DFSORT: Ask Professor Sort

—— DFSORT Web Site

For papers, online books, news, tips, examples and more, visit the DFSORT website at URL.:

http://www.ibm.com/storage/df sort

il DFSORT: Ask Professor Sort

Contents

DFSORT: Ask Professor Sort 1
Introduction: Details of functions used in answers 1
How can | determine my DFSORT PTF function level? 1
What level of DFSORT features does the DFSORT website describe? 2
Where can | find information to help me use DFSORT more effectively? 3
The DFSORT website 3
The DFSORT library 3
Online DFSORT books 3
LookAt 3
Other IBM books 4
Papers and examples 4
Where can | ask specific questions about DFSORT? 4
Can | set DFSORT installation options from PARMLIB members? 5
How can | let DFSORT use more resources on weekends and off-shift? 5
What are the advantages of dynalloc over SORTWKdd DDs? 6
How can | list my site's DFSORT installation defaults? 9
How can | supply control statements for a program that calls DFSORT? 9
What should | know about migrating to DFSORT from other sort products? 10
What are the equivalent DFSORT formats for various COBOL data types? 12
Can DFSORT obtain information from my tape management system? 13
DFSMSrmm 13
Other tape management systems 13
How does DFSORT take advantage of central storage? 14
How can memory objects, data spaces and Hiperspaces be customized? 14
How can | reformat my records? 15
What is JOINKEY S and how can it help me? 17
What is ICETOOL and how can it help me? 17
What kind of reports can | produce with ICETOOL? 20
What is ICEGENER and how can | use it? 22
What is OUTFIL and how can it help me? 23
What are DFSORT symbols and how can they help me? 23
How can | produce ICETOOL reports without ANSI carriage control characters? 24
How can | produce OUTFIL reports without ANSI carriage control characters? 25
How can | suppress page ejects in OUTFIL reports? 25
How can | convert a VB data set to an FB data set? 26
How can | convert an FB data set to a VB data set? 26
How can | put timestamps in my output records? 27
How can | make SMF, TOD and ETOD date and time values readable? 29
How can | use INCLUDE/OMIT with numeric or non-numeric values? 31
How can | use INCLUDE/OMIT with current, past and future dates? 32
How can | use INCLUDE/OMIT with "short" fields? 33
Can DFSORT use large tape block sizes? 34
How can | recover data sets with incomplete spanned records? 35
How many work and merge data sets can DFSORT use? 35
How much main storage does DFSORT need to sort most efficiently? 35
What is Dynamic Storage Adjustment and how can it help me? 36
Is it important to install the DFSORT SVC? 36
How can DFSORT be used to analyze data produced by DCOLLECT, DFSMSrmm, etc? 37
How can | create a report with just statistics? 40
How can | have DFSMS place my work data sets on volumes with adequate space? 41

Contents ii

What kind of performance improvements are possible with OUTFIL? 41
How can DFSORT help with the Year 2000 challenge? 42

IV DFSORT: Ask Professor Sort

DFSORT: Ask Professor Sort

Introduction: Details of functions used in answers

For complete information on the DFSORT/ICETOOL functions used in the answers shown here, see:
e DFSORT documentation (September, 2011) at:
http://www.ibm.com/support/docview.wss?rs=114& uid=isg3T 7000080
e "User Guide for DFSORT PTFs UK90025 and UK90026" (October, 2010) at:
http://www.ibm.com/support/docview.wss?rs=114& uid=isg3T 7000242

Note: z/OS DFSORT V1R10 is used for zZOS 1.10 and 1.11. z/OS DFSORT V1R12 is used for z/OS 1.12 and
1.13.

How can | determine my DFSORT PTF function level?

Professor Sort says ...

Many DFSORT functions were delivered as PTFs at various times. Y ou cannot use a specific function delivered
via a PTF unless your site has installed that PTF. For example, you can only use DFSORT's IFTRAIL function if
your site has installed DFSORT's October, 2010 functional PTF.

Note: z/OS DFSORT V1R10 is used for zZ/OS 1.10 and 1.11. z/OS DFSORT V1R12 is used for z/OS 1.12 and
1.13.

To determine which level of DFSORT functions you have available, look at messages ICEOQOI and ICE201I in the
/ISYSOUT messages you receive from the following DFSORT job, or from any sucessful DFSORT job.

//S1 EXEC PGM=ICEMAN

//SYSOUT DD SYSOUT=*

//SORTIN DD =

RECORD

/*

//SORTOUT DD DUMMY

//SYSIN DD *
OPTION COPY

/*

The ICEO000I message indicates which version of DFSORT you have.
Note: If you see WERxxxs messages, you have Syncsort, not DFSORT.

If you see the following message, you have z/OS DFSORT V1R12:
ICEOOOI 1 - CONTROL STATEMENTS FOR 5694-A01, Z/0S DFSORT VIRI12 ...

You are using the latest version of DFSORT and can use new functions introduced with z/OS DFSORT V1R12
such as support for using memory objects as intermediate work space.

If you see the following message, you have z/OS DFSORT V1R10:
ICEGOOI 1 - CONTROL STATEMENTS FOR 5694-A01, Z/0S DFSORT VIR10 ...

DFSORT: Ask Professor Sort 1

You cannot use new functions introduced with z/OS DFSORT V1R12.
The ICE201l message indicates which DFSORT functional PTF level you have.

If you see:
ICE201T1 H RECORD TYPE ...

the H indicates you have the October, 2010 DFSORT functions (RESIZE, IFTRAIL, ACCEPT, ADDDAYS,
DATEDIFF, etc) and all of the earlier functions. This function level corresponds to z/OS DFSORT V1R10 PTF
UK90025 and z/OS DFSORT V1R12 PTF UK90026. You are completely up to date on DFSORT functional PTFs.

If you see:
ICE201I G RECORD TYPE ...

the G indicates you have the November, 2009 DFSORT functions (JOINKEY S, TOJUL, TOGREG, WEEKDAY,
etc) and all of the earlier functions. This function level corresponds to zOS DFSORT V1R10 PTF UK51707. You
are behind on DFSORT functional PTFs. Ask your System Programmer to install the October, 2010 PTF.

If you see:
ICE2011 F RECORD TYPE ...

the F indicates you have the July, 2008 DFSORT functions (FINDREP, WHEN=GROUP, DATASORT, SUBSET,
etc) and all of the earlier functions. This function level corresponds to ZOS DFSORT V1R10 PTF UK90014. You
are behind on DFSORT functional PTFs. Ask your System Programmer to install the October, 2010 PTF.

What level of DFSORT features does the DFSORT website
describe?

Professor Sort says ...

All areas of the DFSORT website reflect the features available with ZOS DFSORT V1R10 PTF UK90025 or z/OS
DFSORT V1R12 PTF UK90026, and with all earlier PTFs. UK90025 and UK90026 first became available in
October, 2010 and are fully documented in User Guide for DFSORT PTFs UK90025 and UK90026 on the DFSORT
website. All features available with all DFSORT PTFs are documented in the z/OS DFSORT V1R13 books (Sep-
tember, 2011).

If you don't have z/OS DFSORT V1R12 (for z/OS 1.12 and 1.13) installed, then features and options available only
in that release, will not be available to you:

If you don't have the October, 2010 PTF installed, then features and options available only with that PTF will not
be available to you.

Summary of changes by release on the DFSORT website lists new features and options of DFSORT introduced by
various releases and PTFs.

What's New in DFSORT on the DFSORT website provides a quick introduction to selected DFSORT and ICETOOL
enhancements available as of October, 2010.

2 DFSORT: Ask Professor Sort

Where can | find information to help me use DFSORT more
effectively?

Professor Sort says ...

The following are sources of information and examples available from IBM that can help you use DFSORT's many
features more effectively.

The DFSORT website

For papers, online books, news, tips, examples and more, visit the DFSORT website at URL:

http://www.ibm.com/storage/df sort

The DFSORT library
To get the most out of DFSORT, every programmer who uses it should be familiar with the following books in the
DFSORT library:

e DFSORT: Z/OS Getting Sarted (SC26-7527) is an excellent tutorial about the basics of using DFSORT control
statements, ICETOOL operators and Symbols. The material is taught using numerous examples which can be
run using sample data sets shipped with DFSORT.

e 7/OS DFSORT Application Programming Guide (SC26-7523) is a complete reference guide for the functions
and options of DFSORT, and includes many examples.

e 7/OS DFSORT Messages, Codes and Diagnosis Guide (SC26-7525) can help you eliminate common sources of
errors, interpret informational (1) and error (A) messages, and diagnose program failures.

e 7/OS DFSORT Tuning Guide (SC26-7526) provides valuable information about tuning DFSORT and using it for
effective Application Development.

Programmers who install DFSORT should use ZOS DFSORT Installation and Customization (SC26-7524) as a ref-
erence source.

You can access al of the DFSORT books online from the DFSORT website.

Online DFSORT books

Online books provide capabilities (for example, search) not provided by traditional books. All of the DFSORT
books can be accessed online from the "Publications' link on the DFSORT website. Bookmark this link for faster
access.

LookAt

You can use IBM's LookAt facility at:
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/index.html

to access information on a specific DFSORT message by typing in its message number (e.g. ICE283A).

DFSORT: Ask Professor Sort 3

Other IBM books

The following are some of the IBM books that contain information on using DFSORT and ICETOOL with other
IBM products:

e 7/OS DFSMSmm Reporting (SC26-7406)

e 7/OS DFSVIShsm Data Recovery Scenarios (GC35-0419)

e 7Z/OS DFSMShsm Storage Administration Guide (SC35-0421)

e 7/OS SecureWay Security Server RACF Auditor's Guide (SA22-7684)

e 7/OS SecureWay Security Server RACF Security Administrator's Guide (SA22-7683)
e 7/OS SecureWay Security Server RACF System Programmer's Guide (SA22-7681)

e 7/OS MVS System Management Facilities (SMF) (SA22-7630)

e 7/OS DFSMS Introduction (SC26-7397)

e 7/OS DFSMS Access Method Services for Catalogs (SC26-7394)

e 7zZ/IOSDF3MS. Using the Volume Mount Analyzer (SC26-7413)

e 7/OS DCE Administration Guide (SC24-5904)

e 7Z/OS Language Environment Programming Guide (SA22-7561)

e DB2 Universal Database for OS390 and z/OS Utility Guide and Reference (SC26-9945)

Papers and examples

The DFSORT website contains various papers that can help programmers be more productive with DFSORT and
ICETOOL.

Where can | ask specific questions about DFSORT?

Professor Sort says ...
If you think you've found a defect in DFSORT, you should contact IBM Tota Storage Technical Support at:
http://www.ibm.com/servers/storage/support/

If you have a performance or migration question about DFSORT, you can contact the DFSORT Hotline at the
following e-mail address:

dfsort@us.ibm.com
Thisis adirect line to the DFSORT Team and they'll do their best to respond as quickly as possible.

If you have a "how-to" question about DFSORT, here are some good places where you can ask for help:
e IBMMAINFRAMES at:
http://ibmmainframes.com/index.php

4 DFSORT: Ask Professor Sort

Post your question on the IBMMAINFRAMES Help Board in the "DFSORT/ICETOOL" topic. (You'll need to
register the first time before you can post.) The DFSORT Team monitors this topic and responds when appro-
priate along with other help board participants.

e MVSFORUMS at:
http://www.mvsforums.com

Post your question on the MV SFORUMS Help Board in the "Utilities' topic. (You'll need to register the first
time before you can post.) The DFSORT Team monitors this topic and responds when appropriate along with
other help board participants.

e IBM-MAIN at:
http://bama.ua.edu/archives/ibm-main.html

Post your question on this newsgroup/mailing list. The DFSORT Team monitors this list and responds when
appropriate along with other newsgroup/mailing list participants.

Can | set DFSORT installation options from PARMLIB
members?

Professor Sort says ...

You can set DFSORT installation options using ICEPRMxx members in concatenated PARMLIB. Each
ICEPRMxx member can contain options to be changed for any or all of DFSORT's eight installation environments
(JCL, INV, TSO, TSOINV, TD1, TD2, TD3 and TD4). Up to ten ICEPRMxx members can be activated by a
START ICEOPT started task command. The options in the activated members will be merged with the ICEMAC
defaults at run-time.

See "How can | let DFSORT use more resources on weekends and off-shift?" in this paper for an example of using
an ICEPRMxx member. See DFSORT Installation and Customization for complete details on using ICEPRMxx
members.

ICEPRMxx members are the recommended way to change DFSORT installation defaults.

How can | let DFSORT use more resources on weekends and
off-shift?

Professor Sort says ...

DFSORT's time-of-day options control feature makes this easy to do.

You're probably familiar with the JCL, INV, TSO and TSOINV parameters that let you set installation options for
four different invocation environments. Well, DFSORT goes a step further and offers the TD1-TD4 parameters that
let you set installation options for four different time-of-day envioronments. You can use any or al of the
time-of-day environments for any or al of the invocation environments.

You can use ICEPRMxx members in PARMLIB (recommended) to override installation options for any or all of

the four invocation environments and four time-of-day environments. (Alternatively, you can use the ICEMAC
macro in a usermod to override the installation options.)

DFSORT: Ask Professor Sort 5

So, for example, you could use an ICEPRMO01 member of PARMLIB to raise the DSA value from the default value
of 64 (megabytes) to a larger value of 96 (megabytes) for DFSORT jobs that start off-shift and on weekends.
Here's how:

ICEPRMO1 member
JCL
ENABLE=TD1
SVC=(,ALT)
INV
ENABLE=TD1
SVC=(,ALT)
D1
WKDAYS=(1800,559)
WKEND=ALL
SVC=(,ALT)
DSA=96

You would activate the ICEPRMO01 member with this START ICEOPT command:
START ICEOPT,ICEPRM=01

DFSORT batch jobs (JCL, INV) that start on Monday-Friday (WKDAY S) between 6:00pm (1800) and 5:59am
(559) or on weekends (WKEND=ALL) will use the TD1 installation defaults (for example, DSA=96) instead of the
JCL or INV defaults (for example, the shipped default of DSA=64).

By setting your JCL, INV, TSO, TSOINV and TD1-TD2 defaults appropriately, you can fine-tune DFSORT's
resource usage for special situations at your site. For complete information on the four invocation environments
and the four time-of-day environments, see ZOS DFSORT Installation and Customization.

What are the advantages of dynalloc over SORTWKdd DDs?

Professor Sort says ...

Dynamic allocation of work data sets has the following advantages over JCL allocation:

* Asthe characteristics (for example, file size and virtua storage size) of an application change over time,
DFSORT can automatically optimize the amount of dynamically allocated work space for the application. This
reduces unneeded allocation of DASD space.

e As the amount of central storage available to the application varies from run to run, DFSORT can automatically
adjust the amount of space it dynamically alocates to complement the amount of central storage to be used for
sorting in memory. This reduces unneeded allocation of DASD space.

e The amount of work space actually used is often less than the amount alocated. DFSORT tries to minimize
dynamic over-alocation while making certain that the application does not fail due to lack of space. With JCL
allocation, you could minimize the amount of allocated space manually, but this might require changes to JCL
allocation as the characteristics of the application change.

e DFSORT's use of dynamic allocation has logic built in that allows it to attempt recovery when additional work
space is required.

¢ With dynamic allocation, DFSORT also allocates work data sets as large format, allowing a single work data
set to use more than 64K tracks on a single volume.

6 DFSORT: Ask Professor Sort

You set the DYNAUTO installation option to control whether dynamic allocation is used automatically, or only
when requested by the DY NALLOC run-time option. DYNAUTO & so controls whether dynamic allocation or JCL
allocation takes precedence when JCL work data sets are specified.

DYNAUTO can be set as follows:

e |[f DYNAUTO=IGNWKDD, dynamic allocation takes precedence over JCL allocation. If you want the oppo-
site result for selected applications, use the USEWKDD run-time option.

e |[f DYNAUTO=YES, JCL allocation takes precedence over dynamic allocation. If you want the opposite result,
remove all JCL allocation statements.

e |[f DYNAUTO=NO, dynamic alocation of work data sets is not used unless you specify the DYNALLOC
run-time option. JCL allocation takes precedence over dynamic allocation.

Here are some additional things to consider for JCL allocation of work data sets vs dynamic alocation of work data
sets.

Performance

There's little difference in performance between using JCL allocation or dynamic alocation. The benefits of using
dynamic allocation are more related to reliability and efficient use of disk space. We have many customers sorting
extremely large files using DFSORT's dynamic allocation to obtain the required disk work space.

Efficient use of disk work space

With dynamic alocation, DFSORT calculates the disk work space required at the time a sort executes. So as file
sizes increase or decrease, the disk allocation is calculated accordingly. If DFSORT plans to use Hiperspace,
Memory Objects or Dataspace, it can reduce the disk allocation based on the expected central storage usage. With
JCL allocation, you would have to adjust the JCL space allocations manually as the file sizes grow. But there's
really no way you could know in advance how much Hiperspace, Memory Object or Dataspace a sort is going to
use because that would depend on available resources at the time the sort executes.

Reliability

DFSORT's use of dynamic allocation has logic built in that allows it to attempt recovery when additional work
space is required. This can happen in cases where more records are sorted than were expected (for example, if an
E15 inserts a large number of records). If JCL allocation is used instead of dynamic allocation, DFSORT cannot
take those recovery actions.

With dynamic alocation, DFSORT also allocates work data sets as large format, allowing a single work data set to
use more than 64K tracks on a single volume. With JCL allocation, you would have to remember to use
DSNTYPE=LARGE on your SORTWKnn DD statements in order to take advantage of large format work data sets.
Maintainability

As mentioned above, with dynamic allocation, DFSORT allocates the correct amount of space based on the file size
and expected storage usage. With JCL alocation, you would have to periodically review those space allocations to
determine if they are accurate for the size of files being sorted. Alternatively, you could just wait until a sort starts
to fail with a Sort Capacity Exceeded message (ICEO46A) and then increase the JCL allocation.

In addition:

While DFSORT can dynamically calculate the amount of space required, it cannot dynamically change the number
of work data sets to use. The shipped default for the DYNALOC installation default is (SY SDA ,4) which causes

DFSORT: Ask Professor Sort 7

only 4 work data sets to be used. So for a 32GB sort, you would need at least 4 volumes each with 8GB of free
space. (Actually, you'd need a bit more than that due to "overhead".) If 4 volumes with that much free space are
not available, DFSORT would fail with a RESOURCES UNAVAILABLE FOR DYNAMIC ALLOCATION
message (ICE083A).

For most shops, we recommend setting the default DY NALOC number to a value that accommodates the majority
of sorts. For extremely large sorts, you can then override that default value by passing a larger value with the
DYNALLOC parameter. So for that 32GB sort you might want to pass something like DY NALLOC=(SY SDA,16)
so the work space allocation is spread across more volumes. The total space allocated is the same, but DFSORT
doesn't need as much free space on a single volume. Yes, you might have to tweak that number if there's a big
change in the file size over time, but not nearly as frequently as you'd have to adjust JCL allocations.

Another concern for using dynamic allocation is that it requires accurate file size information. For JCL invoked
sorts with input on disk, DFSORT is able to calculate the file size automatically. But in the following situations,
DFSORT might need some help determining an accurate file size:

1. All records are passed to DFSORT (inserted) by an E15 exit. DFSORT has no way of knowing the number of
records to be inserted by the exit. If the inserted records are variable length, DFSORT doesn't know the
average record length either.

2. Input is from disk but an E15 exit inserts additional records. DFSORT has no way of knowing the number of
records to be inserted by the exit.

3. Input is from tape and a tape management system does not provide file size information to DFSORT.
DFSORT provides an interface for obtaining file size information from tape management systems like RMM.

1, 2 and 3 can be addressed by providing FILSZ and/or AVGRLEN values to DFSORT, as appropriate. Obviously
these values might need to be adjusted as the amount of data to be sorted increases or decreases over time, but
you'd have to adjust JCL allocations as well. Dynamic allocation also has the advantage of allowing DFSORT to
add some buffer in its calculations for when the file size is larger than expected.

DFSORT also provides a DYNSPC operand which is the amount of work space to dynamically allocate when the
file size is unknown. If you feel you have a number of sorts with unknown file size (indicated by message
ICE118lI), then you could increase DY NSPC from the shipped default of 256MB to something much larger.

To further improve reliability with dynamic alocation, DFSORT introduced the DY NAPCT operand in DFSORT
V1R12 to alow allocation of additional work data sets to be allocated with zero space. DFSORT only extends
these data sets when necessary to complete a sort application. The DYNAPCT operand specifies the number of
additional work data sets as a percentage of the DYNALOC/DYNALLOC 'n' value at run time. If you feel you
have a number of sorts that provide unreliable file size information, then you could increase DYNAPCT from the
shipped default of 10% to something larger.

Additional sources of information can be found in the following DFSORT publications available from the DFSORT
website

e DFSORT Application Programming Guide: Describes the FILSZ and AVGRLEN operands. Also see the
chapter on Improving Efficiency.

e DFSORT Installation and Customization: Describes the DY NSPC operand, and the There's also a chapter on
improving tape processing with RMM ICETPEX exit for improving tape processing with tape management
systems.

e DFSORT Tuning Guide: Discusses dynamic allocation of work Data sets.

8 DFSORT: Ask Professor Sort

How can | list my site's DFSORT installation defaults?

Professor Sort says ...

With DFSORT's ICETOOL utility, you can produce a report listing your site's current DFSORT installation defaults
any time you want to.

Here's an example of a complete ICETOOL job to do it. It uses the DEFAULTS operator to produce the report:

//DEFAULTS JOB <job Card Parameters>
//SHOWDEF EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//LIST1 DD SYSOUT=A
//TOOLIN Db =*

DEFAULTS LIST(LIST1)

/*
DEFAULTS produces a three-part report showing:

1. The merged PARMLIB/ICEMAC installation default values for ICEAM1-4 and ICETD1-4 that will be used at
run-time. If the installation default value for an item is different from the IBM-supplied default value, the
IBM-supplied default value is shown below the installation default value.

2. The specified PARMLIB ICEPRMxx member option values for ICEAM1-4 and ICETD1-4 (for reference).
3. The ICEMAC installation default values for ICEAM1-4 and ICETD1-4 (for reference).

See Z/OS DFSORT Installation and Customization for an example of a DEFAULTS report.

How can | supply control statements for a program that calls
DFSORT?

Professor Sort says ...

You can use a DFSPARM data set to pass control statements and EXEC parameters to DFSORT regardless of
whether it's called directly (PGM=ICEMAN) or from a program like COBOL, PL/I or ICETOOL. A DFSPARM
data set can be used to override or add control statements and parameters from any other source such as SYSIN,
SORTCNTL, EXEC PARM or a caling program's parameter list.

By default, DFSORT uses either a DFSPARM DD statement or a SORTPARM DD statement (in that order) as
the DFSPARM data set. However, you can change the ddname of the DFSPARM data set with installation option
PARMDDN=ddname.

Here's an example of a DFSPARM data set that supplies both control statements and EXEC parameters:

//DFSPARM DD *

ABEND, STOPAFT=100
SORT FIELDS=(5,20,CH,A)
OMIT COND=(35,2,PD,GT,+20)
OPTION SORTIN=DATAIN

/*

DFSORT: Ask Professor Sort 9

What should | know about migrating to DFSORT from other
sort products?

Professor Sort says ...

If you are migrating to DFSORT from another sort product, make sure you have zZ/OS DFSORT V1R12 (for zZ/OS
1.12 and z/OS 1.13) or Z/OS DFSORT V1R10 (for z/OS 1.10 and z/OS 1.11) with the latest functional PTFs
installed. In particular, make sure you have zZ/OS DFSORT V1R10 PTF UK90025 or zZ/OS DFSORT V1R12 PTF
UK 90026 (October, 2010) installed since this PTF provides new options and features that make migration easier.

DFSORT can use information it obtains from a tape management system to significantly improve the way it proc-
esses tape data sets. However, certain requirements must be met to enable DFSORT to do this, depending on the
tape management system you use. See "Can DFSORT obtain information from my tape management system?' in
this paper for details.

If you have specific migration questions, you can contact the DFSORT Hotline at the following e-mail address:
dfsort@us.ibm.com

Many of the new and previoudly available migration features incorporated into DFSORT make it operate like other
sort products automatically. However, the options shown in the Table below have IBM-supplied installation
defaults, as indicated, that you may want to change to make DFSORT operate more like the sort product you are
migrating from. In particular, consider setting DYNAL OC=(SY SDA,8) to reduce differences in dynamic allocation

of work space.

You can use ICEPRMxx members in PARMLIB to change your DFSORT installation options. See ZOS DFSORT
Installation and Customization for complete details.

Changing an installation option changes the way DFSORT works globally by default. You can find complete
details on all of DFSORT's installation options in ZOS DFSORT Installation and Customization.

Specifying a run-time option changes the way DFSORT works for a specific application. You can find complete
details on al of DFSORT's run-time options in zOS DFSORT Application Programming Guide.

For general information on DFSORT, you can access al of the DFSORT books online from the DFSORT website.

Table 1 (Page 1 of 2). Table of Options that can make migration easier

Installation option Run-time option Specifies ...

ABCODE=MSG The ABEND code for a critical error.

ABCODE=n

Default: MSG

DYNALOC=(d,n) DYNALLOC=(d,n) The device name and maximum number of dynamically
Default: SYSDA 4 allocated work data sets.

DYNAUTO=YES DYNALLOC=(d,n) whether work data sets are dynamically allocated.
DYNAUTO=IGNWKDD

DYNAUTO=NO

Default: YES

DYNSPC=n DYNSPC=n primary space (in megabytes) for dynamically allocated
Default: 256 work data sets when the file size is unknown.

10 DFSORT: Ask Professor Sort

Table 1 (Page 2 of 2). Table of Options that can make migration easier

Installation option

Run-time option

Specifies ...

EQUALS=YES
EQUALS=NO
Default: VLBLKSET

EQUALS
NOEQUALS

whether the order of records that collate identically is
preserved from input to output.

EXITCK=STRONG

EXITCK=STRONG

whether DFSORT terminates or continues for invalid

EXITCK=WEAK EXITCK=WEAK return codes from E15/E35 user exits.

Default: STRONG

FSZEST=YES FILSZ=n whether DFSORT treats file sizes as exact or estimated.
FSZEST=NO FILSZ=En

Default: NO FILSZ=Un

NOMSGDD=QUIT whether DFSORT terminates or continues when the
NOMSGDD=ALL message data set is not available.
NOMSGDD=CRITICAL

NOMSGDD=NONE

Default: QUIT

PARMDDN=ddname an dternate ddname, such as $ORTPARM, for the
Default: DFSPARM DFSPARM control data set.

RESET=YES RESET whether DFSORT processes a VSAM set defined with
RESET=NO NORESET REUSE as NEW or MOD.

Default: YES

SORTLIB=SYSTEM whether DFSORT searches a system or private library
SORTLIB=PRIVATE for tape work data set sort or Conventional merge
Default: PRIVATE modules.

SZERO=YES SZERO whether DFSORT treats zero values as signed or
SZERO=NO NOSZERO unsigned.

Default: YES

VLLONG=YES VLLONG whether DFSORT truncates long variable-length output
VLLONG=NO NOVLLONG records.

Default: NO

VLSCMP=YES VLSCMP whether DFSORT pads short variable-length compare
VLSCMP=NO NOVLSCMP fields.

Default: NO

VSAMEMT=YES VSAMEMT whether DFSORT accepts an empty VSAM input data
VSAMEMT=NO NVSAMEMT set.

Default: YES

VSAMIO=YES VSAMIO whether DFSORT alows a VSAM data set defined
VSAMIO=NO NOVSAMIO with REUSE to be sorted in-place.

Default: NO

ZDPRINT=YES ZDPRINT whether DFSORT produces printable numbers from
ZDPRINT=NO NZDPRINT positive summed ZD fields.

Default: YES

DFSORT: Ask Professor Sort 11

What are the equivalent DFSORT formats for various COBOL
data types?

Professor Sort says ...

Both DFSORT and COBOL support a large number of data types. COBOL describes these data types in one way,
and DFSORT describes them in another way. If you SORT or MERGE with COBOL, the compiler automatically
generates a SORT or MERGE control statement for you with the correct DFSORT descriptions for the COBOL
fields you specify. But to take full advantage of DFSORT, you will often want to describe your fields in your own
DFSORT control statements (e.g. SORT, MERGE, INCLUDE, OMIT, INREC, OUTREC, OUTFIL, SUM) either
outside of COBOL or in a DFSPARM data set used with COBOL. The table below will show you what DFSORT
length and format to use for the various commonly used COBOL data types.

For example, say you want to separate out records in a very large file into two data sets based on the values in a
PIC S9(4) COMP field starting in position 21. In the first data set, you want records with values in the field that
are greater than or equal to +5000. In the second data set, you want records with values in the field that are less
than -1000. You could use the table below to determine that a PIC S9(4) COMP field is equivalent to a DFSORT
field with a length of 2 and a format of FI, alowing you to code your DFSORT statements as follows:

OPTION COPY
OUTFIL FNAMES=0UT1,INCLUDE=(21,2,FI,GE,+5000)
OUTFIL FNAMES=0UT2,INCLUDE=(21,2,FI,LT,-1000)

Table 2. Equivalent DFSORT formats for various COBOL data types

COBOL data type DFSORT DFSORT
length format
PIC X(n) USAGE DISPLAY n CH
GROUP DATA ITEMS with n bytes n CH
PIC 9(n) DISPLAY n ZD
PIC S9(n) DISPLAY <TRAILING> n ZD
PIC S9(n) DISPLAY LEADING n CLO
PIC S9(n) DISPLAY SEPARATE <TRAILING> n+1 CsT
PIC S9(n) DISPLAY LEADING SEPARATE n+1 CSL or FS
PIC 9(n) COMP|BINARY |COMP-4|COMP-5
n=1to4 2 Bl
n=5t09 4 Bl
n>=10 8 Bl
PIC S9(n) COMPIBINARY [COMP-4|COMP-5
n=1to4 2 Fl
n=5to9 4 Fl
n>=10 8 Fl
PIC 9(n) COMP-3|PACKED-DECIMAL (n/2)+1 PD
PIC S9(n) COMP-3|PACKED-DECIMAL (n/2)+1 PD
COMP-1 4 FL
COMP-2 8 FL

12 DFSORT: Ask Professor Sort

Notes:

1. PIC 9(x)V9(y) can be treated like PIC 9(n) where n=x+y. (COBOL does NOT store the decimal point inter-
nally.)

2. PIC S9(x)V9I(y) can be treated like PIC S9(n) where n=x+y. (COBOL does NOT store the decimal point
internally.

Can DFSORT obtain information from my tape management
system?

Professor Sort says ...

DFSORT can use information it obtains from a tape management system to significantly improve the way it proc-
esses tape data sets. However, certain requirements must be met to enable DFSORT to do this, depending on the
tape management system you use. Below are the details.

DFSMSrmm

For tapes managed by DFSM Srmm:

e DFSORT can automatically obtain accurate input file size information for DFSMSrmm managed tapes. This
can result in improved sort performance and more accurate dynamic workspace allocation.

Additionally, you don't have to supply the input file size to DFSORT when this information is available from
DFSMSrmm. DFSORT will automatically use the file size it obtains from DFSMSrmm to override any
FILSZ=En or SIZE=En value you specify. However, you must remove any FILSZ=n, FILSZ=Un, SIZE=n or
SIZE=Un value you specify in order for DFSORT to use the file size it obtains from DFSM Srmm.

e DFSORT can automatically obtain input and output attributes such as RECFM, LRECL and BLKSIZE for
DFSMSrmm managed tapes. As aresult, you don't have to specify these attributes explicitly for input and
output tape data sets when this information is available from DFSM Srmm.

Other tape management systems

For tapes managed by tape management systems other than DFSM Srmm, DFSORT supports a tape exit that allows
any tape management system to improve the way it interfaces with DFSORT.

Your tape management system vendor can write an ICETPEX routine to supply the same information to DFSORT
that it gets automatically from DFSMSrmm. Ask your vendor if they currently have an ICETPEX routine available
or have plans to provide one in the future.

An ICETPEX routine can pass specific information to DFSORT for managed input and output tapes. DFSORT can
use this information, when appropriate, to significantly improve the way it processes managed tapes:

e DFSORT can automatically obtain accurate input file size information for managed tapes from ICETPEX.
This can result in improved sort performance and more accurate dynamic workspace allocation.

Additionally, you don't have to supply the input file size to DFSORT when this information is available from
ICETPEX. DFSORT will automatically use the file size it obtains from ICETPEX to override any FILSZ=En
or SIZE=En value you specify. However, you must remove any FILSZ=n, FILSZ=Un, SIZE=n or SIZE=Un

value you specify in order for DFSORT to use the file size it obtains from ICETPEX.

DFSORT: Ask Professor Sort 13

e DFSORT can automatically obtain input and output attribute such as RECFM, LRECL and BLKSIZE for
managed tapes from ICETPEX. As aresult, you don't have to specify these attributes explicitly for input and
output tape data sets when this information is available from ICETPEX.

If your vendor supplies an ICETPEX routine, just include it in the library that contains the DFSORT modules or in
a separate library in the normal order of search. DFSORT will automatically call the ICETPEX routine and use the
information it provides, when appropriate.

How does DFSORT take advantage of central storage?

Professor Sort says ...

DFSORT can exploit central storage by:

e using Hiperspaces as a way to store intermediate data in central storage instead of using disk work data sets. A
Hiperspace is a range of up to two gigabytes of contiguous virtual storage addresses that a program can use as
a buffer. While the size of a Hiperspace is limited to 2 gigabytes, it can be backed by rea storage above 2
gigagytes. Hipersorting applications can create up to 16 Hiperspaces to store up to 32 gigabytes of interme-
diate data.

e using memory objects as a way to store intermediate data in central storage instead of using disk work data
sets. A memory object is a data area in virtual storage that is allocated above the bar and backed by central
storage. Since memory objects are allocated above the bar, they can be much larger than 2 gigabytes.
DFSORT is able to store up to 4 gigabytes of intermediate data in a memory object. Similar to Hipersorting,
DFSORT can create up to 16 memory objects to store up to 64 gigabytes of intermediate data.

e using a memory object as main storage for sort applications, when appropriate. Memory object sorting is a
DFSORT capability that exploits above the bar storage to improve the performance of sort applications. With
memory object sorting, DFSORT can create one memory object that can be used exclusively, or aong with
disk space, as atemporary storage area for sorting records. DFSORT has been successfully tested with
memory objects up to 250GB, but even larger memory objects could be used.

e using a data space as main storage for sort applications, when appropriate. A data space is a range of up to
two gigabytes of contiguous virtual storage addresses that a program can directly manipulate through assembler
instructions. While the size of a data space is limited to 2 gigabytes, it can be backed by real storage above 2
gigagytes. With data space sorting, DFSORT can create one data space that can be used exclusively, or along
with disk space, as a temporary storage area for sorting records.

DFSORT chooses the best method for exploiting central storage for each sort application based on available
resources, input file characteristics, DFSORT control statements and DFSORT installation defaults. Since al appli-
cations can use central storage, contention for this resource must be closely monitored and controlled. Informa-
tional APAR 1113495 contains additional information and considerations related to DFSORT's use of storage in
64-bit environments with recommendations for tailoring DFSORT's installations defaults to control its use of central
storage.

How can memory objects, data spaces and Hiperspaces be
customized?

Professor Sort says ...

DFSORT provides installation options that can be used to control the amount of central storage a single sorting
application can use:

14 DFSORT: Ask Professor Sort

e MOSIZE controls the amount of memory object storage a single sort application can use. The shipped default
for MOSIZE is MAX.

e DSPSIZE controls the amount of data space a single sort application can use. The shipped default for
DSPSIZE is MAX.

e HIPRMAX controls the amount of Hiperspace a single sort application can use. The shipped default for
HIPRMAX is OPTIMAL.
The EXPMAX, EXPOLD and EXPRES installation options can be used to control the total storage used for:
e Memory object sorting applications when MOSIZE is not 0.
e Data space sorting applications when DSPSIZE is not 0.
» Hipersorting applications when HIPRMAX is not 0.

When evaluating available resources, DFSORT considers two types of central storage frames:
» Available frames are those frames not assigned to an active user
e Old frames are those frames that are assigned to an active user but have not recently been referenced making
them eligible for page stealing.

EXPMAX allows you to specify the maximum total amount of available and old central storage to be used at any
one time by all Hipersorting, memory object sorting and dataspace sorting applications .

EXPOLD allows you to specify the maximum total amount of old central storage to be used at any one time by all
Hipersorting, memory object sorting and dataspace sorting applications.

EXPRES allows you to specify the minimum amount of available and old central storage to be reserved for use by
non-Hipersorting, non-memory object sorting, and non-dataspace sorting applications.

We recommend that MOSIZE, DSPSIZE and HIPRMAX be kept as the defaults. This allows DFSORT to control
the use of these sorting in memory techniques based on available resources and total DFSORT usage as controlled
by the EXPMAX, EXPOLD and EXPRES installation defaults.

How can | reformat my records?

Professor Sort says ...

INREC, OUTREC and OUTFIL let you reformat your records in a variety of ways by adding, deleting or changing
various fixed length and variable length (delimited) fields, by finding and replacing or removing constants, and by
performing various group operations. You can use any combination of separation fields, edited and unedited input
fields, edited decimal constants, edited results of arithmetic expressions, sequence numbers, replaced constants,
removed constants, propagated fields, group identifiers, and group sequence numbers.

You can use INREC to reformat your records before they are sorted, copied or merged.

You can use OUTREC to reformat your records after they are sorted, copied or merged.

You can use OUTFIL to reformat your records after they are sorted, copied or merged while creating multiple
output data sets and reports.

You can create your reformatted INREC, OUTREC or OUTFIL records in one of the following ways using uned-
ited, edited or converted input fields and a variety of constants:

DFSORT: Ask Professor Sort 15

e BUILD: Reformat each record by specifying all of itsitem one by one. Build gives you complete control
over the items you want in your reformatted INREC records and the order in which they appear. You can
delete, rearrange and insert fields and constants. Example:

INREC BUILD=(1,20,C'ABC',26:5C'*",
15,3,PD,EDIT=(TTT.TT),21,30,80:X)

Note: You can use FIELDS instead of BUILD for INREC or OUTREC. You can use OUTREC instead of
BUILD for OUTFIL.

e OVERLAY: Reformat each record by specifying just the items that overlay specific columns. Overlay lets
you change specific existing columns without affecting the entire record. Example:
OUTREC OVERLAY=(45:45,8,TRAN=LTOU)
e FINDREP: Reformat each record by doing various types of find and replace operations. Example:
INREC FINDREP=(IN=C'Mr.',0UT=C'Mister')
e |FTHEN clauses. Reformat different records in different ways by specifying how build, overlay, find/replace,

or group operation items are applied to records that meet given criteria. IFTHEN clauses let you use sophisti-
cated conditional logic to choose how different record types are reformatted. Example:

OUTFIL IFTHEN=(WHEN=(1,5,CH,EQ,C'TYPEL"),
BUILD=(1,40,C'#*',+1,T0= PD)),
TFTHEN= (WHEN=(1,5,CH,EQ,C ' TYPE2'),
BUILD=(1,40,+2,T0=PD,X'FFFF')),

TFTHEN= (WHEN=NONE, OVERLAY=(45:C'NONE'))

You can choose to include any or al of the following items in your reformatted INREC, OUTREC or OUTFIL
records:

» Fixed position/length fields or variable position/length fields. For fixed fields, you specify the starting position
and length of the field directly. For variable fields, such as delimited fields, comma separated values (CSV),
tab separated values, blank separated values, keyword separated fields, null-terminated strings (and many other
types), you define rules that allow DFSORT to extract the relevant data into fixed parsed fields, and then use
the parsed fields as you would use fixed fields.

e Blanks, binary zeros, character strings, and hexadecimal strings

e Current date, future date, past date, and current time in various forms

e Unedited input fields aligned on byte, halfword, fullword, and doubleword boundaries
e Replaced or removed strings.

e Hexadecimal or bit representations of binary input fields

e Characters translated from uppercase to lowercase, lowercase to uppercase, ASCII to EBCDIC or EBCDIC to
ASCII.

o Left-justified, right-justified, left-squeezed, or right-squeezed input fields.

¢ Numeric input fields of various formats converted to different numeric formats, or to character format edited to
contain signs, thousands separators, decimal points, leading zeros or no leading zeros, and so on.

e Decima constants converted to different numeric formats, or to character format edited to contain signs, thou-
sands separators, decimal points, leading zeros or no leading zeros, and so on.

e The results of arithmetic expressions combining fields, decimal constants, operators (MIN, MAX, MUL, DIV,
MOD, ADD and SUB) and parentheses converted to different numeric formats, or to character format edited to
contain signs, thousands separators, decimal points, leading zeros or no leading zeros, and so on.

16 DFSORT: Ask Professor Sort

e SMF, TOD and ETOD date and time fields converted to different numeric formats, or to character format
edited to contain separators, leading zeros or no leading zeros, and so on.

e |nput date fields of one type (CH, ZD, PD, 2-digit year, 4-digit year, Julian, Gregorian) converted to corre-
sponding output date fields of another type or to a corresponding day of the week.

e The results of various types of arithmetic operations for input date fields.
e Sequence numbers in various formats.

* A character constant, hexadecimal constant or input field selected from a lookup table, based on a character,
hexadecimal or bit constant as input.

e A zoned decimal group identifier, a zoned decimal group sequence number, or a field propagated from the first
record of a group to all of the records of a group.

What is JOINKEYS and how can it help me?

Professor Sort says ...

JOINKEYS is a powerful DFSORT function that helps you to perform various "join" and "match" applications on
two data sets by one or more keys. You can do an inner join, full outer join, left outer join, right outer join and
unpaired combinations. The two data sets can be of different types (fixed, variable, VSAM, and so on) and lengths,
and have keys in different locations. You can even do cartesian joins.

For added flexibility, the records from the input data sets can be processed in a variety of ways before and after
they are joined using other DFSORT control statements such as INCLUDE, OMIT, INREC, OUTREC, SUM and
OUTFIL.

By using DFSORT's JOINKEY'S, JOIN and REFORMAT statements in various ways, you can do many different
types of join and match operations to "slice and dice" your data.

What is ICETOOL and how can it help me?

Professor Sort says ...

ICETOOL is a versatile data set processing and reporting utility that provides an easy-to-use batch front-end for
DFSORT. ICETOOL combines new features with previously available DFSORT features to perform complex
sorting, copying, reporting and analytical tasks using multiple data sets in a single job step.

The 17 ICETOOL operators briefly described below provide new tools for programmers.

e COPY - copies a data set to one or more output data sets. Multiple output is handled using a single pass over
the input.

e COUNT - prints a message containing the count of records in a data set. Can also be used to create an output
data set containing text and the count, or to set RC=12, RC=8, RC=4, or RC=0 based on the count of records
in a data set (that is, empty, not empty, higher, lower, equal or not equal).

e DATASORT - sorts data records between header and trailer records in a data set to an output data set.
e DEFAULTS - prints the DFSORT installation defaults in a separate list data set.

e DISPLAY - prints the values and characters of specified numeric and character fields in a separate list data set.
Simple, tailored or sectioned reports can be produced. Maximums, minimums, totals, averages and counts can
be produced.

DFSORT: Ask Professor Sort 17

¢ MERGE - merges one or more data set to one or more output data sets. Multiple output is handled using a
single pass over the input.

e MODE - setg/resets scanning and error actions.

e OCCUR - prints each unique value for specified numeric (including SMF date/time) and character fields, and
the number of times it occurs, in a separate list data set. Simple or tailored reports can be produced. The
values printed can be limited to those for which the value count meets specified criteria (that is, al duplicates,
no duplicates, higher, lower or equal).

¢ RANGE - prints a message containing the count of values in a range (that is, higher, lower, equal or not equal)
for a numeric field

e RESIZE - creates a larger record from multiple shorter records, or creates multiple shorter records from a larger
record, that is, resizes fixed length records.

e SELECT - selects records for an output data set based on meeting criteria (that is, all duplicates, no duplicates,
firgt, first n, lagt, first duplicate, first n duplicates, last duplicate, higher, lower or equal) for the number of
times numeric or character field values occur. Records that are not selected can be saved in a separate output
data set

e SORT - sorts a data set to one or more output data sets. Multiple output is handled using a single pass over
the input.

e SPLICE - splices together fields from records that have the same numeric or character field values (that is,
duplicate values), but different information. Fields from two or more records can be combined to create an
output record. The fields to be spliced can originate from records in different data sets, so you can use
SPLICE to do various "join" and "match" operations.

e STATS - prints messages containing the minimum, maximum, average, and total of values in numeric fields.

e SUBSET - selects records from a data set based on keeping or removing header records (the first n records),
relative records, or trailer records (the last n records). Records that are not selected can be saved in a separate
output data set

¢ UNIQUE - prints a message containing the count of unique values in a numeric or character field.
e VERIFY - prints a message identifying each invalid value found in decimal fields.
Here's an example of the JCL and control statements for an ICETOOL job. Other ICETOOL examples can be

found in Z7OS DFSORT Application Programming Guide, ZOS DFSORT: Getting Sarted, and in ICETOOL mini-
user guide on the DFSORT website.

18 DFSORT: Ask Professor Sort

//EXAMP JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD =
* Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
* Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
* Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)
* California branches profit analysis
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
* Branches with less than 32 employees
RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)
* Print profit, employees, and city for each Colorado branch
DISPLAY FROM(CODASD) LIST(OUT) -
ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)
* Print a report for the Colorado branches
DISPLAY FROM(CODASD) LIST(RPT) -
DATE TITLE('Colorado Branches Report') PAGE -
HEADER('City') HEADER('Profit') HEADER('Employees') -
ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK BETWEEN(5) -
TOTAL('Total') AVERAGE('Average')-
MINIMUM('Lowest') COUNT('Number of cities')
* Print a report of books for individual publishers
DISPLAY FROM(DAPUBS) LIST(SECTIONS) -
TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
HEADER('TITLE OF BOOK') ON(1,35,CH) -
HEADER('PRICE OF BOOK') ON(170,4,BI,C1,F'$') -
BTITLE('PUBLISHER:') BREAK(106,4,CH) -
BAVERAGE ('AVERAGE FOR THIS PUBLISHER') -
BTOTAL('TOTAL FOR THIS PUBLISHER') -
AVERAGE ('AVERAGE FOR ALL PUBLISHERS') -
TOTAL('TOTAL FOR ALL PUBLISHERS')
* Print the count of books in use from each publisher
OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
TITLE('Books from Publishers') DATE(DMY.) -
HEADER('Publisher') HEADER('Books Used') -
ON(106,4,CH) ON(VALCNT,NO5)
* Separate output containing records for publishers
* with more than 4 books in use
SELECT FROM(BKIN) TO(BKOUT) ON(106,4,CH) HIGHER(4)
* Reformat REGION.IN1 to T1 so it can be spliced
COPY FROM(REGNIN1) TO(T1) USING(CTL1)
* Reformat REGION.IN2 to T1 so it can be spliced
COPY FROM(REGNIN2) TO(T1) USING(CTL2)
* Splice records in Tl with matching ON fields
SPLICE FROM(T1) WITHALL -

ON(5,5,CH) - Region
WITH(1,4) - Office
WITH(25,4) - Employees
WITH(29,10) - Evaluation
TO(REGNOUT)

/*

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR
//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

DFSORT: Ask Professor Sort

19

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),
// UNIT=SYSDA
//PRPUBS DD SYSOUT=A
//SPUBCNTL DD =
SORT FIELDS=(106,4,A,1,75,A),FORMAT=CH
INCLUDE COND=(106,4,EQ,C'VALD',0R,106,4,EQ,C'WETH'),
FORMAT=CH
/*
//CACOCNTL DD =
SORT FIELDS=(1,15,CH,A)
OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA")
OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO")
/*
//CADASD DD DSN=8&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),
// UNIT=3390
//CATAPE DD DSN=CA.BRANCH,UNIT=3480,V0L=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&&CO0,DISP=(,PASS),SPACE=(CYL,(2,2)),
// UNIT=3390
//COTAPE DD DSN=CO.BRANCH,UNIT=3480,V0L=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)
//0UT DD SYSOUT=A
//RPT DD SYSOUT=A
//SECTIONS DD SYSOUT=A
//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//PUBCT DD SYSOUT=A
//BKOUT DD DSN=A123456.B00KS1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(3,3)),UNIT=3390
//REGNIN1 DD DSN=A123456.REGION.IN1,DISP=SHR
//REGNIN2 DD DSN=A123456.REGION.IN2,DISP=SHR
//T1 DD DSN=&&T1,UNIT=3390,SPACE=(CYL, (5,5)),DISP=(MOD,PASS)
//REGNOUT DD DSN=A123456.REGION.OQUT,DISP=(NEW,CATLG,DELETE),UNIT=3390,
// SPACE=(TRK, (5,5))

ICETOOL can be called directly, as in the example above, or from a program using a parameter list to which
ICETOOL can additionally return information for further processing.

What kind of reports can | produce with ICETOOL?

Professor Sort says ...

With DFSORT's ICETOOL utility, you can produce reports quickly and easily. You can produce detailed reports
with section headings and statistics, page headings and statistics, and a summary page with headings and statistics.
You can produce reports that identify and count unique values, duplicate values, or values that occur a specific
number of times. You can aso use ICETOOL to create a report showing the DFSORT installation defaults selected
at your site.

Here's an example of a complete ICETOOL job. It uses the DISPLAY operator to produce a monthly revenue
report:

20 DFSORT: Ask Professor Sort

//REVENUE JOB ...

//RUN EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=*

//DFSMSG DD SYSOUT=*

//IN2 DD DSN=REVENUE.INPUT,DISP=SHR

//REVRPT DD SYSOUT=*

//TOOLIN DD =

* Print monthly revenue report

DISPLAY FROM(IN2) LIST(REVRPT) DATE -
TITLE('Monthly Revenue Report') -
TITLE('for October') PAGE -
HEADER('Location') ON(1,15,CH) -
HEADER('Revenue') ON(22,6,PD,Al) -
HEADER('Profit/Loss') ON(28,6,PD,Al) -
TOTAL('Totals') AVERAGE('Averages') -
COUNT('Number of Locations:') EDCOUNT(UO3)

/*

Here's the report in the REVRPT data set that might be produced by this DISPLAY operator:
10/15/08 Monthly Revenue Report -1-

for October

Location Revenue Profit/Loss
Los Angeles 22,530 -4,278
San Francisco 42,820 6,832
Fort Collins 12,300 -2,863
Sacramento 42,726 8,276
Totals 329,637 50,665
Averages 27,469 4,222

Number of Locations: 11

Notice that the Revenue and Profit/Loss numbers have commas and negative signs. The numbers look like this
because the "A1" editing mask was specified for the corresponding ON fields. ICETOOL has 33 different editing
masks encompassing many of the numeric notations used throughout the world.

Here's another example of ICETOOL control statements. In this example, ICETOOL's OCCUR operator is used to
identify userids that appear more than 4 times in a data set as possible system intruders:

OCCURS FROM(FAILURS) LIST(SECURITY) BLANK -
PAGE TITLE('Possible System Intruders) DATE(DM4.) -
HEADER('Userid') HEADER('Logon Failures') -
ON(23,8,CH) ON(VALCNT) -
HIGHER(4)

Here's the report in the SECURITY data set that might be produced by this OCCUR operator:

DFSORT: Ask Professor Sort 21

- 1 - Possible System Intruders 21.09.2008

Userid Logon Failures
B7234510 5
D9853267 11

Here's an example of a DISPLAY operator that uses some additional operands that let you control the way your
report 1ooks:

DISPLAY FROM(ACCTS) LIST(FANCY) -
TITLE('Accounts Report for First Quarter') -
DATE(MD4/) BLANK -

HEADER('Amount') ON(12,6,ZD,C1,U08) -
HEADER('Id') ON(NUM,U02) -
HEADER('Acct#') ON(31,3,PD,NOST,LZ) -
HEADER('Date') ON(1,4,ZD,E'99/99',NOST) -
INDENT(2) BETWEEN(5) -

STATLEFT -

TOTAL('Total for Q1') -

AVERAGE ('Average for Q1')

Here's the report in the FANCY data set that might be produced by this DISPLAY operator:

Accounts Report for First Quarter 03/31/2008
Amount Id Acct# Date
932.71 1 15932 01/06
1,376.22 2 00187 01/28
831.47 3 15932 02/12
1,832.61 4 02158 02/17
763.89 5 00187 03/05
9,200.13 6 15932 03/19
Total for Q1 14,937.03
Average for Q1 2,489.50

INDENT, BETWEEN and STATLEFT change the default spacing for the report. Formatting items C1 (editing
mask), E'99/99' (edit pattern), U08 and U02 (number of digits), NOST (no statistics) and LZ (leading zeros) change
the default appearance of various numeric values.

What is ICEGENER and how can | use it?

Professor Sort says ...

ICEGENER is a DFSORT feature that couldn't be easier to use, yet provides excellent performance improvements
as a replacement for IEBGENER.

Most data centers probably have hundreds of IEBGENER jobs like this one:

22 DFSORT: Ask Professor Sort

//COPYIT JOB .

//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=FLY.INPUT,DISP=SHR
//SYSUT2 DD DSN=FLY.OUTPUT,DISP=0LD
//SYSIN DD DUMMY

To convert this to an ICEGENER job the "hard" way, change IEBGENER in the EXEC statement to ICEGENER.
Yes, that's the hard way. The easy way is to install ICEGENER as a direct replacement for IEBGENER so that no
changes to IEBGENER jabs are required! ICEGENER is then called automatically whenever IEBGENER is
requested either directly or from a program.

ICEGENER uses DFSORT to process IEBGENER jobs when possible and transfers control to IEBGENER when
DFSORT can't be used. Most IEBGENER jobs that use DUMMY for SY SIN can be processed by DFSORT,
resulting in significant performance improvements. As an added benefit, DFSORT issues messages containing
useful information such as the number of records copied and the RECFM, LRECL, and BLKSIZE of the SYSUT1
and SYSUT2 data sets.

Installing ICEGENER as a direct replacement for IEBGENER even lets RACF's IRRUT200 utility take advantage
of ICEGENER's performance improvements.

In some cases IEBGENER cannot copy a SYSUT1 data set to a SY SUT?2 data set with a different logical record
length. ICEGENER normally copies such data sets by padding or truncating the records, issuing an accompanying
warning message and return code 0. However, installation options GNPAD and GNTRUNC can be used to have
ICEGENER issue a return code 4 or even transfer control to IEBGENER when the SYSUT1 and SYSUT?2 logical
record lengths are different.

What is OUTFIL and how can it help me?

Professor Sort says ...

OUTFIL is a very versatile DFSORT control statement. It allows you to create one or more output data sets for a
sort, copy or merge application from a single pass over one or more input data sets, which can result in significant
performance improvements.

OUTFIL provides arich set of features, including a variety of reformatting, subsetting and reporting capabilities,
that can be used with one output data set or many output data sets to increase programmer productivity by elimi-
nating programming work.

What are DFSORT symbols and how can they help me?

Professor Sort says ...

A symbol is a name (preferably something meaningful) you can use to represent a field, constant or output column.
Sets of symbols, also called mappings, can be used to describe a group of related fields, constants and output
columns, such as the information in a particular type of record. Such mappings allow you to refer to fields, con-
stants and output columns by their symbols, freeing you from having to know the position, length and format of a
field, the value of a constant or the position of an output column you want to use.

You can even use system symbols (for example, & JOBNAME.), SET symbols and PROC symbols in your symbol
constants.

DFSORT: Ask Professor Sort 23

DFSORT's symbol processing feature gives you a powerful, simple and flexible way to create symbol mappings for
your own frequently used data. In addition, you can obtain IBM-created symbol mappings and sample jobs for data
associated with RACF, DFSMSrmm and DCOLLECT. See the DFSORT website for details.

Symbols turn DFSORT's syntax into a high level language. Symbols can help to standardize your DFSORT appli-
cations and increase your productivity. Once you create or obtain symbol mappings, you can use the symbols they
define anywhere you can use a field, constant or output column in any DFSORT control statement or ICETOOL
operator. DFSORT symbols can be up to 50 characters, are case-sensitive and can include underscore and hyphen
characters. Thus, you can create meaningful, descriptive names for your symbols, such as Price_of _Item (or Price-
of-ltem), making them easy to remember, use and understand.

Here's an example of the JCL and control statements for an ICETOOL job that uses symbols. A complete explana-
tion of this example can be found in ZOS DFSORT: Getting Sarted. A complete explanation of DFSORT's
Symbols feature can be found in ZOS DFSORT Application Programming Guide.

//SYM2 JOB A492,PROGRAMMER

//T00L EXEC PGM=ICETOOL,REGION=1024K
//STEPLIB DD DSN=A492.3M,DISP=SHR
//TOOLMSG DD SYSOUT=A

//DFSMSG DD SYSOUT=A

//SYMNAMES DD DSN=DSN=A123456.SORT.SYMBOLS,

/l DISP=SHR
//SYMNOUT DD SYSOUT=+
/1IN DD DSN=A123456.SORT.SAMPIN,
/l DISP=SHR
//0UT DD DSN=A123456.SORT.SAMPOUT,
/l DISP=SHR

//TOOLIN DD =

SORT FROM(IN) TO(OUT) USING(CTLI)

RANGE FROM(OUT) ON(Price) LOWER(Discount)

RANGE FROM(OUT) ON(Price) HIGHER(Premium)

//CTLICNTL DD =

INCLUDE COND=(Course_ Number,EQ,

Beginning_Economics,0R,
Course_Number,EQ,
Advanced_Sociology)

SORT FIELDS=(Title,A,
Instructor_Last_Name,A,
Instructor_Initials,A,
Price,A)

How can | produce ICETOOL reports without ANSI carriage
control characters?

When you produce DISPLAY or OCCUR reports, ICETOOL inserts ANSI carriage control characters in the first
byte of each record that indicate actions to be taken on a printer (e.g. page gject, skip aline, etc), and also ensures
that the RECFM of the report data set contains 'A' (e.g. FBA) for ANSI processing. |f you want to suppress the
ANSI carriage control characters, and have the RECFM set to FB instead of FBA, just specify the NOCC operand
for the DISPLAY or OCCUR operator. For example:

DISPLAY FROM(IN) LIST(RPT) NOCC ...

24 DFSORT: Ask Professor Sort

How can | produce OUTFIL reports without ANSI carriage
control characters?

Professor Sort says ...

When you produce reports with OUTFIL, DFSORT inserts ANSI carriage control characters in the first byte of
each record that indicate actions to be taken on a printer (e.g. page gect, skip aline, etc), and also ensures that the
RECFM of the OUTFIL data set contains 'A’ (e.g. FBA) for ANSI processing. But sometimes you want to use
OUTFIL's HEADERXx or TRAILERX options to create data records instead of report records (e.g. initial identifica-
tion records before the regular data records, or statistics records after the data records) that you can pass to another
program or step. Since you aren't printing these records, you don't want the ANSI printer controls in the first byte
of the output records and you want the RECFM of the output data set to be FB rather than FBA. You can get what
you want by specifying the REMOVECC option.

For example, suppose you wanted to produce a RECFM=FB output data set with one record containing a count of
the records in the input data set, so you could pass this record to another program. You might try using:

OUTFIL FNAMES=TOTCNT,NODETAIL,
TRAILER1=(COUNT=(M11,LENGTH=6))

but if your input data set had 5723 records, your output record would contain:
1005723

where the '1' in the first byte is the ANSI carriage control character for a page gject and '005723' is the count of
records. In addition, the RECFM would be FBA.

If you changed your OUTFIL statement to:

OUTFIL FNAMES=TOTCNT,NODETAIL,REMOVECC,
TRAILER1=(COUNT=(M11,LENGTH=6))

DFSORT would remove the ANSI carriage control character from the first byte, so your output record would
contain:

005723

and your RECFM would be FB, as required for the other program.

How can | suppress page ejects in OUTFIL reports?

Professor Sort says ...

The BLKCCH1 option of OUTFIL allows you to avoid forcing a page eject at the start of the report header; the
ANSI carriage control character of '1' (page gject) in the first line of the report header (HEADERLD) is replaced with
a blank.

The BLKCCH2 option of OUTFIL allows you to avoid forcing a page eject at the start of the first page header; the

ANSI carriage control character of '1' (page €ject) in the first line of the first page header (HEADER?) is replaced
with a blank.

DFSORT: Ask Professor Sort 25

The BLKCCT1 option of OUTFIL alows you to avoid forcing a page gect at the start of the report trailer; the
ANSI carriage control character of '1' (page gject) in the first line of the report trailer (TRAILERL) is replaced with
a blank.

For example, suppose you wanted to suppress the page egject between the report header and the first page header.
You might use BLKCCH2 like this:

OUTFIL FNAMES=RPT2,
HEADER1=(30:'January Report',2/),
BLKCCHZ2,
HEADER2=(5:'Account Number',25:'Name'),

How can | convert a VB data set to an FB data set?

Professor Sort says ...

The VTOF and BUILD operands of OUTFIL can be used to change variable-length (e.g. VB) input records to
fixed-length (e.g. FB) output records. VTOF indicates that conversion is to be performed and BUILD defines the
reformatted records. All output data sets for which VTOF is used must have or will be given fixed-length record
formats.

Here's an example of OUTFIL conversion:

SORT FIELDS=(7,8,CH,A)
OUTFIL FNAMES=FB1,VTOF,BUILD=(5,76)

The fixed-length output records for the FB1 data set will contain positions 5-80 of the variable-length input records.

But what if some of the variable-length input records are "short" that is, they contain less than the 80 bytes speci-
fied for use by BUILD via 5,76? No problem. DFSORT automatically uses the VLFILL=C' ' option with VTOF to
replace missing bytes in "short" OUTFIL BUILD fields with blanks. So all of your short OUTFIL BUILD records
will be padded with blanks to 80 bytes and all of your long records will be truncated to 80 bytes.

If you want to select your own padding byte, just specify the VLFILL=byte option. For example, here's how you'd
use an asterisk as the padding byte for the previous example:

SORT FIELDS=(7,8,CH,A)
OUTFIL FNAMES=FB1,VTOF,BUILD=(5,76),VLFILL=C'=*"

How can | convert an FB data set to a VB data set?

Professor Sort says ...

The FTOV operand of OUTFIL can be used to change fixed-length (e.g. FB) input records to variable-length (e.g.
VB) output records. If FTOV is specified without BUILD, the entire fixed-length record is used to build the
variable-length record. If FTOV is specified with BUILD, the specified fields from the fixed-length record are used
to build the variable-length record. The output records will consist of a 4-byte RDW followed by the fixed-length
data. All output data sets for which FTOV is used must have or will be given variable-length record formats.

Here's an example of FB to VB conversion:

OUTFIL FNAMES=FBVB1,FTOV
OUTFIL FNAMES=FBVB2,FTOV,BUILD=(1,10,C'=',21,10)

26 DFSORT: Ask Professor Sort

The variable-length output records for the FBVB1 data set will contain a 4-byte RDW followed by the fixed-length
input record.

The variable-length output records for the FBVB2 data set will contain a 4-byte RDW followed by the characters
from input positions 1-10, an '=' character, and the characters from input positions 21-30.

All of the variable-length output records created with FTOV will consist of:
RDW + input fields

Since dl of the input fields from the fixed-length input records are the same, all of the variable-length output
records will be the same length. But if you have trailing characters such as blanks, asterisks, binary zeros, etc, you
can create true variable-length output records with different lengths by using the VLTRIM=byte option of OUTFIL.
VLTRIM=byte can be used with FTOV to remove trailing bytes of the specified type from the end of the variable-
length output records. Here are some examples:

OUTFIL FNAMES=FBVB3,FTOV,VLTRIM=C'="
OUTFIL FNAMES=FBVB4,FTOV,VLTRIM=X'40'
OUTFIL FNAMES=FBVB5,FTOV,VLTRIM=X'00"

FBVB3 will contain output records without trailing asterisks. FBVB4 will contain output records without trailing
blanks. FBVBS5 will contain output records without trailing binary zeros.

How can | put timestamps in my output records?

Professor Sort says ...

INREC, OUTREC and OUTFIL let you generate constants for the current date and time in a variety of
character/zoned decimal and packed decimal formats, giving you an easy way to add timestamps to your output
records. You can place these generated date and time constants anywhere in your records you like and use as many
or as few of them as you need in each record.

Character/zoned decimal date/time constants: You can use DATE, DATE=(abcd), DATENS=(abc),
YDDD=(abc) and YDDDNS=(ab) to generate CH/ZD constants for the current data (that is, today's date) as
follows:

e DATE creates a constant in the form C'mm/dd/yy' which on March 15, 2004 would be C'03/15/04'.

e DATE=(abcd) creates a constant in the form C'adbdc’ where a, b and ¢ can be M for mm, D for dd, Y for yy
or 4 for yyyy, and d is the separator character. For example, DATE=(DM4.) creates C'dd.mm.yyyy" which on
March 15, 2004 would be C'15.03.2004'.

e DATENS=(abc) creates a constant in the form C'abc’ where a, b and ¢ can be M for mm, D for dd, Y for yy
or 4 for yyyy. For example, DATE=(DMY) creates C'ddmmyy' which on March 15, 2004 would be C'150304".

e YDDD=(abc) creates a constant in the form C'acb' where a and b can be D for ddd, Y for yy or 4 for yyyy,
and c is the separator character. For example, YDDD=(4D-) creates C'yyyy-ddd' which on March 15, 2004
would be C'2004-075'.

e YDDDNS=(ab) creates a constant in the form C'ab' where a and b can be D for ddd, Y for yy or 4 for yyyy.
For example, YDDD=(DY) creates C'dddyy' which on March 15, 2004 would be C'07504'.
You can use TIME, TIME=(abc) or TIMENS=(ab) to generate CH/ZD constants for the current time (that is, the
time of the run) as follows:

e TIME creates a constant in the form C'hh:mm:ss' (24-hour time) which at 01:55:43 PM would be C'135543'.

DFSORT: Ask Professor Sort 27

e TIME=(24c) creates a constant in the form C'hhcmmcss' (24-hour time) where c is the separator character. For
example, TIME=(24.) creates C'hh.mm.ss which at 01:55:43 PM would be C'13.55.43'.

e TIME=(12c) creates a constant in the form C'hhcmmcss xx' (12-hour time) where c is the separator character
and xx is'am' or' pm'. For example, TIME=(12.) creates C'hh.mim.ss xx" which at 01:55:43 PM would be
C'01.55.43 pm'.

e TIMENS=(24) creates a constant in the form C'hhmmss' (24-hour time) which at 01:55:43 PM would be
C'135543..

e TIMENS=(12) creates a constant in the form C'hhmmss xx' (12-hour time) where xx is 'am’ or' pm' which at
01:55:43 PM would be C'015543 pm'.

You can also use DATEn and DATEN(c) to generate CH/ZD constants for the current date (that is, today's date)
and TIMEn and TIMEN(c) to generate CH/ZD constants for the current time (that is, the time of the run). The

separator (€) can be any character except blank. Here are tables that show the character/zoned decimal constant
generated for each DATEN and DATEN(c) operand along with an example using / for ¢ where relevent, and for

each TIMEn and TIMEN(c) operand along with an example using : for ¢c where relevent.

Operand Constant Type March 15, 2004
01:55:43 PM

DATE1 C'yyyymmdd' CH, zD C'20040315'

DATEI(c) C'yyyycmmcedd' CH C'2004/03/15'

DATE2 Cyyyymm' CH, zD C'200403'

DATE2(c) Clyyyycmm' CH C'2004/03'

DATE3 C'yyyyddd' CH, zD C'2004075'

DATE3(c) C'yyyycddd' CH C'2004/075'

DATE4 C'yyyy-mm-dd- CH C'2004-03-15-13.55.43'

hh.mm.ss
DATES C'yyyy-mm-dd- CH C'2004-03-15-13.55.43.521386'

hh.mm.ss.nnnnnn'

Operand Constant Type 01:55:43 PM
TIME1 C'’hhmmss CH, zD C'135543'
TIMEL(c) C'hhcmmcess CH C'13:55:43'
TIME2 C'’hhmm' CH, zD C'1355'
TIME2(c) C'hhemm' CH C'13:55'
TIME3 Chh' CH, zD c13

If you wanted to create two different timestamps at the start of each output record as follows:
C'TS1 IS yyyy-mm-dd hh:mm:ss, TS2 IS yyyydddhhmm '

you could use this OUTFIL statement:

28 DFSORT: Ask Professor Sort

OUTFIL BUILD=(C'TS1 IS ',DATE1(-),X,TIME1(:),
c', TS2 IS ',DATE3,TIMEZ,X,
1,80)

Packed decimal date/time constants: You can use DATENP to generate PD constants for the current date (that is,
today's date). You can use TIMENP to generate constants for the current time (that is, the time of the run). Here
are tables that show the packed decimal constant generated for each DATENP and TIMENP operand along with
examples.

Operand Constant Type: March 15, 2004
DATE1P Pyyyymmdd' PD P'20040315'
DATE2P Pyyyymm' PD P'200403'
DATE3P Pyyyyddd' PD P'2004075'
Operand Constant Type 01:55:43 PM
TIME1P Phhmmss PD P'135543'
TIME2P Phhmm' PD P1355'

TIME3P Phh' PD P13

If you wanted to place a Phhmm' constant for the time of the DFSORT run in positions 21-23 of your output
records, and a Pyyyymm' constant for the date of the DFSORT run in positions 55-58 of your output records, you
could use the following OUTREC statement:

OUTREC BUILD=(5:16,10,21:TIME2P,28:37,20,55:DATE2P,65:1,8)

How can | make SMF, TOD and ETOD date and time values
readable?

Professor Sort says ...

DFSORT allows the use of a wide variety of character and numeric formats. DFSORT's SMF date formats (DT1,
DT2 and DT3), TOD date formats (DC1, DC2 and DC3), ETOD date formats (DE1, DE2 and DE3), SMF time
formats (TM1, TM2, TM3 and TM4), TOD time formats (TC1, TC2, TC3 and TC4) and ETOD time formats (TEL,
TE2, TE3 and TE4) allows INREC, OUTREC, OUTFIL, and ICETOOL's DISPLAY and OCCUR operators to
display the normally unreadable SMF, TOD and ETOD date and time values in a wide range of recognizable ways
as follows:

Format Result

DT1 SMF date interpreted as Z'yyyymmdd'

DT2 SMF date interpreted as Z'yyyymm'

DT3 SMF date interpreted as Z'yyyyddd'

DC1 TOD (STCK) date interpreted as Z'yyyymmdd'
DC2 TOD (STCK) date interpreted as Z'yyyymm'

DFSORT: Ask Professor Sort 29

Format Result

DC3 TOD (STCK) date interpreted as Z'yyyyddd'
DE1 ETOD (STCKE) date interpreted as Z'yyyymmdd'
DE2 ETOD (STCKE) date interpreted as Z'yyyymm'’
DE3 ETOD (STCKE) date interpreted as Z'yyyyddd'
™1 SMF time interpreted as Z'hhmmss

™2 SMF time interpreted as Z'hhmm'

T™3 SMF time interpreted as Z'hh'

T™4 SMF time interpreted as Z'hhmmssxx'

TC1 TOD (STCK) time interpreted as Z'hhmmss

TC2 TOD (STCK) time interpreted as Z'hhmm'

TC3 TOD (STCK) time interpreted as Z'hh'

TC4 TOD (STCK) time interpreted as Z'hhmmssxx'
TE1 ETOD (STCKE) time interpreted as Z'hhmmss
TE2 ETOD (STCKE) time interpreted as Z'hhmm'
TE3 ETOD (STCKE) time interpreted as Z'hh'

TE4 ETOD (STCKE) time interpreted as Z'hhmmssxx'

This makes it easy to show SMF, TOD and ETOD date and time values in meaningful ways.

For ICETOOL's DISPLAY and OCCUR operators, the interpreted values can be further edited using various for-
matting items such as E'pattern’. This makes it easy to show SMF, TOD and ETOD date and time values in
meaningful ways.

The following example shows how ICETOOL's DISPLAY operator can be used to show SMF date and time values
as easily understood data in a report on SMF type-14 records.

DISPLAY FROM(SMF14) LIST(SMF14RPT) -
TITLE('SMF Type-14 Records') DATE(4MD/) -
HEADER('Date') ON(11,4,DT1,E'9999/99/99') -
HEADER('Time') ON(7,4,TM1,E'99:99:99') -
HEADER('Sys') ON(15,4,CH) -
HEADER('Jobname') ON(19,8,CH) -
HEADER('Datasetname') ON(69,44,CH)

The SMF14RPT report might look as follows:
SMF Type-14 Records 2008/02/21

Date Time Sys Jobname Datasetname

2004/01/09 06:03:15 IDO3 JOBAOOO3 SYS1.QRS
2004/01/09 10:03:22 IDO2 JOBOOOO2 SYS1.XYZ
2004/02/16 14:05:37 IDO3 JOBOOOA4 SYS1.MNO
2004/02/21 22:11:00 IDOG3 JOBOOOO5 SYS1.MNO
2004/02/21 23:12:08 IDO3 JOBOOOO6 SYS1.MNO

30 DFSORT: Ask Professor Sort

For INREC, OUTREC and OUTFIL, the interpreted values can be further edited using the pre-defined edit masks
(MO-M26) or specified edit patterns you define, or converted to other formats using TO=fo.

The following example shows how the OUTREC statement can be used to convert TOD date and time values to
readable form:

OUTREC BUILD=(X,11,8,DC3,EDIT=(TTTT-TTT),
X,11,8,TC2,EDIT=(TT:TT))

The SORTOUT output might look as follows:

2004-009 06:03
2004-009 10:03
2004-041 14:05
2004-052 22:11
2004-052 23:12

How can | use INCLUDE/OMIT with numeric or non-numeric
values?

Professor Sort says ...

INCLUDE and OMIT can test fields for numerics (field,EQ,NUM) or non-numerics (field, NE,NUM) of the fol-
lowing forms:

e Character (FS format): Test for '0'-'9' in all bytes. For example, if you used the following INCLUDE state-
ment:

INCLUDE COND=(21,5,FS,EQ,NUM)

a record with a value of '02579' in positions 21-25 would be included, whereas records with values of '02A79,
'-2579" and '0257 ' would not be included.

e Zoned decimal (ZD format): Test for X'FO'-X'F9' for all bytes except the last, and X'FO'-X'F9', X'D0-X'D9" or
X'C0O-X'C9' in the last (sign) byte. For example, if you used the following OMIT statement:

OMIT COND=(31,3,ZD,NE,NUM)

a record with a value of X'F1F3D8' in positions 31-33 would not be omitted, whereas records with values of
X'F1F3A8' and X'404040' would be omitted.

e Packed decimal (PD format): Test for 0-9 for all digits and F, D or C for the sign. For example, if you used
the following OUTFIL statement:

OUTFIL INCLUDE=(11,2,PD,EQ,NUM)

a record with a value of X'832C' in positions 11-12 would be included, whereas records with values of X'3A2F
and X'4290"' would not be included.

This makes it easy to include or omit records based on whether they contain valid numeric data.

Note: You can also use NUM in the WHEN, BEGIN and END operands of IFTHEN clauses.

DFSORT: Ask Professor Sort 31

How can | use INCLUDE/OMIT with current, past and future
dates?

Professor Sort says ...

INCLUDE and OMIT can compare appropriate fields against generated run-time constants for current, past and
future dates in the following forms (d is days, m is months and c is any character except a blank):

Operand Constant
DATE1, DATE1-d, DATE1+d C'yyyymmdd'
DATEZL(c), DATE1(c)-d, DATE1(c)+d C'yyyycmmcdd'
DATE1P, DATE1P-d, DATE1P+d +yyyymmdd
DATE2, DATE2-m, DATE2+m Clyyyymm'
DATEZ2(c), DATE2(c)-m, DATE2(c)+m C'yyyycmm'
DATE2P, DATE2P-m, DATE2P+m +yyyymm
DATE3, DATE3-d, DATE3+d Clyyyyddd'
DATE3(c), DATE3(c)-d, DATE3(c)+d Cyyyycddd'
DATE3P, DATE3P-d, DATE3P+d +yyyyddd
DATE4 C'yyyy-mm-dd-hh.mm.ss
Y'DATEL', Y'DATE1'-d, Y'DATE1' +d Y'yymmdd'
Y'DATEZ2', Y'DATE2-m, Y'DATE2 +m Y'yymm'
Y'DATEZ', Y'DATE3'-d, Y'DATE3' +d Y'yyddd'

This makes it easy to include or omit records based on whether they contain dates equal to, lower than or higher
than the date of the run, a date before the run or a date after the run.

DATEnN and DATEN(c) generate a character string (C'string’) for today's date that can be used in comparisons just
like any other character string. Likewise, DATEN-r and DATEN(C)-r generate a character string for a past date and
DATEnN+r and DATEN(c)+r generate a character string for a future date.

DATENP generates a decimal number (+n) for today's date that can be used in comparisons just like any other
decimal number. Likewise, DATENP-r generates a decimal number for a past date and DATENP+r generates a
decimal number for a future date.

Y'DATEN' generates a'Y constant (Y'string’) for today's date that can be used in date comparisons just like any
other Y constant. Likewise, Y'DATEN-r generates a Y constant for a past date and Y'DATEN'+r generatesa Y
constant for a future date.

For example, if you used the following INCLUDE statement for a DFSORT run on January 29, 2006:
INCLUDE COND=(21,8,ZD,GE,DATE1P-7,AND,21,8,ZD,LE,DATELP)

the generated date for DATELP-7 would be +20060122 and the generated date for DATELP would be +20060129.
The SORTOUT data set would include only those records with a date in positions 21-28 between +20060122 and
+2006129. So a record with a Z2'20060125' date would be included, whereas a record with a Z'20060120' date
would not be included.

32 DFSORT: Ask Professor Sort

Note: You can aso use current, past and future dates in the WHEN, BEGIN and END operands of IFTHEN
clauses.

How can | use INCLUDE/OMIT with "short" fields?

Professor Sort says ...

DFSORT's VLSCMP option alows short INCLUDE and OMIT fields to be compared as if they were temporarily
padded with binary zeros. A short field is one where the variable-length record is too short to contain the entire
field, that is, the field extends beyond the record. To illustrate what you can do with VLSCMP, consider the
following INCLUDE statement:

INCLUDE COND=(6,1,CH,EQ,C'1',0R,21,5,CH,EQ,C"'ABCDE")
and a 15-byte record with a character 1 in position 6.

e By default, DFSORT uses options NOVLSCMP and NOVLSHRT, which result in termination when the short
INCLUDE field at positions 21-25 is found.

e |f you use NOVLSCMP and VLSHRT, DFSORT treats the entire logical expression as false when the short
INCLUDE field at positions 21-25 is found, so the record is omitted (this can be very useful in certain situ-
ations).

e But if you use VLSCMP, DFSORT temporarily pads the short INCLUDE field at positions 21-25 with binary
zeros and does the two comparisons. The first comparison is true (position 6 has a character 1), so the record
is included even though the second comparison involves a short field.

The use of binary zero padding with VLSCMP can make a comparison true instead of false, so you need to allow
for that or even take advantage of it. For example, you could use statements like:

OPTION VLSCMP
INCLUDE COND=(6,1,CH,EQ,C'1',0R,21,1,BI,GT,X'08")

to include records with character 1 in position 6 or hex 09 to hex FF in position 21. Records shorter than 21 bytes
without character 1 in position 6 are omitted because position 21 is padded with hex 00 and is thus less than hex
08.

On the other hand, statements like:

OPTION VLSCMP
INCLUDE COND=(6,1,CH,EQ,C'1',0R,21,1,BI,LT,X'08")

inadvertently include records with short fields, as well as records with character 1 in position 6 or hex 00 to hex 07
in position 21. Records shorter than 21 bytes are included because position 21 is padded with hex 00 and is thus
less than hex 08. To omit the unwanted records with short fields, you can add a test of the record length like so:

OPTION VLSCMP
INCLUDE COND=(6,1,CH,EQ,C'1',0R,
(1,2,BI,GE,X'0015',AND,21,1,BI,LT,X'08"))

Now records shorter than 21 bytes (hex 0015) without character 1 in position 6 are omitted, making the padding of
position 21 for records with short fields irrelevent.

When you use VLSCMP, keep in mind that short fields are padded with binary zeros and construct your INCLUDE
or OMIT conditions accordingly to get the results you want.

DFSORT: Ask Professor Sort 33

Can DFSORT use large tape block sizes?

Professor Sort says ...

DFSORT can use tape data sets with block sizes greater than 32760 bytes for input and output, providing improved
performance and tape utilization.

The SDB installation and run-time option allows selection of system-determined optimum block sizes greater than
32760 bytes for output tape data sets. If you want to use system-determined block sizes for DASD and tape output
data sets, specify one of the following values:

e SDB=LARGE if you want DFSORT to select tape output block sizes greater than 32760 bytes.
e SDB=YES or SDB=SMALL if you want DFSORT to select tape output block sizes up to 32760 bytes.

e SDB=INPUT if you want DFSORT to select tape output block sizes greater than 32760 bytes only if the tape
input block size is greater than 32760 bytes. SDB=INPUT is the IBM-supplied installation default.

If you don't want DFSORT to use system-determined block sizes, specify SDB=NO (not recommended).

Even with SDB=LARGE or SDB=INPUT, DFSORT will not select a tape output block size greater than the
BLKSZLIM in effect, so you may need to specify a value like BLKSZLIM=1G in your output DD statement.
Here's an example of a DFSORT job that selects system-determined block sizes greater than 32760 bytes for
SORTOUT and OUTFIL tape output data sets:

//EXAMP JOB ...

//SDBOUT EXEC PGM=ICEMAN

//SYSOUT DD SYSOUT==*

//SORTIN DD DSN=INPUT.DATA,DISP=SHR

//SORTOUT DD DSN=0OUTPUT1,DISP=(NEW,KEEP),UNIT=3590,V0L=SER=075834,

// LABEL=(,SL) ,BLKSZLIM=1G
//0UT2 DD DSN=QUTPUT2,DISP=(NEW,KEEP),UNIT=3590,V0L=SER=075835,
/l LABEL=(,SL) ,BLKSZLIM=1G

//SYSIN DD =

OPTION SDB=LARGE

SORT FIELDS=(10,8,CH,A)

OUTFIL FNAMES=0UT1,0MIT=(22,3,CH,EQ,C'FLY")
/*

DFSORT's ICEGENER, like IEBGENER, will use the parameters SDB=LARGE, SDB=YES, SDB=SMALL,
SDB=INPUT and SDB=NO if you specify them. Here's an example of an IEBGENER job that selects a system-
determined block size greater than 32760 bytes for a SYSUT2 tape output data set:

//EXAMP JOB ...

//SDBOUT EXEC PGM=IEBGENER,PARM="'SDB=LARGE'

//SYSPRINT DD SYSOUT==

//SYSUT1 DD DSN=INPUT.DATA,DISP=SHR

//SYSUT2 DD DSN=OUTPUT3,DISP=(NEW,KEEP),UNIT=3590,V0L=SER=075836,
// LABEL=(,SL) ,BLKSZLIM=1G

//SYSIN DD DUMMY

This same job can use DFSORT's more efficient ICEGENER facility if your site has installed ICEGENER to be

invoked by the name IEBGENER. Alternatively, you can specify PGM=ICEGENER to ensure that ICEGENER is
used.

34 DFSORT: Ask Professor Sort

How can | recover data sets with incomplete spanned
records?

Professor Sort says ...

DFSORT's SPANINC ingtallation and run-time option lets you decide how to handle data sets that contain incom-
plete spanned records. Here are the available options:

e SPANINC=RCO - specifies that DFSORT should issue a warning message, set a return code of 0 and eliminate
all incomplete spanned records it detects. Valid records (that is, complete spanned records) are recovered and
written to the output data set.

e SPANINC=RC4 - specifies that DFSORT should issue a warning message, set a return code of 4 and eliminate
all incomplete spanned records it detects. Valid records (that is, complete spanned records) are recovered and
written to the output data set.

e SPANINC=RCI16 - specifies that DFSORT should issue an error message, set a return code of 16 and terminate
if it detects an incomplete spanned record.

How many work and merge data sets can DFSORT use?

Professor Sort says ...

DFSORT allows you to use up to 255 dynamically allocated work data sets. Any valid ddname of the form
SORTWKdd or SORTWKd can be used for work data sets. In addition to the standard ddnames like
SORTWK00-99 and SORTWKO0-9, you can also use ddnames like SORTWK3B, SORTWK#5, SORTWKXY and
SORTWKZ.

DFSORT allows you to merge up to 100 input data sets.

DFSORT also supports large format data sets which were introduced with z/OS 1.7. Prior to zZ/OS 1.7, most
sequential data sets were limited to 65,535 tracks on each volume, although most hardware storage devices sup-
ported far more tracks per volume. To support this hardware capability, zZ/OS 1.7 allowed users to create new large
format data sets, which are physical sequential data sets with the ability to grow beyond the previous size limit.
DFSORT supports large format data sets for input, output and work files. DFSORT's dynamic allocation feature
automaticaly allocates work data sets as large format on z/OS 1.7 and above. To exploit large format data sets for
JCL work data sets, DSNTY PE=LARGE should be added to the SORTWKdd DD statements.

The large number of supported data sets allows you to sort or merge a significant amount of data in a single
application.

How much main storage does DFSORT need to sort most
efficiently?

Professor Sort says ...

It depends on severa factors, the most important of which is the input file size (that is, the amount of data being
sorted). In general, the larger the file size, the more main storage DFSORT requires to sort with the same degree
of efficiency. Fortunately, DFSORT's Dynamic Storage Adjustment (DSA) feature takes most of the guesswork out
of setting main (virtual) storage for DFSORT.

DFSORT: Ask Professor Sort 35

With DSA, DFSORT uses the default (TMAXLIM) amount of main storage for most sorts, unless it determines that
DFSORT performance would benefit from using more main storage. In those cases, DFSORT automatically uses
more main storage to achieve optimum performance.

See "What is Dynamic Storage Adjustment and how can it help me?" in this paper for more information on
DFSORT's DSA feature.

What is Dynamic Storage Adjustment and how can it help
me?

Professor Sort says ...

Dynamic Storage Adjustment (DSA) is a feature that allows DFSORT to automatically use more main storage to
achieve optimum performance.

The DSA=n installation option specifies the maximum amount of storage (in megabytes) available to DFSORT for
dynamic storage adjustment of a sort application when SIZE/MAINSIZE=MAX isin effect. If you specify a DSA
value greater than the TMAXLIM value, you alow DFSORT to use more storage than the TMAXLIM value if
doing so should improve performance. The amount of storage DFSORT uses is subject to the DSA value as well
as system limits such as region size. However, whereas DFSORT aways tries to obtain as much storage as it can
up to the TMAXLIM value, DFSORT only tries to obtain as much storage as needed to improve performance up to
the DSA value.

The performance improvement from dynamic storage adjustment usually provides a good tradeoff against the
increased storage used by DFSORT. If storage is not constrained on your system, DSA can be set to a large value
(such as 64 or 128 megabytes) to optimize DFSORT performance on very large sorts. On storage constrained
systems, however, the DSA value should be set low enough to prevent unacceptable paging.

The IBM shipped default for DSA is 64 megabytes.

Is it important to install the DFSORT SVC?

Professor Sort says ...

The DFSORT-supplied SVC enables DFSORT to run authorized functions without itself being authorized.

For best performance, you should install the DFSORT SV C, because the following performance-related functions
are impaired if DFSORT's SVC is not available:

e SMF TYPE-16 record

DFSORT's type-16 SMF record contains useful information for analyzing the performance of DFSORT.
Without the SVC, DFSORT cannot write the SMF record to an SMF system data set. If DFSORT's SMF
feature is activated (installation or run-time option SMF=SHORT or SMF=FULL) and a properly installed SVC
is not available, then all DFSORT applications will abend.

e CACHE FAST WRITE

Cache fast write (CFW) enables DFSORT to save elapsed time because DFSORT is able to write its interme-
diate data into storage control cache, and read it from the cache. Without the SVC, DFSORT cannot use CFW,
and elapsed time performance can be degraded.

e CACHING MODE

36 DFSORT: Ask Professor Sort

For cached storage control units, DFSORT selects the caching mode that is best for the circumstances. This
also helps other applications make the best use of the cache. Without the SVC, DFSORT cannot set these
caching modes, which can result in system and DFSORT elapsed time performance degradation.

In addition to the functions described above, there are other performance enhancements that are available to
DFSORT through use of the SVC.

Thus you should ensure that the installation of the DFSORT SVC has been completed correctly so that the SVC can
be used. How the SVC is installed depends on whether you are replacing an earlier DFSORT release, installing a
new release to coexist with an earlier release, or installing DFSORT for the first time. You must set the SVC
installation option to correspond to the way you install the SVC. See zZ0OS DFSORT Installation and Customization
for details on installing the DFSORT SVC.

How can DFSORT be used to analyze data produced by
DCOLLECT, DFSMSrmm, etc?

Professor Sort says ...

The DFSORT product tape contains a set of illustrative examples that show how DFSORT and ICETOOL can be
used to analyze data created by DFHSM, DFSMSrmm, DCOLLECT and SMF. The source for the following exam-
ples are available in sample job ICESTGEX:

e DCOLEX1 - DCOLLECT Example 1: VSAM report.
DCOLEX2 - DCOLLECT Example 2: Conversion reports.

e DCOLEX3 - DCOLLECT Example 3: Capacity planning analysis and reports.

e DFHSMEX1 - DFHSM Example 1: Deciphering Activity Logs.

e DFHSMEX2 - DFHSM Example 2: Recover a DFHSM CDS with a broken index.
e RMMEX1 - DFSMSrmm Example 1: SMF audit report.

e RMMEX2 - DFSMSrmm Example 2: Create ADDVOLUME commands.

You can obtain the ICESTGEX examples from the DFSORT product tape, or download a .zip file containing the
examples from the DFSORT FTP site using:

ftp://ftp.software.ibm.com/storage/df sort/mvs/icestgex.zip
DFSORT symbols can be used to make it easier to process data associated with other products.

SHARE 86 presentation 3054 included the following examples of using DFSORT's ICETOOL utility to create
reports from DCOLLECT data:

e SHARS861 - Example using ICETOOL to extract SMS statistics for volumes, and produce a summary report.
e SHARS862 - Example to show allocated space, used space, and unblockable space by data set by DSORG.

You can download a .zip file containing the SHR3054 examples from the DFSORT FTP site using:
ftp://ftp.software.ibm.com/storage/df sort/mvs/shr3054.zip
Here's the DCOLEX2 example from ICESTGEX to show you a small sample of what DFSORT/ICETOOL can do

with DCOLLECT data:

DFSORT: Ask Professor Sort 37

//DCOLEX2 JOB ...
//**
//% DCOLLECT EXAMPLE 2: CONVERSION REPORTS

//% ASSIGN ENGLISH DESCRIPTIONS TO BIT FLAGS TO SHOW
//* MIGRATION STATUS OF VOLUMES (IN CONVERSION, MANAGED
//* BY SMS AND NON-SMS MANAGED).
//**
//STEPL EXEC PGM=ICETOOL

//TOOLMSG DD SYSOUT=+ ICETOOL MESSAGES

//DFSMSG DD SYSOUT=+ DFSORT MESSAGES

//TOOLIN DD =* CONTROL STATEMENTS

* PART 1 - ADD IDENTIFYING STATUS (FLAG) DESCRIPTION FOR
* '"MANAGED', 'IN CONVERSION' AND 'NON-MANAGED'
* VOLUME RECORDS

COPY FROM(DCOLALL) USING(FLAG)
% PART 2 - PRINT REPORT SHOWING COUNT OF EACH STATUS TYPE
OCCUR FROM(STATUS) LIST(REPORTS) -
TITLE('STATUS COUNT REPORT') DATE -
BLANK -
HEADER('STATUS') ON(7,20,CH) -
HEADER('NUMBER OF VOLUMES') ON(VALCNT)

38 DFSORT: Ask Professor Sort

* PART 3 - PRINT REPORT SORTED BY VOLUMES AND STATUS
SORT FROM(STATUS) TO(SRTVOUT) USING(SRTV)
DISPLAY FROM(SRTVOUT) LIST(REPORTV) -
TITLE('VOLUME/STATUS REPORT') DATE PAGE -
BLANK -
HEADER('VOLUME') ON(1,6,CH) -
HEADER('STATUS') ON(7,20,CH)
* PART 4 - PRINT REPORT SORTED BY STATUS AND VOLUMES
SORT FROM(STATUS) TO(SRTIOUT) USING(SRTI)
DISPLAY FROM(SRTIOUT) LIST(REPORTI) -
TITLE('STATUS/VOLUME REPORT') DATE PAGE -
BLANK -
HEADER('STATUS') ON(7,20,CH) -
HEADER('VOLUME') ON(1,6,CH)
//DCOLALL DD DSN=Y176398.R12.DCOLLECT,DISP=SHR
//STATUS DD DSN=&&TEMP1,DISP=(,PASS),UNIT=SYSDA,
// LRECL=50,RECFM=FB,DSORG=PS
//SRTVOUT DD DSN=&&TEMP2,DISP=(,PASS),UNIT=SYSDA
//SRTIOUT DD DSN=&&TEMP3,DISP=(,PASS),UNIT=SYSDA
//FLAGCNTL DD =*
* FIND V-TYPE RECORDS WITH STATUS FLAGS OF INTEREST
INCLUDE COND=(9,2,CH,EQ,C'V ',AND,
35,1,BI,NE,B'...... 10")
CREATE RECFM=FB OUTPUT RECORDS WITH VOLSER AND
STATUS DESCRIPTION.
LOOKUP/CHANGE TABLE -

*

*

*

* FLAG DESCRIPTION

K e mmmmmmmmem e

* DCVMANGD MANAGED BY SMS
DCVINITL IN CONVERSION TO SMS
DCVNMNGD NON-SMS MANAGED

OUTFIL FNAMES=STATUS,CONVERT,
OUTREC=(29,6,
35,1,CHANGE=(20,

B'...... 11',C'MANAGED BY SMS',
B'...... 01',C'IN CONVERSION TO SMS',
B'...... 00',C'NON-SMS MANAGED'),

50:X)

//REPORTS DD SYSQUT=x

//SRTVCNTL DD *

* SORT BY VOLUME AND INDENTIFYING STATUS STRING
SORT FIELDS=(1,6,CH,A,7,20,CH,A)

//SRTICNTL DD =*

* SORT BY INDENTIFYING STATUS STRING AND VOLUME
SORT FIELDS=(7,20,CH,A,1,6,CH,A)

//REPORTV DD SYSQUT=x

//REPORTI DD SYSOUT=x

/1%

DFSORT: Ask Professor Sort

39

How can | create a report with just statistics?

Professor Sort says ...

Both OUTFIL and ICETOOL's DISPLAY operator can be used to produce reports with headers, columns of data,
and trailers containing overall statistics (that is, totals, averages, minimums, maximums and/or counts for all of the
data).

In addition, the NODETAIL operand of OUTFIL can be used to eiminate the columns of data so that only the
headers and trailers (with overal statistics) are printed.

Here's an example of the control statements for an OUTFIL report containing overall statistics without the columns
of data:

OPTION COPY
OUTFIL FNAMES=RPT,NODETAIL,
TRAILER1=(2/,

'Summary Report for Division Revenues',5X,DATE,3/,
'"Number of divisions reporting: ',COUNT=(M10,LENGTH=3),2/,
'Total revenue: ',18:TOTAL=(25,8,ZD,M14,LENGTH=12),2/,
'Lowest revenue: ',18:MIN=(25,8,ZD,M14,LENGTH=12),2/,
'Highest revenue: ',18:MAX=(25,8,ZD,M14,LENGTH=12),2/,
'"Average revenue: ',18:AVG=(25,8,ZD,M14,LENGTH=12))

Here's an example of the output that might appear in RPT:

Summary Report for Division Revenues 10/17/08

Number of divisions reporting: 15
Total revenue: 166 679 754
Lowest revenue: (5 213 641)
Highest revenue: 82 348 343
Average revenue: 33 335 950

Both OUTFIL and ICETOOL's DISPLAY operator can also be used to produce reports with headers, columns of
data, and trailers containing section statistics (that is, totals, averages, minimums, maximums and/or counts for
records with the same value for a specified field).

Again, the NODETAIL operand of OUTFIL can be used to eliminate the columns of data so that only the headers
and trailers (with section statistics) are printed.

Here's an example of the control statements for an OUTFIL report containing section totals without the columns of
data:

SORT FIELDS=(3,5,CH,A)
OUTFIL FNAMES=SUMMARY,NODETAIL,
HEADER2=(' Date: ',DATE=(DMY.),4X,'Page: ',PAGE,/,
' Division Profit/Loss Report',2/,
5:'Division',15:"' Profit or Loss',32:'Employees’',/,
Bilemome - P15 e ',32: —m - N,
SECTIONS=(3,5,
TRAILER3=(5:3,5,
15:TOTAL=(25,7,ZD,M12,LENGTH=15),
32:T0TAL=(15,5,ZD,M12,LENGTH=9)))

40 DFSORT: Ask Professor Sort

Here's an example of the output that might appear in SUMMARY :
Date: 17.10.08 Page: 1
Division Profit/Loss Report

Division Profit or Loss Employees

East 4,675,646 1,477
North 14,415,345 3,802
South -221,882 838
West 5,996,480 1,650

How can | have DFSMS place my work data sets on volumes
with adequate space?

Professor Sort says ...

It is common for ACS routines to check only the & size variable when determining the volume placement for a
particular data set. This practice may cause each dynamically allocated SORTWK data set to register with a &size
value of 0, so that they all end up on the same volume, resulting in B37 abends. The best way to ensure that the
dynamically allocated SORTWKdd data sets are placed on volumes with adequate space is to modify the ACS
routines to base the volume assignment decisions on the & maxsize variable, rather then the & size variable.

What kind of performance improvements are possible with
OUTFIL?

Professor Sort says ...

With OUTFIL, sort, merge and copy applications can create multiple output data sets containing unedited or edited
records, different ranges or subsets of records, reports and so on, from a single pass over one or more input data
sets.

To show how the use of OUTFIL can slash elapsed time, EXCPs and CPU time, we did laboratory measurements
in a stand-alone environment for the creation of 10 and 15 sorted subset output data sets of 30 megabytes from an
input data set of 200 megabytes. Here's the range of performance improvements we observed with DFSORT using
a single sort step with OUTFIL vs DFSORT using a sort step followed by multiple copy steps (keep in mind that
performance improvements will vary depending on factors such as key size, record type, number of records,
processor model, region size, and so on):

e 85% to 89% elapsed time reduction
e 13% to 30% CPU time reduction
e 89% to 92% EXCP count reduction

DFSORT: Ask Professor Sort 41

How can DFSORT help with the Year 2000 challenge?

Professor Sort says ...

The widespread use of two-digits to represent years can result in significant data processing problems. For
example, the normal ordering of 00 before 99 is incorrect when 00 represents 2000 and 99 represents 1999.
DFSORT's Year 2000 features provide tools that can help you correctly process a wide variety of dates for this
century and the coming ones.

DFSORT provides powerful Year 2000 features that allow you to sort, merge, compare and transform character,
zoned decimal and packed decimal dates with two-digit years according to a specified diding or fixed century
window.

You can handle two-digit year date fields, and their specia indicators like zeros and nines, in the following ways:

e Set the appropriate century window for your applications and use it to interpret the years (yy) correctly when
you sort, merge, compare or transform two-digit year dates.

For example, set a century window of 1915-2014 or 1950-2049.

e Order character, zoned decimal or packed decimal two-digit year dates with the SORT and MERGE state-
ments. For example, order 980622 (representing June 6th, 1998) before 000622 (representing June 6th, 2000)
in ascending sequence, or order 000622 before 980622 in descending sequence.

DFSORT's full date formats (Y2T, Y2U, Y2V, Y2W, Y2X and Y2Y) make it easy to sort or merge any type
of yyx...x or x...xyy date (for example, yyqg, yymm, yyddd, yymmdd, qyy, mmyy, dddyy or mmddyy).
DFSORT's year formats (Y2C, Y2Z, Y2S, Y2P, Y2D and Y2B) are available if you need to sort or merge
specia dates (for example, ddmmyy) or year fields (yy).

e Select records by comparing character, zoned decimal or packed decimal two-digit year date fields to date
constants or other date fields with the INCLUDE and OMIT statements or OUTFIL's INCLUDE and OMIT
operands. For example, select records with a date field between January 1st, 1998 and December 31st, 2003.

Note: You can aso use two-digit year dates in the WHEN, BEGIN and END operands of IFTHEN clauses.

DFSORT's full date formats make it easy to compare any type of yyx...x or x...xyy date field to a date constant
or another date field. DFSORT's year formats are avalable if you need to compare years.

e Transform character, zoned decimal or packed decimal two-digit year dates to character four-digit year dates
with or without separators, or transform packed decimal two-digit year dates to packed decimal four-digit year
dates, with the INREC, OUTREC or OUTFIL statements. For example, transform P'99015' to C'1999015,
C'1999/015' or P'1999015'".

DFSORT's full date formats make it easy to transform any type of yyx...x or x...xyy date. DFSORT's year
formats are available if you need to transform specia dates or year fields.

In addition, you can use DFSORT's Year 2000 features or explicitly without MLE.

These DFSORT enhancements allow you to continue to use two-digit year dates for sorting, merging and com-
paring, and help you to change from using two-digit year dates to using four-digit year dates as appropriate.

42 DFSORT: Ask Professor Sort

'KP WOULD EXCEED MAXIMUM SIZE.

'SORTASKP LINE 1255: //[DAPUBS DD DSN=& & DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),
STARTING PASS 2 OF 2.

'KP WOULD EXCEED MAXIMUM SIZE.

'SORTASKP LINE 1255: //[DAPUBS DD DSN=& & DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),

	DFSORT: Ask Professor Sort
	Introduction: Details of functions used in answers
	How can I determine my DFSORT PTF function level?
	What level of DFSORT features does the DFSORT website describe?
	Where can I find information to help me use DFSORT more effectively?
	The DFSORT website
	The DFSORT library
	Online DFSORT books
	LookAt
	Other IBM books
	Papers and examples

	Where can I ask specific questions about DFSORT?
	Can I set DFSORT installation options from PARMLIB members?
	How can I let DFSORT use more resources on weekends and off-shift?
	What are the advantages of dynalloc over SORTWKdd DDs?
	How can I list my site's DFSORT installation defaults?
	How can I supply control statements for a program that calls DFSORT?
	What should I know about migrating to DFSORT from other sort products?
	What are the equivalent DFSORT formats for various COBOL data types?
	Can DFSORT obtain information from my tape management system?
	DFSMSrmm
	Other tape management systems

	How does DFSORT take advantage of central storage?
	How can memory objects, data spaces and Hiperspaces be customized?
	How can I reformat my records?
	What is JOINKEYS and how can it help me?
	What is ICETOOL and how can it help me?
	What kind of reports can I produce with ICETOOL?
	What is ICEGENER and how can I use it?
	What is OUTFIL and how can it help me?
	What are DFSORT symbols and how can they help me?
	How can I produce ICETOOL reports without ANSI carriage control characters?
	How can I produce OUTFIL reports without ANSI carriage control characters?
	How can I suppress page ejects in OUTFIL reports?
	How can I convert a VB data set to an FB data set?
	How can I convert an FB data set to a VB data set?
	How can I put timestamps in my output records?
	How can I make SMF, TOD and ETOD date and time values readable?
	How can I use INCLUDE/OMIT with numeric or non-numeric values?
	How can I use INCLUDE/OMIT with current, past and future dates?
	How can I use INCLUDE/OMIT with "short" fields?
	Can DFSORT use large tape block sizes?
	How can I recover data sets with incomplete spanned records?
	How many work and merge data sets can DFSORT use?
	How much main storage does DFSORT need to sort most efficiently?
	What is Dynamic Storage Adjustment and how can it help me?
	Is it important to install the DFSORT SVC?
	How can DFSORT be used to analyze data produced by DCOLLECT, DFSMSrmm, etc?
	How can I create a report with just statistics?
	How can I have DFSMS place my work data sets on volumes with adequate space?
	What kind of performance improvements are possible with OUTFIL?
	How can DFSORT help with the Year 2000 challenge?

