
 DFSORT/MVS

Recommendations for Tuning Large DFSORT Tasks

by Trevor Kingsbury
email: Trevor_Kingsbury@compuserve.com

(The author would like to thank Carrie Van Noorden, Martin Packer and Frank
Yaeger for their assistance.)

Most installations have experienced explosive growth in recent years in the
volume of data to be stored and processed; both in operational applications and in
decision-support and data warehousing.

While RDBMS on either MVS or Unix remains the permanent data storage
platform of choice, much of this data must be extracted, processed, transformed
and loaded using traditional MVS batch processing. Sorting and merging of data,
using DFSORT under MVS, endures as a key component of this batch processing.

In addition, utility processing in DB2/OS390 has always made extensive use of
DFSORT. The introduction of LARGE tablespaces in version 5 has produced a
new class of potential DFSORT challenges in this area.

This paper attempts to set out a series of recommendations for dealing specifically
with high data volume DFSORT tasks, where high data volume could be defined
(in 1999) as any of the following:

Input file size in excess of 10Gb●   

Input file record count in excess of 20 million records●   

Sort key volume (that is, record count multiplied by sort key length) in
excess of 2Gb

●   

In my experience, these are the approximate data volumes at which a
configuration of DFSORT that acknowledges the workload involved becomes
absolutely essential. Well below these levels, a default configuration of DFSORT
will be "feeling the pinch".

Generally, sorts of this nature will occur only in the more substantial installations.
However, the days when a terabyte of data was considered an inconceivably large
amount of storage are well and truly behind us!

The recommendations and techniques described below may be applicable to any
substantial DFSORT task, perhaps well below the levels set out above. DFSORT

DFSORT Tuning

http://bullseye.sanjose.ibm.com/software/sort/fyltun.htm (1 of 2) [02/06/2001 9:11:24 AM]



is often invoked hundreds or thousands of times per day in a typical MVS
installation - it is perhaps the most commonly invoked batch program. Any
across-the-board streamlining of DFSORT processing will, in all likelihood, lead
to noticeable flow-on improvements with the remaining workload.

These recommendations stem in part from experiences with a series of very large
operational and decision-support system implementations, in which tuning and
re-configuration of DFSORT proved to be the single most beneficial technique for
reducing overall batch processing elapsed time.

The performance comparisons shown in this paper were derived from
measurements taken in a controlled stand-alone environment at a customer site
using DFSORT R13. Keep in mind that performance improvements will vary
depending on factors such as key size, record type, number of records, processor
model, region size, and so on.

  Topic List

Objectives●   

Application Recommendations●   

DFSMS and Dataset Recommendations●   

DFSORT Installation Recommendations●   

DFSORT Monitoring and Statistical Data Collection●   

DFSORT and DB2 Utilities●   

Conclusion●   

DFSORT Tuning

http://bullseye.sanjose.ibm.com/software/sort/fyltun.htm (2 of 2) [02/06/2001 9:11:24 AM]



 Tuning Large DFSORT Tasks

Objectives

Generally, there will be two primary objectives with tuning of large DFSORT
tasks:

Elapsed time reduction - in general irrespective of the cost to other system
resources (CPU, central and expanded storage, I/O subsystem utilization).

●   

Elapsed time scalability - that is, the ability to increase data volumes with
the sole impact a near-linear increase in elapsed time. Alternately this can
be defined as the ability to break down the processing into a number of
smaller units, to be executed concurrently in order to maintain overall
elapsed time.

●   

Some considerations that have been the focus of DFSORT tuning in the past may
be set aside in a contemporary MVS configuration. Central and expanded storage
have become far more plentiful; system paging is now rarely a first-level concern.
In addition, the CP usage of standard DFSORT tasks (excluding exits) is minimal,
and may be effectively disregarded as a constraining factor.

Objectives

http://bullseye.sanjose.ibm.com/software/sort/fylob.htm [02/06/2001 9:11:25 AM]



 Tuning Large DFSORT Tasks

Application Recommendations

Examine Application Requirements

Perhaps the most easily overlooked area is the requirements of the application itself. In particular, the
following are worth investigating.

Are all fields in the sort input file actually required for the sort application or by downstream
processing?

If not, performance may be improved if you can significantly reduce the length of your records with
INREC. Eliminating fields with INREC reduces the amount of data that has to be sorted because
INREC reformatting takes place before sorting. (OUTREC and OUTFIL reformatting take place
after sorting.)

For example, a long trailing FILLER (spaces) field could be eliminated via INREC. If the FILLER
field is needed for later processing, it can be reinstated via OUTREC. This change requires no
application cost except a couple of additional control statements.

Is there a possibility of large data volume reduction by modifying the record format from fixed
to variable?

For example, variable-length text data may be "padded" to the maximum length of the field, sorted,
and then used as input to DB2 LOADs or to print utilities. The preference would be to delay this
padding activity until after the sort, that is, to sort the non-key data in the shorter variable-length
format, if this will substantially reduce the volume of data to be sorted.

Can the facilities of DFSORT be employed to both reduce data volumes and eliminate part of
the application processing?

For example, data summation, reformatting, numeric and date editing can all be accomplished with
standard DFSORT control statements. This is reminiscent of the SQL tuning technique of relocating
as much application logic into SQL as possible.

The ICETOOL utility - a standard inclusion with the DFSORT product - provides yet more
functionality. For details on ICETOOL, browse the ICETOOL mini-user guide.

Can more be done in a single pass?

For example, a sort prior to a DB2 LOAD utility may use DFSORT's OUTFIL features to split the
file by the partitioning key on output, and so avoid a subsequent "split" pass of the data.

Is sorting actually necessary?

Application developers commonly confuse sort and merge. A merge of files already sorted will
exhibit similar or superior performance to a DFSORT copy application.

Consider the following application tuning example.

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (1 of 7) [02/06/2001 9:11:26 AM]



 OPTION MAINSIZE=12M,DYNALLOC=(SYSDA,12),
   SIZE=E300000,AVGRLEN=1000
 INCLUDE COND=(544,1,CH,EQ,C'A')
 SORT FIELDS=(96,6,PD,A,29,10,CH,A)
 SUM FIELDS=(284,8,PD)
 OUTFIL FNAMES=SORTOUT,CONVERT,
   OUTREC=(90,6,96,6,284,8,29,10,
        X'000000001C',102,6)

Figure 1 - DFSORT control statements before tuning

The first steps in tuning this application were to change the OPTION statement parameters to
increase the available central storage, increase the maximum number of SORTWK files, and
accurately specify the file size and average record length.

 OPTION MAINSIZE=64M,DYNALLOC=(SYSDA,20),
   FILSZ=U25000000,AVGRLEN=621
 INCLUDE COND=(544,1,CH,EQ,C'A')
 SORT FIELDS=(96,6,PD,A,29,10,CH,A)
 SUM FIELDS=(284,8,PD)
 OUTFIL FNAMES=SORTOUT,CONVERT,
   OUTREC=(90,6,96,6,284,8,29,10,
        X'000000001C',102,6)

Figure 2 - DFSORT control statements after OPTION changes

Finally, by moving some of the record reformatting from the OUTFIL statement to an INREC
statement, the sorted record size was reduced from the original 621 bytes to 40 bytes, resulting in a
significant decrease in the amount of data sorted. We also changed the AVGRLEN value to 40 to
correspond to the new sorted record size.

 OPTION MAINSIZE=64M,DYNALLOC=(SYSDA,20),
   FILSZ=U25000000,AVGRLEN=40
 INCLUDE COND=(544,1,CH,EQ,C'A')
 INREC FIELDS=(1,4,90,6,96,6,284,8,29,10,102,6)
 SORT FIELDS=(11,6,PD,A,25,10,CH,A)
 SUM FIELDS=(17,8,PD)
 OUTFIL FNAMES=SORTOUT,CONVERT,
   OUTREC=(5,6,11,6,17,8,25,10,
        X'000000001C',35,6)

Figure 3 - DFSORT control statements after INREC change

The performance gains from making appropriate changes to the OPTION parameters and using
INREC, as shown above, were as follows.

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (2 of 7) [02/06/2001 9:11:26 AM]



Table 1 - DFSORT tuning example - performance results

Sort
application

SORTIN file
size 15.1Gb

Elapsed
time

(sec)

CPU
time

(sec)

Record
count

(millions)

Processing
rate

(records
sorted per
second)

Percentage
of base
value

      

Before tuning 6916 169.0 29.519 4,368 100%

      

After OPTION
changes

4740 153.5 29.519 6,228 143%

      

After INREC
change

1680 82.0 29.519 17,571 402%

Modify Sort Granularity

Some sort tasks may always remain impossible to accomplish in a single pass. The most ambitious
sort task I have encountered to date is:

Close to half a terabyte of input data, configured as five concurrent sorts of approximately
80Gb each

●   

A key length of over 700 bytes, average record length of 1840 bytes, and a record count of
approximately 43 million for each of the five sort tasks

●   

A theoretical peak SORTWK allocation requirement of nearly 700Gb●   

I am grateful to Frank Yaeger of the DFSORT development team for supplying the basis for the
following solution.

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (3 of 7) [02/06/2001 9:11:26 AM]



Figure 4 - Very large sort / split technique

In essence, this technique uses a simple "divide and conquer" approach.

Records from the large SORTIN file are distributed across many sub-files in a round-robin
fashion, using DFSORT's OUTFIL SPLIT feature.

●   

Sorts for each of these sub-files are executed concurrently.●   

A final merge of the now-sorted sub-files produces the final SORTOUT file. With DFSORT
R13, up to 16 files can be merged. With DFSORT R14, up to 100 files can be merged.

●   

This technique wins on several fronts.

Concurrent execution of the five 80Gb sorts was deemed not feasible, due to the large amount
of SORTWK space required, and the consequent I/O demand. With the sort/split technique,
overlap of true sort steps with copy/split and merge steps of other jobstreams is possible. Copy
and merge do not use any SORTWK space.

●   

Despite the additional data handling required - each record is ultimately read and written an
added four times - the sort/split technique proved some 27% faster in elapsed time than a
standard sort.

●   

Smaller sorts will, as a general rule, have a faster overall processing rate, measured as Mb
sorted per second, than larger sorts; due in part to a higher probability of required data being
found in central storage, expanded storage or disk cache.

●   

The processing is far more scalable. Advantage can easily be taken of the expansion to 100
merge input files with DFSORT R14. Partial serialization of the sub-sorts can be contemplated
to lessen the overall I/O subsystem workload. And, failure of any individual task is less of a

●   

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (4 of 7) [02/06/2001 9:11:26 AM]



concern.

The following comparative elapsed times are offered as a guide to the scale of improvement possible.

Figure 5 - Comparative elapsed times for sort/split technique vs standard sorts; 5 x 80Gb files

Sample execution JCL for this technique follows.

//** RUN THE JOBS IN THIS ORDER:
//** 1. CSPLIT1
//** 2. CSORT1-5 (CONCURRENTLY)
//** 3. CMERGE1
//**********************************************
//* CSPLIT1
//**********************************************
//CSPLIT1 JOB
//SPLITIT EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=sortin file,DISP=SHR

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (5 of 7) [02/06/2001 9:11:26 AM]



//X1 DD DSN=INSORT1,...
//X2 DD DSN=INSORT2,...
//X3 DD DSN=INSORT3,...
//X4 DD DSN=INSORT4,...
//X5 DD DSN=INSORT5,...
//SYSIN DD *
 OPTION COPY
 OUTFIL FNAMES=(X1,X2,X3,X4,X5),SPLIT
//**********************************************
//* CSORT1-5
//**********************************************
//CSORT1 JOB
//SORT1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=INSORT1,DISP=SHR
//SORTOUT DD DSN=INMRG1,...
//SYSIN DD *
 SORT FIELDS=(...)
//CSORT2 JOB
//SORT2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=INSORT2,DISP=SHR
//SORTOUT DD DSN=INMRG2,...
//SYSIN DD *
 SORT FIELDS=(...)
//CSORT3 JOB
//SORT3 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=INSORT3,DISP=SHR
//SORTOUT DD DSN=INMRG3,...
//SYSIN DD *
 SORT FIELDS=(...)
//CSORT4 JOB
//SORT4 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=INSORT4,DISP=SHR
//SORTOUT DD DSN=INMRG4,...
//SYSIN DD *
 SORT FIELDS=(...)
//CSORT5 JOB
//SORT5 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=INSORT5,DISP=SHR
//SORTOUT DD DSN=INMRG5,...
//SYSIN DD *
 SORT FIELDS=(...)
//**********************************************
//* CMERGE1

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (6 of 7) [02/06/2001 9:11:26 AM]



//**********************************************
//CMERGE1 JOB
//MERGE EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN01 DD DSN=INMRG1,DISP=SHR
//SORTIN02 DD DSN=INMRG2,DISP=SHR
//SORTIN03 DD DSN=INMRG3,DISP=SHR
//SORTIN04 DD DSN=INMRG4,DISP=SHR
//SORTIN05 DD DSN=INMRG5,DISP=SHR
//SORTOUT DD DSN=sortout file,...
//SYSIN DD *
 MERGE FIELDS=(...)

Figure 6 - Sample JCL for sort/split technique

Applications

http://bullseye.sanjose.ibm.com/software/sort/fylar.htm (7 of 7) [02/06/2001 9:11:26 AM]



 Tuning Large DFSORT Tasks

DFSMS and Dataset Recommendations

SORTIN and SORTOUT Striping

All multi-Gb SORTIN and SORTOUT files should employ a DFSMS striped DATACLAS, both for ease
of dataset allocation and to improve the performance of all traditional I/O bound batch processing,
whether DFSORT or otherwise.

This may well entail re-allocating existing SORTIN and SORTOUT datasets from CART to disk, and
performing an archive of datasets to CART at the completion of batch processing.

The competing technique of allocating datasets larger than a single 3390 volume using
UNIT=(XXXXXX,nn), while similarly allocating a dataset in pieces across multiple volumes, serializes
I/O at the volume level, and should be supplanted by striping.

The optimal number of stripes to be employed is a matter for experimentation, and depends largely on the
bandwith available to the I/O subsystem. The following tables illustrate the scale of performance
improvement possible from the introduction of striping alone - in this example, using 16 stripes.

Note that these improvements do not include additional gains in the preceding and following tasks -
probably standard application batch programs - which write the SORTIN and read the SORTOUT
datasets.

Table 2 - Comparative performance for sort with striping

Sort application

file size 3.51Gb

Elapsed time
(sec)

Processing rate
(Mb/sec)

Percentage of base
value

No striping 786 4.47 100.00%

Striped SORTOUT alone 516 6.81 152.33%

Striped SORTIN and
SORTOUT

480 7.32 163.75%

Table 3 - Comparative performance for copy with striping

Copy application

file size 3.51Gb

Elapsed time
(sec)

Processing rate
(Mb/sec)

Percentage of base
value

No striping 456 7.70 100.00%

Striped SORTOUT alone 336 10.45 135.71%

Striped SORTIN and SORTOUT 168 20.91 271.43%

Note that striping cannot be used on SORTWK files.

DFSMS

http://bullseye.sanjose.ibm.com/software/sort/fyldd.htm (1 of 4) [02/06/2001 9:11:26 AM]



Recommendations
Activate DFSMS striping via the dataset profile masks for both SORTIN and SORTOUT datasets●   

Relocate SORTIN and SORTOUT datasets from CART to striped DASD●   

Dataset Blocksize

It should go without saying that half-3390-track blocking (that multiple of record length closest to but not
exceeding 27998) should be employed for SORTIN and SORTOUT datasets throughout.

Particular care is required when relocating these datasets from CART to disk - the optimal blocksize for
the former, at 32Kb, is just larger than half-track which effectively doubles the number of tracks (and
track-level EXCPs) required for the dataset.

Recommendations
Review SORTIN and SORTOUT blocksizes, via either the DFSORT SYSOUT, or fields ICEIBLK
and ICEOBLK of the SMF type 16 record

●   

Omit the BLKSIZE parameter altogether in dataset allocations, and permit DFSMS to select the
optimal blocksize

●   

Ensure that the SDB DFSORT installation parameter is set to YES. This is the IBM-supplied
installation default.

●   

Storage Classes and Storage Groups

Most modern production I/O subsystems consist primarily (or entirely) of RAID devices emulating
traditional 3390 disks. A typical configuration today might consist of a number of 600Gb devices, each
with 4Gb to 8Gb of cache and duplexed 10Mb per second Escon channels per device.

The opportunity exists to exploit this configuration aggressively.

Isolating I/O of a certain caste to just one or two RAID devices limits the productivity of the I/O
subsystem when I/O of primarily that type is in demand.

For example, if all DFSMS temporary pool volumes are allocated to a limited range of (logical) device
addresses that map to only one or two physical devices, both cache and channels on those devices will at
times be strained while other channels and devices lie relatively idle.

A preferable configuration is to spread this I/O across all the available devices, by dispersing logical
volumes assigned to each DFSMS storage group across the physical I/O infrastructure.

Apart from dramatically increasing the maximum channel bandwidth and available disk cache, the
probability of HDA contention on any one of the underlying disks at any instant in time will also decrease
as a result.

This is applicable to storage groups both for permanent (SORTIN and SORTOUT) files, requiring
substantial I/O bandwidth due to striping, and for temporary (SORTWK) files, where the I/O demands are
for rapid read-write access to multiple large, non-striped files.

A word of warning. SORTWK EXCPs are very large - 0.5Mb to 1.0Mb - and may have a noticeable
impact on measured disconnect times for other applications. Some isolation, particularly from data with
highly critical response time requirements, may be warranted.

A natural corollary of this is that it is preferable to allocate a large number of smaller SORTWK files (as
opposed to a small number of large files), in order to disperse SORTWK I/O as widely as possible. With
DFSORT R13, the maximum number of work files is 100. With DFSORT R14, the maximum number of

DFSMS

http://bullseye.sanjose.ibm.com/software/sort/fyldd.htm (2 of 4) [02/06/2001 9:11:26 AM]



work files is 255.

In some cases, all I/O for SORTWK could conceivably be satisfied entirely from the disk cache for even a
very substantial sort task - but possibly at some cost to I/O subsystem service for other tasks!

However, some RAID devices permit configuration of "hot" volumes that are fully read-write cached.
While often reserved for IMS WADS datasets or system paging devices, it may be worth considering
these volumes as candidates for SORTWK file allocation.

One final technique is to slightly stagger the start times of substantial and concurrently-executing
DFSORT tasks in order to mix the characteristics of I/O being performed at any given instant in time. For
example,

job #1 may be primarily performing parallel sequential write I/O to striped SORTOUT●   

at the same time, job #2 is performing essentially random I/O to SORTWK and making heavy use
of disk cache

●   

and job #3 is executing mostly parallel sequential read I/O to striped SORTIN.●   

An example of this is implied in the preceding discussion on the sort-split technique.

Recommendations
Review DFSMS logical volume assignment and physical volume mapping algorithms for both
temporary and large permanent (striping candidate) datasets; ensure that these are dispersed as
widely as possible across the I/O subsystem.

●   

In particular, if a hierarchy of storage devices is present, ensure that SORTWK allocations are
directed to those devices with the fastest available random I/O service times.

●   

Allocate a large number of SORTWK files to substantial DFSORT tasks via the DYNALLOC
OPTION parameter. A minimum of 32 SORTWK files is recommended for very large sorts.

●   

SmartBatch Pipes

SmartBatch pipes function by replacing the traditional batch processing practice of passing sequential file
data as disk files between serially executed processes, with the passing of data through a virtual storage
pipeline between concurrently executing processes.

However, latter processes must wait for the commencement of output by earlier processes. In the context
of a large DFSORT process, any process downstream from the sort must await the completion of the
sorting phase and the commencement of output to SORTOUT.

Similarly, any upstream process can eliminate only the I/O to SORTIN in the sort's input phase.
Particularly in a heavily striped sequential file environment, this sequential I/O contributes only a small
fraction of the overall elapsed time.

Consequently, SmartBatch pipes are less than ideally suited to the traditional batch sorting scenario, such
as the following.

DFSMS

http://bullseye.sanjose.ibm.com/software/sort/fyldd.htm (3 of 4) [02/06/2001 9:11:26 AM]



Figure 7 - Sorting with SmartBatch Pipes

Some additional points to note:

Recoverability may be an issue, as failing processes employing SmartBatch pipes must be re-run,
rather than re-started.

●   

Additional processes will be required to "harden" data - create a permanent disk copy - if retention
of "intermediate file" data is required.

●   

There are, however, some significant advantages for large sorts:

Some overall elapsed time benefit, albeit relatively small, can be expected from the elimination of
tens of gigabytes of SORTIN and SORTOUT I/O.

●   

The overall load on the I/O subsystem may be significantly reduced, enabling resources to be
redeployed to service the main bottleneck in SORTWK file I/O.

●   

For DFSORT copy and merge applications, the vast majority of the total elapsed time is consumed
by input and output file I/O. These will benefit very significantly.

●   

Recommendations
Evaluate and benchmark the use of SmartBatch pipes for the largest DFSORT applications, but
with particular attention to the delta between files allocated with DFSMS striping and pipelined
files

●   

DFSMS

http://bullseye.sanjose.ibm.com/software/sort/fyldd.htm (4 of 4) [02/06/2001 9:11:26 AM]



 Tuning Large DFSORT Tasks

DFSORT Installation Recommendations

TMAXLIM, SIZE and DSA

These three parameters specify, respectively:

an upper limit to the total amount of main storage available to a single
DFSORT task when SIZE/MAINSIZE=MAX is in effect for a Blockset
sort application

●   

the amount of main storage DFSORT attempts to use, defaulting to
TMAXLIM if MAX is specified

●   

the maximum amount of storage available to DFSORT for dynamic storage
adjustment of a Blockset sort application when SIZE/MAINSIZE=MAX is
in effect. DFSORT will perform dynamic storage adjustment above
TMAXLIM, up to the DSA limit, if it determines that additional main
storage would benefit performance.

●   

It makes little sense to attempt to micro-manage a few megabytes of main storage
in these times of multi-Gb MVS processors. The following recommendations
imply allocating a generous minimum of 16Mb to each DFSORT task, and
allowing DFSORT to determine via DSA whether an expansion beyond that limit
will benefit the task - and to allocate that optimal amount if it does.

Recommendations
Set DSA=128Mb in ICEMAC. With DFSORT R13, the IBM-supplied
installation default is 16Mb. With DFSORT R14, its 32Mb.

●   

Set TMAXLIM=16Mb in ICEMAC. The IBM-supplied installation default
is 4Mb. If CPU time is a major concern and you have many small sorts,
leave TMAXLIM at 4Mb or increase it to 8Mb.

●   

Set SIZE=MAX in ICEMAC . This is the IBM-supplied installation
default.

●   

Remove MAINSIZE=n settings from DFSORT OPTION statements. Let
DFSORT do the hard work.

●   

EXPMAX, EXPOLD and EXPRES

These three parameters govern, respectively:

the maximum total amount of available expanded storage to be used at any●   

Installation

http://bullseye.sanjose.ibm.com/software/sort/fyldi.htm (1 of 2) [02/06/2001 9:11:27 AM]



one time by all Hipersorting applications

the maximum total amount of "old" expanded storage (that is, low-usage
frames) to be used at any one time by all Hipersorting applications

●   

the minimum amount of available expanded storage to be reserved for use
by non-Hipersorting applications

●   

Large DFSORT tasks will most commonly use SORTWK files exclusively for
intermediate workfile data, and will rarely make use of either Hipersorting or
dataspace sorting.

The benefit of Hipersorting lies in that it presents an opportunity to lessen the
pressure from many small to medium sort tasks on the I/O subsystem, by
substantially reducing or eliminating their SORTWK file I/O. In this context,
Hipersorting should be permitted to flourish - and DFSORT should be free to
manage the overall expanded storage allocation for Hipersorting.

Recommendations
Set EXPMAX=MAX, EXPOLD=MAX and EXPRES=0 in ICEMAC.
These are the IBM-supplied installation defaults.

●   

Set HIPRMAX=OPTIMAL and DSPSIZE=MAX in ICEMAC and in
individual sort tasks. These are the IBM-supplied installation defaults.

●   

Installation

http://bullseye.sanjose.ibm.com/software/sort/fyldi.htm (2 of 2) [02/06/2001 9:11:27 AM]



 Tuning Large DFSORT Tasks

Monitoring and Statistical Data Collection

Producing the DFSORT Installation Options Report

The first step in any tuning exercise is, naturally, to audit the installation options of the software. For
DFSORT, this is accomplished by using the ICETOOL DEFAULTS operator with a job like this one.

//DEFAULTS  JOB  
//SHOWDEF   EXEC PGM=ICETOOL
//TOOLMSG   DD   SYSOUT=A
//DFSMSG    DD   SYSOUT=A
//LIST1     DD   SYSOUT=A
//TOOLIN    DD   *
  DEFAULTS LIST(LIST1)
/*

Figure 8 - JCL to produce DFSORT installation options report

The report produced contains all ICEMAC option settings, highlighting those values which differ from
the IBM-supplied installation defaults. An example of what part of the report might look like for
DFSORT R14 follows.

DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS                - 1 -

   * IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE
     SPECIFIED DEFAULT)

ITEM           JCL (ICEAM1)             INV (ICEAM2)             ...
----------     --------------------     --------------------     ...
RELEASE        14.0                     14.0                     ...
MODULE         ICEAM1                   ICEAM2                   ...
APAR LEVEL     BASE                     BASE                     ...
COMPILED       07/15/98                 07/23/98                 ...

ENABLE         NONE                     TD1                      ...

ABCODE         MSG                      99                       ...
                                        * MSG                    ...
ALTSEQ         SEE BELOW                SEE BELOW                ...
ARESALL        0                        0                        ...
ARESINV        NOT APPLICABLE           0                        ...
CFW            YES                      YES                      ...
CHALT          YES                      YES                      ...
               * NO                     * NO                     ...

...

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (1 of 7) [02/06/2001 9:11:27 AM]



DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS                - 4 -

   * IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE
     SPECIFIED DEFAULT)

ITEM           TD1 (ICETD1)             TD2 (ICETD2)             ...
----------     --------------------     --------------------     ...
RELEASE        14.0                     14.0                     ...
MODULE         ICETD1                   ICETD2                   ...
APAR LEVEL     BASE                     BASE                     ...
COMPILED       07/23/98                 07/15/98                 ...

SUN            0600-2000                NONE                     ...
               * NONE                                            ...
MON            NONE                     NONE                     ...
TUE            NONE                     NONE                     ...
WED            NONE                     NONE                     ...
THU            NONE                     NONE                     ...
FRI            NONE                     NONE                     ...
SAT            0600-2000                NONE                     ...
               * NONE                                            ...

ABCODE         99                       MSG                      ...
               * MSG                                             ...
ALTSEQ         SEE BELOW                SEE BELOW                ...
ARESALL        0                        0                        ...
ARESINV        0                        0                        ...
CFW            YES                      YES                      ...
CHALT          YES                      NO                       ...
               * NO                                              ...

...

Figure 9 - Sample DFSORT installation options report

Descriptions of all of the ICEMAC options can be found in "DFSORT Installation and Customization".

Of course, many of these installation option values can be overridden at run-time by one or more of the
following:

An installation-written DFSORT initialization exit, ICEIEXIT●   

An application EXEC statement parameter or DFSPARM statement parameter●   

An application OPTION statement, supplied either via DFSPARM or SYSIN●   

In addition, a number of values (for example, hiperspace and dataspace pages allocated) may be
determined by the availability of resources at the time of execution. Therefore, it remains necessary to
examine the output (or SMF data) of each individual DFSORT task to determine the option values that
may have affected the performance of a particular task.

Note that with DFSORT R14, the installation options in effect can be controlled by time-of-day.

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (2 of 7) [02/06/2001 9:11:27 AM]



Of particular interest to the user of large DFSORT tasks is the specification of installation limitations on
the ability of DFSORT to dynamically self-optimize.

The presence of an ICEIEXIT must be viewed with suspicion, and the functions of that exit investigated.
The exit may attempt to place limits on the ability of users to specify MAINSIZE, HIPRMAX and
DSPSIZE, in an attempt to limit the impact of sorting applications; effectively, to set a deliberate bias
against DFSORT in system resource allocation. This may have a dramatic impact on the ability of
DFSORT to process data efficiently.

Note that ICEIEXIT settings cannot be overridden by run-time settings such as those in an
OPTION statement.

Similarly, placing stringent limits via TMAXLIM, HIPRMAX and DSPSIZE installation option values
may have a severe impact on the overall performance of DFSORT. However, a limit set in this fashion
can be overridden by run-time settings.

Recommendations
Examine closely any downward variation from the IBM-supplied default for numeric values in
ICEMAC options. Ensure that the implications of other variations are clearly understood.

●   

If present, ensure that the system-wide impact of ICEIEXIT limitations is recognized and
understood.

●   

DFSORT SMF Data

Of immense value in tracking and analyzing the performance of DFSORT tasks is SMF record type 16
(hex 10).

The layout and contents of this record are described in detail in Appendix C of "DFSORT Installation and
Customization", or by expanding the ICESMF macro supplied in the ICEUSER dataset at installation.

The DFSORT SMF type 16 record contains a wealth of performance data for each DFSORT task
executed. The type 16 data as well as additional performance data can be obtained and analyzed by an
installation-written termination exit, ICETEXIT. A useful directory of the sources and potential analysis
activities for DFSORT performance data is given in "DFSORT Tuning Guide".

The following REXX routine may be used to parse basic SMF type 16 data into CSV format for
downloading to a spreadsheet or database - perhaps the most amenable medium for analysis.

/******************************  REXX  *******************************/
/*  CSMF16                                                           */
/*                                                                   */
/*    Sample REXX to extract selected fields from DFSORT SMF type 16 */
/*    records and format to CSV                                      */
/*                                                                   */
/*    Refer to the ICESMF macro in DFSORT library ICEUSER for the    */
/*    layout of the SMF type 16 record and a descriptions of its     */
/*    fields.                                                        */
/*********************************************************************/

ARG debug
NUMERIC DIGITS 15

IF debug = "DEBUG"

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (3 of 7) [02/06/2001 9:11:27 AM]



THEN
  TRACE A

ADDRESS TSO

/*********************************************************************/

DO FOREVER

  "EXECIO 1 DISKR SMF16IN"
  IF rc ¬= 0
  THEN
    SIGNAL l990
  PARSE PULL inrec
  rectype  = C2X(SUBSTR(inrec,2,1))

  IF rectype ¬= 10
  THEN
    ITERATE

  smfdate  = SUBSTR(C2X(SUBSTR(inrec,7,4)),3,5)
  smftime  = C2D(SUBSTR(inrec,3,4))
  smftime1 = smftime % 100
  smfhh    = smftime1 % 3600
  smfhh    = RIGHT("0"||smfhh,2)
  smfmm    = (smftime1 % 60) - (smfhh * 60)
  smfmm    = RIGHT("0"||smfmm,2)
  smfss    = smftime1 - (smfhh * 3600) - (smfmm * 60)
  smfss    = RIGHT("0"||smfss,2)
  smftimef = smfhh||":"||smfmm||":"||smfss

  lpar     = SUBSTR(inrec,11,4)
  jobname  = SUBSTR(inrec,15,8)
  stepno   = C2D(SUBSTR(inrec,39,1))

  datasct@ = C2D(SUBSTR(inrec,57,4)) - 4 + 1
  stepname = SUBSTR(inrec,datasct@+2,8)

  twoe32   = 4294967296
  iceexrc1 = C2D(SUBSTR(inrec,datasct@+120,4))
  iceexrc2 = C2D(SUBSTR(inrec,datasct@+124,4))
  iceexrcs = (iceexrc1 * twoe32) + iceexrc2
  iceexby1 = C2D(SUBSTR(inrec,datasct@+128,4))
  iceexby2 = C2D(SUBSTR(inrec,datasct@+132,4))
  iceexbys = (iceexby1 * twoe32) + iceexby2
  icecput  = C2D(SUBSTR(inrec,datasct@+18,4))/100
  icekeyln = C2D(SUBSTR(inrec,datasct@+28,2))
  icewblk  = C2D(SUBSTR(inrec,datasct@+30,4))
  icendyna = C2D(SUBSTR(inrec,datasct@+35,1))

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (4 of 7) [02/06/2001 9:11:27 AM]



  iceflby2 = C2D(SUBSTR(inrec,datasct@+36,1))
  SELECT
    WHEN iceflby2 = 128 THEN sorttype = "S"
    WHEN iceflby2 = 64  THEN sorttype = "M"
    WHEN iceflby2 = 32  THEN sorttype = "C"
    OTHERWISE                sorttype = "O"
    END

  icetimes = C2D(SUBSTR(inrec,datasct@+40,4))
  icedates = C2X(SUBSTR(inrec,datasct@+44,4))
  icetimee = C2D(SUBSTR(inrec,datasct@+48,4))
  icedatee = C2X(SUBSTR(inrec,datasct@+52,4))
  elapstm  = (icetimee - icetimes) / 100
  IF icedatee ¬= icedates
  THEN
    elapstm = elapstm + 86400.00

  normbyte = C2D(SUBSTR(inrec,datasct@+56,1))
  IF normbyte = 0
  THEN
    normterm = "Y"
  ELSE
    normterm = "N"

  iceavlr  = C2D(SUBSTR(inrec,datasct@+60,4))
  icedsa   = C2D(SUBSTR(inrec,datasct@+64,2))
  iceinio  = C2D(SUBSTR(inrec,datasct@+84,4))
  iceoutio = C2D(SUBSTR(inrec,datasct@+92,4))
  icewkio  = C2D(SUBSTR(inrec,datasct@+100,4))
  icehspu  = C2D(SUBSTR(inrec,datasct@+154,4))
  icedspu  = C2D(SUBSTR(inrec,datasct@+160,4))

  IF elapstm > 60.00
  THEN
    DO
    outrec = smfdate  ||";"|| smftimef ||";"||,
             lpar     ||";"|| jobname  ||";"||,
             stepno   ||";"|| stepname ||";"||,
             normterm ||";"|| sorttype ||";"||,
             elapstm  ||";"|| icecput  ||";"||,
             iceexrcs ||";"|| iceavlr  ||";"||,
             icekeyln ||";"|| iceexbys ||";"||,
             icendyna ||";"|| icewblk  ||";"||,
             iceinio  ||";"|| iceoutio ||";"||,
             icewkio  ||";"|| icehspu  ||";"||,
             icedspu
    PUSH outrec
    "EXECIO * DISKW SMF16OUT"
    END
  END

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (5 of 7) [02/06/2001 9:11:27 AM]



L990:

"EXECIO 0 DISKR SMF16IN  (FINIS"
"EXECIO * DISKW SMF16OUT (FINIS"

EXIT

Figure 10 - Sample REXX routine to extract SMF type 16 data

Sample execution JCL for this routine follows.

//   EXEC PGM=IKJEFT01,DYNAMNBR=20,PARM='%CSMF16'
//SYSEXEC DD DSN=userid.TEST.ISPCLIB,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//SMF16IN DD DSN=userid.SMFDUMP.D98350.T16,DISP=SHR
//SMF16OUT DD DSN=userid.SMF.TYPE16,DISP=(,CATLG),
//   SPACE=(TRK,(1,1)),RECFM=VB,LRECL=255

Figure 11 - Sample JCL to execute REXX SMF type 16 data extract

Recommendations
Ensure that DFSORT's SMF installation option is set to FULL (NO is the IBM-supplied default),
and that type 16 collection is specified in the MVS SYS1.PARMLIB(SMFPRM00) parameters

●   

Collect and retain SMF type 16 data for all substantial DFSORT tasks. Consider investing in a
simple spreadsheet or database-based data storage and statistical analysis application. However,
you may need to dust off your Statistics 101 texts from college!

●   

Rules of Thumb

Rule of thumb estimates are notoriously unreliable - especially given the wide range of potential
installation and execution environments. They are often rapidly dated by the fast pace of change of both
software and hardware.

The following formulae were derived from standard regression analysis of a large volume of SMF type 16
data, and relate to sorts with an input file size in excess of 3.5Gb.

Work file size = 0.93 * input file size + 1.77 * key size

(all expressed in Mb)

{key size = record count * key length}

Work I/O volume = 4.98 * work file size

(both expressed in Mb)

Elapsed time = input file size / 2.70

(elapsed time in seconds; input file size in Mb)

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (6 of 7) [02/06/2001 9:11:27 AM]



Recommendations
Use the above formulae with caution, and as a guideline only. In particular, the overall sort rate
figure of 2.70Mb/sec is an average, and may vary widely depending on the characteristics of the
environment and on the nature and size of the sort task involved.

●   

Collect SMF data, and perform regression analysis against your own environment to determine
more appropriate factors.

●   

Monitoring

http://bullseye.sanjose.ibm.com/software/sort/fylms.htm (7 of 7) [02/06/2001 9:11:27 AM]



 Tuning Large DFSORT Tasks

DFSORT and DB2 Utilities

DB2 utilities have progressed greatly since the days when an entire suite of
vendor replacement utilities was a "must-have" for any substantial DB2
implementation. Intelligent interfacing of the utilities with DFSORT has been a
key component of this improvement.

Similar general recommendations apply for DFSORT with large utility operation
as with any other batch sort task; however, some special considerations warrant
mentioning.

REORG TABLESPACE Utility

Three parameters for this utility relate to DFSORT performance.

SORTDATA

When specified, this parameter directs the utility to perform unload via a
tablespace or partition scan and batch sort to clustering index sequence - as
opposed to unloading using the clustering index, the equivalent of a SQL
SELECT * ... ORDER BY ... statement.

Except where the underlying data clustering is very near to perfect, SORTDATA
will provide a substantial - often radical - improvement in elapsed time. DB2
makes no decision to use SORTDATA dynamically, even if the
CLUSTERRATIO column of the index in the DB2 catalog
(SYSIBM.SYSINDEXES or SYSIBM.SYSINDEXSTATS) contains a low value.

Note, however, that if a clustering index is not explicitly defined on the table - as
opposed to implicitly, by having the lowest OBID - DB2 will ignore the
parameter if specified, and always unload via the implicit clustering index.

NOSYSREC

Ordinarily, REORG SORTDATA will unload the tablespace or partition to
SYSREC, use DFSORT to perform a batch sort of this dataset, and reload the data
by reading the sorted SYSREC.

NOSYSREC eliminates the I/O to SYSREC, by passing data directly to DFSORT
in the UNLOAD phase of the utility, and retrieving data directly from DFSORT
in the RELOAD phase.

DB2 utilities

http://bullseye.sanjose.ibm.com/software/sort/fyldbu.htm (1 of 4) [02/06/2001 9:11:27 AM]



One word of caution. If this parameter is used in a traditional (SHRLEVEL
NONE) REORG execution, a SYSREC dataset is no longer available to re-start
the utility should it fail during the RELOAD phase. The tablespace or partition
must be RECOVERed - hence, a QUIESCE to establish a recovery point just prior
to the REORG is mandatory. SHRLEVEL NONE is the default.

SORTKEYS

This parameter is specified without a key count estimate for REORG - this can be
accurately determined by the utility itself. It directs REORG to pass
non-clustering index key values directly from the RELOAD phase to a DFSORT
subtask separate from that used for SORTDATA, rather than the traditional
method of writing the key values to SYSUT1 for batch sorting into SORTOUT.

The index BUILD phase then retrieves the sorted key values directly from
DFSORT, eliminating all I/O to SYSUT1 and SORTOUT. SYSUT1 and
SORTOUT must still be present in the utility JCL, but may have minimal space
allocation.

From Version 6 of DB2 on, this index building is accomplished by multiple
concurrent sort tasks.

Note that this parameter is only of benefit for indexes additional to the
partitioning or (explicit or implicit) clustering index - the UNLOAD phase has
already ordered the key values for these indexes, and an index SORT phase is not
executed.

Recommendations

Always define the clustering index explicitly for any table of substantial
size. Note, however, that this is always implied for the partitioning index of
a partitioned tablespace.

●   

Where appropriate parameters are not specified to eliminate I/O altogether,
or are inappropriate, specify DFSMS striping for SYSREC, SYSUT1 and
SORTOUT. For REORG INDEX, always specify striping for SYSUT1.

●   

When the tablespace or partition contains variable-length columns, use the
DFSPARM data set to specify an accurate tablespace or partition row count
via the OPTION parameter FILSZ=Un. (DB2 assumes in its estimate to
DFSORT that all variable-length columns are at maximum length.)

●   

Execute both LOAD and REORG at the partition level to reduce the
granularity of the DFSORT tasks. Concurrent partition-level utility tasks
can, however, present contention problems when NPIs are defined on the

●   

DB2 utilities

http://bullseye.sanjose.ibm.com/software/sort/fyldbu.htm (2 of 4) [02/06/2001 9:11:27 AM]



tablespace.

LOAD Utility

The LOAD utility has a SORTKEYS parameter similar to that for REORG.
Again, the parameter requests LOAD to pass index key and foreign key values
directly from the RELOAD phase to a DFSORT subtask - rather than using
SYSUT1/SORTOUT - and then directly to the BUILD and ENFORCE phases.

The following points are worth noting:

If SORTKEYS is specified with no key count estimate, or with an estimate
of zero, sorting takes place via SYSUT1 and SORTOUT as usual.

●   

If the tablespace or partition data to be loaded is presented to LOAD in
pre-sorted key sequence, and only a single index exists on the table, the
SORT phase is eliminated altogether.

●   

Recommendations

When LOADing large partitioned tables with only a partitioning index:

Pre-sort the input file using DFSORT❍   

Use DFSORT's multiple output function (OUTFIL) to split the
DFSORT output by partitioning key

❍   

Execute multiple concurrent partition-level LOAD utility tasks❍   

For large segmented tablespaces with only a single index, the input file
should be similarly pre-sorted.

Specify SORTKEYS nnnnnnnn, calculating nnnnnnnn using the
formulae stipulated in the DB2 Utilities Guide and Reference

❍   

If sorting using WORKDDN files cannot be avoided, specify
DFSMS striping for SYSREC, SYSUT1 and SORTOUT.

❍   

●   

DSNTIAUL Utility

DB2 (up to version 5) does not provide a standard "unload" utility; facilities are
limited to sample program DSNTIAUL which simply executes dynamic SQL to
produce a default-format (or user-specified) unload dataset.

Note that with version 6, the REORG utility provides this facility via the
FORMAT EXTERNAL option, but without the full power of SQL.

As a general rule, executing a table unload via a SQL SELECT ... ORDER BY
has always been preferable to unloading via a tablespace scan and post-sorting the
unload dataset. Two exceptions are notable, however:

DB2 utilities

http://bullseye.sanjose.ibm.com/software/sort/fyldbu.htm (3 of 4) [02/06/2001 9:11:27 AM]



For very large tablespaces, DSNDB07 may well be overwhelmed by a very
large ORDER BY or GROUP BY key set. At the minimum, the sorting
process may not scale well.

●   

Access paths may be a concern. A non-matching index scan may be
selected, instead of a tablespace scan, or the degree of parallelism selected
by DB2 may be less than that desired or possible.

●   

One possible improvement is to:

Unload the tablespace at partition level using DSNTIAUL, selecting and
ordering or aggregating data by partition. A partition scan access path
should be engineered by specifying partitioning key column values
explicitly as literals.

●   

Use DFSORT MERGE to produce the final ordered dataset from the
partition-level unloads, or use SUM to produce a finally aggregated file.

●   

Note that parallel unload of data need not be restricted to partitioned tablespaces;
the unload of any substantial segmented tablespace may be divided in this
manner.

DB2 utilities

http://bullseye.sanjose.ibm.com/software/sort/fyldbu.htm (4 of 4) [02/06/2001 9:11:27 AM]



 Tuning Large DFSORT Tasks

Conclusion

In essence, the battle to reduce the elapsed times of large DFSORT tasks reduces
to an I/O contest. Put simply, the options available are to:

Reduce the I/O●   

Accelerate the I/O●   

Convert the I/O from random to sequential, or to in-storage processing●   

Parallelize the I/O●   

All of the recommendations in this paper fall under one or more of the above four
headings.

Based on a substantial amount of experience, I would rate the following as the
five most productive initiatives in improving the performance of large sorts. There
is no particular order to the effectiveness of these initiatives - they should be
considered as a group of options to be implemented in unison.

Allocate additional central storage via SIZE/MAINSIZE, TMAXLIM and
DSA

1.  

Stripe SORTIN and SORTOUT datasets2.  

Re-configure dataset allocations to disperse I/O - SORTWK I/O in
particular

3.  

Increase the number of SORTWK files allocated4.  

Allocate additional expanded storage via HIPRMAX and DSPSIZE5.  

For the very largest sorts, deploy the sort/split technique.

Conclusion

http://bullseye.sanjose.ibm.com/software/sort/fylcn.htm [02/06/2001 9:11:27 AM]


	ibm.com
	DFSORT Tuning
	Objectives
	Applications
	DFSMS
	Installation
	Monitoring
	DB2 utilities
	Conclusion


