator
to have a new one assigned for your node name.

0138 E DSM_RC_TA_NOT_VALID

Explanation: The trusted agent execution/owner permissions
are invalid.

System Action: Processing stopped.

User Response: Have your system administrator check the
installation instructions for the client to ensure that the trusted
agent permissions are set correctly.

0139 S DSM_RC_KILLED

Explanation: Processing stopped. This is a programming
failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

0145 S DSM_RC_WOULD_BLOCK

Explanation: The trusted agent blocks the operation. This is a
programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

 Appendix D. API Return Codes With Explanations 135

0146 S �0159 I

0146 S DSM_RC_TOO_SMALL

Explanation: The area for the include/exclude pattern is too
small. This is a programming failure and the client program
ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

0147 S DSM_RC_UNCLOSED

Explanation: There is no closing bracket in the pattern. This is
a programming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

0148 S DSM_RC_NO_STARTING_DELIMITER

Explanation: The include or exclude pattern must start with a
directory delimiter.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

0149 S DSM_RC_NEEDED_DIR_DELIMITER

Explanation: The include/exclude pattern has a '...' without a
beginning or ending directory delimiter.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

0150 S DSM_RC_UNKNOWN_FILE_DATA_TYPE

Explanation: An unknown and unexpected error code occurred
within the client program. The structured file data type is
unknown. This is a programming failure and the client program
ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

0151 S DSM_RC_BUFFER_OVERFLOW

Explanation: The data buffer overflowed. This is a program-
ming failure and the client program ends.

System Action: Processing stopped.

User Response: Retry the operation. If the problem continues,
contact your system administrator.

0154 E DSM_RC_NO_COMPRESS_MEMORY

Explanation: Not enough memory is available to do data com-
pression or expansion. For a restore or retrieve, the file cannot
be recalled from the server until more storage is made available.
For a backup or archive, try running without compression if
storage cannot be made available.

System Action: Processing stopped.

User Response: Free up extra storage for the operation to
continue, or run the backup or archive process without com-
pression enabled.

0155 E DSM_RC_COMPRESS_GREW

Explanation: During compression the compressed data grew in
size compared to the original data.

System Action: Processing stopped.

User Response: Send the file uncompressed.

0156 E DSM_RC_INV_COMM_METHOD

Explanation: You specified a communication method that is
not supported.

System Action: Processing stopped.

User Response: Specify a valid communication interface for
the ADSM client and your operating system.

0157 S DSM_RC_WILL_ABORT

Explanation: The server encountered an error and will abort
the transaction.

System Action: The transaction will be aborted. The reason
code is passed on the dsmEndTxn call.

User Response: Issue the dsmEndTxn with a vote of
DSM_VOTE_COMMIT and examine the reason code.

0158 E DSM_RC_FS_WRITE_LOCKED

Explanation: The file or directory being restored or retrieved
from the server cannot be written to because the destination is
write locked. Another operation might have the file open and will
not allow it to be updated.

System Action: File skipped.

User Response: Either determine which operation has the file
write locked, or restore the file to another name or location.

0159 I DSM_RC_SKIPPED_BY_USER

Explanation: A file was skipped during a restore operation
because the file is off line and the application has chosen not to
wait for a tape mount.

System Action: File skipped.

User Response: Verify the application sets the mountWait
value correctly on dsmBeginGetData.

136 ADSM V2 Using the Application Program Interface

0160 E �0175 E

0160 E DSM_RC_TA_NOT_FOUND

Explanation: ADSM was unable to find the ADSM Trusted
Agent module in the specified directory. For V1R1 the name is
dsmapita, for V1R2 the name is dsmtca, for V2R1 the name is
dsmapitca.

System Action: ADSM ends.

User Response: Make sure the Trusted Agent module is in the
directory specified by DSMI_DIR.

0161 E DSM_RC_TA_ACCESS_DENIED

Explanation: An attempt to access a system function has been
denied.

System Action: Processing stopped.

User Response: Contact your system administrator.

0162 E DSM_RC_FS_NOT_READY

Explanation: The file system/drive was not ready for access.

System Action: Processing stopped.

User Response: Ensure that the drive is available to ADSM,
and then retry the operation.

0163 E DSM_RC_FS_IS_BAD

Explanation: The drive was not available for access. A direc-
tory exists that does not have either a '.' or '..' entry.

System Action: Processing stopped.

User Response: Ensure that the drive is operational, and then
retry the operation. If unsuccessful, have your service represen-
tative check the error log.

0164 E DSM_RC_FIO_ERROR

Explanation: An error was found while reading from or writing
to the file.

System Action: File skipped.

User Response: Check your system to ensure that it is oper-
ating properly. For OS/2, run CHKDSK /F for the failing drive
which can be found in dsmerror.log.

0165 E DSM_RC_WRITE_FAILURE

Explanation: An error was found while writing to the file.

System Action: File skipped.

User Response: Check your system to ensure that it is oper-
ating properly.

0166 E DSM_RC_OVER_FILE_SIZE_LIMIT

Explanation: A file being restored or retrieved exceeds system
set limits for this user.

System Action: File skipped.

User Response: Ensure that the system limits are set properly.

0167 E DSM_RC_CANNOT_MAKE

Explanation: The directory path for files being restored or
retrieved cannot be created.

System Action: File skipped.

User Response: Ensure that you have the proper authorization
to create the directory for file being restored or retrieved.

0168 E DSM_RC_NO_PASS_FILE

Explanation: The file containing the stored password for the
specified server-name is unavailable.

System Action: ADSM ends.

User Response: The root user must set and store a new pass-
word.

0169 E DSM_RC_VERFILE_OLD

Explanation: Either the password is not stored locally, or it was
changed at the server.

System Action: ADSM prompts you for the password if ADSM
is running in the foreground.

User Response: If ADSM was running as a background
process, issue any ADSM command from the foreground. Enter
the password in answer to the prompt. Then try your back-
ground ADSM command again.

0173 E DSM_RC_INPUT_ERROR

Explanation: Unable to read commands entered from key-
board. ADSM cannot process your intended command.

System Action: Processing stopped.

User Response: Ensure that you are entering a correct
command.

0174 E DSM_RC_REJECT_PLATFORM_MISMATCH

Explanation: Your node name is associated with a different
type of operating system (such as DOS, OS/2, or AIX) and
cannot be used on this system.

System Action: ADSM canceled the current operation.

User Response: If you need a new node name, see your
system administrator to assign a new one to you. Generally,
you have a unique node name for each machine and operating
system pair that requires access to the server.

0175 E DSM_RC_TL_NOT_FILE_OWNER

Explanation: The file cannot be backed up because the client
is not the file owner.

System Action: ADSM skips the file.

User Response: None.

 Appendix D. API Return Codes With Explanations 137

0176 S �0201 E

0176 S DSM_RC_DBCS_IN_RANGE

Explanation: Only single-byte characters are allowed in an
include/exclude list; you cannot use a double-byte character set
(DBCS).

System Action: Processing stopped.

User Response: Remove the double-byte characters from the
include/exclude list and retry the operation.

0177 S DSM_RC_UNMATCHED_QUOTE

Explanation: The quotes specified in the pattern are not the
same and do not make a set.

System Action: Processing stopped.

User Response: Correct the pattern by using matching quotes
in the syntax.

0181 E DSM_RC_PS_MULTBCG

Explanation: Multiple backup copy groups were found in a
management class. Only one backup copy group is allowed per
management class.

System Action: Processing stopped.

User Response: See your system administrator.

0182 E DSM_RC_PS_MULTACG

Explanation: Multiple archive copy groups were found in a
management class. Only one archive copy group is allowed per
management class.

System Action: Processing stopped.

User Response: See your system administrator.

0183 E DSM_RC_PS_NODFLTMC

Explanation: The default management class is missing in the
policy set.

System Action: Processing stopped.

User Response: Have your system administrator set a default
management class for the policy set.

0184 E DSM_RC_TL_NOBCG

Explanation: The management class for this file does not have
a backup copy group specified. This file will not be backed up.

System Action: Processing stopped.

User Response: Add a valid backup copy group to the man-
agement class, and then retry the operation.

0185 W DSM_RC_TL_EXCLUDED

Explanation: You tried to back up or migrate a file (file-name)
that was specified to be excluded from backup.

System Action: ADSM did not back up or migrate the file.

User Response: Specify the file using the Include option and
retry the operation.

0186 E DSM_RC_TL_NOACG

Explanation: The management class for this file does not have
an archive copy group specified. This file will not be archived.

System Action: Processing stopped.

User Response: Add a valid archive copy group to the man-
agement class, and then retry the operation.

0187 E DSM_RC_PS_INVALID_ARCHMC

Explanation: You entered an invalid management class.

System Action: ADSM is unable to do the requested opera-
tion.

User Response: Retry the operation using a valid manage-
ment class.

0188 S DSM_RC_NO_PS_DATA

Explanation: Either no Active Policy Set data was found on the
server or a fromnode option contained a nodename not found on
the server.

System Action: Processing stopped.

User Response: See your system administrator.

0189 S DSM_RC_PS_INVALID_DIRMC

Explanation: An invalid management class was assigned to
directories.

System Action: Processing stopped.

User Response: Have your service representative check the
error log.

0190 S DSM_RC_PS_NO_CG_IN_DIR_MC

Explanation: The management class used for directories does
not have a backup copy group.

System Action: Processing stopped.

User Response: Have your service representative check the
error log.

0200 E DSM_RC_TCA_ATTACH_SHR_MEM_ERR

Explanation: An error has occured while attaching the trusted
agent's shared memory.

System Action: Return to caller.

User Response: Stop application, check shared memory
usage and retry the command. Read the tca.log file for the
system error number.

0201 E DSM_RC_TCA_SHR_MEM_BLOCK_ERR

Explanation: The shared memory used by the trusted agent
has an invalid block ID.

System Action: Return to caller.

User Response: Stop THE application and retry the command.

138 ADSM V2 Using the Application Program Interface

0202 E �0610 E

0202 E DSM_RC_TCA_SHR_MEM_IN_USE

Explanation: The shared memory attached by the trusted
agent is being used.

System Action: Return to caller.

User Response: Stop the application and retry the command.

0291 E DSM_RC_TCA_SHARED_MEMORY_ERROR

Explanation: An error has occurred while obtaining or
accessing the shared memory block used by the ADSM client
and the Trusted Communication Agent.

System Action: ADSM ends.

User Response: Probable system error. If the problem per-
sists, restart the workstation.

0292 E DSM_RC_TCA_FORK_FAILED

Explanation: An error has occurred starting the Trusted Com-
munication Agent process; specifically, the fork() function has
failed.

System Action: ADSM ends.

User Response: Probable system error. If the problem per-
sists, restart the workstation.

0293 E DSM_RC_TCA_SEGMENT_MISMATCH

Explanation: The shared memory block used by the ADSM
client and the Trusted Communication Agent is not mapped to
the same segment address in both programs.

System Action: ADSM ends.

User Response: Probable ADSM implementation error.
Contact IBM customer support.

0294 E DSM_RC_TCA_DIED

Explanation: The Trusted Communication Agent has termi-
nated unexpectedly.

System Action: ADSM ends.

User Response: Check the error log for more information.
Retry the activity. If the problem persists, contact IBM customer
support.

0295 E DSM_RC_TCA_INVALID_REQUEST

Explanation: The Trusted Communication Agent has received
an unknown request from the ADSM client.

System Action: ADSM ends.

User Response: Internal error. If the problem recurs, contact
IBM customer support.

0296 E DSM_RC_TCA_NOT_ROOT

Explanation: An activity has been attempted that must be per-
formed by the root user (for example, open registration or pass-
word update).

System Action: ADSM ends.

User Response: If the activity is required, the root user must
perform it.

0297 E DSM_RC_TCA_SEMGET_ERROR

Explanation: An error has occurred while attempting to allocate
semaphores.

System Action: Processing ends.

User Response: Probable system error. If the problem per-
sists, restart the workstation.

0298 E DSM_RC_TCA_SEM_OP_ERROR

Explanation: An error has occurred while attempting to set or
wait on a semaphore.

System Action: Processing ends.

User Response: Probable system error. If the problem per-
sists, restart the workstation.

0600 E DSM_RC_DUP_LABEL

Explanation: The selected drive has a duplicate volume label.
Because ADSM uses the volume label to keep track of
backup/archive information, it cannot back up or archive files
from a drive with a duplicate volume label.

System Action: ADSM cannot select the drive.

User Response: If the volume needs to be available to the
system, exit ADSM, and assign a volume label to the drive.
Restart ADSM and retry the operation.

0601 E DSM_RC_NO_LABEL

Explanation: The selected drive does not have a label.

System Action: ADSM is unable to do the requested operation
without a drive or label entered.

User Response: If the drive is a floppy drive, place a disk with
a volume label in it and retry the operation. If the disk is a hard
drive, ensure the drive has a volume label, and retry the opera-
tion.

0610 E DSM_RC_NLS_CANT_OPEN_TXT

Explanation: The system is unable to open the message txt
| file (dscameng.txt or dsmclient.cat for AIX). On the AS/400 plat-
| form this file is QANSAPI/QAANSAMENG(TXT).

System Action: The system returns to the calling procedure.

User Response: Verify that the dscameng.txt file is in the
directory pointed to by DSMI_DIR. For AIX, verify that the
dsmclient.cat file has a symbolic link to
/usr/lib/nls/msg/<locale>/dsmclient.cat .

 Appendix D. API Return Codes With Explanations 139

0611 E �2007 E

0611 E DSM_RC_NLS_CANT_READ_HDR

Explanation: The system is unable to use the message text file
(dscameng.txt or dsmclient.cat for AIX) because of an invalid

| header. On the AS/400 platform this file is
| QANSAPI/QAANSAMENG(TXT).

System Action: The system returns to the calling procedure.

User Response: Install the message text file again.

0612 E DSM_RC_NLS_INVALID_CNTL_REC

Explanation: The system is unable to use the message txt file
(dscameng.txt or dsmclient.cat for AIX) because of an invalid

| control record. On the AS/400 platform this file is
| QANSAPI/QAANSAMENG(TXT).

System Action: The system returns to the calling procedure.

User Response: Install the message text file again.

0613 E DSM_RC_NLS_INVALID_DATE_FMT

Explanation: An invalid value is specified for DATEFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0614 E DSM_RC_NLS_INVALID_TIME_FMT

Explanation: An invalid value is specified for TIMEFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0615 E DSM_RC_NLS_INVALID_NUM_FMT

Explanation: An invalid value is specified for
NUMBERFORMAT.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

0620 E DSM_RC_LOG_CANT_BE_OPENED

Explanation: The system is unable to open the error log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access per-
| mission. On the AS/400 platform, verify the value specified for
| ERRORLOGNAME in the API options file.

0621 E DSM_RC_LOG_ERROR_WRITING_TO_LOG

Explanation: There was an error writing to the log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access per-
| mission. On the AS/400 platform, verify the value specified for
| ERRORLOGNAME in the API options file.

0622 E DSM_RC_LOG_NOT_SPECIFIED

Explanation: The system is unable to open the error log file.

System Action: The system returns to the calling procedure.

User Response: Verify the DSMI_LOG value and access per-
| mission. On the AS/400 platform, verify the value specified for
| ERRORLOGNAME in the API options file.

2000 E DSM_RC_NULL_OBJNAME

Explanation: There is no value provided for the object name
pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the dsmObjName
structure.

2001 E DSM_RC_NULL_DATABLKPTR

Explanation: There is no value provided for the data block
pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the DataBlk structure.

2002 E DSM_RC_NULL_MSG

Explanation: The message parameter for dsmRCMsg is a
NULL pointer.

System Action: The system returns to the calling procedure.

User Response: Allocate enough space for the message
parameter.

2004 E DSM_RC_NULL_OBJATTRPTR

Explanation: There is no value provided for the object attribute
pointer.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the ObjAttr structure.

2006 E DSM_RC_NO_SESS_BLK

Explanation: The server did not respond with the session infor-
mation.

System Action: The system returns to the calling procedure.

User Response: Verify the server status.

2007 E DSM_RC_NO_POLICY_BLK

Explanation: The server did not respond with the policy infor-
mation.

System Action: The system returns to the calling procedure.

User Response: Verify the server policy definitions.

140 ADSM V2 Using the Application Program Interface

2008 E �2020 E

2008 E DSM_RC_ZERO_BUFLEN

Explanation: The value for the dataBlk bufferLen is zero.

System Action: The system returns to the calling procedure.

User Response: Provide a non-zero value for the bufferLen.

2009 E DSM_RC_NULL_BUFPTR

Explanation: There is no value provided for the dataBlk
bufferPtr.

System Action: The system returns to the calling procedure.

User Response: Provide an address for the bufferPtr.

2010 E DSM_RC_INVALID_OBJTYPE

Explanation: The value for the objType is invalid.

System Action: The system returns to the calling procedure.

User Response: The value for dsmObjName.objType must be:

DSM_OBJ_FILE or DSM_OBJ_DIRECTORY for Backup, or

DSM_OBJ_FILE for Archive.

2011 E DSM_RC_INVALID_VOTE

Explanation: The dsmEndTxn vote is invalid.

System Action: The system returns to the calling procedure.

User Response: The vote must be DSM_VOTE_COMMIT or
DSM_VOTE_ABORT.

2013 E DSM_RC_INVALID_OPT

Explanation: An invalid option was found.

System Action: The system returns to the calling procedure.

User Response: Verify the options in dsm.opt, dsm.sys, and
| the options string. On the AS/400 platform, verify the options in
| *LIBL/QOPTADSM(APIOPT). Check the error log for more

details about the error.

2014 E DSM_RC_INVALID_DS_HANDLE

Explanation: The system encountered an error in the API inter-
nals.

System Action: The system returns to the calling procedure.

User Response: Shut down the process and retry the opera-
tion. Verify that any previous dsmInit calls were cleaned up and
terminated by a dsmTerminate call. If the problem continues,
contact your system administrator or service representative.

2015 E DSM_RC_INVALID_REPOS

Explanation: The repository type is invalid.

System Action: The system returns to the calling procedure.

User Response: For dsmDeleteFS the repository must be one
of the following:

 � DSM_ARCHIVE_REP

 � DSM_BACKUP_REP

 � DSM_REPOS_ALL.

2016 E DSM_RC_INVALID_FSNAME

Explanation: The filespace name is invalid.

System Action: The system returns to the calling procedure.

User Response: Filespace name should start with the directory
delimiter.

2017 E DSM_RC_INVALID_OBJNAME

Explanation: The object name is invalid because of an empty
string or there is no leading delimiter.

System Action: The system returns to the calling procedure.

User Response: Verify the format of the dsmObjName full
path.

2018 E DSM_RC_INVALID_LLNAME

Explanation: The low level qualifier for the object name is
invalid.

System Action: The system returns to the calling procedure.

User Response: Start the low level qualifier of the object name
with the directory delimiter.

2019 E DSM_RC_INVALID_OBJOWNER

Explanation: The object owner must be either the root user, or
the object owner must be the same as the session owner.

System Action: The system returns to the calling procedure.

User Response: Verify the session owner and object owner.

2020 E DSM_RC_INVALID_ACTYPE

Explanation: The dsmBindMC sendType is invalid.

System Action: The system returns to the calling procedure.

User Response: The sendType must be one of the following:

 stBackup

 stArchive

 stBackupMountWait

 stArchiveMountWait

 Appendix D. API Return Codes With Explanations 141

2021 E �2033 E

2021 E DSM_RC_INVALID_RETCODE

Explanation: The dsmRC parameter for dsmRCMsg is an
unsupported return code.

System Action: The system returns to the calling procedure.

User Response: Specify a valid value.

2022 E DSM_RC_INVALID_SENDTYPE

Explanation: The dsmSendObj sendType is invalid.

System Action: The system returns to the calling procedure.

User Response: The sendType must be one of the following:

 stBackup

 stArchive

 stBackupMountWait

 stArchiveMountWait

2023 E DSM_RC_INVALID_PARAMETER

Explanation: The dsmDeleteObj delType is invalid.

System Action: The system returns to the calling procedure.

User Response: The delType must be dtBackup or dtArchive.

2024 E DSM_RC_INVALID_OBJSTATE

Explanation: The query Backup objState is invalid.

System Action: The system returns to the calling procedure.

User Response: The qryBackupData.objState must be one of
the following:

 DSM_ACTIVE

 DSM_INACTIVE

 DSM_ANY_MATCH

2025 E DSM_RC_INVALID_MCNAME

Explanation: A query or send operation is unable to find the
management class name.

System Action: The system returns to the calling procedure.

User Response: Verify the management class name.

2026 E DSM_RC_INVALID_DRIVE_CHAR

Explanation: The drive letter is not an alphabetic character.
This return code is valid on Microsoft Windows or OS/2.

System Action: The system returns to the calling procedure.

User Response: Verify that the drive designation is an alpha-
betic character. The referenced field is
dsmDosFSAttrib.driveLetter.

2027 E DSM_RC_NULL_FSNAME

Explanation: There is no value provided for the Register
Filespace name.

System Action: The system returns to the calling procedure.

User Response: Provide a filespace name on dsmRegisterFS.

2028 E DSM_RC_INVALID_HLNAME

Explanation: The high level qualifier for the object name is
invalid.

System Action: The system returns to the calling procedure.

User Response: High level qualifier of the object name should
start with the directory delimiter.

| 2029 E DSM_RC_NUMOBJ_EXCEED

| Explanation: The number of objects (numObjId) specified on
| the dsmBeginGetData call exceeds DSM_MAX_GET_OBJ.

| System Action: The system returns to the calling procedure.

| User Response: Check the number of objects before calling
| dsmBeginGetData. If it is greater than DSM_MAX_GET_OBJ,
| issue multiple Get call sequences.

2030 E DSM_RC_NEWPW_REQD

Explanation: There is no value provided for new password.

System Action: The system returns to the calling procedure.

User Response: Provide a new password on dsmChangePW.

2031 E DSM_RC_OLDPW_REQD

Explanation: There is no value provided for old password.

System Action: The system returns to the calling procedure.

User Response: Provide an old password on dsmChangePW.

2032 E DSM_RC_NO_OWNER_REQD

Explanation: PASSWORDACCESS=generate establishes a
session with the current login user as the owner.

System Action: The system returns to the calling procedure.

User Response: When using PASSWORDACCESS=generate,
set clientOwnerNameP to NULL.

2033 E DSM_RC_NO_NODE_REQD

Explanation: PASSWORDACCESS=generate establishes a
session with the current hostname as the node.

System Action: The system returns to the calling procedure.

User Response: When using PASSWORDACCESS=generate,
set clientNodeP to NULL.

142 ADSM V2 Using the Application Program Interface

2041 E �2100 E

2041 E DSM_RC_BAD_CALL_SEQUENCE

Explanation: The sequence of calls is invalid.

System Action: The system returns to the calling procedure.

User Response: Verify the transaction call sequence.

2050 E DSM_RC_WILDCHAR_NOTALLOWED

Explanation: On dsmSendObj, wildcards are not allowed for
the objName.

System Action: The system returns to the calling procedure.

User Response: Provide a fs, hl, and ll on the dsmObjName.

2060 E DSM_RC_FSNAME_NOTFOUND

Explanation: The filespace to delete cannot be found.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2061 E DSM_RC_FS_NOT_REGISTERED

Explanation: On dsmSendObj, dsmDeleteObj, or
dsmUpdateFS, the filespace is not registered.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2062 W DSM_RC_FS_ALREADY_REGED

Explanation: On dsmRegisterFS the filespace is already regis-
tered.

System Action: The system returns to the calling procedure.

User Response: Verify the filespace name.

2063 E DSM_RC_OBJID_NOTFOUND

Explanation: On dsmBeginGetData, the objID is NULL.

System Action: The system returns to the calling procedure.

User Response: Verify the following:

The dsmGetList is not NULL.

Each objID is not NULL.

The dsmGetList numObjId is not zero.

2064 E DSM_RC_WRONG_VERSION

Explanation: On dsmInit the caller's API version has a higher
value than the ADSM library version.

System Action: The system returns to the calling procedure.

User Response: Install the latest ADSM API library and trusted
agent module.

2065 E DSM_RC_WRONG_VERSION_PARM

Explanation: The caller's structure version is different than the
ADSM library version.

System Action: The system returns to the calling procedure.

User Response: Ensure that the stVersion field is set with the
value in the header file. Recompile the application with the
latest header files.

2070 E DSM_RC_NEEDTO_ENDTXN

Explanation: This transaction must be ended and a new one
must be started due to one of the following reasons:

The destination changed.

The byte limit is exceeded

The maximum number of objects is exceeded.

System Action: The system returns to the calling procedure.

User Response: Issue dsmEndTxn and start a new transaction
session.

2080 E DSM_RC_OBJ_EXCLUDED

Explanation: The backup or archive object is excluded from
processing.

System Action: The system returns to the calling procedure.

User Response: Verify the objName and Exclude lists.

2081 E DSM_RC_OBJ_NOBCG

Explanation: The backup object does not have a copy group.

System Action: The system returns to the calling procedure.

User Response: Verify server policy definitions.

2082 E DSM_RC_OBJ_NOACG

Explanation: The archive object does not have a copy group.

System Action: The system returns to the calling procedure.

User Response: Verify server policy definitions.

2090 E DSM_RC_APISYSTEM_ERROR

Explanation: Memory used by the ADSM API has been cor-
rupted.

System Action: The system returns to the calling procedure.

User Response: Retry the operation. If the problem continues,
contact your system administrator or service representative.

2100 E DSM_RC_DESC_TOOLONG

Explanation: The sendObj Archive description is too long.

System Action: The system returns to the calling procedure.

User Response: The sndArchiveData.descr string must be less
than or equal to DSM_MAX_DESCR_LENGTH.

 Appendix D. API Return Codes With Explanations 143

2101 E �2225 E

2101 E DSM_RC_OBJINFO_TOOLONG

Explanation: The sendObj ObjAttr.objInfo is too long.

System Action: The system returns to the calling procedure.

User Response: The objInfo field must be less than or equal to
DSM_MAX_OBJINFO_LENGTH.

2102 E DSM_RC_HL_TOOLONG

Explanation: The sendObj dsmObjName.hl is too long.

System Action: The system returns to the calling procedure.

User Response: The hl field must be less than or equal to
DSM_MAX_HL_LENGTH.

2103 E DSM_RC_PASSWD_TOOLONG

Explanation: The dsmChangePW password is too long.

System Action: The system returns to the calling procedure.

User Response: The password field must be less than or
equal to DSM_MAX_VERIFIER_LENGTH.

2104 E DSM_RC_FILESPACE_TOOLONG

Explanation: The sendObj dsmObjName.fs is too long.

System Action: The system returns to the calling procedure.

User Response: The fs field must be less than or equal to
DSM_MAX_FS_LENGTH.

2105 E DSM_RC_LL_TOOLONG

Explanation: The sendObj dsmObjName.ll is too long.

System Action: The system returns to the calling procedure.

User Response: The ll field must be less than or equal to
DSM_MAX_LL_LENGTH.

2106 E DSM_RC_FSINFO_TOOLONG

Explanation: On RegisterFS or UpdateFS the fsAttr's fsInfo is
too long.

System Action: The system returns to the calling procedure.

User Response: The fsInfo field must be less than or equal to
DSM_MAX_FSINFO_LENGTH.

2200 I DSM_RC_MORE_DATA

Explanation: On dsmGetNextQObj or dsmGetData there is no
more available data.

System Action: The system returns to the calling procedure.

User Response: Start the function again.

2210 E DSM_RC_BUFF_TOO_SMALL

Explanation: The dataBlk buffer is too small for the query
response.

System Action: The system returns to the calling procedure.

User Response: On dsmGetNextQObj ensure that the dataBlk
buffer is at least as big as the query response structure.

2220 S DSM_RC_NO_OPT_FILE

Explanation: The options file specified by file-name cannot be
found.

System Action: The ADSM client ends.

User Response: See if you have the environment variable
DSM_CONFIG (or DSMI_CONFIG for the API) set, which explic-
itly identifies the ADSM options file. (You can do this by
entering the SET command at your system.) If this environment
variable is set, ensure the file indicated by the variable exists. If
it is not set, then ADSM looks for the file dsm.opt in the current
directory. If neither of these cases is met, you receive this error
message.

2221 E DSM_RC_INVALID_KEYWORD

Explanation: An invalid option keyword was found in the
dsmInit configuration file, the option string, dsm.sys, or dsm.opt.

System Action: The system returns to the calling procedure.

User Response: Correct the spelling of the option keywords.
Verify that the dsmInit configuration file only has a subset of the
dsm.sys options. Check the error log for more details about the
error.

2222 S DSM_RC_PATTERN_TOO_COMPLEX

Explanation: The include or exclude pattern issued is too
complex to be accurately interpreted by ADSM.

System Action: Processing stopped.

User Response: Recode the include or exclude pattern as
shown in one of the examples in the appropriate Using the
Backup-Archive Client book for the particular operating system.

2223 S DSM_RC_NO_CLOSING_BRACKET

Explanation: The include or exclude pattern is incorrectly con-
structed. The closing bracket is missing.

System Action: Processing stopped.

User Response: Correct the syntax for the pattern.

2225 E DSM_RC_INVALID_SERVER

Explanation: The system options file does not contain the
SERVERNAME option.

System Action: ADSM initialization fails and the program ends.

User Response: See the root user, and make sure that the
system options file contains the server name.

144 ADSM V2 Using the Application Program Interface

2226 E �2302 I

2226 E DSM_RC_NO_HOST_ADDR

Explanation: The TCPSERVERADDRESS for this server is not
defined in the server name stanza in the system options file.

System Action: ADSM initialization fails and the program ends.

User Response: See the root user, and make sure that the
server you are trying to connect to has a valid
TCPSERVERADDRESS defined in the system options file.

2227 E DSM_RC_MACHINE_SAME

Explanation: The NODENAME defined in the options file
cannot be the same as the system HostName.

System Action: Initialization fails and the program ends.

User Response: See your system administrator or the root
user.

2228 E DSM_RC_NO_API_CONFIGFILE

Explanation: The configuration file specified on dsmInit cannot
be opened.

System Action: The system returns to the calling procedure.

User Response: Verify the file name.

2229 E DSM_RC_NO_INCLEXCL_FILE

Explanation: The Include/Exclude definition file was not found.

System Action: The system returns to the calling procedure.

User Response: Verify the file name on the Inclexcl option.

2230 E DSM_RC_NO_SYS_OR_INCLEXCL

Explanation: Either the dsm.sys file was not found, or the
Inclexcl file specified in dsm.sys was not found.

System Action: The system returns to the calling procedure.

User Response: The dsm.sys file must be in the directory ref-
erenced by the environment variable DSMI_DIR. Verify the file
name on the Inclexcl option in the dsm.sys file.

2231 E DSM_RC_REJECT_NO_POR_SUPPORT

Explanation: The ADSM server specified by the user does not
support partial object retrieve.

System Action: The system returns to the calling procedure.

User Response: Specify an ADSM server which supports the
partial object retrieve function.

2300 E DSM_RC_NEED_ROOT

Explanation: Only a UNIX root user can execute
dsmChangePW or dsmDeleteFS.

System Action: The system returns to the calling procedure.

User Response: Run this program as a root user.

2301 E DSM_RC_NEEDTO_CALL_BINDMC

Explanation: You must issue dsmBindMC before dsmSendObj.

System Action: The system returns to the calling procedure.

User Response: Modify your program.

2302 I DSM_RC_CHECK_REASON_CODE

Explanation: After a dsmEndTxn call, the transaction is
aborted by either the server or client with a DSM_VOTE_ABORT
and the reason is returned.

System Action: The system returns to the calling procedure.

User Response: Check the reason field for the code which
explains why the transaction has been aborted.

 Appendix D. API Return Codes With Explanations 145

146 ADSM V2 Using the Application Program Interface

Appendix E. The ADSM X/Open API

The X/Open Backup Services API (XBSA) is a set of function definitions, data struc-
tures, and return codes developed by the X/Open Company. Its purpose is to present
a standardized interface between applications that need to perform backup or archive
operations and the enterprise solutions that provide these services. ADSM is such a
solution.

 Introduction
ADSM's X/Open API enables an application client to use the ADSM storage manage-
ment functions. The X/Open API consists of a set of function calls that an application
client can use to perform the following operations:

� Initialize and terminate an ADSM session
� Assign management classes to objects before storing them on an ADSM server
� Back up or archive objects to an ADSM server
� Restore or retrieve objects from an ADSM server
� Query an ADSM server for information about objects stored on the server
� Delete backed up and archived objects from an ADSM server

When you, as an application developer, install the X/Open API, you get the following:

� The files that an end user of an application would need:

The X/Open API shared library
The Trusted Communication Agent program
Sample client options files

 Documentation

� The source code for the three X/Open API header files that your application needs

� The source code for a sample application and the makefile to build it

The X/Open API for ADSM is available on the following platforms:

� AIX 3.2.5 and 4.1
� Solaris 2.3 and 2.4

For information on installing the X/Open API, see the Installing the Clients manual.

Getting Information and Support
The IBM Storage Systems Division (SSD) Software Developer's Program provides a
range of services to software developers who want to use the X/Open API. Information
about the SSD Software Developer's Program is available in:

� IBMSTORAGE forum on CompuServe
� SSD Software Developer's Program Information Package

To obtain the Software Developer's Program Information Package:

1. Call 800-4-IBMSSD (800-442-6773). Outside the U.S.A., call 408-256-0000.

 Copyright IBM Corp. 1995, 1996 147

2. Listen for the SSD Software Developer's Program prompt.
3. Request the Software Developer's Program Information Package.

IBM has two programs—standard and premier—to provide you with technical support
and notification of updates.

See the register.frm file for details and application forms. You receive this file when
you install the X/Open API.

Setting Up Options Files
Options files allow you to set the conditions and boundaries under which your ADSM
session runs. The available options can be set by the ADSM administrator, the end
user, or you. The values of various options allow you to do the following:

� Set up the connection to an ADSM server

� Control which objects are sent to the server and what management class they are
associated with

� Set the format in which various object attributes appear, such as the date and time

The same option can appear in more than one options file. When this happens, the file
with the highest priority takes precedence.

The different options files, in order of decreasing priority, are as follows:

1. Administrator options. Options set by an ADSM administrator, whether on the
client or the server, override any options set by you or the end user.

For example, the administrator can specify whether or not objects can be com-
pressed before being sent to an ADSM server. In this case, setting the COM-
PRESSION option in the client options file has no effect. The administrator can
also decide that the choice of allowing compression is to be determined by the
client. Setting the COMPRESSION option in the client options file then determines
whether objects are compressed before being stored.

2. The ADSM options files on the UNIX platform include the user options file
(dsm.opt) and the system options file (dsm.sys). These files are set up by the
end user when the ADSM API is first installed on the user's workstation. The
options in these files can be overridden by the methods mentioned above.

For more detailed information on the options available, see either the Installing the
Clients book or the Using the UNIX Backup-Archive Clients book.

Using the ADSM X/Open API Sample Application
| The API package that you receive includes a sample application. This sample applica-

tion demonstrates the use of the X/Open API function calls in context. You should
install the sample application and look at its source code to better understand how the
function calls can be used.

148 ADSM V2 Using the Application Program Interface

Building the Sample Application
The files listed in Figure 45 make up the source files and other files needed to build the
sample application included with the X/Open API.

Follow these steps to compile the sample application and test the installation. Note that
several of the steps have slight variations, depending on which UNIX platform you are
using.

In the following instructions, the source directory from which the files are copied may
not be the same as the directory you are using on your workstation. If that is the case,
substitute the directory that you set in the DSMI_DIR environment variable for the one
in these instructions.

The target directory in these instructions has the name /u/developer/testapi . However,
you can use any name for the target directory.

1 Copy the API library to the /usr/lib directory:

AIX: cp /usr/lpp/adsm/api/bin/libXApi.a /usr/lib

Solaris: cp /usr/adsm/api/libXApi.so /usr/lib/libXApi.so

Instead of copying the API library, you can create a symbolic link to the file from
the /usr/lib directory. First change to the /usr/lib directory with the command:

 cd /usr/lib

Figure 45. Files Available for Building X/Open API Sample Application

File Name Description

custom.h Platform custom integer definitions header file

xbsa.h Header file containing constants, return codes, structure and
type definitions, and function prototypes for the Data Move-
ment function group

policy.h Header file containing structure definitions relating to policy

xapibkup.c
xapidata.h
xapiinit.c
xapint64.h
xapint64.c
xapipref.c
xapiproc.c
xapipw.c
xapiqry.c
xapirc.c
xapismp.c
xapitype.h
xapiutil.h
xapiutil.c

Modules for the command line driven sample application

makexapi.aix
makexapi.sol

Makefile to build xapismp for AIX
Makefile to build xapismp for Solaris

 Appendix E. The ADSM X/Open API 149

Then enter the following command:

AIX: ln -s /usr/lpp/adsm/api/bin/libXApi.a

Solaris: ln -s /usr/adsm/api/libXApi.so

2 For the Solaris platform, rename the Trusted Communication Agent and the
message text file:

cp dsmapitca.sol2 dsmapitca

cp dscameng.txt.sol2 dscameng.txt

Check the permission bits and the owner of dsmapitca with the following
command:

ls -l dsmapitca

If the permission bits are not set to -rwsr-xr-x, enter the command:

chmod 4755 dsmapitca

If the owner is not set to root, enter the command:

chown root dsmapitca

3 Copy the sample application files to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/xapi\ /u/developer/testapi

Solaris: cp /usr/adsm/api/xapi\ /u/developer/testapi

4 Copy the header files to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/\.h /u/developer/testapi

Solaris: cp /usr/adsm/api/\.h /u/developer/testapi

5 Copy the makefile to the target directory:

AIX: cp /usr/lpp/adsm/api/bin/makexapi.aix /u/developer/testapi

Solaris: cp /usr/adsm/api/makexapi.sol /u/developer/testapi

6 Compile the sample with the following command:

AIX: make -f makexapi.aix

Solaris: make -f makexapi.sol

7 Ensure that your environment variables, especially DSMI_DIR, and options files
are set up. See “Setting Up Options Files” on page 148 and the Installing the
Clients book for information.

8 Log on as root the first time for password registration.

9 Run xapismp to start the sample application.

150 ADSM V2 Using the Application Program Interface

Running the Sample Application
After you start the sample application by entering xapismp , follow the instructions that
appear on the screen. Some things to remember when running the application are:

� You must run the Signon action before any other action.

� When entering the object space name or the pathname, prefix them with the
correct path delimiter. This is true even if you are specifying the asterisk (*)
wildcard character.

� The sample application creates its own data streams when backing up or archiving
objects. The object name does not correspond to any file on your workstation.
The “Seed string” you enter is used to generate a pattern that can be verified when
the object is restored or retrieved.

Using the ADSM X/Open API
This section describes, in a task-oriented fashion, how to use the X/Open Application
Program Interface. You should be familiar with this section prior to designing or writing
an application that uses the X/Open API.

ADSM's X/Open API supports the functions in XBSA's Data Movement function group.
These functions include the following:

In addition, the X/Open API supports the following function:

 BSAResolveLifecycleGroup

See the X/Open Specification for detailed information on each function.

Note: The following functions are part of XBSA's Data Movement function group, but
are not currently implemented in the X/Open API. Calls to these functions return the
code BSA_RC_BAD_CALL_SEQUENCE.

 BSACreateObjectF
 BSAGetObjectF
 BSASetEnvironment

 BSABeginTxn
 BSAChangeToken
 BSACreateObject
 BSADeleteObject
 BSAEndData
 BSAEndTxn
 BSAGetData
 BSAGetEnvironment

 BSAGetNextQueryObject1

 BSAGetObject
 BSAInit
 BSAMarkObjectInactive
 BSAQueryApiVersion
 BSAQueryObject
 BSASendData
 BSATerminate

1 In the X/Open Specification, BSAGetNextQueryObject was accidentally omitted from the list of functions in XBSA's Data Movement
function group.

 Appendix E. The ADSM X/Open API 151

| The API package that you receive includes a sample application. Look at the source
code for the sample application to see examples of the X/Open API functions in
context.

Maintaining Version Control in the API
All APIs have some form of version control, and X/Open is no exception. You must be
sure the version of the X/Open API that you use in your application is compatible with
the version of the API library that the end users have installed on their workstations.

The first API call issued when using the X/Open API should usually be
BSAQueryApiVersion . This call does the following for the application client:

� Confirms that the X/Open API library is installed and available on the end user's
system

� Returns the version level of the API library being accessed by the application

The X/Open API is designed to be upward compatible, so that applications written to
older versions or releases of the API library will still operate correctly if the end user is
running a newer version.

Determining the release of the API library is critical, because some releases might have
different memory requirements and data structure definitions. Downward compatibility
might be possible on a case-by-case basis, but it is not a design goal to be so. Down-
ward compatibility, if a requirement, is the responsibility of the application client.

The API library and the Trusted Communication Agent module (dsmapitca) must be at
the same level.

The BSAQueryApiVersion call returns the version of the API library installed on the
end user's workstation. You can then compare the returned value with the version of
the X/Open API that the application client was built with.

The version number of the application client's API is hard-coded in the compiled object
code as a set of three constants:

 BSA_API_VERSION

 BSA_API_RELEASE

 BSA_API_LEVEL

These constants are defined in the header file custom.h . The application client's API
version should usually be less than or equal to the API library installed on the user's
system. Any other condition should be entered into with care.

The BSAQueryApiVersion call can be issued at any time, whether the API session
has been initialized or not.

Starting and Terminating a Session
ADSM is a session-oriented product, and all activities must be performed within an
ADSM session. To start a session, the application invokes the BSAInit call. This call
must be performed prior to any other API call except BSAQueryApiVersion . The

152 ADSM V2 Using the Application Program Interface

BSAInit function sets up a session with the ADSM server as indicated in the parame-
ters passed in the call or defined in the options files.

Note that the application client can only register new nodes with an ADSM server if the
server has closed registration. If a server has open registration, then any nodes that
are already registered with the server will be accepted by the application. However, if a
server has open registration and BSAInit tries to register a new node, then the return
code BSA_AUTH_FAILURE is generated. Application designers should tell their customers
about this requirement so that customers can configure their servers accordingly.

The ObjectOwner fields are particularly important to an ADSM session. BSAObjectOwner

is used as the ADSM node name. AppObjectOwner contains the ADSM session owner
name. The node name and password are used for session authentication with the
ADSM server. The session owner name is used to determine which objects can be
accessed during the session.

ADSM has two modes for handling passwords - Prompt and Generate. The mode is
set in the PASSWORDACCESS option in the client options file. For Prompt mode, the
node/owner/password must be supplied in the call to BSAInit . For Generate mode, the
ADSM trusted agent decides on the node and owner name. The password is stored in
a file.

If the user's dsm.sys file sets PASSWORDACCESS=Prompt, then the ADSM node and
password (security token) must be supplied. The session owner can be whatever
name you choose. An empty string for the session owner ([0]='\0') is used to mean the
root owner. The application has control of the object owner values.

If the user's dsm.sys file sets PASSWORDACCESS=Generate, then no value can be
supplied for BSAObjOwner or AppObjOwner. These fields must be empty strings. The
node name used will be the machine name and the session owner will be the login
user's name. The security token field is ignored in this situation.

If an application passes node and/or session owner values when the mode is Generate,
it gets the return code ADSM_RC_PSWD_GEN. In this case, if your application supports
PASSWORDACCESS=Generate, BSAInit must be reissued with empty ObjectOwner
fields. If your application requires PASSWORDACCESS=Prompt, then stop and tell the
user to change the option in their dsm.sys file.

You should follow BSAInit with a call to BSAGetEnvironment to retrieve the actual
node and owner used for the session. If dsm.sys has
PASSWORDACCESS=Generate, these values will be node = hostname and owner =
login user.

When using PASSWORDACCESS=Generate, the first ADSM session must be initiated
by the root user. This is necessary to create the file where the password is stored.

Sessions are terminated by a BSATerminate call. This causes the X/Open API to
close any connection with the ADSM server and free all resources associated with this
session.

 Appendix E. The ADSM X/Open API 153

Note: Only one session can be active per invocation of the API. However, applica-
tions on UNIX platforms can circumvent this restriction by running with multiple proc-
esses, each process owning its own ADSM session.

Application Design Considerations
If the end user has set PASSWORDACCESS=Generate in the client options file, and is
not the root user, then the Trusted Communication Agent (dsmapitca) child process is
forked to manage the session with the ADSM server. The SIGCLD signal is used
during termination. If PASSWORDACCESS=Prompt, no child process is used.

 Session Security
ADSM, being a session-based system, has security components that allow applications
to initialize sessions in a secure manner. These security measures prohibit unauthor-
ized access to the server and help insure system integrity.

Every session that is started with the server has to go through a sign-on process. This
sign-on process requires the use of a password that, when coupled with the node name
of the client, insures proper authorization when connecting to the server. The applica-
tion client is responsible for providing this password to the X/Open API for session
initialization.

Passwords have expiration periods associated with them. Thus, if a BSAInit call fails
with the password expired return code (BSA_RC_TOKEN_EXPIRED), the password must be
updated before the session can be successfully established.

Only the root session owner can change the password. First, issue the BSAInit call
with an empty string in the appObjectOwner field. Then, call BSAChangeToken to
update the password.

Objects stored in the system also have ownerships associated with them. See the
section “Identifying the Object” on page 165 to understand how an application can take
advantage of this to support multi-user applications. The application client is respon-
sible for insuring that security and ownership rules are met once a session is initialized.

Determining the Session Parameters
After BSAInit has been called to start a session, the application can issue a call to
BSAGetEnvironment to determine the parameters set for the session.
BSAGetEnvironment returns such items as the node, owner, and server names used
for the session, and the maximum number of objects that can be created in a single
transaction.

The objectOwner.bsaObjectOwner field contains the ADSM node name. This corre-
sponds to the BSAObjOwner field when PASSWORDACCESS is set to Prompt. When
PASSWORDACCESS is Generate, this field contains the machine name.

The objectOwner.appObjectOwner field contains the ADSM owner name. This corre-
sponds to the AppObjOwner field when PASSWORDACCESS is Prompt. When
PASSWORDACCESS is Generate, this field contains the login name.

154 ADSM V2 Using the Application Program Interface

The calling application must allocate an array of ADSM_ENV_STRS elements with strings of
size BSA_MAX_DESC for the environment output. The application must also allocate an
array of character pointers with ADSM_ENV_STRS+1 elements. The extra element is for
the NULL termination pointer.

 char \envP[ADSM_ENV_STRS+1];

char envStrs[ADSM_ENV_STRS] [BSA_MAX_DESC];

for (i=ð; i<ADSM_ENV_STRS; i++)

envP[i] = envStrs[i];

envP[i] = NULL;

rc = BSAGetEnvironment(bsaHandle, &objOwner, envP);

The format of the output is:

envStrs[ð] = "DSMSRVR=xxx"

envStrs[1] = "MAXOBJ=xx"

where:

� DSMSRVR is the ADSM server name.

� MAXOBJ is the number of objects that can be created within a single transaction.

Associating a Management Class With Objects
One of the key features offered by ADSM is the use of policy (management classes) to
define how objects are stored and managed in ADSM storage. A management class is
associated with an object when the object is backed up or archived. This management
class determines the following:

How frequently objects are backed up
How many versions of the object are retained if backed up
How long to keep archive copies
Where the object is to be inserted in the storage hierarchy on the server

Management classes have two components: a backup copy group and an archive copy
group.

A copy group is a set of attributes that define the management policies for an object
that is being backed up or archived. Thus, if a backup operation is being performed,
the attributes in the backup copy group apply. If an archive is being performed, the
attributes in the archive copy group apply.

Because the use of policy is a critical component of ADSM, the API requires that all
objects sent to the server first be assigned to a management class. There are two
ways to do this:

� By using the include-exclude list — ADSM uses an include-exclude list to perform
management class binding. The BSACreateObject and
BSAResolveLifecycleGroup calls check the object being stored against the
include-exclude list. When it finds an Include statement that matches the name of
the object, the management class specified in the statement is assigned to the

 Appendix E. The ADSM X/Open API 155

object. If no management class is specified or the object is not explicitly listed in
the include-exclude list, the object is assigned to the default management class.

� By overriding the include-exclude list — The BSACreateObject call takes an
ObjectDescriptor as an input parameter. You can assign a particular manage-
ment class to an object by placing the name of the management class in the
LGName field of the ObjectDescriptor.

Note that the backup or archive copy group in a particular management class can be
empty or NULL. If an object is bound to the NULL backup copy group, then that object
cannot be backed up. If an object is bound to the NULL archive copy group, the object
cannot be archived.

The Transaction Model
All data sent to, received from, or deleted from ADSM storage by the X/Open API is
done within the bounds of a transaction. This provides a high level of data integrity for
the ADSM product, but it does impose some restrictions that an application client must
take into consideration.

A transaction is initiated by a call to BSABeginTxn and ended by a call to
BSAEndTxn .

A single transaction is an atomic action. Data sent or received within the bounds of a
transaction is either all committed at the end of the transaction or all rolled back if the
transaction ends prematurely.

ADSM supports the use of only a single operation type within a transaction. For
example, you cannot perform both a send and a get operation within the bounds of a
single transaction. The one exception is during a get operation, where you precede the
get with a query operation.

Transactions can consist of either single objects or multiple objects. Smaller objects
should be sent or received in a multiple object transaction. This greatly improves total
system performance, because transaction overhead is decreased. The application
client determines whether single or multiple transactions are appropriate.

All objects within a multiple object transaction must be sent to or received from the
same copy destination. If you need to send an object to or receive it from a different
destination than the previous object, you must end the current transaction and start a
new one. Within the new transaction, you can send or receive the object to the new
copy destination.

ADSM limits the number of objects that can be sent or received in a multiple object
transaction. You can find this limit by calling BSAGetEnvironment and examining the
MAXOBJ value.

The application client must keep track of the objects sent or received within a trans-
action in order to perform retry processing or error processing if the transaction is
ended prematurely. A transaction can be halted at any time by either the server or the

156 ADSM V2 Using the Application Program Interface

client. Thus, the application client must be prepared to handle sudden transaction ends
that it did not initiate.

Querying the ADSM System
The X/Open API allows an application client to query an ADSM server for information
on the records stored there. You can define a set of criteria that the records on the
server must meet in order to be returned by the query. All query operations must be
done within the bounds of a transaction (see “The Transaction Model” on page 156).

A query operation consists of the following steps:

1 Issue the BSABeginTxn call to initiate a transaction.

2 Define the parameters of your query.

Use the data fields in the QueryDescriptor structure to specify the parameters of
your query. Start by setting the copyType field to backup, archive, or any,
depending on whether you want to query only backup copies, only archive ver-
sions, or both.

For all queries, you can specify an object name in the objName field, or use
wildcard characters to identify a group of objects. For backup queries, use the
status field to specify only active or inactive copies, or both. For archive
queries, you can specify the description in the desc field and set the upper and
lower bounds of the create and expiration times in the fields createTimeLB,
createTimeUB, expireTimeLB, and expireTimeUB.

3 Issue the BSAQueryObject call.

To start the query operation, issue the BSAQueryObject call, passing in the
QueryDescriptor structure. One of the following three codes is returned:

� BSA_RC_MORE_DATA — More than one object satisfied the search parameters.
The object descriptor for the first object is returned in the ObjectDescriptor

field. Go to step 4.

� BSA_RC_NO_MORE_DATA — Only one object satisfied the search parameters.
The object descriptor for the object is returned in the ObjectDescriptor

field. Go to step 5 on page 158.

� BSA_RC_NO_MATCH — No objects satisfied the search parameters. Go to step
5 on page 158.

4 Issue the BSAGetNextQueryObject call.

If more than one object satisfied the query parameters, then a
BSAGetNextQueryObject call must be issued to obtain each object after the
first. The object descriptor for each object is added to the ObjectDescriptor

structure.

 Appendix E. The ADSM X/Open API 157

After each object is returned, check the return code. If the
BSAGetNextQueryObject call returns the code BSA_RC_MORE_DATA, issue the
BSAGetNextQueryObject call again. If there is no more data, go to the next
step.

5 Issue the BSAEndTxn call to end the transaction.

When all query data has been retrieved or no further query data is desired, the
BSAEndTxn call must be issued to end the transaction and terminate the query
process. This causes the X/Open API to flush any remaining data from the
query stream and release any resources utilized for the query.

 Flow Chart
The flow chart for performing query operations is shown in Figure 46.

Figure 46. Flow Chart for Query Operations

158 ADSM V2 Using the Application Program Interface

Sending Data to a Server
The X/Open API allows application clients to send data to ADSM server storage. Data
can be either backed up or archived. All send operations must be done within the
bounds of a transaction (see “The Transaction Model” on page 156).

The backup component of the ADSM system supports multiple versions of named
objects stored on the server. Thus, any object backed up to the server that has the
same name as an object already stored on the server from that client is subject to
version control. Objects are considered to be in active or inactive states on the server.
The latest copy of an object on the server that has not been deactivated is in the active
state. Any other object, whether it is an older version or a deactivated copy, is consid-
ered to be inactive. Different management criteria are assigned to active and inactive
objects on the server as defined by the management class constructs.

The archive component of the ADSM system allows objects to be stored on the server
with retention or expiration period controls instead of version control. Each object
stored is considered to be unique, even though its name might be the same as an
object already archived. This allows an application to archive the same object multiple
times, but with different expiration times assigned to each copy of the object.

The value of the COMPRESSION option in the end user's dsm.sys file determines
whether ADSM will compress the object during a send operation.

Some types of data (for example, data that is already compressed) may actually get
bigger when processed with the compression algorithm. When this happens, the return
code ADSM_RC_ERROR is generated and added to the ADSM error log (dsierror.log). If
you recognize that this may happen, but want the send operation to continue anyway,
tell the end users to specify the following option in their options file before the applica-
tion runs:

 COMPRESSAlways Yes

A send operation consists of the following steps:

1 Issue the BSABeginTxn call to initiate a transaction.

2 Issue the BSAResolveLifecycleGroup call.

This call is optional. Use it to associate a particular management class with an
object that you are storing on the ADSM server. If you don't call
BSAResolveLifecycleGroup , a management class is associated with the object
during the call to BSACreateObject . For more information, see “Associating a
Management Class With Objects” on page 155.

3 Issue the BSACreateObject call.

The BSACreateObject call takes an ObjectDescriptor structure as an input
parameter. This structure contains information about the object being stored,
such as the object's name and whether it is being backed up or archived.

 Appendix E. The ADSM X/Open API 159

The ObjectDescriptor.Owner.bsaObjectOwner value must match the value used
on the BSAInit call. The ObjectDescriptor.Owner.appObjectOwner value must
also match the one used on the BSAInit call, unless it was an empty string,
signifying the session was started with the root owner. In this case the object
owner can be any value.

The sizes of the objInfo and desc fields in the ObjectDescriptor structure are
set by ADSM. These sizes are determined by the constants
ADSM_MAX_OBJINFO and ADSM_MAX_DESC in the custom.h header file.

BSACreateObject can also send the first block of data to the ADSM server. If
the object has more data, go to the next step. If there is no more data, go to
step 5.

4 Issue the BSASendData call.

Repeat this call as many times as necessary until the entire object has been
sent to the ADSM server.

5 Issue the BSAEndData call.

The BSAEndData call signifies there is no more data for a particular object.

6 If you want to send more than one object to the ADSM server, repeat steps 3
through 5 for each object. Note that all objects sent within the same transaction
must be for the same objectspaceName.

ADSM limits the number of objects that can be sent in one transaction. The limit
is determined by the constant MAXOBJ. You can get this value by calling
BSAGetEnvironment .

7 Issue the BSAEndTxn call to end the transaction.

 Flow Chart
The flow chart for performing backup or archive operations within a transaction is
shown in Figure 47 on page 161.

The key feature in this diagram is the loop between the following X/Open API calls from
within a transaction:

 BSACreateObject
 BSASendData
 BSAEndData

Receiving Data from a Server
The X/Open API allows application clients to receive data from ADSM storage using the
restore and retrieve functions of the product. Restore accesses objects that have previ-
ously been backed up, and retrieve accesses objects that have previously been
archived.

160 ADSM V2 Using the Application Program Interface

Figure 47. Flow Chart for Backup and Archive Operations

All restore and retrieve operations must be done within the bounds of a transaction (see
“The Transaction Model” on page 156).

 Appendix E. The ADSM X/Open API 161

Note: Only the API can restore or retrieve objects that have been backed up or
archived with API calls.

Once a session is established with the ADSM server, use the following procedure to
restore or retrieve data:

1 Issue the BSABeginTxn call to initiate a transaction.

2 Issue the BSAQueryObject call to query the ADSM server for backup or archive
data. (This step can be performed outside the transaction.)

Before beginning a restore or retrieve operation, you query the ADSM server to
determine what objects can be received from storage. To issue the query, first
fill in the applicable fields in the QueryDescriptor structure with the desired
search parameters. Then issue the BSAQueryObject call with the
QueryDescriptor.

If the session was initialized with a NULL owner name, the owner field need not
be specified. If the session was initialized with an explicit owner name, then
only objects that explicitly have that owner name associated with them are
returned.

The query returns all information in an ObjectDescriptor structure. Different
information is returned depending on whether the object was originally backed
up or archived. For instance, a query on backup objects returns information on
whether an object is active or inactive, while a query on archive objects returns
information such as the object descriptions.

All queries return all information that was originally stored with the object, plus
the following:

copyid The copyid provides an 8-byte number that uniquely identifies this
object for this node in ADSM storage. Use this ID to request a spe-
cific object from storage for restore or retrieve processing.

restoreOrder
The restoreOrder provides a mechanism for receiving objects from
ADSM storage in the most efficient manner possible. Sort the
objects to be restored on this value to insure that tapes are
mounted only once and are read from front to back.

You must retain some or all of the query information for later processing. Retain
the copyid and restoreOrder fields because they are needed for the actual
restore operation. You must also retain any other information needed to prop-
erly open a data file or identify a destination.

3 Determine the objects to be restored or retrieved from the server.

Once the backup or archive query has been performed, the application client
must determine which objects, if any, are to be restored or retrieved.

162 ADSM V2 Using the Application Program Interface

4 If more than one object is selected, sort the objects on the restore order field.

Once the objects to restore or retrieve are selected, they must be sorted in
ascending order (low to high) by the restoreOrder field. This sorting is critical to
the performance of the restore operation. Sorting the objects on the
restoreOrder field means that the data is read from the server in the most effi-
cient order. Thus, all data on disk is restored first, followed by data on media
classes that require volume mounts (such as tape). The restoreOrder field also
insures that data on tape is read in order with processing starting at the front of
a tape and progressing towards the end.

Properly sorting on the restoreOrder field means that duplicate tape mounts and
unnecessary tape rewinds do not occur.

5 Issue the BSAGetObject call.

The BSAGetObject call uses the copyType and copyid fields of the
ObjectDescriptor to begin obtaining the first object from the system. The call
begins a restore or retrieve operation by identifying the object being requested
from the data stream.

BSAGetObject obtains the first block of data associated with the object. If the
object has more data, go to the next step. If the return code is
BSA_RC_NO_MORE_DATA, go to step 7.

6 Issue the BSAGetData call.

Repeat this call as many times as necessary until the entire object has been
received from the ADSM server.

7 Issue the BSAEndData call.

The BSAEndData call signifies there is no more data for a particular object.

8 If you want to receive more than one object from the ADSM server, repeat steps
5 through 7 for each object.

9 Issue the BSAEndTxn call to end the transaction.

After all data for all requested objects has been received, the BSAEndTxn call
must be issued. You can also use this call to discard any remaining data in the
restore stream for objects not yet received.

 Flow Chart
The flow chart for performing restore or retrieve operations is shown in Figure 48 on
page 164.

 Appendix E. The ADSM X/Open API 163

Figure 48. Flow Chart for Restore and Retrieve Operations

164 ADSM V2 Using the Application Program Interface

Deleting Objects from the Server
X/Open API applications can issue calls to either delete objects that have been
archived or deactivate objects that have been backed up. The former is dependent on
the node authorization given when the node was registered by an ADSM administrator.
Administrators can specify whether nodes can delete archive objects.

The BSADeleteObject call is used for deleting archive objects and the
BSAMarkObjectInactive call is used for deactivating backup objects.

When deleting an archive object, the object is marked in ADSM storage for deletion
when the system next performs its object expiration cycle. Once an archive object is
deleted from the server, it cannot be retrieved.

When deactivating a backup object on the ADSM server, the object moves from an
active state to an inactive state. These states have different retention policies associ-
ated with them based on the management class assigned.

Note that a call to BSAMarkObjectInactive affects all objects with the same objType

and the same name.

A call to BSADeleteObject or to BSAMarkObjectInactive is always issued within the
bounds of a transaction. The flow charts in Figure 49 show how a call to
BSADeleteObject or BSAMarkObjectInactive is preceded by a call to BSABeginTxn
and followed by a call to BSAEndTxn .

Figure 49. Flow Charts for Delete Archive (left) and Deactivate Backup (right) Operations

Identifying the Object
The ADSM server can be viewed as an object storage server whose main goal is to
efficiently store and retrieve named objects. The server has two main storage areas to
meet this requirement:

 Appendix E. The ADSM X/Open API 165

� The database contains all metadata (name, attributes, and so forth) associated with
an object.

� The data storage contains the actual object data. The data storage is actually a
storage hierarchy defined by the system administrator. Data is efficiently stored
and managed on either online or offline media, depending on cost and access
needs.

Each object stored on the server has a name associated with it. The client controls the
following key components of the name:

Object space name
 Pathname
 Object type

When making decisions about naming objects for an application, keep in mind that it
may be necessary to externalize the full object names to the end user. Specifically, the
end user may need to specify the object in an Include or Exclude statement when the
application is run.

Object Space Name
One of the most critical components of the name is the object space name. This name
can be viewed as the name of a file system or disk drive, or any other high-level qual-
ifier that groups related data together. ADSM uses the object space to identify the file
system or disk drive the data is located on. Thus, actions can be performed on all
entities within an object space with relative ease, such as querying all objects within a
specified object space.

The ADSM server also has administrative commands to query the object spaces on a
given node in ADSM storage, and delete them if necessary. Thus, all data stored by
the application client must have an object space name associated with it. Choose the
name carefully to group like data together in the system.

An application client should choose different object space names than the file system
names a backup-archive client would use, in order to avoid possible interference. The
application client should publish its object space names, so that end users can identify
the objects for Include and Exclude statements, if necessary.

 Pathnames
Another component of the object name is the pathname. The pathname consists of the
directory path the object belongs in, and the actual name of the object in that directory
path. When the object space name and pathname are concatenated, they must form a
syntactically correct name on the operating system the client is running on. The name
does not have to exist as an object on the system or bear any relation to the actual
data on the local file system, but the name must meet the standard naming rules in
order to be properly processed for management classes.

166 ADSM V2 Using the Application Program Interface

 Object Type
The object type identifies the object as either a file or a directory. A file is an object
that contains both attributes and binary data. A directory is an object that contains only
attributes.

ADSM also accepts the value BSAObjectType_DATABASE, but treats it as
BSAObjectType_FILE.

 Example
The following example demonstrates what the application client would code on a UNIX
platform:

 /myobjspace/pathname

Setting the Owner Name
Each object has an owner name associated with it. The rules governing what objects
can be accessed depend on what owner name is used when a session is initialized.
This object owner value can be used to control access to the object.

If a session is initialized with an empty string for the owner, that session owner is
treated with session (or root) authority. This session can perform any action on any
object owned by this node regardless of the actual owner of that object. The session
owner is set during the call to BSAInit in the AppObjectOwner field of the ObjectOwner

structure.

If a session is initialized with a specific owner name, the session can only perform
actions on objects that have that owner name associated with them. Thus, backups or
archives into the system all must have this owner name associated with them. Also,
any queries performed only return values that have this owner name associated with
them. The object owner value is set during the BSACreateObject call in the Owner

field of the ObjectDescriptor structure.

Figure 50 summarizes the conditions under which a user has access to an object.

Figure 50. Summary of user access to objects

Session owner Object owner User access?

“ ” (empty string)
(root, system owner)

“ ” (empty string) Yes

“ ” (empty string)
(root, system owner)

specific name Yes

specific name “ ” (empty string) No

specific name same name Yes

specific name different name No

 Appendix E. The ADSM X/Open API 167

Determining Size Limits
Certain data structures or fields in the X/Open API have size limitations. These struc-
tures are often names or other text fields that cannot exceed a predetermined length.
Examples of fields with such limits are:

 Archive description
Copy group destination
Copy group name
Object information size
Object owner name
Path name length

 Password

These limits are defined as constants within the header files custom.h and xbsa.h .
Any storage allocation should be based on these constants instead of hard-coded
numbers. Refer to the header files for further information and a list of the current con-
stants.

ADSM Changes to the XBSA Header Files
The X/Open API contains the header files custom.h , xbsa.h , and policy.h . ADSM
uses these header files with the following changes:

Changes to custom.h
The ADSM X/Open API supports the following additional constants and return codes in
custom.h :

/\ XBSA library version, release, level

 \/

#define BSA_API_VERSION 2

#define BSA_API_RELEASE 1

#define BSA_API_LEVEL 3

/\ Constants used

 \/

#define ADSM_MAX_DESC 1ðð /\ ADSM max Desc size \/

#define ADSM_MAX_OBJINFO 1ðð /\ ADSM max object info size \/

#define ADSM_LOWEST_BOUND ðxðððð /\ value for LowerBound max \/

#define ADSM_HIGHEST_BOUND ðxFFFF /\ value for UpperBound max \/

#define ADSM_ENV_STRS 2 /\ number of env strings \/

#define ObjectDescriptorVersion 1 /\ ver for ObjectDescriptor \/

#define UserDescriptorVersion 1 /\ ver for UserDescriptor \/

#define BSAObjectType_DATABASE 4 /\ ObjectType for Databases \/

/\ Return Codes Used

 \/

#define BSA_RC_OK ðxðð

#define BSA_RC_SUCCESS ðxðð

#define ADSM_RC_ERROR ðx6ð /\ see ADSM error log \/

#define ADSM_RC_INVALID_NODE ðx61 /\ BSAObjOwner not match Init\/

168 ADSM V2 Using the Application Program Interface

#define ADSM_RC_INVALID_COPYTYPE ðx62 /\ invalid copyType \/

#define ADSM_RC_INVALID_OBJTYPE ðx63 /\ invalid objectType \/

#define ADSM_RC_INVALID_STATUS ðx64 /\ invalid object status \/

#define ADSM_RC_INVALID_ST_VER ðx65 /\ invalid structure version \/

#define ADSM_RC_OWNER_TOO_LONG ðx66 /\ owner too long \/

#define ADSM_RC_PSWD_TOO_LONG ðx67 /\ pswd too long \/

#define ADSM_RC_PSWD_GEN ðx68 /\ pswd access = generate \/

Changes to xbsa.h
The ADSM X/Open API supports the following changes to the type definitions in
xbsa.h :

/\ Changed tm typedef to 'struct tm' for AIX compiler \/

/\ ref BSAEvent, ObjectDescriptor, QueryDescriptor, Schedule \/

/\ \/

/\ For the function prototypes, int and long have been \/

/\ replaced with typedefs from custom.h. \/

/\ \/

/\ Included BSAGetNextQueryObject function prototype here since it was \/

/\ accidentally omitted from the Data movement subset. \/

Changes to policy.h
The ADSM X/Open API supports the following changes to the function prototypes in
policy.h :

/\ For the function prototypes, int and long have been \/

/\ replaced with typedefs from custom.h. \/

/\ \/

/\ BSAGetNextQueryObject defined in xbsa.h because it should be part \/

/\ of the Data Movement subset. \/

 Appendix E. The ADSM X/Open API 169

170 ADSM V2 Using the Application Program Interface

 Glossary

This glossary defines important terms and abbreviations
used in the ADSM library of books. If you cannot find
the term you are looking for, see the Index or the IBM
Dictionary of Computing.

This glossary may include terms and definitions from:

� The IBM Dictionary of Computing, ZC20-1699, copy-
right 1994 by McGraw-Hill.

� The American National Standard Dictionary for Infor-
mation Systems, ANSI X3.172-1990, copyright 1990
by the American National Standards Institute
(ANSI). Copies may be purchased from the Amer-
ican National Standards Institute, 11 West 42nd
Street, New York, New York 10036.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC2/SC1).

A
absolute . A copy group mode value that indicates that
an object is considered for backup even if it has not
changed since the last time it was backed up. See
mode. Contrast with modified.

active policy set . The policy set within a policy domain
that contains the most recently activated policy. This
policy set is used by all client nodes assigned to the
current policy domain. See policy set.

active version . The most recent backup copy of an
object stored in ADSM storage for an object that cur-
rently exists on a file server or workstation. An active
version remains active and exempt from deletion until it
is replaced by a new backup version, or ADSM detects
during a backup that the user has deleted the original
object from a file server or workstation.

administrative client . A program that runs on a file
server, workstation, or mainframe. This program allows
administrators to control and monitor ADSM servers
through ADSM administrator commands. Contrast with
backup-archive client.

administrator . A user who has been registered to the
server as an administrator. Administrators can be

assigned one or more privilege classes. Administrators
can use the administrative client to enter ADSM server
commands and queries according to their privileges.

ADSM. ADSTAR Distributed Storage Manager.

ADSTAR Distributed Storage Manager (ADSM) . A
client/server program that provides storage management
and data access services to customers in a multivendor
computer environment.

Advanced Program-to-Program Communications
(APPC). An implementation of the SNA LU6.2 protocol
that allows interconnected systems to communicate and
share the processing of programs. See Systems
Network Architecture Logical Unit 6.2 and Common
Program Interface Communications.

API. application program interface.

APPC. Advanced program-to-program communications.

application client . A software application that runs on
a workstation or personal computer and uses the ADSM
application program interface (API) function calls to back
up, archive, restore, and retrieve objects. Contrast with
backup-archive client.

application program interface (API) . A set of func-
tions that application clients can call to store, query, and
retrieve data from ADSM storage.

archive . A function that allows users to copy one or
more objects to a long-term storage device. Archive
copies may be accompanied by descriptive information,
may imply data compression software usage, and may
be retrieved by archive date, object name, or description.
Contrast with retrieve.

archive copy . An object or group of objects residing in
an archive storage pool in ADSM storage.

archive copy group . A policy object that contains attri-
butes which control the generation, destination, and
expiration of archive objects. The archive copy group
belongs to a management class.

archive retention grace period . The number of days
ADSM retains an archive copy when the server is unable
to rebind the object to an appropriate management
class.

 Copyright IBM Corp. 1995, 1996 171

authentication . The process of checking and author-
izing a user's password before allowing that user access
to the ADSM server. Authentication can be turned on or
off by an administrator with system privilege.

authorization rule . A specification that allows another
user to either restore or retrieve a user's objects from
ADSM storage.

B
backup . A function that allows users to copy one or
more objects to a storage pool to protect against data
loss. Contrast with restore.

backup-archive client . A program that runs on a file
server, PC, or workstation and provides a means for
ADSM users to back up, archive, restore, and retrieve
objects. Contrast with application client and administra-
tive client.

backup copy group . A policy object that contains attri-
butes which control the generation, destination, and
expiration of backup files. The backup copy group
belongs to a management class.

backup retention grace period . The number of days
ADSM retains a backup version when the server is
unable to rebind the object to an appropriate manage-
ment class.

backup version . An object, directory, or file space that
a user has backed up that resides in a backup storage
pool in ADSM storage. Though there may be more than
one backup version of an object in ADSM storage, only
one is considered the active version. See active version
and inactive version.

bindery . A database that consists of three system files
for a NetWare 3.11 server. The files contain user IDs
and user restrictions.

binding . The process of associating an object with a
management class name.

C
client . A program running on a file server or work-
station that requests services of another program called
the server.

client node . A file server or workstation on which the
client program has been installed that has been regis-
tered with the server.

client options file . A user-editable file that contains
processing options to identify ADSM servers, select
communication methods, specify backup, archive,
restore, and retrieve options, define scheduling options,
and to choose formats for date, time, and numbers.
Also called the dsm.opt file.

client/server . A communications network architecture
in which one or more programs (clients) request com-
puting or data services from another program (the
server).

client system options file . A file, used on UNIX
clients, that contains a number of processing options
which identify the ADSM servers to be contacted for ser-
vices. This file also specifies communications options,
backup and archive processing options, and scheduling
options. Also called the dsm.sys file. See client user
options file.

client user options file . A user-editable file, used on
UNIX clients, that contains processing options to identify
the ADSM server to contact, to specify backup, archive,
restore, and retrieve options, and to select formats for
date, time, and numbers. Also called the dsm.opt file.
See client system options file.

Common Programming Interface Communications
(CPIC). A programming interface that allows
program-to-program communication using SNA LU6.2.
See Systems Network Architecture Logical Unit 6.2.

communication method . The method by which a
client and server exchange information. The UNIX appli-
cation client can use the TCP/IP or SNA LU6.2 method.
The Windows application client can use the 3270,
TCP/IP, NETBIOS, or IPX/SPX method. The OS/2
application client can use the 3270, TCP/IP, PWSCS,
SNA LU6.2, NETBIOS, IPX/SPX, or Named Pipe
method. The Novell NetWare application client can use
the IPX/SPX, PWSCS, SNA LU6.2, or TCP/IP methods.
See IPX/SPX, Named Pipe, NETBIOS, Programmable
Workstation Communication Service, Systems Network

172 ADSM V2 Using the Application Program Interface

Architecture Logical Unit 6.2, and Transmission Control
Protocol/Internet Protocol.

communication protocol . A set of defined interfaces
that allows computers to communicate with each other.

configuration file . An optional file pointed to by your
application that can contain the same options that are
found in the client options file (for non-UNIX platforms)
or in the client user options file and client system options
file (for UNIX platforms). If your application points to a
configuration file and values are defined for options, then
the values specified in the configuration file override any
value set in the client options files.

copy group . A policy object that contains attributes
which control the generation, destination, and expiration
of backup and archive files. There are two kinds of copy
groups: backup copy group and archive copy group.
Copy groups belong to management classes. See fre-
quency, destination, mode, retention, serialization, and
version.

CPIC. Common Programming Interface Communi-
cations.

D
default management class . A management class
assigned to a policy set that is used to govern backed
up or archived objects when a user does not explicitly
associate an object with a specific management class
through the include-exclude list.

destination . A copy group attribute that specifies the
storage pool to which an object will be backed up or
archived. At installation, ADSM provides two storage
destinations named BACKUPPOOL and
ARCHIVEPOOL.

domain . See policy domain.

dsm.opt file . See client options file and client user
options file.

dsm.sys file . See client system options file.

dynamic . A copy group serialization value that speci-
fies that ADSM accepts the first attempt to back up or
archive an object, regardless of any changes made
during backup or archive processing. See serialization.
Contrast with shared dynamic, shared static, and static.

E
error log . A text file (dsierror.log) written on disk that
contains ADSM processing error messages.

exclude . The process of identifying objects in an
include-exclude list to prevent them from being backed
up.

expiration . The process by which objects are identified
for deletion because their expiration date or retention
period has passed. Backed up or archived objects are
marked for deletion based on the criteria defined in the
backup or archive copy group.

F
file server . A dedicated computer and its peripheral
storage devices that are connected to a local area
network that stores both programs and files that are
shared by users on the network.

file space . A logical space on the ADSM server that
contains a group of files. In ADSM, users can restore,
retrieve, or delete file spaces from ADSM storage. On
UNIX systems, a file space is a logical space that con-
tains a group of objects backed up or archived from the
same file system.

frequency . A copy group attribute that specifies the
minimum interval, in days, between backups.

fuzzy backup . A backup version of an object that might
not accurately reflect what is currently in the object
because ADSM backed up the object while the object
was being modified.

fuzzy copy . An archive copy of an object that might not
accurately reflect what is currently in the object because
ADSM archived the object while the object was being
modified.

I
inactive version . A copy of a backup file in ADSM
storage that either is not the most recent version or the
corresponding original object has been deleted from the
client file system. Inactive backup versions are eligible
for expiration according to the management class
assigned to the object.

 Glossary 173

include-exclude file . A file, on UNIX clients, that con-
tains statements which ADSM uses to determine
whether to back up certain objects and to determine the
associated management classes to use for backup or
archive. See include-exclude list.

include-exclude list . A list of INCLUDE and EXCLUDE
options that include or exclude selected objects for
backup. An EXCLUDE option identifies objects that
should not be backed up. An INCLUDE option identifies
objects that are exempt from the exclusion rules or
assigns a management class to an object or a group of
objects for backup or archive services. The include-
exclude list is defined either in the include-exclude file
(for UNIX clients) or in the client options file.

IPX/SPX. Internetwork Packet Exchange/Sequenced
Packet Exchange. IPX/SPX is Novell NetWare's proprie-
tary communication protocol.

L
Local Area Network (LAN) . A variable-sized communi-
cations network placed in one location. It connects
servers, PCs, workstations, a network operating system,
access methods, and communications software and
links.

M
management class . A policy object that is a named
collection of copy groups. A management class is asso-
ciated with an object to specify how the server should
manage backup versions or archive copies of work-
station objects. See binding and copy group.

mode . A copy group attribute that specifies whether a
backup file should be created for an object that was not
modified since the last time the object was backed up.
See absolute and modified.

modified . A backup copy group attribute that indicates
that an object is considered for backup only if it has
been changed since the last backup. An object is con-
sidered changed if the date, size, owner, or permissions
have changed. See absolute and mode.

N
Named Pipe . A type of interprocess communication
which allows message data streams to be passed
between peer processes, such as between a client and
a server.

NETBIOS. Network Basic Input/Output System. An
operating system interface for application programs used
on IBM personal computers that are attached to the IBM
Token-Ring Network.

NetWare Loadable Module (NLM) . Novell NetWare
software that provides extended server functionality.
Support for various ADSM and NetWare platforms are
examples of NLMs.

node . See client node.

node name . A unique name used to identify a work-
station, file server, or PC to the server.

O
object . A collection of data managed as a single entity.

owner . The owner of backup-archive files sent from a
multi-user client node, such as AIX.

P
policy domain . A policy object that contains one or
more policy sets. Client nodes are associated with a
policy domain. See policy set, management class, and
copy group.

policy set . A policy object that contains a group of
management class definitions that exist for a policy
domain. At any one time, there can be many policy sets
within a policy domain, but only one policy set can be
active. See active policy set and management class.

Programmable Workstation Communication Services
(PWSCS). A product that provides transparent high per-
formance communications between programs running on
workstations or on host systems.

PWSCS. Programmable Workstation Communication
Services.

174 ADSM V2 Using the Application Program Interface

R
registration . The process of identifying a client node or
administrator to the server by specifying a user ID, pass-
word, and contact information. For client nodes, a policy
domain, compression status, and deletion privileges are
also specified.

restore . A function that allows users to copy a version
of a backup file from the storage pool to a workstation or
file server. The backup copy in the storage pool is not
affected. Contrast with backup.

retention . The amount of time, in days, that inactive
backed up or archived files are retained in the storage
pool before they are deleted. The following copy group
attributes define retention: retain extra versions, retain
only version, retain version.

retrieve . A function that allows users to copy an
archive file from the storage pool to the workstation or
file server. The archive copy in the storage pool is not
affected. Contrast with archive.

S
selective backup . A function that allows users to back
up objects from a client domain that are not excluded in
the include-exclude list and that meet the requirement
for serialization in the backup copy group of the man-
agement class assigned to each object.

serialization . A copy group attribute that specifies
whether an object can be modified during a backup or
archive operation and what to do if it is. See static,
dynamic, shared static, and shared dynamic.

server . A program running on a mainframe, work-
station, or file server that provides shared services such
as backup and archive to other various (often remote)
programs called clients.

session . A period of time in which a user can commu-
nicate with a server to perform backup, archive, restore,
or retrieve requests.

shared dynamic . An ADSM copy group serialization
mode. This mode specifies that if an object changes
during backup or archive and continues to be changed

after a number of retries, the last retry commits the
object to the ADSM server whether or not it changed
during backup or archive.

shared static . A copy group serialization value that
specifies that an object must not be modified during a
backup or archive operation. ADSM attempts to retry
the operation a number of times. If the object is in use
during each attempt, the object is not backed up or
archived. See serialization. Contrast with dynamic,
shared static, and static.

SNA LU6.2 . Systems Network Architecture Logical Unit
6.2.

static . A copy group serialization value that specifies
that an object must not be modified during a backup or
archive operation. If the object is in use during the first
attempt, ADSM will not back up or archive the object.
See serialization. Contrast with dynamic, shared static,
and static.

storage pool . A named set of storage volumes that is
used as the destination of backup or archive copies.

Systems Network Architecture Logical Unit 6.2 (SNA
LU6.2). A set of rules for data to be transmitted in a
network Application programs communicate with each
other using a layer of SNA called Advanced Program-to-
Program Communication (APPC).

T
TCP/IP. Transmission Control Protocol/Internet Protocol

Transmission Control Protocol/Internet Protocol
(TCP/IP). A standard set of communication protocols
that supports peer-to-peer connectivity of functions for
both local and wide-area networks.

V
version . (1) A three-part designation for an instance of
the API, consisting of the version, release, and level. (2)
The maximum number of different backup copies of files
retained for files. The following backup copy group attri-
butes define version criteria: version data exists and ver-
sions data deleted.

 Glossary 175

W
wildcard character . A character such as an asterisk (*
) or question mark (?) that is used to search for various
combinations of alphanumeric and symbolic names.
These names can reflect object names or character
strings within a file, for example.

workstation . A programmable high level workstation
(usually on a network) with its own processing hardware
such as a high-performance personal computer. In a
local area network, a personal computer that acts as a
single user or client. A workstation can also be used as
a server.

176 ADSM V2 Using the Application Program Interface

 Index

A
access to objects

by user 43, 167
active copies of objects 27, 159
administrator options 2, 148
ADSM

introducing ix
ADSTAR Distributed Storage Manager

publications x
API configuration file

used by dsmInit 2, 17
API options list

used by dsmInit 2, 17
application design considerations 18, 154
application type 16
archive copy group

See copy group
archiving objects 27, 159
AS/400 platform

using the sample application 12

B
backing up objects 27, 159
backup copy group

See copy group
BSABeginTxn

flow chart, in 161
general description 156

BSACreateObject
flow chart, in 161
general description 155
include-exclude list, and 155

BSADeleteObject
flow chart, in 165
general description 165

BSAEndData
flow chart, in 164
general description 159, 163

BSAEndTxn
flow chart, in 161
general description 156, 163

BSAGetData
flow chart, in 164
general description 163

BSAGetEnvironment
general description 154

BSAGetNextQueryObject
flow chart, in 158
general description 157

BSAGetObject
flow chart, in 164
general description 163

BSAInit
general description 152
session owner, set 167

BSAMarkObjectInactive
flow chart, in 165

BSAQueryApiVersion
general description 152

BSAQueryObject
example, use in 159
flow chart, in 158, 164
general description 157, 162
receiving data, use in 162

BSAResolveLifecycleGroup
flow chart, in 161
general description 155
include-exclude list, and 155
object name, and 166

BSASendData
flow chart, in 161
general description 159

BSATerminate
general description 153

C
closed registration 16, 153
compatibility

between different versions of API 15, 152
configuration file, API

See API configuration file
copy group

defined 20, 155
dsmBindMC, information returned by 21

D
data structures

size limits 48, 168

 Copyright IBM Corp. 1995, 1996 177

data structures (continued)
version control 16

deactivating objects on the server 40, 165
deleting objects from the server 40, 165
dsmBeginGetData

example, use in 38
flow chart, in 38
general description 36, 50
return codes 51
state diagram, in 37, 47
syntax 50

dsmBeginQuery
example, use in 24, 26
flow chart, in 24, 38
general description 22, 34, 52
receiving data, use in 34
return codes 54
state diagram, in 24, 47
syntax 52

dsmBeginTxn
example, use in 31
flow chart, in 30
general description 26, 55
state diagram, in 29, 47
syntax 55

dsmBindMC
example, use in 22, 31
flow chart, in 30
general description 21, 30, 57
include-exclude list, and 21
information returned by 21
object name, and 42
return codes 58
state diagram, in 29, 47
syntax 57

dsmChangePW
example, use in 19
general description 47, 59
return codes 59
state diagram, in 47
syntax 59

dsmDeleteFS
example, use in 44
general description 44, 60
return codes 61
state diagram, in 47
syntax 60

dsmDeleteObj
general description 40, 62
return codes 63

dsmDeleteObj (continued)
state diagram, in 29, 47
syntax 62

dsmEndGetData
example, use in 38
flow chart, in 38
general description 37, 64
state diagram, in 37, 47
syntax 64

dsmEndGetObj
example, use in 38
flow chart, in 38
general description 36, 65
return codes 65
state diagram, in 37, 47
syntax 65

dsmEndQuery
example, use in 24
flow chart, in 24
general description 23, 66
state diagram, in 24, 47
syntax 66

dsmEndSendObj
example, use in 31
flow chart, in 30
general description 27, 67
return codes 67
state diagram, in 29, 47
syntax 67

dsmEndTxn
example, use in 31
flow chart, in 30
general description 26, 68
return codes 69
state diagram, in 29, 47
syntax 68

dsmGetData
example, use in 38
flow chart, in 38
general description 36, 70
return codes 70
state diagram, in 37, 47
syntax 70

dsmGetNextQObj
example, use in 24
flow chart, in 24
general description 23, 71
return codes 72
state diagram, in 24, 47
syntax 71

178 ADSM V2 Using the Application Program Interface

dsmGetObj
example, use in 38
flow chart, in 38
general description 36, 73
return codes 74
state diagram, in 37, 47
syntax 73

dsmInit
example, use in 18
general description 16, 75
return codes 77
session owner, set 43
state diagram, in 47
syntax 75

dsmQueryApiVersion
example, use in 16
general description 15, 79
state diagram, in 47
syntax 79

dsmQuerySessInfo
general description 17, 80
return codes 80
state diagram, in 47
syntax 80

dsmRCMsg
general description 81
return codes 81
syntax 81

dsmRegisterFS
example, use in 44
general description 43, 82
return codes 82
state diagram, in 47
syntax 82

dsmSendData
example, use in 31
flow chart, in 30
general description 27, 83
return codes 83
state diagram, in 29, 47
syntax 83

dsmSendObj
copy groups, and 21
example, use in 31
flow chart, in 30
general description 27, 85
return codes 88
state diagram, in 29, 47
syntax 86

dsmTerminate
example, use in 18
general description 17, 89
return codes 89
state diagram, in 47
syntax 89

dsmUpdateFS
example, use in 44
general description 44, 90
return codes 90
state diagram, in 47
syntax 90

E
ending a session

with BSATerminate 153
with dsmTerminate 17

examples in this book
notes on 15

F
fast path 23, 52
file space management 43
file space name 41

H
high-level name 42

I
identifying the object 41, 165
inactive copies of objects 27, 159
include-exclude list 21, 155
installation

sample application, of 5, 149

L
low-level name 42

M
management class

BSACreateObject, assigned by 155
BSAResolveLifecycleGroup, assigned by 155
defined 20, 155

 Index 179

management class (continued)
dsmBindMC, assigned by 21
querying 22

media class 35
metadata 41, 166
Microsoft Windows 32-bit (Windows 95 and NT) platform

using the sample application 6
Microsoft Windows platform

using the sample application 5

N
naming of objects

See object naming
NetWare platform

using the sample application 11

O
object naming

BSAResolveLifecycleGroup, and 166
description 41, 165
dsmBindMC, and 42
file space name 41
high-level name 42
low-level name 42
object space name 166
object type 42, 167
owner name 43, 167
pathname 166

object space name 166
object type 42, 167
option list

format 77
options

set by administrator 2, 148
used for 2, 148

options files, client 3, 148
options list, API

See API options list
OS/2 platform

using the sample application 7
owner name 43, 167

P
partial object restore or retrieve 33
password, use of 18, 154
pathname 166

policy 20, 155
publications

order numbers x
softcopy x

Q
queries, system 22, 157

R
receiving data from a server

general description 33, 160
partial object restore or retrieve 33
procedure to follow 34, 162
sorting objects by restore order 35, 163

registration with server 16, 153
restoring objects 33, 160
retrieving objects 33, 160
return codes 123

S
sample application

installing on AS/400 platform 12
installing on NetWare platform 11
installing on OS/2 platform 7
installing on UNIX platform 8, 149
installing on Windows 32-bit (Windows 95 and NT)

platform 6
installing on Windows platform 5
running 14, 151
used for examples 15

security 18, 154
sending data to a server 26, 159
server, ADSM

main storage areas 41, 165
session

owner 43, 167
password, use of 18, 154
security 18, 154
starting with BSAInit 152
starting with dsmInit 16

size limits
of API data structures 48, 168

softcopy publications
order numbers x

Software Developer's Program 1, 147
starting a session 16, 152

180 ADSM V2 Using the Application Program Interface

stopping a session 16, 152
system queries 22, 157

T
terminating a session 16, 152
trademarks vii
transaction model 26, 55, 156

U
UNIX platform

using the sample application 8, 149

V
verify version 15, 152
version control

API data structures 16
BSAQueryApiVersion, using 152
dsmQueryApiVersion, using 15
managing backed up copies 27, 159

X
X/Open Backup Services 147
XBSA 147

 Index 181

Communicating Your Comments to IBM

ADSTAR Distributed Storage Manager
Using the Application
Program Interface
Version 2

Publication No. SH26-4002-00

If you especially like or dislike anything about this book, please use one of the methods listed
below to send your comments to IBM. Whichever method you choose, make sure you send your
name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. However, the comments you send should pertain to only the informa-
tion in this manual and the way in which the information is presented. To request additional publi-
cations, or to ask questions or make comments about the functions of IBM products or systems,
you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United States, you
can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

 – United States: 1-800-426-6209
– Other countries: (+1)+408+256-7896

� If you prefer to send comments electronically, use this network ID:

– IBMLink from U.S. and IBM Network: STARPUBS at SJEVM5
– IBMLink from Canada: STARPUBS at TORIBM
– IBM Mail Exchange: USIB3VVD at IBMMAIL

 – Internet: starpubs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

ADSTAR Distributed Storage Manager
Using the Application
Program Interface
Version 2

Publication No. SH26-4002-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com-
ments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SH26-4002-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SH26-4002-00

IBM

Printed in U.S.A.

SH26-4ðð2-ðð

