Sphinx 3.4 Development
Progress

Arthur Chan, Jahanzeb Sherwani
Carnegie Mellon University
Mar 4, 2004

This seminar

Overview of Sphinxes (5 mins.)

Report on Sphinx 3.4 development
progress (40 mins.)

B Speed-up algorithms

B |Language model facilities
User/developer forum (20 mins.)

Sphinxes

0 Sphinx 2
B Semi-continuous HMM-based

B Real-time performance : 0.5xRT — 1.5xRT
[0 Tree lexicon

B Ideal for application development
0 Sphinx 3
B Fully-Continuous HMM

B Significantly slower than Sphinx 2 : 14-17xRT (tested
in P4 1G)

0 Flat lexicon.
B Ideal for researcher
0 Sphinx 3.3
B Significant modification of Sphinx 3
B Close to RT performance 4-7xRT — Tree lexicon

Sphinx 3.4

Descendant of Sphinx 3.3

B With improved speed performance

[0 Already achieved real-time performance
(1.3xRT) in Communicator task.

B Target users are application developers
B Motivated by project CALO

Overview of S3 and S3.3:
Computations at every frame

Scores

Senone

Computation search

(Information
For Pruning
GMM)

S3: -Flat lexicon, all senones
are computed.

S3.3: -Tree lexicon, senones
only when active in search.

Current Systems Specifications
(without Gaussian Selection)

Sphinx 3 Sphinx 3.3
Speed in P4-1G ERR 17.2% ERR 18.6%
Tested in 11xRT GMM, 6XRT GMM,
Communicator Task | 3xRT Srch 1xRT Srch
GMM Computations |Not optimized |Can applied

(feW code SUb'VQ'baSEd

optimization)

Gauss. Selection

Lexicon Flat Tree
Search Beam on Beam on Search
search, no Beam on GMM.

beam on GMM

Our Plan in Q1 2004
upgrade s3.3 to s3.4

Fast Senone Computation

B 4-Level of Optimization

Other improvements

B Phoneme look-ahead

[0 Reduction of search space by determining
the active phoneme list at word-begin.

B Multiple and dynamic LM facilities

Fast Senone Computation

Ol

Ll

More than >100 techniques can be found in the
literature from 1989-2003.

Most techniques
B claim to have 50-80% reduction of computation
B with “negligible” degradation

O Practically : It translate to 5% to 30% relative
degradation.

Our approaches

B categorize them to 4 different types
B implement representative techniques
B tune system to <5% degradation

Users can choose which types of technique should be
used.

Fast GMM Computation:
Level 1: Frame Selection

-Compute GMM in one and other frame only

-Improvement : Compute GMM only if

~ | current frame is similar to previous frame

Algorithms

Ol

The simple way (Naive Down-Sampling)

B Compute senone scores only one and another N
frames

In Sphinx 3.4, implemented
B Simple way
B Improved version (Conditional Down-Sampling)

[0 Found sets of VQ codebook.

O If a vector is clustered to a codeword again,
computation is skipped.

Naive down-sampling

B Rel 10% degradation, 40-50% reduction
Conditional down-sampling

B Rel 2-3% degradation, 20-30% reduction

Fast GMM Computation:
Level 2 : Senone Selection

GMM

i

1l

-Compute GMM only when
its base-phones are highly
likely
-Others backed-off by the
base phone scores.
-Similar to
-Julius: (Akinobu 1999)
-Microsoft’s Rich Get Richer
(RGR) heuristics

Algorithm:
Cl-based Senone Selection

Ll

Ll

If base CI senone of CD senone has high score

B E.g. aa (base CI senone) of t_ aa_b (CD senone)
B compute CD senone

Else,

B Back-off to CI senone

Known problems.

B Back-off caused many senone scores be the same
B Caused inefficiency of the search

Very effective

B 7/5%-80% reduction of senone computation with
<5% degradation

B Worthwhile in system with large portion time spent in
doing GMM computation.

Fast GMM Computation:
Level 3 : Gaussian Selection

N

=

GMM

:/

B

Gaussian

Algorithm: VQ-based
Gaussian Selection

Bochierri 93
In training:
B Pre-compute a set of VQ codebook for all means.

B Compute the neighbors for each senones for
codeword.

0 If the mean of a Gaussian is closed to the codeword,
consider it as a neighbor.

[0 In run-time:
B Find the closest codeword for the feature.

B compute Gaussian distribution(s) only when they
is/are the neighbor

0 Quite effective 40-50% reduction, <5% degrdation

O
O

Issues:

B Require back-off schemes.
[0 Minimal number of neighbors

[0 Always use the closest Gaussian as a
neighbor (Douglas 99)

B Further constraints to reduce
computation.
[0 Dual-ring constraints (Knill and Gales 97)

B Overhead is quite significant

Other approaches

[ree-based algorithm
B k-d tree
B Decision tree

Issues : How to adapt these models?
B No problem for VQ-based technique
B Research problems.

Fast GMM Computation:
Level 4 . Sub-vector quantization

~—

—

y/

Gaussian

\ Feature

Component

Algorithm (Ravi 98)

In training:
B Partition all means to subvectors

B For each sets of subvectors
[0 Find a set of VQ code-book

In run-time:

B For each mean
[0 For each subvector
B Compute the closest index

B Compute Gaussian score by combining
all subvector scores.

Issue

Can be used in Gaussian Selection

B Use approximate score to decide which
Gaussian to compute

Use as an approximate score
B Require large number of sub-vectors (13)
B Overhead is huge

Use as Gaussian Selection
B Require small amount of sub-vectors(3)

B Overhead is still larger than VQ.
Machine-related issues.

Summary of works in GMM
Computation:

[14-level of algorithmic
optimization.
[l However 2x2 =4

B There is a certain lower limit of
computation (e.g. 75-80%)

Work in improving search:
Phoneme Look-ahead

Phoneme Look-ahead

B Use approximate senone scores of future
frames to determine whether a phone arc
should be extended.

B Current Algorithm

O If any senone of a phone HMM is active in any of
future N frame, the phone is active.

0 Similar to Sphinx II.
Results not very promising
B Next step: try to add path-score in decision.

Speed-up Facilities in s3.3

GMM
Computation

A 4

A

»
>

Lexicon Structure

— Tree.

— > Standard

—

Pruning
Seach
Heuristic Search
Speed-up
Frame-Level —— Not implemented

Senone-Level

—>

Gaussian-Level

Not implemented

Not
Implemented

L » SVQ-based GMM Selection
Sub-vector constrained to 3

Component-Level

——»

SVQ code removed

Summary of
Speed-up Facilities in s3.4

Lexicon Structure— Tree
GMM i Seach Pruning » (New)
Computationi« Improved
P Heuristic Search Word-end
Speed-up \Pruning

(New) Phoneme-
Look-ahead

| (New) Naive Down-Sampling
| (New) Conditional Down-Sampling

Frame-Level

Senone-Level

\ 4

(New) CI-based GMM Selection

Gaussian-Level (New) VQ-based GMM Selection
\ (New) Unconstrained no. of sub-

vectors in SVQ-based GMM
Selection

Component-Level

(New) SVQ code enabled

Language Model Facilities

S3 and S3.3

B Only accept non-class-based LM in DMP format.

B Only one LM can be specified for the whole test
set.

S3.4

B Basic facilities for accepting class-based LM in
DMP format

B Support dynamic LM

Not yet thoroughly tested, may disable it
before stable.

Availability

Internal release to CMU initially
B Put in Arthur's web page next week.
B Include

[speed-up code

0 LM facilities(?)
If it is more stable, will put in
Sourceforge.

Sphinx 3.57?

Better interfaces
B Stream-lined recognizer

Enable Sphinx 3 to learn (AM and LM
adaptation)

Further Speed-up and improved accuracy
B Improved lexical tree search

B Machine optimization

B Multiple recognizer combination?

Your ideas:

Your help is appreciated.

B Current team:

O Arthur =
B (Maintainer + Developer) * Regression Tester ~ (Support)

[0 Jahanzeb = Developer in Search+ Regression Tester
[0 Ravi = Developer + Consultant

B We need,

Developers

Regression testers

Test scenarios

Extension of current code.
Suggestions
Comments/Feedbacks.

Talk to Alex if you are interested.

OO00O0000O

